SemaDeclCXX.cpp revision 195341
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403  } else {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if all the direct base classes of its
406    //   class have trivial constructors.
407    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
408                                    hasTrivialConstructor());
409  }
410
411  // C++ [class.ctor]p3:
412  //   A destructor is trivial if all the direct base classes of its class
413  //   have trivial destructors.
414  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
415                                 hasTrivialDestructor());
416
417  // Create the base specifier.
418  // FIXME: Allocate via ASTContext?
419  return new CXXBaseSpecifier(SpecifierRange, Virtual,
420                              Class->getTagKind() == RecordDecl::TK_class,
421                              Access, BaseType);
422}
423
424/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
425/// one entry in the base class list of a class specifier, for
426/// example:
427///    class foo : public bar, virtual private baz {
428/// 'public bar' and 'virtual private baz' are each base-specifiers.
429Sema::BaseResult
430Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
431                         bool Virtual, AccessSpecifier Access,
432                         TypeTy *basetype, SourceLocation BaseLoc) {
433  if (!classdecl)
434    return true;
435
436  AdjustDeclIfTemplate(classdecl);
437  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
438  QualType BaseType = QualType::getFromOpaquePtr(basetype);
439  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
440                                                      Virtual, Access,
441                                                      BaseType, BaseLoc))
442    return BaseSpec;
443
444  return true;
445}
446
447/// \brief Performs the actual work of attaching the given base class
448/// specifiers to a C++ class.
449bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
450                                unsigned NumBases) {
451 if (NumBases == 0)
452    return false;
453
454  // Used to keep track of which base types we have already seen, so
455  // that we can properly diagnose redundant direct base types. Note
456  // that the key is always the unqualified canonical type of the base
457  // class.
458  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
459
460  // Copy non-redundant base specifiers into permanent storage.
461  unsigned NumGoodBases = 0;
462  bool Invalid = false;
463  for (unsigned idx = 0; idx < NumBases; ++idx) {
464    QualType NewBaseType
465      = Context.getCanonicalType(Bases[idx]->getType());
466    NewBaseType = NewBaseType.getUnqualifiedType();
467
468    if (KnownBaseTypes[NewBaseType]) {
469      // C++ [class.mi]p3:
470      //   A class shall not be specified as a direct base class of a
471      //   derived class more than once.
472      Diag(Bases[idx]->getSourceRange().getBegin(),
473           diag::err_duplicate_base_class)
474        << KnownBaseTypes[NewBaseType]->getType()
475        << Bases[idx]->getSourceRange();
476
477      // Delete the duplicate base class specifier; we're going to
478      // overwrite its pointer later.
479      delete Bases[idx];
480
481      Invalid = true;
482    } else {
483      // Okay, add this new base class.
484      KnownBaseTypes[NewBaseType] = Bases[idx];
485      Bases[NumGoodBases++] = Bases[idx];
486    }
487  }
488
489  // Attach the remaining base class specifiers to the derived class.
490  Class->setBases(Context, Bases, NumGoodBases);
491
492  // Delete the remaining (good) base class specifiers, since their
493  // data has been copied into the CXXRecordDecl.
494  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
495    delete Bases[idx];
496
497  return Invalid;
498}
499
500/// ActOnBaseSpecifiers - Attach the given base specifiers to the
501/// class, after checking whether there are any duplicate base
502/// classes.
503void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
504                               unsigned NumBases) {
505  if (!ClassDecl || !Bases || !NumBases)
506    return;
507
508  AdjustDeclIfTemplate(ClassDecl);
509  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
510                       (CXXBaseSpecifier**)(Bases), NumBases);
511}
512
513//===----------------------------------------------------------------------===//
514// C++ class member Handling
515//===----------------------------------------------------------------------===//
516
517/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
518/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
519/// bitfield width if there is one and 'InitExpr' specifies the initializer if
520/// any.
521Sema::DeclPtrTy
522Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
523                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
524  const DeclSpec &DS = D.getDeclSpec();
525  DeclarationName Name = GetNameForDeclarator(D);
526  Expr *BitWidth = static_cast<Expr*>(BW);
527  Expr *Init = static_cast<Expr*>(InitExpr);
528  SourceLocation Loc = D.getIdentifierLoc();
529
530  bool isFunc = D.isFunctionDeclarator();
531
532  // C++ 9.2p6: A member shall not be declared to have automatic storage
533  // duration (auto, register) or with the extern storage-class-specifier.
534  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
535  // data members and cannot be applied to names declared const or static,
536  // and cannot be applied to reference members.
537  switch (DS.getStorageClassSpec()) {
538    case DeclSpec::SCS_unspecified:
539    case DeclSpec::SCS_typedef:
540    case DeclSpec::SCS_static:
541      // FALL THROUGH.
542      break;
543    case DeclSpec::SCS_mutable:
544      if (isFunc) {
545        if (DS.getStorageClassSpecLoc().isValid())
546          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
547        else
548          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
549
550        // FIXME: It would be nicer if the keyword was ignored only for this
551        // declarator. Otherwise we could get follow-up errors.
552        D.getMutableDeclSpec().ClearStorageClassSpecs();
553      } else {
554        QualType T = GetTypeForDeclarator(D, S);
555        diag::kind err = static_cast<diag::kind>(0);
556        if (T->isReferenceType())
557          err = diag::err_mutable_reference;
558        else if (T.isConstQualified())
559          err = diag::err_mutable_const;
560        if (err != 0) {
561          if (DS.getStorageClassSpecLoc().isValid())
562            Diag(DS.getStorageClassSpecLoc(), err);
563          else
564            Diag(DS.getThreadSpecLoc(), err);
565          // FIXME: It would be nicer if the keyword was ignored only for this
566          // declarator. Otherwise we could get follow-up errors.
567          D.getMutableDeclSpec().ClearStorageClassSpecs();
568        }
569      }
570      break;
571    default:
572      if (DS.getStorageClassSpecLoc().isValid())
573        Diag(DS.getStorageClassSpecLoc(),
574             diag::err_storageclass_invalid_for_member);
575      else
576        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
577      D.getMutableDeclSpec().ClearStorageClassSpecs();
578  }
579
580  if (!isFunc &&
581      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
582      D.getNumTypeObjects() == 0) {
583    // Check also for this case:
584    //
585    // typedef int f();
586    // f a;
587    //
588    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
589    isFunc = TDType->isFunctionType();
590  }
591
592  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
593                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
594                      !isFunc);
595
596  Decl *Member;
597  if (isInstField) {
598    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
599                         AS);
600    assert(Member && "HandleField never returns null");
601  } else {
602    Member = ActOnDeclarator(S, D).getAs<Decl>();
603    if (!Member) {
604      if (BitWidth) DeleteExpr(BitWidth);
605      return DeclPtrTy();
606    }
607
608    // Non-instance-fields can't have a bitfield.
609    if (BitWidth) {
610      if (Member->isInvalidDecl()) {
611        // don't emit another diagnostic.
612      } else if (isa<VarDecl>(Member)) {
613        // C++ 9.6p3: A bit-field shall not be a static member.
614        // "static member 'A' cannot be a bit-field"
615        Diag(Loc, diag::err_static_not_bitfield)
616          << Name << BitWidth->getSourceRange();
617      } else if (isa<TypedefDecl>(Member)) {
618        // "typedef member 'x' cannot be a bit-field"
619        Diag(Loc, diag::err_typedef_not_bitfield)
620          << Name << BitWidth->getSourceRange();
621      } else {
622        // A function typedef ("typedef int f(); f a;").
623        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
624        Diag(Loc, diag::err_not_integral_type_bitfield)
625          << Name << cast<ValueDecl>(Member)->getType()
626          << BitWidth->getSourceRange();
627      }
628
629      DeleteExpr(BitWidth);
630      BitWidth = 0;
631      Member->setInvalidDecl();
632    }
633
634    Member->setAccess(AS);
635  }
636
637  assert((Name || isInstField) && "No identifier for non-field ?");
638
639  if (Init)
640    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
641  if (Deleted) // FIXME: Source location is not very good.
642    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
643
644  if (isInstField) {
645    FieldCollector->Add(cast<FieldDecl>(Member));
646    return DeclPtrTy();
647  }
648  return DeclPtrTy::make(Member);
649}
650
651/// ActOnMemInitializer - Handle a C++ member initializer.
652Sema::MemInitResult
653Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
654                          Scope *S,
655                          const CXXScopeSpec &SS,
656                          IdentifierInfo *MemberOrBase,
657                          TypeTy *TemplateTypeTy,
658                          SourceLocation IdLoc,
659                          SourceLocation LParenLoc,
660                          ExprTy **Args, unsigned NumArgs,
661                          SourceLocation *CommaLocs,
662                          SourceLocation RParenLoc) {
663  if (!ConstructorD)
664    return true;
665
666  CXXConstructorDecl *Constructor
667    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
668  if (!Constructor) {
669    // The user wrote a constructor initializer on a function that is
670    // not a C++ constructor. Ignore the error for now, because we may
671    // have more member initializers coming; we'll diagnose it just
672    // once in ActOnMemInitializers.
673    return true;
674  }
675
676  CXXRecordDecl *ClassDecl = Constructor->getParent();
677
678  // C++ [class.base.init]p2:
679  //   Names in a mem-initializer-id are looked up in the scope of the
680  //   constructor���s class and, if not found in that scope, are looked
681  //   up in the scope containing the constructor���s
682  //   definition. [Note: if the constructor���s class contains a member
683  //   with the same name as a direct or virtual base class of the
684  //   class, a mem-initializer-id naming the member or base class and
685  //   composed of a single identifier refers to the class member. A
686  //   mem-initializer-id for the hidden base class may be specified
687  //   using a qualified name. ]
688  if (!SS.getScopeRep() && !TemplateTypeTy) {
689    // Look for a member, first.
690    FieldDecl *Member = 0;
691    DeclContext::lookup_result Result
692      = ClassDecl->lookup(MemberOrBase);
693    if (Result.first != Result.second)
694      Member = dyn_cast<FieldDecl>(*Result.first);
695
696    // FIXME: Handle members of an anonymous union.
697
698    if (Member) {
699      // FIXME: Perform direct initialization of the member.
700      return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
701                                            IdLoc);
702    }
703  }
704  // It didn't name a member, so see if it names a class.
705  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
706                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
707  if (!BaseTy)
708    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
709      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
710
711  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
712  if (!BaseType->isRecordType() && !BaseType->isDependentType())
713    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
714      << BaseType << SourceRange(IdLoc, RParenLoc);
715
716  // C++ [class.base.init]p2:
717  //   [...] Unless the mem-initializer-id names a nonstatic data
718  //   member of the constructor���s class or a direct or virtual base
719  //   of that class, the mem-initializer is ill-formed. A
720  //   mem-initializer-list can initialize a base class using any
721  //   name that denotes that base class type.
722
723  // First, check for a direct base class.
724  const CXXBaseSpecifier *DirectBaseSpec = 0;
725  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
726       Base != ClassDecl->bases_end(); ++Base) {
727    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
728        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
729      // We found a direct base of this type. That's what we're
730      // initializing.
731      DirectBaseSpec = &*Base;
732      break;
733    }
734  }
735
736  // Check for a virtual base class.
737  // FIXME: We might be able to short-circuit this if we know in advance that
738  // there are no virtual bases.
739  const CXXBaseSpecifier *VirtualBaseSpec = 0;
740  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
741    // We haven't found a base yet; search the class hierarchy for a
742    // virtual base class.
743    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
744                    /*DetectVirtual=*/false);
745    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
746      for (BasePaths::paths_iterator Path = Paths.begin();
747           Path != Paths.end(); ++Path) {
748        if (Path->back().Base->isVirtual()) {
749          VirtualBaseSpec = Path->back().Base;
750          break;
751        }
752      }
753    }
754  }
755
756  // C++ [base.class.init]p2:
757  //   If a mem-initializer-id is ambiguous because it designates both
758  //   a direct non-virtual base class and an inherited virtual base
759  //   class, the mem-initializer is ill-formed.
760  if (DirectBaseSpec && VirtualBaseSpec)
761    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763  // C++ [base.class.init]p2:
764  // Unless the mem-initializer-id names a nonstatic data membeer of the
765  // constructor's class ot a direst or virtual base of that class, the
766  // mem-initializer is ill-formed.
767  if (!DirectBaseSpec && !VirtualBaseSpec)
768    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
769    << BaseType << ClassDecl->getNameAsCString()
770    << SourceRange(IdLoc, RParenLoc);
771
772
773  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
774                                        IdLoc);
775}
776
777void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
778                                SourceLocation ColonLoc,
779                                MemInitTy **MemInits, unsigned NumMemInits) {
780  if (!ConstructorDecl)
781    return;
782
783  CXXConstructorDecl *Constructor
784    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
785
786  if (!Constructor) {
787    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
788    return;
789  }
790  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
791  bool err = false;
792  for (unsigned i = 0; i < NumMemInits; i++) {
793    CXXBaseOrMemberInitializer *Member =
794      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
795    void *KeyToMember = Member->getBaseOrMember();
796    // For fields injected into the class via declaration of an anonymous union,
797    // use its anonymous union class declaration as the unique key.
798    if (FieldDecl *Field = Member->getMember())
799      if (Field->getDeclContext()->isRecord() &&
800          cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
801        KeyToMember = static_cast<void *>(Field->getDeclContext());
802    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
803    if (!PrevMember) {
804      PrevMember = Member;
805      continue;
806    }
807    if (FieldDecl *Field = Member->getMember())
808      Diag(Member->getSourceLocation(),
809           diag::error_multiple_mem_initialization)
810      << Field->getNameAsString();
811    else {
812      Type *BaseClass = Member->getBaseClass();
813      assert(BaseClass && "ActOnMemInitializers - neither field or base");
814      Diag(Member->getSourceLocation(),
815           diag::error_multiple_base_initialization)
816        << BaseClass->getDesugaredType(true);
817    }
818    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
819      << 0;
820    err = true;
821  }
822  if (!err)
823    Constructor->setBaseOrMemberInitializers(Context,
824                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
825                    NumMemInits);
826}
827
828namespace {
829  /// PureVirtualMethodCollector - traverses a class and its superclasses
830  /// and determines if it has any pure virtual methods.
831  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
832    ASTContext &Context;
833
834  public:
835    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
836
837  private:
838    MethodList Methods;
839
840    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
841
842  public:
843    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
844      : Context(Ctx) {
845
846      MethodList List;
847      Collect(RD, List);
848
849      // Copy the temporary list to methods, and make sure to ignore any
850      // null entries.
851      for (size_t i = 0, e = List.size(); i != e; ++i) {
852        if (List[i])
853          Methods.push_back(List[i]);
854      }
855    }
856
857    bool empty() const { return Methods.empty(); }
858
859    MethodList::const_iterator methods_begin() { return Methods.begin(); }
860    MethodList::const_iterator methods_end() { return Methods.end(); }
861  };
862
863  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
864                                           MethodList& Methods) {
865    // First, collect the pure virtual methods for the base classes.
866    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
867         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
868      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
869        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
870        if (BaseDecl && BaseDecl->isAbstract())
871          Collect(BaseDecl, Methods);
872      }
873    }
874
875    // Next, zero out any pure virtual methods that this class overrides.
876    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
877
878    MethodSetTy OverriddenMethods;
879    size_t MethodsSize = Methods.size();
880
881    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
882         i != e; ++i) {
883      // Traverse the record, looking for methods.
884      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
885        // If the method is pre virtual, add it to the methods vector.
886        if (MD->isPure()) {
887          Methods.push_back(MD);
888          continue;
889        }
890
891        // Otherwise, record all the overridden methods in our set.
892        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
893             E = MD->end_overridden_methods(); I != E; ++I) {
894          // Keep track of the overridden methods.
895          OverriddenMethods.insert(*I);
896        }
897      }
898    }
899
900    // Now go through the methods and zero out all the ones we know are
901    // overridden.
902    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
903      if (OverriddenMethods.count(Methods[i]))
904        Methods[i] = 0;
905    }
906
907  }
908}
909
910bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
911                                  unsigned DiagID, AbstractDiagSelID SelID,
912                                  const CXXRecordDecl *CurrentRD) {
913
914  if (!getLangOptions().CPlusPlus)
915    return false;
916
917  if (const ArrayType *AT = Context.getAsArrayType(T))
918    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
919                                  CurrentRD);
920
921  if (const PointerType *PT = T->getAsPointerType()) {
922    // Find the innermost pointer type.
923    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
924      PT = T;
925
926    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
927      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
928                                    CurrentRD);
929  }
930
931  const RecordType *RT = T->getAsRecordType();
932  if (!RT)
933    return false;
934
935  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
936  if (!RD)
937    return false;
938
939  if (CurrentRD && CurrentRD != RD)
940    return false;
941
942  if (!RD->isAbstract())
943    return false;
944
945  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
946
947  // Check if we've already emitted the list of pure virtual functions for this
948  // class.
949  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
950    return true;
951
952  PureVirtualMethodCollector Collector(Context, RD);
953
954  for (PureVirtualMethodCollector::MethodList::const_iterator I =
955       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
956    const CXXMethodDecl *MD = *I;
957
958    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
959      MD->getDeclName();
960  }
961
962  if (!PureVirtualClassDiagSet)
963    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
964  PureVirtualClassDiagSet->insert(RD);
965
966  return true;
967}
968
969namespace {
970  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
971    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
972    Sema &SemaRef;
973    CXXRecordDecl *AbstractClass;
974
975    bool VisitDeclContext(const DeclContext *DC) {
976      bool Invalid = false;
977
978      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
979           E = DC->decls_end(); I != E; ++I)
980        Invalid |= Visit(*I);
981
982      return Invalid;
983    }
984
985  public:
986    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
987      : SemaRef(SemaRef), AbstractClass(ac) {
988        Visit(SemaRef.Context.getTranslationUnitDecl());
989    }
990
991    bool VisitFunctionDecl(const FunctionDecl *FD) {
992      if (FD->isThisDeclarationADefinition()) {
993        // No need to do the check if we're in a definition, because it requires
994        // that the return/param types are complete.
995        // because that requires
996        return VisitDeclContext(FD);
997      }
998
999      // Check the return type.
1000      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1001      bool Invalid =
1002        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1003                                       diag::err_abstract_type_in_decl,
1004                                       Sema::AbstractReturnType,
1005                                       AbstractClass);
1006
1007      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1008           E = FD->param_end(); I != E; ++I) {
1009        const ParmVarDecl *VD = *I;
1010        Invalid |=
1011          SemaRef.RequireNonAbstractType(VD->getLocation(),
1012                                         VD->getOriginalType(),
1013                                         diag::err_abstract_type_in_decl,
1014                                         Sema::AbstractParamType,
1015                                         AbstractClass);
1016      }
1017
1018      return Invalid;
1019    }
1020
1021    bool VisitDecl(const Decl* D) {
1022      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1023        return VisitDeclContext(DC);
1024
1025      return false;
1026    }
1027  };
1028}
1029
1030void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1031                                             DeclPtrTy TagDecl,
1032                                             SourceLocation LBrac,
1033                                             SourceLocation RBrac) {
1034  if (!TagDecl)
1035    return;
1036
1037  AdjustDeclIfTemplate(TagDecl);
1038  ActOnFields(S, RLoc, TagDecl,
1039              (DeclPtrTy*)FieldCollector->getCurFields(),
1040              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1041
1042  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1043  if (!RD->isAbstract()) {
1044    // Collect all the pure virtual methods and see if this is an abstract
1045    // class after all.
1046    PureVirtualMethodCollector Collector(Context, RD);
1047    if (!Collector.empty())
1048      RD->setAbstract(true);
1049  }
1050
1051  if (RD->isAbstract())
1052    AbstractClassUsageDiagnoser(*this, RD);
1053
1054  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1055    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1056         i != e; ++i) {
1057      // All the nonstatic data members must have trivial constructors.
1058      QualType FTy = i->getType();
1059      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1060        FTy = AT->getElementType();
1061
1062      if (const RecordType *RT = FTy->getAsRecordType()) {
1063        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1064
1065        if (!FieldRD->hasTrivialConstructor())
1066          RD->setHasTrivialConstructor(false);
1067        if (!FieldRD->hasTrivialDestructor())
1068          RD->setHasTrivialDestructor(false);
1069
1070        // If RD has neither a trivial constructor nor a trivial destructor
1071        // we don't need to continue checking.
1072        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1073          break;
1074      }
1075    }
1076  }
1077
1078  if (!RD->isDependentType())
1079    AddImplicitlyDeclaredMembersToClass(RD);
1080}
1081
1082/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1083/// special functions, such as the default constructor, copy
1084/// constructor, or destructor, to the given C++ class (C++
1085/// [special]p1).  This routine can only be executed just before the
1086/// definition of the class is complete.
1087void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1088  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1089  ClassType = Context.getCanonicalType(ClassType);
1090
1091  // FIXME: Implicit declarations have exception specifications, which are
1092  // the union of the specifications of the implicitly called functions.
1093
1094  if (!ClassDecl->hasUserDeclaredConstructor()) {
1095    // C++ [class.ctor]p5:
1096    //   A default constructor for a class X is a constructor of class X
1097    //   that can be called without an argument. If there is no
1098    //   user-declared constructor for class X, a default constructor is
1099    //   implicitly declared. An implicitly-declared default constructor
1100    //   is an inline public member of its class.
1101    DeclarationName Name
1102      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1103    CXXConstructorDecl *DefaultCon =
1104      CXXConstructorDecl::Create(Context, ClassDecl,
1105                                 ClassDecl->getLocation(), Name,
1106                                 Context.getFunctionType(Context.VoidTy,
1107                                                         0, 0, false, 0),
1108                                 /*isExplicit=*/false,
1109                                 /*isInline=*/true,
1110                                 /*isImplicitlyDeclared=*/true);
1111    DefaultCon->setAccess(AS_public);
1112    DefaultCon->setImplicit();
1113    ClassDecl->addDecl(DefaultCon);
1114  }
1115
1116  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1117    // C++ [class.copy]p4:
1118    //   If the class definition does not explicitly declare a copy
1119    //   constructor, one is declared implicitly.
1120
1121    // C++ [class.copy]p5:
1122    //   The implicitly-declared copy constructor for a class X will
1123    //   have the form
1124    //
1125    //       X::X(const X&)
1126    //
1127    //   if
1128    bool HasConstCopyConstructor = true;
1129
1130    //     -- each direct or virtual base class B of X has a copy
1131    //        constructor whose first parameter is of type const B& or
1132    //        const volatile B&, and
1133    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1134         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1135      const CXXRecordDecl *BaseClassDecl
1136        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1137      HasConstCopyConstructor
1138        = BaseClassDecl->hasConstCopyConstructor(Context);
1139    }
1140
1141    //     -- for all the nonstatic data members of X that are of a
1142    //        class type M (or array thereof), each such class type
1143    //        has a copy constructor whose first parameter is of type
1144    //        const M& or const volatile M&.
1145    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1146         HasConstCopyConstructor && Field != ClassDecl->field_end();
1147         ++Field) {
1148      QualType FieldType = (*Field)->getType();
1149      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1150        FieldType = Array->getElementType();
1151      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1152        const CXXRecordDecl *FieldClassDecl
1153          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1154        HasConstCopyConstructor
1155          = FieldClassDecl->hasConstCopyConstructor(Context);
1156      }
1157    }
1158
1159    //   Otherwise, the implicitly declared copy constructor will have
1160    //   the form
1161    //
1162    //       X::X(X&)
1163    QualType ArgType = ClassType;
1164    if (HasConstCopyConstructor)
1165      ArgType = ArgType.withConst();
1166    ArgType = Context.getLValueReferenceType(ArgType);
1167
1168    //   An implicitly-declared copy constructor is an inline public
1169    //   member of its class.
1170    DeclarationName Name
1171      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1172    CXXConstructorDecl *CopyConstructor
1173      = CXXConstructorDecl::Create(Context, ClassDecl,
1174                                   ClassDecl->getLocation(), Name,
1175                                   Context.getFunctionType(Context.VoidTy,
1176                                                           &ArgType, 1,
1177                                                           false, 0),
1178                                   /*isExplicit=*/false,
1179                                   /*isInline=*/true,
1180                                   /*isImplicitlyDeclared=*/true);
1181    CopyConstructor->setAccess(AS_public);
1182    CopyConstructor->setImplicit();
1183
1184    // Add the parameter to the constructor.
1185    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1186                                                 ClassDecl->getLocation(),
1187                                                 /*IdentifierInfo=*/0,
1188                                                 ArgType, VarDecl::None, 0);
1189    CopyConstructor->setParams(Context, &FromParam, 1);
1190    ClassDecl->addDecl(CopyConstructor);
1191  }
1192
1193  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1194    // Note: The following rules are largely analoguous to the copy
1195    // constructor rules. Note that virtual bases are not taken into account
1196    // for determining the argument type of the operator. Note also that
1197    // operators taking an object instead of a reference are allowed.
1198    //
1199    // C++ [class.copy]p10:
1200    //   If the class definition does not explicitly declare a copy
1201    //   assignment operator, one is declared implicitly.
1202    //   The implicitly-defined copy assignment operator for a class X
1203    //   will have the form
1204    //
1205    //       X& X::operator=(const X&)
1206    //
1207    //   if
1208    bool HasConstCopyAssignment = true;
1209
1210    //       -- each direct base class B of X has a copy assignment operator
1211    //          whose parameter is of type const B&, const volatile B& or B,
1212    //          and
1213    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1214         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1215      const CXXRecordDecl *BaseClassDecl
1216        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1217      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1218    }
1219
1220    //       -- for all the nonstatic data members of X that are of a class
1221    //          type M (or array thereof), each such class type has a copy
1222    //          assignment operator whose parameter is of type const M&,
1223    //          const volatile M& or M.
1224    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1225         HasConstCopyAssignment && Field != ClassDecl->field_end();
1226         ++Field) {
1227      QualType FieldType = (*Field)->getType();
1228      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1229        FieldType = Array->getElementType();
1230      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1231        const CXXRecordDecl *FieldClassDecl
1232          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1233        HasConstCopyAssignment
1234          = FieldClassDecl->hasConstCopyAssignment(Context);
1235      }
1236    }
1237
1238    //   Otherwise, the implicitly declared copy assignment operator will
1239    //   have the form
1240    //
1241    //       X& X::operator=(X&)
1242    QualType ArgType = ClassType;
1243    QualType RetType = Context.getLValueReferenceType(ArgType);
1244    if (HasConstCopyAssignment)
1245      ArgType = ArgType.withConst();
1246    ArgType = Context.getLValueReferenceType(ArgType);
1247
1248    //   An implicitly-declared copy assignment operator is an inline public
1249    //   member of its class.
1250    DeclarationName Name =
1251      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1252    CXXMethodDecl *CopyAssignment =
1253      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1254                            Context.getFunctionType(RetType, &ArgType, 1,
1255                                                    false, 0),
1256                            /*isStatic=*/false, /*isInline=*/true);
1257    CopyAssignment->setAccess(AS_public);
1258    CopyAssignment->setImplicit();
1259
1260    // Add the parameter to the operator.
1261    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1262                                                 ClassDecl->getLocation(),
1263                                                 /*IdentifierInfo=*/0,
1264                                                 ArgType, VarDecl::None, 0);
1265    CopyAssignment->setParams(Context, &FromParam, 1);
1266
1267    // Don't call addedAssignmentOperator. There is no way to distinguish an
1268    // implicit from an explicit assignment operator.
1269    ClassDecl->addDecl(CopyAssignment);
1270  }
1271
1272  if (!ClassDecl->hasUserDeclaredDestructor()) {
1273    // C++ [class.dtor]p2:
1274    //   If a class has no user-declared destructor, a destructor is
1275    //   declared implicitly. An implicitly-declared destructor is an
1276    //   inline public member of its class.
1277    DeclarationName Name
1278      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1279    CXXDestructorDecl *Destructor
1280      = CXXDestructorDecl::Create(Context, ClassDecl,
1281                                  ClassDecl->getLocation(), Name,
1282                                  Context.getFunctionType(Context.VoidTy,
1283                                                          0, 0, false, 0),
1284                                  /*isInline=*/true,
1285                                  /*isImplicitlyDeclared=*/true);
1286    Destructor->setAccess(AS_public);
1287    Destructor->setImplicit();
1288    ClassDecl->addDecl(Destructor);
1289  }
1290}
1291
1292void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1293  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1294  if (!Template)
1295    return;
1296
1297  TemplateParameterList *Params = Template->getTemplateParameters();
1298  for (TemplateParameterList::iterator Param = Params->begin(),
1299                                    ParamEnd = Params->end();
1300       Param != ParamEnd; ++Param) {
1301    NamedDecl *Named = cast<NamedDecl>(*Param);
1302    if (Named->getDeclName()) {
1303      S->AddDecl(DeclPtrTy::make(Named));
1304      IdResolver.AddDecl(Named);
1305    }
1306  }
1307}
1308
1309/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1310/// parsing a top-level (non-nested) C++ class, and we are now
1311/// parsing those parts of the given Method declaration that could
1312/// not be parsed earlier (C++ [class.mem]p2), such as default
1313/// arguments. This action should enter the scope of the given
1314/// Method declaration as if we had just parsed the qualified method
1315/// name. However, it should not bring the parameters into scope;
1316/// that will be performed by ActOnDelayedCXXMethodParameter.
1317void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1318  if (!MethodD)
1319    return;
1320
1321  CXXScopeSpec SS;
1322  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1323  QualType ClassTy
1324    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1325  SS.setScopeRep(
1326    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1327  ActOnCXXEnterDeclaratorScope(S, SS);
1328}
1329
1330/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1331/// C++ method declaration. We're (re-)introducing the given
1332/// function parameter into scope for use in parsing later parts of
1333/// the method declaration. For example, we could see an
1334/// ActOnParamDefaultArgument event for this parameter.
1335void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1336  if (!ParamD)
1337    return;
1338
1339  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1340
1341  // If this parameter has an unparsed default argument, clear it out
1342  // to make way for the parsed default argument.
1343  if (Param->hasUnparsedDefaultArg())
1344    Param->setDefaultArg(0);
1345
1346  S->AddDecl(DeclPtrTy::make(Param));
1347  if (Param->getDeclName())
1348    IdResolver.AddDecl(Param);
1349}
1350
1351/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1352/// processing the delayed method declaration for Method. The method
1353/// declaration is now considered finished. There may be a separate
1354/// ActOnStartOfFunctionDef action later (not necessarily
1355/// immediately!) for this method, if it was also defined inside the
1356/// class body.
1357void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1358  if (!MethodD)
1359    return;
1360
1361  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1362  CXXScopeSpec SS;
1363  QualType ClassTy
1364    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1365  SS.setScopeRep(
1366    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1367  ActOnCXXExitDeclaratorScope(S, SS);
1368
1369  // Now that we have our default arguments, check the constructor
1370  // again. It could produce additional diagnostics or affect whether
1371  // the class has implicitly-declared destructors, among other
1372  // things.
1373  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1374    CheckConstructor(Constructor);
1375
1376  // Check the default arguments, which we may have added.
1377  if (!Method->isInvalidDecl())
1378    CheckCXXDefaultArguments(Method);
1379}
1380
1381/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1382/// the well-formedness of the constructor declarator @p D with type @p
1383/// R. If there are any errors in the declarator, this routine will
1384/// emit diagnostics and set the invalid bit to true.  In any case, the type
1385/// will be updated to reflect a well-formed type for the constructor and
1386/// returned.
1387QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1388                                          FunctionDecl::StorageClass &SC) {
1389  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1390
1391  // C++ [class.ctor]p3:
1392  //   A constructor shall not be virtual (10.3) or static (9.4). A
1393  //   constructor can be invoked for a const, volatile or const
1394  //   volatile object. A constructor shall not be declared const,
1395  //   volatile, or const volatile (9.3.2).
1396  if (isVirtual) {
1397    if (!D.isInvalidType())
1398      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1399        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1400        << SourceRange(D.getIdentifierLoc());
1401    D.setInvalidType();
1402  }
1403  if (SC == FunctionDecl::Static) {
1404    if (!D.isInvalidType())
1405      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1406        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1407        << SourceRange(D.getIdentifierLoc());
1408    D.setInvalidType();
1409    SC = FunctionDecl::None;
1410  }
1411
1412  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1413  if (FTI.TypeQuals != 0) {
1414    if (FTI.TypeQuals & QualType::Const)
1415      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1416        << "const" << SourceRange(D.getIdentifierLoc());
1417    if (FTI.TypeQuals & QualType::Volatile)
1418      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1419        << "volatile" << SourceRange(D.getIdentifierLoc());
1420    if (FTI.TypeQuals & QualType::Restrict)
1421      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1422        << "restrict" << SourceRange(D.getIdentifierLoc());
1423  }
1424
1425  // Rebuild the function type "R" without any type qualifiers (in
1426  // case any of the errors above fired) and with "void" as the
1427  // return type, since constructors don't have return types. We
1428  // *always* have to do this, because GetTypeForDeclarator will
1429  // put in a result type of "int" when none was specified.
1430  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1431  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1432                                 Proto->getNumArgs(),
1433                                 Proto->isVariadic(), 0);
1434}
1435
1436/// CheckConstructor - Checks a fully-formed constructor for
1437/// well-formedness, issuing any diagnostics required. Returns true if
1438/// the constructor declarator is invalid.
1439void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1440  CXXRecordDecl *ClassDecl
1441    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1442  if (!ClassDecl)
1443    return Constructor->setInvalidDecl();
1444
1445  // C++ [class.copy]p3:
1446  //   A declaration of a constructor for a class X is ill-formed if
1447  //   its first parameter is of type (optionally cv-qualified) X and
1448  //   either there are no other parameters or else all other
1449  //   parameters have default arguments.
1450  if (!Constructor->isInvalidDecl() &&
1451      ((Constructor->getNumParams() == 1) ||
1452       (Constructor->getNumParams() > 1 &&
1453        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1454    QualType ParamType = Constructor->getParamDecl(0)->getType();
1455    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1456    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1457      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1458      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1459        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1460      Constructor->setInvalidDecl();
1461    }
1462  }
1463
1464  // Notify the class that we've added a constructor.
1465  ClassDecl->addedConstructor(Context, Constructor);
1466}
1467
1468static inline bool
1469FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1470  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1471          FTI.ArgInfo[0].Param &&
1472          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1473}
1474
1475/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1476/// the well-formednes of the destructor declarator @p D with type @p
1477/// R. If there are any errors in the declarator, this routine will
1478/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1479/// will be updated to reflect a well-formed type for the destructor and
1480/// returned.
1481QualType Sema::CheckDestructorDeclarator(Declarator &D,
1482                                         FunctionDecl::StorageClass& SC) {
1483  // C++ [class.dtor]p1:
1484  //   [...] A typedef-name that names a class is a class-name
1485  //   (7.1.3); however, a typedef-name that names a class shall not
1486  //   be used as the identifier in the declarator for a destructor
1487  //   declaration.
1488  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1489  if (isa<TypedefType>(DeclaratorType)) {
1490    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1491      << DeclaratorType;
1492    D.setInvalidType();
1493  }
1494
1495  // C++ [class.dtor]p2:
1496  //   A destructor is used to destroy objects of its class type. A
1497  //   destructor takes no parameters, and no return type can be
1498  //   specified for it (not even void). The address of a destructor
1499  //   shall not be taken. A destructor shall not be static. A
1500  //   destructor can be invoked for a const, volatile or const
1501  //   volatile object. A destructor shall not be declared const,
1502  //   volatile or const volatile (9.3.2).
1503  if (SC == FunctionDecl::Static) {
1504    if (!D.isInvalidType())
1505      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1506        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1507        << SourceRange(D.getIdentifierLoc());
1508    SC = FunctionDecl::None;
1509    D.setInvalidType();
1510  }
1511  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1512    // Destructors don't have return types, but the parser will
1513    // happily parse something like:
1514    //
1515    //   class X {
1516    //     float ~X();
1517    //   };
1518    //
1519    // The return type will be eliminated later.
1520    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1521      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1522      << SourceRange(D.getIdentifierLoc());
1523  }
1524
1525  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1526  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1527    if (FTI.TypeQuals & QualType::Const)
1528      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1529        << "const" << SourceRange(D.getIdentifierLoc());
1530    if (FTI.TypeQuals & QualType::Volatile)
1531      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1532        << "volatile" << SourceRange(D.getIdentifierLoc());
1533    if (FTI.TypeQuals & QualType::Restrict)
1534      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1535        << "restrict" << SourceRange(D.getIdentifierLoc());
1536    D.setInvalidType();
1537  }
1538
1539  // Make sure we don't have any parameters.
1540  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1541    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1542
1543    // Delete the parameters.
1544    FTI.freeArgs();
1545    D.setInvalidType();
1546  }
1547
1548  // Make sure the destructor isn't variadic.
1549  if (FTI.isVariadic) {
1550    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1551    D.setInvalidType();
1552  }
1553
1554  // Rebuild the function type "R" without any type qualifiers or
1555  // parameters (in case any of the errors above fired) and with
1556  // "void" as the return type, since destructors don't have return
1557  // types. We *always* have to do this, because GetTypeForDeclarator
1558  // will put in a result type of "int" when none was specified.
1559  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1560}
1561
1562/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1563/// well-formednes of the conversion function declarator @p D with
1564/// type @p R. If there are any errors in the declarator, this routine
1565/// will emit diagnostics and return true. Otherwise, it will return
1566/// false. Either way, the type @p R will be updated to reflect a
1567/// well-formed type for the conversion operator.
1568void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1569                                     FunctionDecl::StorageClass& SC) {
1570  // C++ [class.conv.fct]p1:
1571  //   Neither parameter types nor return type can be specified. The
1572  //   type of a conversion function (8.3.5) is ���function taking no
1573  //   parameter returning conversion-type-id.���
1574  if (SC == FunctionDecl::Static) {
1575    if (!D.isInvalidType())
1576      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1577        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1578        << SourceRange(D.getIdentifierLoc());
1579    D.setInvalidType();
1580    SC = FunctionDecl::None;
1581  }
1582  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1583    // Conversion functions don't have return types, but the parser will
1584    // happily parse something like:
1585    //
1586    //   class X {
1587    //     float operator bool();
1588    //   };
1589    //
1590    // The return type will be changed later anyway.
1591    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1592      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1593      << SourceRange(D.getIdentifierLoc());
1594  }
1595
1596  // Make sure we don't have any parameters.
1597  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1598    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1599
1600    // Delete the parameters.
1601    D.getTypeObject(0).Fun.freeArgs();
1602    D.setInvalidType();
1603  }
1604
1605  // Make sure the conversion function isn't variadic.
1606  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1607    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1608    D.setInvalidType();
1609  }
1610
1611  // C++ [class.conv.fct]p4:
1612  //   The conversion-type-id shall not represent a function type nor
1613  //   an array type.
1614  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1615  if (ConvType->isArrayType()) {
1616    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1617    ConvType = Context.getPointerType(ConvType);
1618    D.setInvalidType();
1619  } else if (ConvType->isFunctionType()) {
1620    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1621    ConvType = Context.getPointerType(ConvType);
1622    D.setInvalidType();
1623  }
1624
1625  // Rebuild the function type "R" without any parameters (in case any
1626  // of the errors above fired) and with the conversion type as the
1627  // return type.
1628  R = Context.getFunctionType(ConvType, 0, 0, false,
1629                              R->getAsFunctionProtoType()->getTypeQuals());
1630
1631  // C++0x explicit conversion operators.
1632  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1633    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1634         diag::warn_explicit_conversion_functions)
1635      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1636}
1637
1638/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1639/// the declaration of the given C++ conversion function. This routine
1640/// is responsible for recording the conversion function in the C++
1641/// class, if possible.
1642Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1643  assert(Conversion && "Expected to receive a conversion function declaration");
1644
1645  // Set the lexical context of this conversion function
1646  Conversion->setLexicalDeclContext(CurContext);
1647
1648  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1649
1650  // Make sure we aren't redeclaring the conversion function.
1651  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1652
1653  // C++ [class.conv.fct]p1:
1654  //   [...] A conversion function is never used to convert a
1655  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1656  //   same object type (or a reference to it), to a (possibly
1657  //   cv-qualified) base class of that type (or a reference to it),
1658  //   or to (possibly cv-qualified) void.
1659  // FIXME: Suppress this warning if the conversion function ends up being a
1660  // virtual function that overrides a virtual function in a base class.
1661  QualType ClassType
1662    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1663  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1664    ConvType = ConvTypeRef->getPointeeType();
1665  if (ConvType->isRecordType()) {
1666    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1667    if (ConvType == ClassType)
1668      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1669        << ClassType;
1670    else if (IsDerivedFrom(ClassType, ConvType))
1671      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1672        <<  ClassType << ConvType;
1673  } else if (ConvType->isVoidType()) {
1674    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1675      << ClassType << ConvType;
1676  }
1677
1678  if (Conversion->getPreviousDeclaration()) {
1679    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1680    for (OverloadedFunctionDecl::function_iterator
1681           Conv = Conversions->function_begin(),
1682           ConvEnd = Conversions->function_end();
1683         Conv != ConvEnd; ++Conv) {
1684      if (*Conv
1685            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1686        *Conv = Conversion;
1687        return DeclPtrTy::make(Conversion);
1688      }
1689    }
1690    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1691  } else
1692    ClassDecl->addConversionFunction(Context, Conversion);
1693
1694  return DeclPtrTy::make(Conversion);
1695}
1696
1697//===----------------------------------------------------------------------===//
1698// Namespace Handling
1699//===----------------------------------------------------------------------===//
1700
1701/// ActOnStartNamespaceDef - This is called at the start of a namespace
1702/// definition.
1703Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1704                                             SourceLocation IdentLoc,
1705                                             IdentifierInfo *II,
1706                                             SourceLocation LBrace) {
1707  NamespaceDecl *Namespc =
1708      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1709  Namespc->setLBracLoc(LBrace);
1710
1711  Scope *DeclRegionScope = NamespcScope->getParent();
1712
1713  if (II) {
1714    // C++ [namespace.def]p2:
1715    // The identifier in an original-namespace-definition shall not have been
1716    // previously defined in the declarative region in which the
1717    // original-namespace-definition appears. The identifier in an
1718    // original-namespace-definition is the name of the namespace. Subsequently
1719    // in that declarative region, it is treated as an original-namespace-name.
1720
1721    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1722                                     true);
1723
1724    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1725      // This is an extended namespace definition.
1726      // Attach this namespace decl to the chain of extended namespace
1727      // definitions.
1728      OrigNS->setNextNamespace(Namespc);
1729      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1730
1731      // Remove the previous declaration from the scope.
1732      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1733        IdResolver.RemoveDecl(OrigNS);
1734        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1735      }
1736    } else if (PrevDecl) {
1737      // This is an invalid name redefinition.
1738      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1739       << Namespc->getDeclName();
1740      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1741      Namespc->setInvalidDecl();
1742      // Continue on to push Namespc as current DeclContext and return it.
1743    }
1744
1745    PushOnScopeChains(Namespc, DeclRegionScope);
1746  } else {
1747    // FIXME: Handle anonymous namespaces
1748  }
1749
1750  // Although we could have an invalid decl (i.e. the namespace name is a
1751  // redefinition), push it as current DeclContext and try to continue parsing.
1752  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1753  // for the namespace has the declarations that showed up in that particular
1754  // namespace definition.
1755  PushDeclContext(NamespcScope, Namespc);
1756  return DeclPtrTy::make(Namespc);
1757}
1758
1759/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1760/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1761void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1762  Decl *Dcl = D.getAs<Decl>();
1763  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1764  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1765  Namespc->setRBracLoc(RBrace);
1766  PopDeclContext();
1767}
1768
1769Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1770                                          SourceLocation UsingLoc,
1771                                          SourceLocation NamespcLoc,
1772                                          const CXXScopeSpec &SS,
1773                                          SourceLocation IdentLoc,
1774                                          IdentifierInfo *NamespcName,
1775                                          AttributeList *AttrList) {
1776  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1777  assert(NamespcName && "Invalid NamespcName.");
1778  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1779  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1780
1781  UsingDirectiveDecl *UDir = 0;
1782
1783  // Lookup namespace name.
1784  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1785                                    LookupNamespaceName, false);
1786  if (R.isAmbiguous()) {
1787    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1788    return DeclPtrTy();
1789  }
1790  if (NamedDecl *NS = R) {
1791    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1792    // C++ [namespace.udir]p1:
1793    //   A using-directive specifies that the names in the nominated
1794    //   namespace can be used in the scope in which the
1795    //   using-directive appears after the using-directive. During
1796    //   unqualified name lookup (3.4.1), the names appear as if they
1797    //   were declared in the nearest enclosing namespace which
1798    //   contains both the using-directive and the nominated
1799    //   namespace. [Note: in this context, ���contains��� means ���contains
1800    //   directly or indirectly���. ]
1801
1802    // Find enclosing context containing both using-directive and
1803    // nominated namespace.
1804    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1805    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1806      CommonAncestor = CommonAncestor->getParent();
1807
1808    UDir = UsingDirectiveDecl::Create(Context,
1809                                      CurContext, UsingLoc,
1810                                      NamespcLoc,
1811                                      SS.getRange(),
1812                                      (NestedNameSpecifier *)SS.getScopeRep(),
1813                                      IdentLoc,
1814                                      cast<NamespaceDecl>(NS),
1815                                      CommonAncestor);
1816    PushUsingDirective(S, UDir);
1817  } else {
1818    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1819  }
1820
1821  // FIXME: We ignore attributes for now.
1822  delete AttrList;
1823  return DeclPtrTy::make(UDir);
1824}
1825
1826void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1827  // If scope has associated entity, then using directive is at namespace
1828  // or translation unit scope. We add UsingDirectiveDecls, into
1829  // it's lookup structure.
1830  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1831    Ctx->addDecl(UDir);
1832  else
1833    // Otherwise it is block-sope. using-directives will affect lookup
1834    // only to the end of scope.
1835    S->PushUsingDirective(DeclPtrTy::make(UDir));
1836}
1837
1838
1839Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1840                                          SourceLocation UsingLoc,
1841                                          const CXXScopeSpec &SS,
1842                                          SourceLocation IdentLoc,
1843                                          IdentifierInfo *TargetName,
1844                                          OverloadedOperatorKind Op,
1845                                          AttributeList *AttrList,
1846                                          bool IsTypeName) {
1847  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1848  assert((TargetName || Op) && "Invalid TargetName.");
1849  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1850  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1851
1852  UsingDecl *UsingAlias = 0;
1853
1854  DeclarationName Name;
1855  if (TargetName)
1856    Name = TargetName;
1857  else
1858    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1859
1860  // Lookup target name.
1861  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1862
1863  if (NamedDecl *NS = R) {
1864    if (IsTypeName && !isa<TypeDecl>(NS)) {
1865      Diag(IdentLoc, diag::err_using_typename_non_type);
1866    }
1867    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1868        NS->getLocation(), UsingLoc, NS,
1869        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1870        IsTypeName);
1871    PushOnScopeChains(UsingAlias, S);
1872  } else {
1873    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1874  }
1875
1876  // FIXME: We ignore attributes for now.
1877  delete AttrList;
1878  return DeclPtrTy::make(UsingAlias);
1879}
1880
1881/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1882/// is a namespace alias, returns the namespace it points to.
1883static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1884  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1885    return AD->getNamespace();
1886  return dyn_cast_or_null<NamespaceDecl>(D);
1887}
1888
1889Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1890                                             SourceLocation NamespaceLoc,
1891                                             SourceLocation AliasLoc,
1892                                             IdentifierInfo *Alias,
1893                                             const CXXScopeSpec &SS,
1894                                             SourceLocation IdentLoc,
1895                                             IdentifierInfo *Ident) {
1896
1897  // Lookup the namespace name.
1898  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1899
1900  // Check if we have a previous declaration with the same name.
1901  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1902    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1903      // We already have an alias with the same name that points to the same
1904      // namespace, so don't create a new one.
1905      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1906        return DeclPtrTy();
1907    }
1908
1909    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1910      diag::err_redefinition_different_kind;
1911    Diag(AliasLoc, DiagID) << Alias;
1912    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1913    return DeclPtrTy();
1914  }
1915
1916  if (R.isAmbiguous()) {
1917    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1918    return DeclPtrTy();
1919  }
1920
1921  if (!R) {
1922    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1923    return DeclPtrTy();
1924  }
1925
1926  NamespaceAliasDecl *AliasDecl =
1927    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1928                               Alias, SS.getRange(),
1929                               (NestedNameSpecifier *)SS.getScopeRep(),
1930                               IdentLoc, R);
1931
1932  CurContext->addDecl(AliasDecl);
1933  return DeclPtrTy::make(AliasDecl);
1934}
1935
1936void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
1937                                            CXXConstructorDecl *Constructor) {
1938  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
1939          !Constructor->isUsed()) &&
1940    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
1941
1942  CXXRecordDecl *ClassDecl
1943    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1944  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
1945  // Before the implicitly-declared default constructor for a class is
1946  // implicitly defined, all the implicitly-declared default constructors
1947  // for its base class and its non-static data members shall have been
1948  // implicitly defined.
1949  bool err = false;
1950  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1951       E = ClassDecl->bases_end(); Base != E; ++Base) {
1952    CXXRecordDecl *BaseClassDecl
1953      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1954    if (!BaseClassDecl->hasTrivialConstructor()) {
1955      if (CXXConstructorDecl *BaseCtor =
1956            BaseClassDecl->getDefaultConstructor(Context))
1957        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
1958      else {
1959        Diag(CurrentLocation, diag::err_defining_default_ctor)
1960          << Context.getTagDeclType(ClassDecl) << 1
1961          << Context.getTagDeclType(BaseClassDecl);
1962        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
1963              << Context.getTagDeclType(BaseClassDecl);
1964        err = true;
1965      }
1966    }
1967  }
1968  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1969       E = ClassDecl->field_end(); Field != E; ++Field) {
1970    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1971    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1972      FieldType = Array->getElementType();
1973    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1974      CXXRecordDecl *FieldClassDecl
1975        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1976      if (!FieldClassDecl->hasTrivialConstructor()) {
1977        if (CXXConstructorDecl *FieldCtor =
1978            FieldClassDecl->getDefaultConstructor(Context))
1979          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
1980        else {
1981          Diag(CurrentLocation, diag::err_defining_default_ctor)
1982          << Context.getTagDeclType(ClassDecl) << 0 <<
1983              Context.getTagDeclType(FieldClassDecl);
1984          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
1985          << Context.getTagDeclType(FieldClassDecl);
1986          err = true;
1987        }
1988      }
1989    }
1990    else if (FieldType->isReferenceType()) {
1991      Diag(CurrentLocation, diag::err_unintialized_member)
1992        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
1993      Diag((*Field)->getLocation(), diag::note_declared_at);
1994      err = true;
1995    }
1996    else if (FieldType.isConstQualified()) {
1997      Diag(CurrentLocation, diag::err_unintialized_member)
1998        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
1999       Diag((*Field)->getLocation(), diag::note_declared_at);
2000      err = true;
2001    }
2002  }
2003  if (!err)
2004    Constructor->setUsed();
2005  else
2006    Constructor->setInvalidDecl();
2007}
2008
2009void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2010                                            CXXDestructorDecl *Destructor) {
2011  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2012         "DefineImplicitDestructor - call it for implicit default dtor");
2013
2014  CXXRecordDecl *ClassDecl
2015  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2016  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2017  // C++ [class.dtor] p5
2018  // Before the implicitly-declared default destructor for a class is
2019  // implicitly defined, all the implicitly-declared default destructors
2020  // for its base class and its non-static data members shall have been
2021  // implicitly defined.
2022  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2023       E = ClassDecl->bases_end(); Base != E; ++Base) {
2024    CXXRecordDecl *BaseClassDecl
2025      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2026    if (!BaseClassDecl->hasTrivialDestructor()) {
2027      if (CXXDestructorDecl *BaseDtor =
2028          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2029        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2030      else
2031        assert(false &&
2032               "DefineImplicitDestructor - missing dtor in a base class");
2033    }
2034  }
2035
2036  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2037       E = ClassDecl->field_end(); Field != E; ++Field) {
2038    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2039    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2040      FieldType = Array->getElementType();
2041    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2042      CXXRecordDecl *FieldClassDecl
2043        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2044      if (!FieldClassDecl->hasTrivialDestructor()) {
2045        if (CXXDestructorDecl *FieldDtor =
2046            const_cast<CXXDestructorDecl*>(
2047                                        FieldClassDecl->getDestructor(Context)))
2048          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2049        else
2050          assert(false &&
2051          "DefineImplicitDestructor - missing dtor in class of a data member");
2052      }
2053    }
2054  }
2055  Destructor->setUsed();
2056}
2057
2058void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2059                                          CXXMethodDecl *MethodDecl) {
2060  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2061          MethodDecl->getOverloadedOperator() == OO_Equal &&
2062          !MethodDecl->isUsed()) &&
2063         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2064
2065  CXXRecordDecl *ClassDecl
2066    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2067
2068  // C++[class.copy] p12
2069  // Before the implicitly-declared copy assignment operator for a class is
2070  // implicitly defined, all implicitly-declared copy assignment operators
2071  // for its direct base classes and its nonstatic data members shall have
2072  // been implicitly defined.
2073  bool err = false;
2074  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2075       E = ClassDecl->bases_end(); Base != E; ++Base) {
2076    CXXRecordDecl *BaseClassDecl
2077      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2078    if (CXXMethodDecl *BaseAssignOpMethod =
2079          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2080      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2081  }
2082  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2083       E = ClassDecl->field_end(); Field != E; ++Field) {
2084    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2085    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2086      FieldType = Array->getElementType();
2087    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2088      CXXRecordDecl *FieldClassDecl
2089        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2090      if (CXXMethodDecl *FieldAssignOpMethod =
2091          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2092        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2093    }
2094    else if (FieldType->isReferenceType()) {
2095      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2096      << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
2097      Diag((*Field)->getLocation(), diag::note_declared_at);
2098      Diag(CurrentLocation, diag::note_first_required_here);
2099      err = true;
2100    }
2101    else if (FieldType.isConstQualified()) {
2102      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2103      << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
2104      Diag((*Field)->getLocation(), diag::note_declared_at);
2105      Diag(CurrentLocation, diag::note_first_required_here);
2106      err = true;
2107    }
2108  }
2109  if (!err)
2110    MethodDecl->setUsed();
2111}
2112
2113CXXMethodDecl *
2114Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2115                              CXXRecordDecl *ClassDecl) {
2116  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2117  QualType RHSType(LHSType);
2118  // If class's assignment operator argument is const/volatile qualified,
2119  // look for operator = (const/volatile B&). Otherwise, look for
2120  // operator = (B&).
2121  if (ParmDecl->getType().isConstQualified())
2122    RHSType.addConst();
2123  if (ParmDecl->getType().isVolatileQualified())
2124    RHSType.addVolatile();
2125  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2126                                                          LHSType,
2127                                                          SourceLocation()));
2128  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2129                                                          RHSType,
2130                                                          SourceLocation()));
2131  Expr *Args[2] = { &*LHS, &*RHS };
2132  OverloadCandidateSet CandidateSet;
2133  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2134                              CandidateSet);
2135  OverloadCandidateSet::iterator Best;
2136  if (BestViableFunction(CandidateSet,
2137                         ClassDecl->getLocation(), Best) == OR_Success)
2138    return cast<CXXMethodDecl>(Best->Function);
2139  assert(false &&
2140         "getAssignOperatorMethod - copy assignment operator method not found");
2141  return 0;
2142}
2143
2144void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2145                                   CXXConstructorDecl *CopyConstructor,
2146                                   unsigned TypeQuals) {
2147  assert((CopyConstructor->isImplicit() &&
2148          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2149          !CopyConstructor->isUsed()) &&
2150         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2151
2152  CXXRecordDecl *ClassDecl
2153    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2154  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2155  // C++ [class.copy] p209
2156  // Before the implicitly-declared copy constructor for a class is
2157  // implicitly defined, all the implicitly-declared copy constructors
2158  // for its base class and its non-static data members shall have been
2159  // implicitly defined.
2160  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2161       Base != ClassDecl->bases_end(); ++Base) {
2162    CXXRecordDecl *BaseClassDecl
2163      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2164    if (CXXConstructorDecl *BaseCopyCtor =
2165        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2166      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2167  }
2168  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2169                                  FieldEnd = ClassDecl->field_end();
2170       Field != FieldEnd; ++Field) {
2171    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2172    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2173      FieldType = Array->getElementType();
2174    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2175      CXXRecordDecl *FieldClassDecl
2176        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2177      if (CXXConstructorDecl *FieldCopyCtor =
2178          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2179        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2180    }
2181  }
2182  CopyConstructor->setUsed();
2183}
2184
2185void Sema::InitializeVarWithConstructor(VarDecl *VD,
2186                                        CXXConstructorDecl *Constructor,
2187                                        QualType DeclInitType,
2188                                        Expr **Exprs, unsigned NumExprs) {
2189  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2190                                        false, Exprs, NumExprs);
2191  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2192  VD->setInit(Context, Temp);
2193}
2194
2195void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2196{
2197  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2198                                  DeclInitType->getAsRecordType()->getDecl());
2199  if (!ClassDecl->hasTrivialDestructor())
2200    if (CXXDestructorDecl *Destructor =
2201        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2202      MarkDeclarationReferenced(Loc, Destructor);
2203}
2204
2205/// AddCXXDirectInitializerToDecl - This action is called immediately after
2206/// ActOnDeclarator, when a C++ direct initializer is present.
2207/// e.g: "int x(1);"
2208void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2209                                         SourceLocation LParenLoc,
2210                                         MultiExprArg Exprs,
2211                                         SourceLocation *CommaLocs,
2212                                         SourceLocation RParenLoc) {
2213  unsigned NumExprs = Exprs.size();
2214  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2215  Decl *RealDecl = Dcl.getAs<Decl>();
2216
2217  // If there is no declaration, there was an error parsing it.  Just ignore
2218  // the initializer.
2219  if (RealDecl == 0)
2220    return;
2221
2222  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2223  if (!VDecl) {
2224    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2225    RealDecl->setInvalidDecl();
2226    return;
2227  }
2228
2229  // FIXME: Need to handle dependent types and expressions here.
2230
2231  // We will treat direct-initialization as a copy-initialization:
2232  //    int x(1);  -as-> int x = 1;
2233  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2234  //
2235  // Clients that want to distinguish between the two forms, can check for
2236  // direct initializer using VarDecl::hasCXXDirectInitializer().
2237  // A major benefit is that clients that don't particularly care about which
2238  // exactly form was it (like the CodeGen) can handle both cases without
2239  // special case code.
2240
2241  // C++ 8.5p11:
2242  // The form of initialization (using parentheses or '=') is generally
2243  // insignificant, but does matter when the entity being initialized has a
2244  // class type.
2245  QualType DeclInitType = VDecl->getType();
2246  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2247    DeclInitType = Array->getElementType();
2248
2249  // FIXME: This isn't the right place to complete the type.
2250  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2251                          diag::err_typecheck_decl_incomplete_type)) {
2252    VDecl->setInvalidDecl();
2253    return;
2254  }
2255
2256  if (VDecl->getType()->isRecordType()) {
2257    CXXConstructorDecl *Constructor
2258      = PerformInitializationByConstructor(DeclInitType,
2259                                           (Expr **)Exprs.get(), NumExprs,
2260                                           VDecl->getLocation(),
2261                                           SourceRange(VDecl->getLocation(),
2262                                                       RParenLoc),
2263                                           VDecl->getDeclName(),
2264                                           IK_Direct);
2265    if (!Constructor)
2266      RealDecl->setInvalidDecl();
2267    else {
2268      VDecl->setCXXDirectInitializer(true);
2269      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2270                                   (Expr**)Exprs.release(), NumExprs);
2271      // FIXME. Must do all that is needed to destroy the object
2272      // on scope exit. For now, just mark the destructor as used.
2273      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2274    }
2275    return;
2276  }
2277
2278  if (NumExprs > 1) {
2279    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2280      << SourceRange(VDecl->getLocation(), RParenLoc);
2281    RealDecl->setInvalidDecl();
2282    return;
2283  }
2284
2285  // Let clients know that initialization was done with a direct initializer.
2286  VDecl->setCXXDirectInitializer(true);
2287
2288  assert(NumExprs == 1 && "Expected 1 expression");
2289  // Set the init expression, handles conversions.
2290  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2291                       /*DirectInit=*/true);
2292}
2293
2294/// PerformInitializationByConstructor - Perform initialization by
2295/// constructor (C++ [dcl.init]p14), which may occur as part of
2296/// direct-initialization or copy-initialization. We are initializing
2297/// an object of type @p ClassType with the given arguments @p
2298/// Args. @p Loc is the location in the source code where the
2299/// initializer occurs (e.g., a declaration, member initializer,
2300/// functional cast, etc.) while @p Range covers the whole
2301/// initialization. @p InitEntity is the entity being initialized,
2302/// which may by the name of a declaration or a type. @p Kind is the
2303/// kind of initialization we're performing, which affects whether
2304/// explicit constructors will be considered. When successful, returns
2305/// the constructor that will be used to perform the initialization;
2306/// when the initialization fails, emits a diagnostic and returns
2307/// null.
2308CXXConstructorDecl *
2309Sema::PerformInitializationByConstructor(QualType ClassType,
2310                                         Expr **Args, unsigned NumArgs,
2311                                         SourceLocation Loc, SourceRange Range,
2312                                         DeclarationName InitEntity,
2313                                         InitializationKind Kind) {
2314  const RecordType *ClassRec = ClassType->getAsRecordType();
2315  assert(ClassRec && "Can only initialize a class type here");
2316
2317  // C++ [dcl.init]p14:
2318  //
2319  //   If the initialization is direct-initialization, or if it is
2320  //   copy-initialization where the cv-unqualified version of the
2321  //   source type is the same class as, or a derived class of, the
2322  //   class of the destination, constructors are considered. The
2323  //   applicable constructors are enumerated (13.3.1.3), and the
2324  //   best one is chosen through overload resolution (13.3). The
2325  //   constructor so selected is called to initialize the object,
2326  //   with the initializer expression(s) as its argument(s). If no
2327  //   constructor applies, or the overload resolution is ambiguous,
2328  //   the initialization is ill-formed.
2329  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2330  OverloadCandidateSet CandidateSet;
2331
2332  // Add constructors to the overload set.
2333  DeclarationName ConstructorName
2334    = Context.DeclarationNames.getCXXConstructorName(
2335                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2336  DeclContext::lookup_const_iterator Con, ConEnd;
2337  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2338       Con != ConEnd; ++Con) {
2339    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2340    if ((Kind == IK_Direct) ||
2341        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2342        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2343      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2344  }
2345
2346  // FIXME: When we decide not to synthesize the implicitly-declared
2347  // constructors, we'll need to make them appear here.
2348
2349  OverloadCandidateSet::iterator Best;
2350  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2351  case OR_Success:
2352    // We found a constructor. Return it.
2353    return cast<CXXConstructorDecl>(Best->Function);
2354
2355  case OR_No_Viable_Function:
2356    if (InitEntity)
2357      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2358        << InitEntity << Range;
2359    else
2360      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2361        << ClassType << Range;
2362    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2363    return 0;
2364
2365  case OR_Ambiguous:
2366    if (InitEntity)
2367      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2368    else
2369      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2370    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2371    return 0;
2372
2373  case OR_Deleted:
2374    if (InitEntity)
2375      Diag(Loc, diag::err_ovl_deleted_init)
2376        << Best->Function->isDeleted()
2377        << InitEntity << Range;
2378    else
2379      Diag(Loc, diag::err_ovl_deleted_init)
2380        << Best->Function->isDeleted()
2381        << InitEntity << Range;
2382    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2383    return 0;
2384  }
2385
2386  return 0;
2387}
2388
2389/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2390/// determine whether they are reference-related,
2391/// reference-compatible, reference-compatible with added
2392/// qualification, or incompatible, for use in C++ initialization by
2393/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2394/// type, and the first type (T1) is the pointee type of the reference
2395/// type being initialized.
2396Sema::ReferenceCompareResult
2397Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2398                                   bool& DerivedToBase) {
2399  assert(!T1->isReferenceType() &&
2400    "T1 must be the pointee type of the reference type");
2401  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2402
2403  T1 = Context.getCanonicalType(T1);
2404  T2 = Context.getCanonicalType(T2);
2405  QualType UnqualT1 = T1.getUnqualifiedType();
2406  QualType UnqualT2 = T2.getUnqualifiedType();
2407
2408  // C++ [dcl.init.ref]p4:
2409  //   Given types ���cv1 T1��� and ���cv2 T2,��� ���cv1 T1��� is
2410  //   reference-related to ���cv2 T2��� if T1 is the same type as T2, or
2411  //   T1 is a base class of T2.
2412  if (UnqualT1 == UnqualT2)
2413    DerivedToBase = false;
2414  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2415    DerivedToBase = true;
2416  else
2417    return Ref_Incompatible;
2418
2419  // At this point, we know that T1 and T2 are reference-related (at
2420  // least).
2421
2422  // C++ [dcl.init.ref]p4:
2423  //   "cv1 T1��� is reference-compatible with ���cv2 T2��� if T1 is
2424  //   reference-related to T2 and cv1 is the same cv-qualification
2425  //   as, or greater cv-qualification than, cv2. For purposes of
2426  //   overload resolution, cases for which cv1 is greater
2427  //   cv-qualification than cv2 are identified as
2428  //   reference-compatible with added qualification (see 13.3.3.2).
2429  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2430    return Ref_Compatible;
2431  else if (T1.isMoreQualifiedThan(T2))
2432    return Ref_Compatible_With_Added_Qualification;
2433  else
2434    return Ref_Related;
2435}
2436
2437/// CheckReferenceInit - Check the initialization of a reference
2438/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2439/// the initializer (either a simple initializer or an initializer
2440/// list), and DeclType is the type of the declaration. When ICS is
2441/// non-null, this routine will compute the implicit conversion
2442/// sequence according to C++ [over.ics.ref] and will not produce any
2443/// diagnostics; when ICS is null, it will emit diagnostics when any
2444/// errors are found. Either way, a return value of true indicates
2445/// that there was a failure, a return value of false indicates that
2446/// the reference initialization succeeded.
2447///
2448/// When @p SuppressUserConversions, user-defined conversions are
2449/// suppressed.
2450/// When @p AllowExplicit, we also permit explicit user-defined
2451/// conversion functions.
2452/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2453bool
2454Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2455                         ImplicitConversionSequence *ICS,
2456                         bool SuppressUserConversions,
2457                         bool AllowExplicit, bool ForceRValue) {
2458  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2459
2460  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2461  QualType T2 = Init->getType();
2462
2463  // If the initializer is the address of an overloaded function, try
2464  // to resolve the overloaded function. If all goes well, T2 is the
2465  // type of the resulting function.
2466  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2467    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2468                                                          ICS != 0);
2469    if (Fn) {
2470      // Since we're performing this reference-initialization for
2471      // real, update the initializer with the resulting function.
2472      if (!ICS) {
2473        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2474          return true;
2475
2476        FixOverloadedFunctionReference(Init, Fn);
2477      }
2478
2479      T2 = Fn->getType();
2480    }
2481  }
2482
2483  // Compute some basic properties of the types and the initializer.
2484  bool isRValRef = DeclType->isRValueReferenceType();
2485  bool DerivedToBase = false;
2486  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2487                                                  Init->isLvalue(Context);
2488  ReferenceCompareResult RefRelationship
2489    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2490
2491  // Most paths end in a failed conversion.
2492  if (ICS)
2493    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2494
2495  // C++ [dcl.init.ref]p5:
2496  //   A reference to type ���cv1 T1��� is initialized by an expression
2497  //   of type ���cv2 T2��� as follows:
2498
2499  //     -- If the initializer expression
2500
2501  // Rvalue references cannot bind to lvalues (N2812).
2502  // There is absolutely no situation where they can. In particular, note that
2503  // this is ill-formed, even if B has a user-defined conversion to A&&:
2504  //   B b;
2505  //   A&& r = b;
2506  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2507    if (!ICS)
2508      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2509        << Init->getSourceRange();
2510    return true;
2511  }
2512
2513  bool BindsDirectly = false;
2514  //       -- is an lvalue (but is not a bit-field), and ���cv1 T1��� is
2515  //          reference-compatible with ���cv2 T2,��� or
2516  //
2517  // Note that the bit-field check is skipped if we are just computing
2518  // the implicit conversion sequence (C++ [over.best.ics]p2).
2519  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2520      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2521    BindsDirectly = true;
2522
2523    if (ICS) {
2524      // C++ [over.ics.ref]p1:
2525      //   When a parameter of reference type binds directly (8.5.3)
2526      //   to an argument expression, the implicit conversion sequence
2527      //   is the identity conversion, unless the argument expression
2528      //   has a type that is a derived class of the parameter type,
2529      //   in which case the implicit conversion sequence is a
2530      //   derived-to-base Conversion (13.3.3.1).
2531      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2532      ICS->Standard.First = ICK_Identity;
2533      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2534      ICS->Standard.Third = ICK_Identity;
2535      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2536      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2537      ICS->Standard.ReferenceBinding = true;
2538      ICS->Standard.DirectBinding = true;
2539      ICS->Standard.RRefBinding = false;
2540      ICS->Standard.CopyConstructor = 0;
2541
2542      // Nothing more to do: the inaccessibility/ambiguity check for
2543      // derived-to-base conversions is suppressed when we're
2544      // computing the implicit conversion sequence (C++
2545      // [over.best.ics]p2).
2546      return false;
2547    } else {
2548      // Perform the conversion.
2549      // FIXME: Binding to a subobject of the lvalue is going to require more
2550      // AST annotation than this.
2551      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2552    }
2553  }
2554
2555  //       -- has a class type (i.e., T2 is a class type) and can be
2556  //          implicitly converted to an lvalue of type ���cv3 T3,���
2557  //          where ���cv1 T1��� is reference-compatible with ���cv3 T3���
2558  //          92) (this conversion is selected by enumerating the
2559  //          applicable conversion functions (13.3.1.6) and choosing
2560  //          the best one through overload resolution (13.3)),
2561  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2562    // FIXME: Look for conversions in base classes!
2563    CXXRecordDecl *T2RecordDecl
2564      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2565
2566    OverloadCandidateSet CandidateSet;
2567    OverloadedFunctionDecl *Conversions
2568      = T2RecordDecl->getConversionFunctions();
2569    for (OverloadedFunctionDecl::function_iterator Func
2570           = Conversions->function_begin();
2571         Func != Conversions->function_end(); ++Func) {
2572      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2573
2574      // If the conversion function doesn't return a reference type,
2575      // it can't be considered for this conversion.
2576      if (Conv->getConversionType()->isLValueReferenceType() &&
2577          (AllowExplicit || !Conv->isExplicit()))
2578        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2579    }
2580
2581    OverloadCandidateSet::iterator Best;
2582    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2583    case OR_Success:
2584      // This is a direct binding.
2585      BindsDirectly = true;
2586
2587      if (ICS) {
2588        // C++ [over.ics.ref]p1:
2589        //
2590        //   [...] If the parameter binds directly to the result of
2591        //   applying a conversion function to the argument
2592        //   expression, the implicit conversion sequence is a
2593        //   user-defined conversion sequence (13.3.3.1.2), with the
2594        //   second standard conversion sequence either an identity
2595        //   conversion or, if the conversion function returns an
2596        //   entity of a type that is a derived class of the parameter
2597        //   type, a derived-to-base Conversion.
2598        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2599        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2600        ICS->UserDefined.After = Best->FinalConversion;
2601        ICS->UserDefined.ConversionFunction = Best->Function;
2602        assert(ICS->UserDefined.After.ReferenceBinding &&
2603               ICS->UserDefined.After.DirectBinding &&
2604               "Expected a direct reference binding!");
2605        return false;
2606      } else {
2607        // Perform the conversion.
2608        // FIXME: Binding to a subobject of the lvalue is going to require more
2609        // AST annotation than this.
2610        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2611      }
2612      break;
2613
2614    case OR_Ambiguous:
2615      assert(false && "Ambiguous reference binding conversions not implemented.");
2616      return true;
2617
2618    case OR_No_Viable_Function:
2619    case OR_Deleted:
2620      // There was no suitable conversion, or we found a deleted
2621      // conversion; continue with other checks.
2622      break;
2623    }
2624  }
2625
2626  if (BindsDirectly) {
2627    // C++ [dcl.init.ref]p4:
2628    //   [...] In all cases where the reference-related or
2629    //   reference-compatible relationship of two types is used to
2630    //   establish the validity of a reference binding, and T1 is a
2631    //   base class of T2, a program that necessitates such a binding
2632    //   is ill-formed if T1 is an inaccessible (clause 11) or
2633    //   ambiguous (10.2) base class of T2.
2634    //
2635    // Note that we only check this condition when we're allowed to
2636    // complain about errors, because we should not be checking for
2637    // ambiguity (or inaccessibility) unless the reference binding
2638    // actually happens.
2639    if (DerivedToBase)
2640      return CheckDerivedToBaseConversion(T2, T1,
2641                                          Init->getSourceRange().getBegin(),
2642                                          Init->getSourceRange());
2643    else
2644      return false;
2645  }
2646
2647  //     -- Otherwise, the reference shall be to a non-volatile const
2648  //        type (i.e., cv1 shall be const), or the reference shall be an
2649  //        rvalue reference and the initializer expression shall be an rvalue.
2650  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2651    if (!ICS)
2652      Diag(Init->getSourceRange().getBegin(),
2653           diag::err_not_reference_to_const_init)
2654        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2655        << T2 << Init->getSourceRange();
2656    return true;
2657  }
2658
2659  //       -- If the initializer expression is an rvalue, with T2 a
2660  //          class type, and ���cv1 T1��� is reference-compatible with
2661  //          ���cv2 T2,��� the reference is bound in one of the
2662  //          following ways (the choice is implementation-defined):
2663  //
2664  //          -- The reference is bound to the object represented by
2665  //             the rvalue (see 3.10) or to a sub-object within that
2666  //             object.
2667  //
2668  //          -- A temporary of type ���cv1 T2��� [sic] is created, and
2669  //             a constructor is called to copy the entire rvalue
2670  //             object into the temporary. The reference is bound to
2671  //             the temporary or to a sub-object within the
2672  //             temporary.
2673  //
2674  //          The constructor that would be used to make the copy
2675  //          shall be callable whether or not the copy is actually
2676  //          done.
2677  //
2678  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2679  // freedom, so we will always take the first option and never build
2680  // a temporary in this case. FIXME: We will, however, have to check
2681  // for the presence of a copy constructor in C++98/03 mode.
2682  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2683      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2684    if (ICS) {
2685      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2686      ICS->Standard.First = ICK_Identity;
2687      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2688      ICS->Standard.Third = ICK_Identity;
2689      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2690      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2691      ICS->Standard.ReferenceBinding = true;
2692      ICS->Standard.DirectBinding = false;
2693      ICS->Standard.RRefBinding = isRValRef;
2694      ICS->Standard.CopyConstructor = 0;
2695    } else {
2696      // FIXME: Binding to a subobject of the rvalue is going to require more
2697      // AST annotation than this.
2698      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2699    }
2700    return false;
2701  }
2702
2703  //       -- Otherwise, a temporary of type ���cv1 T1��� is created and
2704  //          initialized from the initializer expression using the
2705  //          rules for a non-reference copy initialization (8.5). The
2706  //          reference is then bound to the temporary. If T1 is
2707  //          reference-related to T2, cv1 must be the same
2708  //          cv-qualification as, or greater cv-qualification than,
2709  //          cv2; otherwise, the program is ill-formed.
2710  if (RefRelationship == Ref_Related) {
2711    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2712    // we would be reference-compatible or reference-compatible with
2713    // added qualification. But that wasn't the case, so the reference
2714    // initialization fails.
2715    if (!ICS)
2716      Diag(Init->getSourceRange().getBegin(),
2717           diag::err_reference_init_drops_quals)
2718        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2719        << T2 << Init->getSourceRange();
2720    return true;
2721  }
2722
2723  // If at least one of the types is a class type, the types are not
2724  // related, and we aren't allowed any user conversions, the
2725  // reference binding fails. This case is important for breaking
2726  // recursion, since TryImplicitConversion below will attempt to
2727  // create a temporary through the use of a copy constructor.
2728  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2729      (T1->isRecordType() || T2->isRecordType())) {
2730    if (!ICS)
2731      Diag(Init->getSourceRange().getBegin(),
2732           diag::err_typecheck_convert_incompatible)
2733        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2734    return true;
2735  }
2736
2737  // Actually try to convert the initializer to T1.
2738  if (ICS) {
2739    // C++ [over.ics.ref]p2:
2740    //
2741    //   When a parameter of reference type is not bound directly to
2742    //   an argument expression, the conversion sequence is the one
2743    //   required to convert the argument expression to the
2744    //   underlying type of the reference according to
2745    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2746    //   to copy-initializing a temporary of the underlying type with
2747    //   the argument expression. Any difference in top-level
2748    //   cv-qualification is subsumed by the initialization itself
2749    //   and does not constitute a conversion.
2750    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2751    // Of course, that's still a reference binding.
2752    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2753      ICS->Standard.ReferenceBinding = true;
2754      ICS->Standard.RRefBinding = isRValRef;
2755    } else if(ICS->ConversionKind ==
2756              ImplicitConversionSequence::UserDefinedConversion) {
2757      ICS->UserDefined.After.ReferenceBinding = true;
2758      ICS->UserDefined.After.RRefBinding = isRValRef;
2759    }
2760    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2761  } else {
2762    return PerformImplicitConversion(Init, T1, "initializing");
2763  }
2764}
2765
2766/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2767/// of this overloaded operator is well-formed. If so, returns false;
2768/// otherwise, emits appropriate diagnostics and returns true.
2769bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2770  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2771         "Expected an overloaded operator declaration");
2772
2773  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2774
2775  // C++ [over.oper]p5:
2776  //   The allocation and deallocation functions, operator new,
2777  //   operator new[], operator delete and operator delete[], are
2778  //   described completely in 3.7.3. The attributes and restrictions
2779  //   found in the rest of this subclause do not apply to them unless
2780  //   explicitly stated in 3.7.3.
2781  // FIXME: Write a separate routine for checking this. For now, just allow it.
2782  if (Op == OO_New || Op == OO_Array_New ||
2783      Op == OO_Delete || Op == OO_Array_Delete)
2784    return false;
2785
2786  // C++ [over.oper]p6:
2787  //   An operator function shall either be a non-static member
2788  //   function or be a non-member function and have at least one
2789  //   parameter whose type is a class, a reference to a class, an
2790  //   enumeration, or a reference to an enumeration.
2791  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2792    if (MethodDecl->isStatic())
2793      return Diag(FnDecl->getLocation(),
2794                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2795  } else {
2796    bool ClassOrEnumParam = false;
2797    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2798                                   ParamEnd = FnDecl->param_end();
2799         Param != ParamEnd; ++Param) {
2800      QualType ParamType = (*Param)->getType().getNonReferenceType();
2801      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2802          ParamType->isEnumeralType()) {
2803        ClassOrEnumParam = true;
2804        break;
2805      }
2806    }
2807
2808    if (!ClassOrEnumParam)
2809      return Diag(FnDecl->getLocation(),
2810                  diag::err_operator_overload_needs_class_or_enum)
2811        << FnDecl->getDeclName();
2812  }
2813
2814  // C++ [over.oper]p8:
2815  //   An operator function cannot have default arguments (8.3.6),
2816  //   except where explicitly stated below.
2817  //
2818  // Only the function-call operator allows default arguments
2819  // (C++ [over.call]p1).
2820  if (Op != OO_Call) {
2821    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2822         Param != FnDecl->param_end(); ++Param) {
2823      if ((*Param)->hasUnparsedDefaultArg())
2824        return Diag((*Param)->getLocation(),
2825                    diag::err_operator_overload_default_arg)
2826          << FnDecl->getDeclName();
2827      else if (Expr *DefArg = (*Param)->getDefaultArg())
2828        return Diag((*Param)->getLocation(),
2829                    diag::err_operator_overload_default_arg)
2830          << FnDecl->getDeclName() << DefArg->getSourceRange();
2831    }
2832  }
2833
2834  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2835    { false, false, false }
2836#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2837    , { Unary, Binary, MemberOnly }
2838#include "clang/Basic/OperatorKinds.def"
2839  };
2840
2841  bool CanBeUnaryOperator = OperatorUses[Op][0];
2842  bool CanBeBinaryOperator = OperatorUses[Op][1];
2843  bool MustBeMemberOperator = OperatorUses[Op][2];
2844
2845  // C++ [over.oper]p8:
2846  //   [...] Operator functions cannot have more or fewer parameters
2847  //   than the number required for the corresponding operator, as
2848  //   described in the rest of this subclause.
2849  unsigned NumParams = FnDecl->getNumParams()
2850                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2851  if (Op != OO_Call &&
2852      ((NumParams == 1 && !CanBeUnaryOperator) ||
2853       (NumParams == 2 && !CanBeBinaryOperator) ||
2854       (NumParams < 1) || (NumParams > 2))) {
2855    // We have the wrong number of parameters.
2856    unsigned ErrorKind;
2857    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2858      ErrorKind = 2;  // 2 -> unary or binary.
2859    } else if (CanBeUnaryOperator) {
2860      ErrorKind = 0;  // 0 -> unary
2861    } else {
2862      assert(CanBeBinaryOperator &&
2863             "All non-call overloaded operators are unary or binary!");
2864      ErrorKind = 1;  // 1 -> binary
2865    }
2866
2867    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2868      << FnDecl->getDeclName() << NumParams << ErrorKind;
2869  }
2870
2871  // Overloaded operators other than operator() cannot be variadic.
2872  if (Op != OO_Call &&
2873      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2874    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2875      << FnDecl->getDeclName();
2876  }
2877
2878  // Some operators must be non-static member functions.
2879  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2880    return Diag(FnDecl->getLocation(),
2881                diag::err_operator_overload_must_be_member)
2882      << FnDecl->getDeclName();
2883  }
2884
2885  // C++ [over.inc]p1:
2886  //   The user-defined function called operator++ implements the
2887  //   prefix and postfix ++ operator. If this function is a member
2888  //   function with no parameters, or a non-member function with one
2889  //   parameter of class or enumeration type, it defines the prefix
2890  //   increment operator ++ for objects of that type. If the function
2891  //   is a member function with one parameter (which shall be of type
2892  //   int) or a non-member function with two parameters (the second
2893  //   of which shall be of type int), it defines the postfix
2894  //   increment operator ++ for objects of that type.
2895  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2896    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2897    bool ParamIsInt = false;
2898    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2899      ParamIsInt = BT->getKind() == BuiltinType::Int;
2900
2901    if (!ParamIsInt)
2902      return Diag(LastParam->getLocation(),
2903                  diag::err_operator_overload_post_incdec_must_be_int)
2904        << LastParam->getType() << (Op == OO_MinusMinus);
2905  }
2906
2907  // Notify the class if it got an assignment operator.
2908  if (Op == OO_Equal) {
2909    // Would have returned earlier otherwise.
2910    assert(isa<CXXMethodDecl>(FnDecl) &&
2911      "Overloaded = not member, but not filtered.");
2912    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2913    Method->getParent()->addedAssignmentOperator(Context, Method);
2914  }
2915
2916  return false;
2917}
2918
2919/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2920/// linkage specification, including the language and (if present)
2921/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2922/// the location of the language string literal, which is provided
2923/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2924/// the '{' brace. Otherwise, this linkage specification does not
2925/// have any braces.
2926Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2927                                                     SourceLocation ExternLoc,
2928                                                     SourceLocation LangLoc,
2929                                                     const char *Lang,
2930                                                     unsigned StrSize,
2931                                                     SourceLocation LBraceLoc) {
2932  LinkageSpecDecl::LanguageIDs Language;
2933  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2934    Language = LinkageSpecDecl::lang_c;
2935  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2936    Language = LinkageSpecDecl::lang_cxx;
2937  else {
2938    Diag(LangLoc, diag::err_bad_language);
2939    return DeclPtrTy();
2940  }
2941
2942  // FIXME: Add all the various semantics of linkage specifications
2943
2944  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2945                                               LangLoc, Language,
2946                                               LBraceLoc.isValid());
2947  CurContext->addDecl(D);
2948  PushDeclContext(S, D);
2949  return DeclPtrTy::make(D);
2950}
2951
2952/// ActOnFinishLinkageSpecification - Completely the definition of
2953/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2954/// valid, it's the position of the closing '}' brace in a linkage
2955/// specification that uses braces.
2956Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2957                                                      DeclPtrTy LinkageSpec,
2958                                                      SourceLocation RBraceLoc) {
2959  if (LinkageSpec)
2960    PopDeclContext();
2961  return LinkageSpec;
2962}
2963
2964/// \brief Perform semantic analysis for the variable declaration that
2965/// occurs within a C++ catch clause, returning the newly-created
2966/// variable.
2967VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2968                                         IdentifierInfo *Name,
2969                                         SourceLocation Loc,
2970                                         SourceRange Range) {
2971  bool Invalid = false;
2972
2973  // Arrays and functions decay.
2974  if (ExDeclType->isArrayType())
2975    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2976  else if (ExDeclType->isFunctionType())
2977    ExDeclType = Context.getPointerType(ExDeclType);
2978
2979  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2980  // The exception-declaration shall not denote a pointer or reference to an
2981  // incomplete type, other than [cv] void*.
2982  // N2844 forbids rvalue references.
2983  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2984    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2985    Invalid = true;
2986  }
2987
2988  QualType BaseType = ExDeclType;
2989  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2990  unsigned DK = diag::err_catch_incomplete;
2991  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2992    BaseType = Ptr->getPointeeType();
2993    Mode = 1;
2994    DK = diag::err_catch_incomplete_ptr;
2995  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2996    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2997    BaseType = Ref->getPointeeType();
2998    Mode = 2;
2999    DK = diag::err_catch_incomplete_ref;
3000  }
3001  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3002      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3003    Invalid = true;
3004
3005  if (!Invalid && !ExDeclType->isDependentType() &&
3006      RequireNonAbstractType(Loc, ExDeclType,
3007                             diag::err_abstract_type_in_decl,
3008                             AbstractVariableType))
3009    Invalid = true;
3010
3011  // FIXME: Need to test for ability to copy-construct and destroy the
3012  // exception variable.
3013
3014  // FIXME: Need to check for abstract classes.
3015
3016  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3017                                    Name, ExDeclType, VarDecl::None,
3018                                    Range.getBegin());
3019
3020  if (Invalid)
3021    ExDecl->setInvalidDecl();
3022
3023  return ExDecl;
3024}
3025
3026/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3027/// handler.
3028Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3029  QualType ExDeclType = GetTypeForDeclarator(D, S);
3030
3031  bool Invalid = D.isInvalidType();
3032  IdentifierInfo *II = D.getIdentifier();
3033  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3034    // The scope should be freshly made just for us. There is just no way
3035    // it contains any previous declaration.
3036    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3037    if (PrevDecl->isTemplateParameter()) {
3038      // Maybe we will complain about the shadowed template parameter.
3039      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3040    }
3041  }
3042
3043  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3044    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3045      << D.getCXXScopeSpec().getRange();
3046    Invalid = true;
3047  }
3048
3049  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3050                                              D.getIdentifier(),
3051                                              D.getIdentifierLoc(),
3052                                            D.getDeclSpec().getSourceRange());
3053
3054  if (Invalid)
3055    ExDecl->setInvalidDecl();
3056
3057  // Add the exception declaration into this scope.
3058  if (II)
3059    PushOnScopeChains(ExDecl, S);
3060  else
3061    CurContext->addDecl(ExDecl);
3062
3063  ProcessDeclAttributes(S, ExDecl, D);
3064  return DeclPtrTy::make(ExDecl);
3065}
3066
3067Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3068                                                   ExprArg assertexpr,
3069                                                   ExprArg assertmessageexpr) {
3070  Expr *AssertExpr = (Expr *)assertexpr.get();
3071  StringLiteral *AssertMessage =
3072    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3073
3074  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3075    llvm::APSInt Value(32);
3076    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3077      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3078        AssertExpr->getSourceRange();
3079      return DeclPtrTy();
3080    }
3081
3082    if (Value == 0) {
3083      std::string str(AssertMessage->getStrData(),
3084                      AssertMessage->getByteLength());
3085      Diag(AssertLoc, diag::err_static_assert_failed)
3086        << str << AssertExpr->getSourceRange();
3087    }
3088  }
3089
3090  assertexpr.release();
3091  assertmessageexpr.release();
3092  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3093                                        AssertExpr, AssertMessage);
3094
3095  CurContext->addDecl(Decl);
3096  return DeclPtrTy::make(Decl);
3097}
3098
3099bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3100  if (!(S->getFlags() & Scope::ClassScope)) {
3101    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3102    return true;
3103  }
3104
3105  return false;
3106}
3107
3108void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3109  Decl *Dcl = dcl.getAs<Decl>();
3110  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3111  if (!Fn) {
3112    Diag(DelLoc, diag::err_deleted_non_function);
3113    return;
3114  }
3115  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3116    Diag(DelLoc, diag::err_deleted_decl_not_first);
3117    Diag(Prev->getLocation(), diag::note_previous_declaration);
3118    // If the declaration wasn't the first, we delete the function anyway for
3119    // recovery.
3120  }
3121  Fn->setDeleted();
3122}
3123
3124static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3125  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3126       ++CI) {
3127    Stmt *SubStmt = *CI;
3128    if (!SubStmt)
3129      continue;
3130    if (isa<ReturnStmt>(SubStmt))
3131      Self.Diag(SubStmt->getSourceRange().getBegin(),
3132           diag::err_return_in_constructor_handler);
3133    if (!isa<Expr>(SubStmt))
3134      SearchForReturnInStmt(Self, SubStmt);
3135  }
3136}
3137
3138void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3139  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3140    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3141    SearchForReturnInStmt(*this, Handler);
3142  }
3143}
3144
3145bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3146                                             const CXXMethodDecl *Old) {
3147  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3148  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3149
3150  QualType CNewTy = Context.getCanonicalType(NewTy);
3151  QualType COldTy = Context.getCanonicalType(OldTy);
3152
3153  if (CNewTy == COldTy &&
3154      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3155    return false;
3156
3157  // Check if the return types are covariant
3158  QualType NewClassTy, OldClassTy;
3159
3160  /// Both types must be pointers or references to classes.
3161  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3162    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3163      NewClassTy = NewPT->getPointeeType();
3164      OldClassTy = OldPT->getPointeeType();
3165    }
3166  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3167    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3168      NewClassTy = NewRT->getPointeeType();
3169      OldClassTy = OldRT->getPointeeType();
3170    }
3171  }
3172
3173  // The return types aren't either both pointers or references to a class type.
3174  if (NewClassTy.isNull()) {
3175    Diag(New->getLocation(),
3176         diag::err_different_return_type_for_overriding_virtual_function)
3177      << New->getDeclName() << NewTy << OldTy;
3178    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3179
3180    return true;
3181  }
3182
3183  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3184    // Check if the new class derives from the old class.
3185    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3186      Diag(New->getLocation(),
3187           diag::err_covariant_return_not_derived)
3188      << New->getDeclName() << NewTy << OldTy;
3189      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3190      return true;
3191    }
3192
3193    // Check if we the conversion from derived to base is valid.
3194    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3195                      diag::err_covariant_return_inaccessible_base,
3196                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3197                      // FIXME: Should this point to the return type?
3198                      New->getLocation(), SourceRange(), New->getDeclName())) {
3199      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3200      return true;
3201    }
3202  }
3203
3204  // The qualifiers of the return types must be the same.
3205  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3206    Diag(New->getLocation(),
3207         diag::err_covariant_return_type_different_qualifications)
3208    << New->getDeclName() << NewTy << OldTy;
3209    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3210    return true;
3211  };
3212
3213
3214  // The new class type must have the same or less qualifiers as the old type.
3215  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3216    Diag(New->getLocation(),
3217         diag::err_covariant_return_type_class_type_more_qualified)
3218    << New->getDeclName() << NewTy << OldTy;
3219    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3220    return true;
3221  };
3222
3223  return false;
3224}
3225
3226/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3227/// initializer for the declaration 'Dcl'.
3228/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3229/// static data member of class X, names should be looked up in the scope of
3230/// class X.
3231void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3232  Decl *D = Dcl.getAs<Decl>();
3233  // If there is no declaration, there was an error parsing it.
3234  if (D == 0)
3235    return;
3236
3237  // Check whether it is a declaration with a nested name specifier like
3238  // int foo::bar;
3239  if (!D->isOutOfLine())
3240    return;
3241
3242  // C++ [basic.lookup.unqual]p13
3243  //
3244  // A name used in the definition of a static data member of class X
3245  // (after the qualified-id of the static member) is looked up as if the name
3246  // was used in a member function of X.
3247
3248  // Change current context into the context of the initializing declaration.
3249  EnterDeclaratorContext(S, D->getDeclContext());
3250}
3251
3252/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3253/// initializer for the declaration 'Dcl'.
3254void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3255  Decl *D = Dcl.getAs<Decl>();
3256  // If there is no declaration, there was an error parsing it.
3257  if (D == 0)
3258    return;
3259
3260  // Check whether it is a declaration with a nested name specifier like
3261  // int foo::bar;
3262  if (!D->isOutOfLine())
3263    return;
3264
3265  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3266  ExitDeclaratorContext(S);
3267}
3268