SemaDeclCXX.cpp revision 194711
185909Simp//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
285909Simp//
3122116Sbde//                     The LLVM Compiler Infrastructure
4122116Sbde//
5122116Sbde// This file is distributed under the University of Illinois Open Source
6180012Sru// License. See LICENSE.TXT for details.
7240468Sbrooks//
8160440Sobrien//===----------------------------------------------------------------------===//
9210151Simp//
10239272Sgonzo//  This file implements semantic analysis for C++ declarations.
11210151Simp//
1285909Simp//===----------------------------------------------------------------------===//
1385909Simp
1485909Simp#include "Sema.h"
1585909Simp#include "SemaInherit.h"
16175888Simp#include "clang/AST/ASTConsumer.h"
17175888Simp#include "clang/AST/ASTContext.h"
1885909Simp#include "clang/AST/DeclVisitor.h"
19218538Simp#include "clang/AST/TypeOrdering.h"
2085909Simp#include "clang/AST/StmtVisitor.h"
2191512Sobrien#include "clang/Lex/Preprocessor.h"
22240451Snp#include "clang/Parse/DeclSpec.h"
23116341Smarkm#include "llvm/ADT/STLExtras.h"
2485909Simp#include "llvm/Support/Compiler.h"
2585909Simp#include <algorithm> // for std::equal
2685909Simp#include <map>
2785909Simp
28220863Sdimusing namespace clang;
29140606Sobrien
30187103Sgnn//===----------------------------------------------------------------------===//
31220863Sdim// CheckDefaultArgumentVisitor
32224882Snwhitehorn//===----------------------------------------------------------------------===//
33224882Snwhitehorn
34224882Snwhitehornnamespace {
35140606Sobrien  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36220863Sdim  /// the default argument of a parameter to determine whether it
37224882Snwhitehorn  /// contains any ill-formed subexpressions. For example, this will
38220863Sdim  /// diagnose the use of local variables or parameters within the
39240468Sbrooks  /// default argument expression.
40127204Sobrien  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41220863Sdim    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42228868Sdim    Expr *DefaultArg;
43228868Sdim    Sema *S;
44228868Sdim
45140606Sobrien  public:
46220863Sdim    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47220863Sdim      : DefaultArg(defarg), S(s) {}
48124834Sru
49124834Sru    bool VisitExpr(Expr *Node);
5085909Simp    bool VisitDeclRefExpr(DeclRefExpr *DRE);
5185909Simp    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
5285909Simp  };
53160043Sobrien
54126890Strhodes  /// VisitExpr - Visit all of the children of this expression.
5585909Simp  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56192901Sthompsa    bool IsInvalid = false;
57126890Strhodes    for (Stmt::child_iterator I = Node->child_begin(),
58151605Sobrien         E = Node->child_end(); I != E; ++I)
59151605Sobrien      IsInvalid |= Visit(*I);
60130416Smlaier    return IsInvalid;
61130416Smlaier  }
62149978Sobrien
63149978Sobrien  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64149978Sobrien  /// determine whether this declaration can be used in the default
65149978Sobrien  /// argument expression.
66149978Sobrien  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67185522Ssam    NamedDecl *Decl = DRE->getDecl();
68250173Sadrian    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69149978Sobrien      // C++ [dcl.fct.default]p9
70149978Sobrien      //   Default arguments are evaluated each time the function is
71149978Sobrien      //   called. The order of evaluation of function arguments is
72149978Sobrien      //   unspecified. Consequently, parameters of a function shall not
73229353Sgjb      //   be used in default argument expressions, even if they are not
74149978Sobrien      //   evaluated. Parameters of a function declared before a default
75149978Sobrien      //   argument expression are in scope and can hide namespace and
76218792Snp      //   class member names.
77218792Snp      return S->Diag(DRE->getSourceRange().getBegin(),
78183292Skmacy                     diag::err_param_default_argument_references_param)
79149978Sobrien         << Param->getDeclName() << DefaultArg->getSourceRange();
80149978Sobrien    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81160043Sobrien      // C++ [dcl.fct.default]p7
82150966Sglebius      //   Local variables shall not be used in default argument
83240468Sbrooks      //   expressions.
84124834Sru      if (VDecl->isBlockVarDecl())
85210311Sjmallett        return S->Diag(DRE->getSourceRange().getBegin(),
86132766Skan                       diag::err_param_default_argument_references_local)
87132766Skan          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88210311Sjmallett    }
89210311Sjmallett
90215988Sjmallett    return false;
91210311Sjmallett  }
92215988Sjmallett
93210311Sjmallett  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94210394Srpaulo  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95171239Speter    // C++ [dcl.fct.default]p8:
9685909Simp    //   The keyword this shall not be used in a default argument of a
9785909Simp    //   member function.
9885909Simp    return S->Diag(ThisE->getSourceRange().getBegin(),
9985909Simp                   diag::err_param_default_argument_references_this)
100240468Sbrooks               << ThisE->getSourceRange();
101232263Sdim  }
102260495Sdim}
103260495Sdim
104232263Sdim/// ActOnParamDefaultArgument - Check whether the default argument
105232263Sdim/// provided for a function parameter is well-formed. If so, attach it
10699923Sbde/// to the parameter declaration.
107242715Sdimvoid
108242715SdimSema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109242715Sdim                                ExprArg defarg) {
110242715Sdim  if (!param || !defarg.get())
11199932Sbde    return;
11299932Sbde
113242717Sdim  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114242717Sdim  UnparsedDefaultArgLocs.erase(Param);
115242717Sdim
116242717Sdim  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
11799932Sbde  QualType ParamType = Param->getType();
118242717Sdim
11999923Sbde  // Default arguments are only permitted in C++
12099932Sbde  if (!getLangOptions().CPlusPlus) {
12185909Simp    Diag(EqualLoc, diag::err_param_default_argument)
12291002Speter      << DefaultArg->getSourceRange();
12385909Simp    Param->setInvalidDecl();
12485909Simp    return;
12585909Simp  }
12685909Simp
127116341Smarkm  // C++ [dcl.fct.default]p5
128116341Smarkm  //   A default argument expression is implicitly converted (clause
129116341Smarkm  //   4) to the parameter type. The default argument expression has
13091002Speter  //   the same semantic constraints as the initializer expression in
13191002Speter  //   a declaration of a variable of the parameter type, using the
13291002Speter  //   copy-initialization semantics (8.5).
133105489Smux  Expr *DefaultArgPtr = DefaultArg.get();
13485909Simp  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135105462Smux                                                 EqualLoc,
136105462Smux                                                 Param->getDeclName(),
13785909Simp                                                 /*DirectInit=*/false);
138239956Sjhb  if (DefaultArgPtr != DefaultArg.get()) {
139239957Sjhb    DefaultArg.take();
140239957Sjhb    DefaultArg.reset(DefaultArgPtr);
141239955Sjhb  }
142233578Speter  if (DefaultInitFailed) {
143233578Speter    return;
144253996Savg  }
145233578Speter
146233578Speter  // Check that the default argument is well-formed
147233578Speter  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148233578Speter  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149228158Sfjoe    Param->setInvalidDecl();
150228140Sfjoe    return;
151228158Sfjoe  }
152228158Sfjoe
153228124Sfjoe  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154228158Sfjoe                                                    /*DestroyTemps=*/false);
155228124Sfjoe
156179226Sjb  // Okay: add the default argument to the parameter
157116341Smarkm  Param->setDefaultArg(DefaultArgPtr);
158116341Smarkm}
159219819Sjeff
160219819Sjeff/// ActOnParamUnparsedDefaultArgument - We've seen a default
161219819Sjeff/// argument for a function parameter, but we can't parse it yet
162260495Sdim/// because we're inside a class definition. Note that this default
163219819Sjeff/// argument will be parsed later.
164219819Sjeffvoid Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165219819Sjeff                                             SourceLocation EqualLoc,
166219819Sjeff                                             SourceLocation ArgLoc) {
167131210Simp  if (!param)
168144293Sphk    return;
16985909Simp
170111684Sru  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171111684Sru  if (Param)
172111684Sru    Param->setUnparsedDefaultArg();
173243664Smarcel
17489180Smsmith  UnparsedDefaultArgLocs[Param] = ArgLoc;
17585909Simp}
17685909Simp
177123966Sbde/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178175888Simp/// the default argument for the parameter param failed.
17985909Simpvoid Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
18088893Simp  if (!param)
18188893Simp    return;
18288893Simp
183221265Sbz  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184210151Simp
18590789Sphk  Param->setInvalidDecl();
18690789Sphk
18790789Sphk  UnparsedDefaultArgLocs.erase(Param);
18888893Simp}
18988893Simp
19088893Simp/// CheckExtraCXXDefaultArguments - Check for any extra default
191216746Scperciva/// arguments in the declarator, which is not a function declaration
192216746Scperciva/// or definition and therefore is not permitted to have default
193216746Scperciva/// arguments. This routine should be invoked for every declarator
19488893Simp/// that is not a function declaration or definition.
195125772Sruvoid Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
19688893Simp  // C++ [dcl.fct.default]p3
197240402Sobrien  //   A default argument expression shall be specified only in the
198240402Sobrien  //   parameter-declaration-clause of a function declaration or in a
199240402Sobrien  //   template-parameter (14.1). It shall not be specified for a
200240402Sobrien  //   parameter pack. If it is specified in a
201240402Sobrien  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  return Invalid;
262}
263
264/// CheckCXXDefaultArguments - Verify that the default arguments for a
265/// function declaration are well-formed according to C++
266/// [dcl.fct.default].
267void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
268  unsigned NumParams = FD->getNumParams();
269  unsigned p;
270
271  // Find first parameter with a default argument
272  for (p = 0; p < NumParams; ++p) {
273    ParmVarDecl *Param = FD->getParamDecl(p);
274    if (Param->getDefaultArg())
275      break;
276  }
277
278  // C++ [dcl.fct.default]p4:
279  //   In a given function declaration, all parameters
280  //   subsequent to a parameter with a default argument shall
281  //   have default arguments supplied in this or previous
282  //   declarations. A default argument shall not be redefined
283  //   by a later declaration (not even to the same value).
284  unsigned LastMissingDefaultArg = 0;
285  for(; p < NumParams; ++p) {
286    ParmVarDecl *Param = FD->getParamDecl(p);
287    if (!Param->getDefaultArg()) {
288      if (Param->isInvalidDecl())
289        /* We already complained about this parameter. */;
290      else if (Param->getIdentifier())
291        Diag(Param->getLocation(),
292             diag::err_param_default_argument_missing_name)
293          << Param->getIdentifier();
294      else
295        Diag(Param->getLocation(),
296             diag::err_param_default_argument_missing);
297
298      LastMissingDefaultArg = p;
299    }
300  }
301
302  if (LastMissingDefaultArg > 0) {
303    // Some default arguments were missing. Clear out all of the
304    // default arguments up to (and including) the last missing
305    // default argument, so that we leave the function parameters
306    // in a semantically valid state.
307    for (p = 0; p <= LastMissingDefaultArg; ++p) {
308      ParmVarDecl *Param = FD->getParamDecl(p);
309      if (Param->hasDefaultArg()) {
310        if (!Param->hasUnparsedDefaultArg())
311          Param->getDefaultArg()->Destroy(Context);
312        Param->setDefaultArg(0);
313      }
314    }
315  }
316}
317
318/// isCurrentClassName - Determine whether the identifier II is the
319/// name of the class type currently being defined. In the case of
320/// nested classes, this will only return true if II is the name of
321/// the innermost class.
322bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
323                              const CXXScopeSpec *SS) {
324  CXXRecordDecl *CurDecl;
325  if (SS && SS->isSet() && !SS->isInvalid()) {
326    DeclContext *DC = computeDeclContext(*SS);
327    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
328  } else
329    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
330
331  if (CurDecl)
332    return &II == CurDecl->getIdentifier();
333  else
334    return false;
335}
336
337/// \brief Check the validity of a C++ base class specifier.
338///
339/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
340/// and returns NULL otherwise.
341CXXBaseSpecifier *
342Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
343                         SourceRange SpecifierRange,
344                         bool Virtual, AccessSpecifier Access,
345                         QualType BaseType,
346                         SourceLocation BaseLoc) {
347  // C++ [class.union]p1:
348  //   A union shall not have base classes.
349  if (Class->isUnion()) {
350    Diag(Class->getLocation(), diag::err_base_clause_on_union)
351      << SpecifierRange;
352    return 0;
353  }
354
355  if (BaseType->isDependentType())
356    return new CXXBaseSpecifier(SpecifierRange, Virtual,
357                                Class->getTagKind() == RecordDecl::TK_class,
358                                Access, BaseType);
359
360  // Base specifiers must be record types.
361  if (!BaseType->isRecordType()) {
362    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
363    return 0;
364  }
365
366  // C++ [class.union]p1:
367  //   A union shall not be used as a base class.
368  if (BaseType->isUnionType()) {
369    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
370    return 0;
371  }
372
373  // C++ [class.derived]p2:
374  //   The class-name in a base-specifier shall not be an incompletely
375  //   defined class.
376  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
377                          SpecifierRange))
378    return 0;
379
380  // If the base class is polymorphic, the new one is, too.
381  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
382  assert(BaseDecl && "Record type has no declaration");
383  BaseDecl = BaseDecl->getDefinition(Context);
384  assert(BaseDecl && "Base type is not incomplete, but has no definition");
385  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
386    Class->setPolymorphic(true);
387
388  // C++ [dcl.init.aggr]p1:
389  //   An aggregate is [...] a class with [...] no base classes [...].
390  Class->setAggregate(false);
391  Class->setPOD(false);
392
393  if (Virtual) {
394    // C++ [class.ctor]p5:
395    //   A constructor is trivial if its class has no virtual base classes.
396    Class->setHasTrivialConstructor(false);
397  } else {
398    // C++ [class.ctor]p5:
399    //   A constructor is trivial if all the direct base classes of its
400    //   class have trivial constructors.
401    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
402                                    hasTrivialConstructor());
403  }
404
405  // C++ [class.ctor]p3:
406  //   A destructor is trivial if all the direct base classes of its class
407  //   have trivial destructors.
408  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
409                                 hasTrivialDestructor());
410
411  // Create the base specifier.
412  // FIXME: Allocate via ASTContext?
413  return new CXXBaseSpecifier(SpecifierRange, Virtual,
414                              Class->getTagKind() == RecordDecl::TK_class,
415                              Access, BaseType);
416}
417
418/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
419/// one entry in the base class list of a class specifier, for
420/// example:
421///    class foo : public bar, virtual private baz {
422/// 'public bar' and 'virtual private baz' are each base-specifiers.
423Sema::BaseResult
424Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
425                         bool Virtual, AccessSpecifier Access,
426                         TypeTy *basetype, SourceLocation BaseLoc) {
427  if (!classdecl)
428    return true;
429
430  AdjustDeclIfTemplate(classdecl);
431  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
432  QualType BaseType = QualType::getFromOpaquePtr(basetype);
433  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
434                                                      Virtual, Access,
435                                                      BaseType, BaseLoc))
436    return BaseSpec;
437
438  return true;
439}
440
441/// \brief Performs the actual work of attaching the given base class
442/// specifiers to a C++ class.
443bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
444                                unsigned NumBases) {
445 if (NumBases == 0)
446    return false;
447
448  // Used to keep track of which base types we have already seen, so
449  // that we can properly diagnose redundant direct base types. Note
450  // that the key is always the unqualified canonical type of the base
451  // class.
452  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
453
454  // Copy non-redundant base specifiers into permanent storage.
455  unsigned NumGoodBases = 0;
456  bool Invalid = false;
457  for (unsigned idx = 0; idx < NumBases; ++idx) {
458    QualType NewBaseType
459      = Context.getCanonicalType(Bases[idx]->getType());
460    NewBaseType = NewBaseType.getUnqualifiedType();
461
462    if (KnownBaseTypes[NewBaseType]) {
463      // C++ [class.mi]p3:
464      //   A class shall not be specified as a direct base class of a
465      //   derived class more than once.
466      Diag(Bases[idx]->getSourceRange().getBegin(),
467           diag::err_duplicate_base_class)
468        << KnownBaseTypes[NewBaseType]->getType()
469        << Bases[idx]->getSourceRange();
470
471      // Delete the duplicate base class specifier; we're going to
472      // overwrite its pointer later.
473      delete Bases[idx];
474
475      Invalid = true;
476    } else {
477      // Okay, add this new base class.
478      KnownBaseTypes[NewBaseType] = Bases[idx];
479      Bases[NumGoodBases++] = Bases[idx];
480    }
481  }
482
483  // Attach the remaining base class specifiers to the derived class.
484  Class->setBases(Bases, NumGoodBases);
485
486  // Delete the remaining (good) base class specifiers, since their
487  // data has been copied into the CXXRecordDecl.
488  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
489    delete Bases[idx];
490
491  return Invalid;
492}
493
494/// ActOnBaseSpecifiers - Attach the given base specifiers to the
495/// class, after checking whether there are any duplicate base
496/// classes.
497void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
498                               unsigned NumBases) {
499  if (!ClassDecl || !Bases || !NumBases)
500    return;
501
502  AdjustDeclIfTemplate(ClassDecl);
503  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
504                       (CXXBaseSpecifier**)(Bases), NumBases);
505}
506
507//===----------------------------------------------------------------------===//
508// C++ class member Handling
509//===----------------------------------------------------------------------===//
510
511/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
512/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
513/// bitfield width if there is one and 'InitExpr' specifies the initializer if
514/// any.
515Sema::DeclPtrTy
516Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
517                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
518  const DeclSpec &DS = D.getDeclSpec();
519  DeclarationName Name = GetNameForDeclarator(D);
520  Expr *BitWidth = static_cast<Expr*>(BW);
521  Expr *Init = static_cast<Expr*>(InitExpr);
522  SourceLocation Loc = D.getIdentifierLoc();
523
524  bool isFunc = D.isFunctionDeclarator();
525
526  // C++ 9.2p6: A member shall not be declared to have automatic storage
527  // duration (auto, register) or with the extern storage-class-specifier.
528  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
529  // data members and cannot be applied to names declared const or static,
530  // and cannot be applied to reference members.
531  switch (DS.getStorageClassSpec()) {
532    case DeclSpec::SCS_unspecified:
533    case DeclSpec::SCS_typedef:
534    case DeclSpec::SCS_static:
535      // FALL THROUGH.
536      break;
537    case DeclSpec::SCS_mutable:
538      if (isFunc) {
539        if (DS.getStorageClassSpecLoc().isValid())
540          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
541        else
542          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
543
544        // FIXME: It would be nicer if the keyword was ignored only for this
545        // declarator. Otherwise we could get follow-up errors.
546        D.getMutableDeclSpec().ClearStorageClassSpecs();
547      } else {
548        QualType T = GetTypeForDeclarator(D, S);
549        diag::kind err = static_cast<diag::kind>(0);
550        if (T->isReferenceType())
551          err = diag::err_mutable_reference;
552        else if (T.isConstQualified())
553          err = diag::err_mutable_const;
554        if (err != 0) {
555          if (DS.getStorageClassSpecLoc().isValid())
556            Diag(DS.getStorageClassSpecLoc(), err);
557          else
558            Diag(DS.getThreadSpecLoc(), err);
559          // FIXME: It would be nicer if the keyword was ignored only for this
560          // declarator. Otherwise we could get follow-up errors.
561          D.getMutableDeclSpec().ClearStorageClassSpecs();
562        }
563      }
564      break;
565    default:
566      if (DS.getStorageClassSpecLoc().isValid())
567        Diag(DS.getStorageClassSpecLoc(),
568             diag::err_storageclass_invalid_for_member);
569      else
570        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
571      D.getMutableDeclSpec().ClearStorageClassSpecs();
572  }
573
574  if (!isFunc &&
575      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
576      D.getNumTypeObjects() == 0) {
577    // Check also for this case:
578    //
579    // typedef int f();
580    // f a;
581    //
582    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
583    isFunc = TDType->isFunctionType();
584  }
585
586  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
587                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
588                      !isFunc);
589
590  Decl *Member;
591  if (isInstField) {
592    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
593                         AS);
594    assert(Member && "HandleField never returns null");
595  } else {
596    Member = ActOnDeclarator(S, D).getAs<Decl>();
597    if (!Member) {
598      if (BitWidth) DeleteExpr(BitWidth);
599      return DeclPtrTy();
600    }
601
602    // Non-instance-fields can't have a bitfield.
603    if (BitWidth) {
604      if (Member->isInvalidDecl()) {
605        // don't emit another diagnostic.
606      } else if (isa<VarDecl>(Member)) {
607        // C++ 9.6p3: A bit-field shall not be a static member.
608        // "static member 'A' cannot be a bit-field"
609        Diag(Loc, diag::err_static_not_bitfield)
610          << Name << BitWidth->getSourceRange();
611      } else if (isa<TypedefDecl>(Member)) {
612        // "typedef member 'x' cannot be a bit-field"
613        Diag(Loc, diag::err_typedef_not_bitfield)
614          << Name << BitWidth->getSourceRange();
615      } else {
616        // A function typedef ("typedef int f(); f a;").
617        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
618        Diag(Loc, diag::err_not_integral_type_bitfield)
619          << Name << cast<ValueDecl>(Member)->getType()
620          << BitWidth->getSourceRange();
621      }
622
623      DeleteExpr(BitWidth);
624      BitWidth = 0;
625      Member->setInvalidDecl();
626    }
627
628    Member->setAccess(AS);
629  }
630
631  assert((Name || isInstField) && "No identifier for non-field ?");
632
633  if (Init)
634    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
635  if (Deleted) // FIXME: Source location is not very good.
636    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
637
638  if (isInstField) {
639    FieldCollector->Add(cast<FieldDecl>(Member));
640    return DeclPtrTy();
641  }
642  return DeclPtrTy::make(Member);
643}
644
645/// ActOnMemInitializer - Handle a C++ member initializer.
646Sema::MemInitResult
647Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
648                          Scope *S,
649                          IdentifierInfo *MemberOrBase,
650                          SourceLocation IdLoc,
651                          SourceLocation LParenLoc,
652                          ExprTy **Args, unsigned NumArgs,
653                          SourceLocation *CommaLocs,
654                          SourceLocation RParenLoc) {
655  if (!ConstructorD)
656    return true;
657
658  CXXConstructorDecl *Constructor
659    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
660  if (!Constructor) {
661    // The user wrote a constructor initializer on a function that is
662    // not a C++ constructor. Ignore the error for now, because we may
663    // have more member initializers coming; we'll diagnose it just
664    // once in ActOnMemInitializers.
665    return true;
666  }
667
668  CXXRecordDecl *ClassDecl = Constructor->getParent();
669
670  // C++ [class.base.init]p2:
671  //   Names in a mem-initializer-id are looked up in the scope of the
672  //   constructor���s class and, if not found in that scope, are looked
673  //   up in the scope containing the constructor���s
674  //   definition. [Note: if the constructor���s class contains a member
675  //   with the same name as a direct or virtual base class of the
676  //   class, a mem-initializer-id naming the member or base class and
677  //   composed of a single identifier refers to the class member. A
678  //   mem-initializer-id for the hidden base class may be specified
679  //   using a qualified name. ]
680  // Look for a member, first.
681  FieldDecl *Member = 0;
682  DeclContext::lookup_result Result
683    = ClassDecl->lookup(Context, MemberOrBase);
684  if (Result.first != Result.second)
685    Member = dyn_cast<FieldDecl>(*Result.first);
686
687  // FIXME: Handle members of an anonymous union.
688
689  if (Member) {
690    // FIXME: Perform direct initialization of the member.
691    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
692  }
693
694  // It didn't name a member, so see if it names a class.
695  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
696  if (!BaseTy)
697    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
698      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
699
700  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
701  if (!BaseType->isRecordType())
702    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
703      << BaseType << SourceRange(IdLoc, RParenLoc);
704
705  // C++ [class.base.init]p2:
706  //   [...] Unless the mem-initializer-id names a nonstatic data
707  //   member of the constructor���s class or a direct or virtual base
708  //   of that class, the mem-initializer is ill-formed. A
709  //   mem-initializer-list can initialize a base class using any
710  //   name that denotes that base class type.
711
712  // First, check for a direct base class.
713  const CXXBaseSpecifier *DirectBaseSpec = 0;
714  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
715       Base != ClassDecl->bases_end(); ++Base) {
716    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
717        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
718      // We found a direct base of this type. That's what we're
719      // initializing.
720      DirectBaseSpec = &*Base;
721      break;
722    }
723  }
724
725  // Check for a virtual base class.
726  // FIXME: We might be able to short-circuit this if we know in advance that
727  // there are no virtual bases.
728  const CXXBaseSpecifier *VirtualBaseSpec = 0;
729  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
730    // We haven't found a base yet; search the class hierarchy for a
731    // virtual base class.
732    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
733                    /*DetectVirtual=*/false);
734    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
735      for (BasePaths::paths_iterator Path = Paths.begin();
736           Path != Paths.end(); ++Path) {
737        if (Path->back().Base->isVirtual()) {
738          VirtualBaseSpec = Path->back().Base;
739          break;
740        }
741      }
742    }
743  }
744
745  // C++ [base.class.init]p2:
746  //   If a mem-initializer-id is ambiguous because it designates both
747  //   a direct non-virtual base class and an inherited virtual base
748  //   class, the mem-initializer is ill-formed.
749  if (DirectBaseSpec && VirtualBaseSpec)
750    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
751      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
752
753  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
754}
755
756void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
757                                SourceLocation ColonLoc,
758                                MemInitTy **MemInits, unsigned NumMemInits) {
759  if (!ConstructorDecl)
760    return;
761
762  CXXConstructorDecl *Constructor
763    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
764
765  if (!Constructor) {
766    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
767    return;
768  }
769}
770
771namespace {
772  /// PureVirtualMethodCollector - traverses a class and its superclasses
773  /// and determines if it has any pure virtual methods.
774  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
775    ASTContext &Context;
776
777  public:
778    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
779
780  private:
781    MethodList Methods;
782
783    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
784
785  public:
786    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
787      : Context(Ctx) {
788
789      MethodList List;
790      Collect(RD, List);
791
792      // Copy the temporary list to methods, and make sure to ignore any
793      // null entries.
794      for (size_t i = 0, e = List.size(); i != e; ++i) {
795        if (List[i])
796          Methods.push_back(List[i]);
797      }
798    }
799
800    bool empty() const { return Methods.empty(); }
801
802    MethodList::const_iterator methods_begin() { return Methods.begin(); }
803    MethodList::const_iterator methods_end() { return Methods.end(); }
804  };
805
806  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
807                                           MethodList& Methods) {
808    // First, collect the pure virtual methods for the base classes.
809    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
810         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
811      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
812        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
813        if (BaseDecl && BaseDecl->isAbstract())
814          Collect(BaseDecl, Methods);
815      }
816    }
817
818    // Next, zero out any pure virtual methods that this class overrides.
819    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
820
821    MethodSetTy OverriddenMethods;
822    size_t MethodsSize = Methods.size();
823
824    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
825         e = RD->decls_end(Context);
826         i != e; ++i) {
827      // Traverse the record, looking for methods.
828      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
829        // If the method is pre virtual, add it to the methods vector.
830        if (MD->isPure()) {
831          Methods.push_back(MD);
832          continue;
833        }
834
835        // Otherwise, record all the overridden methods in our set.
836        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
837             E = MD->end_overridden_methods(); I != E; ++I) {
838          // Keep track of the overridden methods.
839          OverriddenMethods.insert(*I);
840        }
841      }
842    }
843
844    // Now go through the methods and zero out all the ones we know are
845    // overridden.
846    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
847      if (OverriddenMethods.count(Methods[i]))
848        Methods[i] = 0;
849    }
850
851  }
852}
853
854bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
855                                  unsigned DiagID, AbstractDiagSelID SelID,
856                                  const CXXRecordDecl *CurrentRD) {
857
858  if (!getLangOptions().CPlusPlus)
859    return false;
860
861  if (const ArrayType *AT = Context.getAsArrayType(T))
862    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
863                                  CurrentRD);
864
865  if (const PointerType *PT = T->getAsPointerType()) {
866    // Find the innermost pointer type.
867    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
868      PT = T;
869
870    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
871      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
872                                    CurrentRD);
873  }
874
875  const RecordType *RT = T->getAsRecordType();
876  if (!RT)
877    return false;
878
879  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
880  if (!RD)
881    return false;
882
883  if (CurrentRD && CurrentRD != RD)
884    return false;
885
886  if (!RD->isAbstract())
887    return false;
888
889  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
890
891  // Check if we've already emitted the list of pure virtual functions for this
892  // class.
893  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
894    return true;
895
896  PureVirtualMethodCollector Collector(Context, RD);
897
898  for (PureVirtualMethodCollector::MethodList::const_iterator I =
899       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
900    const CXXMethodDecl *MD = *I;
901
902    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
903      MD->getDeclName();
904  }
905
906  if (!PureVirtualClassDiagSet)
907    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
908  PureVirtualClassDiagSet->insert(RD);
909
910  return true;
911}
912
913namespace {
914  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
915    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
916    Sema &SemaRef;
917    CXXRecordDecl *AbstractClass;
918
919    bool VisitDeclContext(const DeclContext *DC) {
920      bool Invalid = false;
921
922      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
923           E = DC->decls_end(SemaRef.Context); I != E; ++I)
924        Invalid |= Visit(*I);
925
926      return Invalid;
927    }
928
929  public:
930    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
931      : SemaRef(SemaRef), AbstractClass(ac) {
932        Visit(SemaRef.Context.getTranslationUnitDecl());
933    }
934
935    bool VisitFunctionDecl(const FunctionDecl *FD) {
936      if (FD->isThisDeclarationADefinition()) {
937        // No need to do the check if we're in a definition, because it requires
938        // that the return/param types are complete.
939        // because that requires
940        return VisitDeclContext(FD);
941      }
942
943      // Check the return type.
944      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
945      bool Invalid =
946        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
947                                       diag::err_abstract_type_in_decl,
948                                       Sema::AbstractReturnType,
949                                       AbstractClass);
950
951      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
952           E = FD->param_end(); I != E; ++I) {
953        const ParmVarDecl *VD = *I;
954        Invalid |=
955          SemaRef.RequireNonAbstractType(VD->getLocation(),
956                                         VD->getOriginalType(),
957                                         diag::err_abstract_type_in_decl,
958                                         Sema::AbstractParamType,
959                                         AbstractClass);
960      }
961
962      return Invalid;
963    }
964
965    bool VisitDecl(const Decl* D) {
966      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
967        return VisitDeclContext(DC);
968
969      return false;
970    }
971  };
972}
973
974void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
975                                             DeclPtrTy TagDecl,
976                                             SourceLocation LBrac,
977                                             SourceLocation RBrac) {
978  if (!TagDecl)
979    return;
980
981  AdjustDeclIfTemplate(TagDecl);
982  ActOnFields(S, RLoc, TagDecl,
983              (DeclPtrTy*)FieldCollector->getCurFields(),
984              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
985
986  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
987  if (!RD->isAbstract()) {
988    // Collect all the pure virtual methods and see if this is an abstract
989    // class after all.
990    PureVirtualMethodCollector Collector(Context, RD);
991    if (!Collector.empty())
992      RD->setAbstract(true);
993  }
994
995  if (RD->isAbstract())
996    AbstractClassUsageDiagnoser(*this, RD);
997
998  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
999    for (RecordDecl::field_iterator i = RD->field_begin(Context),
1000         e = RD->field_end(Context); i != e; ++i) {
1001      // All the nonstatic data members must have trivial constructors.
1002      QualType FTy = i->getType();
1003      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1004        FTy = AT->getElementType();
1005
1006      if (const RecordType *RT = FTy->getAsRecordType()) {
1007        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1008
1009        if (!FieldRD->hasTrivialConstructor())
1010          RD->setHasTrivialConstructor(false);
1011        if (!FieldRD->hasTrivialDestructor())
1012          RD->setHasTrivialDestructor(false);
1013
1014        // If RD has neither a trivial constructor nor a trivial destructor
1015        // we don't need to continue checking.
1016        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1017          break;
1018      }
1019    }
1020  }
1021
1022  if (!RD->isDependentType())
1023    AddImplicitlyDeclaredMembersToClass(RD);
1024}
1025
1026/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1027/// special functions, such as the default constructor, copy
1028/// constructor, or destructor, to the given C++ class (C++
1029/// [special]p1).  This routine can only be executed just before the
1030/// definition of the class is complete.
1031void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1032  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1033  ClassType = Context.getCanonicalType(ClassType);
1034
1035  // FIXME: Implicit declarations have exception specifications, which are
1036  // the union of the specifications of the implicitly called functions.
1037
1038  if (!ClassDecl->hasUserDeclaredConstructor()) {
1039    // C++ [class.ctor]p5:
1040    //   A default constructor for a class X is a constructor of class X
1041    //   that can be called without an argument. If there is no
1042    //   user-declared constructor for class X, a default constructor is
1043    //   implicitly declared. An implicitly-declared default constructor
1044    //   is an inline public member of its class.
1045    DeclarationName Name
1046      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1047    CXXConstructorDecl *DefaultCon =
1048      CXXConstructorDecl::Create(Context, ClassDecl,
1049                                 ClassDecl->getLocation(), Name,
1050                                 Context.getFunctionType(Context.VoidTy,
1051                                                         0, 0, false, 0),
1052                                 /*isExplicit=*/false,
1053                                 /*isInline=*/true,
1054                                 /*isImplicitlyDeclared=*/true);
1055    DefaultCon->setAccess(AS_public);
1056    DefaultCon->setImplicit();
1057    ClassDecl->addDecl(Context, DefaultCon);
1058  }
1059
1060  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1061    // C++ [class.copy]p4:
1062    //   If the class definition does not explicitly declare a copy
1063    //   constructor, one is declared implicitly.
1064
1065    // C++ [class.copy]p5:
1066    //   The implicitly-declared copy constructor for a class X will
1067    //   have the form
1068    //
1069    //       X::X(const X&)
1070    //
1071    //   if
1072    bool HasConstCopyConstructor = true;
1073
1074    //     -- each direct or virtual base class B of X has a copy
1075    //        constructor whose first parameter is of type const B& or
1076    //        const volatile B&, and
1077    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1078         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1079      const CXXRecordDecl *BaseClassDecl
1080        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1081      HasConstCopyConstructor
1082        = BaseClassDecl->hasConstCopyConstructor(Context);
1083    }
1084
1085    //     -- for all the nonstatic data members of X that are of a
1086    //        class type M (or array thereof), each such class type
1087    //        has a copy constructor whose first parameter is of type
1088    //        const M& or const volatile M&.
1089    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1090         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1091         ++Field) {
1092      QualType FieldType = (*Field)->getType();
1093      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1094        FieldType = Array->getElementType();
1095      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1096        const CXXRecordDecl *FieldClassDecl
1097          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1098        HasConstCopyConstructor
1099          = FieldClassDecl->hasConstCopyConstructor(Context);
1100      }
1101    }
1102
1103    //   Otherwise, the implicitly declared copy constructor will have
1104    //   the form
1105    //
1106    //       X::X(X&)
1107    QualType ArgType = ClassType;
1108    if (HasConstCopyConstructor)
1109      ArgType = ArgType.withConst();
1110    ArgType = Context.getLValueReferenceType(ArgType);
1111
1112    //   An implicitly-declared copy constructor is an inline public
1113    //   member of its class.
1114    DeclarationName Name
1115      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1116    CXXConstructorDecl *CopyConstructor
1117      = CXXConstructorDecl::Create(Context, ClassDecl,
1118                                   ClassDecl->getLocation(), Name,
1119                                   Context.getFunctionType(Context.VoidTy,
1120                                                           &ArgType, 1,
1121                                                           false, 0),
1122                                   /*isExplicit=*/false,
1123                                   /*isInline=*/true,
1124                                   /*isImplicitlyDeclared=*/true);
1125    CopyConstructor->setAccess(AS_public);
1126    CopyConstructor->setImplicit();
1127
1128    // Add the parameter to the constructor.
1129    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1130                                                 ClassDecl->getLocation(),
1131                                                 /*IdentifierInfo=*/0,
1132                                                 ArgType, VarDecl::None, 0);
1133    CopyConstructor->setParams(Context, &FromParam, 1);
1134    ClassDecl->addDecl(Context, CopyConstructor);
1135  }
1136
1137  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1138    // Note: The following rules are largely analoguous to the copy
1139    // constructor rules. Note that virtual bases are not taken into account
1140    // for determining the argument type of the operator. Note also that
1141    // operators taking an object instead of a reference are allowed.
1142    //
1143    // C++ [class.copy]p10:
1144    //   If the class definition does not explicitly declare a copy
1145    //   assignment operator, one is declared implicitly.
1146    //   The implicitly-defined copy assignment operator for a class X
1147    //   will have the form
1148    //
1149    //       X& X::operator=(const X&)
1150    //
1151    //   if
1152    bool HasConstCopyAssignment = true;
1153
1154    //       -- each direct base class B of X has a copy assignment operator
1155    //          whose parameter is of type const B&, const volatile B& or B,
1156    //          and
1157    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1158         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1159      const CXXRecordDecl *BaseClassDecl
1160        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1161      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1162    }
1163
1164    //       -- for all the nonstatic data members of X that are of a class
1165    //          type M (or array thereof), each such class type has a copy
1166    //          assignment operator whose parameter is of type const M&,
1167    //          const volatile M& or M.
1168    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1169         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1170         ++Field) {
1171      QualType FieldType = (*Field)->getType();
1172      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1173        FieldType = Array->getElementType();
1174      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1175        const CXXRecordDecl *FieldClassDecl
1176          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1177        HasConstCopyAssignment
1178          = FieldClassDecl->hasConstCopyAssignment(Context);
1179      }
1180    }
1181
1182    //   Otherwise, the implicitly declared copy assignment operator will
1183    //   have the form
1184    //
1185    //       X& X::operator=(X&)
1186    QualType ArgType = ClassType;
1187    QualType RetType = Context.getLValueReferenceType(ArgType);
1188    if (HasConstCopyAssignment)
1189      ArgType = ArgType.withConst();
1190    ArgType = Context.getLValueReferenceType(ArgType);
1191
1192    //   An implicitly-declared copy assignment operator is an inline public
1193    //   member of its class.
1194    DeclarationName Name =
1195      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1196    CXXMethodDecl *CopyAssignment =
1197      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1198                            Context.getFunctionType(RetType, &ArgType, 1,
1199                                                    false, 0),
1200                            /*isStatic=*/false, /*isInline=*/true);
1201    CopyAssignment->setAccess(AS_public);
1202    CopyAssignment->setImplicit();
1203
1204    // Add the parameter to the operator.
1205    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1206                                                 ClassDecl->getLocation(),
1207                                                 /*IdentifierInfo=*/0,
1208                                                 ArgType, VarDecl::None, 0);
1209    CopyAssignment->setParams(Context, &FromParam, 1);
1210
1211    // Don't call addedAssignmentOperator. There is no way to distinguish an
1212    // implicit from an explicit assignment operator.
1213    ClassDecl->addDecl(Context, CopyAssignment);
1214  }
1215
1216  if (!ClassDecl->hasUserDeclaredDestructor()) {
1217    // C++ [class.dtor]p2:
1218    //   If a class has no user-declared destructor, a destructor is
1219    //   declared implicitly. An implicitly-declared destructor is an
1220    //   inline public member of its class.
1221    DeclarationName Name
1222      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1223    CXXDestructorDecl *Destructor
1224      = CXXDestructorDecl::Create(Context, ClassDecl,
1225                                  ClassDecl->getLocation(), Name,
1226                                  Context.getFunctionType(Context.VoidTy,
1227                                                          0, 0, false, 0),
1228                                  /*isInline=*/true,
1229                                  /*isImplicitlyDeclared=*/true);
1230    Destructor->setAccess(AS_public);
1231    Destructor->setImplicit();
1232    ClassDecl->addDecl(Context, Destructor);
1233  }
1234}
1235
1236void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1237  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1238  if (!Template)
1239    return;
1240
1241  TemplateParameterList *Params = Template->getTemplateParameters();
1242  for (TemplateParameterList::iterator Param = Params->begin(),
1243                                    ParamEnd = Params->end();
1244       Param != ParamEnd; ++Param) {
1245    NamedDecl *Named = cast<NamedDecl>(*Param);
1246    if (Named->getDeclName()) {
1247      S->AddDecl(DeclPtrTy::make(Named));
1248      IdResolver.AddDecl(Named);
1249    }
1250  }
1251}
1252
1253/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1254/// parsing a top-level (non-nested) C++ class, and we are now
1255/// parsing those parts of the given Method declaration that could
1256/// not be parsed earlier (C++ [class.mem]p2), such as default
1257/// arguments. This action should enter the scope of the given
1258/// Method declaration as if we had just parsed the qualified method
1259/// name. However, it should not bring the parameters into scope;
1260/// that will be performed by ActOnDelayedCXXMethodParameter.
1261void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1262  if (!MethodD)
1263    return;
1264
1265  CXXScopeSpec SS;
1266  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1267  QualType ClassTy
1268    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1269  SS.setScopeRep(
1270    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1271  ActOnCXXEnterDeclaratorScope(S, SS);
1272}
1273
1274/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1275/// C++ method declaration. We're (re-)introducing the given
1276/// function parameter into scope for use in parsing later parts of
1277/// the method declaration. For example, we could see an
1278/// ActOnParamDefaultArgument event for this parameter.
1279void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1280  if (!ParamD)
1281    return;
1282
1283  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1284
1285  // If this parameter has an unparsed default argument, clear it out
1286  // to make way for the parsed default argument.
1287  if (Param->hasUnparsedDefaultArg())
1288    Param->setDefaultArg(0);
1289
1290  S->AddDecl(DeclPtrTy::make(Param));
1291  if (Param->getDeclName())
1292    IdResolver.AddDecl(Param);
1293}
1294
1295/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1296/// processing the delayed method declaration for Method. The method
1297/// declaration is now considered finished. There may be a separate
1298/// ActOnStartOfFunctionDef action later (not necessarily
1299/// immediately!) for this method, if it was also defined inside the
1300/// class body.
1301void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1302  if (!MethodD)
1303    return;
1304
1305  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1306  CXXScopeSpec SS;
1307  QualType ClassTy
1308    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1309  SS.setScopeRep(
1310    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1311  ActOnCXXExitDeclaratorScope(S, SS);
1312
1313  // Now that we have our default arguments, check the constructor
1314  // again. It could produce additional diagnostics or affect whether
1315  // the class has implicitly-declared destructors, among other
1316  // things.
1317  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1318    CheckConstructor(Constructor);
1319
1320  // Check the default arguments, which we may have added.
1321  if (!Method->isInvalidDecl())
1322    CheckCXXDefaultArguments(Method);
1323}
1324
1325/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1326/// the well-formedness of the constructor declarator @p D with type @p
1327/// R. If there are any errors in the declarator, this routine will
1328/// emit diagnostics and set the invalid bit to true.  In any case, the type
1329/// will be updated to reflect a well-formed type for the constructor and
1330/// returned.
1331QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1332                                          FunctionDecl::StorageClass &SC) {
1333  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1334
1335  // C++ [class.ctor]p3:
1336  //   A constructor shall not be virtual (10.3) or static (9.4). A
1337  //   constructor can be invoked for a const, volatile or const
1338  //   volatile object. A constructor shall not be declared const,
1339  //   volatile, or const volatile (9.3.2).
1340  if (isVirtual) {
1341    if (!D.isInvalidType())
1342      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1343        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1344        << SourceRange(D.getIdentifierLoc());
1345    D.setInvalidType();
1346  }
1347  if (SC == FunctionDecl::Static) {
1348    if (!D.isInvalidType())
1349      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1350        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1351        << SourceRange(D.getIdentifierLoc());
1352    D.setInvalidType();
1353    SC = FunctionDecl::None;
1354  }
1355
1356  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1357  if (FTI.TypeQuals != 0) {
1358    if (FTI.TypeQuals & QualType::Const)
1359      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1360        << "const" << SourceRange(D.getIdentifierLoc());
1361    if (FTI.TypeQuals & QualType::Volatile)
1362      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1363        << "volatile" << SourceRange(D.getIdentifierLoc());
1364    if (FTI.TypeQuals & QualType::Restrict)
1365      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1366        << "restrict" << SourceRange(D.getIdentifierLoc());
1367  }
1368
1369  // Rebuild the function type "R" without any type qualifiers (in
1370  // case any of the errors above fired) and with "void" as the
1371  // return type, since constructors don't have return types. We
1372  // *always* have to do this, because GetTypeForDeclarator will
1373  // put in a result type of "int" when none was specified.
1374  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1375  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1376                                 Proto->getNumArgs(),
1377                                 Proto->isVariadic(), 0);
1378}
1379
1380/// CheckConstructor - Checks a fully-formed constructor for
1381/// well-formedness, issuing any diagnostics required. Returns true if
1382/// the constructor declarator is invalid.
1383void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1384  CXXRecordDecl *ClassDecl
1385    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1386  if (!ClassDecl)
1387    return Constructor->setInvalidDecl();
1388
1389  // C++ [class.copy]p3:
1390  //   A declaration of a constructor for a class X is ill-formed if
1391  //   its first parameter is of type (optionally cv-qualified) X and
1392  //   either there are no other parameters or else all other
1393  //   parameters have default arguments.
1394  if (!Constructor->isInvalidDecl() &&
1395      ((Constructor->getNumParams() == 1) ||
1396       (Constructor->getNumParams() > 1 &&
1397        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1398    QualType ParamType = Constructor->getParamDecl(0)->getType();
1399    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1400    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1401      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1402      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1403        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1404      Constructor->setInvalidDecl();
1405    }
1406  }
1407
1408  // Notify the class that we've added a constructor.
1409  ClassDecl->addedConstructor(Context, Constructor);
1410}
1411
1412static inline bool
1413FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1414  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1415          FTI.ArgInfo[0].Param &&
1416          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1417}
1418
1419/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1420/// the well-formednes of the destructor declarator @p D with type @p
1421/// R. If there are any errors in the declarator, this routine will
1422/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1423/// will be updated to reflect a well-formed type for the destructor and
1424/// returned.
1425QualType Sema::CheckDestructorDeclarator(Declarator &D,
1426                                         FunctionDecl::StorageClass& SC) {
1427  // C++ [class.dtor]p1:
1428  //   [...] A typedef-name that names a class is a class-name
1429  //   (7.1.3); however, a typedef-name that names a class shall not
1430  //   be used as the identifier in the declarator for a destructor
1431  //   declaration.
1432  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1433  if (isa<TypedefType>(DeclaratorType)) {
1434    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1435      << DeclaratorType;
1436    D.setInvalidType();
1437  }
1438
1439  // C++ [class.dtor]p2:
1440  //   A destructor is used to destroy objects of its class type. A
1441  //   destructor takes no parameters, and no return type can be
1442  //   specified for it (not even void). The address of a destructor
1443  //   shall not be taken. A destructor shall not be static. A
1444  //   destructor can be invoked for a const, volatile or const
1445  //   volatile object. A destructor shall not be declared const,
1446  //   volatile or const volatile (9.3.2).
1447  if (SC == FunctionDecl::Static) {
1448    if (!D.isInvalidType())
1449      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1450        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1451        << SourceRange(D.getIdentifierLoc());
1452    SC = FunctionDecl::None;
1453    D.setInvalidType();
1454  }
1455  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1456    // Destructors don't have return types, but the parser will
1457    // happily parse something like:
1458    //
1459    //   class X {
1460    //     float ~X();
1461    //   };
1462    //
1463    // The return type will be eliminated later.
1464    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1465      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1466      << SourceRange(D.getIdentifierLoc());
1467  }
1468
1469  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1470  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1471    if (FTI.TypeQuals & QualType::Const)
1472      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1473        << "const" << SourceRange(D.getIdentifierLoc());
1474    if (FTI.TypeQuals & QualType::Volatile)
1475      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1476        << "volatile" << SourceRange(D.getIdentifierLoc());
1477    if (FTI.TypeQuals & QualType::Restrict)
1478      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1479        << "restrict" << SourceRange(D.getIdentifierLoc());
1480    D.setInvalidType();
1481  }
1482
1483  // Make sure we don't have any parameters.
1484  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1485    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1486
1487    // Delete the parameters.
1488    FTI.freeArgs();
1489    D.setInvalidType();
1490  }
1491
1492  // Make sure the destructor isn't variadic.
1493  if (FTI.isVariadic) {
1494    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1495    D.setInvalidType();
1496  }
1497
1498  // Rebuild the function type "R" without any type qualifiers or
1499  // parameters (in case any of the errors above fired) and with
1500  // "void" as the return type, since destructors don't have return
1501  // types. We *always* have to do this, because GetTypeForDeclarator
1502  // will put in a result type of "int" when none was specified.
1503  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1504}
1505
1506/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1507/// well-formednes of the conversion function declarator @p D with
1508/// type @p R. If there are any errors in the declarator, this routine
1509/// will emit diagnostics and return true. Otherwise, it will return
1510/// false. Either way, the type @p R will be updated to reflect a
1511/// well-formed type for the conversion operator.
1512void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1513                                     FunctionDecl::StorageClass& SC) {
1514  // C++ [class.conv.fct]p1:
1515  //   Neither parameter types nor return type can be specified. The
1516  //   type of a conversion function (8.3.5) is ���function taking no
1517  //   parameter returning conversion-type-id.���
1518  if (SC == FunctionDecl::Static) {
1519    if (!D.isInvalidType())
1520      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1521        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1522        << SourceRange(D.getIdentifierLoc());
1523    D.setInvalidType();
1524    SC = FunctionDecl::None;
1525  }
1526  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1527    // Conversion functions don't have return types, but the parser will
1528    // happily parse something like:
1529    //
1530    //   class X {
1531    //     float operator bool();
1532    //   };
1533    //
1534    // The return type will be changed later anyway.
1535    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1536      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1537      << SourceRange(D.getIdentifierLoc());
1538  }
1539
1540  // Make sure we don't have any parameters.
1541  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1542    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1543
1544    // Delete the parameters.
1545    D.getTypeObject(0).Fun.freeArgs();
1546    D.setInvalidType();
1547  }
1548
1549  // Make sure the conversion function isn't variadic.
1550  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1551    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1552    D.setInvalidType();
1553  }
1554
1555  // C++ [class.conv.fct]p4:
1556  //   The conversion-type-id shall not represent a function type nor
1557  //   an array type.
1558  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1559  if (ConvType->isArrayType()) {
1560    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1561    ConvType = Context.getPointerType(ConvType);
1562    D.setInvalidType();
1563  } else if (ConvType->isFunctionType()) {
1564    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1565    ConvType = Context.getPointerType(ConvType);
1566    D.setInvalidType();
1567  }
1568
1569  // Rebuild the function type "R" without any parameters (in case any
1570  // of the errors above fired) and with the conversion type as the
1571  // return type.
1572  R = Context.getFunctionType(ConvType, 0, 0, false,
1573                              R->getAsFunctionProtoType()->getTypeQuals());
1574
1575  // C++0x explicit conversion operators.
1576  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1577    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1578         diag::warn_explicit_conversion_functions)
1579      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1580}
1581
1582/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1583/// the declaration of the given C++ conversion function. This routine
1584/// is responsible for recording the conversion function in the C++
1585/// class, if possible.
1586Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1587  assert(Conversion && "Expected to receive a conversion function declaration");
1588
1589  // Set the lexical context of this conversion function
1590  Conversion->setLexicalDeclContext(CurContext);
1591
1592  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1593
1594  // Make sure we aren't redeclaring the conversion function.
1595  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1596
1597  // C++ [class.conv.fct]p1:
1598  //   [...] A conversion function is never used to convert a
1599  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1600  //   same object type (or a reference to it), to a (possibly
1601  //   cv-qualified) base class of that type (or a reference to it),
1602  //   or to (possibly cv-qualified) void.
1603  // FIXME: Suppress this warning if the conversion function ends up being a
1604  // virtual function that overrides a virtual function in a base class.
1605  QualType ClassType
1606    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1607  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1608    ConvType = ConvTypeRef->getPointeeType();
1609  if (ConvType->isRecordType()) {
1610    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1611    if (ConvType == ClassType)
1612      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1613        << ClassType;
1614    else if (IsDerivedFrom(ClassType, ConvType))
1615      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1616        <<  ClassType << ConvType;
1617  } else if (ConvType->isVoidType()) {
1618    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1619      << ClassType << ConvType;
1620  }
1621
1622  if (Conversion->getPreviousDeclaration()) {
1623    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1624    for (OverloadedFunctionDecl::function_iterator
1625           Conv = Conversions->function_begin(),
1626           ConvEnd = Conversions->function_end();
1627         Conv != ConvEnd; ++Conv) {
1628      if (*Conv == Conversion->getPreviousDeclaration()) {
1629        *Conv = Conversion;
1630        return DeclPtrTy::make(Conversion);
1631      }
1632    }
1633    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1634  } else
1635    ClassDecl->addConversionFunction(Context, Conversion);
1636
1637  return DeclPtrTy::make(Conversion);
1638}
1639
1640//===----------------------------------------------------------------------===//
1641// Namespace Handling
1642//===----------------------------------------------------------------------===//
1643
1644/// ActOnStartNamespaceDef - This is called at the start of a namespace
1645/// definition.
1646Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1647                                             SourceLocation IdentLoc,
1648                                             IdentifierInfo *II,
1649                                             SourceLocation LBrace) {
1650  NamespaceDecl *Namespc =
1651      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1652  Namespc->setLBracLoc(LBrace);
1653
1654  Scope *DeclRegionScope = NamespcScope->getParent();
1655
1656  if (II) {
1657    // C++ [namespace.def]p2:
1658    // The identifier in an original-namespace-definition shall not have been
1659    // previously defined in the declarative region in which the
1660    // original-namespace-definition appears. The identifier in an
1661    // original-namespace-definition is the name of the namespace. Subsequently
1662    // in that declarative region, it is treated as an original-namespace-name.
1663
1664    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1665                                     true);
1666
1667    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1668      // This is an extended namespace definition.
1669      // Attach this namespace decl to the chain of extended namespace
1670      // definitions.
1671      OrigNS->setNextNamespace(Namespc);
1672      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1673
1674      // Remove the previous declaration from the scope.
1675      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1676        IdResolver.RemoveDecl(OrigNS);
1677        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1678      }
1679    } else if (PrevDecl) {
1680      // This is an invalid name redefinition.
1681      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1682       << Namespc->getDeclName();
1683      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1684      Namespc->setInvalidDecl();
1685      // Continue on to push Namespc as current DeclContext and return it.
1686    }
1687
1688    PushOnScopeChains(Namespc, DeclRegionScope);
1689  } else {
1690    // FIXME: Handle anonymous namespaces
1691  }
1692
1693  // Although we could have an invalid decl (i.e. the namespace name is a
1694  // redefinition), push it as current DeclContext and try to continue parsing.
1695  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1696  // for the namespace has the declarations that showed up in that particular
1697  // namespace definition.
1698  PushDeclContext(NamespcScope, Namespc);
1699  return DeclPtrTy::make(Namespc);
1700}
1701
1702/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1703/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1704void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1705  Decl *Dcl = D.getAs<Decl>();
1706  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1707  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1708  Namespc->setRBracLoc(RBrace);
1709  PopDeclContext();
1710}
1711
1712Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1713                                          SourceLocation UsingLoc,
1714                                          SourceLocation NamespcLoc,
1715                                          const CXXScopeSpec &SS,
1716                                          SourceLocation IdentLoc,
1717                                          IdentifierInfo *NamespcName,
1718                                          AttributeList *AttrList) {
1719  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1720  assert(NamespcName && "Invalid NamespcName.");
1721  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1722  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1723
1724  UsingDirectiveDecl *UDir = 0;
1725
1726  // Lookup namespace name.
1727  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1728                                    LookupNamespaceName, false);
1729  if (R.isAmbiguous()) {
1730    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1731    return DeclPtrTy();
1732  }
1733  if (NamedDecl *NS = R) {
1734    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1735    // C++ [namespace.udir]p1:
1736    //   A using-directive specifies that the names in the nominated
1737    //   namespace can be used in the scope in which the
1738    //   using-directive appears after the using-directive. During
1739    //   unqualified name lookup (3.4.1), the names appear as if they
1740    //   were declared in the nearest enclosing namespace which
1741    //   contains both the using-directive and the nominated
1742    //   namespace. [Note: in this context, ���contains��� means ���contains
1743    //   directly or indirectly���. ]
1744
1745    // Find enclosing context containing both using-directive and
1746    // nominated namespace.
1747    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1748    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1749      CommonAncestor = CommonAncestor->getParent();
1750
1751    UDir = UsingDirectiveDecl::Create(Context,
1752                                      CurContext, UsingLoc,
1753                                      NamespcLoc,
1754                                      SS.getRange(),
1755                                      (NestedNameSpecifier *)SS.getScopeRep(),
1756                                      IdentLoc,
1757                                      cast<NamespaceDecl>(NS),
1758                                      CommonAncestor);
1759    PushUsingDirective(S, UDir);
1760  } else {
1761    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1762  }
1763
1764  // FIXME: We ignore attributes for now.
1765  delete AttrList;
1766  return DeclPtrTy::make(UDir);
1767}
1768
1769void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1770  // If scope has associated entity, then using directive is at namespace
1771  // or translation unit scope. We add UsingDirectiveDecls, into
1772  // it's lookup structure.
1773  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1774    Ctx->addDecl(Context, UDir);
1775  else
1776    // Otherwise it is block-sope. using-directives will affect lookup
1777    // only to the end of scope.
1778    S->PushUsingDirective(DeclPtrTy::make(UDir));
1779}
1780
1781
1782Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1783                                          SourceLocation UsingLoc,
1784                                          const CXXScopeSpec &SS,
1785                                          SourceLocation IdentLoc,
1786                                          IdentifierInfo *TargetName,
1787                                          AttributeList *AttrList,
1788                                          bool IsTypeName) {
1789  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1790  assert(TargetName && "Invalid TargetName.");
1791  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1792  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1793
1794  UsingDecl *UsingAlias = 0;
1795
1796  // Lookup target name.
1797  LookupResult R = LookupParsedName(S, &SS, TargetName,
1798                                    LookupOrdinaryName, false);
1799
1800  if (NamedDecl *NS = R) {
1801    if (IsTypeName && !isa<TypeDecl>(NS)) {
1802      Diag(IdentLoc, diag::err_using_typename_non_type);
1803    }
1804    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1805        NS->getLocation(), UsingLoc, NS,
1806        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1807        IsTypeName);
1808    PushOnScopeChains(UsingAlias, S);
1809  } else {
1810    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1811  }
1812
1813  // FIXME: We ignore attributes for now.
1814  delete AttrList;
1815  return DeclPtrTy::make(UsingAlias);
1816}
1817
1818/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1819/// is a namespace alias, returns the namespace it points to.
1820static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1821  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1822    return AD->getNamespace();
1823  return dyn_cast_or_null<NamespaceDecl>(D);
1824}
1825
1826Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1827                                             SourceLocation NamespaceLoc,
1828                                             SourceLocation AliasLoc,
1829                                             IdentifierInfo *Alias,
1830                                             const CXXScopeSpec &SS,
1831                                             SourceLocation IdentLoc,
1832                                             IdentifierInfo *Ident) {
1833
1834  // Lookup the namespace name.
1835  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1836
1837  // Check if we have a previous declaration with the same name.
1838  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1839    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1840      // We already have an alias with the same name that points to the same
1841      // namespace, so don't create a new one.
1842      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1843        return DeclPtrTy();
1844    }
1845
1846    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1847      diag::err_redefinition_different_kind;
1848    Diag(AliasLoc, DiagID) << Alias;
1849    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1850    return DeclPtrTy();
1851  }
1852
1853  if (R.isAmbiguous()) {
1854    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1855    return DeclPtrTy();
1856  }
1857
1858  if (!R) {
1859    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1860    return DeclPtrTy();
1861  }
1862
1863  NamespaceAliasDecl *AliasDecl =
1864    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1865                               Alias, SS.getRange(),
1866                               (NestedNameSpecifier *)SS.getScopeRep(),
1867                               IdentLoc, R);
1868
1869  CurContext->addDecl(Context, AliasDecl);
1870  return DeclPtrTy::make(AliasDecl);
1871}
1872
1873void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
1874                                            CXXConstructorDecl *Constructor) {
1875  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
1876          !Constructor->isUsed()) &&
1877    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
1878
1879  CXXRecordDecl *ClassDecl
1880    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1881  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
1882  // Before the implicitly-declared default constructor for a class is
1883  // implicitly defined, all the implicitly-declared default constructors
1884  // for its base class and its non-static data members shall have been
1885  // implicitly defined.
1886  bool err = false;
1887  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1888       Base != ClassDecl->bases_end(); ++Base) {
1889    CXXRecordDecl *BaseClassDecl
1890      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1891    if (!BaseClassDecl->hasTrivialConstructor()) {
1892      if (CXXConstructorDecl *BaseCtor =
1893            BaseClassDecl->getDefaultConstructor(Context)) {
1894        if (BaseCtor->isImplicit() && !BaseCtor->isUsed())
1895          MarkDeclarationReferenced(CurrentLocation, BaseCtor);
1896      }
1897      else {
1898        Diag(CurrentLocation, diag::err_defining_default_ctor)
1899          << Context.getTagDeclType(ClassDecl) << 1
1900          << Context.getTagDeclType(BaseClassDecl);
1901        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
1902              << Context.getTagDeclType(BaseClassDecl);
1903        err = true;
1904      }
1905    }
1906  }
1907  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1908       Field != ClassDecl->field_end(Context);
1909       ++Field) {
1910    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1911    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1912      FieldType = Array->getElementType();
1913    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1914      CXXRecordDecl *FieldClassDecl
1915        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1916      if (!FieldClassDecl->hasTrivialConstructor())
1917        if (CXXConstructorDecl *FieldCtor =
1918            FieldClassDecl->getDefaultConstructor(Context)) {
1919          if (FieldCtor->isImplicit() && !FieldCtor->isUsed())
1920            MarkDeclarationReferenced(CurrentLocation, FieldCtor);
1921        }
1922        else {
1923          Diag(CurrentLocation, diag::err_defining_default_ctor)
1924          << Context.getTagDeclType(ClassDecl) << 0 <<
1925              Context.getTagDeclType(FieldClassDecl);
1926          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
1927          << Context.getTagDeclType(FieldClassDecl);
1928          err = true;
1929        }
1930      }
1931    else if (FieldType->isReferenceType()) {
1932      Diag(CurrentLocation, diag::err_unintialized_member)
1933        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
1934      Diag((*Field)->getLocation(), diag::note_declared_at);
1935      err = true;
1936    }
1937    else if (FieldType.isConstQualified()) {
1938      Diag(CurrentLocation, diag::err_unintialized_member)
1939        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
1940       Diag((*Field)->getLocation(), diag::note_declared_at);
1941      err = true;
1942    }
1943  }
1944  if (!err)
1945    Constructor->setUsed();
1946}
1947
1948void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
1949                                   CXXConstructorDecl *CopyConstructor,
1950                                   unsigned TypeQuals) {
1951  assert((CopyConstructor->isImplicit() &&
1952          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
1953          !CopyConstructor->isUsed()) &&
1954         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
1955
1956  CXXRecordDecl *ClassDecl
1957    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
1958  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
1959  // Before the implicitly-declared copy constructor for a class is
1960  // implicitly defined, all the implicitly-declared copy constructors
1961  // for its base class and its non-static data members shall have been
1962  // implicitly defined.
1963  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1964       Base != ClassDecl->bases_end(); ++Base) {
1965    CXXRecordDecl *BaseClassDecl
1966      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1967    if (CXXConstructorDecl *BaseCopyCtor =
1968        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
1969      if (BaseCopyCtor->isImplicit() && !BaseCopyCtor->isUsed())
1970        MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
1971  }
1972  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1973       Field != ClassDecl->field_end(Context);
1974       ++Field) {
1975    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1976    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1977      FieldType = Array->getElementType();
1978    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1979      CXXRecordDecl *FieldClassDecl
1980        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1981      if (CXXConstructorDecl *FieldCopyCtor =
1982          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
1983          if (FieldCopyCtor->isImplicit() && !FieldCopyCtor->isUsed())
1984            MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
1985    }
1986  }
1987  CopyConstructor->setUsed();
1988}
1989
1990void Sema::InitializeVarWithConstructor(VarDecl *VD,
1991                                        CXXConstructorDecl *Constructor,
1992                                        QualType DeclInitType,
1993                                        Expr **Exprs, unsigned NumExprs) {
1994  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
1995                                        false, Exprs, NumExprs);
1996  MarkDeclarationReferenced(VD->getLocation(), Constructor);
1997  VD->setInit(Context, Temp);
1998}
1999
2000/// AddCXXDirectInitializerToDecl - This action is called immediately after
2001/// ActOnDeclarator, when a C++ direct initializer is present.
2002/// e.g: "int x(1);"
2003void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2004                                         SourceLocation LParenLoc,
2005                                         MultiExprArg Exprs,
2006                                         SourceLocation *CommaLocs,
2007                                         SourceLocation RParenLoc) {
2008  unsigned NumExprs = Exprs.size();
2009  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2010  Decl *RealDecl = Dcl.getAs<Decl>();
2011
2012  // If there is no declaration, there was an error parsing it.  Just ignore
2013  // the initializer.
2014  if (RealDecl == 0)
2015    return;
2016
2017  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2018  if (!VDecl) {
2019    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2020    RealDecl->setInvalidDecl();
2021    return;
2022  }
2023
2024  // FIXME: Need to handle dependent types and expressions here.
2025
2026  // We will treat direct-initialization as a copy-initialization:
2027  //    int x(1);  -as-> int x = 1;
2028  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2029  //
2030  // Clients that want to distinguish between the two forms, can check for
2031  // direct initializer using VarDecl::hasCXXDirectInitializer().
2032  // A major benefit is that clients that don't particularly care about which
2033  // exactly form was it (like the CodeGen) can handle both cases without
2034  // special case code.
2035
2036  // C++ 8.5p11:
2037  // The form of initialization (using parentheses or '=') is generally
2038  // insignificant, but does matter when the entity being initialized has a
2039  // class type.
2040  QualType DeclInitType = VDecl->getType();
2041  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2042    DeclInitType = Array->getElementType();
2043
2044  // FIXME: This isn't the right place to complete the type.
2045  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2046                          diag::err_typecheck_decl_incomplete_type)) {
2047    VDecl->setInvalidDecl();
2048    return;
2049  }
2050
2051  if (VDecl->getType()->isRecordType()) {
2052    CXXConstructorDecl *Constructor
2053      = PerformInitializationByConstructor(DeclInitType,
2054                                           (Expr **)Exprs.get(), NumExprs,
2055                                           VDecl->getLocation(),
2056                                           SourceRange(VDecl->getLocation(),
2057                                                       RParenLoc),
2058                                           VDecl->getDeclName(),
2059                                           IK_Direct);
2060    if (!Constructor)
2061      RealDecl->setInvalidDecl();
2062    else {
2063      VDecl->setCXXDirectInitializer(true);
2064      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2065                                   (Expr**)Exprs.release(), NumExprs);
2066    }
2067    return;
2068  }
2069
2070  if (NumExprs > 1) {
2071    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2072      << SourceRange(VDecl->getLocation(), RParenLoc);
2073    RealDecl->setInvalidDecl();
2074    return;
2075  }
2076
2077  // Let clients know that initialization was done with a direct initializer.
2078  VDecl->setCXXDirectInitializer(true);
2079
2080  assert(NumExprs == 1 && "Expected 1 expression");
2081  // Set the init expression, handles conversions.
2082  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2083                       /*DirectInit=*/true);
2084}
2085
2086/// PerformInitializationByConstructor - Perform initialization by
2087/// constructor (C++ [dcl.init]p14), which may occur as part of
2088/// direct-initialization or copy-initialization. We are initializing
2089/// an object of type @p ClassType with the given arguments @p
2090/// Args. @p Loc is the location in the source code where the
2091/// initializer occurs (e.g., a declaration, member initializer,
2092/// functional cast, etc.) while @p Range covers the whole
2093/// initialization. @p InitEntity is the entity being initialized,
2094/// which may by the name of a declaration or a type. @p Kind is the
2095/// kind of initialization we're performing, which affects whether
2096/// explicit constructors will be considered. When successful, returns
2097/// the constructor that will be used to perform the initialization;
2098/// when the initialization fails, emits a diagnostic and returns
2099/// null.
2100CXXConstructorDecl *
2101Sema::PerformInitializationByConstructor(QualType ClassType,
2102                                         Expr **Args, unsigned NumArgs,
2103                                         SourceLocation Loc, SourceRange Range,
2104                                         DeclarationName InitEntity,
2105                                         InitializationKind Kind) {
2106  const RecordType *ClassRec = ClassType->getAsRecordType();
2107  assert(ClassRec && "Can only initialize a class type here");
2108
2109  // C++ [dcl.init]p14:
2110  //
2111  //   If the initialization is direct-initialization, or if it is
2112  //   copy-initialization where the cv-unqualified version of the
2113  //   source type is the same class as, or a derived class of, the
2114  //   class of the destination, constructors are considered. The
2115  //   applicable constructors are enumerated (13.3.1.3), and the
2116  //   best one is chosen through overload resolution (13.3). The
2117  //   constructor so selected is called to initialize the object,
2118  //   with the initializer expression(s) as its argument(s). If no
2119  //   constructor applies, or the overload resolution is ambiguous,
2120  //   the initialization is ill-formed.
2121  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2122  OverloadCandidateSet CandidateSet;
2123
2124  // Add constructors to the overload set.
2125  DeclarationName ConstructorName
2126    = Context.DeclarationNames.getCXXConstructorName(
2127                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2128  DeclContext::lookup_const_iterator Con, ConEnd;
2129  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
2130       Con != ConEnd; ++Con) {
2131    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2132    if ((Kind == IK_Direct) ||
2133        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2134        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2135      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2136  }
2137
2138  // FIXME: When we decide not to synthesize the implicitly-declared
2139  // constructors, we'll need to make them appear here.
2140
2141  OverloadCandidateSet::iterator Best;
2142  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2143  case OR_Success:
2144    // We found a constructor. Return it.
2145    return cast<CXXConstructorDecl>(Best->Function);
2146
2147  case OR_No_Viable_Function:
2148    if (InitEntity)
2149      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2150        << InitEntity << Range;
2151    else
2152      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2153        << ClassType << Range;
2154    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2155    return 0;
2156
2157  case OR_Ambiguous:
2158    if (InitEntity)
2159      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2160    else
2161      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2162    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2163    return 0;
2164
2165  case OR_Deleted:
2166    if (InitEntity)
2167      Diag(Loc, diag::err_ovl_deleted_init)
2168        << Best->Function->isDeleted()
2169        << InitEntity << Range;
2170    else
2171      Diag(Loc, diag::err_ovl_deleted_init)
2172        << Best->Function->isDeleted()
2173        << InitEntity << Range;
2174    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2175    return 0;
2176  }
2177
2178  return 0;
2179}
2180
2181/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2182/// determine whether they are reference-related,
2183/// reference-compatible, reference-compatible with added
2184/// qualification, or incompatible, for use in C++ initialization by
2185/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2186/// type, and the first type (T1) is the pointee type of the reference
2187/// type being initialized.
2188Sema::ReferenceCompareResult
2189Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2190                                   bool& DerivedToBase) {
2191  assert(!T1->isReferenceType() &&
2192    "T1 must be the pointee type of the reference type");
2193  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2194
2195  T1 = Context.getCanonicalType(T1);
2196  T2 = Context.getCanonicalType(T2);
2197  QualType UnqualT1 = T1.getUnqualifiedType();
2198  QualType UnqualT2 = T2.getUnqualifiedType();
2199
2200  // C++ [dcl.init.ref]p4:
2201  //   Given types ���cv1 T1��� and ���cv2 T2,��� ���cv1 T1��� is
2202  //   reference-related to ���cv2 T2��� if T1 is the same type as T2, or
2203  //   T1 is a base class of T2.
2204  if (UnqualT1 == UnqualT2)
2205    DerivedToBase = false;
2206  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2207    DerivedToBase = true;
2208  else
2209    return Ref_Incompatible;
2210
2211  // At this point, we know that T1 and T2 are reference-related (at
2212  // least).
2213
2214  // C++ [dcl.init.ref]p4:
2215  //   "cv1 T1��� is reference-compatible with ���cv2 T2��� if T1 is
2216  //   reference-related to T2 and cv1 is the same cv-qualification
2217  //   as, or greater cv-qualification than, cv2. For purposes of
2218  //   overload resolution, cases for which cv1 is greater
2219  //   cv-qualification than cv2 are identified as
2220  //   reference-compatible with added qualification (see 13.3.3.2).
2221  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2222    return Ref_Compatible;
2223  else if (T1.isMoreQualifiedThan(T2))
2224    return Ref_Compatible_With_Added_Qualification;
2225  else
2226    return Ref_Related;
2227}
2228
2229/// CheckReferenceInit - Check the initialization of a reference
2230/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2231/// the initializer (either a simple initializer or an initializer
2232/// list), and DeclType is the type of the declaration. When ICS is
2233/// non-null, this routine will compute the implicit conversion
2234/// sequence according to C++ [over.ics.ref] and will not produce any
2235/// diagnostics; when ICS is null, it will emit diagnostics when any
2236/// errors are found. Either way, a return value of true indicates
2237/// that there was a failure, a return value of false indicates that
2238/// the reference initialization succeeded.
2239///
2240/// When @p SuppressUserConversions, user-defined conversions are
2241/// suppressed.
2242/// When @p AllowExplicit, we also permit explicit user-defined
2243/// conversion functions.
2244/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2245bool
2246Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2247                         ImplicitConversionSequence *ICS,
2248                         bool SuppressUserConversions,
2249                         bool AllowExplicit, bool ForceRValue) {
2250  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2251
2252  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2253  QualType T2 = Init->getType();
2254
2255  // If the initializer is the address of an overloaded function, try
2256  // to resolve the overloaded function. If all goes well, T2 is the
2257  // type of the resulting function.
2258  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2259    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2260                                                          ICS != 0);
2261    if (Fn) {
2262      // Since we're performing this reference-initialization for
2263      // real, update the initializer with the resulting function.
2264      if (!ICS) {
2265        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2266          return true;
2267
2268        FixOverloadedFunctionReference(Init, Fn);
2269      }
2270
2271      T2 = Fn->getType();
2272    }
2273  }
2274
2275  // Compute some basic properties of the types and the initializer.
2276  bool isRValRef = DeclType->isRValueReferenceType();
2277  bool DerivedToBase = false;
2278  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2279                                                  Init->isLvalue(Context);
2280  ReferenceCompareResult RefRelationship
2281    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2282
2283  // Most paths end in a failed conversion.
2284  if (ICS)
2285    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2286
2287  // C++ [dcl.init.ref]p5:
2288  //   A reference to type ���cv1 T1��� is initialized by an expression
2289  //   of type ���cv2 T2��� as follows:
2290
2291  //     -- If the initializer expression
2292
2293  // Rvalue references cannot bind to lvalues (N2812).
2294  // There is absolutely no situation where they can. In particular, note that
2295  // this is ill-formed, even if B has a user-defined conversion to A&&:
2296  //   B b;
2297  //   A&& r = b;
2298  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2299    if (!ICS)
2300      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2301        << Init->getSourceRange();
2302    return true;
2303  }
2304
2305  bool BindsDirectly = false;
2306  //       -- is an lvalue (but is not a bit-field), and ���cv1 T1��� is
2307  //          reference-compatible with ���cv2 T2,��� or
2308  //
2309  // Note that the bit-field check is skipped if we are just computing
2310  // the implicit conversion sequence (C++ [over.best.ics]p2).
2311  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2312      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2313    BindsDirectly = true;
2314
2315    if (ICS) {
2316      // C++ [over.ics.ref]p1:
2317      //   When a parameter of reference type binds directly (8.5.3)
2318      //   to an argument expression, the implicit conversion sequence
2319      //   is the identity conversion, unless the argument expression
2320      //   has a type that is a derived class of the parameter type,
2321      //   in which case the implicit conversion sequence is a
2322      //   derived-to-base Conversion (13.3.3.1).
2323      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2324      ICS->Standard.First = ICK_Identity;
2325      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2326      ICS->Standard.Third = ICK_Identity;
2327      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2328      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2329      ICS->Standard.ReferenceBinding = true;
2330      ICS->Standard.DirectBinding = true;
2331      ICS->Standard.RRefBinding = false;
2332      ICS->Standard.CopyConstructor = 0;
2333
2334      // Nothing more to do: the inaccessibility/ambiguity check for
2335      // derived-to-base conversions is suppressed when we're
2336      // computing the implicit conversion sequence (C++
2337      // [over.best.ics]p2).
2338      return false;
2339    } else {
2340      // Perform the conversion.
2341      // FIXME: Binding to a subobject of the lvalue is going to require more
2342      // AST annotation than this.
2343      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2344    }
2345  }
2346
2347  //       -- has a class type (i.e., T2 is a class type) and can be
2348  //          implicitly converted to an lvalue of type ���cv3 T3,���
2349  //          where ���cv1 T1��� is reference-compatible with ���cv3 T3���
2350  //          92) (this conversion is selected by enumerating the
2351  //          applicable conversion functions (13.3.1.6) and choosing
2352  //          the best one through overload resolution (13.3)),
2353  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2354    // FIXME: Look for conversions in base classes!
2355    CXXRecordDecl *T2RecordDecl
2356      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2357
2358    OverloadCandidateSet CandidateSet;
2359    OverloadedFunctionDecl *Conversions
2360      = T2RecordDecl->getConversionFunctions();
2361    for (OverloadedFunctionDecl::function_iterator Func
2362           = Conversions->function_begin();
2363         Func != Conversions->function_end(); ++Func) {
2364      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2365
2366      // If the conversion function doesn't return a reference type,
2367      // it can't be considered for this conversion.
2368      if (Conv->getConversionType()->isLValueReferenceType() &&
2369          (AllowExplicit || !Conv->isExplicit()))
2370        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2371    }
2372
2373    OverloadCandidateSet::iterator Best;
2374    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2375    case OR_Success:
2376      // This is a direct binding.
2377      BindsDirectly = true;
2378
2379      if (ICS) {
2380        // C++ [over.ics.ref]p1:
2381        //
2382        //   [...] If the parameter binds directly to the result of
2383        //   applying a conversion function to the argument
2384        //   expression, the implicit conversion sequence is a
2385        //   user-defined conversion sequence (13.3.3.1.2), with the
2386        //   second standard conversion sequence either an identity
2387        //   conversion or, if the conversion function returns an
2388        //   entity of a type that is a derived class of the parameter
2389        //   type, a derived-to-base Conversion.
2390        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2391        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2392        ICS->UserDefined.After = Best->FinalConversion;
2393        ICS->UserDefined.ConversionFunction = Best->Function;
2394        assert(ICS->UserDefined.After.ReferenceBinding &&
2395               ICS->UserDefined.After.DirectBinding &&
2396               "Expected a direct reference binding!");
2397        return false;
2398      } else {
2399        // Perform the conversion.
2400        // FIXME: Binding to a subobject of the lvalue is going to require more
2401        // AST annotation than this.
2402        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2403      }
2404      break;
2405
2406    case OR_Ambiguous:
2407      assert(false && "Ambiguous reference binding conversions not implemented.");
2408      return true;
2409
2410    case OR_No_Viable_Function:
2411    case OR_Deleted:
2412      // There was no suitable conversion, or we found a deleted
2413      // conversion; continue with other checks.
2414      break;
2415    }
2416  }
2417
2418  if (BindsDirectly) {
2419    // C++ [dcl.init.ref]p4:
2420    //   [...] In all cases where the reference-related or
2421    //   reference-compatible relationship of two types is used to
2422    //   establish the validity of a reference binding, and T1 is a
2423    //   base class of T2, a program that necessitates such a binding
2424    //   is ill-formed if T1 is an inaccessible (clause 11) or
2425    //   ambiguous (10.2) base class of T2.
2426    //
2427    // Note that we only check this condition when we're allowed to
2428    // complain about errors, because we should not be checking for
2429    // ambiguity (or inaccessibility) unless the reference binding
2430    // actually happens.
2431    if (DerivedToBase)
2432      return CheckDerivedToBaseConversion(T2, T1,
2433                                          Init->getSourceRange().getBegin(),
2434                                          Init->getSourceRange());
2435    else
2436      return false;
2437  }
2438
2439  //     -- Otherwise, the reference shall be to a non-volatile const
2440  //        type (i.e., cv1 shall be const), or the reference shall be an
2441  //        rvalue reference and the initializer expression shall be an rvalue.
2442  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2443    if (!ICS)
2444      Diag(Init->getSourceRange().getBegin(),
2445           diag::err_not_reference_to_const_init)
2446        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2447        << T2 << Init->getSourceRange();
2448    return true;
2449  }
2450
2451  //       -- If the initializer expression is an rvalue, with T2 a
2452  //          class type, and ���cv1 T1��� is reference-compatible with
2453  //          ���cv2 T2,��� the reference is bound in one of the
2454  //          following ways (the choice is implementation-defined):
2455  //
2456  //          -- The reference is bound to the object represented by
2457  //             the rvalue (see 3.10) or to a sub-object within that
2458  //             object.
2459  //
2460  //          -- A temporary of type ���cv1 T2��� [sic] is created, and
2461  //             a constructor is called to copy the entire rvalue
2462  //             object into the temporary. The reference is bound to
2463  //             the temporary or to a sub-object within the
2464  //             temporary.
2465  //
2466  //          The constructor that would be used to make the copy
2467  //          shall be callable whether or not the copy is actually
2468  //          done.
2469  //
2470  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2471  // freedom, so we will always take the first option and never build
2472  // a temporary in this case. FIXME: We will, however, have to check
2473  // for the presence of a copy constructor in C++98/03 mode.
2474  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2475      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2476    if (ICS) {
2477      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2478      ICS->Standard.First = ICK_Identity;
2479      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2480      ICS->Standard.Third = ICK_Identity;
2481      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2482      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2483      ICS->Standard.ReferenceBinding = true;
2484      ICS->Standard.DirectBinding = false;
2485      ICS->Standard.RRefBinding = isRValRef;
2486      ICS->Standard.CopyConstructor = 0;
2487    } else {
2488      // FIXME: Binding to a subobject of the rvalue is going to require more
2489      // AST annotation than this.
2490      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2491    }
2492    return false;
2493  }
2494
2495  //       -- Otherwise, a temporary of type ���cv1 T1��� is created and
2496  //          initialized from the initializer expression using the
2497  //          rules for a non-reference copy initialization (8.5). The
2498  //          reference is then bound to the temporary. If T1 is
2499  //          reference-related to T2, cv1 must be the same
2500  //          cv-qualification as, or greater cv-qualification than,
2501  //          cv2; otherwise, the program is ill-formed.
2502  if (RefRelationship == Ref_Related) {
2503    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2504    // we would be reference-compatible or reference-compatible with
2505    // added qualification. But that wasn't the case, so the reference
2506    // initialization fails.
2507    if (!ICS)
2508      Diag(Init->getSourceRange().getBegin(),
2509           diag::err_reference_init_drops_quals)
2510        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2511        << T2 << Init->getSourceRange();
2512    return true;
2513  }
2514
2515  // If at least one of the types is a class type, the types are not
2516  // related, and we aren't allowed any user conversions, the
2517  // reference binding fails. This case is important for breaking
2518  // recursion, since TryImplicitConversion below will attempt to
2519  // create a temporary through the use of a copy constructor.
2520  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2521      (T1->isRecordType() || T2->isRecordType())) {
2522    if (!ICS)
2523      Diag(Init->getSourceRange().getBegin(),
2524           diag::err_typecheck_convert_incompatible)
2525        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2526    return true;
2527  }
2528
2529  // Actually try to convert the initializer to T1.
2530  if (ICS) {
2531    // C++ [over.ics.ref]p2:
2532    //
2533    //   When a parameter of reference type is not bound directly to
2534    //   an argument expression, the conversion sequence is the one
2535    //   required to convert the argument expression to the
2536    //   underlying type of the reference according to
2537    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2538    //   to copy-initializing a temporary of the underlying type with
2539    //   the argument expression. Any difference in top-level
2540    //   cv-qualification is subsumed by the initialization itself
2541    //   and does not constitute a conversion.
2542    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2543    // Of course, that's still a reference binding.
2544    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2545      ICS->Standard.ReferenceBinding = true;
2546      ICS->Standard.RRefBinding = isRValRef;
2547    } else if(ICS->ConversionKind ==
2548              ImplicitConversionSequence::UserDefinedConversion) {
2549      ICS->UserDefined.After.ReferenceBinding = true;
2550      ICS->UserDefined.After.RRefBinding = isRValRef;
2551    }
2552    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2553  } else {
2554    return PerformImplicitConversion(Init, T1, "initializing");
2555  }
2556}
2557
2558/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2559/// of this overloaded operator is well-formed. If so, returns false;
2560/// otherwise, emits appropriate diagnostics and returns true.
2561bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2562  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2563         "Expected an overloaded operator declaration");
2564
2565  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2566
2567  // C++ [over.oper]p5:
2568  //   The allocation and deallocation functions, operator new,
2569  //   operator new[], operator delete and operator delete[], are
2570  //   described completely in 3.7.3. The attributes and restrictions
2571  //   found in the rest of this subclause do not apply to them unless
2572  //   explicitly stated in 3.7.3.
2573  // FIXME: Write a separate routine for checking this. For now, just allow it.
2574  if (Op == OO_New || Op == OO_Array_New ||
2575      Op == OO_Delete || Op == OO_Array_Delete)
2576    return false;
2577
2578  // C++ [over.oper]p6:
2579  //   An operator function shall either be a non-static member
2580  //   function or be a non-member function and have at least one
2581  //   parameter whose type is a class, a reference to a class, an
2582  //   enumeration, or a reference to an enumeration.
2583  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2584    if (MethodDecl->isStatic())
2585      return Diag(FnDecl->getLocation(),
2586                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2587  } else {
2588    bool ClassOrEnumParam = false;
2589    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2590                                   ParamEnd = FnDecl->param_end();
2591         Param != ParamEnd; ++Param) {
2592      QualType ParamType = (*Param)->getType().getNonReferenceType();
2593      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2594        ClassOrEnumParam = true;
2595        break;
2596      }
2597    }
2598
2599    if (!ClassOrEnumParam)
2600      return Diag(FnDecl->getLocation(),
2601                  diag::err_operator_overload_needs_class_or_enum)
2602        << FnDecl->getDeclName();
2603  }
2604
2605  // C++ [over.oper]p8:
2606  //   An operator function cannot have default arguments (8.3.6),
2607  //   except where explicitly stated below.
2608  //
2609  // Only the function-call operator allows default arguments
2610  // (C++ [over.call]p1).
2611  if (Op != OO_Call) {
2612    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2613         Param != FnDecl->param_end(); ++Param) {
2614      if ((*Param)->hasUnparsedDefaultArg())
2615        return Diag((*Param)->getLocation(),
2616                    diag::err_operator_overload_default_arg)
2617          << FnDecl->getDeclName();
2618      else if (Expr *DefArg = (*Param)->getDefaultArg())
2619        return Diag((*Param)->getLocation(),
2620                    diag::err_operator_overload_default_arg)
2621          << FnDecl->getDeclName() << DefArg->getSourceRange();
2622    }
2623  }
2624
2625  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2626    { false, false, false }
2627#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2628    , { Unary, Binary, MemberOnly }
2629#include "clang/Basic/OperatorKinds.def"
2630  };
2631
2632  bool CanBeUnaryOperator = OperatorUses[Op][0];
2633  bool CanBeBinaryOperator = OperatorUses[Op][1];
2634  bool MustBeMemberOperator = OperatorUses[Op][2];
2635
2636  // C++ [over.oper]p8:
2637  //   [...] Operator functions cannot have more or fewer parameters
2638  //   than the number required for the corresponding operator, as
2639  //   described in the rest of this subclause.
2640  unsigned NumParams = FnDecl->getNumParams()
2641                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2642  if (Op != OO_Call &&
2643      ((NumParams == 1 && !CanBeUnaryOperator) ||
2644       (NumParams == 2 && !CanBeBinaryOperator) ||
2645       (NumParams < 1) || (NumParams > 2))) {
2646    // We have the wrong number of parameters.
2647    unsigned ErrorKind;
2648    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2649      ErrorKind = 2;  // 2 -> unary or binary.
2650    } else if (CanBeUnaryOperator) {
2651      ErrorKind = 0;  // 0 -> unary
2652    } else {
2653      assert(CanBeBinaryOperator &&
2654             "All non-call overloaded operators are unary or binary!");
2655      ErrorKind = 1;  // 1 -> binary
2656    }
2657
2658    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2659      << FnDecl->getDeclName() << NumParams << ErrorKind;
2660  }
2661
2662  // Overloaded operators other than operator() cannot be variadic.
2663  if (Op != OO_Call &&
2664      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2665    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2666      << FnDecl->getDeclName();
2667  }
2668
2669  // Some operators must be non-static member functions.
2670  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2671    return Diag(FnDecl->getLocation(),
2672                diag::err_operator_overload_must_be_member)
2673      << FnDecl->getDeclName();
2674  }
2675
2676  // C++ [over.inc]p1:
2677  //   The user-defined function called operator++ implements the
2678  //   prefix and postfix ++ operator. If this function is a member
2679  //   function with no parameters, or a non-member function with one
2680  //   parameter of class or enumeration type, it defines the prefix
2681  //   increment operator ++ for objects of that type. If the function
2682  //   is a member function with one parameter (which shall be of type
2683  //   int) or a non-member function with two parameters (the second
2684  //   of which shall be of type int), it defines the postfix
2685  //   increment operator ++ for objects of that type.
2686  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2687    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2688    bool ParamIsInt = false;
2689    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2690      ParamIsInt = BT->getKind() == BuiltinType::Int;
2691
2692    if (!ParamIsInt)
2693      return Diag(LastParam->getLocation(),
2694                  diag::err_operator_overload_post_incdec_must_be_int)
2695        << LastParam->getType() << (Op == OO_MinusMinus);
2696  }
2697
2698  // Notify the class if it got an assignment operator.
2699  if (Op == OO_Equal) {
2700    // Would have returned earlier otherwise.
2701    assert(isa<CXXMethodDecl>(FnDecl) &&
2702      "Overloaded = not member, but not filtered.");
2703    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2704    Method->getParent()->addedAssignmentOperator(Context, Method);
2705  }
2706
2707  return false;
2708}
2709
2710/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2711/// linkage specification, including the language and (if present)
2712/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2713/// the location of the language string literal, which is provided
2714/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2715/// the '{' brace. Otherwise, this linkage specification does not
2716/// have any braces.
2717Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2718                                                     SourceLocation ExternLoc,
2719                                                     SourceLocation LangLoc,
2720                                                     const char *Lang,
2721                                                     unsigned StrSize,
2722                                                     SourceLocation LBraceLoc) {
2723  LinkageSpecDecl::LanguageIDs Language;
2724  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2725    Language = LinkageSpecDecl::lang_c;
2726  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2727    Language = LinkageSpecDecl::lang_cxx;
2728  else {
2729    Diag(LangLoc, diag::err_bad_language);
2730    return DeclPtrTy();
2731  }
2732
2733  // FIXME: Add all the various semantics of linkage specifications
2734
2735  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2736                                               LangLoc, Language,
2737                                               LBraceLoc.isValid());
2738  CurContext->addDecl(Context, D);
2739  PushDeclContext(S, D);
2740  return DeclPtrTy::make(D);
2741}
2742
2743/// ActOnFinishLinkageSpecification - Completely the definition of
2744/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2745/// valid, it's the position of the closing '}' brace in a linkage
2746/// specification that uses braces.
2747Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2748                                                      DeclPtrTy LinkageSpec,
2749                                                      SourceLocation RBraceLoc) {
2750  if (LinkageSpec)
2751    PopDeclContext();
2752  return LinkageSpec;
2753}
2754
2755/// \brief Perform semantic analysis for the variable declaration that
2756/// occurs within a C++ catch clause, returning the newly-created
2757/// variable.
2758VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2759                                         IdentifierInfo *Name,
2760                                         SourceLocation Loc,
2761                                         SourceRange Range) {
2762  bool Invalid = false;
2763
2764  // Arrays and functions decay.
2765  if (ExDeclType->isArrayType())
2766    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2767  else if (ExDeclType->isFunctionType())
2768    ExDeclType = Context.getPointerType(ExDeclType);
2769
2770  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2771  // The exception-declaration shall not denote a pointer or reference to an
2772  // incomplete type, other than [cv] void*.
2773  // N2844 forbids rvalue references.
2774  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2775    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2776    Invalid = true;
2777  }
2778
2779  QualType BaseType = ExDeclType;
2780  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2781  unsigned DK = diag::err_catch_incomplete;
2782  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2783    BaseType = Ptr->getPointeeType();
2784    Mode = 1;
2785    DK = diag::err_catch_incomplete_ptr;
2786  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2787    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2788    BaseType = Ref->getPointeeType();
2789    Mode = 2;
2790    DK = diag::err_catch_incomplete_ref;
2791  }
2792  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2793      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2794    Invalid = true;
2795
2796  if (!Invalid && !ExDeclType->isDependentType() &&
2797      RequireNonAbstractType(Loc, ExDeclType,
2798                             diag::err_abstract_type_in_decl,
2799                             AbstractVariableType))
2800    Invalid = true;
2801
2802  // FIXME: Need to test for ability to copy-construct and destroy the
2803  // exception variable.
2804
2805  // FIXME: Need to check for abstract classes.
2806
2807  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
2808                                    Name, ExDeclType, VarDecl::None,
2809                                    Range.getBegin());
2810
2811  if (Invalid)
2812    ExDecl->setInvalidDecl();
2813
2814  return ExDecl;
2815}
2816
2817/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2818/// handler.
2819Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2820  QualType ExDeclType = GetTypeForDeclarator(D, S);
2821
2822  bool Invalid = D.isInvalidType();
2823  IdentifierInfo *II = D.getIdentifier();
2824  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2825    // The scope should be freshly made just for us. There is just no way
2826    // it contains any previous declaration.
2827    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2828    if (PrevDecl->isTemplateParameter()) {
2829      // Maybe we will complain about the shadowed template parameter.
2830      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2831    }
2832  }
2833
2834  if (D.getCXXScopeSpec().isSet() && !Invalid) {
2835    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2836      << D.getCXXScopeSpec().getRange();
2837    Invalid = true;
2838  }
2839
2840  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
2841                                              D.getIdentifier(),
2842                                              D.getIdentifierLoc(),
2843                                            D.getDeclSpec().getSourceRange());
2844
2845  if (Invalid)
2846    ExDecl->setInvalidDecl();
2847
2848  // Add the exception declaration into this scope.
2849  if (II)
2850    PushOnScopeChains(ExDecl, S);
2851  else
2852    CurContext->addDecl(Context, ExDecl);
2853
2854  ProcessDeclAttributes(S, ExDecl, D);
2855  return DeclPtrTy::make(ExDecl);
2856}
2857
2858Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2859                                                   ExprArg assertexpr,
2860                                                   ExprArg assertmessageexpr) {
2861  Expr *AssertExpr = (Expr *)assertexpr.get();
2862  StringLiteral *AssertMessage =
2863    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2864
2865  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2866    llvm::APSInt Value(32);
2867    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2868      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2869        AssertExpr->getSourceRange();
2870      return DeclPtrTy();
2871    }
2872
2873    if (Value == 0) {
2874      std::string str(AssertMessage->getStrData(),
2875                      AssertMessage->getByteLength());
2876      Diag(AssertLoc, diag::err_static_assert_failed)
2877        << str << AssertExpr->getSourceRange();
2878    }
2879  }
2880
2881  assertexpr.release();
2882  assertmessageexpr.release();
2883  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2884                                        AssertExpr, AssertMessage);
2885
2886  CurContext->addDecl(Context, Decl);
2887  return DeclPtrTy::make(Decl);
2888}
2889
2890bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
2891  if (!(S->getFlags() & Scope::ClassScope)) {
2892    Diag(FriendLoc, diag::err_friend_decl_outside_class);
2893    return true;
2894  }
2895
2896  return false;
2897}
2898
2899void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2900  Decl *Dcl = dcl.getAs<Decl>();
2901  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2902  if (!Fn) {
2903    Diag(DelLoc, diag::err_deleted_non_function);
2904    return;
2905  }
2906  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2907    Diag(DelLoc, diag::err_deleted_decl_not_first);
2908    Diag(Prev->getLocation(), diag::note_previous_declaration);
2909    // If the declaration wasn't the first, we delete the function anyway for
2910    // recovery.
2911  }
2912  Fn->setDeleted();
2913}
2914
2915static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
2916  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
2917       ++CI) {
2918    Stmt *SubStmt = *CI;
2919    if (!SubStmt)
2920      continue;
2921    if (isa<ReturnStmt>(SubStmt))
2922      Self.Diag(SubStmt->getSourceRange().getBegin(),
2923           diag::err_return_in_constructor_handler);
2924    if (!isa<Expr>(SubStmt))
2925      SearchForReturnInStmt(Self, SubStmt);
2926  }
2927}
2928
2929void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
2930  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
2931    CXXCatchStmt *Handler = TryBlock->getHandler(I);
2932    SearchForReturnInStmt(*this, Handler);
2933  }
2934}
2935
2936bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
2937                                             const CXXMethodDecl *Old) {
2938  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
2939  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
2940
2941  QualType CNewTy = Context.getCanonicalType(NewTy);
2942  QualType COldTy = Context.getCanonicalType(OldTy);
2943
2944  if (CNewTy == COldTy &&
2945      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
2946    return false;
2947
2948  // Check if the return types are covariant
2949  QualType NewClassTy, OldClassTy;
2950
2951  /// Both types must be pointers or references to classes.
2952  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
2953    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
2954      NewClassTy = NewPT->getPointeeType();
2955      OldClassTy = OldPT->getPointeeType();
2956    }
2957  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
2958    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
2959      NewClassTy = NewRT->getPointeeType();
2960      OldClassTy = OldRT->getPointeeType();
2961    }
2962  }
2963
2964  // The return types aren't either both pointers or references to a class type.
2965  if (NewClassTy.isNull()) {
2966    Diag(New->getLocation(),
2967         diag::err_different_return_type_for_overriding_virtual_function)
2968      << New->getDeclName() << NewTy << OldTy;
2969    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2970
2971    return true;
2972  }
2973
2974  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
2975    // Check if the new class derives from the old class.
2976    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
2977      Diag(New->getLocation(),
2978           diag::err_covariant_return_not_derived)
2979      << New->getDeclName() << NewTy << OldTy;
2980      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2981      return true;
2982    }
2983
2984    // Check if we the conversion from derived to base is valid.
2985    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
2986                      diag::err_covariant_return_inaccessible_base,
2987                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
2988                      // FIXME: Should this point to the return type?
2989                      New->getLocation(), SourceRange(), New->getDeclName())) {
2990      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2991      return true;
2992    }
2993  }
2994
2995  // The qualifiers of the return types must be the same.
2996  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
2997    Diag(New->getLocation(),
2998         diag::err_covariant_return_type_different_qualifications)
2999    << New->getDeclName() << NewTy << OldTy;
3000    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3001    return true;
3002  };
3003
3004
3005  // The new class type must have the same or less qualifiers as the old type.
3006  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3007    Diag(New->getLocation(),
3008         diag::err_covariant_return_type_class_type_more_qualified)
3009    << New->getDeclName() << NewTy << OldTy;
3010    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3011    return true;
3012  };
3013
3014  return false;
3015}
3016
3017/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3018/// initializer for the declaration 'Dcl'.
3019/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3020/// static data member of class X, names should be looked up in the scope of
3021/// class X.
3022void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3023  Decl *D = Dcl.getAs<Decl>();
3024  // If there is no declaration, there was an error parsing it.
3025  if (D == 0)
3026    return;
3027
3028  // Check whether it is a declaration with a nested name specifier like
3029  // int foo::bar;
3030  if (!D->isOutOfLine())
3031    return;
3032
3033  // C++ [basic.lookup.unqual]p13
3034  //
3035  // A name used in the definition of a static data member of class X
3036  // (after the qualified-id of the static member) is looked up as if the name
3037  // was used in a member function of X.
3038
3039  // Change current context into the context of the initializing declaration.
3040  EnterDeclaratorContext(S, D->getDeclContext());
3041}
3042
3043/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3044/// initializer for the declaration 'Dcl'.
3045void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3046  Decl *D = Dcl.getAs<Decl>();
3047  // If there is no declaration, there was an error parsing it.
3048  if (D == 0)
3049    return;
3050
3051  // Check whether it is a declaration with a nested name specifier like
3052  // int foo::bar;
3053  if (!D->isOutOfLine())
3054    return;
3055
3056  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3057  ExitDeclaratorContext(S);
3058}
3059