SemaCXXScopeSpec.cpp revision 252723
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Sema/DeclSpec.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/Template.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace clang;
27
28/// \brief Find the current instantiation that associated with the given type.
29static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                DeclContext *CurContext) {
31  if (T.isNull())
32    return 0;
33
34  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37    if (!Record->isDependentContext() ||
38        Record->isCurrentInstantiation(CurContext))
39      return Record;
40
41    return 0;
42  } else if (isa<InjectedClassNameType>(Ty))
43    return cast<InjectedClassNameType>(Ty)->getDecl();
44  else
45    return 0;
46}
47
48/// \brief Compute the DeclContext that is associated with the given type.
49///
50/// \param T the type for which we are attempting to find a DeclContext.
51///
52/// \returns the declaration context represented by the type T,
53/// or NULL if the declaration context cannot be computed (e.g., because it is
54/// dependent and not the current instantiation).
55DeclContext *Sema::computeDeclContext(QualType T) {
56  if (!T->isDependentType())
57    if (const TagType *Tag = T->getAs<TagType>())
58      return Tag->getDecl();
59
60  return ::getCurrentInstantiationOf(T, CurContext);
61}
62
63/// \brief Compute the DeclContext that is associated with the given
64/// scope specifier.
65///
66/// \param SS the C++ scope specifier as it appears in the source
67///
68/// \param EnteringContext when true, we will be entering the context of
69/// this scope specifier, so we can retrieve the declaration context of a
70/// class template or class template partial specialization even if it is
71/// not the current instantiation.
72///
73/// \returns the declaration context represented by the scope specifier @p SS,
74/// or NULL if the declaration context cannot be computed (e.g., because it is
75/// dependent and not the current instantiation).
76DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                      bool EnteringContext) {
78  if (!SS.isSet() || SS.isInvalid())
79    return 0;
80
81  NestedNameSpecifier *NNS = SS.getScopeRep();
82  if (NNS->isDependent()) {
83    // If this nested-name-specifier refers to the current
84    // instantiation, return its DeclContext.
85    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86      return Record;
87
88    if (EnteringContext) {
89      const Type *NNSType = NNS->getAsType();
90      if (!NNSType) {
91        return 0;
92      }
93
94      // Look through type alias templates, per C++0x [temp.dep.type]p1.
95      NNSType = Context.getCanonicalType(NNSType);
96      if (const TemplateSpecializationType *SpecType
97            = NNSType->getAs<TemplateSpecializationType>()) {
98        // We are entering the context of the nested name specifier, so try to
99        // match the nested name specifier to either a primary class template
100        // or a class template partial specialization.
101        if (ClassTemplateDecl *ClassTemplate
102              = dyn_cast_or_null<ClassTemplateDecl>(
103                            SpecType->getTemplateName().getAsTemplateDecl())) {
104          QualType ContextType
105            = Context.getCanonicalType(QualType(SpecType, 0));
106
107          // If the type of the nested name specifier is the same as the
108          // injected class name of the named class template, we're entering
109          // into that class template definition.
110          QualType Injected
111            = ClassTemplate->getInjectedClassNameSpecialization();
112          if (Context.hasSameType(Injected, ContextType))
113            return ClassTemplate->getTemplatedDecl();
114
115          // If the type of the nested name specifier is the same as the
116          // type of one of the class template's class template partial
117          // specializations, we're entering into the definition of that
118          // class template partial specialization.
119          if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                = ClassTemplate->findPartialSpecialization(ContextType))
121            return PartialSpec;
122        }
123      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124        // The nested name specifier refers to a member of a class template.
125        return RecordT->getDecl();
126      }
127    }
128
129    return 0;
130  }
131
132  switch (NNS->getKind()) {
133  case NestedNameSpecifier::Identifier:
134    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135
136  case NestedNameSpecifier::Namespace:
137    return NNS->getAsNamespace();
138
139  case NestedNameSpecifier::NamespaceAlias:
140    return NNS->getAsNamespaceAlias()->getNamespace();
141
142  case NestedNameSpecifier::TypeSpec:
143  case NestedNameSpecifier::TypeSpecWithTemplate: {
144    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145    assert(Tag && "Non-tag type in nested-name-specifier");
146    return Tag->getDecl();
147  }
148
149  case NestedNameSpecifier::Global:
150    return Context.getTranslationUnitDecl();
151  }
152
153  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
154}
155
156bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
157  if (!SS.isSet() || SS.isInvalid())
158    return false;
159
160  return SS.getScopeRep()->isDependent();
161}
162
163// \brief Determine whether this C++ scope specifier refers to an
164// unknown specialization, i.e., a dependent type that is not the
165// current instantiation.
166bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
167  if (!isDependentScopeSpecifier(SS))
168    return false;
169
170  return getCurrentInstantiationOf(SS.getScopeRep()) == 0;
171}
172
173/// \brief If the given nested name specifier refers to the current
174/// instantiation, return the declaration that corresponds to that
175/// current instantiation (C++0x [temp.dep.type]p1).
176///
177/// \param NNS a dependent nested name specifier.
178CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
179  assert(getLangOpts().CPlusPlus && "Only callable in C++");
180  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
181
182  if (!NNS->getAsType())
183    return 0;
184
185  QualType T = QualType(NNS->getAsType(), 0);
186  return ::getCurrentInstantiationOf(T, CurContext);
187}
188
189/// \brief Require that the context specified by SS be complete.
190///
191/// If SS refers to a type, this routine checks whether the type is
192/// complete enough (or can be made complete enough) for name lookup
193/// into the DeclContext. A type that is not yet completed can be
194/// considered "complete enough" if it is a class/struct/union/enum
195/// that is currently being defined. Or, if we have a type that names
196/// a class template specialization that is not a complete type, we
197/// will attempt to instantiate that class template.
198bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
199                                      DeclContext *DC) {
200  assert(DC != 0 && "given null context");
201
202  TagDecl *tag = dyn_cast<TagDecl>(DC);
203
204  // If this is a dependent type, then we consider it complete.
205  if (!tag || tag->isDependentContext())
206    return false;
207
208  // If we're currently defining this type, then lookup into the
209  // type is okay: don't complain that it isn't complete yet.
210  QualType type = Context.getTypeDeclType(tag);
211  const TagType *tagType = type->getAs<TagType>();
212  if (tagType && tagType->isBeingDefined())
213    return false;
214
215  SourceLocation loc = SS.getLastQualifierNameLoc();
216  if (loc.isInvalid()) loc = SS.getRange().getBegin();
217
218  // The type must be complete.
219  if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
220                          SS.getRange())) {
221    SS.SetInvalid(SS.getRange());
222    return true;
223  }
224
225  // Fixed enum types are complete, but they aren't valid as scopes
226  // until we see a definition, so awkwardly pull out this special
227  // case.
228  const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
229  if (!enumType || enumType->getDecl()->isCompleteDefinition())
230    return false;
231
232  // Try to instantiate the definition, if this is a specialization of an
233  // enumeration temploid.
234  EnumDecl *ED = enumType->getDecl();
235  if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
236    MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
237    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
238      if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
239                          TSK_ImplicitInstantiation)) {
240        SS.SetInvalid(SS.getRange());
241        return true;
242      }
243      return false;
244    }
245  }
246
247  Diag(loc, diag::err_incomplete_nested_name_spec)
248    << type << SS.getRange();
249  SS.SetInvalid(SS.getRange());
250  return true;
251}
252
253bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
254                                        CXXScopeSpec &SS) {
255  SS.MakeGlobal(Context, CCLoc);
256  return false;
257}
258
259/// \brief Determines whether the given declaration is an valid acceptable
260/// result for name lookup of a nested-name-specifier.
261bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
262  if (!SD)
263    return false;
264
265  // Namespace and namespace aliases are fine.
266  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
267    return true;
268
269  if (!isa<TypeDecl>(SD))
270    return false;
271
272  // Determine whether we have a class (or, in C++11, an enum) or
273  // a typedef thereof. If so, build the nested-name-specifier.
274  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
275  if (T->isDependentType())
276    return true;
277  else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
278    if (TD->getUnderlyingType()->isRecordType() ||
279        (Context.getLangOpts().CPlusPlus11 &&
280         TD->getUnderlyingType()->isEnumeralType()))
281      return true;
282  } else if (isa<RecordDecl>(SD) ||
283             (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
284    return true;
285
286  return false;
287}
288
289/// \brief If the given nested-name-specifier begins with a bare identifier
290/// (e.g., Base::), perform name lookup for that identifier as a
291/// nested-name-specifier within the given scope, and return the result of that
292/// name lookup.
293NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
294  if (!S || !NNS)
295    return 0;
296
297  while (NNS->getPrefix())
298    NNS = NNS->getPrefix();
299
300  if (NNS->getKind() != NestedNameSpecifier::Identifier)
301    return 0;
302
303  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
304                     LookupNestedNameSpecifierName);
305  LookupName(Found, S);
306  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
307
308  if (!Found.isSingleResult())
309    return 0;
310
311  NamedDecl *Result = Found.getFoundDecl();
312  if (isAcceptableNestedNameSpecifier(Result))
313    return Result;
314
315  return 0;
316}
317
318bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
319                                        SourceLocation IdLoc,
320                                        IdentifierInfo &II,
321                                        ParsedType ObjectTypePtr) {
322  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
323  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
324
325  // Determine where to perform name lookup
326  DeclContext *LookupCtx = 0;
327  bool isDependent = false;
328  if (!ObjectType.isNull()) {
329    // This nested-name-specifier occurs in a member access expression, e.g.,
330    // x->B::f, and we are looking into the type of the object.
331    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
332    LookupCtx = computeDeclContext(ObjectType);
333    isDependent = ObjectType->isDependentType();
334  } else if (SS.isSet()) {
335    // This nested-name-specifier occurs after another nested-name-specifier,
336    // so long into the context associated with the prior nested-name-specifier.
337    LookupCtx = computeDeclContext(SS, false);
338    isDependent = isDependentScopeSpecifier(SS);
339    Found.setContextRange(SS.getRange());
340  }
341
342  if (LookupCtx) {
343    // Perform "qualified" name lookup into the declaration context we
344    // computed, which is either the type of the base of a member access
345    // expression or the declaration context associated with a prior
346    // nested-name-specifier.
347
348    // The declaration context must be complete.
349    if (!LookupCtx->isDependentContext() &&
350        RequireCompleteDeclContext(SS, LookupCtx))
351      return false;
352
353    LookupQualifiedName(Found, LookupCtx);
354  } else if (isDependent) {
355    return false;
356  } else {
357    LookupName(Found, S);
358  }
359  Found.suppressDiagnostics();
360
361  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
362    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
363
364  return false;
365}
366
367namespace {
368
369// Callback to only accept typo corrections that can be a valid C++ member
370// intializer: either a non-static field member or a base class.
371class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
372 public:
373  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
374      : SRef(SRef) {}
375
376  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
377    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
378  }
379
380 private:
381  Sema &SRef;
382};
383
384}
385
386/// \brief Build a new nested-name-specifier for "identifier::", as described
387/// by ActOnCXXNestedNameSpecifier.
388///
389/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
390/// that it contains an extra parameter \p ScopeLookupResult, which provides
391/// the result of name lookup within the scope of the nested-name-specifier
392/// that was computed at template definition time.
393///
394/// If ErrorRecoveryLookup is true, then this call is used to improve error
395/// recovery.  This means that it should not emit diagnostics, it should
396/// just return true on failure.  It also means it should only return a valid
397/// scope if it *knows* that the result is correct.  It should not return in a
398/// dependent context, for example. Nor will it extend \p SS with the scope
399/// specifier.
400bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
401                                       IdentifierInfo &Identifier,
402                                       SourceLocation IdentifierLoc,
403                                       SourceLocation CCLoc,
404                                       QualType ObjectType,
405                                       bool EnteringContext,
406                                       CXXScopeSpec &SS,
407                                       NamedDecl *ScopeLookupResult,
408                                       bool ErrorRecoveryLookup) {
409  LookupResult Found(*this, &Identifier, IdentifierLoc,
410                     LookupNestedNameSpecifierName);
411
412  // Determine where to perform name lookup
413  DeclContext *LookupCtx = 0;
414  bool isDependent = false;
415  if (!ObjectType.isNull()) {
416    // This nested-name-specifier occurs in a member access expression, e.g.,
417    // x->B::f, and we are looking into the type of the object.
418    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
419    LookupCtx = computeDeclContext(ObjectType);
420    isDependent = ObjectType->isDependentType();
421  } else if (SS.isSet()) {
422    // This nested-name-specifier occurs after another nested-name-specifier,
423    // so look into the context associated with the prior nested-name-specifier.
424    LookupCtx = computeDeclContext(SS, EnteringContext);
425    isDependent = isDependentScopeSpecifier(SS);
426    Found.setContextRange(SS.getRange());
427  }
428
429
430  bool ObjectTypeSearchedInScope = false;
431  if (LookupCtx) {
432    // Perform "qualified" name lookup into the declaration context we
433    // computed, which is either the type of the base of a member access
434    // expression or the declaration context associated with a prior
435    // nested-name-specifier.
436
437    // The declaration context must be complete.
438    if (!LookupCtx->isDependentContext() &&
439        RequireCompleteDeclContext(SS, LookupCtx))
440      return true;
441
442    LookupQualifiedName(Found, LookupCtx);
443
444    if (!ObjectType.isNull() && Found.empty()) {
445      // C++ [basic.lookup.classref]p4:
446      //   If the id-expression in a class member access is a qualified-id of
447      //   the form
448      //
449      //        class-name-or-namespace-name::...
450      //
451      //   the class-name-or-namespace-name following the . or -> operator is
452      //   looked up both in the context of the entire postfix-expression and in
453      //   the scope of the class of the object expression. If the name is found
454      //   only in the scope of the class of the object expression, the name
455      //   shall refer to a class-name. If the name is found only in the
456      //   context of the entire postfix-expression, the name shall refer to a
457      //   class-name or namespace-name. [...]
458      //
459      // Qualified name lookup into a class will not find a namespace-name,
460      // so we do not need to diagnose that case specifically. However,
461      // this qualified name lookup may find nothing. In that case, perform
462      // unqualified name lookup in the given scope (if available) or
463      // reconstruct the result from when name lookup was performed at template
464      // definition time.
465      if (S)
466        LookupName(Found, S);
467      else if (ScopeLookupResult)
468        Found.addDecl(ScopeLookupResult);
469
470      ObjectTypeSearchedInScope = true;
471    }
472  } else if (!isDependent) {
473    // Perform unqualified name lookup in the current scope.
474    LookupName(Found, S);
475  }
476
477  // If we performed lookup into a dependent context and did not find anything,
478  // that's fine: just build a dependent nested-name-specifier.
479  if (Found.empty() && isDependent &&
480      !(LookupCtx && LookupCtx->isRecord() &&
481        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
482         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
483    // Don't speculate if we're just trying to improve error recovery.
484    if (ErrorRecoveryLookup)
485      return true;
486
487    // We were not able to compute the declaration context for a dependent
488    // base object type or prior nested-name-specifier, so this
489    // nested-name-specifier refers to an unknown specialization. Just build
490    // a dependent nested-name-specifier.
491    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
492    return false;
493  }
494
495  // FIXME: Deal with ambiguities cleanly.
496
497  if (Found.empty() && !ErrorRecoveryLookup) {
498    // We haven't found anything, and we're not recovering from a
499    // different kind of error, so look for typos.
500    DeclarationName Name = Found.getLookupName();
501    NestedNameSpecifierValidatorCCC Validator(*this);
502    TypoCorrection Corrected;
503    Found.clear();
504    if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
505                                 Found.getLookupKind(), S, &SS, Validator,
506                                 LookupCtx, EnteringContext))) {
507      std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
508      std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
509      if (LookupCtx)
510        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
511          << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
512          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
513                                          CorrectedStr);
514      else
515        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
516          << Name << CorrectedQuotedStr
517          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
518
519      if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
520        Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
521        Found.addDecl(ND);
522      }
523      Found.setLookupName(Corrected.getCorrection());
524    } else {
525      Found.setLookupName(&Identifier);
526    }
527  }
528
529  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
530  if (isAcceptableNestedNameSpecifier(SD)) {
531    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
532        !getLangOpts().CPlusPlus11) {
533      // C++03 [basic.lookup.classref]p4:
534      //   [...] If the name is found in both contexts, the
535      //   class-name-or-namespace-name shall refer to the same entity.
536      //
537      // We already found the name in the scope of the object. Now, look
538      // into the current scope (the scope of the postfix-expression) to
539      // see if we can find the same name there. As above, if there is no
540      // scope, reconstruct the result from the template instantiation itself.
541      //
542      // Note that C++11 does *not* perform this redundant lookup.
543      NamedDecl *OuterDecl;
544      if (S) {
545        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
546                                LookupNestedNameSpecifierName);
547        LookupName(FoundOuter, S);
548        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
549      } else
550        OuterDecl = ScopeLookupResult;
551
552      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
553          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
554          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
555           !Context.hasSameType(
556                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
557                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
558         if (ErrorRecoveryLookup)
559           return true;
560
561         Diag(IdentifierLoc,
562              diag::err_nested_name_member_ref_lookup_ambiguous)
563           << &Identifier;
564         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
565           << ObjectType;
566         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
567
568         // Fall through so that we'll pick the name we found in the object
569         // type, since that's probably what the user wanted anyway.
570       }
571    }
572
573    // If we're just performing this lookup for error-recovery purposes,
574    // don't extend the nested-name-specifier. Just return now.
575    if (ErrorRecoveryLookup)
576      return false;
577
578    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
579      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
580      return false;
581    }
582
583    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
584      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
585      return false;
586    }
587
588    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
589    TypeLocBuilder TLB;
590    if (isa<InjectedClassNameType>(T)) {
591      InjectedClassNameTypeLoc InjectedTL
592        = TLB.push<InjectedClassNameTypeLoc>(T);
593      InjectedTL.setNameLoc(IdentifierLoc);
594    } else if (isa<RecordType>(T)) {
595      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
596      RecordTL.setNameLoc(IdentifierLoc);
597    } else if (isa<TypedefType>(T)) {
598      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
599      TypedefTL.setNameLoc(IdentifierLoc);
600    } else if (isa<EnumType>(T)) {
601      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
602      EnumTL.setNameLoc(IdentifierLoc);
603    } else if (isa<TemplateTypeParmType>(T)) {
604      TemplateTypeParmTypeLoc TemplateTypeTL
605        = TLB.push<TemplateTypeParmTypeLoc>(T);
606      TemplateTypeTL.setNameLoc(IdentifierLoc);
607    } else if (isa<UnresolvedUsingType>(T)) {
608      UnresolvedUsingTypeLoc UnresolvedTL
609        = TLB.push<UnresolvedUsingTypeLoc>(T);
610      UnresolvedTL.setNameLoc(IdentifierLoc);
611    } else if (isa<SubstTemplateTypeParmType>(T)) {
612      SubstTemplateTypeParmTypeLoc TL
613        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
614      TL.setNameLoc(IdentifierLoc);
615    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
616      SubstTemplateTypeParmPackTypeLoc TL
617        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
618      TL.setNameLoc(IdentifierLoc);
619    } else {
620      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
621    }
622
623    if (T->isEnumeralType())
624      Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
625
626    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
627              CCLoc);
628    return false;
629  }
630
631  // Otherwise, we have an error case.  If we don't want diagnostics, just
632  // return an error now.
633  if (ErrorRecoveryLookup)
634    return true;
635
636  // If we didn't find anything during our lookup, try again with
637  // ordinary name lookup, which can help us produce better error
638  // messages.
639  if (Found.empty()) {
640    Found.clear(LookupOrdinaryName);
641    LookupName(Found, S);
642  }
643
644  // In Microsoft mode, if we are within a templated function and we can't
645  // resolve Identifier, then extend the SS with Identifier. This will have
646  // the effect of resolving Identifier during template instantiation.
647  // The goal is to be able to resolve a function call whose
648  // nested-name-specifier is located inside a dependent base class.
649  // Example:
650  //
651  // class C {
652  // public:
653  //    static void foo2() {  }
654  // };
655  // template <class T> class A { public: typedef C D; };
656  //
657  // template <class T> class B : public A<T> {
658  // public:
659  //   void foo() { D::foo2(); }
660  // };
661  if (getLangOpts().MicrosoftExt) {
662    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
663    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
664      SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
665      return false;
666    }
667  }
668
669  unsigned DiagID;
670  if (!Found.empty())
671    DiagID = diag::err_expected_class_or_namespace;
672  else if (SS.isSet()) {
673    Diag(IdentifierLoc, diag::err_no_member)
674      << &Identifier << LookupCtx << SS.getRange();
675    return true;
676  } else
677    DiagID = diag::err_undeclared_var_use;
678
679  if (SS.isSet())
680    Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
681  else
682    Diag(IdentifierLoc, DiagID) << &Identifier;
683
684  return true;
685}
686
687bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
688                                       IdentifierInfo &Identifier,
689                                       SourceLocation IdentifierLoc,
690                                       SourceLocation CCLoc,
691                                       ParsedType ObjectType,
692                                       bool EnteringContext,
693                                       CXXScopeSpec &SS) {
694  if (SS.isInvalid())
695    return true;
696
697  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
698                                     GetTypeFromParser(ObjectType),
699                                     EnteringContext, SS,
700                                     /*ScopeLookupResult=*/0, false);
701}
702
703bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
704                                               const DeclSpec &DS,
705                                               SourceLocation ColonColonLoc) {
706  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
707    return true;
708
709  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
710
711  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
712  if (!T->isDependentType() && !T->getAs<TagType>()) {
713    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class)
714      << T << getLangOpts().CPlusPlus;
715    return true;
716  }
717
718  TypeLocBuilder TLB;
719  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
720  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
721  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
722            ColonColonLoc);
723  return false;
724}
725
726/// IsInvalidUnlessNestedName - This method is used for error recovery
727/// purposes to determine whether the specified identifier is only valid as
728/// a nested name specifier, for example a namespace name.  It is
729/// conservatively correct to always return false from this method.
730///
731/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
732bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
733                                     IdentifierInfo &Identifier,
734                                     SourceLocation IdentifierLoc,
735                                     SourceLocation ColonLoc,
736                                     ParsedType ObjectType,
737                                     bool EnteringContext) {
738  if (SS.isInvalid())
739    return false;
740
741  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
742                                      GetTypeFromParser(ObjectType),
743                                      EnteringContext, SS,
744                                      /*ScopeLookupResult=*/0, true);
745}
746
747bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
748                                       CXXScopeSpec &SS,
749                                       SourceLocation TemplateKWLoc,
750                                       TemplateTy Template,
751                                       SourceLocation TemplateNameLoc,
752                                       SourceLocation LAngleLoc,
753                                       ASTTemplateArgsPtr TemplateArgsIn,
754                                       SourceLocation RAngleLoc,
755                                       SourceLocation CCLoc,
756                                       bool EnteringContext) {
757  if (SS.isInvalid())
758    return true;
759
760  // Translate the parser's template argument list in our AST format.
761  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
762  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
763
764  if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
765    // Handle a dependent template specialization for which we cannot resolve
766    // the template name.
767    assert(DTN->getQualifier() == SS.getScopeRep());
768    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
769                                                          DTN->getQualifier(),
770                                                          DTN->getIdentifier(),
771                                                                TemplateArgs);
772
773    // Create source-location information for this type.
774    TypeLocBuilder Builder;
775    DependentTemplateSpecializationTypeLoc SpecTL
776      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
777    SpecTL.setElaboratedKeywordLoc(SourceLocation());
778    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
779    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
780    SpecTL.setTemplateNameLoc(TemplateNameLoc);
781    SpecTL.setLAngleLoc(LAngleLoc);
782    SpecTL.setRAngleLoc(RAngleLoc);
783    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
784      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
785
786    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
787              CCLoc);
788    return false;
789  }
790
791
792  if (Template.get().getAsOverloadedTemplate() ||
793      isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
794    SourceRange R(TemplateNameLoc, RAngleLoc);
795    if (SS.getRange().isValid())
796      R.setBegin(SS.getRange().getBegin());
797
798    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
799      << Template.get() << R;
800    NoteAllFoundTemplates(Template.get());
801    return true;
802  }
803
804  // We were able to resolve the template name to an actual template.
805  // Build an appropriate nested-name-specifier.
806  QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
807                                   TemplateArgs);
808  if (T.isNull())
809    return true;
810
811  // Alias template specializations can produce types which are not valid
812  // nested name specifiers.
813  if (!T->isDependentType() && !T->getAs<TagType>()) {
814    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
815    NoteAllFoundTemplates(Template.get());
816    return true;
817  }
818
819  // Provide source-location information for the template specialization type.
820  TypeLocBuilder Builder;
821  TemplateSpecializationTypeLoc SpecTL
822    = Builder.push<TemplateSpecializationTypeLoc>(T);
823  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
824  SpecTL.setTemplateNameLoc(TemplateNameLoc);
825  SpecTL.setLAngleLoc(LAngleLoc);
826  SpecTL.setRAngleLoc(RAngleLoc);
827  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
828    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
829
830
831  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
832            CCLoc);
833  return false;
834}
835
836namespace {
837  /// \brief A structure that stores a nested-name-specifier annotation,
838  /// including both the nested-name-specifier
839  struct NestedNameSpecifierAnnotation {
840    NestedNameSpecifier *NNS;
841  };
842}
843
844void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
845  if (SS.isEmpty() || SS.isInvalid())
846    return 0;
847
848  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
849                                                        SS.location_size()),
850                               llvm::alignOf<NestedNameSpecifierAnnotation>());
851  NestedNameSpecifierAnnotation *Annotation
852    = new (Mem) NestedNameSpecifierAnnotation;
853  Annotation->NNS = SS.getScopeRep();
854  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
855  return Annotation;
856}
857
858void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
859                                                SourceRange AnnotationRange,
860                                                CXXScopeSpec &SS) {
861  if (!AnnotationPtr) {
862    SS.SetInvalid(AnnotationRange);
863    return;
864  }
865
866  NestedNameSpecifierAnnotation *Annotation
867    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
868  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
869}
870
871bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
872  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
873
874  NestedNameSpecifier *Qualifier = SS.getScopeRep();
875
876  // There are only two places a well-formed program may qualify a
877  // declarator: first, when defining a namespace or class member
878  // out-of-line, and second, when naming an explicitly-qualified
879  // friend function.  The latter case is governed by
880  // C++03 [basic.lookup.unqual]p10:
881  //   In a friend declaration naming a member function, a name used
882  //   in the function declarator and not part of a template-argument
883  //   in a template-id is first looked up in the scope of the member
884  //   function's class. If it is not found, or if the name is part of
885  //   a template-argument in a template-id, the look up is as
886  //   described for unqualified names in the definition of the class
887  //   granting friendship.
888  // i.e. we don't push a scope unless it's a class member.
889
890  switch (Qualifier->getKind()) {
891  case NestedNameSpecifier::Global:
892  case NestedNameSpecifier::Namespace:
893  case NestedNameSpecifier::NamespaceAlias:
894    // These are always namespace scopes.  We never want to enter a
895    // namespace scope from anything but a file context.
896    return CurContext->getRedeclContext()->isFileContext();
897
898  case NestedNameSpecifier::Identifier:
899  case NestedNameSpecifier::TypeSpec:
900  case NestedNameSpecifier::TypeSpecWithTemplate:
901    // These are never namespace scopes.
902    return true;
903  }
904
905  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
906}
907
908/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
909/// scope or nested-name-specifier) is parsed, part of a declarator-id.
910/// After this method is called, according to [C++ 3.4.3p3], names should be
911/// looked up in the declarator-id's scope, until the declarator is parsed and
912/// ActOnCXXExitDeclaratorScope is called.
913/// The 'SS' should be a non-empty valid CXXScopeSpec.
914bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
915  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
916
917  if (SS.isInvalid()) return true;
918
919  DeclContext *DC = computeDeclContext(SS, true);
920  if (!DC) return true;
921
922  // Before we enter a declarator's context, we need to make sure that
923  // it is a complete declaration context.
924  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
925    return true;
926
927  EnterDeclaratorContext(S, DC);
928
929  // Rebuild the nested name specifier for the new scope.
930  if (DC->isDependentContext())
931    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
932
933  return false;
934}
935
936/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
937/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
938/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
939/// Used to indicate that names should revert to being looked up in the
940/// defining scope.
941void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
942  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
943  if (SS.isInvalid())
944    return;
945  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
946         "exiting declarator scope we never really entered");
947  ExitDeclaratorContext(S);
948}
949