1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Sema/DeclSpec.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/Template.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace clang;
27
28/// \brief Find the current instantiation that associated with the given type.
29static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                DeclContext *CurContext) {
31  if (T.isNull())
32    return 0;
33
34  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37    if (!Record->isDependentContext() ||
38        Record->isCurrentInstantiation(CurContext))
39      return Record;
40
41    return 0;
42  } else if (isa<InjectedClassNameType>(Ty))
43    return cast<InjectedClassNameType>(Ty)->getDecl();
44  else
45    return 0;
46}
47
48/// \brief Compute the DeclContext that is associated with the given type.
49///
50/// \param T the type for which we are attempting to find a DeclContext.
51///
52/// \returns the declaration context represented by the type T,
53/// or NULL if the declaration context cannot be computed (e.g., because it is
54/// dependent and not the current instantiation).
55DeclContext *Sema::computeDeclContext(QualType T) {
56  if (!T->isDependentType())
57    if (const TagType *Tag = T->getAs<TagType>())
58      return Tag->getDecl();
59
60  return ::getCurrentInstantiationOf(T, CurContext);
61}
62
63/// \brief Compute the DeclContext that is associated with the given
64/// scope specifier.
65///
66/// \param SS the C++ scope specifier as it appears in the source
67///
68/// \param EnteringContext when true, we will be entering the context of
69/// this scope specifier, so we can retrieve the declaration context of a
70/// class template or class template partial specialization even if it is
71/// not the current instantiation.
72///
73/// \returns the declaration context represented by the scope specifier @p SS,
74/// or NULL if the declaration context cannot be computed (e.g., because it is
75/// dependent and not the current instantiation).
76DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                      bool EnteringContext) {
78  if (!SS.isSet() || SS.isInvalid())
79    return 0;
80
81  NestedNameSpecifier *NNS = SS.getScopeRep();
82  if (NNS->isDependent()) {
83    // If this nested-name-specifier refers to the current
84    // instantiation, return its DeclContext.
85    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86      return Record;
87
88    if (EnteringContext) {
89      const Type *NNSType = NNS->getAsType();
90      if (!NNSType) {
91        return 0;
92      }
93
94      // Look through type alias templates, per C++0x [temp.dep.type]p1.
95      NNSType = Context.getCanonicalType(NNSType);
96      if (const TemplateSpecializationType *SpecType
97            = NNSType->getAs<TemplateSpecializationType>()) {
98        // We are entering the context of the nested name specifier, so try to
99        // match the nested name specifier to either a primary class template
100        // or a class template partial specialization.
101        if (ClassTemplateDecl *ClassTemplate
102              = dyn_cast_or_null<ClassTemplateDecl>(
103                            SpecType->getTemplateName().getAsTemplateDecl())) {
104          QualType ContextType
105            = Context.getCanonicalType(QualType(SpecType, 0));
106
107          // If the type of the nested name specifier is the same as the
108          // injected class name of the named class template, we're entering
109          // into that class template definition.
110          QualType Injected
111            = ClassTemplate->getInjectedClassNameSpecialization();
112          if (Context.hasSameType(Injected, ContextType))
113            return ClassTemplate->getTemplatedDecl();
114
115          // If the type of the nested name specifier is the same as the
116          // type of one of the class template's class template partial
117          // specializations, we're entering into the definition of that
118          // class template partial specialization.
119          if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                = ClassTemplate->findPartialSpecialization(ContextType))
121            return PartialSpec;
122        }
123      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124        // The nested name specifier refers to a member of a class template.
125        return RecordT->getDecl();
126      }
127    }
128
129    return 0;
130  }
131
132  switch (NNS->getKind()) {
133  case NestedNameSpecifier::Identifier:
134    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135
136  case NestedNameSpecifier::Namespace:
137    return NNS->getAsNamespace();
138
139  case NestedNameSpecifier::NamespaceAlias:
140    return NNS->getAsNamespaceAlias()->getNamespace();
141
142  case NestedNameSpecifier::TypeSpec:
143  case NestedNameSpecifier::TypeSpecWithTemplate: {
144    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145    assert(Tag && "Non-tag type in nested-name-specifier");
146    return Tag->getDecl();
147  }
148
149  case NestedNameSpecifier::Global:
150    return Context.getTranslationUnitDecl();
151  }
152
153  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
154}
155
156bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
157  if (!SS.isSet() || SS.isInvalid())
158    return false;
159
160  return SS.getScopeRep()->isDependent();
161}
162
163/// \brief If the given nested name specifier refers to the current
164/// instantiation, return the declaration that corresponds to that
165/// current instantiation (C++0x [temp.dep.type]p1).
166///
167/// \param NNS a dependent nested name specifier.
168CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
169  assert(getLangOpts().CPlusPlus && "Only callable in C++");
170  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
171
172  if (!NNS->getAsType())
173    return 0;
174
175  QualType T = QualType(NNS->getAsType(), 0);
176  return ::getCurrentInstantiationOf(T, CurContext);
177}
178
179/// \brief Require that the context specified by SS be complete.
180///
181/// If SS refers to a type, this routine checks whether the type is
182/// complete enough (or can be made complete enough) for name lookup
183/// into the DeclContext. A type that is not yet completed can be
184/// considered "complete enough" if it is a class/struct/union/enum
185/// that is currently being defined. Or, if we have a type that names
186/// a class template specialization that is not a complete type, we
187/// will attempt to instantiate that class template.
188bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
189                                      DeclContext *DC) {
190  assert(DC != 0 && "given null context");
191
192  TagDecl *tag = dyn_cast<TagDecl>(DC);
193
194  // If this is a dependent type, then we consider it complete.
195  if (!tag || tag->isDependentContext())
196    return false;
197
198  // If we're currently defining this type, then lookup into the
199  // type is okay: don't complain that it isn't complete yet.
200  QualType type = Context.getTypeDeclType(tag);
201  const TagType *tagType = type->getAs<TagType>();
202  if (tagType && tagType->isBeingDefined())
203    return false;
204
205  SourceLocation loc = SS.getLastQualifierNameLoc();
206  if (loc.isInvalid()) loc = SS.getRange().getBegin();
207
208  // The type must be complete.
209  if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
210                          SS.getRange())) {
211    SS.SetInvalid(SS.getRange());
212    return true;
213  }
214
215  // Fixed enum types are complete, but they aren't valid as scopes
216  // until we see a definition, so awkwardly pull out this special
217  // case.
218  const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
219  if (!enumType || enumType->getDecl()->isCompleteDefinition())
220    return false;
221
222  // Try to instantiate the definition, if this is a specialization of an
223  // enumeration temploid.
224  EnumDecl *ED = enumType->getDecl();
225  if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
226    MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
227    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
228      if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
229                          TSK_ImplicitInstantiation)) {
230        SS.SetInvalid(SS.getRange());
231        return true;
232      }
233      return false;
234    }
235  }
236
237  Diag(loc, diag::err_incomplete_nested_name_spec)
238    << type << SS.getRange();
239  SS.SetInvalid(SS.getRange());
240  return true;
241}
242
243bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
244                                        CXXScopeSpec &SS) {
245  SS.MakeGlobal(Context, CCLoc);
246  return false;
247}
248
249/// \brief Determines whether the given declaration is an valid acceptable
250/// result for name lookup of a nested-name-specifier.
251bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
252  if (!SD)
253    return false;
254
255  // Namespace and namespace aliases are fine.
256  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
257    return true;
258
259  if (!isa<TypeDecl>(SD))
260    return false;
261
262  // Determine whether we have a class (or, in C++11, an enum) or
263  // a typedef thereof. If so, build the nested-name-specifier.
264  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
265  if (T->isDependentType())
266    return true;
267  else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
268    if (TD->getUnderlyingType()->isRecordType() ||
269        (Context.getLangOpts().CPlusPlus11 &&
270         TD->getUnderlyingType()->isEnumeralType()))
271      return true;
272  } else if (isa<RecordDecl>(SD) ||
273             (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
274    return true;
275
276  return false;
277}
278
279/// \brief If the given nested-name-specifier begins with a bare identifier
280/// (e.g., Base::), perform name lookup for that identifier as a
281/// nested-name-specifier within the given scope, and return the result of that
282/// name lookup.
283NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
284  if (!S || !NNS)
285    return 0;
286
287  while (NNS->getPrefix())
288    NNS = NNS->getPrefix();
289
290  if (NNS->getKind() != NestedNameSpecifier::Identifier)
291    return 0;
292
293  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
294                     LookupNestedNameSpecifierName);
295  LookupName(Found, S);
296  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
297
298  if (!Found.isSingleResult())
299    return 0;
300
301  NamedDecl *Result = Found.getFoundDecl();
302  if (isAcceptableNestedNameSpecifier(Result))
303    return Result;
304
305  return 0;
306}
307
308bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
309                                        SourceLocation IdLoc,
310                                        IdentifierInfo &II,
311                                        ParsedType ObjectTypePtr) {
312  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
313  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
314
315  // Determine where to perform name lookup
316  DeclContext *LookupCtx = 0;
317  bool isDependent = false;
318  if (!ObjectType.isNull()) {
319    // This nested-name-specifier occurs in a member access expression, e.g.,
320    // x->B::f, and we are looking into the type of the object.
321    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
322    LookupCtx = computeDeclContext(ObjectType);
323    isDependent = ObjectType->isDependentType();
324  } else if (SS.isSet()) {
325    // This nested-name-specifier occurs after another nested-name-specifier,
326    // so long into the context associated with the prior nested-name-specifier.
327    LookupCtx = computeDeclContext(SS, false);
328    isDependent = isDependentScopeSpecifier(SS);
329    Found.setContextRange(SS.getRange());
330  }
331
332  if (LookupCtx) {
333    // Perform "qualified" name lookup into the declaration context we
334    // computed, which is either the type of the base of a member access
335    // expression or the declaration context associated with a prior
336    // nested-name-specifier.
337
338    // The declaration context must be complete.
339    if (!LookupCtx->isDependentContext() &&
340        RequireCompleteDeclContext(SS, LookupCtx))
341      return false;
342
343    LookupQualifiedName(Found, LookupCtx);
344  } else if (isDependent) {
345    return false;
346  } else {
347    LookupName(Found, S);
348  }
349  Found.suppressDiagnostics();
350
351  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
352    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
353
354  return false;
355}
356
357namespace {
358
359// Callback to only accept typo corrections that can be a valid C++ member
360// intializer: either a non-static field member or a base class.
361class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
362 public:
363  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
364      : SRef(SRef) {}
365
366  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
367    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
368  }
369
370 private:
371  Sema &SRef;
372};
373
374}
375
376/// \brief Build a new nested-name-specifier for "identifier::", as described
377/// by ActOnCXXNestedNameSpecifier.
378///
379/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
380/// that it contains an extra parameter \p ScopeLookupResult, which provides
381/// the result of name lookup within the scope of the nested-name-specifier
382/// that was computed at template definition time.
383///
384/// If ErrorRecoveryLookup is true, then this call is used to improve error
385/// recovery.  This means that it should not emit diagnostics, it should
386/// just return true on failure.  It also means it should only return a valid
387/// scope if it *knows* that the result is correct.  It should not return in a
388/// dependent context, for example. Nor will it extend \p SS with the scope
389/// specifier.
390bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
391                                       IdentifierInfo &Identifier,
392                                       SourceLocation IdentifierLoc,
393                                       SourceLocation CCLoc,
394                                       QualType ObjectType,
395                                       bool EnteringContext,
396                                       CXXScopeSpec &SS,
397                                       NamedDecl *ScopeLookupResult,
398                                       bool ErrorRecoveryLookup) {
399  LookupResult Found(*this, &Identifier, IdentifierLoc,
400                     LookupNestedNameSpecifierName);
401
402  // Determine where to perform name lookup
403  DeclContext *LookupCtx = 0;
404  bool isDependent = false;
405  if (!ObjectType.isNull()) {
406    // This nested-name-specifier occurs in a member access expression, e.g.,
407    // x->B::f, and we are looking into the type of the object.
408    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
409    LookupCtx = computeDeclContext(ObjectType);
410    isDependent = ObjectType->isDependentType();
411  } else if (SS.isSet()) {
412    // This nested-name-specifier occurs after another nested-name-specifier,
413    // so look into the context associated with the prior nested-name-specifier.
414    LookupCtx = computeDeclContext(SS, EnteringContext);
415    isDependent = isDependentScopeSpecifier(SS);
416    Found.setContextRange(SS.getRange());
417  }
418
419
420  bool ObjectTypeSearchedInScope = false;
421  if (LookupCtx) {
422    // Perform "qualified" name lookup into the declaration context we
423    // computed, which is either the type of the base of a member access
424    // expression or the declaration context associated with a prior
425    // nested-name-specifier.
426
427    // The declaration context must be complete.
428    if (!LookupCtx->isDependentContext() &&
429        RequireCompleteDeclContext(SS, LookupCtx))
430      return true;
431
432    LookupQualifiedName(Found, LookupCtx);
433
434    if (!ObjectType.isNull() && Found.empty()) {
435      // C++ [basic.lookup.classref]p4:
436      //   If the id-expression in a class member access is a qualified-id of
437      //   the form
438      //
439      //        class-name-or-namespace-name::...
440      //
441      //   the class-name-or-namespace-name following the . or -> operator is
442      //   looked up both in the context of the entire postfix-expression and in
443      //   the scope of the class of the object expression. If the name is found
444      //   only in the scope of the class of the object expression, the name
445      //   shall refer to a class-name. If the name is found only in the
446      //   context of the entire postfix-expression, the name shall refer to a
447      //   class-name or namespace-name. [...]
448      //
449      // Qualified name lookup into a class will not find a namespace-name,
450      // so we do not need to diagnose that case specifically. However,
451      // this qualified name lookup may find nothing. In that case, perform
452      // unqualified name lookup in the given scope (if available) or
453      // reconstruct the result from when name lookup was performed at template
454      // definition time.
455      if (S)
456        LookupName(Found, S);
457      else if (ScopeLookupResult)
458        Found.addDecl(ScopeLookupResult);
459
460      ObjectTypeSearchedInScope = true;
461    }
462  } else if (!isDependent) {
463    // Perform unqualified name lookup in the current scope.
464    LookupName(Found, S);
465  }
466
467  // If we performed lookup into a dependent context and did not find anything,
468  // that's fine: just build a dependent nested-name-specifier.
469  if (Found.empty() && isDependent &&
470      !(LookupCtx && LookupCtx->isRecord() &&
471        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
472         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
473    // Don't speculate if we're just trying to improve error recovery.
474    if (ErrorRecoveryLookup)
475      return true;
476
477    // We were not able to compute the declaration context for a dependent
478    // base object type or prior nested-name-specifier, so this
479    // nested-name-specifier refers to an unknown specialization. Just build
480    // a dependent nested-name-specifier.
481    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
482    return false;
483  }
484
485  // FIXME: Deal with ambiguities cleanly.
486
487  if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MicrosoftMode) {
488    // We haven't found anything, and we're not recovering from a
489    // different kind of error, so look for typos.
490    DeclarationName Name = Found.getLookupName();
491    NestedNameSpecifierValidatorCCC Validator(*this);
492    Found.clear();
493    if (TypoCorrection Corrected =
494            CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
495                        &SS, Validator, LookupCtx, EnteringContext)) {
496      if (LookupCtx) {
497        bool DroppedSpecifier =
498            Corrected.WillReplaceSpecifier() &&
499            Name.getAsString() == Corrected.getAsString(getLangOpts());
500        if (DroppedSpecifier)
501          SS.clear();
502        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
503                                  << Name << LookupCtx << DroppedSpecifier
504                                  << SS.getRange());
505      } else
506        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
507                                  << Name);
508
509      if (NamedDecl *ND = Corrected.getCorrectionDecl())
510        Found.addDecl(ND);
511      Found.setLookupName(Corrected.getCorrection());
512    } else {
513      Found.setLookupName(&Identifier);
514    }
515  }
516
517  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
518  if (isAcceptableNestedNameSpecifier(SD)) {
519    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
520        !getLangOpts().CPlusPlus11) {
521      // C++03 [basic.lookup.classref]p4:
522      //   [...] If the name is found in both contexts, the
523      //   class-name-or-namespace-name shall refer to the same entity.
524      //
525      // We already found the name in the scope of the object. Now, look
526      // into the current scope (the scope of the postfix-expression) to
527      // see if we can find the same name there. As above, if there is no
528      // scope, reconstruct the result from the template instantiation itself.
529      //
530      // Note that C++11 does *not* perform this redundant lookup.
531      NamedDecl *OuterDecl;
532      if (S) {
533        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
534                                LookupNestedNameSpecifierName);
535        LookupName(FoundOuter, S);
536        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
537      } else
538        OuterDecl = ScopeLookupResult;
539
540      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
541          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
542          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
543           !Context.hasSameType(
544                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
545                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
546         if (ErrorRecoveryLookup)
547           return true;
548
549         Diag(IdentifierLoc,
550              diag::err_nested_name_member_ref_lookup_ambiguous)
551           << &Identifier;
552         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
553           << ObjectType;
554         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
555
556         // Fall through so that we'll pick the name we found in the object
557         // type, since that's probably what the user wanted anyway.
558       }
559    }
560
561    // If we're just performing this lookup for error-recovery purposes,
562    // don't extend the nested-name-specifier. Just return now.
563    if (ErrorRecoveryLookup)
564      return false;
565
566    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
567      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
568      return false;
569    }
570
571    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
572      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
573      return false;
574    }
575
576    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
577    TypeLocBuilder TLB;
578    if (isa<InjectedClassNameType>(T)) {
579      InjectedClassNameTypeLoc InjectedTL
580        = TLB.push<InjectedClassNameTypeLoc>(T);
581      InjectedTL.setNameLoc(IdentifierLoc);
582    } else if (isa<RecordType>(T)) {
583      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
584      RecordTL.setNameLoc(IdentifierLoc);
585    } else if (isa<TypedefType>(T)) {
586      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
587      TypedefTL.setNameLoc(IdentifierLoc);
588    } else if (isa<EnumType>(T)) {
589      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
590      EnumTL.setNameLoc(IdentifierLoc);
591    } else if (isa<TemplateTypeParmType>(T)) {
592      TemplateTypeParmTypeLoc TemplateTypeTL
593        = TLB.push<TemplateTypeParmTypeLoc>(T);
594      TemplateTypeTL.setNameLoc(IdentifierLoc);
595    } else if (isa<UnresolvedUsingType>(T)) {
596      UnresolvedUsingTypeLoc UnresolvedTL
597        = TLB.push<UnresolvedUsingTypeLoc>(T);
598      UnresolvedTL.setNameLoc(IdentifierLoc);
599    } else if (isa<SubstTemplateTypeParmType>(T)) {
600      SubstTemplateTypeParmTypeLoc TL
601        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
602      TL.setNameLoc(IdentifierLoc);
603    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
604      SubstTemplateTypeParmPackTypeLoc TL
605        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
606      TL.setNameLoc(IdentifierLoc);
607    } else {
608      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
609    }
610
611    if (T->isEnumeralType())
612      Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
613
614    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
615              CCLoc);
616    return false;
617  }
618
619  // Otherwise, we have an error case.  If we don't want diagnostics, just
620  // return an error now.
621  if (ErrorRecoveryLookup)
622    return true;
623
624  // If we didn't find anything during our lookup, try again with
625  // ordinary name lookup, which can help us produce better error
626  // messages.
627  if (Found.empty()) {
628    Found.clear(LookupOrdinaryName);
629    LookupName(Found, S);
630  }
631
632  // In Microsoft mode, if we are within a templated function and we can't
633  // resolve Identifier, then extend the SS with Identifier. This will have
634  // the effect of resolving Identifier during template instantiation.
635  // The goal is to be able to resolve a function call whose
636  // nested-name-specifier is located inside a dependent base class.
637  // Example:
638  //
639  // class C {
640  // public:
641  //    static void foo2() {  }
642  // };
643  // template <class T> class A { public: typedef C D; };
644  //
645  // template <class T> class B : public A<T> {
646  // public:
647  //   void foo() { D::foo2(); }
648  // };
649  if (getLangOpts().MicrosoftMode) {
650    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
651    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
652      SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
653      return false;
654    }
655  }
656
657  unsigned DiagID;
658  if (!Found.empty())
659    DiagID = diag::err_expected_class_or_namespace;
660  else if (SS.isSet()) {
661    Diag(IdentifierLoc, diag::err_no_member)
662      << &Identifier << LookupCtx << SS.getRange();
663    return true;
664  } else
665    DiagID = diag::err_undeclared_var_use;
666
667  if (SS.isSet())
668    Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
669  else
670    Diag(IdentifierLoc, DiagID) << &Identifier;
671
672  return true;
673}
674
675bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
676                                       IdentifierInfo &Identifier,
677                                       SourceLocation IdentifierLoc,
678                                       SourceLocation CCLoc,
679                                       ParsedType ObjectType,
680                                       bool EnteringContext,
681                                       CXXScopeSpec &SS) {
682  if (SS.isInvalid())
683    return true;
684
685  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
686                                     GetTypeFromParser(ObjectType),
687                                     EnteringContext, SS,
688                                     /*ScopeLookupResult=*/0, false);
689}
690
691bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
692                                               const DeclSpec &DS,
693                                               SourceLocation ColonColonLoc) {
694  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
695    return true;
696
697  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
698
699  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
700  if (!T->isDependentType() && !T->getAs<TagType>()) {
701    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class)
702      << T << getLangOpts().CPlusPlus;
703    return true;
704  }
705
706  TypeLocBuilder TLB;
707  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
708  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
709  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
710            ColonColonLoc);
711  return false;
712}
713
714/// IsInvalidUnlessNestedName - This method is used for error recovery
715/// purposes to determine whether the specified identifier is only valid as
716/// a nested name specifier, for example a namespace name.  It is
717/// conservatively correct to always return false from this method.
718///
719/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
720bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
721                                     IdentifierInfo &Identifier,
722                                     SourceLocation IdentifierLoc,
723                                     SourceLocation ColonLoc,
724                                     ParsedType ObjectType,
725                                     bool EnteringContext) {
726  if (SS.isInvalid())
727    return false;
728
729  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
730                                      GetTypeFromParser(ObjectType),
731                                      EnteringContext, SS,
732                                      /*ScopeLookupResult=*/0, true);
733}
734
735bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
736                                       CXXScopeSpec &SS,
737                                       SourceLocation TemplateKWLoc,
738                                       TemplateTy Template,
739                                       SourceLocation TemplateNameLoc,
740                                       SourceLocation LAngleLoc,
741                                       ASTTemplateArgsPtr TemplateArgsIn,
742                                       SourceLocation RAngleLoc,
743                                       SourceLocation CCLoc,
744                                       bool EnteringContext) {
745  if (SS.isInvalid())
746    return true;
747
748  // Translate the parser's template argument list in our AST format.
749  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
750  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
751
752  if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
753    // Handle a dependent template specialization for which we cannot resolve
754    // the template name.
755    assert(DTN->getQualifier() == SS.getScopeRep());
756    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
757                                                          DTN->getQualifier(),
758                                                          DTN->getIdentifier(),
759                                                                TemplateArgs);
760
761    // Create source-location information for this type.
762    TypeLocBuilder Builder;
763    DependentTemplateSpecializationTypeLoc SpecTL
764      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
765    SpecTL.setElaboratedKeywordLoc(SourceLocation());
766    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
767    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
768    SpecTL.setTemplateNameLoc(TemplateNameLoc);
769    SpecTL.setLAngleLoc(LAngleLoc);
770    SpecTL.setRAngleLoc(RAngleLoc);
771    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
772      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
773
774    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
775              CCLoc);
776    return false;
777  }
778
779
780  if (Template.get().getAsOverloadedTemplate() ||
781      isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
782    SourceRange R(TemplateNameLoc, RAngleLoc);
783    if (SS.getRange().isValid())
784      R.setBegin(SS.getRange().getBegin());
785
786    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
787      << Template.get() << R;
788    NoteAllFoundTemplates(Template.get());
789    return true;
790  }
791
792  // We were able to resolve the template name to an actual template.
793  // Build an appropriate nested-name-specifier.
794  QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
795                                   TemplateArgs);
796  if (T.isNull())
797    return true;
798
799  // Alias template specializations can produce types which are not valid
800  // nested name specifiers.
801  if (!T->isDependentType() && !T->getAs<TagType>()) {
802    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
803    NoteAllFoundTemplates(Template.get());
804    return true;
805  }
806
807  // Provide source-location information for the template specialization type.
808  TypeLocBuilder Builder;
809  TemplateSpecializationTypeLoc SpecTL
810    = Builder.push<TemplateSpecializationTypeLoc>(T);
811  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
812  SpecTL.setTemplateNameLoc(TemplateNameLoc);
813  SpecTL.setLAngleLoc(LAngleLoc);
814  SpecTL.setRAngleLoc(RAngleLoc);
815  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
816    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
817
818
819  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
820            CCLoc);
821  return false;
822}
823
824namespace {
825  /// \brief A structure that stores a nested-name-specifier annotation,
826  /// including both the nested-name-specifier
827  struct NestedNameSpecifierAnnotation {
828    NestedNameSpecifier *NNS;
829  };
830}
831
832void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
833  if (SS.isEmpty() || SS.isInvalid())
834    return 0;
835
836  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
837                                                        SS.location_size()),
838                               llvm::alignOf<NestedNameSpecifierAnnotation>());
839  NestedNameSpecifierAnnotation *Annotation
840    = new (Mem) NestedNameSpecifierAnnotation;
841  Annotation->NNS = SS.getScopeRep();
842  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
843  return Annotation;
844}
845
846void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
847                                                SourceRange AnnotationRange,
848                                                CXXScopeSpec &SS) {
849  if (!AnnotationPtr) {
850    SS.SetInvalid(AnnotationRange);
851    return;
852  }
853
854  NestedNameSpecifierAnnotation *Annotation
855    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
856  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
857}
858
859bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
860  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
861
862  NestedNameSpecifier *Qualifier = SS.getScopeRep();
863
864  // There are only two places a well-formed program may qualify a
865  // declarator: first, when defining a namespace or class member
866  // out-of-line, and second, when naming an explicitly-qualified
867  // friend function.  The latter case is governed by
868  // C++03 [basic.lookup.unqual]p10:
869  //   In a friend declaration naming a member function, a name used
870  //   in the function declarator and not part of a template-argument
871  //   in a template-id is first looked up in the scope of the member
872  //   function's class. If it is not found, or if the name is part of
873  //   a template-argument in a template-id, the look up is as
874  //   described for unqualified names in the definition of the class
875  //   granting friendship.
876  // i.e. we don't push a scope unless it's a class member.
877
878  switch (Qualifier->getKind()) {
879  case NestedNameSpecifier::Global:
880  case NestedNameSpecifier::Namespace:
881  case NestedNameSpecifier::NamespaceAlias:
882    // These are always namespace scopes.  We never want to enter a
883    // namespace scope from anything but a file context.
884    return CurContext->getRedeclContext()->isFileContext();
885
886  case NestedNameSpecifier::Identifier:
887  case NestedNameSpecifier::TypeSpec:
888  case NestedNameSpecifier::TypeSpecWithTemplate:
889    // These are never namespace scopes.
890    return true;
891  }
892
893  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
894}
895
896/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
897/// scope or nested-name-specifier) is parsed, part of a declarator-id.
898/// After this method is called, according to [C++ 3.4.3p3], names should be
899/// looked up in the declarator-id's scope, until the declarator is parsed and
900/// ActOnCXXExitDeclaratorScope is called.
901/// The 'SS' should be a non-empty valid CXXScopeSpec.
902bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
903  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
904
905  if (SS.isInvalid()) return true;
906
907  DeclContext *DC = computeDeclContext(SS, true);
908  if (!DC) return true;
909
910  // Before we enter a declarator's context, we need to make sure that
911  // it is a complete declaration context.
912  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
913    return true;
914
915  EnterDeclaratorContext(S, DC);
916
917  // Rebuild the nested name specifier for the new scope.
918  if (DC->isDependentContext())
919    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
920
921  return false;
922}
923
924/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
925/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
926/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
927/// Used to indicate that names should revert to being looked up in the
928/// defining scope.
929void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
930  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
931  if (SS.isInvalid())
932    return;
933  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
934         "exiting declarator scope we never really entered");
935  ExitDeclaratorContext(S);
936}
937