SemaCXXScopeSpec.cpp revision 225736
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Sema/DeclSpec.h"
22#include "TypeLocBuilder.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace clang;
26
27/// \brief Find the current instantiation that associated with the given type.
28static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
29                                                DeclContext *CurContext) {
30  if (T.isNull())
31    return 0;
32
33  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
34  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
35    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
36    if (!T->isDependentType())
37      return Record;
38
39    // This may be a member of a class template or class template partial
40    // specialization. If it's part of the current semantic context, then it's
41    // an injected-class-name;
42    for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
43      if (CurContext->Equals(Record))
44        return Record;
45
46    return 0;
47  } else if (isa<InjectedClassNameType>(Ty))
48    return cast<InjectedClassNameType>(Ty)->getDecl();
49  else
50    return 0;
51}
52
53/// \brief Compute the DeclContext that is associated with the given type.
54///
55/// \param T the type for which we are attempting to find a DeclContext.
56///
57/// \returns the declaration context represented by the type T,
58/// or NULL if the declaration context cannot be computed (e.g., because it is
59/// dependent and not the current instantiation).
60DeclContext *Sema::computeDeclContext(QualType T) {
61  if (!T->isDependentType())
62    if (const TagType *Tag = T->getAs<TagType>())
63      return Tag->getDecl();
64
65  return ::getCurrentInstantiationOf(T, CurContext);
66}
67
68/// \brief Compute the DeclContext that is associated with the given
69/// scope specifier.
70///
71/// \param SS the C++ scope specifier as it appears in the source
72///
73/// \param EnteringContext when true, we will be entering the context of
74/// this scope specifier, so we can retrieve the declaration context of a
75/// class template or class template partial specialization even if it is
76/// not the current instantiation.
77///
78/// \returns the declaration context represented by the scope specifier @p SS,
79/// or NULL if the declaration context cannot be computed (e.g., because it is
80/// dependent and not the current instantiation).
81DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
82                                      bool EnteringContext) {
83  if (!SS.isSet() || SS.isInvalid())
84    return 0;
85
86  NestedNameSpecifier *NNS
87    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
88  if (NNS->isDependent()) {
89    // If this nested-name-specifier refers to the current
90    // instantiation, return its DeclContext.
91    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
92      return Record;
93
94    if (EnteringContext) {
95      const Type *NNSType = NNS->getAsType();
96      if (!NNSType) {
97        return 0;
98      }
99
100      // Look through type alias templates, per C++0x [temp.dep.type]p1.
101      NNSType = Context.getCanonicalType(NNSType);
102      if (const TemplateSpecializationType *SpecType
103            = NNSType->getAs<TemplateSpecializationType>()) {
104        // We are entering the context of the nested name specifier, so try to
105        // match the nested name specifier to either a primary class template
106        // or a class template partial specialization.
107        if (ClassTemplateDecl *ClassTemplate
108              = dyn_cast_or_null<ClassTemplateDecl>(
109                            SpecType->getTemplateName().getAsTemplateDecl())) {
110          QualType ContextType
111            = Context.getCanonicalType(QualType(SpecType, 0));
112
113          // If the type of the nested name specifier is the same as the
114          // injected class name of the named class template, we're entering
115          // into that class template definition.
116          QualType Injected
117            = ClassTemplate->getInjectedClassNameSpecialization();
118          if (Context.hasSameType(Injected, ContextType))
119            return ClassTemplate->getTemplatedDecl();
120
121          // If the type of the nested name specifier is the same as the
122          // type of one of the class template's class template partial
123          // specializations, we're entering into the definition of that
124          // class template partial specialization.
125          if (ClassTemplatePartialSpecializationDecl *PartialSpec
126                = ClassTemplate->findPartialSpecialization(ContextType))
127            return PartialSpec;
128        }
129      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
130        // The nested name specifier refers to a member of a class template.
131        return RecordT->getDecl();
132      }
133    }
134
135    return 0;
136  }
137
138  switch (NNS->getKind()) {
139  case NestedNameSpecifier::Identifier:
140    assert(false && "Dependent nested-name-specifier has no DeclContext");
141    break;
142
143  case NestedNameSpecifier::Namespace:
144    return NNS->getAsNamespace();
145
146  case NestedNameSpecifier::NamespaceAlias:
147    return NNS->getAsNamespaceAlias()->getNamespace();
148
149  case NestedNameSpecifier::TypeSpec:
150  case NestedNameSpecifier::TypeSpecWithTemplate: {
151    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
152    assert(Tag && "Non-tag type in nested-name-specifier");
153    return Tag->getDecl();
154  } break;
155
156  case NestedNameSpecifier::Global:
157    return Context.getTranslationUnitDecl();
158  }
159
160  // Required to silence a GCC warning.
161  return 0;
162}
163
164bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
165  if (!SS.isSet() || SS.isInvalid())
166    return false;
167
168  NestedNameSpecifier *NNS
169    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
170  return NNS->isDependent();
171}
172
173// \brief Determine whether this C++ scope specifier refers to an
174// unknown specialization, i.e., a dependent type that is not the
175// current instantiation.
176bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
177  if (!isDependentScopeSpecifier(SS))
178    return false;
179
180  NestedNameSpecifier *NNS
181    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182  return getCurrentInstantiationOf(NNS) == 0;
183}
184
185/// \brief If the given nested name specifier refers to the current
186/// instantiation, return the declaration that corresponds to that
187/// current instantiation (C++0x [temp.dep.type]p1).
188///
189/// \param NNS a dependent nested name specifier.
190CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
191  assert(getLangOptions().CPlusPlus && "Only callable in C++");
192  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
193
194  if (!NNS->getAsType())
195    return 0;
196
197  QualType T = QualType(NNS->getAsType(), 0);
198  return ::getCurrentInstantiationOf(T, CurContext);
199}
200
201/// \brief Require that the context specified by SS be complete.
202///
203/// If SS refers to a type, this routine checks whether the type is
204/// complete enough (or can be made complete enough) for name lookup
205/// into the DeclContext. A type that is not yet completed can be
206/// considered "complete enough" if it is a class/struct/union/enum
207/// that is currently being defined. Or, if we have a type that names
208/// a class template specialization that is not a complete type, we
209/// will attempt to instantiate that class template.
210bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
211                                      DeclContext *DC) {
212  assert(DC != 0 && "given null context");
213
214  if (TagDecl *tag = dyn_cast<TagDecl>(DC)) {
215    // If this is a dependent type, then we consider it complete.
216    if (tag->isDependentContext())
217      return false;
218
219    // If we're currently defining this type, then lookup into the
220    // type is okay: don't complain that it isn't complete yet.
221    QualType type = Context.getTypeDeclType(tag);
222    const TagType *tagType = type->getAs<TagType>();
223    if (tagType && tagType->isBeingDefined())
224      return false;
225
226    SourceLocation loc = SS.getLastQualifierNameLoc();
227    if (loc.isInvalid()) loc = SS.getRange().getBegin();
228
229    // The type must be complete.
230    if (RequireCompleteType(loc, type,
231                            PDiag(diag::err_incomplete_nested_name_spec)
232                              << SS.getRange())) {
233      SS.SetInvalid(SS.getRange());
234      return true;
235    }
236
237    // Fixed enum types are complete, but they aren't valid as scopes
238    // until we see a definition, so awkwardly pull out this special
239    // case.
240    if (const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType)) {
241      if (!enumType->getDecl()->isDefinition()) {
242        Diag(loc, diag::err_incomplete_nested_name_spec)
243          << type << SS.getRange();
244        SS.SetInvalid(SS.getRange());
245        return true;
246      }
247    }
248  }
249
250  return false;
251}
252
253bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
254                                        CXXScopeSpec &SS) {
255  SS.MakeGlobal(Context, CCLoc);
256  return false;
257}
258
259/// \brief Determines whether the given declaration is an valid acceptable
260/// result for name lookup of a nested-name-specifier.
261bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
262  if (!SD)
263    return false;
264
265  // Namespace and namespace aliases are fine.
266  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
267    return true;
268
269  if (!isa<TypeDecl>(SD))
270    return false;
271
272  // Determine whether we have a class (or, in C++0x, an enum) or
273  // a typedef thereof. If so, build the nested-name-specifier.
274  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
275  if (T->isDependentType())
276    return true;
277  else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
278    if (TD->getUnderlyingType()->isRecordType() ||
279        (Context.getLangOptions().CPlusPlus0x &&
280         TD->getUnderlyingType()->isEnumeralType()))
281      return true;
282  } else if (isa<RecordDecl>(SD) ||
283             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
284    return true;
285
286  return false;
287}
288
289/// \brief If the given nested-name-specifier begins with a bare identifier
290/// (e.g., Base::), perform name lookup for that identifier as a
291/// nested-name-specifier within the given scope, and return the result of that
292/// name lookup.
293NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
294  if (!S || !NNS)
295    return 0;
296
297  while (NNS->getPrefix())
298    NNS = NNS->getPrefix();
299
300  if (NNS->getKind() != NestedNameSpecifier::Identifier)
301    return 0;
302
303  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
304                     LookupNestedNameSpecifierName);
305  LookupName(Found, S);
306  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
307
308  if (!Found.isSingleResult())
309    return 0;
310
311  NamedDecl *Result = Found.getFoundDecl();
312  if (isAcceptableNestedNameSpecifier(Result))
313    return Result;
314
315  return 0;
316}
317
318bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
319                                        SourceLocation IdLoc,
320                                        IdentifierInfo &II,
321                                        ParsedType ObjectTypePtr) {
322  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
323  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
324
325  // Determine where to perform name lookup
326  DeclContext *LookupCtx = 0;
327  bool isDependent = false;
328  if (!ObjectType.isNull()) {
329    // This nested-name-specifier occurs in a member access expression, e.g.,
330    // x->B::f, and we are looking into the type of the object.
331    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
332    LookupCtx = computeDeclContext(ObjectType);
333    isDependent = ObjectType->isDependentType();
334  } else if (SS.isSet()) {
335    // This nested-name-specifier occurs after another nested-name-specifier,
336    // so long into the context associated with the prior nested-name-specifier.
337    LookupCtx = computeDeclContext(SS, false);
338    isDependent = isDependentScopeSpecifier(SS);
339    Found.setContextRange(SS.getRange());
340  }
341
342  if (LookupCtx) {
343    // Perform "qualified" name lookup into the declaration context we
344    // computed, which is either the type of the base of a member access
345    // expression or the declaration context associated with a prior
346    // nested-name-specifier.
347
348    // The declaration context must be complete.
349    if (!LookupCtx->isDependentContext() &&
350        RequireCompleteDeclContext(SS, LookupCtx))
351      return false;
352
353    LookupQualifiedName(Found, LookupCtx);
354  } else if (isDependent) {
355    return false;
356  } else {
357    LookupName(Found, S);
358  }
359  Found.suppressDiagnostics();
360
361  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
362    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
363
364  return false;
365}
366
367/// \brief Build a new nested-name-specifier for "identifier::", as described
368/// by ActOnCXXNestedNameSpecifier.
369///
370/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
371/// that it contains an extra parameter \p ScopeLookupResult, which provides
372/// the result of name lookup within the scope of the nested-name-specifier
373/// that was computed at template definition time.
374///
375/// If ErrorRecoveryLookup is true, then this call is used to improve error
376/// recovery.  This means that it should not emit diagnostics, it should
377/// just return true on failure.  It also means it should only return a valid
378/// scope if it *knows* that the result is correct.  It should not return in a
379/// dependent context, for example. Nor will it extend \p SS with the scope
380/// specifier.
381bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
382                                       IdentifierInfo &Identifier,
383                                       SourceLocation IdentifierLoc,
384                                       SourceLocation CCLoc,
385                                       QualType ObjectType,
386                                       bool EnteringContext,
387                                       CXXScopeSpec &SS,
388                                       NamedDecl *ScopeLookupResult,
389                                       bool ErrorRecoveryLookup) {
390  LookupResult Found(*this, &Identifier, IdentifierLoc,
391                     LookupNestedNameSpecifierName);
392
393  // Determine where to perform name lookup
394  DeclContext *LookupCtx = 0;
395  bool isDependent = false;
396  if (!ObjectType.isNull()) {
397    // This nested-name-specifier occurs in a member access expression, e.g.,
398    // x->B::f, and we are looking into the type of the object.
399    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
400    LookupCtx = computeDeclContext(ObjectType);
401    isDependent = ObjectType->isDependentType();
402  } else if (SS.isSet()) {
403    // This nested-name-specifier occurs after another nested-name-specifier,
404    // so look into the context associated with the prior nested-name-specifier.
405    LookupCtx = computeDeclContext(SS, EnteringContext);
406    isDependent = isDependentScopeSpecifier(SS);
407    Found.setContextRange(SS.getRange());
408  }
409
410
411  bool ObjectTypeSearchedInScope = false;
412  if (LookupCtx) {
413    // Perform "qualified" name lookup into the declaration context we
414    // computed, which is either the type of the base of a member access
415    // expression or the declaration context associated with a prior
416    // nested-name-specifier.
417
418    // The declaration context must be complete.
419    if (!LookupCtx->isDependentContext() &&
420        RequireCompleteDeclContext(SS, LookupCtx))
421      return true;
422
423    LookupQualifiedName(Found, LookupCtx);
424
425    if (!ObjectType.isNull() && Found.empty()) {
426      // C++ [basic.lookup.classref]p4:
427      //   If the id-expression in a class member access is a qualified-id of
428      //   the form
429      //
430      //        class-name-or-namespace-name::...
431      //
432      //   the class-name-or-namespace-name following the . or -> operator is
433      //   looked up both in the context of the entire postfix-expression and in
434      //   the scope of the class of the object expression. If the name is found
435      //   only in the scope of the class of the object expression, the name
436      //   shall refer to a class-name. If the name is found only in the
437      //   context of the entire postfix-expression, the name shall refer to a
438      //   class-name or namespace-name. [...]
439      //
440      // Qualified name lookup into a class will not find a namespace-name,
441      // so we do not need to diagnose that case specifically. However,
442      // this qualified name lookup may find nothing. In that case, perform
443      // unqualified name lookup in the given scope (if available) or
444      // reconstruct the result from when name lookup was performed at template
445      // definition time.
446      if (S)
447        LookupName(Found, S);
448      else if (ScopeLookupResult)
449        Found.addDecl(ScopeLookupResult);
450
451      ObjectTypeSearchedInScope = true;
452    }
453  } else if (!isDependent) {
454    // Perform unqualified name lookup in the current scope.
455    LookupName(Found, S);
456  }
457
458  // If we performed lookup into a dependent context and did not find anything,
459  // that's fine: just build a dependent nested-name-specifier.
460  if (Found.empty() && isDependent &&
461      !(LookupCtx && LookupCtx->isRecord() &&
462        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
463         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
464    // Don't speculate if we're just trying to improve error recovery.
465    if (ErrorRecoveryLookup)
466      return true;
467
468    // We were not able to compute the declaration context for a dependent
469    // base object type or prior nested-name-specifier, so this
470    // nested-name-specifier refers to an unknown specialization. Just build
471    // a dependent nested-name-specifier.
472    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
473    return false;
474  }
475
476  // FIXME: Deal with ambiguities cleanly.
477
478  if (Found.empty() && !ErrorRecoveryLookup) {
479    // We haven't found anything, and we're not recovering from a
480    // different kind of error, so look for typos.
481    DeclarationName Name = Found.getLookupName();
482    TypoCorrection Corrected;
483    Found.clear();
484    if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
485                                 Found.getLookupKind(), S, &SS, LookupCtx,
486                                 EnteringContext, CTC_NoKeywords)) &&
487        isAcceptableNestedNameSpecifier(Corrected.getCorrectionDecl())) {
488      std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
489      std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
490      if (LookupCtx)
491        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
492          << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
493          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
494      else
495        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
496          << Name << CorrectedQuotedStr
497          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
498
499      if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
500        Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
501        Found.addDecl(ND);
502      }
503      Found.setLookupName(Corrected.getCorrection());
504    } else {
505      Found.setLookupName(&Identifier);
506    }
507  }
508
509  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
510  if (isAcceptableNestedNameSpecifier(SD)) {
511    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
512      // C++ [basic.lookup.classref]p4:
513      //   [...] If the name is found in both contexts, the
514      //   class-name-or-namespace-name shall refer to the same entity.
515      //
516      // We already found the name in the scope of the object. Now, look
517      // into the current scope (the scope of the postfix-expression) to
518      // see if we can find the same name there. As above, if there is no
519      // scope, reconstruct the result from the template instantiation itself.
520      NamedDecl *OuterDecl;
521      if (S) {
522        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
523                                LookupNestedNameSpecifierName);
524        LookupName(FoundOuter, S);
525        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
526      } else
527        OuterDecl = ScopeLookupResult;
528
529      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
530          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
531          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
532           !Context.hasSameType(
533                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
534                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
535         if (ErrorRecoveryLookup)
536           return true;
537
538         Diag(IdentifierLoc,
539              diag::err_nested_name_member_ref_lookup_ambiguous)
540           << &Identifier;
541         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
542           << ObjectType;
543         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
544
545         // Fall through so that we'll pick the name we found in the object
546         // type, since that's probably what the user wanted anyway.
547       }
548    }
549
550    // If we're just performing this lookup for error-recovery purposes,
551    // don't extend the nested-name-specifier. Just return now.
552    if (ErrorRecoveryLookup)
553      return false;
554
555    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
556      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
557      return false;
558    }
559
560    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
561      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
562      return false;
563    }
564
565    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
566    TypeLocBuilder TLB;
567    if (isa<InjectedClassNameType>(T)) {
568      InjectedClassNameTypeLoc InjectedTL
569        = TLB.push<InjectedClassNameTypeLoc>(T);
570      InjectedTL.setNameLoc(IdentifierLoc);
571    } else if (isa<RecordType>(T)) {
572      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
573      RecordTL.setNameLoc(IdentifierLoc);
574    } else if (isa<TypedefType>(T)) {
575      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
576      TypedefTL.setNameLoc(IdentifierLoc);
577    } else if (isa<EnumType>(T)) {
578      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
579      EnumTL.setNameLoc(IdentifierLoc);
580    } else if (isa<TemplateTypeParmType>(T)) {
581      TemplateTypeParmTypeLoc TemplateTypeTL
582        = TLB.push<TemplateTypeParmTypeLoc>(T);
583      TemplateTypeTL.setNameLoc(IdentifierLoc);
584    } else if (isa<UnresolvedUsingType>(T)) {
585      UnresolvedUsingTypeLoc UnresolvedTL
586        = TLB.push<UnresolvedUsingTypeLoc>(T);
587      UnresolvedTL.setNameLoc(IdentifierLoc);
588    } else if (isa<SubstTemplateTypeParmType>(T)) {
589      SubstTemplateTypeParmTypeLoc TL
590        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
591      TL.setNameLoc(IdentifierLoc);
592    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
593      SubstTemplateTypeParmPackTypeLoc TL
594        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
595      TL.setNameLoc(IdentifierLoc);
596    } else {
597      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
598    }
599
600    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
601              CCLoc);
602    return false;
603  }
604
605  // Otherwise, we have an error case.  If we don't want diagnostics, just
606  // return an error now.
607  if (ErrorRecoveryLookup)
608    return true;
609
610  // If we didn't find anything during our lookup, try again with
611  // ordinary name lookup, which can help us produce better error
612  // messages.
613  if (Found.empty()) {
614    Found.clear(LookupOrdinaryName);
615    LookupName(Found, S);
616  }
617
618  unsigned DiagID;
619  if (!Found.empty())
620    DiagID = diag::err_expected_class_or_namespace;
621  else if (SS.isSet()) {
622    Diag(IdentifierLoc, diag::err_no_member)
623      << &Identifier << LookupCtx << SS.getRange();
624    return true;
625  } else
626    DiagID = diag::err_undeclared_var_use;
627
628  if (SS.isSet())
629    Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
630  else
631    Diag(IdentifierLoc, DiagID) << &Identifier;
632
633  return true;
634}
635
636bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
637                                       IdentifierInfo &Identifier,
638                                       SourceLocation IdentifierLoc,
639                                       SourceLocation CCLoc,
640                                       ParsedType ObjectType,
641                                       bool EnteringContext,
642                                       CXXScopeSpec &SS) {
643  if (SS.isInvalid())
644    return true;
645
646  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
647                                     GetTypeFromParser(ObjectType),
648                                     EnteringContext, SS,
649                                     /*ScopeLookupResult=*/0, false);
650}
651
652/// IsInvalidUnlessNestedName - This method is used for error recovery
653/// purposes to determine whether the specified identifier is only valid as
654/// a nested name specifier, for example a namespace name.  It is
655/// conservatively correct to always return false from this method.
656///
657/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
658bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
659                                     IdentifierInfo &Identifier,
660                                     SourceLocation IdentifierLoc,
661                                     SourceLocation ColonLoc,
662                                     ParsedType ObjectType,
663                                     bool EnteringContext) {
664  if (SS.isInvalid())
665    return false;
666
667  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
668                                      GetTypeFromParser(ObjectType),
669                                      EnteringContext, SS,
670                                      /*ScopeLookupResult=*/0, true);
671}
672
673bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
674                                       SourceLocation TemplateLoc,
675                                       CXXScopeSpec &SS,
676                                       TemplateTy Template,
677                                       SourceLocation TemplateNameLoc,
678                                       SourceLocation LAngleLoc,
679                                       ASTTemplateArgsPtr TemplateArgsIn,
680                                       SourceLocation RAngleLoc,
681                                       SourceLocation CCLoc,
682                                       bool EnteringContext) {
683  if (SS.isInvalid())
684    return true;
685
686  // Translate the parser's template argument list in our AST format.
687  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
688  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
689
690  if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
691    // Handle a dependent template specialization for which we cannot resolve
692    // the template name.
693    assert(DTN->getQualifier()
694             == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
695    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
696                                                          DTN->getQualifier(),
697                                                          DTN->getIdentifier(),
698                                                                TemplateArgs);
699
700    // Create source-location information for this type.
701    TypeLocBuilder Builder;
702    DependentTemplateSpecializationTypeLoc SpecTL
703      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
704    SpecTL.setLAngleLoc(LAngleLoc);
705    SpecTL.setRAngleLoc(RAngleLoc);
706    SpecTL.setKeywordLoc(SourceLocation());
707    SpecTL.setNameLoc(TemplateNameLoc);
708    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
709    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
710      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
711
712    SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
713              CCLoc);
714    return false;
715  }
716
717
718  if (Template.get().getAsOverloadedTemplate() ||
719      isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
720    SourceRange R(TemplateNameLoc, RAngleLoc);
721    if (SS.getRange().isValid())
722      R.setBegin(SS.getRange().getBegin());
723
724    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
725      << Template.get() << R;
726    NoteAllFoundTemplates(Template.get());
727    return true;
728  }
729
730  // We were able to resolve the template name to an actual template.
731  // Build an appropriate nested-name-specifier.
732  QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
733                                   TemplateArgs);
734  if (T.isNull())
735    return true;
736
737  // Alias template specializations can produce types which are not valid
738  // nested name specifiers.
739  if (!T->isDependentType() && !T->getAs<TagType>()) {
740    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
741    NoteAllFoundTemplates(Template.get());
742    return true;
743  }
744
745  // Provide source-location information for the template specialization
746  // type.
747  TypeLocBuilder Builder;
748  TemplateSpecializationTypeLoc SpecTL
749    = Builder.push<TemplateSpecializationTypeLoc>(T);
750
751  SpecTL.setLAngleLoc(LAngleLoc);
752  SpecTL.setRAngleLoc(RAngleLoc);
753  SpecTL.setTemplateNameLoc(TemplateNameLoc);
754  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
755    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
756
757
758  SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
759            CCLoc);
760  return false;
761}
762
763namespace {
764  /// \brief A structure that stores a nested-name-specifier annotation,
765  /// including both the nested-name-specifier
766  struct NestedNameSpecifierAnnotation {
767    NestedNameSpecifier *NNS;
768  };
769}
770
771void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
772  if (SS.isEmpty() || SS.isInvalid())
773    return 0;
774
775  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
776                                                        SS.location_size()),
777                               llvm::alignOf<NestedNameSpecifierAnnotation>());
778  NestedNameSpecifierAnnotation *Annotation
779    = new (Mem) NestedNameSpecifierAnnotation;
780  Annotation->NNS = SS.getScopeRep();
781  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
782  return Annotation;
783}
784
785void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
786                                                SourceRange AnnotationRange,
787                                                CXXScopeSpec &SS) {
788  if (!AnnotationPtr) {
789    SS.SetInvalid(AnnotationRange);
790    return;
791  }
792
793  NestedNameSpecifierAnnotation *Annotation
794    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
795  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
796}
797
798bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
799  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
800
801  NestedNameSpecifier *Qualifier =
802    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
803
804  // There are only two places a well-formed program may qualify a
805  // declarator: first, when defining a namespace or class member
806  // out-of-line, and second, when naming an explicitly-qualified
807  // friend function.  The latter case is governed by
808  // C++03 [basic.lookup.unqual]p10:
809  //   In a friend declaration naming a member function, a name used
810  //   in the function declarator and not part of a template-argument
811  //   in a template-id is first looked up in the scope of the member
812  //   function's class. If it is not found, or if the name is part of
813  //   a template-argument in a template-id, the look up is as
814  //   described for unqualified names in the definition of the class
815  //   granting friendship.
816  // i.e. we don't push a scope unless it's a class member.
817
818  switch (Qualifier->getKind()) {
819  case NestedNameSpecifier::Global:
820  case NestedNameSpecifier::Namespace:
821  case NestedNameSpecifier::NamespaceAlias:
822    // These are always namespace scopes.  We never want to enter a
823    // namespace scope from anything but a file context.
824    return CurContext->getRedeclContext()->isFileContext();
825
826  case NestedNameSpecifier::Identifier:
827  case NestedNameSpecifier::TypeSpec:
828  case NestedNameSpecifier::TypeSpecWithTemplate:
829    // These are never namespace scopes.
830    return true;
831  }
832
833  // Silence bogus warning.
834  return false;
835}
836
837/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
838/// scope or nested-name-specifier) is parsed, part of a declarator-id.
839/// After this method is called, according to [C++ 3.4.3p3], names should be
840/// looked up in the declarator-id's scope, until the declarator is parsed and
841/// ActOnCXXExitDeclaratorScope is called.
842/// The 'SS' should be a non-empty valid CXXScopeSpec.
843bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
844  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
845
846  if (SS.isInvalid()) return true;
847
848  DeclContext *DC = computeDeclContext(SS, true);
849  if (!DC) return true;
850
851  // Before we enter a declarator's context, we need to make sure that
852  // it is a complete declaration context.
853  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
854    return true;
855
856  EnterDeclaratorContext(S, DC);
857
858  // Rebuild the nested name specifier for the new scope.
859  if (DC->isDependentContext())
860    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
861
862  return false;
863}
864
865/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
866/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
867/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
868/// Used to indicate that names should revert to being looked up in the
869/// defining scope.
870void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
871  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
872  if (SS.isInvalid())
873    return;
874  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
875         "exiting declarator scope we never really entered");
876  ExitDeclaratorContext(S);
877}
878