SemaCXXScopeSpec.cpp revision 219077
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Sema/DeclSpec.h"
22#include "TypeLocBuilder.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace clang;
26
27/// \brief Find the current instantiation that associated with the given type.
28static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
29                                                DeclContext *CurContext) {
30  if (T.isNull())
31    return 0;
32
33  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
34  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
35    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
36    if (!T->isDependentType())
37      return Record;
38
39    // This may be a member of a class template or class template partial
40    // specialization. If it's part of the current semantic context, then it's
41    // an injected-class-name;
42    for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
43      if (CurContext->Equals(Record))
44        return Record;
45
46    return 0;
47  } else if (isa<InjectedClassNameType>(Ty))
48    return cast<InjectedClassNameType>(Ty)->getDecl();
49  else
50    return 0;
51}
52
53/// \brief Compute the DeclContext that is associated with the given type.
54///
55/// \param T the type for which we are attempting to find a DeclContext.
56///
57/// \returns the declaration context represented by the type T,
58/// or NULL if the declaration context cannot be computed (e.g., because it is
59/// dependent and not the current instantiation).
60DeclContext *Sema::computeDeclContext(QualType T) {
61  if (!T->isDependentType())
62    if (const TagType *Tag = T->getAs<TagType>())
63      return Tag->getDecl();
64
65  return ::getCurrentInstantiationOf(T, CurContext);
66}
67
68/// \brief Compute the DeclContext that is associated with the given
69/// scope specifier.
70///
71/// \param SS the C++ scope specifier as it appears in the source
72///
73/// \param EnteringContext when true, we will be entering the context of
74/// this scope specifier, so we can retrieve the declaration context of a
75/// class template or class template partial specialization even if it is
76/// not the current instantiation.
77///
78/// \returns the declaration context represented by the scope specifier @p SS,
79/// or NULL if the declaration context cannot be computed (e.g., because it is
80/// dependent and not the current instantiation).
81DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
82                                      bool EnteringContext) {
83  if (!SS.isSet() || SS.isInvalid())
84    return 0;
85
86  NestedNameSpecifier *NNS
87    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
88  if (NNS->isDependent()) {
89    // If this nested-name-specifier refers to the current
90    // instantiation, return its DeclContext.
91    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
92      return Record;
93
94    if (EnteringContext) {
95      const Type *NNSType = NNS->getAsType();
96      if (!NNSType) {
97        // do nothing, fall out
98      } else if (const TemplateSpecializationType *SpecType
99                   = NNSType->getAs<TemplateSpecializationType>()) {
100        // We are entering the context of the nested name specifier, so try to
101        // match the nested name specifier to either a primary class template
102        // or a class template partial specialization.
103        if (ClassTemplateDecl *ClassTemplate
104              = dyn_cast_or_null<ClassTemplateDecl>(
105                            SpecType->getTemplateName().getAsTemplateDecl())) {
106          QualType ContextType
107            = Context.getCanonicalType(QualType(SpecType, 0));
108
109          // If the type of the nested name specifier is the same as the
110          // injected class name of the named class template, we're entering
111          // into that class template definition.
112          QualType Injected
113            = ClassTemplate->getInjectedClassNameSpecialization();
114          if (Context.hasSameType(Injected, ContextType))
115            return ClassTemplate->getTemplatedDecl();
116
117          // If the type of the nested name specifier is the same as the
118          // type of one of the class template's class template partial
119          // specializations, we're entering into the definition of that
120          // class template partial specialization.
121          if (ClassTemplatePartialSpecializationDecl *PartialSpec
122                = ClassTemplate->findPartialSpecialization(ContextType))
123            return PartialSpec;
124        }
125      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
126        // The nested name specifier refers to a member of a class template.
127        return RecordT->getDecl();
128      }
129    }
130
131    return 0;
132  }
133
134  switch (NNS->getKind()) {
135  case NestedNameSpecifier::Identifier:
136    assert(false && "Dependent nested-name-specifier has no DeclContext");
137    break;
138
139  case NestedNameSpecifier::Namespace:
140    return NNS->getAsNamespace();
141
142  case NestedNameSpecifier::NamespaceAlias:
143    return NNS->getAsNamespaceAlias()->getNamespace();
144
145  case NestedNameSpecifier::TypeSpec:
146  case NestedNameSpecifier::TypeSpecWithTemplate: {
147    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
148    assert(Tag && "Non-tag type in nested-name-specifier");
149    return Tag->getDecl();
150  } break;
151
152  case NestedNameSpecifier::Global:
153    return Context.getTranslationUnitDecl();
154  }
155
156  // Required to silence a GCC warning.
157  return 0;
158}
159
160bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
161  if (!SS.isSet() || SS.isInvalid())
162    return false;
163
164  NestedNameSpecifier *NNS
165    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
166  return NNS->isDependent();
167}
168
169// \brief Determine whether this C++ scope specifier refers to an
170// unknown specialization, i.e., a dependent type that is not the
171// current instantiation.
172bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
173  if (!isDependentScopeSpecifier(SS))
174    return false;
175
176  NestedNameSpecifier *NNS
177    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
178  return getCurrentInstantiationOf(NNS) == 0;
179}
180
181/// \brief If the given nested name specifier refers to the current
182/// instantiation, return the declaration that corresponds to that
183/// current instantiation (C++0x [temp.dep.type]p1).
184///
185/// \param NNS a dependent nested name specifier.
186CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
187  assert(getLangOptions().CPlusPlus && "Only callable in C++");
188  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
189
190  if (!NNS->getAsType())
191    return 0;
192
193  QualType T = QualType(NNS->getAsType(), 0);
194  return ::getCurrentInstantiationOf(T, CurContext);
195}
196
197/// \brief Require that the context specified by SS be complete.
198///
199/// If SS refers to a type, this routine checks whether the type is
200/// complete enough (or can be made complete enough) for name lookup
201/// into the DeclContext. A type that is not yet completed can be
202/// considered "complete enough" if it is a class/struct/union/enum
203/// that is currently being defined. Or, if we have a type that names
204/// a class template specialization that is not a complete type, we
205/// will attempt to instantiate that class template.
206bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
207                                      DeclContext *DC) {
208  assert(DC != 0 && "given null context");
209
210  if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
211    // If this is a dependent type, then we consider it complete.
212    if (Tag->isDependentContext())
213      return false;
214
215    // If we're currently defining this type, then lookup into the
216    // type is okay: don't complain that it isn't complete yet.
217    const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
218    if (TagT && TagT->isBeingDefined())
219      return false;
220
221    // The type must be complete.
222    if (RequireCompleteType(SS.getRange().getBegin(),
223                            Context.getTypeDeclType(Tag),
224                            PDiag(diag::err_incomplete_nested_name_spec)
225                              << SS.getRange())) {
226      SS.SetInvalid(SS.getRange());
227      return true;
228    }
229  }
230
231  return false;
232}
233
234bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
235                                        CXXScopeSpec &SS) {
236  SS.MakeGlobal(Context, CCLoc);
237  return false;
238}
239
240/// \brief Determines whether the given declaration is an valid acceptable
241/// result for name lookup of a nested-name-specifier.
242bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
243  if (!SD)
244    return false;
245
246  // Namespace and namespace aliases are fine.
247  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
248    return true;
249
250  if (!isa<TypeDecl>(SD))
251    return false;
252
253  // Determine whether we have a class (or, in C++0x, an enum) or
254  // a typedef thereof. If so, build the nested-name-specifier.
255  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
256  if (T->isDependentType())
257    return true;
258  else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
259    if (TD->getUnderlyingType()->isRecordType() ||
260        (Context.getLangOptions().CPlusPlus0x &&
261         TD->getUnderlyingType()->isEnumeralType()))
262      return true;
263  } else if (isa<RecordDecl>(SD) ||
264             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
265    return true;
266
267  return false;
268}
269
270/// \brief If the given nested-name-specifier begins with a bare identifier
271/// (e.g., Base::), perform name lookup for that identifier as a
272/// nested-name-specifier within the given scope, and return the result of that
273/// name lookup.
274NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
275  if (!S || !NNS)
276    return 0;
277
278  while (NNS->getPrefix())
279    NNS = NNS->getPrefix();
280
281  if (NNS->getKind() != NestedNameSpecifier::Identifier)
282    return 0;
283
284  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
285                     LookupNestedNameSpecifierName);
286  LookupName(Found, S);
287  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
288
289  if (!Found.isSingleResult())
290    return 0;
291
292  NamedDecl *Result = Found.getFoundDecl();
293  if (isAcceptableNestedNameSpecifier(Result))
294    return Result;
295
296  return 0;
297}
298
299bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
300                                        SourceLocation IdLoc,
301                                        IdentifierInfo &II,
302                                        ParsedType ObjectTypePtr) {
303  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
304  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
305
306  // Determine where to perform name lookup
307  DeclContext *LookupCtx = 0;
308  bool isDependent = false;
309  if (!ObjectType.isNull()) {
310    // This nested-name-specifier occurs in a member access expression, e.g.,
311    // x->B::f, and we are looking into the type of the object.
312    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
313    LookupCtx = computeDeclContext(ObjectType);
314    isDependent = ObjectType->isDependentType();
315  } else if (SS.isSet()) {
316    // This nested-name-specifier occurs after another nested-name-specifier,
317    // so long into the context associated with the prior nested-name-specifier.
318    LookupCtx = computeDeclContext(SS, false);
319    isDependent = isDependentScopeSpecifier(SS);
320    Found.setContextRange(SS.getRange());
321  }
322
323  if (LookupCtx) {
324    // Perform "qualified" name lookup into the declaration context we
325    // computed, which is either the type of the base of a member access
326    // expression or the declaration context associated with a prior
327    // nested-name-specifier.
328
329    // The declaration context must be complete.
330    if (!LookupCtx->isDependentContext() &&
331        RequireCompleteDeclContext(SS, LookupCtx))
332      return false;
333
334    LookupQualifiedName(Found, LookupCtx);
335  } else if (isDependent) {
336    return false;
337  } else {
338    LookupName(Found, S);
339  }
340  Found.suppressDiagnostics();
341
342  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
343    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
344
345  return false;
346}
347
348/// \brief Build a new nested-name-specifier for "identifier::", as described
349/// by ActOnCXXNestedNameSpecifier.
350///
351/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
352/// that it contains an extra parameter \p ScopeLookupResult, which provides
353/// the result of name lookup within the scope of the nested-name-specifier
354/// that was computed at template definition time.
355///
356/// If ErrorRecoveryLookup is true, then this call is used to improve error
357/// recovery.  This means that it should not emit diagnostics, it should
358/// just return true on failure.  It also means it should only return a valid
359/// scope if it *knows* that the result is correct.  It should not return in a
360/// dependent context, for example. Nor will it extend \p SS with the scope
361/// specifier.
362bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
363                                       IdentifierInfo &Identifier,
364                                       SourceLocation IdentifierLoc,
365                                       SourceLocation CCLoc,
366                                       QualType ObjectType,
367                                       bool EnteringContext,
368                                       CXXScopeSpec &SS,
369                                       NamedDecl *ScopeLookupResult,
370                                       bool ErrorRecoveryLookup) {
371  LookupResult Found(*this, &Identifier, IdentifierLoc,
372                     LookupNestedNameSpecifierName);
373
374  // Determine where to perform name lookup
375  DeclContext *LookupCtx = 0;
376  bool isDependent = false;
377  if (!ObjectType.isNull()) {
378    // This nested-name-specifier occurs in a member access expression, e.g.,
379    // x->B::f, and we are looking into the type of the object.
380    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
381    LookupCtx = computeDeclContext(ObjectType);
382    isDependent = ObjectType->isDependentType();
383  } else if (SS.isSet()) {
384    // This nested-name-specifier occurs after another nested-name-specifier,
385    // so long into the context associated with the prior nested-name-specifier.
386    LookupCtx = computeDeclContext(SS, EnteringContext);
387    isDependent = isDependentScopeSpecifier(SS);
388    Found.setContextRange(SS.getRange());
389  }
390
391
392  bool ObjectTypeSearchedInScope = false;
393  if (LookupCtx) {
394    // Perform "qualified" name lookup into the declaration context we
395    // computed, which is either the type of the base of a member access
396    // expression or the declaration context associated with a prior
397    // nested-name-specifier.
398
399    // The declaration context must be complete.
400    if (!LookupCtx->isDependentContext() &&
401        RequireCompleteDeclContext(SS, LookupCtx))
402      return true;
403
404    LookupQualifiedName(Found, LookupCtx);
405
406    if (!ObjectType.isNull() && Found.empty()) {
407      // C++ [basic.lookup.classref]p4:
408      //   If the id-expression in a class member access is a qualified-id of
409      //   the form
410      //
411      //        class-name-or-namespace-name::...
412      //
413      //   the class-name-or-namespace-name following the . or -> operator is
414      //   looked up both in the context of the entire postfix-expression and in
415      //   the scope of the class of the object expression. If the name is found
416      //   only in the scope of the class of the object expression, the name
417      //   shall refer to a class-name. If the name is found only in the
418      //   context of the entire postfix-expression, the name shall refer to a
419      //   class-name or namespace-name. [...]
420      //
421      // Qualified name lookup into a class will not find a namespace-name,
422      // so we do not need to diagnoste that case specifically. However,
423      // this qualified name lookup may find nothing. In that case, perform
424      // unqualified name lookup in the given scope (if available) or
425      // reconstruct the result from when name lookup was performed at template
426      // definition time.
427      if (S)
428        LookupName(Found, S);
429      else if (ScopeLookupResult)
430        Found.addDecl(ScopeLookupResult);
431
432      ObjectTypeSearchedInScope = true;
433    }
434  } else if (!isDependent) {
435    // Perform unqualified name lookup in the current scope.
436    LookupName(Found, S);
437  }
438
439  // If we performed lookup into a dependent context and did not find anything,
440  // that's fine: just build a dependent nested-name-specifier.
441  if (Found.empty() && isDependent &&
442      !(LookupCtx && LookupCtx->isRecord() &&
443        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
444         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
445    // Don't speculate if we're just trying to improve error recovery.
446    if (ErrorRecoveryLookup)
447      return true;
448
449    // We were not able to compute the declaration context for a dependent
450    // base object type or prior nested-name-specifier, so this
451    // nested-name-specifier refers to an unknown specialization. Just build
452    // a dependent nested-name-specifier.
453    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
454    return false;
455  }
456
457  // FIXME: Deal with ambiguities cleanly.
458
459  if (Found.empty() && !ErrorRecoveryLookup) {
460    // We haven't found anything, and we're not recovering from a
461    // different kind of error, so look for typos.
462    DeclarationName Name = Found.getLookupName();
463    if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext,
464                    CTC_NoKeywords) &&
465        Found.isSingleResult() &&
466        isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
467      if (LookupCtx)
468        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
469          << Name << LookupCtx << Found.getLookupName() << SS.getRange()
470          << FixItHint::CreateReplacement(Found.getNameLoc(),
471                                          Found.getLookupName().getAsString());
472      else
473        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
474          << Name << Found.getLookupName()
475          << FixItHint::CreateReplacement(Found.getNameLoc(),
476                                          Found.getLookupName().getAsString());
477
478      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
479        Diag(ND->getLocation(), diag::note_previous_decl)
480          << ND->getDeclName();
481    } else {
482      Found.clear();
483      Found.setLookupName(&Identifier);
484    }
485  }
486
487  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
488  if (isAcceptableNestedNameSpecifier(SD)) {
489    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
490      // C++ [basic.lookup.classref]p4:
491      //   [...] If the name is found in both contexts, the
492      //   class-name-or-namespace-name shall refer to the same entity.
493      //
494      // We already found the name in the scope of the object. Now, look
495      // into the current scope (the scope of the postfix-expression) to
496      // see if we can find the same name there. As above, if there is no
497      // scope, reconstruct the result from the template instantiation itself.
498      NamedDecl *OuterDecl;
499      if (S) {
500        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
501                                LookupNestedNameSpecifierName);
502        LookupName(FoundOuter, S);
503        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
504      } else
505        OuterDecl = ScopeLookupResult;
506
507      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
508          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
509          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
510           !Context.hasSameType(
511                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
512                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
513         if (ErrorRecoveryLookup)
514           return true;
515
516         Diag(IdentifierLoc,
517              diag::err_nested_name_member_ref_lookup_ambiguous)
518           << &Identifier;
519         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
520           << ObjectType;
521         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
522
523         // Fall through so that we'll pick the name we found in the object
524         // type, since that's probably what the user wanted anyway.
525       }
526    }
527
528    // If we're just performing this lookup for error-recovery purposes,
529    // don't extend the nested-name-specifier. Just return now.
530    if (ErrorRecoveryLookup)
531      return false;
532
533    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
534      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
535      return false;
536    }
537
538    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
539      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
540      return false;
541    }
542
543    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
544    TypeLocBuilder TLB;
545    if (isa<InjectedClassNameType>(T)) {
546      InjectedClassNameTypeLoc InjectedTL
547        = TLB.push<InjectedClassNameTypeLoc>(T);
548      InjectedTL.setNameLoc(IdentifierLoc);
549    } else if (isa<RecordDecl>(SD)) {
550      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
551      RecordTL.setNameLoc(IdentifierLoc);
552    } else if (isa<TypedefDecl>(SD)) {
553      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
554      TypedefTL.setNameLoc(IdentifierLoc);
555    } else if (isa<EnumDecl>(SD)) {
556      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
557      EnumTL.setNameLoc(IdentifierLoc);
558    } else if (isa<TemplateTypeParmDecl>(SD)) {
559      TemplateTypeParmTypeLoc TemplateTypeTL
560        = TLB.push<TemplateTypeParmTypeLoc>(T);
561      TemplateTypeTL.setNameLoc(IdentifierLoc);
562    } else {
563      assert(isa<UnresolvedUsingTypenameDecl>(SD) &&
564             "Unhandled TypeDecl node in nested-name-specifier");
565      UnresolvedUsingTypeLoc UnresolvedTL
566        = TLB.push<UnresolvedUsingTypeLoc>(T);
567      UnresolvedTL.setNameLoc(IdentifierLoc);
568    }
569
570    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
571              CCLoc);
572    return false;
573  }
574
575  // Otherwise, we have an error case.  If we don't want diagnostics, just
576  // return an error now.
577  if (ErrorRecoveryLookup)
578    return true;
579
580  // If we didn't find anything during our lookup, try again with
581  // ordinary name lookup, which can help us produce better error
582  // messages.
583  if (Found.empty()) {
584    Found.clear(LookupOrdinaryName);
585    LookupName(Found, S);
586  }
587
588  unsigned DiagID;
589  if (!Found.empty())
590    DiagID = diag::err_expected_class_or_namespace;
591  else if (SS.isSet()) {
592    Diag(IdentifierLoc, diag::err_no_member)
593      << &Identifier << LookupCtx << SS.getRange();
594    return true;
595  } else
596    DiagID = diag::err_undeclared_var_use;
597
598  if (SS.isSet())
599    Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
600  else
601    Diag(IdentifierLoc, DiagID) << &Identifier;
602
603  return true;
604}
605
606bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
607                                       IdentifierInfo &Identifier,
608                                       SourceLocation IdentifierLoc,
609                                       SourceLocation CCLoc,
610                                       ParsedType ObjectType,
611                                       bool EnteringContext,
612                                       CXXScopeSpec &SS) {
613  if (SS.isInvalid())
614    return true;
615
616  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
617                                     GetTypeFromParser(ObjectType),
618                                     EnteringContext, SS,
619                                     /*ScopeLookupResult=*/0, false);
620}
621
622/// IsInvalidUnlessNestedName - This method is used for error recovery
623/// purposes to determine whether the specified identifier is only valid as
624/// a nested name specifier, for example a namespace name.  It is
625/// conservatively correct to always return false from this method.
626///
627/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
628bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
629                                     IdentifierInfo &Identifier,
630                                     SourceLocation IdentifierLoc,
631                                     SourceLocation ColonLoc,
632                                     ParsedType ObjectType,
633                                     bool EnteringContext) {
634  if (SS.isInvalid())
635    return false;
636
637  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
638                                      GetTypeFromParser(ObjectType),
639                                      EnteringContext, SS,
640                                      /*ScopeLookupResult=*/0, true);
641}
642
643bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
644                                       ParsedType Type,
645                                       SourceLocation CCLoc,
646                                       CXXScopeSpec &SS) {
647  if (SS.isInvalid())
648    return true;
649
650  TypeSourceInfo *TSInfo;
651  QualType T = GetTypeFromParser(Type, &TSInfo);
652  if (T.isNull())
653    return true;
654
655  assert(TSInfo && "Not TypeSourceInfo in nested-name-specifier?");
656  // FIXME: location of the 'template' keyword?
657  SS.Extend(Context, SourceLocation(), TSInfo->getTypeLoc(), CCLoc);
658  return false;
659}
660
661namespace {
662  /// \brief A structure that stores a nested-name-specifier annotation,
663  /// including both the nested-name-specifier
664  struct NestedNameSpecifierAnnotation {
665    NestedNameSpecifier *NNS;
666  };
667}
668
669void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
670  if (SS.isEmpty() || SS.isInvalid())
671    return 0;
672
673  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
674                                                        SS.location_size()),
675                               llvm::alignOf<NestedNameSpecifierAnnotation>());
676  NestedNameSpecifierAnnotation *Annotation
677    = new (Mem) NestedNameSpecifierAnnotation;
678  Annotation->NNS = SS.getScopeRep();
679  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
680  return Annotation;
681}
682
683void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
684                                                SourceRange AnnotationRange,
685                                                CXXScopeSpec &SS) {
686  if (!AnnotationPtr) {
687    SS.SetInvalid(AnnotationRange);
688    return;
689  }
690
691  NestedNameSpecifierAnnotation *Annotation
692    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
693  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
694}
695
696bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
697  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
698
699  NestedNameSpecifier *Qualifier =
700    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
701
702  // There are only two places a well-formed program may qualify a
703  // declarator: first, when defining a namespace or class member
704  // out-of-line, and second, when naming an explicitly-qualified
705  // friend function.  The latter case is governed by
706  // C++03 [basic.lookup.unqual]p10:
707  //   In a friend declaration naming a member function, a name used
708  //   in the function declarator and not part of a template-argument
709  //   in a template-id is first looked up in the scope of the member
710  //   function's class. If it is not found, or if the name is part of
711  //   a template-argument in a template-id, the look up is as
712  //   described for unqualified names in the definition of the class
713  //   granting friendship.
714  // i.e. we don't push a scope unless it's a class member.
715
716  switch (Qualifier->getKind()) {
717  case NestedNameSpecifier::Global:
718  case NestedNameSpecifier::Namespace:
719  case NestedNameSpecifier::NamespaceAlias:
720    // These are always namespace scopes.  We never want to enter a
721    // namespace scope from anything but a file context.
722    return CurContext->getRedeclContext()->isFileContext();
723
724  case NestedNameSpecifier::Identifier:
725  case NestedNameSpecifier::TypeSpec:
726  case NestedNameSpecifier::TypeSpecWithTemplate:
727    // These are never namespace scopes.
728    return true;
729  }
730
731  // Silence bogus warning.
732  return false;
733}
734
735/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
736/// scope or nested-name-specifier) is parsed, part of a declarator-id.
737/// After this method is called, according to [C++ 3.4.3p3], names should be
738/// looked up in the declarator-id's scope, until the declarator is parsed and
739/// ActOnCXXExitDeclaratorScope is called.
740/// The 'SS' should be a non-empty valid CXXScopeSpec.
741bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
742  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
743
744  if (SS.isInvalid()) return true;
745
746  DeclContext *DC = computeDeclContext(SS, true);
747  if (!DC) return true;
748
749  // Before we enter a declarator's context, we need to make sure that
750  // it is a complete declaration context.
751  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
752    return true;
753
754  EnterDeclaratorContext(S, DC);
755
756  // Rebuild the nested name specifier for the new scope.
757  if (DC->isDependentContext())
758    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
759
760  return false;
761}
762
763/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
764/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
765/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
766/// Used to indicate that names should revert to being looked up in the
767/// defining scope.
768void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
769  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
770  if (SS.isInvalid())
771    return;
772  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
773         "exiting declarator scope we never really entered");
774  ExitDeclaratorContext(S);
775}
776