SemaCXXScopeSpec.cpp revision 218893
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Sema/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25
26/// \brief Find the current instantiation that associated with the given type.
27static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28                                                DeclContext *CurContext) {
29  if (T.isNull())
30    return 0;
31
32  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
34    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
35    if (!T->isDependentType())
36      return Record;
37
38    // This may be a member of a class template or class template partial
39    // specialization. If it's part of the current semantic context, then it's
40    // an injected-class-name;
41    for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
42      if (CurContext->Equals(Record))
43        return Record;
44
45    return 0;
46  } else if (isa<InjectedClassNameType>(Ty))
47    return cast<InjectedClassNameType>(Ty)->getDecl();
48  else
49    return 0;
50}
51
52/// \brief Compute the DeclContext that is associated with the given type.
53///
54/// \param T the type for which we are attempting to find a DeclContext.
55///
56/// \returns the declaration context represented by the type T,
57/// or NULL if the declaration context cannot be computed (e.g., because it is
58/// dependent and not the current instantiation).
59DeclContext *Sema::computeDeclContext(QualType T) {
60  if (!T->isDependentType())
61    if (const TagType *Tag = T->getAs<TagType>())
62      return Tag->getDecl();
63
64  return ::getCurrentInstantiationOf(T, CurContext);
65}
66
67/// \brief Compute the DeclContext that is associated with the given
68/// scope specifier.
69///
70/// \param SS the C++ scope specifier as it appears in the source
71///
72/// \param EnteringContext when true, we will be entering the context of
73/// this scope specifier, so we can retrieve the declaration context of a
74/// class template or class template partial specialization even if it is
75/// not the current instantiation.
76///
77/// \returns the declaration context represented by the scope specifier @p SS,
78/// or NULL if the declaration context cannot be computed (e.g., because it is
79/// dependent and not the current instantiation).
80DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
81                                      bool EnteringContext) {
82  if (!SS.isSet() || SS.isInvalid())
83    return 0;
84
85  NestedNameSpecifier *NNS
86    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
87  if (NNS->isDependent()) {
88    // If this nested-name-specifier refers to the current
89    // instantiation, return its DeclContext.
90    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
91      return Record;
92
93    if (EnteringContext) {
94      const Type *NNSType = NNS->getAsType();
95      if (!NNSType) {
96        // do nothing, fall out
97      } else if (const TemplateSpecializationType *SpecType
98                   = NNSType->getAs<TemplateSpecializationType>()) {
99        // We are entering the context of the nested name specifier, so try to
100        // match the nested name specifier to either a primary class template
101        // or a class template partial specialization.
102        if (ClassTemplateDecl *ClassTemplate
103              = dyn_cast_or_null<ClassTemplateDecl>(
104                            SpecType->getTemplateName().getAsTemplateDecl())) {
105          QualType ContextType
106            = Context.getCanonicalType(QualType(SpecType, 0));
107
108          // If the type of the nested name specifier is the same as the
109          // injected class name of the named class template, we're entering
110          // into that class template definition.
111          QualType Injected
112            = ClassTemplate->getInjectedClassNameSpecialization();
113          if (Context.hasSameType(Injected, ContextType))
114            return ClassTemplate->getTemplatedDecl();
115
116          // If the type of the nested name specifier is the same as the
117          // type of one of the class template's class template partial
118          // specializations, we're entering into the definition of that
119          // class template partial specialization.
120          if (ClassTemplatePartialSpecializationDecl *PartialSpec
121                = ClassTemplate->findPartialSpecialization(ContextType))
122            return PartialSpec;
123        }
124      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
125        // The nested name specifier refers to a member of a class template.
126        return RecordT->getDecl();
127      }
128    }
129
130    return 0;
131  }
132
133  switch (NNS->getKind()) {
134  case NestedNameSpecifier::Identifier:
135    assert(false && "Dependent nested-name-specifier has no DeclContext");
136    break;
137
138  case NestedNameSpecifier::Namespace:
139    return NNS->getAsNamespace();
140
141  case NestedNameSpecifier::TypeSpec:
142  case NestedNameSpecifier::TypeSpecWithTemplate: {
143    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
144    assert(Tag && "Non-tag type in nested-name-specifier");
145    return Tag->getDecl();
146  } break;
147
148  case NestedNameSpecifier::Global:
149    return Context.getTranslationUnitDecl();
150  }
151
152  // Required to silence a GCC warning.
153  return 0;
154}
155
156bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
157  if (!SS.isSet() || SS.isInvalid())
158    return false;
159
160  NestedNameSpecifier *NNS
161    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
162  return NNS->isDependent();
163}
164
165// \brief Determine whether this C++ scope specifier refers to an
166// unknown specialization, i.e., a dependent type that is not the
167// current instantiation.
168bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
169  if (!isDependentScopeSpecifier(SS))
170    return false;
171
172  NestedNameSpecifier *NNS
173    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
174  return getCurrentInstantiationOf(NNS) == 0;
175}
176
177/// \brief If the given nested name specifier refers to the current
178/// instantiation, return the declaration that corresponds to that
179/// current instantiation (C++0x [temp.dep.type]p1).
180///
181/// \param NNS a dependent nested name specifier.
182CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
183  assert(getLangOptions().CPlusPlus && "Only callable in C++");
184  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
185
186  if (!NNS->getAsType())
187    return 0;
188
189  QualType T = QualType(NNS->getAsType(), 0);
190  return ::getCurrentInstantiationOf(T, CurContext);
191}
192
193/// \brief Require that the context specified by SS be complete.
194///
195/// If SS refers to a type, this routine checks whether the type is
196/// complete enough (or can be made complete enough) for name lookup
197/// into the DeclContext. A type that is not yet completed can be
198/// considered "complete enough" if it is a class/struct/union/enum
199/// that is currently being defined. Or, if we have a type that names
200/// a class template specialization that is not a complete type, we
201/// will attempt to instantiate that class template.
202bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
203                                      DeclContext *DC) {
204  assert(DC != 0 && "given null context");
205
206  if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
207    // If this is a dependent type, then we consider it complete.
208    if (Tag->isDependentContext())
209      return false;
210
211    // If we're currently defining this type, then lookup into the
212    // type is okay: don't complain that it isn't complete yet.
213    const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
214    if (TagT && TagT->isBeingDefined())
215      return false;
216
217    // The type must be complete.
218    if (RequireCompleteType(SS.getRange().getBegin(),
219                            Context.getTypeDeclType(Tag),
220                            PDiag(diag::err_incomplete_nested_name_spec)
221                              << SS.getRange())) {
222      SS.setScopeRep(0);  // Mark the ScopeSpec invalid.
223      return true;
224    }
225  }
226
227  return false;
228}
229
230/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
231/// global scope ('::').
232Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
233                                                     SourceLocation CCLoc) {
234  return NestedNameSpecifier::GlobalSpecifier(Context);
235}
236
237/// \brief Determines whether the given declaration is an valid acceptable
238/// result for name lookup of a nested-name-specifier.
239bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
240  if (!SD)
241    return false;
242
243  // Namespace and namespace aliases are fine.
244  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
245    return true;
246
247  if (!isa<TypeDecl>(SD))
248    return false;
249
250  // Determine whether we have a class (or, in C++0x, an enum) or
251  // a typedef thereof. If so, build the nested-name-specifier.
252  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
253  if (T->isDependentType())
254    return true;
255  else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
256    if (TD->getUnderlyingType()->isRecordType() ||
257        (Context.getLangOptions().CPlusPlus0x &&
258         TD->getUnderlyingType()->isEnumeralType()))
259      return true;
260  } else if (isa<RecordDecl>(SD) ||
261             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
262    return true;
263
264  return false;
265}
266
267/// \brief If the given nested-name-specifier begins with a bare identifier
268/// (e.g., Base::), perform name lookup for that identifier as a
269/// nested-name-specifier within the given scope, and return the result of that
270/// name lookup.
271NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
272  if (!S || !NNS)
273    return 0;
274
275  while (NNS->getPrefix())
276    NNS = NNS->getPrefix();
277
278  if (NNS->getKind() != NestedNameSpecifier::Identifier)
279    return 0;
280
281  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
282                     LookupNestedNameSpecifierName);
283  LookupName(Found, S);
284  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
285
286  if (!Found.isSingleResult())
287    return 0;
288
289  NamedDecl *Result = Found.getFoundDecl();
290  if (isAcceptableNestedNameSpecifier(Result))
291    return Result;
292
293  return 0;
294}
295
296bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
297                                        SourceLocation IdLoc,
298                                        IdentifierInfo &II,
299                                        ParsedType ObjectTypePtr) {
300  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
301  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
302
303  // Determine where to perform name lookup
304  DeclContext *LookupCtx = 0;
305  bool isDependent = false;
306  if (!ObjectType.isNull()) {
307    // This nested-name-specifier occurs in a member access expression, e.g.,
308    // x->B::f, and we are looking into the type of the object.
309    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
310    LookupCtx = computeDeclContext(ObjectType);
311    isDependent = ObjectType->isDependentType();
312  } else if (SS.isSet()) {
313    // This nested-name-specifier occurs after another nested-name-specifier,
314    // so long into the context associated with the prior nested-name-specifier.
315    LookupCtx = computeDeclContext(SS, false);
316    isDependent = isDependentScopeSpecifier(SS);
317    Found.setContextRange(SS.getRange());
318  }
319
320  if (LookupCtx) {
321    // Perform "qualified" name lookup into the declaration context we
322    // computed, which is either the type of the base of a member access
323    // expression or the declaration context associated with a prior
324    // nested-name-specifier.
325
326    // The declaration context must be complete.
327    if (!LookupCtx->isDependentContext() &&
328        RequireCompleteDeclContext(SS, LookupCtx))
329      return false;
330
331    LookupQualifiedName(Found, LookupCtx);
332  } else if (isDependent) {
333    return false;
334  } else {
335    LookupName(Found, S);
336  }
337  Found.suppressDiagnostics();
338
339  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
340    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
341
342  return false;
343}
344
345/// \brief Build a new nested-name-specifier for "identifier::", as described
346/// by ActOnCXXNestedNameSpecifier.
347///
348/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
349/// that it contains an extra parameter \p ScopeLookupResult, which provides
350/// the result of name lookup within the scope of the nested-name-specifier
351/// that was computed at template definition time.
352///
353/// If ErrorRecoveryLookup is true, then this call is used to improve error
354/// recovery.  This means that it should not emit diagnostics, it should
355/// just return null on failure.  It also means it should only return a valid
356/// scope if it *knows* that the result is correct.  It should not return in a
357/// dependent context, for example.
358Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
359                                                    CXXScopeSpec &SS,
360                                                    SourceLocation IdLoc,
361                                                    SourceLocation CCLoc,
362                                                    IdentifierInfo &II,
363                                                    QualType ObjectType,
364                                                  NamedDecl *ScopeLookupResult,
365                                                    bool EnteringContext,
366                                                    bool ErrorRecoveryLookup) {
367  NestedNameSpecifier *Prefix
368    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
369
370  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
371
372  // Determine where to perform name lookup
373  DeclContext *LookupCtx = 0;
374  bool isDependent = false;
375  if (!ObjectType.isNull()) {
376    // This nested-name-specifier occurs in a member access expression, e.g.,
377    // x->B::f, and we are looking into the type of the object.
378    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
379    LookupCtx = computeDeclContext(ObjectType);
380    isDependent = ObjectType->isDependentType();
381  } else if (SS.isSet()) {
382    // This nested-name-specifier occurs after another nested-name-specifier,
383    // so long into the context associated with the prior nested-name-specifier.
384    LookupCtx = computeDeclContext(SS, EnteringContext);
385    isDependent = isDependentScopeSpecifier(SS);
386    Found.setContextRange(SS.getRange());
387  }
388
389
390  bool ObjectTypeSearchedInScope = false;
391  if (LookupCtx) {
392    // Perform "qualified" name lookup into the declaration context we
393    // computed, which is either the type of the base of a member access
394    // expression or the declaration context associated with a prior
395    // nested-name-specifier.
396
397    // The declaration context must be complete.
398    if (!LookupCtx->isDependentContext() &&
399        RequireCompleteDeclContext(SS, LookupCtx))
400      return 0;
401
402    LookupQualifiedName(Found, LookupCtx);
403
404    if (!ObjectType.isNull() && Found.empty()) {
405      // C++ [basic.lookup.classref]p4:
406      //   If the id-expression in a class member access is a qualified-id of
407      //   the form
408      //
409      //        class-name-or-namespace-name::...
410      //
411      //   the class-name-or-namespace-name following the . or -> operator is
412      //   looked up both in the context of the entire postfix-expression and in
413      //   the scope of the class of the object expression. If the name is found
414      //   only in the scope of the class of the object expression, the name
415      //   shall refer to a class-name. If the name is found only in the
416      //   context of the entire postfix-expression, the name shall refer to a
417      //   class-name or namespace-name. [...]
418      //
419      // Qualified name lookup into a class will not find a namespace-name,
420      // so we do not need to diagnoste that case specifically. However,
421      // this qualified name lookup may find nothing. In that case, perform
422      // unqualified name lookup in the given scope (if available) or
423      // reconstruct the result from when name lookup was performed at template
424      // definition time.
425      if (S)
426        LookupName(Found, S);
427      else if (ScopeLookupResult)
428        Found.addDecl(ScopeLookupResult);
429
430      ObjectTypeSearchedInScope = true;
431    }
432  } else if (!isDependent) {
433    // Perform unqualified name lookup in the current scope.
434    LookupName(Found, S);
435  }
436
437  // If we performed lookup into a dependent context and did not find anything,
438  // that's fine: just build a dependent nested-name-specifier.
439  if (Found.empty() && isDependent &&
440      !(LookupCtx && LookupCtx->isRecord() &&
441        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
442         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
443    // Don't speculate if we're just trying to improve error recovery.
444    if (ErrorRecoveryLookup)
445      return 0;
446
447    // We were not able to compute the declaration context for a dependent
448    // base object type or prior nested-name-specifier, so this
449    // nested-name-specifier refers to an unknown specialization. Just build
450    // a dependent nested-name-specifier.
451    if (!Prefix)
452      return NestedNameSpecifier::Create(Context, &II);
453
454    return NestedNameSpecifier::Create(Context, Prefix, &II);
455  }
456
457  // FIXME: Deal with ambiguities cleanly.
458
459  if (Found.empty() && !ErrorRecoveryLookup) {
460    // We haven't found anything, and we're not recovering from a
461    // different kind of error, so look for typos.
462    DeclarationName Name = Found.getLookupName();
463    if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext,
464                    CTC_NoKeywords) &&
465        Found.isSingleResult() &&
466        isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
467      if (LookupCtx)
468        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
469          << Name << LookupCtx << Found.getLookupName() << SS.getRange()
470          << FixItHint::CreateReplacement(Found.getNameLoc(),
471                                          Found.getLookupName().getAsString());
472      else
473        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
474          << Name << Found.getLookupName()
475          << FixItHint::CreateReplacement(Found.getNameLoc(),
476                                          Found.getLookupName().getAsString());
477
478      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
479        Diag(ND->getLocation(), diag::note_previous_decl)
480          << ND->getDeclName();
481    } else {
482      Found.clear();
483      Found.setLookupName(&II);
484    }
485  }
486
487  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
488  if (isAcceptableNestedNameSpecifier(SD)) {
489    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
490      // C++ [basic.lookup.classref]p4:
491      //   [...] If the name is found in both contexts, the
492      //   class-name-or-namespace-name shall refer to the same entity.
493      //
494      // We already found the name in the scope of the object. Now, look
495      // into the current scope (the scope of the postfix-expression) to
496      // see if we can find the same name there. As above, if there is no
497      // scope, reconstruct the result from the template instantiation itself.
498      NamedDecl *OuterDecl;
499      if (S) {
500        LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName);
501        LookupName(FoundOuter, S);
502        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
503      } else
504        OuterDecl = ScopeLookupResult;
505
506      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
507          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
508          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
509           !Context.hasSameType(
510                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
511                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
512             if (ErrorRecoveryLookup)
513               return 0;
514
515             Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
516               << &II;
517             Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
518               << ObjectType;
519             Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
520
521             // Fall through so that we'll pick the name we found in the object
522             // type, since that's probably what the user wanted anyway.
523           }
524    }
525
526    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
527      return NestedNameSpecifier::Create(Context, Prefix, Namespace);
528
529    // FIXME: It would be nice to maintain the namespace alias name, then
530    // see through that alias when resolving the nested-name-specifier down to
531    // a declaration context.
532    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
533      return NestedNameSpecifier::Create(Context, Prefix,
534                                         Alias->getNamespace());
535
536    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
537    return NestedNameSpecifier::Create(Context, Prefix, false,
538                                       T.getTypePtr());
539  }
540
541  // Otherwise, we have an error case.  If we don't want diagnostics, just
542  // return an error now.
543  if (ErrorRecoveryLookup)
544    return 0;
545
546  // If we didn't find anything during our lookup, try again with
547  // ordinary name lookup, which can help us produce better error
548  // messages.
549  if (Found.empty()) {
550    Found.clear(LookupOrdinaryName);
551    LookupName(Found, S);
552  }
553
554  unsigned DiagID;
555  if (!Found.empty())
556    DiagID = diag::err_expected_class_or_namespace;
557  else if (SS.isSet()) {
558    Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
559    return 0;
560  } else
561    DiagID = diag::err_undeclared_var_use;
562
563  if (SS.isSet())
564    Diag(IdLoc, DiagID) << &II << SS.getRange();
565  else
566    Diag(IdLoc, DiagID) << &II;
567
568  return 0;
569}
570
571/// ActOnCXXNestedNameSpecifier - Called during parsing of a
572/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
573/// we want to resolve "bar::". 'SS' is empty or the previously parsed
574/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
575/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
576/// Returns a CXXScopeTy* object representing the C++ scope.
577Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
578                                                    CXXScopeSpec &SS,
579                                                    SourceLocation IdLoc,
580                                                    SourceLocation CCLoc,
581                                                    IdentifierInfo &II,
582                                                    ParsedType ObjectTypePtr,
583                                                    bool EnteringContext) {
584  return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
585                                     GetTypeFromParser(ObjectTypePtr),
586                                     /*ScopeLookupResult=*/0, EnteringContext,
587                                     false);
588}
589
590/// IsInvalidUnlessNestedName - This method is used for error recovery
591/// purposes to determine whether the specified identifier is only valid as
592/// a nested name specifier, for example a namespace name.  It is
593/// conservatively correct to always return false from this method.
594///
595/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
596bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
597                                     IdentifierInfo &II, ParsedType ObjectType,
598                                     bool EnteringContext) {
599  return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(),
600                                     II, GetTypeFromParser(ObjectType),
601                                     /*ScopeLookupResult=*/0, EnteringContext,
602                                     true);
603}
604
605Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
606                                                    const CXXScopeSpec &SS,
607                                                    ParsedType Ty,
608                                                    SourceRange TypeRange,
609                                                    SourceLocation CCLoc) {
610  NestedNameSpecifier *Prefix = SS.getScopeRep();
611  QualType T = GetTypeFromParser(Ty);
612  return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
613                                     T.getTypePtr());
614}
615
616bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
617  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
618
619  NestedNameSpecifier *Qualifier =
620    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
621
622  // There are only two places a well-formed program may qualify a
623  // declarator: first, when defining a namespace or class member
624  // out-of-line, and second, when naming an explicitly-qualified
625  // friend function.  The latter case is governed by
626  // C++03 [basic.lookup.unqual]p10:
627  //   In a friend declaration naming a member function, a name used
628  //   in the function declarator and not part of a template-argument
629  //   in a template-id is first looked up in the scope of the member
630  //   function's class. If it is not found, or if the name is part of
631  //   a template-argument in a template-id, the look up is as
632  //   described for unqualified names in the definition of the class
633  //   granting friendship.
634  // i.e. we don't push a scope unless it's a class member.
635
636  switch (Qualifier->getKind()) {
637  case NestedNameSpecifier::Global:
638  case NestedNameSpecifier::Namespace:
639    // These are always namespace scopes.  We never want to enter a
640    // namespace scope from anything but a file context.
641    return CurContext->getRedeclContext()->isFileContext();
642
643  case NestedNameSpecifier::Identifier:
644  case NestedNameSpecifier::TypeSpec:
645  case NestedNameSpecifier::TypeSpecWithTemplate:
646    // These are never namespace scopes.
647    return true;
648  }
649
650  // Silence bogus warning.
651  return false;
652}
653
654/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
655/// scope or nested-name-specifier) is parsed, part of a declarator-id.
656/// After this method is called, according to [C++ 3.4.3p3], names should be
657/// looked up in the declarator-id's scope, until the declarator is parsed and
658/// ActOnCXXExitDeclaratorScope is called.
659/// The 'SS' should be a non-empty valid CXXScopeSpec.
660bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
661  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
662
663  if (SS.isInvalid()) return true;
664
665  DeclContext *DC = computeDeclContext(SS, true);
666  if (!DC) return true;
667
668  // Before we enter a declarator's context, we need to make sure that
669  // it is a complete declaration context.
670  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
671    return true;
672
673  EnterDeclaratorContext(S, DC);
674
675  // Rebuild the nested name specifier for the new scope.
676  if (DC->isDependentContext())
677    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
678
679  return false;
680}
681
682/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
683/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
684/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
685/// Used to indicate that names should revert to being looked up in the
686/// defining scope.
687void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
688  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
689  if (SS.isInvalid())
690    return;
691  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
692         "exiting declarator scope we never really entered");
693  ExitDeclaratorContext(S);
694}
695