SemaCXXScopeSpec.cpp revision 198954
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/NestedNameSpecifier.h"
19#include "clang/Basic/PartialDiagnostic.h"
20#include "clang/Parse/DeclSpec.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24
25/// \brief Find the current instantiation that associated with the given type.
26static CXXRecordDecl *
27getCurrentInstantiationOf(ASTContext &Context, DeclContext *CurContext,
28                          QualType T) {
29  if (T.isNull())
30    return 0;
31
32  T = Context.getCanonicalType(T);
33
34  for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getParent()) {
35    // If we've hit a namespace or the global scope, then the
36    // nested-name-specifier can't refer to the current instantiation.
37    if (Ctx->isFileContext())
38      return 0;
39
40    // Skip non-class contexts.
41    CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
42    if (!Record)
43      continue;
44
45    // If this record type is not dependent,
46    if (!Record->isDependentType())
47      return 0;
48
49    // C++ [temp.dep.type]p1:
50    //
51    //   In the definition of a class template, a nested class of a
52    //   class template, a member of a class template, or a member of a
53    //   nested class of a class template, a name refers to the current
54    //   instantiation if it is
55    //     -- the injected-class-name (9) of the class template or
56    //        nested class,
57    //     -- in the definition of a primary class template, the name
58    //        of the class template followed by the template argument
59    //        list of the primary template (as described below)
60    //        enclosed in <>,
61    //     -- in the definition of a nested class of a class template,
62    //        the name of the nested class referenced as a member of
63    //        the current instantiation, or
64    //     -- in the definition of a partial specialization, the name
65    //        of the class template followed by the template argument
66    //        list of the partial specialization enclosed in <>. If
67    //        the nth template parameter is a parameter pack, the nth
68    //        template argument is a pack expansion (14.6.3) whose
69    //        pattern is the name of the parameter pack.
70    //        (FIXME: parameter packs)
71    //
72    // All of these options come down to having the
73    // nested-name-specifier type that is equivalent to the
74    // injected-class-name of one of the types that is currently in
75    // our context.
76    if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T)
77      return Record;
78
79    if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) {
80      QualType InjectedClassName
81        = Template->getInjectedClassNameType(Context);
82      if (T == Context.getCanonicalType(InjectedClassName))
83        return Template->getTemplatedDecl();
84    }
85    // FIXME: check for class template partial specializations
86  }
87
88  return 0;
89}
90
91/// \brief Compute the DeclContext that is associated with the given type.
92///
93/// \param T the type for which we are attempting to find a DeclContext.
94///
95/// \returns the declaration context represented by the type T,
96/// or NULL if the declaration context cannot be computed (e.g., because it is
97/// dependent and not the current instantiation).
98DeclContext *Sema::computeDeclContext(QualType T) {
99  if (const TagType *Tag = T->getAs<TagType>())
100    return Tag->getDecl();
101
102  return ::getCurrentInstantiationOf(Context, CurContext, T);
103}
104
105/// \brief Compute the DeclContext that is associated with the given
106/// scope specifier.
107///
108/// \param SS the C++ scope specifier as it appears in the source
109///
110/// \param EnteringContext when true, we will be entering the context of
111/// this scope specifier, so we can retrieve the declaration context of a
112/// class template or class template partial specialization even if it is
113/// not the current instantiation.
114///
115/// \returns the declaration context represented by the scope specifier @p SS,
116/// or NULL if the declaration context cannot be computed (e.g., because it is
117/// dependent and not the current instantiation).
118DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
119                                      bool EnteringContext) {
120  if (!SS.isSet() || SS.isInvalid())
121    return 0;
122
123  NestedNameSpecifier *NNS
124    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
125  if (NNS->isDependent()) {
126    // If this nested-name-specifier refers to the current
127    // instantiation, return its DeclContext.
128    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
129      return Record;
130
131    if (EnteringContext) {
132      if (const TemplateSpecializationType *SpecType
133            = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
134        // We are entering the context of the nested name specifier, so try to
135        // match the nested name specifier to either a primary class template
136        // or a class template partial specialization.
137        if (ClassTemplateDecl *ClassTemplate
138              = dyn_cast_or_null<ClassTemplateDecl>(
139                            SpecType->getTemplateName().getAsTemplateDecl())) {
140          QualType ContextType
141            = Context.getCanonicalType(QualType(SpecType, 0));
142
143          // If the type of the nested name specifier is the same as the
144          // injected class name of the named class template, we're entering
145          // into that class template definition.
146          QualType Injected = ClassTemplate->getInjectedClassNameType(Context);
147          if (Context.hasSameType(Injected, ContextType))
148            return ClassTemplate->getTemplatedDecl();
149
150          // If the type of the nested name specifier is the same as the
151          // type of one of the class template's class template partial
152          // specializations, we're entering into the definition of that
153          // class template partial specialization.
154          if (ClassTemplatePartialSpecializationDecl *PartialSpec
155                = ClassTemplate->findPartialSpecialization(ContextType))
156            return PartialSpec;
157        }
158      } else if (const RecordType *RecordT
159                   = dyn_cast_or_null<RecordType>(NNS->getAsType())) {
160        // The nested name specifier refers to a member of a class template.
161        return RecordT->getDecl();
162      }
163    }
164
165    return 0;
166  }
167
168  switch (NNS->getKind()) {
169  case NestedNameSpecifier::Identifier:
170    assert(false && "Dependent nested-name-specifier has no DeclContext");
171    break;
172
173  case NestedNameSpecifier::Namespace:
174    return NNS->getAsNamespace();
175
176  case NestedNameSpecifier::TypeSpec:
177  case NestedNameSpecifier::TypeSpecWithTemplate: {
178    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
179    assert(Tag && "Non-tag type in nested-name-specifier");
180    return Tag->getDecl();
181  } break;
182
183  case NestedNameSpecifier::Global:
184    return Context.getTranslationUnitDecl();
185  }
186
187  // Required to silence a GCC warning.
188  return 0;
189}
190
191bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
192  if (!SS.isSet() || SS.isInvalid())
193    return false;
194
195  NestedNameSpecifier *NNS
196    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197  return NNS->isDependent();
198}
199
200// \brief Determine whether this C++ scope specifier refers to an
201// unknown specialization, i.e., a dependent type that is not the
202// current instantiation.
203bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
204  if (!isDependentScopeSpecifier(SS))
205    return false;
206
207  NestedNameSpecifier *NNS
208    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
209  return getCurrentInstantiationOf(NNS) == 0;
210}
211
212/// \brief If the given nested name specifier refers to the current
213/// instantiation, return the declaration that corresponds to that
214/// current instantiation (C++0x [temp.dep.type]p1).
215///
216/// \param NNS a dependent nested name specifier.
217CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
218  assert(getLangOptions().CPlusPlus && "Only callable in C++");
219  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
220
221  if (!NNS->getAsType())
222    return 0;
223
224  QualType T = QualType(NNS->getAsType(), 0);
225  return ::getCurrentInstantiationOf(Context, CurContext, T);
226}
227
228/// \brief Require that the context specified by SS be complete.
229///
230/// If SS refers to a type, this routine checks whether the type is
231/// complete enough (or can be made complete enough) for name lookup
232/// into the DeclContext. A type that is not yet completed can be
233/// considered "complete enough" if it is a class/struct/union/enum
234/// that is currently being defined. Or, if we have a type that names
235/// a class template specialization that is not a complete type, we
236/// will attempt to instantiate that class template.
237bool Sema::RequireCompleteDeclContext(const CXXScopeSpec &SS) {
238  if (!SS.isSet() || SS.isInvalid())
239    return false;
240
241  DeclContext *DC = computeDeclContext(SS, true);
242  if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
243    // If we're currently defining this type, then lookup into the
244    // type is okay: don't complain that it isn't complete yet.
245    const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
246    if (TagT->isBeingDefined())
247      return false;
248
249    // The type must be complete.
250    return RequireCompleteType(SS.getRange().getBegin(),
251                               Context.getTypeDeclType(Tag),
252                               PDiag(diag::err_incomplete_nested_name_spec)
253                                 << SS.getRange());
254  }
255
256  return false;
257}
258
259/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
260/// global scope ('::').
261Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
262                                                     SourceLocation CCLoc) {
263  return NestedNameSpecifier::GlobalSpecifier(Context);
264}
265
266/// \brief Determines whether the given declaration is an valid acceptable
267/// result for name lookup of a nested-name-specifier.
268bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
269  if (!SD)
270    return false;
271
272  // Namespace and namespace aliases are fine.
273  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
274    return true;
275
276  if (!isa<TypeDecl>(SD))
277    return false;
278
279  // Determine whether we have a class (or, in C++0x, an enum) or
280  // a typedef thereof. If so, build the nested-name-specifier.
281  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
282  if (T->isDependentType())
283    return true;
284  else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
285    if (TD->getUnderlyingType()->isRecordType() ||
286        (Context.getLangOptions().CPlusPlus0x &&
287         TD->getUnderlyingType()->isEnumeralType()))
288      return true;
289  } else if (isa<RecordDecl>(SD) ||
290             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
291    return true;
292
293  return false;
294}
295
296/// \brief If the given nested-name-specifier begins with a bare identifier
297/// (e.g., Base::), perform name lookup for that identifier as a
298/// nested-name-specifier within the given scope, and return the result of that
299/// name lookup.
300NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
301  if (!S || !NNS)
302    return 0;
303
304  while (NNS->getPrefix())
305    NNS = NNS->getPrefix();
306
307  if (NNS->getKind() != NestedNameSpecifier::Identifier)
308    return 0;
309
310  LookupResult Found;
311  LookupName(Found, S, NNS->getAsIdentifier(), LookupNestedNameSpecifierName);
312  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
313
314  NamedDecl *Result = Found.getAsSingleDecl(Context);
315  if (isAcceptableNestedNameSpecifier(Result))
316    return Result;
317
318  return 0;
319}
320
321/// \brief Build a new nested-name-specifier for "identifier::", as described
322/// by ActOnCXXNestedNameSpecifier.
323///
324/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
325/// that it contains an extra parameter \p ScopeLookupResult, which provides
326/// the result of name lookup within the scope of the nested-name-specifier
327/// that was computed at template definitino time.
328Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
329                                                    const CXXScopeSpec &SS,
330                                                    SourceLocation IdLoc,
331                                                    SourceLocation CCLoc,
332                                                    IdentifierInfo &II,
333                                                    QualType ObjectType,
334                                                  NamedDecl *ScopeLookupResult,
335                                                    bool EnteringContext) {
336  NestedNameSpecifier *Prefix
337    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
338
339  // Determine where to perform name lookup
340  DeclContext *LookupCtx = 0;
341  bool isDependent = false;
342  if (!ObjectType.isNull()) {
343    // This nested-name-specifier occurs in a member access expression, e.g.,
344    // x->B::f, and we are looking into the type of the object.
345    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
346    LookupCtx = computeDeclContext(ObjectType);
347    isDependent = ObjectType->isDependentType();
348  } else if (SS.isSet()) {
349    // This nested-name-specifier occurs after another nested-name-specifier,
350    // so long into the context associated with the prior nested-name-specifier.
351    LookupCtx = computeDeclContext(SS, EnteringContext);
352    isDependent = isDependentScopeSpecifier(SS);
353  }
354
355  LookupResult Found;
356  bool ObjectTypeSearchedInScope = false;
357  if (LookupCtx) {
358    // Perform "qualified" name lookup into the declaration context we
359    // computed, which is either the type of the base of a member access
360    // expression or the declaration context associated with a prior
361    // nested-name-specifier.
362
363    // The declaration context must be complete.
364    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
365      return 0;
366
367    LookupQualifiedName(Found, LookupCtx, &II, LookupNestedNameSpecifierName,
368                        false);
369
370    if (!ObjectType.isNull() && Found.getKind() == LookupResult::NotFound) {
371      // C++ [basic.lookup.classref]p4:
372      //   If the id-expression in a class member access is a qualified-id of
373      //   the form
374      //
375      //        class-name-or-namespace-name::...
376      //
377      //   the class-name-or-namespace-name following the . or -> operator is
378      //   looked up both in the context of the entire postfix-expression and in
379      //   the scope of the class of the object expression. If the name is found
380      //   only in the scope of the class of the object expression, the name
381      //   shall refer to a class-name. If the name is found only in the
382      //   context of the entire postfix-expression, the name shall refer to a
383      //   class-name or namespace-name. [...]
384      //
385      // Qualified name lookup into a class will not find a namespace-name,
386      // so we do not need to diagnoste that case specifically. However,
387      // this qualified name lookup may find nothing. In that case, perform
388      // unqualified name lookup in the given scope (if available) or
389      // reconstruct the result from when name lookup was performed at template
390      // definition time.
391      if (S)
392        LookupName(Found, S, &II, LookupNestedNameSpecifierName);
393      else if (ScopeLookupResult)
394        Found.addDecl(ScopeLookupResult);
395
396      ObjectTypeSearchedInScope = true;
397    }
398  } else if (isDependent) {
399    // We were not able to compute the declaration context for a dependent
400    // base object type or prior nested-name-specifier, so this
401    // nested-name-specifier refers to an unknown specialization. Just build
402    // a dependent nested-name-specifier.
403    if (!Prefix)
404      return NestedNameSpecifier::Create(Context, &II);
405
406    return NestedNameSpecifier::Create(Context, Prefix, &II);
407  } else {
408    // Perform unqualified name lookup in the current scope.
409    LookupName(Found, S, &II, LookupNestedNameSpecifierName);
410  }
411
412  // FIXME: Deal with ambiguities cleanly.
413  NamedDecl *SD = Found.getAsSingleDecl(Context);
414  if (isAcceptableNestedNameSpecifier(SD)) {
415    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
416      // C++ [basic.lookup.classref]p4:
417      //   [...] If the name is found in both contexts, the
418      //   class-name-or-namespace-name shall refer to the same entity.
419      //
420      // We already found the name in the scope of the object. Now, look
421      // into the current scope (the scope of the postfix-expression) to
422      // see if we can find the same name there. As above, if there is no
423      // scope, reconstruct the result from the template instantiation itself.
424      NamedDecl *OuterDecl;
425      if (S) {
426        LookupResult FoundOuter;
427        LookupName(FoundOuter, S, &II, LookupNestedNameSpecifierName);
428        // FIXME: Handle ambiguities!
429        OuterDecl = FoundOuter.getAsSingleDecl(Context);
430      } else
431        OuterDecl = ScopeLookupResult;
432
433      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
434          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
435          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
436           !Context.hasSameType(
437                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
438                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
439             Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
440               << &II;
441             Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
442               << ObjectType;
443             Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
444
445             // Fall through so that we'll pick the name we found in the object type,
446             // since that's probably what the user wanted anyway.
447           }
448    }
449
450    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
451      return NestedNameSpecifier::Create(Context, Prefix, Namespace);
452
453    // FIXME: It would be nice to maintain the namespace alias name, then
454    // see through that alias when resolving the nested-name-specifier down to
455    // a declaration context.
456    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
457      return NestedNameSpecifier::Create(Context, Prefix,
458
459                                         Alias->getNamespace());
460
461    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
462    return NestedNameSpecifier::Create(Context, Prefix, false,
463                                       T.getTypePtr());
464  }
465
466  // If we didn't find anything during our lookup, try again with
467  // ordinary name lookup, which can help us produce better error
468  // messages.
469  if (!SD) {
470    Found.clear();
471    LookupName(Found, S, &II, LookupOrdinaryName);
472    SD = Found.getAsSingleDecl(Context);
473  }
474
475  unsigned DiagID;
476  if (SD)
477    DiagID = diag::err_expected_class_or_namespace;
478  else if (SS.isSet()) {
479    Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
480    return 0;
481  } else
482    DiagID = diag::err_undeclared_var_use;
483
484  if (SS.isSet())
485    Diag(IdLoc, DiagID) << &II << SS.getRange();
486  else
487    Diag(IdLoc, DiagID) << &II;
488
489  return 0;
490}
491
492/// ActOnCXXNestedNameSpecifier - Called during parsing of a
493/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
494/// we want to resolve "bar::". 'SS' is empty or the previously parsed
495/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
496/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
497/// Returns a CXXScopeTy* object representing the C++ scope.
498Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
499                                                    const CXXScopeSpec &SS,
500                                                    SourceLocation IdLoc,
501                                                    SourceLocation CCLoc,
502                                                    IdentifierInfo &II,
503                                                    TypeTy *ObjectTypePtr,
504                                                    bool EnteringContext) {
505  return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
506                                     QualType::getFromOpaquePtr(ObjectTypePtr),
507                                     /*ScopeLookupResult=*/0, EnteringContext);
508}
509
510Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
511                                                    const CXXScopeSpec &SS,
512                                                    TypeTy *Ty,
513                                                    SourceRange TypeRange,
514                                                    SourceLocation CCLoc) {
515  NestedNameSpecifier *Prefix
516    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
517  QualType T = GetTypeFromParser(Ty);
518  return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
519                                     T.getTypePtr());
520}
521
522/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
523/// scope or nested-name-specifier) is parsed, part of a declarator-id.
524/// After this method is called, according to [C++ 3.4.3p3], names should be
525/// looked up in the declarator-id's scope, until the declarator is parsed and
526/// ActOnCXXExitDeclaratorScope is called.
527/// The 'SS' should be a non-empty valid CXXScopeSpec.
528bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
529  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
530  if (DeclContext *DC = computeDeclContext(SS, true)) {
531    // Before we enter a declarator's context, we need to make sure that
532    // it is a complete declaration context.
533    if (!DC->isDependentContext() && RequireCompleteDeclContext(SS))
534      return true;
535
536    EnterDeclaratorContext(S, DC);
537  }
538
539  return false;
540}
541
542/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
543/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
544/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
545/// Used to indicate that names should revert to being looked up in the
546/// defining scope.
547void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
548  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
549  if (SS.isInvalid())
550    return;
551  if (computeDeclContext(SS, true))
552    ExitDeclaratorContext(S);
553}
554