SemaCXXScopeSpec.cpp revision 223017
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Sema/DeclSpec.h"
22#include "TypeLocBuilder.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace clang;
26
27/// \brief Find the current instantiation that associated with the given type.
28static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
29                                                DeclContext *CurContext) {
30  if (T.isNull())
31    return 0;
32
33  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
34  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
35    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
36    if (!T->isDependentType())
37      return Record;
38
39    // This may be a member of a class template or class template partial
40    // specialization. If it's part of the current semantic context, then it's
41    // an injected-class-name;
42    for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
43      if (CurContext->Equals(Record))
44        return Record;
45
46    return 0;
47  } else if (isa<InjectedClassNameType>(Ty))
48    return cast<InjectedClassNameType>(Ty)->getDecl();
49  else
50    return 0;
51}
52
53/// \brief Compute the DeclContext that is associated with the given type.
54///
55/// \param T the type for which we are attempting to find a DeclContext.
56///
57/// \returns the declaration context represented by the type T,
58/// or NULL if the declaration context cannot be computed (e.g., because it is
59/// dependent and not the current instantiation).
60DeclContext *Sema::computeDeclContext(QualType T) {
61  if (!T->isDependentType())
62    if (const TagType *Tag = T->getAs<TagType>())
63      return Tag->getDecl();
64
65  return ::getCurrentInstantiationOf(T, CurContext);
66}
67
68/// \brief Compute the DeclContext that is associated with the given
69/// scope specifier.
70///
71/// \param SS the C++ scope specifier as it appears in the source
72///
73/// \param EnteringContext when true, we will be entering the context of
74/// this scope specifier, so we can retrieve the declaration context of a
75/// class template or class template partial specialization even if it is
76/// not the current instantiation.
77///
78/// \returns the declaration context represented by the scope specifier @p SS,
79/// or NULL if the declaration context cannot be computed (e.g., because it is
80/// dependent and not the current instantiation).
81DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
82                                      bool EnteringContext) {
83  if (!SS.isSet() || SS.isInvalid())
84    return 0;
85
86  NestedNameSpecifier *NNS
87    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
88  if (NNS->isDependent()) {
89    // If this nested-name-specifier refers to the current
90    // instantiation, return its DeclContext.
91    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
92      return Record;
93
94    if (EnteringContext) {
95      const Type *NNSType = NNS->getAsType();
96      if (!NNSType) {
97        return 0;
98      }
99
100      // Look through type alias templates, per C++0x [temp.dep.type]p1.
101      NNSType = Context.getCanonicalType(NNSType);
102      if (const TemplateSpecializationType *SpecType
103            = NNSType->getAs<TemplateSpecializationType>()) {
104        // We are entering the context of the nested name specifier, so try to
105        // match the nested name specifier to either a primary class template
106        // or a class template partial specialization.
107        if (ClassTemplateDecl *ClassTemplate
108              = dyn_cast_or_null<ClassTemplateDecl>(
109                            SpecType->getTemplateName().getAsTemplateDecl())) {
110          QualType ContextType
111            = Context.getCanonicalType(QualType(SpecType, 0));
112
113          // If the type of the nested name specifier is the same as the
114          // injected class name of the named class template, we're entering
115          // into that class template definition.
116          QualType Injected
117            = ClassTemplate->getInjectedClassNameSpecialization();
118          if (Context.hasSameType(Injected, ContextType))
119            return ClassTemplate->getTemplatedDecl();
120
121          // If the type of the nested name specifier is the same as the
122          // type of one of the class template's class template partial
123          // specializations, we're entering into the definition of that
124          // class template partial specialization.
125          if (ClassTemplatePartialSpecializationDecl *PartialSpec
126                = ClassTemplate->findPartialSpecialization(ContextType))
127            return PartialSpec;
128        }
129      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
130        // The nested name specifier refers to a member of a class template.
131        return RecordT->getDecl();
132      }
133    }
134
135    return 0;
136  }
137
138  switch (NNS->getKind()) {
139  case NestedNameSpecifier::Identifier:
140    assert(false && "Dependent nested-name-specifier has no DeclContext");
141    break;
142
143  case NestedNameSpecifier::Namespace:
144    return NNS->getAsNamespace();
145
146  case NestedNameSpecifier::NamespaceAlias:
147    return NNS->getAsNamespaceAlias()->getNamespace();
148
149  case NestedNameSpecifier::TypeSpec:
150  case NestedNameSpecifier::TypeSpecWithTemplate: {
151    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
152    assert(Tag && "Non-tag type in nested-name-specifier");
153    return Tag->getDecl();
154  } break;
155
156  case NestedNameSpecifier::Global:
157    return Context.getTranslationUnitDecl();
158  }
159
160  // Required to silence a GCC warning.
161  return 0;
162}
163
164bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
165  if (!SS.isSet() || SS.isInvalid())
166    return false;
167
168  NestedNameSpecifier *NNS
169    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
170  return NNS->isDependent();
171}
172
173// \brief Determine whether this C++ scope specifier refers to an
174// unknown specialization, i.e., a dependent type that is not the
175// current instantiation.
176bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
177  if (!isDependentScopeSpecifier(SS))
178    return false;
179
180  NestedNameSpecifier *NNS
181    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182  return getCurrentInstantiationOf(NNS) == 0;
183}
184
185/// \brief If the given nested name specifier refers to the current
186/// instantiation, return the declaration that corresponds to that
187/// current instantiation (C++0x [temp.dep.type]p1).
188///
189/// \param NNS a dependent nested name specifier.
190CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
191  assert(getLangOptions().CPlusPlus && "Only callable in C++");
192  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
193
194  if (!NNS->getAsType())
195    return 0;
196
197  QualType T = QualType(NNS->getAsType(), 0);
198  return ::getCurrentInstantiationOf(T, CurContext);
199}
200
201/// \brief Require that the context specified by SS be complete.
202///
203/// If SS refers to a type, this routine checks whether the type is
204/// complete enough (or can be made complete enough) for name lookup
205/// into the DeclContext. A type that is not yet completed can be
206/// considered "complete enough" if it is a class/struct/union/enum
207/// that is currently being defined. Or, if we have a type that names
208/// a class template specialization that is not a complete type, we
209/// will attempt to instantiate that class template.
210bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
211                                      DeclContext *DC) {
212  assert(DC != 0 && "given null context");
213
214  if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
215    // If this is a dependent type, then we consider it complete.
216    if (Tag->isDependentContext())
217      return false;
218
219    // If we're currently defining this type, then lookup into the
220    // type is okay: don't complain that it isn't complete yet.
221    const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
222    if (TagT && TagT->isBeingDefined())
223      return false;
224
225    // The type must be complete.
226    if (RequireCompleteType(SS.getRange().getBegin(),
227                            Context.getTypeDeclType(Tag),
228                            PDiag(diag::err_incomplete_nested_name_spec)
229                              << SS.getRange())) {
230      SS.SetInvalid(SS.getRange());
231      return true;
232    }
233  }
234
235  return false;
236}
237
238bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
239                                        CXXScopeSpec &SS) {
240  SS.MakeGlobal(Context, CCLoc);
241  return false;
242}
243
244/// \brief Determines whether the given declaration is an valid acceptable
245/// result for name lookup of a nested-name-specifier.
246bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
247  if (!SD)
248    return false;
249
250  // Namespace and namespace aliases are fine.
251  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
252    return true;
253
254  if (!isa<TypeDecl>(SD))
255    return false;
256
257  // Determine whether we have a class (or, in C++0x, an enum) or
258  // a typedef thereof. If so, build the nested-name-specifier.
259  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
260  if (T->isDependentType())
261    return true;
262  else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
263    if (TD->getUnderlyingType()->isRecordType() ||
264        (Context.getLangOptions().CPlusPlus0x &&
265         TD->getUnderlyingType()->isEnumeralType()))
266      return true;
267  } else if (isa<RecordDecl>(SD) ||
268             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
269    return true;
270
271  return false;
272}
273
274/// \brief If the given nested-name-specifier begins with a bare identifier
275/// (e.g., Base::), perform name lookup for that identifier as a
276/// nested-name-specifier within the given scope, and return the result of that
277/// name lookup.
278NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
279  if (!S || !NNS)
280    return 0;
281
282  while (NNS->getPrefix())
283    NNS = NNS->getPrefix();
284
285  if (NNS->getKind() != NestedNameSpecifier::Identifier)
286    return 0;
287
288  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
289                     LookupNestedNameSpecifierName);
290  LookupName(Found, S);
291  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
292
293  if (!Found.isSingleResult())
294    return 0;
295
296  NamedDecl *Result = Found.getFoundDecl();
297  if (isAcceptableNestedNameSpecifier(Result))
298    return Result;
299
300  return 0;
301}
302
303bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
304                                        SourceLocation IdLoc,
305                                        IdentifierInfo &II,
306                                        ParsedType ObjectTypePtr) {
307  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
308  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
309
310  // Determine where to perform name lookup
311  DeclContext *LookupCtx = 0;
312  bool isDependent = false;
313  if (!ObjectType.isNull()) {
314    // This nested-name-specifier occurs in a member access expression, e.g.,
315    // x->B::f, and we are looking into the type of the object.
316    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
317    LookupCtx = computeDeclContext(ObjectType);
318    isDependent = ObjectType->isDependentType();
319  } else if (SS.isSet()) {
320    // This nested-name-specifier occurs after another nested-name-specifier,
321    // so long into the context associated with the prior nested-name-specifier.
322    LookupCtx = computeDeclContext(SS, false);
323    isDependent = isDependentScopeSpecifier(SS);
324    Found.setContextRange(SS.getRange());
325  }
326
327  if (LookupCtx) {
328    // Perform "qualified" name lookup into the declaration context we
329    // computed, which is either the type of the base of a member access
330    // expression or the declaration context associated with a prior
331    // nested-name-specifier.
332
333    // The declaration context must be complete.
334    if (!LookupCtx->isDependentContext() &&
335        RequireCompleteDeclContext(SS, LookupCtx))
336      return false;
337
338    LookupQualifiedName(Found, LookupCtx);
339  } else if (isDependent) {
340    return false;
341  } else {
342    LookupName(Found, S);
343  }
344  Found.suppressDiagnostics();
345
346  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
347    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
348
349  return false;
350}
351
352/// \brief Build a new nested-name-specifier for "identifier::", as described
353/// by ActOnCXXNestedNameSpecifier.
354///
355/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
356/// that it contains an extra parameter \p ScopeLookupResult, which provides
357/// the result of name lookup within the scope of the nested-name-specifier
358/// that was computed at template definition time.
359///
360/// If ErrorRecoveryLookup is true, then this call is used to improve error
361/// recovery.  This means that it should not emit diagnostics, it should
362/// just return true on failure.  It also means it should only return a valid
363/// scope if it *knows* that the result is correct.  It should not return in a
364/// dependent context, for example. Nor will it extend \p SS with the scope
365/// specifier.
366bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
367                                       IdentifierInfo &Identifier,
368                                       SourceLocation IdentifierLoc,
369                                       SourceLocation CCLoc,
370                                       QualType ObjectType,
371                                       bool EnteringContext,
372                                       CXXScopeSpec &SS,
373                                       NamedDecl *ScopeLookupResult,
374                                       bool ErrorRecoveryLookup) {
375  LookupResult Found(*this, &Identifier, IdentifierLoc,
376                     LookupNestedNameSpecifierName);
377
378  // Determine where to perform name lookup
379  DeclContext *LookupCtx = 0;
380  bool isDependent = false;
381  if (!ObjectType.isNull()) {
382    // This nested-name-specifier occurs in a member access expression, e.g.,
383    // x->B::f, and we are looking into the type of the object.
384    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
385    LookupCtx = computeDeclContext(ObjectType);
386    isDependent = ObjectType->isDependentType();
387  } else if (SS.isSet()) {
388    // This nested-name-specifier occurs after another nested-name-specifier,
389    // so look into the context associated with the prior nested-name-specifier.
390    LookupCtx = computeDeclContext(SS, EnteringContext);
391    isDependent = isDependentScopeSpecifier(SS);
392    Found.setContextRange(SS.getRange());
393  }
394
395
396  bool ObjectTypeSearchedInScope = false;
397  if (LookupCtx) {
398    // Perform "qualified" name lookup into the declaration context we
399    // computed, which is either the type of the base of a member access
400    // expression or the declaration context associated with a prior
401    // nested-name-specifier.
402
403    // The declaration context must be complete.
404    if (!LookupCtx->isDependentContext() &&
405        RequireCompleteDeclContext(SS, LookupCtx))
406      return true;
407
408    LookupQualifiedName(Found, LookupCtx);
409
410    if (!ObjectType.isNull() && Found.empty()) {
411      // C++ [basic.lookup.classref]p4:
412      //   If the id-expression in a class member access is a qualified-id of
413      //   the form
414      //
415      //        class-name-or-namespace-name::...
416      //
417      //   the class-name-or-namespace-name following the . or -> operator is
418      //   looked up both in the context of the entire postfix-expression and in
419      //   the scope of the class of the object expression. If the name is found
420      //   only in the scope of the class of the object expression, the name
421      //   shall refer to a class-name. If the name is found only in the
422      //   context of the entire postfix-expression, the name shall refer to a
423      //   class-name or namespace-name. [...]
424      //
425      // Qualified name lookup into a class will not find a namespace-name,
426      // so we do not need to diagnose that case specifically. However,
427      // this qualified name lookup may find nothing. In that case, perform
428      // unqualified name lookup in the given scope (if available) or
429      // reconstruct the result from when name lookup was performed at template
430      // definition time.
431      if (S)
432        LookupName(Found, S);
433      else if (ScopeLookupResult)
434        Found.addDecl(ScopeLookupResult);
435
436      ObjectTypeSearchedInScope = true;
437    }
438  } else if (!isDependent) {
439    // Perform unqualified name lookup in the current scope.
440    LookupName(Found, S);
441  }
442
443  // If we performed lookup into a dependent context and did not find anything,
444  // that's fine: just build a dependent nested-name-specifier.
445  if (Found.empty() && isDependent &&
446      !(LookupCtx && LookupCtx->isRecord() &&
447        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
448         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
449    // Don't speculate if we're just trying to improve error recovery.
450    if (ErrorRecoveryLookup)
451      return true;
452
453    // We were not able to compute the declaration context for a dependent
454    // base object type or prior nested-name-specifier, so this
455    // nested-name-specifier refers to an unknown specialization. Just build
456    // a dependent nested-name-specifier.
457    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
458    return false;
459  }
460
461  // FIXME: Deal with ambiguities cleanly.
462
463  if (Found.empty() && !ErrorRecoveryLookup) {
464    // We haven't found anything, and we're not recovering from a
465    // different kind of error, so look for typos.
466    DeclarationName Name = Found.getLookupName();
467    if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext,
468                    CTC_NoKeywords) &&
469        Found.isSingleResult() &&
470        isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
471      if (LookupCtx)
472        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
473          << Name << LookupCtx << Found.getLookupName() << SS.getRange()
474          << FixItHint::CreateReplacement(Found.getNameLoc(),
475                                          Found.getLookupName().getAsString());
476      else
477        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
478          << Name << Found.getLookupName()
479          << FixItHint::CreateReplacement(Found.getNameLoc(),
480                                          Found.getLookupName().getAsString());
481
482      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
483        Diag(ND->getLocation(), diag::note_previous_decl)
484          << ND->getDeclName();
485    } else {
486      Found.clear();
487      Found.setLookupName(&Identifier);
488    }
489  }
490
491  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
492  if (isAcceptableNestedNameSpecifier(SD)) {
493    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
494      // C++ [basic.lookup.classref]p4:
495      //   [...] If the name is found in both contexts, the
496      //   class-name-or-namespace-name shall refer to the same entity.
497      //
498      // We already found the name in the scope of the object. Now, look
499      // into the current scope (the scope of the postfix-expression) to
500      // see if we can find the same name there. As above, if there is no
501      // scope, reconstruct the result from the template instantiation itself.
502      NamedDecl *OuterDecl;
503      if (S) {
504        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
505                                LookupNestedNameSpecifierName);
506        LookupName(FoundOuter, S);
507        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
508      } else
509        OuterDecl = ScopeLookupResult;
510
511      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
512          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
513          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
514           !Context.hasSameType(
515                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
516                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
517         if (ErrorRecoveryLookup)
518           return true;
519
520         Diag(IdentifierLoc,
521              diag::err_nested_name_member_ref_lookup_ambiguous)
522           << &Identifier;
523         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
524           << ObjectType;
525         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
526
527         // Fall through so that we'll pick the name we found in the object
528         // type, since that's probably what the user wanted anyway.
529       }
530    }
531
532    // If we're just performing this lookup for error-recovery purposes,
533    // don't extend the nested-name-specifier. Just return now.
534    if (ErrorRecoveryLookup)
535      return false;
536
537    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
538      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
539      return false;
540    }
541
542    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
543      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
544      return false;
545    }
546
547    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
548    TypeLocBuilder TLB;
549    if (isa<InjectedClassNameType>(T)) {
550      InjectedClassNameTypeLoc InjectedTL
551        = TLB.push<InjectedClassNameTypeLoc>(T);
552      InjectedTL.setNameLoc(IdentifierLoc);
553    } else if (isa<RecordType>(T)) {
554      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
555      RecordTL.setNameLoc(IdentifierLoc);
556    } else if (isa<TypedefType>(T)) {
557      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
558      TypedefTL.setNameLoc(IdentifierLoc);
559    } else if (isa<EnumType>(T)) {
560      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
561      EnumTL.setNameLoc(IdentifierLoc);
562    } else if (isa<TemplateTypeParmType>(T)) {
563      TemplateTypeParmTypeLoc TemplateTypeTL
564        = TLB.push<TemplateTypeParmTypeLoc>(T);
565      TemplateTypeTL.setNameLoc(IdentifierLoc);
566    } else if (isa<UnresolvedUsingType>(T)) {
567      UnresolvedUsingTypeLoc UnresolvedTL
568        = TLB.push<UnresolvedUsingTypeLoc>(T);
569      UnresolvedTL.setNameLoc(IdentifierLoc);
570    } else if (isa<SubstTemplateTypeParmType>(T)) {
571      SubstTemplateTypeParmTypeLoc TL
572        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
573      TL.setNameLoc(IdentifierLoc);
574    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
575      SubstTemplateTypeParmPackTypeLoc TL
576        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
577      TL.setNameLoc(IdentifierLoc);
578    } else {
579      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
580    }
581
582    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
583              CCLoc);
584    return false;
585  }
586
587  // Otherwise, we have an error case.  If we don't want diagnostics, just
588  // return an error now.
589  if (ErrorRecoveryLookup)
590    return true;
591
592  // If we didn't find anything during our lookup, try again with
593  // ordinary name lookup, which can help us produce better error
594  // messages.
595  if (Found.empty()) {
596    Found.clear(LookupOrdinaryName);
597    LookupName(Found, S);
598  }
599
600  unsigned DiagID;
601  if (!Found.empty())
602    DiagID = diag::err_expected_class_or_namespace;
603  else if (SS.isSet()) {
604    Diag(IdentifierLoc, diag::err_no_member)
605      << &Identifier << LookupCtx << SS.getRange();
606    return true;
607  } else
608    DiagID = diag::err_undeclared_var_use;
609
610  if (SS.isSet())
611    Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
612  else
613    Diag(IdentifierLoc, DiagID) << &Identifier;
614
615  return true;
616}
617
618bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
619                                       IdentifierInfo &Identifier,
620                                       SourceLocation IdentifierLoc,
621                                       SourceLocation CCLoc,
622                                       ParsedType ObjectType,
623                                       bool EnteringContext,
624                                       CXXScopeSpec &SS) {
625  if (SS.isInvalid())
626    return true;
627
628  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
629                                     GetTypeFromParser(ObjectType),
630                                     EnteringContext, SS,
631                                     /*ScopeLookupResult=*/0, false);
632}
633
634/// IsInvalidUnlessNestedName - This method is used for error recovery
635/// purposes to determine whether the specified identifier is only valid as
636/// a nested name specifier, for example a namespace name.  It is
637/// conservatively correct to always return false from this method.
638///
639/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
640bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
641                                     IdentifierInfo &Identifier,
642                                     SourceLocation IdentifierLoc,
643                                     SourceLocation ColonLoc,
644                                     ParsedType ObjectType,
645                                     bool EnteringContext) {
646  if (SS.isInvalid())
647    return false;
648
649  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
650                                      GetTypeFromParser(ObjectType),
651                                      EnteringContext, SS,
652                                      /*ScopeLookupResult=*/0, true);
653}
654
655bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
656                                       SourceLocation TemplateLoc,
657                                       CXXScopeSpec &SS,
658                                       TemplateTy Template,
659                                       SourceLocation TemplateNameLoc,
660                                       SourceLocation LAngleLoc,
661                                       ASTTemplateArgsPtr TemplateArgsIn,
662                                       SourceLocation RAngleLoc,
663                                       SourceLocation CCLoc,
664                                       bool EnteringContext) {
665  if (SS.isInvalid())
666    return true;
667
668  // Translate the parser's template argument list in our AST format.
669  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
670  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
671
672  if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
673    // Handle a dependent template specialization for which we cannot resolve
674    // the template name.
675    assert(DTN->getQualifier()
676             == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
677    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
678                                                          DTN->getQualifier(),
679                                                          DTN->getIdentifier(),
680                                                                TemplateArgs);
681
682    // Create source-location information for this type.
683    TypeLocBuilder Builder;
684    DependentTemplateSpecializationTypeLoc SpecTL
685      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
686    SpecTL.setLAngleLoc(LAngleLoc);
687    SpecTL.setRAngleLoc(RAngleLoc);
688    SpecTL.setKeywordLoc(SourceLocation());
689    SpecTL.setNameLoc(TemplateNameLoc);
690    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
691    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
692      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
693
694    SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
695              CCLoc);
696    return false;
697  }
698
699
700  if (Template.get().getAsOverloadedTemplate() ||
701      isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
702    SourceRange R(TemplateNameLoc, RAngleLoc);
703    if (SS.getRange().isValid())
704      R.setBegin(SS.getRange().getBegin());
705
706    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
707      << Template.get() << R;
708    NoteAllFoundTemplates(Template.get());
709    return true;
710  }
711
712  // We were able to resolve the template name to an actual template.
713  // Build an appropriate nested-name-specifier.
714  QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
715                                   TemplateArgs);
716  if (T.isNull())
717    return true;
718
719  // Alias template specializations can produce types which are not valid
720  // nested name specifiers.
721  if (!T->isDependentType() && !T->getAs<TagType>()) {
722    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
723    NoteAllFoundTemplates(Template.get());
724    return true;
725  }
726
727  // Provide source-location information for the template specialization
728  // type.
729  TypeLocBuilder Builder;
730  TemplateSpecializationTypeLoc SpecTL
731    = Builder.push<TemplateSpecializationTypeLoc>(T);
732
733  SpecTL.setLAngleLoc(LAngleLoc);
734  SpecTL.setRAngleLoc(RAngleLoc);
735  SpecTL.setTemplateNameLoc(TemplateNameLoc);
736  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
737    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
738
739
740  SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
741            CCLoc);
742  return false;
743}
744
745namespace {
746  /// \brief A structure that stores a nested-name-specifier annotation,
747  /// including both the nested-name-specifier
748  struct NestedNameSpecifierAnnotation {
749    NestedNameSpecifier *NNS;
750  };
751}
752
753void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
754  if (SS.isEmpty() || SS.isInvalid())
755    return 0;
756
757  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
758                                                        SS.location_size()),
759                               llvm::alignOf<NestedNameSpecifierAnnotation>());
760  NestedNameSpecifierAnnotation *Annotation
761    = new (Mem) NestedNameSpecifierAnnotation;
762  Annotation->NNS = SS.getScopeRep();
763  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
764  return Annotation;
765}
766
767void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
768                                                SourceRange AnnotationRange,
769                                                CXXScopeSpec &SS) {
770  if (!AnnotationPtr) {
771    SS.SetInvalid(AnnotationRange);
772    return;
773  }
774
775  NestedNameSpecifierAnnotation *Annotation
776    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
777  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
778}
779
780bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
781  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
782
783  NestedNameSpecifier *Qualifier =
784    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
785
786  // There are only two places a well-formed program may qualify a
787  // declarator: first, when defining a namespace or class member
788  // out-of-line, and second, when naming an explicitly-qualified
789  // friend function.  The latter case is governed by
790  // C++03 [basic.lookup.unqual]p10:
791  //   In a friend declaration naming a member function, a name used
792  //   in the function declarator and not part of a template-argument
793  //   in a template-id is first looked up in the scope of the member
794  //   function's class. If it is not found, or if the name is part of
795  //   a template-argument in a template-id, the look up is as
796  //   described for unqualified names in the definition of the class
797  //   granting friendship.
798  // i.e. we don't push a scope unless it's a class member.
799
800  switch (Qualifier->getKind()) {
801  case NestedNameSpecifier::Global:
802  case NestedNameSpecifier::Namespace:
803  case NestedNameSpecifier::NamespaceAlias:
804    // These are always namespace scopes.  We never want to enter a
805    // namespace scope from anything but a file context.
806    return CurContext->getRedeclContext()->isFileContext();
807
808  case NestedNameSpecifier::Identifier:
809  case NestedNameSpecifier::TypeSpec:
810  case NestedNameSpecifier::TypeSpecWithTemplate:
811    // These are never namespace scopes.
812    return true;
813  }
814
815  // Silence bogus warning.
816  return false;
817}
818
819/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
820/// scope or nested-name-specifier) is parsed, part of a declarator-id.
821/// After this method is called, according to [C++ 3.4.3p3], names should be
822/// looked up in the declarator-id's scope, until the declarator is parsed and
823/// ActOnCXXExitDeclaratorScope is called.
824/// The 'SS' should be a non-empty valid CXXScopeSpec.
825bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
826  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
827
828  if (SS.isInvalid()) return true;
829
830  DeclContext *DC = computeDeclContext(SS, true);
831  if (!DC) return true;
832
833  // Before we enter a declarator's context, we need to make sure that
834  // it is a complete declaration context.
835  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
836    return true;
837
838  EnterDeclaratorContext(S, DC);
839
840  // Rebuild the nested name specifier for the new scope.
841  if (DC->isDependentContext())
842    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
843
844  return false;
845}
846
847/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
848/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
849/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
850/// Used to indicate that names should revert to being looked up in the
851/// defining scope.
852void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
853  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
854  if (SS.isInvalid())
855    return;
856  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
857         "exiting declarator scope we never really entered");
858  ExitDeclaratorContext(S);
859}
860