1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Objective-C code as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/Basic/Diagnostic.h"
23#include "clang/CodeGen/CGFunctionInfo.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CallSite.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/InlineAsm.h"
28using namespace clang;
29using namespace CodeGen;
30
31typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32static TryEmitResult
33tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                      QualType ET,
36                                      const ObjCMethodDecl *Method,
37                                      RValue Result);
38
39/// Given the address of a variable of pointer type, find the correct
40/// null to store into it.
41static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42  llvm::Type *type =
43    cast<llvm::PointerType>(addr->getType())->getElementType();
44  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45}
46
47/// Emits an instance of NSConstantString representing the object.
48llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49{
50  llvm::Constant *C =
51      CGM.getObjCRuntime().GenerateConstantString(E->getString());
52  // FIXME: This bitcast should just be made an invariant on the Runtime.
53  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54}
55
56/// EmitObjCBoxedExpr - This routine generates code to call
57/// the appropriate expression boxing method. This will either be
58/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59///
60llvm::Value *
61CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62  // Generate the correct selector for this literal's concrete type.
63  const Expr *SubExpr = E->getSubExpr();
64  // Get the method.
65  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66  assert(BoxingMethod && "BoxingMethod is null");
67  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
68  Selector Sel = BoxingMethod->getSelector();
69
70  // Generate a reference to the class pointer, which will be the receiver.
71  // Assumes that the method was introduced in the class that should be
72  // messaged (avoids pulling it out of the result type).
73  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
74  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
75  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
76
77  const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
78  QualType ArgQT = argDecl->getType().getUnqualifiedType();
79  RValue RV = EmitAnyExpr(SubExpr);
80  CallArgList Args;
81  Args.add(RV, ArgQT);
82
83  RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
84                                              BoxingMethod->getResultType(), Sel, Receiver, Args,
85                                              ClassDecl, BoxingMethod);
86  return Builder.CreateBitCast(result.getScalarVal(),
87                               ConvertType(E->getType()));
88}
89
90llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
91                                    const ObjCMethodDecl *MethodWithObjects) {
92  ASTContext &Context = CGM.getContext();
93  const ObjCDictionaryLiteral *DLE = 0;
94  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
95  if (!ALE)
96    DLE = cast<ObjCDictionaryLiteral>(E);
97
98  // Compute the type of the array we're initializing.
99  uint64_t NumElements =
100    ALE ? ALE->getNumElements() : DLE->getNumElements();
101  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
102                            NumElements);
103  QualType ElementType = Context.getObjCIdType().withConst();
104  QualType ElementArrayType
105    = Context.getConstantArrayType(ElementType, APNumElements,
106                                   ArrayType::Normal, /*IndexTypeQuals=*/0);
107
108  // Allocate the temporary array(s).
109  llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
110  llvm::Value *Keys = 0;
111  if (DLE)
112    Keys = CreateMemTemp(ElementArrayType, "keys");
113
114  // In ARC, we may need to do extra work to keep all the keys and
115  // values alive until after the call.
116  SmallVector<llvm::Value *, 16> NeededObjects;
117  bool TrackNeededObjects =
118    (getLangOpts().ObjCAutoRefCount &&
119    CGM.getCodeGenOpts().OptimizationLevel != 0);
120
121  // Perform the actual initialialization of the array(s).
122  for (uint64_t i = 0; i < NumElements; i++) {
123    if (ALE) {
124      // Emit the element and store it to the appropriate array slot.
125      const Expr *Rhs = ALE->getElement(i);
126      LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
127                                   ElementType,
128                                   Context.getTypeAlignInChars(Rhs->getType()),
129                                   Context);
130
131      llvm::Value *value = EmitScalarExpr(Rhs);
132      EmitStoreThroughLValue(RValue::get(value), LV, true);
133      if (TrackNeededObjects) {
134        NeededObjects.push_back(value);
135      }
136    } else {
137      // Emit the key and store it to the appropriate array slot.
138      const Expr *Key = DLE->getKeyValueElement(i).Key;
139      LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
140                                      ElementType,
141                                    Context.getTypeAlignInChars(Key->getType()),
142                                      Context);
143      llvm::Value *keyValue = EmitScalarExpr(Key);
144      EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
145
146      // Emit the value and store it to the appropriate array slot.
147      const Expr *Value = DLE->getKeyValueElement(i).Value;
148      LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
149                                        ElementType,
150                                  Context.getTypeAlignInChars(Value->getType()),
151                                        Context);
152      llvm::Value *valueValue = EmitScalarExpr(Value);
153      EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
154      if (TrackNeededObjects) {
155        NeededObjects.push_back(keyValue);
156        NeededObjects.push_back(valueValue);
157      }
158    }
159  }
160
161  // Generate the argument list.
162  CallArgList Args;
163  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
164  const ParmVarDecl *argDecl = *PI++;
165  QualType ArgQT = argDecl->getType().getUnqualifiedType();
166  Args.add(RValue::get(Objects), ArgQT);
167  if (DLE) {
168    argDecl = *PI++;
169    ArgQT = argDecl->getType().getUnqualifiedType();
170    Args.add(RValue::get(Keys), ArgQT);
171  }
172  argDecl = *PI;
173  ArgQT = argDecl->getType().getUnqualifiedType();
174  llvm::Value *Count =
175    llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
176  Args.add(RValue::get(Count), ArgQT);
177
178  // Generate a reference to the class pointer, which will be the receiver.
179  Selector Sel = MethodWithObjects->getSelector();
180  QualType ResultType = E->getType();
181  const ObjCObjectPointerType *InterfacePointerType
182    = ResultType->getAsObjCInterfacePointerType();
183  ObjCInterfaceDecl *Class
184    = InterfacePointerType->getObjectType()->getInterface();
185  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
186  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
187
188  // Generate the message send.
189  RValue result
190    = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
191                                  MethodWithObjects->getResultType(),
192                                  Sel,
193                                  Receiver, Args, Class,
194                                  MethodWithObjects);
195
196  // The above message send needs these objects, but in ARC they are
197  // passed in a buffer that is essentially __unsafe_unretained.
198  // Therefore we must prevent the optimizer from releasing them until
199  // after the call.
200  if (TrackNeededObjects) {
201    EmitARCIntrinsicUse(NeededObjects);
202  }
203
204  return Builder.CreateBitCast(result.getScalarVal(),
205                               ConvertType(E->getType()));
206}
207
208llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
209  return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
210}
211
212llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
213                                            const ObjCDictionaryLiteral *E) {
214  return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
215}
216
217/// Emit a selector.
218llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
219  // Untyped selector.
220  // Note that this implementation allows for non-constant strings to be passed
221  // as arguments to @selector().  Currently, the only thing preventing this
222  // behaviour is the type checking in the front end.
223  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
224}
225
226llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
227  // FIXME: This should pass the Decl not the name.
228  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
229}
230
231/// \brief Adjust the type of the result of an Objective-C message send
232/// expression when the method has a related result type.
233static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
234                                      QualType ExpT,
235                                      const ObjCMethodDecl *Method,
236                                      RValue Result) {
237  if (!Method)
238    return Result;
239
240  if (!Method->hasRelatedResultType() ||
241      CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
242      !Result.isScalar())
243    return Result;
244
245  // We have applied a related result type. Cast the rvalue appropriately.
246  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
247                                               CGF.ConvertType(ExpT)));
248}
249
250/// Decide whether to extend the lifetime of the receiver of a
251/// returns-inner-pointer message.
252static bool
253shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
254  switch (message->getReceiverKind()) {
255
256  // For a normal instance message, we should extend unless the
257  // receiver is loaded from a variable with precise lifetime.
258  case ObjCMessageExpr::Instance: {
259    const Expr *receiver = message->getInstanceReceiver();
260    const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
261    if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
262    receiver = ice->getSubExpr()->IgnoreParens();
263
264    // Only __strong variables.
265    if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
266      return true;
267
268    // All ivars and fields have precise lifetime.
269    if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
270      return false;
271
272    // Otherwise, check for variables.
273    const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
274    if (!declRef) return true;
275    const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
276    if (!var) return true;
277
278    // All variables have precise lifetime except local variables with
279    // automatic storage duration that aren't specially marked.
280    return (var->hasLocalStorage() &&
281            !var->hasAttr<ObjCPreciseLifetimeAttr>());
282  }
283
284  case ObjCMessageExpr::Class:
285  case ObjCMessageExpr::SuperClass:
286    // It's never necessary for class objects.
287    return false;
288
289  case ObjCMessageExpr::SuperInstance:
290    // We generally assume that 'self' lives throughout a method call.
291    return false;
292  }
293
294  llvm_unreachable("invalid receiver kind");
295}
296
297RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
298                                            ReturnValueSlot Return) {
299  // Only the lookup mechanism and first two arguments of the method
300  // implementation vary between runtimes.  We can get the receiver and
301  // arguments in generic code.
302
303  bool isDelegateInit = E->isDelegateInitCall();
304
305  const ObjCMethodDecl *method = E->getMethodDecl();
306
307  // We don't retain the receiver in delegate init calls, and this is
308  // safe because the receiver value is always loaded from 'self',
309  // which we zero out.  We don't want to Block_copy block receivers,
310  // though.
311  bool retainSelf =
312    (!isDelegateInit &&
313     CGM.getLangOpts().ObjCAutoRefCount &&
314     method &&
315     method->hasAttr<NSConsumesSelfAttr>());
316
317  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
318  bool isSuperMessage = false;
319  bool isClassMessage = false;
320  ObjCInterfaceDecl *OID = 0;
321  // Find the receiver
322  QualType ReceiverType;
323  llvm::Value *Receiver = 0;
324  switch (E->getReceiverKind()) {
325  case ObjCMessageExpr::Instance:
326    ReceiverType = E->getInstanceReceiver()->getType();
327    if (retainSelf) {
328      TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
329                                                   E->getInstanceReceiver());
330      Receiver = ter.getPointer();
331      if (ter.getInt()) retainSelf = false;
332    } else
333      Receiver = EmitScalarExpr(E->getInstanceReceiver());
334    break;
335
336  case ObjCMessageExpr::Class: {
337    ReceiverType = E->getClassReceiver();
338    const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
339    assert(ObjTy && "Invalid Objective-C class message send");
340    OID = ObjTy->getInterface();
341    assert(OID && "Invalid Objective-C class message send");
342    Receiver = Runtime.GetClass(*this, OID);
343    isClassMessage = true;
344    break;
345  }
346
347  case ObjCMessageExpr::SuperInstance:
348    ReceiverType = E->getSuperType();
349    Receiver = LoadObjCSelf();
350    isSuperMessage = true;
351    break;
352
353  case ObjCMessageExpr::SuperClass:
354    ReceiverType = E->getSuperType();
355    Receiver = LoadObjCSelf();
356    isSuperMessage = true;
357    isClassMessage = true;
358    break;
359  }
360
361  if (retainSelf)
362    Receiver = EmitARCRetainNonBlock(Receiver);
363
364  // In ARC, we sometimes want to "extend the lifetime"
365  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
366  // messages.
367  if (getLangOpts().ObjCAutoRefCount && method &&
368      method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
369      shouldExtendReceiverForInnerPointerMessage(E))
370    Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
371
372  QualType ResultType =
373    method ? method->getResultType() : E->getType();
374
375  CallArgList Args;
376  EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
377
378  // For delegate init calls in ARC, do an unsafe store of null into
379  // self.  This represents the call taking direct ownership of that
380  // value.  We have to do this after emitting the other call
381  // arguments because they might also reference self, but we don't
382  // have to worry about any of them modifying self because that would
383  // be an undefined read and write of an object in unordered
384  // expressions.
385  if (isDelegateInit) {
386    assert(getLangOpts().ObjCAutoRefCount &&
387           "delegate init calls should only be marked in ARC");
388
389    // Do an unsafe store of null into self.
390    llvm::Value *selfAddr =
391      LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
392    assert(selfAddr && "no self entry for a delegate init call?");
393
394    Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
395  }
396
397  RValue result;
398  if (isSuperMessage) {
399    // super is only valid in an Objective-C method
400    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
401    bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
402    result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
403                                              E->getSelector(),
404                                              OMD->getClassInterface(),
405                                              isCategoryImpl,
406                                              Receiver,
407                                              isClassMessage,
408                                              Args,
409                                              method);
410  } else {
411    result = Runtime.GenerateMessageSend(*this, Return, ResultType,
412                                         E->getSelector(),
413                                         Receiver, Args, OID,
414                                         method);
415  }
416
417  // For delegate init calls in ARC, implicitly store the result of
418  // the call back into self.  This takes ownership of the value.
419  if (isDelegateInit) {
420    llvm::Value *selfAddr =
421      LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
422    llvm::Value *newSelf = result.getScalarVal();
423
424    // The delegate return type isn't necessarily a matching type; in
425    // fact, it's quite likely to be 'id'.
426    llvm::Type *selfTy =
427      cast<llvm::PointerType>(selfAddr->getType())->getElementType();
428    newSelf = Builder.CreateBitCast(newSelf, selfTy);
429
430    Builder.CreateStore(newSelf, selfAddr);
431  }
432
433  return AdjustRelatedResultType(*this, E->getType(), method, result);
434}
435
436namespace {
437struct FinishARCDealloc : EHScopeStack::Cleanup {
438  void Emit(CodeGenFunction &CGF, Flags flags) {
439    const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
440
441    const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
442    const ObjCInterfaceDecl *iface = impl->getClassInterface();
443    if (!iface->getSuperClass()) return;
444
445    bool isCategory = isa<ObjCCategoryImplDecl>(impl);
446
447    // Call [super dealloc] if we have a superclass.
448    llvm::Value *self = CGF.LoadObjCSelf();
449
450    CallArgList args;
451    CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
452                                                      CGF.getContext().VoidTy,
453                                                      method->getSelector(),
454                                                      iface,
455                                                      isCategory,
456                                                      self,
457                                                      /*is class msg*/ false,
458                                                      args,
459                                                      method);
460  }
461};
462}
463
464/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
465/// the LLVM function and sets the other context used by
466/// CodeGenFunction.
467void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
468                                      const ObjCContainerDecl *CD,
469                                      SourceLocation StartLoc) {
470  FunctionArgList args;
471  // Check if we should generate debug info for this method.
472  if (OMD->hasAttr<NoDebugAttr>())
473    DebugInfo = NULL; // disable debug info indefinitely for this function
474
475  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
476
477  const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
478  CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
479
480  args.push_back(OMD->getSelfDecl());
481  args.push_back(OMD->getCmdDecl());
482
483  for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
484         E = OMD->param_end(); PI != E; ++PI)
485    args.push_back(*PI);
486
487  CurGD = OMD;
488
489  StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
490
491  // In ARC, certain methods get an extra cleanup.
492  if (CGM.getLangOpts().ObjCAutoRefCount &&
493      OMD->isInstanceMethod() &&
494      OMD->getSelector().isUnarySelector()) {
495    const IdentifierInfo *ident =
496      OMD->getSelector().getIdentifierInfoForSlot(0);
497    if (ident->isStr("dealloc"))
498      EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
499  }
500}
501
502static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
503                                              LValue lvalue, QualType type);
504
505/// Generate an Objective-C method.  An Objective-C method is a C function with
506/// its pointer, name, and types registered in the class struture.
507void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
508  StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
509  EmitStmt(OMD->getBody());
510  FinishFunction(OMD->getBodyRBrace());
511}
512
513/// emitStructGetterCall - Call the runtime function to load a property
514/// into the return value slot.
515static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
516                                 bool isAtomic, bool hasStrong) {
517  ASTContext &Context = CGF.getContext();
518
519  llvm::Value *src =
520    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
521                          ivar, 0).getAddress();
522
523  // objc_copyStruct (ReturnValue, &structIvar,
524  //                  sizeof (Type of Ivar), isAtomic, false);
525  CallArgList args;
526
527  llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
528  args.add(RValue::get(dest), Context.VoidPtrTy);
529
530  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
531  args.add(RValue::get(src), Context.VoidPtrTy);
532
533  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
534  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
535  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
536  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
537
538  llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
539  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
540                                                      FunctionType::ExtInfo(),
541                                                      RequiredArgs::All),
542               fn, ReturnValueSlot(), args);
543}
544
545/// Determine whether the given architecture supports unaligned atomic
546/// accesses.  They don't have to be fast, just faster than a function
547/// call and a mutex.
548static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
549  // FIXME: Allow unaligned atomic load/store on x86.  (It is not
550  // currently supported by the backend.)
551  return 0;
552}
553
554/// Return the maximum size that permits atomic accesses for the given
555/// architecture.
556static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
557                                        llvm::Triple::ArchType arch) {
558  // ARM has 8-byte atomic accesses, but it's not clear whether we
559  // want to rely on them here.
560
561  // In the default case, just assume that any size up to a pointer is
562  // fine given adequate alignment.
563  return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
564}
565
566namespace {
567  class PropertyImplStrategy {
568  public:
569    enum StrategyKind {
570      /// The 'native' strategy is to use the architecture's provided
571      /// reads and writes.
572      Native,
573
574      /// Use objc_setProperty and objc_getProperty.
575      GetSetProperty,
576
577      /// Use objc_setProperty for the setter, but use expression
578      /// evaluation for the getter.
579      SetPropertyAndExpressionGet,
580
581      /// Use objc_copyStruct.
582      CopyStruct,
583
584      /// The 'expression' strategy is to emit normal assignment or
585      /// lvalue-to-rvalue expressions.
586      Expression
587    };
588
589    StrategyKind getKind() const { return StrategyKind(Kind); }
590
591    bool hasStrongMember() const { return HasStrong; }
592    bool isAtomic() const { return IsAtomic; }
593    bool isCopy() const { return IsCopy; }
594
595    CharUnits getIvarSize() const { return IvarSize; }
596    CharUnits getIvarAlignment() const { return IvarAlignment; }
597
598    PropertyImplStrategy(CodeGenModule &CGM,
599                         const ObjCPropertyImplDecl *propImpl);
600
601  private:
602    unsigned Kind : 8;
603    unsigned IsAtomic : 1;
604    unsigned IsCopy : 1;
605    unsigned HasStrong : 1;
606
607    CharUnits IvarSize;
608    CharUnits IvarAlignment;
609  };
610}
611
612/// Pick an implementation strategy for the given property synthesis.
613PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
614                                     const ObjCPropertyImplDecl *propImpl) {
615  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
616  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
617
618  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
619  IsAtomic = prop->isAtomic();
620  HasStrong = false; // doesn't matter here.
621
622  // Evaluate the ivar's size and alignment.
623  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
624  QualType ivarType = ivar->getType();
625  llvm::tie(IvarSize, IvarAlignment)
626    = CGM.getContext().getTypeInfoInChars(ivarType);
627
628  // If we have a copy property, we always have to use getProperty/setProperty.
629  // TODO: we could actually use setProperty and an expression for non-atomics.
630  if (IsCopy) {
631    Kind = GetSetProperty;
632    return;
633  }
634
635  // Handle retain.
636  if (setterKind == ObjCPropertyDecl::Retain) {
637    // In GC-only, there's nothing special that needs to be done.
638    if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
639      // fallthrough
640
641    // In ARC, if the property is non-atomic, use expression emission,
642    // which translates to objc_storeStrong.  This isn't required, but
643    // it's slightly nicer.
644    } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
645      // Using standard expression emission for the setter is only
646      // acceptable if the ivar is __strong, which won't be true if
647      // the property is annotated with __attribute__((NSObject)).
648      // TODO: falling all the way back to objc_setProperty here is
649      // just laziness, though;  we could still use objc_storeStrong
650      // if we hacked it right.
651      if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
652        Kind = Expression;
653      else
654        Kind = SetPropertyAndExpressionGet;
655      return;
656
657    // Otherwise, we need to at least use setProperty.  However, if
658    // the property isn't atomic, we can use normal expression
659    // emission for the getter.
660    } else if (!IsAtomic) {
661      Kind = SetPropertyAndExpressionGet;
662      return;
663
664    // Otherwise, we have to use both setProperty and getProperty.
665    } else {
666      Kind = GetSetProperty;
667      return;
668    }
669  }
670
671  // If we're not atomic, just use expression accesses.
672  if (!IsAtomic) {
673    Kind = Expression;
674    return;
675  }
676
677  // Properties on bitfield ivars need to be emitted using expression
678  // accesses even if they're nominally atomic.
679  if (ivar->isBitField()) {
680    Kind = Expression;
681    return;
682  }
683
684  // GC-qualified or ARC-qualified ivars need to be emitted as
685  // expressions.  This actually works out to being atomic anyway,
686  // except for ARC __strong, but that should trigger the above code.
687  if (ivarType.hasNonTrivialObjCLifetime() ||
688      (CGM.getLangOpts().getGC() &&
689       CGM.getContext().getObjCGCAttrKind(ivarType))) {
690    Kind = Expression;
691    return;
692  }
693
694  // Compute whether the ivar has strong members.
695  if (CGM.getLangOpts().getGC())
696    if (const RecordType *recordType = ivarType->getAs<RecordType>())
697      HasStrong = recordType->getDecl()->hasObjectMember();
698
699  // We can never access structs with object members with a native
700  // access, because we need to use write barriers.  This is what
701  // objc_copyStruct is for.
702  if (HasStrong) {
703    Kind = CopyStruct;
704    return;
705  }
706
707  // Otherwise, this is target-dependent and based on the size and
708  // alignment of the ivar.
709
710  // If the size of the ivar is not a power of two, give up.  We don't
711  // want to get into the business of doing compare-and-swaps.
712  if (!IvarSize.isPowerOfTwo()) {
713    Kind = CopyStruct;
714    return;
715  }
716
717  llvm::Triple::ArchType arch =
718    CGM.getTarget().getTriple().getArch();
719
720  // Most architectures require memory to fit within a single cache
721  // line, so the alignment has to be at least the size of the access.
722  // Otherwise we have to grab a lock.
723  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
724    Kind = CopyStruct;
725    return;
726  }
727
728  // If the ivar's size exceeds the architecture's maximum atomic
729  // access size, we have to use CopyStruct.
730  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
731    Kind = CopyStruct;
732    return;
733  }
734
735  // Otherwise, we can use native loads and stores.
736  Kind = Native;
737}
738
739/// \brief Generate an Objective-C property getter function.
740///
741/// The given Decl must be an ObjCImplementationDecl. \@synthesize
742/// is illegal within a category.
743void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
744                                         const ObjCPropertyImplDecl *PID) {
745  llvm::Constant *AtomicHelperFn =
746    GenerateObjCAtomicGetterCopyHelperFunction(PID);
747  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
748  ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
749  assert(OMD && "Invalid call to generate getter (empty method)");
750  StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
751
752  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
753
754  FinishFunction();
755}
756
757static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
758  const Expr *getter = propImpl->getGetterCXXConstructor();
759  if (!getter) return true;
760
761  // Sema only makes only of these when the ivar has a C++ class type,
762  // so the form is pretty constrained.
763
764  // If the property has a reference type, we might just be binding a
765  // reference, in which case the result will be a gl-value.  We should
766  // treat this as a non-trivial operation.
767  if (getter->isGLValue())
768    return false;
769
770  // If we selected a trivial copy-constructor, we're okay.
771  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
772    return (construct->getConstructor()->isTrivial());
773
774  // The constructor might require cleanups (in which case it's never
775  // trivial).
776  assert(isa<ExprWithCleanups>(getter));
777  return false;
778}
779
780/// emitCPPObjectAtomicGetterCall - Call the runtime function to
781/// copy the ivar into the resturn slot.
782static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
783                                          llvm::Value *returnAddr,
784                                          ObjCIvarDecl *ivar,
785                                          llvm::Constant *AtomicHelperFn) {
786  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
787  //                           AtomicHelperFn);
788  CallArgList args;
789
790  // The 1st argument is the return Slot.
791  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
792
793  // The 2nd argument is the address of the ivar.
794  llvm::Value *ivarAddr =
795  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
796                        CGF.LoadObjCSelf(), ivar, 0).getAddress();
797  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
798  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
799
800  // Third argument is the helper function.
801  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
802
803  llvm::Value *copyCppAtomicObjectFn =
804    CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
805  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
806                                                      args,
807                                                      FunctionType::ExtInfo(),
808                                                      RequiredArgs::All),
809               copyCppAtomicObjectFn, ReturnValueSlot(), args);
810}
811
812void
813CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
814                                        const ObjCPropertyImplDecl *propImpl,
815                                        const ObjCMethodDecl *GetterMethodDecl,
816                                        llvm::Constant *AtomicHelperFn) {
817  // If there's a non-trivial 'get' expression, we just have to emit that.
818  if (!hasTrivialGetExpr(propImpl)) {
819    if (!AtomicHelperFn) {
820      ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
821                     /*nrvo*/ 0);
822      EmitReturnStmt(ret);
823    }
824    else {
825      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
826      emitCPPObjectAtomicGetterCall(*this, ReturnValue,
827                                    ivar, AtomicHelperFn);
828    }
829    return;
830  }
831
832  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
833  QualType propType = prop->getType();
834  ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
835
836  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
837
838  // Pick an implementation strategy.
839  PropertyImplStrategy strategy(CGM, propImpl);
840  switch (strategy.getKind()) {
841  case PropertyImplStrategy::Native: {
842    // We don't need to do anything for a zero-size struct.
843    if (strategy.getIvarSize().isZero())
844      return;
845
846    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
847
848    // Currently, all atomic accesses have to be through integer
849    // types, so there's no point in trying to pick a prettier type.
850    llvm::Type *bitcastType =
851      llvm::Type::getIntNTy(getLLVMContext(),
852                            getContext().toBits(strategy.getIvarSize()));
853    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
854
855    // Perform an atomic load.  This does not impose ordering constraints.
856    llvm::Value *ivarAddr = LV.getAddress();
857    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
858    llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
859    load->setAlignment(strategy.getIvarAlignment().getQuantity());
860    load->setAtomic(llvm::Unordered);
861
862    // Store that value into the return address.  Doing this with a
863    // bitcast is likely to produce some pretty ugly IR, but it's not
864    // the *most* terrible thing in the world.
865    Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
866
867    // Make sure we don't do an autorelease.
868    AutoreleaseResult = false;
869    return;
870  }
871
872  case PropertyImplStrategy::GetSetProperty: {
873    llvm::Value *getPropertyFn =
874      CGM.getObjCRuntime().GetPropertyGetFunction();
875    if (!getPropertyFn) {
876      CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
877      return;
878    }
879
880    // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
881    // FIXME: Can't this be simpler? This might even be worse than the
882    // corresponding gcc code.
883    llvm::Value *cmd =
884      Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
885    llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
886    llvm::Value *ivarOffset =
887      EmitIvarOffset(classImpl->getClassInterface(), ivar);
888
889    CallArgList args;
890    args.add(RValue::get(self), getContext().getObjCIdType());
891    args.add(RValue::get(cmd), getContext().getObjCSelType());
892    args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
893    args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
894             getContext().BoolTy);
895
896    // FIXME: We shouldn't need to get the function info here, the
897    // runtime already should have computed it to build the function.
898    RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
899                                                       FunctionType::ExtInfo(),
900                                                            RequiredArgs::All),
901                         getPropertyFn, ReturnValueSlot(), args);
902
903    // We need to fix the type here. Ivars with copy & retain are
904    // always objects so we don't need to worry about complex or
905    // aggregates.
906    RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
907           getTypes().ConvertType(getterMethod->getResultType())));
908
909    EmitReturnOfRValue(RV, propType);
910
911    // objc_getProperty does an autorelease, so we should suppress ours.
912    AutoreleaseResult = false;
913
914    return;
915  }
916
917  case PropertyImplStrategy::CopyStruct:
918    emitStructGetterCall(*this, ivar, strategy.isAtomic(),
919                         strategy.hasStrongMember());
920    return;
921
922  case PropertyImplStrategy::Expression:
923  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
924    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
925
926    QualType ivarType = ivar->getType();
927    switch (getEvaluationKind(ivarType)) {
928    case TEK_Complex: {
929      ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
930      EmitStoreOfComplex(pair,
931                         MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
932                         /*init*/ true);
933      return;
934    }
935    case TEK_Aggregate:
936      // The return value slot is guaranteed to not be aliased, but
937      // that's not necessarily the same as "on the stack", so
938      // we still potentially need objc_memmove_collectable.
939      EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
940      return;
941    case TEK_Scalar: {
942      llvm::Value *value;
943      if (propType->isReferenceType()) {
944        value = LV.getAddress();
945      } else {
946        // We want to load and autoreleaseReturnValue ARC __weak ivars.
947        if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
948          value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
949
950        // Otherwise we want to do a simple load, suppressing the
951        // final autorelease.
952        } else {
953          value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
954          AutoreleaseResult = false;
955        }
956
957        value = Builder.CreateBitCast(value, ConvertType(propType));
958        value = Builder.CreateBitCast(value,
959                  ConvertType(GetterMethodDecl->getResultType()));
960      }
961
962      EmitReturnOfRValue(RValue::get(value), propType);
963      return;
964    }
965    }
966    llvm_unreachable("bad evaluation kind");
967  }
968
969  }
970  llvm_unreachable("bad @property implementation strategy!");
971}
972
973/// emitStructSetterCall - Call the runtime function to store the value
974/// from the first formal parameter into the given ivar.
975static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
976                                 ObjCIvarDecl *ivar) {
977  // objc_copyStruct (&structIvar, &Arg,
978  //                  sizeof (struct something), true, false);
979  CallArgList args;
980
981  // The first argument is the address of the ivar.
982  llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
983                                                CGF.LoadObjCSelf(), ivar, 0)
984    .getAddress();
985  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
986  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
987
988  // The second argument is the address of the parameter variable.
989  ParmVarDecl *argVar = *OMD->param_begin();
990  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
991                     VK_LValue, SourceLocation());
992  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
993  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
994  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
995
996  // The third argument is the sizeof the type.
997  llvm::Value *size =
998    CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
999  args.add(RValue::get(size), CGF.getContext().getSizeType());
1000
1001  // The fourth argument is the 'isAtomic' flag.
1002  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1003
1004  // The fifth argument is the 'hasStrong' flag.
1005  // FIXME: should this really always be false?
1006  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1007
1008  llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1009  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1010                                                      args,
1011                                                      FunctionType::ExtInfo(),
1012                                                      RequiredArgs::All),
1013               copyStructFn, ReturnValueSlot(), args);
1014}
1015
1016/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1017/// the value from the first formal parameter into the given ivar, using
1018/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1019static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1020                                          ObjCMethodDecl *OMD,
1021                                          ObjCIvarDecl *ivar,
1022                                          llvm::Constant *AtomicHelperFn) {
1023  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1024  //                           AtomicHelperFn);
1025  CallArgList args;
1026
1027  // The first argument is the address of the ivar.
1028  llvm::Value *ivarAddr =
1029    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1030                          CGF.LoadObjCSelf(), ivar, 0).getAddress();
1031  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1032  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1033
1034  // The second argument is the address of the parameter variable.
1035  ParmVarDecl *argVar = *OMD->param_begin();
1036  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1037                     VK_LValue, SourceLocation());
1038  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1039  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1040  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1041
1042  // Third argument is the helper function.
1043  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1044
1045  llvm::Value *copyCppAtomicObjectFn =
1046    CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1047  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1048                                                      args,
1049                                                      FunctionType::ExtInfo(),
1050                                                      RequiredArgs::All),
1051               copyCppAtomicObjectFn, ReturnValueSlot(), args);
1052}
1053
1054
1055static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1056  Expr *setter = PID->getSetterCXXAssignment();
1057  if (!setter) return true;
1058
1059  // Sema only makes only of these when the ivar has a C++ class type,
1060  // so the form is pretty constrained.
1061
1062  // An operator call is trivial if the function it calls is trivial.
1063  // This also implies that there's nothing non-trivial going on with
1064  // the arguments, because operator= can only be trivial if it's a
1065  // synthesized assignment operator and therefore both parameters are
1066  // references.
1067  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1068    if (const FunctionDecl *callee
1069          = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1070      if (callee->isTrivial())
1071        return true;
1072    return false;
1073  }
1074
1075  assert(isa<ExprWithCleanups>(setter));
1076  return false;
1077}
1078
1079static bool UseOptimizedSetter(CodeGenModule &CGM) {
1080  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1081    return false;
1082  return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1083}
1084
1085void
1086CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1087                                        const ObjCPropertyImplDecl *propImpl,
1088                                        llvm::Constant *AtomicHelperFn) {
1089  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1090  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1091  ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1092
1093  // Just use the setter expression if Sema gave us one and it's
1094  // non-trivial.
1095  if (!hasTrivialSetExpr(propImpl)) {
1096    if (!AtomicHelperFn)
1097      // If non-atomic, assignment is called directly.
1098      EmitStmt(propImpl->getSetterCXXAssignment());
1099    else
1100      // If atomic, assignment is called via a locking api.
1101      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1102                                    AtomicHelperFn);
1103    return;
1104  }
1105
1106  PropertyImplStrategy strategy(CGM, propImpl);
1107  switch (strategy.getKind()) {
1108  case PropertyImplStrategy::Native: {
1109    // We don't need to do anything for a zero-size struct.
1110    if (strategy.getIvarSize().isZero())
1111      return;
1112
1113    llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1114
1115    LValue ivarLValue =
1116      EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1117    llvm::Value *ivarAddr = ivarLValue.getAddress();
1118
1119    // Currently, all atomic accesses have to be through integer
1120    // types, so there's no point in trying to pick a prettier type.
1121    llvm::Type *bitcastType =
1122      llvm::Type::getIntNTy(getLLVMContext(),
1123                            getContext().toBits(strategy.getIvarSize()));
1124    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1125
1126    // Cast both arguments to the chosen operation type.
1127    argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1128    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1129
1130    // This bitcast load is likely to cause some nasty IR.
1131    llvm::Value *load = Builder.CreateLoad(argAddr);
1132
1133    // Perform an atomic store.  There are no memory ordering requirements.
1134    llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1135    store->setAlignment(strategy.getIvarAlignment().getQuantity());
1136    store->setAtomic(llvm::Unordered);
1137    return;
1138  }
1139
1140  case PropertyImplStrategy::GetSetProperty:
1141  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1142
1143    llvm::Value *setOptimizedPropertyFn = 0;
1144    llvm::Value *setPropertyFn = 0;
1145    if (UseOptimizedSetter(CGM)) {
1146      // 10.8 and iOS 6.0 code and GC is off
1147      setOptimizedPropertyFn =
1148        CGM.getObjCRuntime()
1149           .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1150                                            strategy.isCopy());
1151      if (!setOptimizedPropertyFn) {
1152        CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1153        return;
1154      }
1155    }
1156    else {
1157      setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1158      if (!setPropertyFn) {
1159        CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1160        return;
1161      }
1162    }
1163
1164    // Emit objc_setProperty((id) self, _cmd, offset, arg,
1165    //                       <is-atomic>, <is-copy>).
1166    llvm::Value *cmd =
1167      Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1168    llvm::Value *self =
1169      Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1170    llvm::Value *ivarOffset =
1171      EmitIvarOffset(classImpl->getClassInterface(), ivar);
1172    llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1173    arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1174
1175    CallArgList args;
1176    args.add(RValue::get(self), getContext().getObjCIdType());
1177    args.add(RValue::get(cmd), getContext().getObjCSelType());
1178    if (setOptimizedPropertyFn) {
1179      args.add(RValue::get(arg), getContext().getObjCIdType());
1180      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1181      EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1182                                                  FunctionType::ExtInfo(),
1183                                                  RequiredArgs::All),
1184               setOptimizedPropertyFn, ReturnValueSlot(), args);
1185    } else {
1186      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1187      args.add(RValue::get(arg), getContext().getObjCIdType());
1188      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1189               getContext().BoolTy);
1190      args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1191               getContext().BoolTy);
1192      // FIXME: We shouldn't need to get the function info here, the runtime
1193      // already should have computed it to build the function.
1194      EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1195                                                  FunctionType::ExtInfo(),
1196                                                  RequiredArgs::All),
1197               setPropertyFn, ReturnValueSlot(), args);
1198    }
1199
1200    return;
1201  }
1202
1203  case PropertyImplStrategy::CopyStruct:
1204    emitStructSetterCall(*this, setterMethod, ivar);
1205    return;
1206
1207  case PropertyImplStrategy::Expression:
1208    break;
1209  }
1210
1211  // Otherwise, fake up some ASTs and emit a normal assignment.
1212  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1213  DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1214                   VK_LValue, SourceLocation());
1215  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1216                            selfDecl->getType(), CK_LValueToRValue, &self,
1217                            VK_RValue);
1218  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1219                          SourceLocation(), SourceLocation(),
1220                          &selfLoad, true, true);
1221
1222  ParmVarDecl *argDecl = *setterMethod->param_begin();
1223  QualType argType = argDecl->getType().getNonReferenceType();
1224  DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1225  ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1226                           argType.getUnqualifiedType(), CK_LValueToRValue,
1227                           &arg, VK_RValue);
1228
1229  // The property type can differ from the ivar type in some situations with
1230  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1231  // The following absurdity is just to ensure well-formed IR.
1232  CastKind argCK = CK_NoOp;
1233  if (ivarRef.getType()->isObjCObjectPointerType()) {
1234    if (argLoad.getType()->isObjCObjectPointerType())
1235      argCK = CK_BitCast;
1236    else if (argLoad.getType()->isBlockPointerType())
1237      argCK = CK_BlockPointerToObjCPointerCast;
1238    else
1239      argCK = CK_CPointerToObjCPointerCast;
1240  } else if (ivarRef.getType()->isBlockPointerType()) {
1241     if (argLoad.getType()->isBlockPointerType())
1242      argCK = CK_BitCast;
1243    else
1244      argCK = CK_AnyPointerToBlockPointerCast;
1245  } else if (ivarRef.getType()->isPointerType()) {
1246    argCK = CK_BitCast;
1247  }
1248  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1249                           ivarRef.getType(), argCK, &argLoad,
1250                           VK_RValue);
1251  Expr *finalArg = &argLoad;
1252  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1253                                           argLoad.getType()))
1254    finalArg = &argCast;
1255
1256
1257  BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1258                        ivarRef.getType(), VK_RValue, OK_Ordinary,
1259                        SourceLocation(), false);
1260  EmitStmt(&assign);
1261}
1262
1263/// \brief Generate an Objective-C property setter function.
1264///
1265/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1266/// is illegal within a category.
1267void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1268                                         const ObjCPropertyImplDecl *PID) {
1269  llvm::Constant *AtomicHelperFn =
1270    GenerateObjCAtomicSetterCopyHelperFunction(PID);
1271  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1272  ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1273  assert(OMD && "Invalid call to generate setter (empty method)");
1274  StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1275
1276  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1277
1278  FinishFunction();
1279}
1280
1281namespace {
1282  struct DestroyIvar : EHScopeStack::Cleanup {
1283  private:
1284    llvm::Value *addr;
1285    const ObjCIvarDecl *ivar;
1286    CodeGenFunction::Destroyer *destroyer;
1287    bool useEHCleanupForArray;
1288  public:
1289    DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1290                CodeGenFunction::Destroyer *destroyer,
1291                bool useEHCleanupForArray)
1292      : addr(addr), ivar(ivar), destroyer(destroyer),
1293        useEHCleanupForArray(useEHCleanupForArray) {}
1294
1295    void Emit(CodeGenFunction &CGF, Flags flags) {
1296      LValue lvalue
1297        = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1298      CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1299                      flags.isForNormalCleanup() && useEHCleanupForArray);
1300    }
1301  };
1302}
1303
1304/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1305static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1306                                      llvm::Value *addr,
1307                                      QualType type) {
1308  llvm::Value *null = getNullForVariable(addr);
1309  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1310}
1311
1312static void emitCXXDestructMethod(CodeGenFunction &CGF,
1313                                  ObjCImplementationDecl *impl) {
1314  CodeGenFunction::RunCleanupsScope scope(CGF);
1315
1316  llvm::Value *self = CGF.LoadObjCSelf();
1317
1318  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1319  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1320       ivar; ivar = ivar->getNextIvar()) {
1321    QualType type = ivar->getType();
1322
1323    // Check whether the ivar is a destructible type.
1324    QualType::DestructionKind dtorKind = type.isDestructedType();
1325    if (!dtorKind) continue;
1326
1327    CodeGenFunction::Destroyer *destroyer = 0;
1328
1329    // Use a call to objc_storeStrong to destroy strong ivars, for the
1330    // general benefit of the tools.
1331    if (dtorKind == QualType::DK_objc_strong_lifetime) {
1332      destroyer = destroyARCStrongWithStore;
1333
1334    // Otherwise use the default for the destruction kind.
1335    } else {
1336      destroyer = CGF.getDestroyer(dtorKind);
1337    }
1338
1339    CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1340
1341    CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1342                                         cleanupKind & EHCleanup);
1343  }
1344
1345  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1346}
1347
1348void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1349                                                 ObjCMethodDecl *MD,
1350                                                 bool ctor) {
1351  MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1352  StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1353
1354  // Emit .cxx_construct.
1355  if (ctor) {
1356    // Suppress the final autorelease in ARC.
1357    AutoreleaseResult = false;
1358
1359    SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1360    for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1361           E = IMP->init_end(); B != E; ++B) {
1362      CXXCtorInitializer *IvarInit = (*B);
1363      FieldDecl *Field = IvarInit->getAnyMember();
1364      ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1365      LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1366                                    LoadObjCSelf(), Ivar, 0);
1367      EmitAggExpr(IvarInit->getInit(),
1368                  AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1369                                          AggValueSlot::DoesNotNeedGCBarriers,
1370                                          AggValueSlot::IsNotAliased));
1371    }
1372    // constructor returns 'self'.
1373    CodeGenTypes &Types = CGM.getTypes();
1374    QualType IdTy(CGM.getContext().getObjCIdType());
1375    llvm::Value *SelfAsId =
1376      Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1377    EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1378
1379  // Emit .cxx_destruct.
1380  } else {
1381    emitCXXDestructMethod(*this, IMP);
1382  }
1383  FinishFunction();
1384}
1385
1386bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1387  CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1388  it++; it++;
1389  const ABIArgInfo &AI = it->info;
1390  // FIXME. Is this sufficient check?
1391  return (AI.getKind() == ABIArgInfo::Indirect);
1392}
1393
1394bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1395  if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1396    return false;
1397  if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1398    return FDTTy->getDecl()->hasObjectMember();
1399  return false;
1400}
1401
1402llvm::Value *CodeGenFunction::LoadObjCSelf() {
1403  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1404  DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1405                  Self->getType(), VK_LValue, SourceLocation());
1406  return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1407}
1408
1409QualType CodeGenFunction::TypeOfSelfObject() {
1410  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1411  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1412  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1413    getContext().getCanonicalType(selfDecl->getType()));
1414  return PTy->getPointeeType();
1415}
1416
1417void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1418  llvm::Constant *EnumerationMutationFn =
1419    CGM.getObjCRuntime().EnumerationMutationFunction();
1420
1421  if (!EnumerationMutationFn) {
1422    CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1423    return;
1424  }
1425
1426  CGDebugInfo *DI = getDebugInfo();
1427  if (DI)
1428    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1429
1430  // The local variable comes into scope immediately.
1431  AutoVarEmission variable = AutoVarEmission::invalid();
1432  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1433    variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1434
1435  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1436
1437  // Fast enumeration state.
1438  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1439  llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1440  EmitNullInitialization(StatePtr, StateTy);
1441
1442  // Number of elements in the items array.
1443  static const unsigned NumItems = 16;
1444
1445  // Fetch the countByEnumeratingWithState:objects:count: selector.
1446  IdentifierInfo *II[] = {
1447    &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1448    &CGM.getContext().Idents.get("objects"),
1449    &CGM.getContext().Idents.get("count")
1450  };
1451  Selector FastEnumSel =
1452    CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1453
1454  QualType ItemsTy =
1455    getContext().getConstantArrayType(getContext().getObjCIdType(),
1456                                      llvm::APInt(32, NumItems),
1457                                      ArrayType::Normal, 0);
1458  llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1459
1460  // Emit the collection pointer.  In ARC, we do a retain.
1461  llvm::Value *Collection;
1462  if (getLangOpts().ObjCAutoRefCount) {
1463    Collection = EmitARCRetainScalarExpr(S.getCollection());
1464
1465    // Enter a cleanup to do the release.
1466    EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1467  } else {
1468    Collection = EmitScalarExpr(S.getCollection());
1469  }
1470
1471  // The 'continue' label needs to appear within the cleanup for the
1472  // collection object.
1473  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1474
1475  // Send it our message:
1476  CallArgList Args;
1477
1478  // The first argument is a temporary of the enumeration-state type.
1479  Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1480
1481  // The second argument is a temporary array with space for NumItems
1482  // pointers.  We'll actually be loading elements from the array
1483  // pointer written into the control state; this buffer is so that
1484  // collections that *aren't* backed by arrays can still queue up
1485  // batches of elements.
1486  Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1487
1488  // The third argument is the capacity of that temporary array.
1489  llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1490  llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1491  Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1492
1493  // Start the enumeration.
1494  RValue CountRV =
1495    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1496                                             getContext().UnsignedLongTy,
1497                                             FastEnumSel,
1498                                             Collection, Args);
1499
1500  // The initial number of objects that were returned in the buffer.
1501  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1502
1503  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1504  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1505
1506  llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1507
1508  // If the limit pointer was zero to begin with, the collection is
1509  // empty; skip all this.
1510  Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1511                       EmptyBB, LoopInitBB);
1512
1513  // Otherwise, initialize the loop.
1514  EmitBlock(LoopInitBB);
1515
1516  // Save the initial mutations value.  This is the value at an
1517  // address that was written into the state object by
1518  // countByEnumeratingWithState:objects:count:.
1519  llvm::Value *StateMutationsPtrPtr =
1520    Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1521  llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1522                                                      "mutationsptr");
1523
1524  llvm::Value *initialMutations =
1525    Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1526
1527  // Start looping.  This is the point we return to whenever we have a
1528  // fresh, non-empty batch of objects.
1529  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1530  EmitBlock(LoopBodyBB);
1531
1532  // The current index into the buffer.
1533  llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1534  index->addIncoming(zero, LoopInitBB);
1535
1536  // The current buffer size.
1537  llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1538  count->addIncoming(initialBufferLimit, LoopInitBB);
1539
1540  // Check whether the mutations value has changed from where it was
1541  // at start.  StateMutationsPtr should actually be invariant between
1542  // refreshes.
1543  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1544  llvm::Value *currentMutations
1545    = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1546
1547  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1548  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1549
1550  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1551                       WasNotMutatedBB, WasMutatedBB);
1552
1553  // If so, call the enumeration-mutation function.
1554  EmitBlock(WasMutatedBB);
1555  llvm::Value *V =
1556    Builder.CreateBitCast(Collection,
1557                          ConvertType(getContext().getObjCIdType()));
1558  CallArgList Args2;
1559  Args2.add(RValue::get(V), getContext().getObjCIdType());
1560  // FIXME: We shouldn't need to get the function info here, the runtime already
1561  // should have computed it to build the function.
1562  EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1563                                                  FunctionType::ExtInfo(),
1564                                                  RequiredArgs::All),
1565           EnumerationMutationFn, ReturnValueSlot(), Args2);
1566
1567  // Otherwise, or if the mutation function returns, just continue.
1568  EmitBlock(WasNotMutatedBB);
1569
1570  // Initialize the element variable.
1571  RunCleanupsScope elementVariableScope(*this);
1572  bool elementIsVariable;
1573  LValue elementLValue;
1574  QualType elementType;
1575  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1576    // Initialize the variable, in case it's a __block variable or something.
1577    EmitAutoVarInit(variable);
1578
1579    const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1580    DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1581                        VK_LValue, SourceLocation());
1582    elementLValue = EmitLValue(&tempDRE);
1583    elementType = D->getType();
1584    elementIsVariable = true;
1585
1586    if (D->isARCPseudoStrong())
1587      elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1588  } else {
1589    elementLValue = LValue(); // suppress warning
1590    elementType = cast<Expr>(S.getElement())->getType();
1591    elementIsVariable = false;
1592  }
1593  llvm::Type *convertedElementType = ConvertType(elementType);
1594
1595  // Fetch the buffer out of the enumeration state.
1596  // TODO: this pointer should actually be invariant between
1597  // refreshes, which would help us do certain loop optimizations.
1598  llvm::Value *StateItemsPtr =
1599    Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1600  llvm::Value *EnumStateItems =
1601    Builder.CreateLoad(StateItemsPtr, "stateitems");
1602
1603  // Fetch the value at the current index from the buffer.
1604  llvm::Value *CurrentItemPtr =
1605    Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1606  llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1607
1608  // Cast that value to the right type.
1609  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1610                                      "currentitem");
1611
1612  // Make sure we have an l-value.  Yes, this gets evaluated every
1613  // time through the loop.
1614  if (!elementIsVariable) {
1615    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1616    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1617  } else {
1618    EmitScalarInit(CurrentItem, elementLValue);
1619  }
1620
1621  // If we do have an element variable, this assignment is the end of
1622  // its initialization.
1623  if (elementIsVariable)
1624    EmitAutoVarCleanups(variable);
1625
1626  // Perform the loop body, setting up break and continue labels.
1627  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1628  {
1629    RunCleanupsScope Scope(*this);
1630    EmitStmt(S.getBody());
1631  }
1632  BreakContinueStack.pop_back();
1633
1634  // Destroy the element variable now.
1635  elementVariableScope.ForceCleanup();
1636
1637  // Check whether there are more elements.
1638  EmitBlock(AfterBody.getBlock());
1639
1640  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1641
1642  // First we check in the local buffer.
1643  llvm::Value *indexPlusOne
1644    = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1645
1646  // If we haven't overrun the buffer yet, we can continue.
1647  Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1648                       LoopBodyBB, FetchMoreBB);
1649
1650  index->addIncoming(indexPlusOne, AfterBody.getBlock());
1651  count->addIncoming(count, AfterBody.getBlock());
1652
1653  // Otherwise, we have to fetch more elements.
1654  EmitBlock(FetchMoreBB);
1655
1656  CountRV =
1657    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1658                                             getContext().UnsignedLongTy,
1659                                             FastEnumSel,
1660                                             Collection, Args);
1661
1662  // If we got a zero count, we're done.
1663  llvm::Value *refetchCount = CountRV.getScalarVal();
1664
1665  // (note that the message send might split FetchMoreBB)
1666  index->addIncoming(zero, Builder.GetInsertBlock());
1667  count->addIncoming(refetchCount, Builder.GetInsertBlock());
1668
1669  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1670                       EmptyBB, LoopBodyBB);
1671
1672  // No more elements.
1673  EmitBlock(EmptyBB);
1674
1675  if (!elementIsVariable) {
1676    // If the element was not a declaration, set it to be null.
1677
1678    llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1679    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1680    EmitStoreThroughLValue(RValue::get(null), elementLValue);
1681  }
1682
1683  if (DI)
1684    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1685
1686  // Leave the cleanup we entered in ARC.
1687  if (getLangOpts().ObjCAutoRefCount)
1688    PopCleanupBlock();
1689
1690  EmitBlock(LoopEnd.getBlock());
1691}
1692
1693void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1694  CGM.getObjCRuntime().EmitTryStmt(*this, S);
1695}
1696
1697void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1698  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1699}
1700
1701void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1702                                              const ObjCAtSynchronizedStmt &S) {
1703  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1704}
1705
1706/// Produce the code for a CK_ARCProduceObject.  Just does a
1707/// primitive retain.
1708llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1709                                                    llvm::Value *value) {
1710  return EmitARCRetain(type, value);
1711}
1712
1713namespace {
1714  struct CallObjCRelease : EHScopeStack::Cleanup {
1715    CallObjCRelease(llvm::Value *object) : object(object) {}
1716    llvm::Value *object;
1717
1718    void Emit(CodeGenFunction &CGF, Flags flags) {
1719      // Releases at the end of the full-expression are imprecise.
1720      CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1721    }
1722  };
1723}
1724
1725/// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1726/// release at the end of the full-expression.
1727llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1728                                                    llvm::Value *object) {
1729  // If we're in a conditional branch, we need to make the cleanup
1730  // conditional.
1731  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1732  return object;
1733}
1734
1735llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1736                                                           llvm::Value *value) {
1737  return EmitARCRetainAutorelease(type, value);
1738}
1739
1740/// Given a number of pointers, inform the optimizer that they're
1741/// being intrinsically used up until this point in the program.
1742void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1743  llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1744  if (!fn) {
1745    llvm::FunctionType *fnType =
1746      llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1747    fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1748  }
1749
1750  // This isn't really a "runtime" function, but as an intrinsic it
1751  // doesn't really matter as long as we align things up.
1752  EmitNounwindRuntimeCall(fn, values);
1753}
1754
1755
1756static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1757                                                llvm::FunctionType *type,
1758                                                StringRef fnName) {
1759  llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1760
1761  if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1762    // If the target runtime doesn't naturally support ARC, emit weak
1763    // references to the runtime support library.  We don't really
1764    // permit this to fail, but we need a particular relocation style.
1765    if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1766      f->setLinkage(llvm::Function::ExternalWeakLinkage);
1767    } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1768      // If we have Native ARC, set nonlazybind attribute for these APIs for
1769      // performance.
1770      f->addFnAttr(llvm::Attribute::NonLazyBind);
1771    }
1772  }
1773
1774  return fn;
1775}
1776
1777/// Perform an operation having the signature
1778///   i8* (i8*)
1779/// where a null input causes a no-op and returns null.
1780static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1781                                          llvm::Value *value,
1782                                          llvm::Constant *&fn,
1783                                          StringRef fnName,
1784                                          bool isTailCall = false) {
1785  if (isa<llvm::ConstantPointerNull>(value)) return value;
1786
1787  if (!fn) {
1788    llvm::FunctionType *fnType =
1789      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1790    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1791  }
1792
1793  // Cast the argument to 'id'.
1794  llvm::Type *origType = value->getType();
1795  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1796
1797  // Call the function.
1798  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1799  if (isTailCall)
1800    call->setTailCall();
1801
1802  // Cast the result back to the original type.
1803  return CGF.Builder.CreateBitCast(call, origType);
1804}
1805
1806/// Perform an operation having the following signature:
1807///   i8* (i8**)
1808static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1809                                         llvm::Value *addr,
1810                                         llvm::Constant *&fn,
1811                                         StringRef fnName) {
1812  if (!fn) {
1813    llvm::FunctionType *fnType =
1814      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1815    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1816  }
1817
1818  // Cast the argument to 'id*'.
1819  llvm::Type *origType = addr->getType();
1820  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1821
1822  // Call the function.
1823  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1824
1825  // Cast the result back to a dereference of the original type.
1826  if (origType != CGF.Int8PtrPtrTy)
1827    result = CGF.Builder.CreateBitCast(result,
1828                        cast<llvm::PointerType>(origType)->getElementType());
1829
1830  return result;
1831}
1832
1833/// Perform an operation having the following signature:
1834///   i8* (i8**, i8*)
1835static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1836                                          llvm::Value *addr,
1837                                          llvm::Value *value,
1838                                          llvm::Constant *&fn,
1839                                          StringRef fnName,
1840                                          bool ignored) {
1841  assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1842           == value->getType());
1843
1844  if (!fn) {
1845    llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1846
1847    llvm::FunctionType *fnType
1848      = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1849    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1850  }
1851
1852  llvm::Type *origType = value->getType();
1853
1854  llvm::Value *args[] = {
1855    CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1856    CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1857  };
1858  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1859
1860  if (ignored) return 0;
1861
1862  return CGF.Builder.CreateBitCast(result, origType);
1863}
1864
1865/// Perform an operation having the following signature:
1866///   void (i8**, i8**)
1867static void emitARCCopyOperation(CodeGenFunction &CGF,
1868                                 llvm::Value *dst,
1869                                 llvm::Value *src,
1870                                 llvm::Constant *&fn,
1871                                 StringRef fnName) {
1872  assert(dst->getType() == src->getType());
1873
1874  if (!fn) {
1875    llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1876
1877    llvm::FunctionType *fnType
1878      = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1879    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1880  }
1881
1882  llvm::Value *args[] = {
1883    CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1884    CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1885  };
1886  CGF.EmitNounwindRuntimeCall(fn, args);
1887}
1888
1889/// Produce the code to do a retain.  Based on the type, calls one of:
1890///   call i8* \@objc_retain(i8* %value)
1891///   call i8* \@objc_retainBlock(i8* %value)
1892llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1893  if (type->isBlockPointerType())
1894    return EmitARCRetainBlock(value, /*mandatory*/ false);
1895  else
1896    return EmitARCRetainNonBlock(value);
1897}
1898
1899/// Retain the given object, with normal retain semantics.
1900///   call i8* \@objc_retain(i8* %value)
1901llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1902  return emitARCValueOperation(*this, value,
1903                               CGM.getARCEntrypoints().objc_retain,
1904                               "objc_retain");
1905}
1906
1907/// Retain the given block, with _Block_copy semantics.
1908///   call i8* \@objc_retainBlock(i8* %value)
1909///
1910/// \param mandatory - If false, emit the call with metadata
1911/// indicating that it's okay for the optimizer to eliminate this call
1912/// if it can prove that the block never escapes except down the stack.
1913llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1914                                                 bool mandatory) {
1915  llvm::Value *result
1916    = emitARCValueOperation(*this, value,
1917                            CGM.getARCEntrypoints().objc_retainBlock,
1918                            "objc_retainBlock");
1919
1920  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1921  // tell the optimizer that it doesn't need to do this copy if the
1922  // block doesn't escape, where being passed as an argument doesn't
1923  // count as escaping.
1924  if (!mandatory && isa<llvm::Instruction>(result)) {
1925    llvm::CallInst *call
1926      = cast<llvm::CallInst>(result->stripPointerCasts());
1927    assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1928
1929    SmallVector<llvm::Value*,1> args;
1930    call->setMetadata("clang.arc.copy_on_escape",
1931                      llvm::MDNode::get(Builder.getContext(), args));
1932  }
1933
1934  return result;
1935}
1936
1937/// Retain the given object which is the result of a function call.
1938///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1939///
1940/// Yes, this function name is one character away from a different
1941/// call with completely different semantics.
1942llvm::Value *
1943CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1944  // Fetch the void(void) inline asm which marks that we're going to
1945  // retain the autoreleased return value.
1946  llvm::InlineAsm *&marker
1947    = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1948  if (!marker) {
1949    StringRef assembly
1950      = CGM.getTargetCodeGenInfo()
1951           .getARCRetainAutoreleasedReturnValueMarker();
1952
1953    // If we have an empty assembly string, there's nothing to do.
1954    if (assembly.empty()) {
1955
1956    // Otherwise, at -O0, build an inline asm that we're going to call
1957    // in a moment.
1958    } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1959      llvm::FunctionType *type =
1960        llvm::FunctionType::get(VoidTy, /*variadic*/false);
1961
1962      marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1963
1964    // If we're at -O1 and above, we don't want to litter the code
1965    // with this marker yet, so leave a breadcrumb for the ARC
1966    // optimizer to pick up.
1967    } else {
1968      llvm::NamedMDNode *metadata =
1969        CGM.getModule().getOrInsertNamedMetadata(
1970                            "clang.arc.retainAutoreleasedReturnValueMarker");
1971      assert(metadata->getNumOperands() <= 1);
1972      if (metadata->getNumOperands() == 0) {
1973        llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1974        metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1975      }
1976    }
1977  }
1978
1979  // Call the marker asm if we made one, which we do only at -O0.
1980  if (marker) Builder.CreateCall(marker);
1981
1982  return emitARCValueOperation(*this, value,
1983                     CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1984                               "objc_retainAutoreleasedReturnValue");
1985}
1986
1987/// Release the given object.
1988///   call void \@objc_release(i8* %value)
1989void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1990                                     ARCPreciseLifetime_t precise) {
1991  if (isa<llvm::ConstantPointerNull>(value)) return;
1992
1993  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1994  if (!fn) {
1995    llvm::FunctionType *fnType =
1996      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
1997    fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1998  }
1999
2000  // Cast the argument to 'id'.
2001  value = Builder.CreateBitCast(value, Int8PtrTy);
2002
2003  // Call objc_release.
2004  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2005
2006  if (precise == ARCImpreciseLifetime) {
2007    SmallVector<llvm::Value*,1> args;
2008    call->setMetadata("clang.imprecise_release",
2009                      llvm::MDNode::get(Builder.getContext(), args));
2010  }
2011}
2012
2013/// Destroy a __strong variable.
2014///
2015/// At -O0, emit a call to store 'null' into the address;
2016/// instrumenting tools prefer this because the address is exposed,
2017/// but it's relatively cumbersome to optimize.
2018///
2019/// At -O1 and above, just load and call objc_release.
2020///
2021///   call void \@objc_storeStrong(i8** %addr, i8* null)
2022void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2023                                           ARCPreciseLifetime_t precise) {
2024  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2025    llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2026    llvm::Value *null = llvm::ConstantPointerNull::get(
2027                          cast<llvm::PointerType>(addrTy->getElementType()));
2028    EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2029    return;
2030  }
2031
2032  llvm::Value *value = Builder.CreateLoad(addr);
2033  EmitARCRelease(value, precise);
2034}
2035
2036/// Store into a strong object.  Always calls this:
2037///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2038llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2039                                                     llvm::Value *value,
2040                                                     bool ignored) {
2041  assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2042           == value->getType());
2043
2044  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2045  if (!fn) {
2046    llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2047    llvm::FunctionType *fnType
2048      = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2049    fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2050  }
2051
2052  llvm::Value *args[] = {
2053    Builder.CreateBitCast(addr, Int8PtrPtrTy),
2054    Builder.CreateBitCast(value, Int8PtrTy)
2055  };
2056  EmitNounwindRuntimeCall(fn, args);
2057
2058  if (ignored) return 0;
2059  return value;
2060}
2061
2062/// Store into a strong object.  Sometimes calls this:
2063///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2064/// Other times, breaks it down into components.
2065llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2066                                                 llvm::Value *newValue,
2067                                                 bool ignored) {
2068  QualType type = dst.getType();
2069  bool isBlock = type->isBlockPointerType();
2070
2071  // Use a store barrier at -O0 unless this is a block type or the
2072  // lvalue is inadequately aligned.
2073  if (shouldUseFusedARCCalls() &&
2074      !isBlock &&
2075      (dst.getAlignment().isZero() ||
2076       dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2077    return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2078  }
2079
2080  // Otherwise, split it out.
2081
2082  // Retain the new value.
2083  newValue = EmitARCRetain(type, newValue);
2084
2085  // Read the old value.
2086  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2087
2088  // Store.  We do this before the release so that any deallocs won't
2089  // see the old value.
2090  EmitStoreOfScalar(newValue, dst);
2091
2092  // Finally, release the old value.
2093  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2094
2095  return newValue;
2096}
2097
2098/// Autorelease the given object.
2099///   call i8* \@objc_autorelease(i8* %value)
2100llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2101  return emitARCValueOperation(*this, value,
2102                               CGM.getARCEntrypoints().objc_autorelease,
2103                               "objc_autorelease");
2104}
2105
2106/// Autorelease the given object.
2107///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2108llvm::Value *
2109CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2110  return emitARCValueOperation(*this, value,
2111                            CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2112                               "objc_autoreleaseReturnValue",
2113                               /*isTailCall*/ true);
2114}
2115
2116/// Do a fused retain/autorelease of the given object.
2117///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2118llvm::Value *
2119CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2120  return emitARCValueOperation(*this, value,
2121                     CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2122                               "objc_retainAutoreleaseReturnValue",
2123                               /*isTailCall*/ true);
2124}
2125
2126/// Do a fused retain/autorelease of the given object.
2127///   call i8* \@objc_retainAutorelease(i8* %value)
2128/// or
2129///   %retain = call i8* \@objc_retainBlock(i8* %value)
2130///   call i8* \@objc_autorelease(i8* %retain)
2131llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2132                                                       llvm::Value *value) {
2133  if (!type->isBlockPointerType())
2134    return EmitARCRetainAutoreleaseNonBlock(value);
2135
2136  if (isa<llvm::ConstantPointerNull>(value)) return value;
2137
2138  llvm::Type *origType = value->getType();
2139  value = Builder.CreateBitCast(value, Int8PtrTy);
2140  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2141  value = EmitARCAutorelease(value);
2142  return Builder.CreateBitCast(value, origType);
2143}
2144
2145/// Do a fused retain/autorelease of the given object.
2146///   call i8* \@objc_retainAutorelease(i8* %value)
2147llvm::Value *
2148CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2149  return emitARCValueOperation(*this, value,
2150                               CGM.getARCEntrypoints().objc_retainAutorelease,
2151                               "objc_retainAutorelease");
2152}
2153
2154/// i8* \@objc_loadWeak(i8** %addr)
2155/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2156llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2157  return emitARCLoadOperation(*this, addr,
2158                              CGM.getARCEntrypoints().objc_loadWeak,
2159                              "objc_loadWeak");
2160}
2161
2162/// i8* \@objc_loadWeakRetained(i8** %addr)
2163llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2164  return emitARCLoadOperation(*this, addr,
2165                              CGM.getARCEntrypoints().objc_loadWeakRetained,
2166                              "objc_loadWeakRetained");
2167}
2168
2169/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2170/// Returns %value.
2171llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2172                                               llvm::Value *value,
2173                                               bool ignored) {
2174  return emitARCStoreOperation(*this, addr, value,
2175                               CGM.getARCEntrypoints().objc_storeWeak,
2176                               "objc_storeWeak", ignored);
2177}
2178
2179/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2180/// Returns %value.  %addr is known to not have a current weak entry.
2181/// Essentially equivalent to:
2182///   *addr = nil; objc_storeWeak(addr, value);
2183void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2184  // If we're initializing to null, just write null to memory; no need
2185  // to get the runtime involved.  But don't do this if optimization
2186  // is enabled, because accounting for this would make the optimizer
2187  // much more complicated.
2188  if (isa<llvm::ConstantPointerNull>(value) &&
2189      CGM.getCodeGenOpts().OptimizationLevel == 0) {
2190    Builder.CreateStore(value, addr);
2191    return;
2192  }
2193
2194  emitARCStoreOperation(*this, addr, value,
2195                        CGM.getARCEntrypoints().objc_initWeak,
2196                        "objc_initWeak", /*ignored*/ true);
2197}
2198
2199/// void \@objc_destroyWeak(i8** %addr)
2200/// Essentially objc_storeWeak(addr, nil).
2201void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2202  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2203  if (!fn) {
2204    llvm::FunctionType *fnType =
2205      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2206    fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2207  }
2208
2209  // Cast the argument to 'id*'.
2210  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2211
2212  EmitNounwindRuntimeCall(fn, addr);
2213}
2214
2215/// void \@objc_moveWeak(i8** %dest, i8** %src)
2216/// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2217/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2218void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2219  emitARCCopyOperation(*this, dst, src,
2220                       CGM.getARCEntrypoints().objc_moveWeak,
2221                       "objc_moveWeak");
2222}
2223
2224/// void \@objc_copyWeak(i8** %dest, i8** %src)
2225/// Disregards the current value in %dest.  Essentially
2226///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2227void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2228  emitARCCopyOperation(*this, dst, src,
2229                       CGM.getARCEntrypoints().objc_copyWeak,
2230                       "objc_copyWeak");
2231}
2232
2233/// Produce the code to do a objc_autoreleasepool_push.
2234///   call i8* \@objc_autoreleasePoolPush(void)
2235llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2236  llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2237  if (!fn) {
2238    llvm::FunctionType *fnType =
2239      llvm::FunctionType::get(Int8PtrTy, false);
2240    fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2241  }
2242
2243  return EmitNounwindRuntimeCall(fn);
2244}
2245
2246/// Produce the code to do a primitive release.
2247///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2248void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2249  assert(value->getType() == Int8PtrTy);
2250
2251  llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2252  if (!fn) {
2253    llvm::FunctionType *fnType =
2254      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2255
2256    // We don't want to use a weak import here; instead we should not
2257    // fall into this path.
2258    fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2259  }
2260
2261  // objc_autoreleasePoolPop can throw.
2262  EmitRuntimeCallOrInvoke(fn, value);
2263}
2264
2265/// Produce the code to do an MRR version objc_autoreleasepool_push.
2266/// Which is: [[NSAutoreleasePool alloc] init];
2267/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2268/// init is declared as: - (id) init; in its NSObject super class.
2269///
2270llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2271  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2272  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2273  // [NSAutoreleasePool alloc]
2274  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2275  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2276  CallArgList Args;
2277  RValue AllocRV =
2278    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2279                                getContext().getObjCIdType(),
2280                                AllocSel, Receiver, Args);
2281
2282  // [Receiver init]
2283  Receiver = AllocRV.getScalarVal();
2284  II = &CGM.getContext().Idents.get("init");
2285  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2286  RValue InitRV =
2287    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2288                                getContext().getObjCIdType(),
2289                                InitSel, Receiver, Args);
2290  return InitRV.getScalarVal();
2291}
2292
2293/// Produce the code to do a primitive release.
2294/// [tmp drain];
2295void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2296  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2297  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2298  CallArgList Args;
2299  CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2300                              getContext().VoidTy, DrainSel, Arg, Args);
2301}
2302
2303void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2304                                              llvm::Value *addr,
2305                                              QualType type) {
2306  CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2307}
2308
2309void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2310                                                llvm::Value *addr,
2311                                                QualType type) {
2312  CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2313}
2314
2315void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2316                                     llvm::Value *addr,
2317                                     QualType type) {
2318  CGF.EmitARCDestroyWeak(addr);
2319}
2320
2321namespace {
2322  struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2323    llvm::Value *Token;
2324
2325    CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2326
2327    void Emit(CodeGenFunction &CGF, Flags flags) {
2328      CGF.EmitObjCAutoreleasePoolPop(Token);
2329    }
2330  };
2331  struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2332    llvm::Value *Token;
2333
2334    CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2335
2336    void Emit(CodeGenFunction &CGF, Flags flags) {
2337      CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2338    }
2339  };
2340}
2341
2342void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2343  if (CGM.getLangOpts().ObjCAutoRefCount)
2344    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2345  else
2346    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2347}
2348
2349static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2350                                                  LValue lvalue,
2351                                                  QualType type) {
2352  switch (type.getObjCLifetime()) {
2353  case Qualifiers::OCL_None:
2354  case Qualifiers::OCL_ExplicitNone:
2355  case Qualifiers::OCL_Strong:
2356  case Qualifiers::OCL_Autoreleasing:
2357    return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2358                                              SourceLocation()).getScalarVal(),
2359                         false);
2360
2361  case Qualifiers::OCL_Weak:
2362    return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2363                         true);
2364  }
2365
2366  llvm_unreachable("impossible lifetime!");
2367}
2368
2369static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2370                                                  const Expr *e) {
2371  e = e->IgnoreParens();
2372  QualType type = e->getType();
2373
2374  // If we're loading retained from a __strong xvalue, we can avoid
2375  // an extra retain/release pair by zeroing out the source of this
2376  // "move" operation.
2377  if (e->isXValue() &&
2378      !type.isConstQualified() &&
2379      type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2380    // Emit the lvalue.
2381    LValue lv = CGF.EmitLValue(e);
2382
2383    // Load the object pointer.
2384    llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2385                                               SourceLocation()).getScalarVal();
2386
2387    // Set the source pointer to NULL.
2388    CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2389
2390    return TryEmitResult(result, true);
2391  }
2392
2393  // As a very special optimization, in ARC++, if the l-value is the
2394  // result of a non-volatile assignment, do a simple retain of the
2395  // result of the call to objc_storeWeak instead of reloading.
2396  if (CGF.getLangOpts().CPlusPlus &&
2397      !type.isVolatileQualified() &&
2398      type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2399      isa<BinaryOperator>(e) &&
2400      cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2401    return TryEmitResult(CGF.EmitScalarExpr(e), false);
2402
2403  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2404}
2405
2406static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2407                                           llvm::Value *value);
2408
2409/// Given that the given expression is some sort of call (which does
2410/// not return retained), emit a retain following it.
2411static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2412  llvm::Value *value = CGF.EmitScalarExpr(e);
2413  return emitARCRetainAfterCall(CGF, value);
2414}
2415
2416static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2417                                           llvm::Value *value) {
2418  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2419    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2420
2421    // Place the retain immediately following the call.
2422    CGF.Builder.SetInsertPoint(call->getParent(),
2423                               ++llvm::BasicBlock::iterator(call));
2424    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2425
2426    CGF.Builder.restoreIP(ip);
2427    return value;
2428  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2429    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2430
2431    // Place the retain at the beginning of the normal destination block.
2432    llvm::BasicBlock *BB = invoke->getNormalDest();
2433    CGF.Builder.SetInsertPoint(BB, BB->begin());
2434    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2435
2436    CGF.Builder.restoreIP(ip);
2437    return value;
2438
2439  // Bitcasts can arise because of related-result returns.  Rewrite
2440  // the operand.
2441  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2442    llvm::Value *operand = bitcast->getOperand(0);
2443    operand = emitARCRetainAfterCall(CGF, operand);
2444    bitcast->setOperand(0, operand);
2445    return bitcast;
2446
2447  // Generic fall-back case.
2448  } else {
2449    // Retain using the non-block variant: we never need to do a copy
2450    // of a block that's been returned to us.
2451    return CGF.EmitARCRetainNonBlock(value);
2452  }
2453}
2454
2455/// Determine whether it might be important to emit a separate
2456/// objc_retain_block on the result of the given expression, or
2457/// whether it's okay to just emit it in a +1 context.
2458static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2459  assert(e->getType()->isBlockPointerType());
2460  e = e->IgnoreParens();
2461
2462  // For future goodness, emit block expressions directly in +1
2463  // contexts if we can.
2464  if (isa<BlockExpr>(e))
2465    return false;
2466
2467  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2468    switch (cast->getCastKind()) {
2469    // Emitting these operations in +1 contexts is goodness.
2470    case CK_LValueToRValue:
2471    case CK_ARCReclaimReturnedObject:
2472    case CK_ARCConsumeObject:
2473    case CK_ARCProduceObject:
2474      return false;
2475
2476    // These operations preserve a block type.
2477    case CK_NoOp:
2478    case CK_BitCast:
2479      return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2480
2481    // These operations are known to be bad (or haven't been considered).
2482    case CK_AnyPointerToBlockPointerCast:
2483    default:
2484      return true;
2485    }
2486  }
2487
2488  return true;
2489}
2490
2491/// Try to emit a PseudoObjectExpr at +1.
2492///
2493/// This massively duplicates emitPseudoObjectRValue.
2494static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2495                                                  const PseudoObjectExpr *E) {
2496  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2497
2498  // Find the result expression.
2499  const Expr *resultExpr = E->getResultExpr();
2500  assert(resultExpr);
2501  TryEmitResult result;
2502
2503  for (PseudoObjectExpr::const_semantics_iterator
2504         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2505    const Expr *semantic = *i;
2506
2507    // If this semantic expression is an opaque value, bind it
2508    // to the result of its source expression.
2509    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2510      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2511      OVMA opaqueData;
2512
2513      // If this semantic is the result of the pseudo-object
2514      // expression, try to evaluate the source as +1.
2515      if (ov == resultExpr) {
2516        assert(!OVMA::shouldBindAsLValue(ov));
2517        result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2518        opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2519
2520      // Otherwise, just bind it.
2521      } else {
2522        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2523      }
2524      opaques.push_back(opaqueData);
2525
2526    // Otherwise, if the expression is the result, evaluate it
2527    // and remember the result.
2528    } else if (semantic == resultExpr) {
2529      result = tryEmitARCRetainScalarExpr(CGF, semantic);
2530
2531    // Otherwise, evaluate the expression in an ignored context.
2532    } else {
2533      CGF.EmitIgnoredExpr(semantic);
2534    }
2535  }
2536
2537  // Unbind all the opaques now.
2538  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2539    opaques[i].unbind(CGF);
2540
2541  return result;
2542}
2543
2544static TryEmitResult
2545tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2546  // We should *never* see a nested full-expression here, because if
2547  // we fail to emit at +1, our caller must not retain after we close
2548  // out the full-expression.
2549  assert(!isa<ExprWithCleanups>(e));
2550
2551  // The desired result type, if it differs from the type of the
2552  // ultimate opaque expression.
2553  llvm::Type *resultType = 0;
2554
2555  while (true) {
2556    e = e->IgnoreParens();
2557
2558    // There's a break at the end of this if-chain;  anything
2559    // that wants to keep looping has to explicitly continue.
2560    if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2561      switch (ce->getCastKind()) {
2562      // No-op casts don't change the type, so we just ignore them.
2563      case CK_NoOp:
2564        e = ce->getSubExpr();
2565        continue;
2566
2567      case CK_LValueToRValue: {
2568        TryEmitResult loadResult
2569          = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2570        if (resultType) {
2571          llvm::Value *value = loadResult.getPointer();
2572          value = CGF.Builder.CreateBitCast(value, resultType);
2573          loadResult.setPointer(value);
2574        }
2575        return loadResult;
2576      }
2577
2578      // These casts can change the type, so remember that and
2579      // soldier on.  We only need to remember the outermost such
2580      // cast, though.
2581      case CK_CPointerToObjCPointerCast:
2582      case CK_BlockPointerToObjCPointerCast:
2583      case CK_AnyPointerToBlockPointerCast:
2584      case CK_BitCast:
2585        if (!resultType)
2586          resultType = CGF.ConvertType(ce->getType());
2587        e = ce->getSubExpr();
2588        assert(e->getType()->hasPointerRepresentation());
2589        continue;
2590
2591      // For consumptions, just emit the subexpression and thus elide
2592      // the retain/release pair.
2593      case CK_ARCConsumeObject: {
2594        llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2595        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2596        return TryEmitResult(result, true);
2597      }
2598
2599      // Block extends are net +0.  Naively, we could just recurse on
2600      // the subexpression, but actually we need to ensure that the
2601      // value is copied as a block, so there's a little filter here.
2602      case CK_ARCExtendBlockObject: {
2603        llvm::Value *result; // will be a +0 value
2604
2605        // If we can't safely assume the sub-expression will produce a
2606        // block-copied value, emit the sub-expression at +0.
2607        if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2608          result = CGF.EmitScalarExpr(ce->getSubExpr());
2609
2610        // Otherwise, try to emit the sub-expression at +1 recursively.
2611        } else {
2612          TryEmitResult subresult
2613            = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2614          result = subresult.getPointer();
2615
2616          // If that produced a retained value, just use that,
2617          // possibly casting down.
2618          if (subresult.getInt()) {
2619            if (resultType)
2620              result = CGF.Builder.CreateBitCast(result, resultType);
2621            return TryEmitResult(result, true);
2622          }
2623
2624          // Otherwise it's +0.
2625        }
2626
2627        // Retain the object as a block, then cast down.
2628        result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2629        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2630        return TryEmitResult(result, true);
2631      }
2632
2633      // For reclaims, emit the subexpression as a retained call and
2634      // skip the consumption.
2635      case CK_ARCReclaimReturnedObject: {
2636        llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2637        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2638        return TryEmitResult(result, true);
2639      }
2640
2641      default:
2642        break;
2643      }
2644
2645    // Skip __extension__.
2646    } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2647      if (op->getOpcode() == UO_Extension) {
2648        e = op->getSubExpr();
2649        continue;
2650      }
2651
2652    // For calls and message sends, use the retained-call logic.
2653    // Delegate inits are a special case in that they're the only
2654    // returns-retained expression that *isn't* surrounded by
2655    // a consume.
2656    } else if (isa<CallExpr>(e) ||
2657               (isa<ObjCMessageExpr>(e) &&
2658                !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2659      llvm::Value *result = emitARCRetainCall(CGF, e);
2660      if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2661      return TryEmitResult(result, true);
2662
2663    // Look through pseudo-object expressions.
2664    } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2665      TryEmitResult result
2666        = tryEmitARCRetainPseudoObject(CGF, pseudo);
2667      if (resultType) {
2668        llvm::Value *value = result.getPointer();
2669        value = CGF.Builder.CreateBitCast(value, resultType);
2670        result.setPointer(value);
2671      }
2672      return result;
2673    }
2674
2675    // Conservatively halt the search at any other expression kind.
2676    break;
2677  }
2678
2679  // We didn't find an obvious production, so emit what we've got and
2680  // tell the caller that we didn't manage to retain.
2681  llvm::Value *result = CGF.EmitScalarExpr(e);
2682  if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2683  return TryEmitResult(result, false);
2684}
2685
2686static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2687                                                LValue lvalue,
2688                                                QualType type) {
2689  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2690  llvm::Value *value = result.getPointer();
2691  if (!result.getInt())
2692    value = CGF.EmitARCRetain(type, value);
2693  return value;
2694}
2695
2696/// EmitARCRetainScalarExpr - Semantically equivalent to
2697/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2698/// best-effort attempt to peephole expressions that naturally produce
2699/// retained objects.
2700llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2701  // The retain needs to happen within the full-expression.
2702  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2703    enterFullExpression(cleanups);
2704    RunCleanupsScope scope(*this);
2705    return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2706  }
2707
2708  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2709  llvm::Value *value = result.getPointer();
2710  if (!result.getInt())
2711    value = EmitARCRetain(e->getType(), value);
2712  return value;
2713}
2714
2715llvm::Value *
2716CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2717  // The retain needs to happen within the full-expression.
2718  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2719    enterFullExpression(cleanups);
2720    RunCleanupsScope scope(*this);
2721    return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2722  }
2723
2724  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2725  llvm::Value *value = result.getPointer();
2726  if (result.getInt())
2727    value = EmitARCAutorelease(value);
2728  else
2729    value = EmitARCRetainAutorelease(e->getType(), value);
2730  return value;
2731}
2732
2733llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2734  llvm::Value *result;
2735  bool doRetain;
2736
2737  if (shouldEmitSeparateBlockRetain(e)) {
2738    result = EmitScalarExpr(e);
2739    doRetain = true;
2740  } else {
2741    TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2742    result = subresult.getPointer();
2743    doRetain = !subresult.getInt();
2744  }
2745
2746  if (doRetain)
2747    result = EmitARCRetainBlock(result, /*mandatory*/ true);
2748  return EmitObjCConsumeObject(e->getType(), result);
2749}
2750
2751llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2752  // In ARC, retain and autorelease the expression.
2753  if (getLangOpts().ObjCAutoRefCount) {
2754    // Do so before running any cleanups for the full-expression.
2755    // EmitARCRetainAutoreleaseScalarExpr does this for us.
2756    return EmitARCRetainAutoreleaseScalarExpr(expr);
2757  }
2758
2759  // Otherwise, use the normal scalar-expression emission.  The
2760  // exception machinery doesn't do anything special with the
2761  // exception like retaining it, so there's no safety associated with
2762  // only running cleanups after the throw has started, and when it
2763  // matters it tends to be substantially inferior code.
2764  return EmitScalarExpr(expr);
2765}
2766
2767std::pair<LValue,llvm::Value*>
2768CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2769                                    bool ignored) {
2770  // Evaluate the RHS first.
2771  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2772  llvm::Value *value = result.getPointer();
2773
2774  bool hasImmediateRetain = result.getInt();
2775
2776  // If we didn't emit a retained object, and the l-value is of block
2777  // type, then we need to emit the block-retain immediately in case
2778  // it invalidates the l-value.
2779  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2780    value = EmitARCRetainBlock(value, /*mandatory*/ false);
2781    hasImmediateRetain = true;
2782  }
2783
2784  LValue lvalue = EmitLValue(e->getLHS());
2785
2786  // If the RHS was emitted retained, expand this.
2787  if (hasImmediateRetain) {
2788    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2789    EmitStoreOfScalar(value, lvalue);
2790    EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2791  } else {
2792    value = EmitARCStoreStrong(lvalue, value, ignored);
2793  }
2794
2795  return std::pair<LValue,llvm::Value*>(lvalue, value);
2796}
2797
2798std::pair<LValue,llvm::Value*>
2799CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2800  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2801  LValue lvalue = EmitLValue(e->getLHS());
2802
2803  EmitStoreOfScalar(value, lvalue);
2804
2805  return std::pair<LValue,llvm::Value*>(lvalue, value);
2806}
2807
2808void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2809                                          const ObjCAutoreleasePoolStmt &ARPS) {
2810  const Stmt *subStmt = ARPS.getSubStmt();
2811  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2812
2813  CGDebugInfo *DI = getDebugInfo();
2814  if (DI)
2815    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2816
2817  // Keep track of the current cleanup stack depth.
2818  RunCleanupsScope Scope(*this);
2819  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2820    llvm::Value *token = EmitObjCAutoreleasePoolPush();
2821    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2822  } else {
2823    llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2824    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2825  }
2826
2827  for (CompoundStmt::const_body_iterator I = S.body_begin(),
2828       E = S.body_end(); I != E; ++I)
2829    EmitStmt(*I);
2830
2831  if (DI)
2832    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2833}
2834
2835/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2836/// make sure it survives garbage collection until this point.
2837void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2838  // We just use an inline assembly.
2839  llvm::FunctionType *extenderType
2840    = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2841  llvm::Value *extender
2842    = llvm::InlineAsm::get(extenderType,
2843                           /* assembly */ "",
2844                           /* constraints */ "r",
2845                           /* side effects */ true);
2846
2847  object = Builder.CreateBitCast(object, VoidPtrTy);
2848  EmitNounwindRuntimeCall(extender, object);
2849}
2850
2851/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2852/// non-trivial copy assignment function, produce following helper function.
2853/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2854///
2855llvm::Constant *
2856CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2857                                        const ObjCPropertyImplDecl *PID) {
2858  if (!getLangOpts().CPlusPlus ||
2859      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2860    return 0;
2861  QualType Ty = PID->getPropertyIvarDecl()->getType();
2862  if (!Ty->isRecordType())
2863    return 0;
2864  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2865  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2866    return 0;
2867  llvm::Constant * HelperFn = 0;
2868  if (hasTrivialSetExpr(PID))
2869    return 0;
2870  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2871  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2872    return HelperFn;
2873
2874  ASTContext &C = getContext();
2875  IdentifierInfo *II
2876    = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2877  FunctionDecl *FD = FunctionDecl::Create(C,
2878                                          C.getTranslationUnitDecl(),
2879                                          SourceLocation(),
2880                                          SourceLocation(), II, C.VoidTy, 0,
2881                                          SC_Static,
2882                                          false,
2883                                          false);
2884
2885  QualType DestTy = C.getPointerType(Ty);
2886  QualType SrcTy = Ty;
2887  SrcTy.addConst();
2888  SrcTy = C.getPointerType(SrcTy);
2889
2890  FunctionArgList args;
2891  ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2892  args.push_back(&dstDecl);
2893  ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2894  args.push_back(&srcDecl);
2895
2896  const CGFunctionInfo &FI =
2897    CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2898                                              FunctionType::ExtInfo(),
2899                                              RequiredArgs::All);
2900
2901  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2902
2903  llvm::Function *Fn =
2904    llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2905                           "__assign_helper_atomic_property_",
2906                           &CGM.getModule());
2907
2908  StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2909
2910  DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2911                      VK_RValue, SourceLocation());
2912  UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2913                    VK_LValue, OK_Ordinary, SourceLocation());
2914
2915  DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2916                      VK_RValue, SourceLocation());
2917  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2918                    VK_LValue, OK_Ordinary, SourceLocation());
2919
2920  Expr *Args[2] = { &DST, &SRC };
2921  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2922  CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2923                              Args, DestTy->getPointeeType(),
2924                              VK_LValue, SourceLocation(), false);
2925
2926  EmitStmt(&TheCall);
2927
2928  FinishFunction();
2929  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2930  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2931  return HelperFn;
2932}
2933
2934llvm::Constant *
2935CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2936                                            const ObjCPropertyImplDecl *PID) {
2937  if (!getLangOpts().CPlusPlus ||
2938      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2939    return 0;
2940  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2941  QualType Ty = PD->getType();
2942  if (!Ty->isRecordType())
2943    return 0;
2944  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2945    return 0;
2946  llvm::Constant * HelperFn = 0;
2947
2948  if (hasTrivialGetExpr(PID))
2949    return 0;
2950  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2951  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2952    return HelperFn;
2953
2954
2955  ASTContext &C = getContext();
2956  IdentifierInfo *II
2957  = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2958  FunctionDecl *FD = FunctionDecl::Create(C,
2959                                          C.getTranslationUnitDecl(),
2960                                          SourceLocation(),
2961                                          SourceLocation(), II, C.VoidTy, 0,
2962                                          SC_Static,
2963                                          false,
2964                                          false);
2965
2966  QualType DestTy = C.getPointerType(Ty);
2967  QualType SrcTy = Ty;
2968  SrcTy.addConst();
2969  SrcTy = C.getPointerType(SrcTy);
2970
2971  FunctionArgList args;
2972  ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2973  args.push_back(&dstDecl);
2974  ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2975  args.push_back(&srcDecl);
2976
2977  const CGFunctionInfo &FI =
2978  CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2979                                            FunctionType::ExtInfo(),
2980                                            RequiredArgs::All);
2981
2982  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2983
2984  llvm::Function *Fn =
2985  llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2986                         "__copy_helper_atomic_property_", &CGM.getModule());
2987
2988  StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2989
2990  DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2991                      VK_RValue, SourceLocation());
2992
2993  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2994                    VK_LValue, OK_Ordinary, SourceLocation());
2995
2996  CXXConstructExpr *CXXConstExpr =
2997    cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2998
2999  SmallVector<Expr*, 4> ConstructorArgs;
3000  ConstructorArgs.push_back(&SRC);
3001  CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3002  ++A;
3003
3004  for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3005       A != AEnd; ++A)
3006    ConstructorArgs.push_back(*A);
3007
3008  CXXConstructExpr *TheCXXConstructExpr =
3009    CXXConstructExpr::Create(C, Ty, SourceLocation(),
3010                             CXXConstExpr->getConstructor(),
3011                             CXXConstExpr->isElidable(),
3012                             ConstructorArgs,
3013                             CXXConstExpr->hadMultipleCandidates(),
3014                             CXXConstExpr->isListInitialization(),
3015                             CXXConstExpr->requiresZeroInitialization(),
3016                             CXXConstExpr->getConstructionKind(),
3017                             SourceRange());
3018
3019  DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3020                      VK_RValue, SourceLocation());
3021
3022  RValue DV = EmitAnyExpr(&DstExpr);
3023  CharUnits Alignment
3024    = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3025  EmitAggExpr(TheCXXConstructExpr,
3026              AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3027                                    AggValueSlot::IsDestructed,
3028                                    AggValueSlot::DoesNotNeedGCBarriers,
3029                                    AggValueSlot::IsNotAliased));
3030
3031  FinishFunction();
3032  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3033  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3034  return HelperFn;
3035}
3036
3037llvm::Value *
3038CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3039  // Get selectors for retain/autorelease.
3040  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3041  Selector CopySelector =
3042      getContext().Selectors.getNullarySelector(CopyID);
3043  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3044  Selector AutoreleaseSelector =
3045      getContext().Selectors.getNullarySelector(AutoreleaseID);
3046
3047  // Emit calls to retain/autorelease.
3048  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3049  llvm::Value *Val = Block;
3050  RValue Result;
3051  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3052                                       Ty, CopySelector,
3053                                       Val, CallArgList(), 0, 0);
3054  Val = Result.getScalarVal();
3055  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3056                                       Ty, AutoreleaseSelector,
3057                                       Val, CallArgList(), 0, 0);
3058  Val = Result.getScalarVal();
3059  return Val;
3060}
3061
3062
3063CGObjCRuntime::~CGObjCRuntime() {}
3064