CGBuiltin.cpp revision 225736
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TargetInfo.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "CGObjCRuntime.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/Basic/TargetBuiltins.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Target/TargetData.h"
25
26using namespace clang;
27using namespace CodeGen;
28using namespace llvm;
29
30static void EmitMemoryBarrier(CodeGenFunction &CGF,
31                              bool LoadLoad, bool LoadStore,
32                              bool StoreLoad, bool StoreStore,
33                              bool Device) {
34  Value *True = CGF.Builder.getTrue();
35  Value *False = CGF.Builder.getFalse();
36  Value *C[5] = { LoadLoad ? True : False,
37                  LoadStore ? True : False,
38                  StoreLoad ? True : False,
39                  StoreStore ? True : False,
40                  Device ? True : False };
41  CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::memory_barrier), C);
42}
43
44/// Emit the conversions required to turn the given value into an
45/// integer of the given size.
46static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
47                        QualType T, const llvm::IntegerType *IntType) {
48  V = CGF.EmitToMemory(V, T);
49
50  if (V->getType()->isPointerTy())
51    return CGF.Builder.CreatePtrToInt(V, IntType);
52
53  assert(V->getType() == IntType);
54  return V;
55}
56
57static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
58                          QualType T, const llvm::Type *ResultType) {
59  V = CGF.EmitFromMemory(V, T);
60
61  if (ResultType->isPointerTy())
62    return CGF.Builder.CreateIntToPtr(V, ResultType);
63
64  assert(V->getType() == ResultType);
65  return V;
66}
67
68// The atomic builtins are also full memory barriers. This is a utility for
69// wrapping a call to the builtins with memory barriers.
70static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn,
71                                  ArrayRef<Value *> Args) {
72  // FIXME: We need a target hook for whether this applies to device memory or
73  // not.
74  bool Device = true;
75
76  // Create barriers both before and after the call.
77  EmitMemoryBarrier(CGF, true, true, true, true, Device);
78  Value *Result = CGF.Builder.CreateCall(Fn, Args);
79  EmitMemoryBarrier(CGF, true, true, true, true, Device);
80  return Result;
81}
82
83/// Utility to insert an atomic instruction based on Instrinsic::ID
84/// and the expression node.
85static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
86                               Intrinsic::ID Id, const CallExpr *E) {
87  QualType T = E->getType();
88  assert(E->getArg(0)->getType()->isPointerType());
89  assert(CGF.getContext().hasSameUnqualifiedType(T,
90                                  E->getArg(0)->getType()->getPointeeType()));
91  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
92
93  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
94  unsigned AddrSpace =
95    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
96
97  llvm::IntegerType *IntType =
98    llvm::IntegerType::get(CGF.getLLVMContext(),
99                           CGF.getContext().getTypeSize(T));
100  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
101
102  llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
103  llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes);
104
105  llvm::Value *Args[2];
106  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
107  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
108  const llvm::Type *ValueType = Args[1]->getType();
109  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
110
111  llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args);
112  Result = EmitFromInt(CGF, Result, T, ValueType);
113  return RValue::get(Result);
114}
115
116/// Utility to insert an atomic instruction based Instrinsic::ID and
117/// the expression node, where the return value is the result of the
118/// operation.
119static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
120                                   Intrinsic::ID Id, const CallExpr *E,
121                                   Instruction::BinaryOps Op) {
122  QualType T = E->getType();
123  assert(E->getArg(0)->getType()->isPointerType());
124  assert(CGF.getContext().hasSameUnqualifiedType(T,
125                                  E->getArg(0)->getType()->getPointeeType()));
126  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
127
128  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
129  unsigned AddrSpace =
130    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
131
132  llvm::IntegerType *IntType =
133    llvm::IntegerType::get(CGF.getLLVMContext(),
134                           CGF.getContext().getTypeSize(T));
135  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
136
137  llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
138  llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes);
139
140  llvm::Value *Args[2];
141  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
142  const llvm::Type *ValueType = Args[1]->getType();
143  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
144  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
145
146  llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args);
147  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
148  Result = EmitFromInt(CGF, Result, T, ValueType);
149  return RValue::get(Result);
150}
151
152/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
153/// which must be a scalar floating point type.
154static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
155  const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
156  assert(ValTyP && "isn't scalar fp type!");
157
158  StringRef FnName;
159  switch (ValTyP->getKind()) {
160  default: assert(0 && "Isn't a scalar fp type!");
161  case BuiltinType::Float:      FnName = "fabsf"; break;
162  case BuiltinType::Double:     FnName = "fabs"; break;
163  case BuiltinType::LongDouble: FnName = "fabsl"; break;
164  }
165
166  // The prototype is something that takes and returns whatever V's type is.
167  llvm::Type *ArgTys[] = { V->getType() };
168  llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), ArgTys,
169                                                   false);
170  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
171
172  return CGF.Builder.CreateCall(Fn, V, "abs");
173}
174
175RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
176                                        unsigned BuiltinID, const CallExpr *E) {
177  // See if we can constant fold this builtin.  If so, don't emit it at all.
178  Expr::EvalResult Result;
179  if (E->Evaluate(Result, CGM.getContext()) &&
180      !Result.hasSideEffects()) {
181    if (Result.Val.isInt())
182      return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
183                                                Result.Val.getInt()));
184    if (Result.Val.isFloat())
185      return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
186                                               Result.Val.getFloat()));
187  }
188
189  switch (BuiltinID) {
190  default: break;  // Handle intrinsics and libm functions below.
191  case Builtin::BI__builtin___CFStringMakeConstantString:
192  case Builtin::BI__builtin___NSStringMakeConstantString:
193    return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
194  case Builtin::BI__builtin_stdarg_start:
195  case Builtin::BI__builtin_va_start:
196  case Builtin::BI__builtin_va_end: {
197    Value *ArgValue = EmitVAListRef(E->getArg(0));
198    const llvm::Type *DestType = Int8PtrTy;
199    if (ArgValue->getType() != DestType)
200      ArgValue = Builder.CreateBitCast(ArgValue, DestType,
201                                       ArgValue->getName().data());
202
203    Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
204      Intrinsic::vaend : Intrinsic::vastart;
205    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
206  }
207  case Builtin::BI__builtin_va_copy: {
208    Value *DstPtr = EmitVAListRef(E->getArg(0));
209    Value *SrcPtr = EmitVAListRef(E->getArg(1));
210
211    const llvm::Type *Type = Int8PtrTy;
212
213    DstPtr = Builder.CreateBitCast(DstPtr, Type);
214    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
215    return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
216                                           DstPtr, SrcPtr));
217  }
218  case Builtin::BI__builtin_abs: {
219    Value *ArgValue = EmitScalarExpr(E->getArg(0));
220
221    Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
222    Value *CmpResult =
223    Builder.CreateICmpSGE(ArgValue,
224                          llvm::Constant::getNullValue(ArgValue->getType()),
225                                                            "abscond");
226    Value *Result =
227      Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
228
229    return RValue::get(Result);
230  }
231  case Builtin::BI__builtin_ctz:
232  case Builtin::BI__builtin_ctzl:
233  case Builtin::BI__builtin_ctzll: {
234    Value *ArgValue = EmitScalarExpr(E->getArg(0));
235
236    llvm::Type *ArgType = ArgValue->getType();
237    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
238
239    const llvm::Type *ResultType = ConvertType(E->getType());
240    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
241    if (Result->getType() != ResultType)
242      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
243                                     "cast");
244    return RValue::get(Result);
245  }
246  case Builtin::BI__builtin_clz:
247  case Builtin::BI__builtin_clzl:
248  case Builtin::BI__builtin_clzll: {
249    Value *ArgValue = EmitScalarExpr(E->getArg(0));
250
251    llvm::Type *ArgType = ArgValue->getType();
252    Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
253
254    const llvm::Type *ResultType = ConvertType(E->getType());
255    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
256    if (Result->getType() != ResultType)
257      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
258                                     "cast");
259    return RValue::get(Result);
260  }
261  case Builtin::BI__builtin_ffs:
262  case Builtin::BI__builtin_ffsl:
263  case Builtin::BI__builtin_ffsll: {
264    // ffs(x) -> x ? cttz(x) + 1 : 0
265    Value *ArgValue = EmitScalarExpr(E->getArg(0));
266
267    llvm::Type *ArgType = ArgValue->getType();
268    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
269
270    const llvm::Type *ResultType = ConvertType(E->getType());
271    Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
272                                   llvm::ConstantInt::get(ArgType, 1), "tmp");
273    Value *Zero = llvm::Constant::getNullValue(ArgType);
274    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
275    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
276    if (Result->getType() != ResultType)
277      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
278                                     "cast");
279    return RValue::get(Result);
280  }
281  case Builtin::BI__builtin_parity:
282  case Builtin::BI__builtin_parityl:
283  case Builtin::BI__builtin_parityll: {
284    // parity(x) -> ctpop(x) & 1
285    Value *ArgValue = EmitScalarExpr(E->getArg(0));
286
287    llvm::Type *ArgType = ArgValue->getType();
288    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
289
290    const llvm::Type *ResultType = ConvertType(E->getType());
291    Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
292    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
293                                      "tmp");
294    if (Result->getType() != ResultType)
295      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
296                                     "cast");
297    return RValue::get(Result);
298  }
299  case Builtin::BI__builtin_popcount:
300  case Builtin::BI__builtin_popcountl:
301  case Builtin::BI__builtin_popcountll: {
302    Value *ArgValue = EmitScalarExpr(E->getArg(0));
303
304    llvm::Type *ArgType = ArgValue->getType();
305    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
306
307    const llvm::Type *ResultType = ConvertType(E->getType());
308    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
309    if (Result->getType() != ResultType)
310      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
311                                     "cast");
312    return RValue::get(Result);
313  }
314  case Builtin::BI__builtin_expect: {
315    Value *ArgValue = EmitScalarExpr(E->getArg(0));
316    llvm::Type *ArgType = ArgValue->getType();
317
318    Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
319    Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
320
321    Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
322                                        "expval");
323    return RValue::get(Result);
324  }
325  case Builtin::BI__builtin_bswap32:
326  case Builtin::BI__builtin_bswap64: {
327    Value *ArgValue = EmitScalarExpr(E->getArg(0));
328    llvm::Type *ArgType = ArgValue->getType();
329    Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
330    return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
331  }
332  case Builtin::BI__builtin_object_size: {
333    // We pass this builtin onto the optimizer so that it can
334    // figure out the object size in more complex cases.
335    llvm::Type *ResType = ConvertType(E->getType());
336
337    // LLVM only supports 0 and 2, make sure that we pass along that
338    // as a boolean.
339    Value *Ty = EmitScalarExpr(E->getArg(1));
340    ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
341    assert(CI);
342    uint64_t val = CI->getZExtValue();
343    CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
344
345    Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
346    return RValue::get(Builder.CreateCall2(F,
347                                           EmitScalarExpr(E->getArg(0)),
348                                           CI));
349  }
350  case Builtin::BI__builtin_prefetch: {
351    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
352    // FIXME: Technically these constants should of type 'int', yes?
353    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
354      llvm::ConstantInt::get(Int32Ty, 0);
355    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
356      llvm::ConstantInt::get(Int32Ty, 3);
357    Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
358    Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
359    return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
360  }
361  case Builtin::BI__builtin_trap: {
362    Value *F = CGM.getIntrinsic(Intrinsic::trap);
363    return RValue::get(Builder.CreateCall(F));
364  }
365  case Builtin::BI__builtin_unreachable: {
366    if (CatchUndefined)
367      EmitBranch(getTrapBB());
368    else
369      Builder.CreateUnreachable();
370
371    // We do need to preserve an insertion point.
372    EmitBlock(createBasicBlock("unreachable.cont"));
373
374    return RValue::get(0);
375  }
376
377  case Builtin::BI__builtin_powi:
378  case Builtin::BI__builtin_powif:
379  case Builtin::BI__builtin_powil: {
380    Value *Base = EmitScalarExpr(E->getArg(0));
381    Value *Exponent = EmitScalarExpr(E->getArg(1));
382    llvm::Type *ArgType = Base->getType();
383    Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
384    return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
385  }
386
387  case Builtin::BI__builtin_isgreater:
388  case Builtin::BI__builtin_isgreaterequal:
389  case Builtin::BI__builtin_isless:
390  case Builtin::BI__builtin_islessequal:
391  case Builtin::BI__builtin_islessgreater:
392  case Builtin::BI__builtin_isunordered: {
393    // Ordered comparisons: we know the arguments to these are matching scalar
394    // floating point values.
395    Value *LHS = EmitScalarExpr(E->getArg(0));
396    Value *RHS = EmitScalarExpr(E->getArg(1));
397
398    switch (BuiltinID) {
399    default: assert(0 && "Unknown ordered comparison");
400    case Builtin::BI__builtin_isgreater:
401      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
402      break;
403    case Builtin::BI__builtin_isgreaterequal:
404      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
405      break;
406    case Builtin::BI__builtin_isless:
407      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
408      break;
409    case Builtin::BI__builtin_islessequal:
410      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
411      break;
412    case Builtin::BI__builtin_islessgreater:
413      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
414      break;
415    case Builtin::BI__builtin_isunordered:
416      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
417      break;
418    }
419    // ZExt bool to int type.
420    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
421                                          "tmp"));
422  }
423  case Builtin::BI__builtin_isnan: {
424    Value *V = EmitScalarExpr(E->getArg(0));
425    V = Builder.CreateFCmpUNO(V, V, "cmp");
426    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
427  }
428
429  case Builtin::BI__builtin_isinf: {
430    // isinf(x) --> fabs(x) == infinity
431    Value *V = EmitScalarExpr(E->getArg(0));
432    V = EmitFAbs(*this, V, E->getArg(0)->getType());
433
434    V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
435    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
436  }
437
438  // TODO: BI__builtin_isinf_sign
439  //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
440
441  case Builtin::BI__builtin_isnormal: {
442    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
443    Value *V = EmitScalarExpr(E->getArg(0));
444    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
445
446    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
447    Value *IsLessThanInf =
448      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
449    APFloat Smallest = APFloat::getSmallestNormalized(
450                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
451    Value *IsNormal =
452      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
453                            "isnormal");
454    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
455    V = Builder.CreateAnd(V, IsNormal, "and");
456    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
457  }
458
459  case Builtin::BI__builtin_isfinite: {
460    // isfinite(x) --> x == x && fabs(x) != infinity; }
461    Value *V = EmitScalarExpr(E->getArg(0));
462    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
463
464    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
465    Value *IsNotInf =
466      Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
467
468    V = Builder.CreateAnd(Eq, IsNotInf, "and");
469    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
470  }
471
472  case Builtin::BI__builtin_fpclassify: {
473    Value *V = EmitScalarExpr(E->getArg(5));
474    const llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
475
476    // Create Result
477    BasicBlock *Begin = Builder.GetInsertBlock();
478    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
479    Builder.SetInsertPoint(End);
480    PHINode *Result =
481      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
482                        "fpclassify_result");
483
484    // if (V==0) return FP_ZERO
485    Builder.SetInsertPoint(Begin);
486    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
487                                          "iszero");
488    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
489    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
490    Builder.CreateCondBr(IsZero, End, NotZero);
491    Result->addIncoming(ZeroLiteral, Begin);
492
493    // if (V != V) return FP_NAN
494    Builder.SetInsertPoint(NotZero);
495    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
496    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
497    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
498    Builder.CreateCondBr(IsNan, End, NotNan);
499    Result->addIncoming(NanLiteral, NotZero);
500
501    // if (fabs(V) == infinity) return FP_INFINITY
502    Builder.SetInsertPoint(NotNan);
503    Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
504    Value *IsInf =
505      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
506                            "isinf");
507    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
508    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
509    Builder.CreateCondBr(IsInf, End, NotInf);
510    Result->addIncoming(InfLiteral, NotNan);
511
512    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
513    Builder.SetInsertPoint(NotInf);
514    APFloat Smallest = APFloat::getSmallestNormalized(
515        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
516    Value *IsNormal =
517      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
518                            "isnormal");
519    Value *NormalResult =
520      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
521                           EmitScalarExpr(E->getArg(3)));
522    Builder.CreateBr(End);
523    Result->addIncoming(NormalResult, NotInf);
524
525    // return Result
526    Builder.SetInsertPoint(End);
527    return RValue::get(Result);
528  }
529
530  case Builtin::BIalloca:
531  case Builtin::BI__builtin_alloca: {
532    Value *Size = EmitScalarExpr(E->getArg(0));
533    return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size, "tmp"));
534  }
535  case Builtin::BIbzero:
536  case Builtin::BI__builtin_bzero: {
537    Value *Address = EmitScalarExpr(E->getArg(0));
538    Value *SizeVal = EmitScalarExpr(E->getArg(1));
539    Builder.CreateMemSet(Address, Builder.getInt8(0), SizeVal, 1, false);
540    return RValue::get(Address);
541  }
542  case Builtin::BImemcpy:
543  case Builtin::BI__builtin_memcpy: {
544    Value *Address = EmitScalarExpr(E->getArg(0));
545    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
546    Value *SizeVal = EmitScalarExpr(E->getArg(2));
547    Builder.CreateMemCpy(Address, SrcAddr, SizeVal, 1, false);
548    return RValue::get(Address);
549  }
550
551  case Builtin::BI__builtin___memcpy_chk: {
552    // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
553    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
554        !E->getArg(3)->isEvaluatable(CGM.getContext()))
555      break;
556    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
557    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
558    if (Size.ugt(DstSize))
559      break;
560    Value *Dest = EmitScalarExpr(E->getArg(0));
561    Value *Src = EmitScalarExpr(E->getArg(1));
562    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
563    Builder.CreateMemCpy(Dest, Src, SizeVal, 1, false);
564    return RValue::get(Dest);
565  }
566
567  case Builtin::BI__builtin_objc_memmove_collectable: {
568    Value *Address = EmitScalarExpr(E->getArg(0));
569    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
570    Value *SizeVal = EmitScalarExpr(E->getArg(2));
571    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
572                                                  Address, SrcAddr, SizeVal);
573    return RValue::get(Address);
574  }
575
576  case Builtin::BI__builtin___memmove_chk: {
577    // fold __builtin_memmove_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
578    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
579        !E->getArg(3)->isEvaluatable(CGM.getContext()))
580      break;
581    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
582    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
583    if (Size.ugt(DstSize))
584      break;
585    Value *Dest = EmitScalarExpr(E->getArg(0));
586    Value *Src = EmitScalarExpr(E->getArg(1));
587    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
588    Builder.CreateMemMove(Dest, Src, SizeVal, 1, false);
589    return RValue::get(Dest);
590  }
591
592  case Builtin::BImemmove:
593  case Builtin::BI__builtin_memmove: {
594    Value *Address = EmitScalarExpr(E->getArg(0));
595    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
596    Value *SizeVal = EmitScalarExpr(E->getArg(2));
597    Builder.CreateMemMove(Address, SrcAddr, SizeVal, 1, false);
598    return RValue::get(Address);
599  }
600  case Builtin::BImemset:
601  case Builtin::BI__builtin_memset: {
602    Value *Address = EmitScalarExpr(E->getArg(0));
603    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
604                                         Builder.getInt8Ty());
605    Value *SizeVal = EmitScalarExpr(E->getArg(2));
606    Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
607    return RValue::get(Address);
608  }
609  case Builtin::BI__builtin___memset_chk: {
610    // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
611    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
612        !E->getArg(3)->isEvaluatable(CGM.getContext()))
613      break;
614    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
615    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
616    if (Size.ugt(DstSize))
617      break;
618    Value *Address = EmitScalarExpr(E->getArg(0));
619    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
620                                         Builder.getInt8Ty());
621    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
622    Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
623
624    return RValue::get(Address);
625  }
626  case Builtin::BI__builtin_dwarf_cfa: {
627    // The offset in bytes from the first argument to the CFA.
628    //
629    // Why on earth is this in the frontend?  Is there any reason at
630    // all that the backend can't reasonably determine this while
631    // lowering llvm.eh.dwarf.cfa()?
632    //
633    // TODO: If there's a satisfactory reason, add a target hook for
634    // this instead of hard-coding 0, which is correct for most targets.
635    int32_t Offset = 0;
636
637    Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
638    return RValue::get(Builder.CreateCall(F,
639                                      llvm::ConstantInt::get(Int32Ty, Offset)));
640  }
641  case Builtin::BI__builtin_return_address: {
642    Value *Depth = EmitScalarExpr(E->getArg(0));
643    Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
644    Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
645    return RValue::get(Builder.CreateCall(F, Depth));
646  }
647  case Builtin::BI__builtin_frame_address: {
648    Value *Depth = EmitScalarExpr(E->getArg(0));
649    Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
650    Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
651    return RValue::get(Builder.CreateCall(F, Depth));
652  }
653  case Builtin::BI__builtin_extract_return_addr: {
654    Value *Address = EmitScalarExpr(E->getArg(0));
655    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
656    return RValue::get(Result);
657  }
658  case Builtin::BI__builtin_frob_return_addr: {
659    Value *Address = EmitScalarExpr(E->getArg(0));
660    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
661    return RValue::get(Result);
662  }
663  case Builtin::BI__builtin_dwarf_sp_column: {
664    const llvm::IntegerType *Ty
665      = cast<llvm::IntegerType>(ConvertType(E->getType()));
666    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
667    if (Column == -1) {
668      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
669      return RValue::get(llvm::UndefValue::get(Ty));
670    }
671    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
672  }
673  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
674    Value *Address = EmitScalarExpr(E->getArg(0));
675    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
676      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
677    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
678  }
679  case Builtin::BI__builtin_eh_return: {
680    Value *Int = EmitScalarExpr(E->getArg(0));
681    Value *Ptr = EmitScalarExpr(E->getArg(1));
682
683    const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
684    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
685           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
686    Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
687                                  ? Intrinsic::eh_return_i32
688                                  : Intrinsic::eh_return_i64);
689    Builder.CreateCall2(F, Int, Ptr);
690    Builder.CreateUnreachable();
691
692    // We do need to preserve an insertion point.
693    EmitBlock(createBasicBlock("builtin_eh_return.cont"));
694
695    return RValue::get(0);
696  }
697  case Builtin::BI__builtin_unwind_init: {
698    Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
699    return RValue::get(Builder.CreateCall(F));
700  }
701  case Builtin::BI__builtin_extend_pointer: {
702    // Extends a pointer to the size of an _Unwind_Word, which is
703    // uint64_t on all platforms.  Generally this gets poked into a
704    // register and eventually used as an address, so if the
705    // addressing registers are wider than pointers and the platform
706    // doesn't implicitly ignore high-order bits when doing
707    // addressing, we need to make sure we zext / sext based on
708    // the platform's expectations.
709    //
710    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
711
712    // Cast the pointer to intptr_t.
713    Value *Ptr = EmitScalarExpr(E->getArg(0));
714    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
715
716    // If that's 64 bits, we're done.
717    if (IntPtrTy->getBitWidth() == 64)
718      return RValue::get(Result);
719
720    // Otherwise, ask the codegen data what to do.
721    if (getTargetHooks().extendPointerWithSExt())
722      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
723    else
724      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
725  }
726  case Builtin::BI__builtin_setjmp: {
727    // Buffer is a void**.
728    Value *Buf = EmitScalarExpr(E->getArg(0));
729
730    // Store the frame pointer to the setjmp buffer.
731    Value *FrameAddr =
732      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
733                         ConstantInt::get(Int32Ty, 0));
734    Builder.CreateStore(FrameAddr, Buf);
735
736    // Store the stack pointer to the setjmp buffer.
737    Value *StackAddr =
738      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
739    Value *StackSaveSlot =
740      Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
741    Builder.CreateStore(StackAddr, StackSaveSlot);
742
743    // Call LLVM's EH setjmp, which is lightweight.
744    Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
745    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
746    return RValue::get(Builder.CreateCall(F, Buf));
747  }
748  case Builtin::BI__builtin_longjmp: {
749    Value *Buf = EmitScalarExpr(E->getArg(0));
750    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
751
752    // Call LLVM's EH longjmp, which is lightweight.
753    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
754
755    // longjmp doesn't return; mark this as unreachable.
756    Builder.CreateUnreachable();
757
758    // We do need to preserve an insertion point.
759    EmitBlock(createBasicBlock("longjmp.cont"));
760
761    return RValue::get(0);
762  }
763  case Builtin::BI__sync_fetch_and_add:
764  case Builtin::BI__sync_fetch_and_sub:
765  case Builtin::BI__sync_fetch_and_or:
766  case Builtin::BI__sync_fetch_and_and:
767  case Builtin::BI__sync_fetch_and_xor:
768  case Builtin::BI__sync_add_and_fetch:
769  case Builtin::BI__sync_sub_and_fetch:
770  case Builtin::BI__sync_and_and_fetch:
771  case Builtin::BI__sync_or_and_fetch:
772  case Builtin::BI__sync_xor_and_fetch:
773  case Builtin::BI__sync_val_compare_and_swap:
774  case Builtin::BI__sync_bool_compare_and_swap:
775  case Builtin::BI__sync_lock_test_and_set:
776  case Builtin::BI__sync_lock_release:
777  case Builtin::BI__sync_swap:
778    assert(0 && "Shouldn't make it through sema");
779  case Builtin::BI__sync_fetch_and_add_1:
780  case Builtin::BI__sync_fetch_and_add_2:
781  case Builtin::BI__sync_fetch_and_add_4:
782  case Builtin::BI__sync_fetch_and_add_8:
783  case Builtin::BI__sync_fetch_and_add_16:
784    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
785  case Builtin::BI__sync_fetch_and_sub_1:
786  case Builtin::BI__sync_fetch_and_sub_2:
787  case Builtin::BI__sync_fetch_and_sub_4:
788  case Builtin::BI__sync_fetch_and_sub_8:
789  case Builtin::BI__sync_fetch_and_sub_16:
790    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
791  case Builtin::BI__sync_fetch_and_or_1:
792  case Builtin::BI__sync_fetch_and_or_2:
793  case Builtin::BI__sync_fetch_and_or_4:
794  case Builtin::BI__sync_fetch_and_or_8:
795  case Builtin::BI__sync_fetch_and_or_16:
796    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
797  case Builtin::BI__sync_fetch_and_and_1:
798  case Builtin::BI__sync_fetch_and_and_2:
799  case Builtin::BI__sync_fetch_and_and_4:
800  case Builtin::BI__sync_fetch_and_and_8:
801  case Builtin::BI__sync_fetch_and_and_16:
802    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
803  case Builtin::BI__sync_fetch_and_xor_1:
804  case Builtin::BI__sync_fetch_and_xor_2:
805  case Builtin::BI__sync_fetch_and_xor_4:
806  case Builtin::BI__sync_fetch_and_xor_8:
807  case Builtin::BI__sync_fetch_and_xor_16:
808    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
809
810  // Clang extensions: not overloaded yet.
811  case Builtin::BI__sync_fetch_and_min:
812    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
813  case Builtin::BI__sync_fetch_and_max:
814    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
815  case Builtin::BI__sync_fetch_and_umin:
816    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
817  case Builtin::BI__sync_fetch_and_umax:
818    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
819
820  case Builtin::BI__sync_add_and_fetch_1:
821  case Builtin::BI__sync_add_and_fetch_2:
822  case Builtin::BI__sync_add_and_fetch_4:
823  case Builtin::BI__sync_add_and_fetch_8:
824  case Builtin::BI__sync_add_and_fetch_16:
825    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
826                                llvm::Instruction::Add);
827  case Builtin::BI__sync_sub_and_fetch_1:
828  case Builtin::BI__sync_sub_and_fetch_2:
829  case Builtin::BI__sync_sub_and_fetch_4:
830  case Builtin::BI__sync_sub_and_fetch_8:
831  case Builtin::BI__sync_sub_and_fetch_16:
832    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
833                                llvm::Instruction::Sub);
834  case Builtin::BI__sync_and_and_fetch_1:
835  case Builtin::BI__sync_and_and_fetch_2:
836  case Builtin::BI__sync_and_and_fetch_4:
837  case Builtin::BI__sync_and_and_fetch_8:
838  case Builtin::BI__sync_and_and_fetch_16:
839    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
840                                llvm::Instruction::And);
841  case Builtin::BI__sync_or_and_fetch_1:
842  case Builtin::BI__sync_or_and_fetch_2:
843  case Builtin::BI__sync_or_and_fetch_4:
844  case Builtin::BI__sync_or_and_fetch_8:
845  case Builtin::BI__sync_or_and_fetch_16:
846    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
847                                llvm::Instruction::Or);
848  case Builtin::BI__sync_xor_and_fetch_1:
849  case Builtin::BI__sync_xor_and_fetch_2:
850  case Builtin::BI__sync_xor_and_fetch_4:
851  case Builtin::BI__sync_xor_and_fetch_8:
852  case Builtin::BI__sync_xor_and_fetch_16:
853    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
854                                llvm::Instruction::Xor);
855
856  case Builtin::BI__sync_val_compare_and_swap_1:
857  case Builtin::BI__sync_val_compare_and_swap_2:
858  case Builtin::BI__sync_val_compare_and_swap_4:
859  case Builtin::BI__sync_val_compare_and_swap_8:
860  case Builtin::BI__sync_val_compare_and_swap_16: {
861    QualType T = E->getType();
862    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
863    unsigned AddrSpace =
864      cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
865
866    llvm::IntegerType *IntType =
867      llvm::IntegerType::get(getLLVMContext(),
868                             getContext().getTypeSize(T));
869    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
870    llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
871    Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
872                                    IntrinsicTypes);
873
874    Value *Args[3];
875    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
876    Args[1] = EmitScalarExpr(E->getArg(1));
877    const llvm::Type *ValueType = Args[1]->getType();
878    Args[1] = EmitToInt(*this, Args[1], T, IntType);
879    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
880
881    Value *Result = EmitCallWithBarrier(*this, AtomF, Args);
882    Result = EmitFromInt(*this, Result, T, ValueType);
883    return RValue::get(Result);
884  }
885
886  case Builtin::BI__sync_bool_compare_and_swap_1:
887  case Builtin::BI__sync_bool_compare_and_swap_2:
888  case Builtin::BI__sync_bool_compare_and_swap_4:
889  case Builtin::BI__sync_bool_compare_and_swap_8:
890  case Builtin::BI__sync_bool_compare_and_swap_16: {
891    QualType T = E->getArg(1)->getType();
892    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
893    unsigned AddrSpace =
894      cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
895
896    llvm::IntegerType *IntType =
897      llvm::IntegerType::get(getLLVMContext(),
898                             getContext().getTypeSize(T));
899    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
900    llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
901    Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
902                                    IntrinsicTypes);
903
904    Value *Args[3];
905    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
906    Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
907    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
908
909    Value *OldVal = Args[1];
910    Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args);
911    Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
912    // zext bool to int.
913    Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
914    return RValue::get(Result);
915  }
916
917  case Builtin::BI__sync_swap_1:
918  case Builtin::BI__sync_swap_2:
919  case Builtin::BI__sync_swap_4:
920  case Builtin::BI__sync_swap_8:
921  case Builtin::BI__sync_swap_16:
922    return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
923
924  case Builtin::BI__sync_lock_test_and_set_1:
925  case Builtin::BI__sync_lock_test_and_set_2:
926  case Builtin::BI__sync_lock_test_and_set_4:
927  case Builtin::BI__sync_lock_test_and_set_8:
928  case Builtin::BI__sync_lock_test_and_set_16:
929    return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
930
931  case Builtin::BI__sync_lock_release_1:
932  case Builtin::BI__sync_lock_release_2:
933  case Builtin::BI__sync_lock_release_4:
934  case Builtin::BI__sync_lock_release_8:
935  case Builtin::BI__sync_lock_release_16: {
936    Value *Ptr = EmitScalarExpr(E->getArg(0));
937    const llvm::Type *ElTy =
938      cast<llvm::PointerType>(Ptr->getType())->getElementType();
939    llvm::StoreInst *Store =
940      Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr);
941    Store->setVolatile(true);
942    return RValue::get(0);
943  }
944
945  case Builtin::BI__sync_synchronize: {
946    // We assume like gcc appears to, that this only applies to cached memory.
947    EmitMemoryBarrier(*this, true, true, true, true, false);
948    return RValue::get(0);
949  }
950
951  case Builtin::BI__builtin_llvm_memory_barrier: {
952    Value *C[5] = {
953      EmitScalarExpr(E->getArg(0)),
954      EmitScalarExpr(E->getArg(1)),
955      EmitScalarExpr(E->getArg(2)),
956      EmitScalarExpr(E->getArg(3)),
957      EmitScalarExpr(E->getArg(4))
958    };
959    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C);
960    return RValue::get(0);
961  }
962
963    // Library functions with special handling.
964  case Builtin::BIsqrt:
965  case Builtin::BIsqrtf:
966  case Builtin::BIsqrtl: {
967    // TODO: there is currently no set of optimizer flags
968    // sufficient for us to rewrite sqrt to @llvm.sqrt.
969    // -fmath-errno=0 is not good enough; we need finiteness.
970    // We could probably precondition the call with an ult
971    // against 0, but is that worth the complexity?
972    break;
973  }
974
975  case Builtin::BIpow:
976  case Builtin::BIpowf:
977  case Builtin::BIpowl: {
978    // Rewrite sqrt to intrinsic if allowed.
979    if (!FD->hasAttr<ConstAttr>())
980      break;
981    Value *Base = EmitScalarExpr(E->getArg(0));
982    Value *Exponent = EmitScalarExpr(E->getArg(1));
983    llvm::Type *ArgType = Base->getType();
984    Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
985    return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
986  }
987
988  case Builtin::BIfma:
989  case Builtin::BIfmaf:
990  case Builtin::BIfmal:
991  case Builtin::BI__builtin_fma:
992  case Builtin::BI__builtin_fmaf:
993  case Builtin::BI__builtin_fmal: {
994    // Rewrite fma to intrinsic.
995    Value *FirstArg = EmitScalarExpr(E->getArg(0));
996    llvm::Type *ArgType = FirstArg->getType();
997    Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
998    return RValue::get(Builder.CreateCall3(F, FirstArg,
999                                              EmitScalarExpr(E->getArg(1)),
1000                                              EmitScalarExpr(E->getArg(2)),
1001                                              "tmp"));
1002  }
1003
1004  case Builtin::BI__builtin_signbit:
1005  case Builtin::BI__builtin_signbitf:
1006  case Builtin::BI__builtin_signbitl: {
1007    LLVMContext &C = CGM.getLLVMContext();
1008
1009    Value *Arg = EmitScalarExpr(E->getArg(0));
1010    const llvm::Type *ArgTy = Arg->getType();
1011    if (ArgTy->isPPC_FP128Ty())
1012      break; // FIXME: I'm not sure what the right implementation is here.
1013    int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1014    const llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1015    Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1016    Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1017    Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1018    return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1019  }
1020  }
1021
1022  // If this is an alias for a libm function (e.g. __builtin_sin) turn it into
1023  // that function.
1024  if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
1025      getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1026    return EmitCall(E->getCallee()->getType(),
1027                    CGM.getBuiltinLibFunction(FD, BuiltinID),
1028                    ReturnValueSlot(), E->arg_begin(), E->arg_end(), FD);
1029
1030  // See if we have a target specific intrinsic.
1031  const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1032  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1033  if (const char *Prefix =
1034      llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
1035    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1036
1037  if (IntrinsicID != Intrinsic::not_intrinsic) {
1038    SmallVector<Value*, 16> Args;
1039
1040    // Find out if any arguments are required to be integer constant
1041    // expressions.
1042    unsigned ICEArguments = 0;
1043    ASTContext::GetBuiltinTypeError Error;
1044    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1045    assert(Error == ASTContext::GE_None && "Should not codegen an error");
1046
1047    Function *F = CGM.getIntrinsic(IntrinsicID);
1048    const llvm::FunctionType *FTy = F->getFunctionType();
1049
1050    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1051      Value *ArgValue;
1052      // If this is a normal argument, just emit it as a scalar.
1053      if ((ICEArguments & (1 << i)) == 0) {
1054        ArgValue = EmitScalarExpr(E->getArg(i));
1055      } else {
1056        // If this is required to be a constant, constant fold it so that we
1057        // know that the generated intrinsic gets a ConstantInt.
1058        llvm::APSInt Result;
1059        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1060        assert(IsConst && "Constant arg isn't actually constant?");
1061        (void)IsConst;
1062        ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1063      }
1064
1065      // If the intrinsic arg type is different from the builtin arg type
1066      // we need to do a bit cast.
1067      const llvm::Type *PTy = FTy->getParamType(i);
1068      if (PTy != ArgValue->getType()) {
1069        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1070               "Must be able to losslessly bit cast to param");
1071        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1072      }
1073
1074      Args.push_back(ArgValue);
1075    }
1076
1077    Value *V = Builder.CreateCall(F, Args);
1078    QualType BuiltinRetType = E->getType();
1079
1080    const llvm::Type *RetTy = llvm::Type::getVoidTy(getLLVMContext());
1081    if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
1082
1083    if (RetTy != V->getType()) {
1084      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1085             "Must be able to losslessly bit cast result type");
1086      V = Builder.CreateBitCast(V, RetTy);
1087    }
1088
1089    return RValue::get(V);
1090  }
1091
1092  // See if we have a target specific builtin that needs to be lowered.
1093  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1094    return RValue::get(V);
1095
1096  ErrorUnsupported(E, "builtin function");
1097
1098  // Unknown builtin, for now just dump it out and return undef.
1099  if (hasAggregateLLVMType(E->getType()))
1100    return RValue::getAggregate(CreateMemTemp(E->getType()));
1101  return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1102}
1103
1104Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1105                                              const CallExpr *E) {
1106  switch (Target.getTriple().getArch()) {
1107  case llvm::Triple::arm:
1108  case llvm::Triple::thumb:
1109    return EmitARMBuiltinExpr(BuiltinID, E);
1110  case llvm::Triple::x86:
1111  case llvm::Triple::x86_64:
1112    return EmitX86BuiltinExpr(BuiltinID, E);
1113  case llvm::Triple::ppc:
1114  case llvm::Triple::ppc64:
1115    return EmitPPCBuiltinExpr(BuiltinID, E);
1116  default:
1117    return 0;
1118  }
1119}
1120
1121static llvm::VectorType *GetNeonType(LLVMContext &C, unsigned type, bool q) {
1122  switch (type) {
1123    default: break;
1124    case 0:
1125    case 5: return llvm::VectorType::get(llvm::Type::getInt8Ty(C), 8 << (int)q);
1126    case 6:
1127    case 7:
1128    case 1: return llvm::VectorType::get(llvm::Type::getInt16Ty(C),4 << (int)q);
1129    case 2: return llvm::VectorType::get(llvm::Type::getInt32Ty(C),2 << (int)q);
1130    case 3: return llvm::VectorType::get(llvm::Type::getInt64Ty(C),1 << (int)q);
1131    case 4: return llvm::VectorType::get(llvm::Type::getFloatTy(C),2 << (int)q);
1132  };
1133  return 0;
1134}
1135
1136Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1137  unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1138  SmallVector<Constant*, 16> Indices(nElts, C);
1139  Value* SV = llvm::ConstantVector::get(Indices);
1140  return Builder.CreateShuffleVector(V, V, SV, "lane");
1141}
1142
1143Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1144                                     const char *name,
1145                                     unsigned shift, bool rightshift) {
1146  unsigned j = 0;
1147  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1148       ai != ae; ++ai, ++j)
1149    if (shift > 0 && shift == j)
1150      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1151    else
1152      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1153
1154  return Builder.CreateCall(F, Ops, name);
1155}
1156
1157Value *CodeGenFunction::EmitNeonShiftVector(Value *V, const llvm::Type *Ty,
1158                                            bool neg) {
1159  ConstantInt *CI = cast<ConstantInt>(V);
1160  int SV = CI->getSExtValue();
1161
1162  const llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1163  llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1164  SmallVector<llvm::Constant*, 16> CV(VTy->getNumElements(), C);
1165  return llvm::ConstantVector::get(CV);
1166}
1167
1168/// GetPointeeAlignment - Given an expression with a pointer type, find the
1169/// alignment of the type referenced by the pointer.  Skip over implicit
1170/// casts.
1171static Value *GetPointeeAlignment(CodeGenFunction &CGF, const Expr *Addr) {
1172  unsigned Align = 1;
1173  // Check if the type is a pointer.  The implicit cast operand might not be.
1174  while (Addr->getType()->isPointerType()) {
1175    QualType PtTy = Addr->getType()->getPointeeType();
1176    unsigned NewA = CGF.getContext().getTypeAlignInChars(PtTy).getQuantity();
1177    if (NewA > Align)
1178      Align = NewA;
1179
1180    // If the address is an implicit cast, repeat with the cast operand.
1181    if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) {
1182      Addr = CastAddr->getSubExpr();
1183      continue;
1184    }
1185    break;
1186  }
1187  return llvm::ConstantInt::get(CGF.Int32Ty, Align);
1188}
1189
1190Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1191                                           const CallExpr *E) {
1192  if (BuiltinID == ARM::BI__clear_cache) {
1193    const FunctionDecl *FD = E->getDirectCallee();
1194    // Oddly people write this call without args on occasion and gcc accepts
1195    // it - it's also marked as varargs in the description file.
1196    llvm::SmallVector<Value*, 2> Ops;
1197    for (unsigned i = 0; i < E->getNumArgs(); i++)
1198      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1199    const llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1200    const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1201    llvm::StringRef Name = FD->getName();
1202    return Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1203  }
1204
1205  if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
1206    Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
1207
1208    Value *LdPtr = EmitScalarExpr(E->getArg(0));
1209    Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
1210
1211    Value *Val0 = Builder.CreateExtractValue(Val, 1);
1212    Value *Val1 = Builder.CreateExtractValue(Val, 0);
1213    Val0 = Builder.CreateZExt(Val0, Int64Ty);
1214    Val1 = Builder.CreateZExt(Val1, Int64Ty);
1215
1216    Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
1217    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
1218    return Builder.CreateOr(Val, Val1);
1219  }
1220
1221  if (BuiltinID == ARM::BI__builtin_arm_strexd) {
1222    Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
1223    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
1224
1225    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1226    Value *Tmp = Builder.CreateAlloca(Int64Ty, One, "tmp");
1227    Value *Val = EmitScalarExpr(E->getArg(0));
1228    Builder.CreateStore(Val, Tmp);
1229
1230    Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
1231    Val = Builder.CreateLoad(LdPtr);
1232
1233    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
1234    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
1235    Value *StPtr = EmitScalarExpr(E->getArg(1));
1236    return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
1237  }
1238
1239  llvm::SmallVector<Value*, 4> Ops;
1240  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
1241    Ops.push_back(EmitScalarExpr(E->getArg(i)));
1242
1243  llvm::APSInt Result;
1244  const Expr *Arg = E->getArg(E->getNumArgs()-1);
1245  if (!Arg->isIntegerConstantExpr(Result, getContext()))
1246    return 0;
1247
1248  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1249      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1250    // Determine the overloaded type of this builtin.
1251    llvm::Type *Ty;
1252    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1253      Ty = llvm::Type::getFloatTy(getLLVMContext());
1254    else
1255      Ty = llvm::Type::getDoubleTy(getLLVMContext());
1256
1257    // Determine whether this is an unsigned conversion or not.
1258    bool usgn = Result.getZExtValue() == 1;
1259    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1260
1261    // Call the appropriate intrinsic.
1262    Function *F = CGM.getIntrinsic(Int, Ty);
1263    return Builder.CreateCall(F, Ops, "vcvtr");
1264  }
1265
1266  // Determine the type of this overloaded NEON intrinsic.
1267  unsigned type = Result.getZExtValue();
1268  bool usgn = type & 0x08;
1269  bool quad = type & 0x10;
1270  bool poly = (type & 0x7) == 5 || (type & 0x7) == 6;
1271  (void)poly;  // Only used in assert()s.
1272  bool rightShift = false;
1273
1274  llvm::VectorType *VTy = GetNeonType(getLLVMContext(), type & 0x7, quad);
1275  llvm::Type *Ty = VTy;
1276  if (!Ty)
1277    return 0;
1278
1279  unsigned Int;
1280  switch (BuiltinID) {
1281  default: return 0;
1282  case ARM::BI__builtin_neon_vabd_v:
1283  case ARM::BI__builtin_neon_vabdq_v:
1284    Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1285    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
1286  case ARM::BI__builtin_neon_vabs_v:
1287  case ARM::BI__builtin_neon_vabsq_v:
1288    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
1289                        Ops, "vabs");
1290  case ARM::BI__builtin_neon_vaddhn_v:
1291    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty),
1292                        Ops, "vaddhn");
1293  case ARM::BI__builtin_neon_vcale_v:
1294    std::swap(Ops[0], Ops[1]);
1295  case ARM::BI__builtin_neon_vcage_v: {
1296    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
1297    return EmitNeonCall(F, Ops, "vcage");
1298  }
1299  case ARM::BI__builtin_neon_vcaleq_v:
1300    std::swap(Ops[0], Ops[1]);
1301  case ARM::BI__builtin_neon_vcageq_v: {
1302    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
1303    return EmitNeonCall(F, Ops, "vcage");
1304  }
1305  case ARM::BI__builtin_neon_vcalt_v:
1306    std::swap(Ops[0], Ops[1]);
1307  case ARM::BI__builtin_neon_vcagt_v: {
1308    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
1309    return EmitNeonCall(F, Ops, "vcagt");
1310  }
1311  case ARM::BI__builtin_neon_vcaltq_v:
1312    std::swap(Ops[0], Ops[1]);
1313  case ARM::BI__builtin_neon_vcagtq_v: {
1314    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
1315    return EmitNeonCall(F, Ops, "vcagt");
1316  }
1317  case ARM::BI__builtin_neon_vcls_v:
1318  case ARM::BI__builtin_neon_vclsq_v: {
1319    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
1320    return EmitNeonCall(F, Ops, "vcls");
1321  }
1322  case ARM::BI__builtin_neon_vclz_v:
1323  case ARM::BI__builtin_neon_vclzq_v: {
1324    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vclz, Ty);
1325    return EmitNeonCall(F, Ops, "vclz");
1326  }
1327  case ARM::BI__builtin_neon_vcnt_v:
1328  case ARM::BI__builtin_neon_vcntq_v: {
1329    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcnt, Ty);
1330    return EmitNeonCall(F, Ops, "vcnt");
1331  }
1332  case ARM::BI__builtin_neon_vcvt_f16_v: {
1333    assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f16_v builtin");
1334    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
1335    return EmitNeonCall(F, Ops, "vcvt");
1336  }
1337  case ARM::BI__builtin_neon_vcvt_f32_f16: {
1338    assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f32_f16 builtin");
1339    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
1340    return EmitNeonCall(F, Ops, "vcvt");
1341  }
1342  case ARM::BI__builtin_neon_vcvt_f32_v:
1343  case ARM::BI__builtin_neon_vcvtq_f32_v: {
1344    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1345    Ty = GetNeonType(getLLVMContext(), 4, quad);
1346    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1347                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1348  }
1349  case ARM::BI__builtin_neon_vcvt_s32_v:
1350  case ARM::BI__builtin_neon_vcvt_u32_v:
1351  case ARM::BI__builtin_neon_vcvtq_s32_v:
1352  case ARM::BI__builtin_neon_vcvtq_u32_v: {
1353    Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(getLLVMContext(), 4, quad));
1354    return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1355                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1356  }
1357  case ARM::BI__builtin_neon_vcvt_n_f32_v:
1358  case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1359    llvm::Type *Tys[2] = { GetNeonType(getLLVMContext(), 4, quad), Ty };
1360    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp : Intrinsic::arm_neon_vcvtfxs2fp;
1361    Function *F = CGM.getIntrinsic(Int, Tys);
1362    return EmitNeonCall(F, Ops, "vcvt_n");
1363  }
1364  case ARM::BI__builtin_neon_vcvt_n_s32_v:
1365  case ARM::BI__builtin_neon_vcvt_n_u32_v:
1366  case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1367  case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1368    llvm::Type *Tys[2] = { Ty, GetNeonType(getLLVMContext(), 4, quad) };
1369    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu : Intrinsic::arm_neon_vcvtfp2fxs;
1370    Function *F = CGM.getIntrinsic(Int, Tys);
1371    return EmitNeonCall(F, Ops, "vcvt_n");
1372  }
1373  case ARM::BI__builtin_neon_vext_v:
1374  case ARM::BI__builtin_neon_vextq_v: {
1375    int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
1376    SmallVector<Constant*, 16> Indices;
1377    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1378      Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1379
1380    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1381    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1382    Value *SV = llvm::ConstantVector::get(Indices);
1383    return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1384  }
1385  case ARM::BI__builtin_neon_vget_lane_i8:
1386  case ARM::BI__builtin_neon_vget_lane_i16:
1387  case ARM::BI__builtin_neon_vget_lane_i32:
1388  case ARM::BI__builtin_neon_vget_lane_i64:
1389  case ARM::BI__builtin_neon_vget_lane_f32:
1390  case ARM::BI__builtin_neon_vgetq_lane_i8:
1391  case ARM::BI__builtin_neon_vgetq_lane_i16:
1392  case ARM::BI__builtin_neon_vgetq_lane_i32:
1393  case ARM::BI__builtin_neon_vgetq_lane_i64:
1394  case ARM::BI__builtin_neon_vgetq_lane_f32:
1395    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1396                                        "vget_lane");
1397  case ARM::BI__builtin_neon_vhadd_v:
1398  case ARM::BI__builtin_neon_vhaddq_v:
1399    Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1400    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
1401  case ARM::BI__builtin_neon_vhsub_v:
1402  case ARM::BI__builtin_neon_vhsubq_v:
1403    Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1404    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
1405  case ARM::BI__builtin_neon_vld1_v:
1406  case ARM::BI__builtin_neon_vld1q_v:
1407    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1408    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
1409                        Ops, "vld1");
1410  case ARM::BI__builtin_neon_vld1_lane_v:
1411  case ARM::BI__builtin_neon_vld1q_lane_v:
1412    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1413    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1414    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1415    Ops[0] = Builder.CreateLoad(Ops[0]);
1416    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
1417  case ARM::BI__builtin_neon_vld1_dup_v:
1418  case ARM::BI__builtin_neon_vld1q_dup_v: {
1419    Value *V = UndefValue::get(Ty);
1420    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1421    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1422    Ops[0] = Builder.CreateLoad(Ops[0]);
1423    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1424    Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
1425    return EmitNeonSplat(Ops[0], CI);
1426  }
1427  case ARM::BI__builtin_neon_vld2_v:
1428  case ARM::BI__builtin_neon_vld2q_v: {
1429    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
1430    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1431    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
1432    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1433    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1434    return Builder.CreateStore(Ops[1], Ops[0]);
1435  }
1436  case ARM::BI__builtin_neon_vld3_v:
1437  case ARM::BI__builtin_neon_vld3q_v: {
1438    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
1439    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1440    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
1441    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1442    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1443    return Builder.CreateStore(Ops[1], Ops[0]);
1444  }
1445  case ARM::BI__builtin_neon_vld4_v:
1446  case ARM::BI__builtin_neon_vld4q_v: {
1447    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
1448    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1449    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
1450    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1451    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1452    return Builder.CreateStore(Ops[1], Ops[0]);
1453  }
1454  case ARM::BI__builtin_neon_vld2_lane_v:
1455  case ARM::BI__builtin_neon_vld2q_lane_v: {
1456    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
1457    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1458    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1459    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1460    Ops[1] = Builder.CreateCall(F,
1461                                ArrayRef<Value *>(Ops.begin() + 1, Ops.end()),
1462                                "vld2_lane");
1463    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1464    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1465    return Builder.CreateStore(Ops[1], Ops[0]);
1466  }
1467  case ARM::BI__builtin_neon_vld3_lane_v:
1468  case ARM::BI__builtin_neon_vld3q_lane_v: {
1469    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
1470    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1471    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1472    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1473    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1474    Ops[1] = Builder.CreateCall(F,
1475                                ArrayRef<Value *>(Ops.begin() + 1, Ops.end()),
1476                                "vld3_lane");
1477    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1478    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1479    return Builder.CreateStore(Ops[1], Ops[0]);
1480  }
1481  case ARM::BI__builtin_neon_vld4_lane_v:
1482  case ARM::BI__builtin_neon_vld4q_lane_v: {
1483    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
1484    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1485    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1486    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1487    Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
1488    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1489    Ops[1] = Builder.CreateCall(F,
1490                                ArrayRef<Value *>(Ops.begin() + 1, Ops.end()),
1491                                "vld3_lane");
1492    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1493    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1494    return Builder.CreateStore(Ops[1], Ops[0]);
1495  }
1496  case ARM::BI__builtin_neon_vld2_dup_v:
1497  case ARM::BI__builtin_neon_vld3_dup_v:
1498  case ARM::BI__builtin_neon_vld4_dup_v: {
1499    // Handle 64-bit elements as a special-case.  There is no "dup" needed.
1500    if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
1501      switch (BuiltinID) {
1502      case ARM::BI__builtin_neon_vld2_dup_v:
1503        Int = Intrinsic::arm_neon_vld2;
1504        break;
1505      case ARM::BI__builtin_neon_vld3_dup_v:
1506        Int = Intrinsic::arm_neon_vld2;
1507        break;
1508      case ARM::BI__builtin_neon_vld4_dup_v:
1509        Int = Intrinsic::arm_neon_vld2;
1510        break;
1511      default: assert(0 && "unknown vld_dup intrinsic?");
1512      }
1513      Function *F = CGM.getIntrinsic(Int, Ty);
1514      Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1515      Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
1516      Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1517      Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1518      return Builder.CreateStore(Ops[1], Ops[0]);
1519    }
1520    switch (BuiltinID) {
1521    case ARM::BI__builtin_neon_vld2_dup_v:
1522      Int = Intrinsic::arm_neon_vld2lane;
1523      break;
1524    case ARM::BI__builtin_neon_vld3_dup_v:
1525      Int = Intrinsic::arm_neon_vld2lane;
1526      break;
1527    case ARM::BI__builtin_neon_vld4_dup_v:
1528      Int = Intrinsic::arm_neon_vld2lane;
1529      break;
1530    default: assert(0 && "unknown vld_dup intrinsic?");
1531    }
1532    Function *F = CGM.getIntrinsic(Int, Ty);
1533    const llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
1534
1535    SmallVector<Value*, 6> Args;
1536    Args.push_back(Ops[1]);
1537    Args.append(STy->getNumElements(), UndefValue::get(Ty));
1538
1539    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1540    Args.push_back(CI);
1541    Args.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1542
1543    Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
1544    // splat lane 0 to all elts in each vector of the result.
1545    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1546      Value *Val = Builder.CreateExtractValue(Ops[1], i);
1547      Value *Elt = Builder.CreateBitCast(Val, Ty);
1548      Elt = EmitNeonSplat(Elt, CI);
1549      Elt = Builder.CreateBitCast(Elt, Val->getType());
1550      Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
1551    }
1552    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1553    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1554    return Builder.CreateStore(Ops[1], Ops[0]);
1555  }
1556  case ARM::BI__builtin_neon_vmax_v:
1557  case ARM::BI__builtin_neon_vmaxq_v:
1558    Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
1559    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
1560  case ARM::BI__builtin_neon_vmin_v:
1561  case ARM::BI__builtin_neon_vminq_v:
1562    Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
1563    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
1564  case ARM::BI__builtin_neon_vmovl_v: {
1565    const llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
1566    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
1567    if (usgn)
1568      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
1569    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
1570  }
1571  case ARM::BI__builtin_neon_vmovn_v: {
1572    const llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
1573    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
1574    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
1575  }
1576  case ARM::BI__builtin_neon_vmul_v:
1577  case ARM::BI__builtin_neon_vmulq_v:
1578    assert(poly && "vmul builtin only supported for polynomial types");
1579    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
1580                        Ops, "vmul");
1581  case ARM::BI__builtin_neon_vmull_v:
1582    Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
1583    Int = poly ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
1584    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
1585  case ARM::BI__builtin_neon_vpadal_v:
1586  case ARM::BI__builtin_neon_vpadalq_v: {
1587    Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
1588    // The source operand type has twice as many elements of half the size.
1589    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1590    const llvm::Type *EltTy =
1591      llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1592    llvm::Type *NarrowTy =
1593      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1594    llvm::Type *Tys[2] = { Ty, NarrowTy };
1595    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
1596  }
1597  case ARM::BI__builtin_neon_vpadd_v:
1598    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
1599                        Ops, "vpadd");
1600  case ARM::BI__builtin_neon_vpaddl_v:
1601  case ARM::BI__builtin_neon_vpaddlq_v: {
1602    Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
1603    // The source operand type has twice as many elements of half the size.
1604    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1605    const llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1606    llvm::Type *NarrowTy =
1607      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1608    llvm::Type *Tys[2] = { Ty, NarrowTy };
1609    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
1610  }
1611  case ARM::BI__builtin_neon_vpmax_v:
1612    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
1613    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
1614  case ARM::BI__builtin_neon_vpmin_v:
1615    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
1616    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
1617  case ARM::BI__builtin_neon_vqabs_v:
1618  case ARM::BI__builtin_neon_vqabsq_v:
1619    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
1620                        Ops, "vqabs");
1621  case ARM::BI__builtin_neon_vqadd_v:
1622  case ARM::BI__builtin_neon_vqaddq_v:
1623    Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
1624    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
1625  case ARM::BI__builtin_neon_vqdmlal_v:
1626    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty),
1627                        Ops, "vqdmlal");
1628  case ARM::BI__builtin_neon_vqdmlsl_v:
1629    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty),
1630                        Ops, "vqdmlsl");
1631  case ARM::BI__builtin_neon_vqdmulh_v:
1632  case ARM::BI__builtin_neon_vqdmulhq_v:
1633    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
1634                        Ops, "vqdmulh");
1635  case ARM::BI__builtin_neon_vqdmull_v:
1636    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
1637                        Ops, "vqdmull");
1638  case ARM::BI__builtin_neon_vqmovn_v:
1639    Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
1640    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
1641  case ARM::BI__builtin_neon_vqmovun_v:
1642    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
1643                        Ops, "vqdmull");
1644  case ARM::BI__builtin_neon_vqneg_v:
1645  case ARM::BI__builtin_neon_vqnegq_v:
1646    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
1647                        Ops, "vqneg");
1648  case ARM::BI__builtin_neon_vqrdmulh_v:
1649  case ARM::BI__builtin_neon_vqrdmulhq_v:
1650    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
1651                        Ops, "vqrdmulh");
1652  case ARM::BI__builtin_neon_vqrshl_v:
1653  case ARM::BI__builtin_neon_vqrshlq_v:
1654    Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
1655    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
1656  case ARM::BI__builtin_neon_vqrshrn_n_v:
1657    Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
1658    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1659                        1, true);
1660  case ARM::BI__builtin_neon_vqrshrun_n_v:
1661    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
1662                        Ops, "vqrshrun_n", 1, true);
1663  case ARM::BI__builtin_neon_vqshl_v:
1664  case ARM::BI__builtin_neon_vqshlq_v:
1665    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1666    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
1667  case ARM::BI__builtin_neon_vqshl_n_v:
1668  case ARM::BI__builtin_neon_vqshlq_n_v:
1669    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1670    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1671                        1, false);
1672  case ARM::BI__builtin_neon_vqshlu_n_v:
1673  case ARM::BI__builtin_neon_vqshluq_n_v:
1674    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
1675                        Ops, "vqshlu", 1, false);
1676  case ARM::BI__builtin_neon_vqshrn_n_v:
1677    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
1678    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1679                        1, true);
1680  case ARM::BI__builtin_neon_vqshrun_n_v:
1681    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
1682                        Ops, "vqshrun_n", 1, true);
1683  case ARM::BI__builtin_neon_vqsub_v:
1684  case ARM::BI__builtin_neon_vqsubq_v:
1685    Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
1686    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
1687  case ARM::BI__builtin_neon_vraddhn_v:
1688    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
1689                        Ops, "vraddhn");
1690  case ARM::BI__builtin_neon_vrecpe_v:
1691  case ARM::BI__builtin_neon_vrecpeq_v:
1692    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
1693                        Ops, "vrecpe");
1694  case ARM::BI__builtin_neon_vrecps_v:
1695  case ARM::BI__builtin_neon_vrecpsq_v:
1696    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
1697                        Ops, "vrecps");
1698  case ARM::BI__builtin_neon_vrhadd_v:
1699  case ARM::BI__builtin_neon_vrhaddq_v:
1700    Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
1701    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
1702  case ARM::BI__builtin_neon_vrshl_v:
1703  case ARM::BI__builtin_neon_vrshlq_v:
1704    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1705    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
1706  case ARM::BI__builtin_neon_vrshrn_n_v:
1707    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
1708                        Ops, "vrshrn_n", 1, true);
1709  case ARM::BI__builtin_neon_vrshr_n_v:
1710  case ARM::BI__builtin_neon_vrshrq_n_v:
1711    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1712    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
1713  case ARM::BI__builtin_neon_vrsqrte_v:
1714  case ARM::BI__builtin_neon_vrsqrteq_v:
1715    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
1716                        Ops, "vrsqrte");
1717  case ARM::BI__builtin_neon_vrsqrts_v:
1718  case ARM::BI__builtin_neon_vrsqrtsq_v:
1719    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
1720                        Ops, "vrsqrts");
1721  case ARM::BI__builtin_neon_vrsra_n_v:
1722  case ARM::BI__builtin_neon_vrsraq_n_v:
1723    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1724    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1725    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
1726    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1727    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
1728    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
1729  case ARM::BI__builtin_neon_vrsubhn_v:
1730    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
1731                        Ops, "vrsubhn");
1732  case ARM::BI__builtin_neon_vset_lane_i8:
1733  case ARM::BI__builtin_neon_vset_lane_i16:
1734  case ARM::BI__builtin_neon_vset_lane_i32:
1735  case ARM::BI__builtin_neon_vset_lane_i64:
1736  case ARM::BI__builtin_neon_vset_lane_f32:
1737  case ARM::BI__builtin_neon_vsetq_lane_i8:
1738  case ARM::BI__builtin_neon_vsetq_lane_i16:
1739  case ARM::BI__builtin_neon_vsetq_lane_i32:
1740  case ARM::BI__builtin_neon_vsetq_lane_i64:
1741  case ARM::BI__builtin_neon_vsetq_lane_f32:
1742    Ops.push_back(EmitScalarExpr(E->getArg(2)));
1743    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1744  case ARM::BI__builtin_neon_vshl_v:
1745  case ARM::BI__builtin_neon_vshlq_v:
1746    Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
1747    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
1748  case ARM::BI__builtin_neon_vshll_n_v:
1749    Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
1750    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
1751  case ARM::BI__builtin_neon_vshl_n_v:
1752  case ARM::BI__builtin_neon_vshlq_n_v:
1753    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1754    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n");
1755  case ARM::BI__builtin_neon_vshrn_n_v:
1756    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
1757                        Ops, "vshrn_n", 1, true);
1758  case ARM::BI__builtin_neon_vshr_n_v:
1759  case ARM::BI__builtin_neon_vshrq_n_v:
1760    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1761    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1762    if (usgn)
1763      return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
1764    else
1765      return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
1766  case ARM::BI__builtin_neon_vsri_n_v:
1767  case ARM::BI__builtin_neon_vsriq_n_v:
1768    rightShift = true;
1769  case ARM::BI__builtin_neon_vsli_n_v:
1770  case ARM::BI__builtin_neon_vsliq_n_v:
1771    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
1772    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
1773                        Ops, "vsli_n");
1774  case ARM::BI__builtin_neon_vsra_n_v:
1775  case ARM::BI__builtin_neon_vsraq_n_v:
1776    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1777    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1778    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
1779    if (usgn)
1780      Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
1781    else
1782      Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
1783    return Builder.CreateAdd(Ops[0], Ops[1]);
1784  case ARM::BI__builtin_neon_vst1_v:
1785  case ARM::BI__builtin_neon_vst1q_v:
1786    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1787    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
1788                        Ops, "");
1789  case ARM::BI__builtin_neon_vst1_lane_v:
1790  case ARM::BI__builtin_neon_vst1q_lane_v:
1791    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1792    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
1793    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1794    return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
1795  case ARM::BI__builtin_neon_vst2_v:
1796  case ARM::BI__builtin_neon_vst2q_v:
1797    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1798    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
1799                        Ops, "");
1800  case ARM::BI__builtin_neon_vst2_lane_v:
1801  case ARM::BI__builtin_neon_vst2q_lane_v:
1802    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1803    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
1804                        Ops, "");
1805  case ARM::BI__builtin_neon_vst3_v:
1806  case ARM::BI__builtin_neon_vst3q_v:
1807    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1808    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
1809                        Ops, "");
1810  case ARM::BI__builtin_neon_vst3_lane_v:
1811  case ARM::BI__builtin_neon_vst3q_lane_v:
1812    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1813    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
1814                        Ops, "");
1815  case ARM::BI__builtin_neon_vst4_v:
1816  case ARM::BI__builtin_neon_vst4q_v:
1817    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1818    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
1819                        Ops, "");
1820  case ARM::BI__builtin_neon_vst4_lane_v:
1821  case ARM::BI__builtin_neon_vst4q_lane_v:
1822    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1823    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
1824                        Ops, "");
1825  case ARM::BI__builtin_neon_vsubhn_v:
1826    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty),
1827                        Ops, "vsubhn");
1828  case ARM::BI__builtin_neon_vtbl1_v:
1829    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
1830                        Ops, "vtbl1");
1831  case ARM::BI__builtin_neon_vtbl2_v:
1832    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
1833                        Ops, "vtbl2");
1834  case ARM::BI__builtin_neon_vtbl3_v:
1835    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
1836                        Ops, "vtbl3");
1837  case ARM::BI__builtin_neon_vtbl4_v:
1838    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
1839                        Ops, "vtbl4");
1840  case ARM::BI__builtin_neon_vtbx1_v:
1841    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
1842                        Ops, "vtbx1");
1843  case ARM::BI__builtin_neon_vtbx2_v:
1844    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
1845                        Ops, "vtbx2");
1846  case ARM::BI__builtin_neon_vtbx3_v:
1847    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
1848                        Ops, "vtbx3");
1849  case ARM::BI__builtin_neon_vtbx4_v:
1850    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
1851                        Ops, "vtbx4");
1852  case ARM::BI__builtin_neon_vtst_v:
1853  case ARM::BI__builtin_neon_vtstq_v: {
1854    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1855    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1856    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
1857    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
1858                                ConstantAggregateZero::get(Ty));
1859    return Builder.CreateSExt(Ops[0], Ty, "vtst");
1860  }
1861  case ARM::BI__builtin_neon_vtrn_v:
1862  case ARM::BI__builtin_neon_vtrnq_v: {
1863    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1864    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1865    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1866    Value *SV = 0;
1867
1868    for (unsigned vi = 0; vi != 2; ++vi) {
1869      SmallVector<Constant*, 16> Indices;
1870      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1871        Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
1872        Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
1873      }
1874      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1875      SV = llvm::ConstantVector::get(Indices);
1876      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
1877      SV = Builder.CreateStore(SV, Addr);
1878    }
1879    return SV;
1880  }
1881  case ARM::BI__builtin_neon_vuzp_v:
1882  case ARM::BI__builtin_neon_vuzpq_v: {
1883    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1884    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1885    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1886    Value *SV = 0;
1887
1888    for (unsigned vi = 0; vi != 2; ++vi) {
1889      SmallVector<Constant*, 16> Indices;
1890      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1891        Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
1892
1893      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1894      SV = llvm::ConstantVector::get(Indices);
1895      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
1896      SV = Builder.CreateStore(SV, Addr);
1897    }
1898    return SV;
1899  }
1900  case ARM::BI__builtin_neon_vzip_v:
1901  case ARM::BI__builtin_neon_vzipq_v: {
1902    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1903    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1904    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1905    Value *SV = 0;
1906
1907    for (unsigned vi = 0; vi != 2; ++vi) {
1908      SmallVector<Constant*, 16> Indices;
1909      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1910        Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
1911        Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
1912      }
1913      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1914      SV = llvm::ConstantVector::get(Indices);
1915      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
1916      SV = Builder.CreateStore(SV, Addr);
1917    }
1918    return SV;
1919  }
1920  }
1921}
1922
1923llvm::Value *CodeGenFunction::
1924BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops) {
1925  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
1926         "Not a power-of-two sized vector!");
1927  bool AllConstants = true;
1928  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
1929    AllConstants &= isa<Constant>(Ops[i]);
1930
1931  // If this is a constant vector, create a ConstantVector.
1932  if (AllConstants) {
1933    std::vector<llvm::Constant*> CstOps;
1934    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1935      CstOps.push_back(cast<Constant>(Ops[i]));
1936    return llvm::ConstantVector::get(CstOps);
1937  }
1938
1939  // Otherwise, insertelement the values to build the vector.
1940  Value *Result =
1941    llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
1942
1943  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1944    Result = Builder.CreateInsertElement(Result, Ops[i],
1945               llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), i));
1946
1947  return Result;
1948}
1949
1950Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
1951                                           const CallExpr *E) {
1952  llvm::SmallVector<Value*, 4> Ops;
1953
1954  // Find out if any arguments are required to be integer constant expressions.
1955  unsigned ICEArguments = 0;
1956  ASTContext::GetBuiltinTypeError Error;
1957  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1958  assert(Error == ASTContext::GE_None && "Should not codegen an error");
1959
1960  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1961    // If this is a normal argument, just emit it as a scalar.
1962    if ((ICEArguments & (1 << i)) == 0) {
1963      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1964      continue;
1965    }
1966
1967    // If this is required to be a constant, constant fold it so that we know
1968    // that the generated intrinsic gets a ConstantInt.
1969    llvm::APSInt Result;
1970    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
1971    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
1972    Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
1973  }
1974
1975  switch (BuiltinID) {
1976  default: return 0;
1977  case X86::BI__builtin_ia32_pslldi128:
1978  case X86::BI__builtin_ia32_psllqi128:
1979  case X86::BI__builtin_ia32_psllwi128:
1980  case X86::BI__builtin_ia32_psradi128:
1981  case X86::BI__builtin_ia32_psrawi128:
1982  case X86::BI__builtin_ia32_psrldi128:
1983  case X86::BI__builtin_ia32_psrlqi128:
1984  case X86::BI__builtin_ia32_psrlwi128: {
1985    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
1986    const llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
1987    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1988    Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
1989                                         Ops[1], Zero, "insert");
1990    Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
1991    const char *name = 0;
1992    Intrinsic::ID ID = Intrinsic::not_intrinsic;
1993
1994    switch (BuiltinID) {
1995    default: assert(0 && "Unsupported shift intrinsic!");
1996    case X86::BI__builtin_ia32_pslldi128:
1997      name = "pslldi";
1998      ID = Intrinsic::x86_sse2_psll_d;
1999      break;
2000    case X86::BI__builtin_ia32_psllqi128:
2001      name = "psllqi";
2002      ID = Intrinsic::x86_sse2_psll_q;
2003      break;
2004    case X86::BI__builtin_ia32_psllwi128:
2005      name = "psllwi";
2006      ID = Intrinsic::x86_sse2_psll_w;
2007      break;
2008    case X86::BI__builtin_ia32_psradi128:
2009      name = "psradi";
2010      ID = Intrinsic::x86_sse2_psra_d;
2011      break;
2012    case X86::BI__builtin_ia32_psrawi128:
2013      name = "psrawi";
2014      ID = Intrinsic::x86_sse2_psra_w;
2015      break;
2016    case X86::BI__builtin_ia32_psrldi128:
2017      name = "psrldi";
2018      ID = Intrinsic::x86_sse2_psrl_d;
2019      break;
2020    case X86::BI__builtin_ia32_psrlqi128:
2021      name = "psrlqi";
2022      ID = Intrinsic::x86_sse2_psrl_q;
2023      break;
2024    case X86::BI__builtin_ia32_psrlwi128:
2025      name = "psrlwi";
2026      ID = Intrinsic::x86_sse2_psrl_w;
2027      break;
2028    }
2029    llvm::Function *F = CGM.getIntrinsic(ID);
2030    return Builder.CreateCall(F, Ops, name);
2031  }
2032  case X86::BI__builtin_ia32_vec_init_v8qi:
2033  case X86::BI__builtin_ia32_vec_init_v4hi:
2034  case X86::BI__builtin_ia32_vec_init_v2si:
2035    return Builder.CreateBitCast(BuildVector(Ops),
2036                                 llvm::Type::getX86_MMXTy(getLLVMContext()));
2037  case X86::BI__builtin_ia32_vec_ext_v2si:
2038    return Builder.CreateExtractElement(Ops[0],
2039                                  llvm::ConstantInt::get(Ops[1]->getType(), 0));
2040  case X86::BI__builtin_ia32_pslldi:
2041  case X86::BI__builtin_ia32_psllqi:
2042  case X86::BI__builtin_ia32_psllwi:
2043  case X86::BI__builtin_ia32_psradi:
2044  case X86::BI__builtin_ia32_psrawi:
2045  case X86::BI__builtin_ia32_psrldi:
2046  case X86::BI__builtin_ia32_psrlqi:
2047  case X86::BI__builtin_ia32_psrlwi: {
2048    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
2049    const llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 1);
2050    Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
2051    const char *name = 0;
2052    Intrinsic::ID ID = Intrinsic::not_intrinsic;
2053
2054    switch (BuiltinID) {
2055    default: assert(0 && "Unsupported shift intrinsic!");
2056    case X86::BI__builtin_ia32_pslldi:
2057      name = "pslldi";
2058      ID = Intrinsic::x86_mmx_psll_d;
2059      break;
2060    case X86::BI__builtin_ia32_psllqi:
2061      name = "psllqi";
2062      ID = Intrinsic::x86_mmx_psll_q;
2063      break;
2064    case X86::BI__builtin_ia32_psllwi:
2065      name = "psllwi";
2066      ID = Intrinsic::x86_mmx_psll_w;
2067      break;
2068    case X86::BI__builtin_ia32_psradi:
2069      name = "psradi";
2070      ID = Intrinsic::x86_mmx_psra_d;
2071      break;
2072    case X86::BI__builtin_ia32_psrawi:
2073      name = "psrawi";
2074      ID = Intrinsic::x86_mmx_psra_w;
2075      break;
2076    case X86::BI__builtin_ia32_psrldi:
2077      name = "psrldi";
2078      ID = Intrinsic::x86_mmx_psrl_d;
2079      break;
2080    case X86::BI__builtin_ia32_psrlqi:
2081      name = "psrlqi";
2082      ID = Intrinsic::x86_mmx_psrl_q;
2083      break;
2084    case X86::BI__builtin_ia32_psrlwi:
2085      name = "psrlwi";
2086      ID = Intrinsic::x86_mmx_psrl_w;
2087      break;
2088    }
2089    llvm::Function *F = CGM.getIntrinsic(ID);
2090    return Builder.CreateCall(F, Ops, name);
2091  }
2092  case X86::BI__builtin_ia32_cmpps: {
2093    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
2094    return Builder.CreateCall(F, Ops, "cmpps");
2095  }
2096  case X86::BI__builtin_ia32_cmpss: {
2097    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
2098    return Builder.CreateCall(F, Ops, "cmpss");
2099  }
2100  case X86::BI__builtin_ia32_ldmxcsr: {
2101    const llvm::Type *PtrTy = Int8PtrTy;
2102    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2103    Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2104    Builder.CreateStore(Ops[0], Tmp);
2105    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
2106                              Builder.CreateBitCast(Tmp, PtrTy));
2107  }
2108  case X86::BI__builtin_ia32_stmxcsr: {
2109    const llvm::Type *PtrTy = Int8PtrTy;
2110    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2111    Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2112    One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
2113                             Builder.CreateBitCast(Tmp, PtrTy));
2114    return Builder.CreateLoad(Tmp, "stmxcsr");
2115  }
2116  case X86::BI__builtin_ia32_cmppd: {
2117    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
2118    return Builder.CreateCall(F, Ops, "cmppd");
2119  }
2120  case X86::BI__builtin_ia32_cmpsd: {
2121    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
2122    return Builder.CreateCall(F, Ops, "cmpsd");
2123  }
2124  case X86::BI__builtin_ia32_storehps:
2125  case X86::BI__builtin_ia32_storelps: {
2126    llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
2127    llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2128
2129    // cast val v2i64
2130    Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
2131
2132    // extract (0, 1)
2133    unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
2134    llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
2135    Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
2136
2137    // cast pointer to i64 & store
2138    Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2139    return Builder.CreateStore(Ops[1], Ops[0]);
2140  }
2141  case X86::BI__builtin_ia32_palignr: {
2142    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2143
2144    // If palignr is shifting the pair of input vectors less than 9 bytes,
2145    // emit a shuffle instruction.
2146    if (shiftVal <= 8) {
2147      llvm::SmallVector<llvm::Constant*, 8> Indices;
2148      for (unsigned i = 0; i != 8; ++i)
2149        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2150
2151      Value* SV = llvm::ConstantVector::get(Indices);
2152      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2153    }
2154
2155    // If palignr is shifting the pair of input vectors more than 8 but less
2156    // than 16 bytes, emit a logical right shift of the destination.
2157    if (shiftVal < 16) {
2158      // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2159      const llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2160
2161      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2162      Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2163
2164      // create i32 constant
2165      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2166      return Builder.CreateCall(F, ArrayRef<Value *>(&Ops[0], 2), "palignr");
2167    }
2168
2169    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2170    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2171  }
2172  case X86::BI__builtin_ia32_palignr128: {
2173    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2174
2175    // If palignr is shifting the pair of input vectors less than 17 bytes,
2176    // emit a shuffle instruction.
2177    if (shiftVal <= 16) {
2178      llvm::SmallVector<llvm::Constant*, 16> Indices;
2179      for (unsigned i = 0; i != 16; ++i)
2180        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2181
2182      Value* SV = llvm::ConstantVector::get(Indices);
2183      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2184    }
2185
2186    // If palignr is shifting the pair of input vectors more than 16 but less
2187    // than 32 bytes, emit a logical right shift of the destination.
2188    if (shiftVal < 32) {
2189      const llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2190
2191      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2192      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2193
2194      // create i32 constant
2195      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2196      return Builder.CreateCall(F, ArrayRef<Value *>(&Ops[0], 2), "palignr");
2197    }
2198
2199    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2200    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2201  }
2202  case X86::BI__builtin_ia32_movntps:
2203  case X86::BI__builtin_ia32_movntpd:
2204  case X86::BI__builtin_ia32_movntdq:
2205  case X86::BI__builtin_ia32_movnti: {
2206    llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
2207                                           Builder.getInt32(1));
2208
2209    // Convert the type of the pointer to a pointer to the stored type.
2210    Value *BC = Builder.CreateBitCast(Ops[0],
2211                                llvm::PointerType::getUnqual(Ops[1]->getType()),
2212                                      "cast");
2213    StoreInst *SI = Builder.CreateStore(Ops[1], BC);
2214    SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
2215    SI->setAlignment(16);
2216    return SI;
2217  }
2218  // 3DNow!
2219  case X86::BI__builtin_ia32_pavgusb:
2220  case X86::BI__builtin_ia32_pf2id:
2221  case X86::BI__builtin_ia32_pfacc:
2222  case X86::BI__builtin_ia32_pfadd:
2223  case X86::BI__builtin_ia32_pfcmpeq:
2224  case X86::BI__builtin_ia32_pfcmpge:
2225  case X86::BI__builtin_ia32_pfcmpgt:
2226  case X86::BI__builtin_ia32_pfmax:
2227  case X86::BI__builtin_ia32_pfmin:
2228  case X86::BI__builtin_ia32_pfmul:
2229  case X86::BI__builtin_ia32_pfrcp:
2230  case X86::BI__builtin_ia32_pfrcpit1:
2231  case X86::BI__builtin_ia32_pfrcpit2:
2232  case X86::BI__builtin_ia32_pfrsqrt:
2233  case X86::BI__builtin_ia32_pfrsqit1:
2234  case X86::BI__builtin_ia32_pfrsqrtit1:
2235  case X86::BI__builtin_ia32_pfsub:
2236  case X86::BI__builtin_ia32_pfsubr:
2237  case X86::BI__builtin_ia32_pi2fd:
2238  case X86::BI__builtin_ia32_pmulhrw:
2239  case X86::BI__builtin_ia32_pf2iw:
2240  case X86::BI__builtin_ia32_pfnacc:
2241  case X86::BI__builtin_ia32_pfpnacc:
2242  case X86::BI__builtin_ia32_pi2fw:
2243  case X86::BI__builtin_ia32_pswapdsf:
2244  case X86::BI__builtin_ia32_pswapdsi: {
2245    const char *name = 0;
2246    Intrinsic::ID ID = Intrinsic::not_intrinsic;
2247    switch(BuiltinID) {
2248    case X86::BI__builtin_ia32_pavgusb:
2249      name = "pavgusb";
2250      ID = Intrinsic::x86_3dnow_pavgusb;
2251      break;
2252    case X86::BI__builtin_ia32_pf2id:
2253      name = "pf2id";
2254      ID = Intrinsic::x86_3dnow_pf2id;
2255      break;
2256    case X86::BI__builtin_ia32_pfacc:
2257      name = "pfacc";
2258      ID = Intrinsic::x86_3dnow_pfacc;
2259      break;
2260    case X86::BI__builtin_ia32_pfadd:
2261      name = "pfadd";
2262      ID = Intrinsic::x86_3dnow_pfadd;
2263      break;
2264    case X86::BI__builtin_ia32_pfcmpeq:
2265      name = "pfcmpeq";
2266      ID = Intrinsic::x86_3dnow_pfcmpeq;
2267      break;
2268    case X86::BI__builtin_ia32_pfcmpge:
2269      name = "pfcmpge";
2270      ID = Intrinsic::x86_3dnow_pfcmpge;
2271      break;
2272    case X86::BI__builtin_ia32_pfcmpgt:
2273      name = "pfcmpgt";
2274      ID = Intrinsic::x86_3dnow_pfcmpgt;
2275      break;
2276    case X86::BI__builtin_ia32_pfmax:
2277      name = "pfmax";
2278      ID = Intrinsic::x86_3dnow_pfmax;
2279      break;
2280    case X86::BI__builtin_ia32_pfmin:
2281      name = "pfmin";
2282      ID = Intrinsic::x86_3dnow_pfmin;
2283      break;
2284    case X86::BI__builtin_ia32_pfmul:
2285      name = "pfmul";
2286      ID = Intrinsic::x86_3dnow_pfmul;
2287      break;
2288    case X86::BI__builtin_ia32_pfrcp:
2289      name = "pfrcp";
2290      ID = Intrinsic::x86_3dnow_pfrcp;
2291      break;
2292    case X86::BI__builtin_ia32_pfrcpit1:
2293      name = "pfrcpit1";
2294      ID = Intrinsic::x86_3dnow_pfrcpit1;
2295      break;
2296    case X86::BI__builtin_ia32_pfrcpit2:
2297      name = "pfrcpit2";
2298      ID = Intrinsic::x86_3dnow_pfrcpit2;
2299      break;
2300    case X86::BI__builtin_ia32_pfrsqrt:
2301      name = "pfrsqrt";
2302      ID = Intrinsic::x86_3dnow_pfrsqrt;
2303      break;
2304    case X86::BI__builtin_ia32_pfrsqit1:
2305    case X86::BI__builtin_ia32_pfrsqrtit1:
2306      name = "pfrsqit1";
2307      ID = Intrinsic::x86_3dnow_pfrsqit1;
2308      break;
2309    case X86::BI__builtin_ia32_pfsub:
2310      name = "pfsub";
2311      ID = Intrinsic::x86_3dnow_pfsub;
2312      break;
2313    case X86::BI__builtin_ia32_pfsubr:
2314      name = "pfsubr";
2315      ID = Intrinsic::x86_3dnow_pfsubr;
2316      break;
2317    case X86::BI__builtin_ia32_pi2fd:
2318      name = "pi2fd";
2319      ID = Intrinsic::x86_3dnow_pi2fd;
2320      break;
2321    case X86::BI__builtin_ia32_pmulhrw:
2322      name = "pmulhrw";
2323      ID = Intrinsic::x86_3dnow_pmulhrw;
2324      break;
2325    case X86::BI__builtin_ia32_pf2iw:
2326      name = "pf2iw";
2327      ID = Intrinsic::x86_3dnowa_pf2iw;
2328      break;
2329    case X86::BI__builtin_ia32_pfnacc:
2330      name = "pfnacc";
2331      ID = Intrinsic::x86_3dnowa_pfnacc;
2332      break;
2333    case X86::BI__builtin_ia32_pfpnacc:
2334      name = "pfpnacc";
2335      ID = Intrinsic::x86_3dnowa_pfpnacc;
2336      break;
2337    case X86::BI__builtin_ia32_pi2fw:
2338      name = "pi2fw";
2339      ID = Intrinsic::x86_3dnowa_pi2fw;
2340      break;
2341    case X86::BI__builtin_ia32_pswapdsf:
2342    case X86::BI__builtin_ia32_pswapdsi:
2343      name = "pswapd";
2344      ID = Intrinsic::x86_3dnowa_pswapd;
2345      break;
2346    }
2347    llvm::Function *F = CGM.getIntrinsic(ID);
2348    return Builder.CreateCall(F, Ops, name);
2349  }
2350  }
2351}
2352
2353Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2354                                           const CallExpr *E) {
2355  llvm::SmallVector<Value*, 4> Ops;
2356
2357  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2358    Ops.push_back(EmitScalarExpr(E->getArg(i)));
2359
2360  Intrinsic::ID ID = Intrinsic::not_intrinsic;
2361
2362  switch (BuiltinID) {
2363  default: return 0;
2364
2365  // vec_ld, vec_lvsl, vec_lvsr
2366  case PPC::BI__builtin_altivec_lvx:
2367  case PPC::BI__builtin_altivec_lvxl:
2368  case PPC::BI__builtin_altivec_lvebx:
2369  case PPC::BI__builtin_altivec_lvehx:
2370  case PPC::BI__builtin_altivec_lvewx:
2371  case PPC::BI__builtin_altivec_lvsl:
2372  case PPC::BI__builtin_altivec_lvsr:
2373  {
2374    Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2375
2376    Ops[0] = Builder.CreateGEP(Ops[1], Ops[0], "tmp");
2377    Ops.pop_back();
2378
2379    switch (BuiltinID) {
2380    default: assert(0 && "Unsupported ld/lvsl/lvsr intrinsic!");
2381    case PPC::BI__builtin_altivec_lvx:
2382      ID = Intrinsic::ppc_altivec_lvx;
2383      break;
2384    case PPC::BI__builtin_altivec_lvxl:
2385      ID = Intrinsic::ppc_altivec_lvxl;
2386      break;
2387    case PPC::BI__builtin_altivec_lvebx:
2388      ID = Intrinsic::ppc_altivec_lvebx;
2389      break;
2390    case PPC::BI__builtin_altivec_lvehx:
2391      ID = Intrinsic::ppc_altivec_lvehx;
2392      break;
2393    case PPC::BI__builtin_altivec_lvewx:
2394      ID = Intrinsic::ppc_altivec_lvewx;
2395      break;
2396    case PPC::BI__builtin_altivec_lvsl:
2397      ID = Intrinsic::ppc_altivec_lvsl;
2398      break;
2399    case PPC::BI__builtin_altivec_lvsr:
2400      ID = Intrinsic::ppc_altivec_lvsr;
2401      break;
2402    }
2403    llvm::Function *F = CGM.getIntrinsic(ID);
2404    return Builder.CreateCall(F, Ops, "");
2405  }
2406
2407  // vec_st
2408  case PPC::BI__builtin_altivec_stvx:
2409  case PPC::BI__builtin_altivec_stvxl:
2410  case PPC::BI__builtin_altivec_stvebx:
2411  case PPC::BI__builtin_altivec_stvehx:
2412  case PPC::BI__builtin_altivec_stvewx:
2413  {
2414    Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2415    Ops[1] = Builder.CreateGEP(Ops[2], Ops[1], "tmp");
2416    Ops.pop_back();
2417
2418    switch (BuiltinID) {
2419    default: assert(0 && "Unsupported st intrinsic!");
2420    case PPC::BI__builtin_altivec_stvx:
2421      ID = Intrinsic::ppc_altivec_stvx;
2422      break;
2423    case PPC::BI__builtin_altivec_stvxl:
2424      ID = Intrinsic::ppc_altivec_stvxl;
2425      break;
2426    case PPC::BI__builtin_altivec_stvebx:
2427      ID = Intrinsic::ppc_altivec_stvebx;
2428      break;
2429    case PPC::BI__builtin_altivec_stvehx:
2430      ID = Intrinsic::ppc_altivec_stvehx;
2431      break;
2432    case PPC::BI__builtin_altivec_stvewx:
2433      ID = Intrinsic::ppc_altivec_stvewx;
2434      break;
2435    }
2436    llvm::Function *F = CGM.getIntrinsic(ID);
2437    return Builder.CreateCall(F, Ops, "");
2438  }
2439  }
2440  return 0;
2441}
2442