1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/Basic/TargetBuiltins.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/CodeGen/CGFunctionInfo.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Intrinsics.h"
25
26using namespace clang;
27using namespace CodeGen;
28using namespace llvm;
29
30/// getBuiltinLibFunction - Given a builtin id for a function like
31/// "__builtin_fabsf", return a Function* for "fabsf".
32llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
33                                                  unsigned BuiltinID) {
34  assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
35
36  // Get the name, skip over the __builtin_ prefix (if necessary).
37  StringRef Name;
38  GlobalDecl D(FD);
39
40  // If the builtin has been declared explicitly with an assembler label,
41  // use the mangled name. This differs from the plain label on platforms
42  // that prefix labels.
43  if (FD->hasAttr<AsmLabelAttr>())
44    Name = getMangledName(D);
45  else
46    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
47
48  llvm::FunctionType *Ty =
49    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
50
51  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
52}
53
54/// Emit the conversions required to turn the given value into an
55/// integer of the given size.
56static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
57                        QualType T, llvm::IntegerType *IntType) {
58  V = CGF.EmitToMemory(V, T);
59
60  if (V->getType()->isPointerTy())
61    return CGF.Builder.CreatePtrToInt(V, IntType);
62
63  assert(V->getType() == IntType);
64  return V;
65}
66
67static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
68                          QualType T, llvm::Type *ResultType) {
69  V = CGF.EmitFromMemory(V, T);
70
71  if (ResultType->isPointerTy())
72    return CGF.Builder.CreateIntToPtr(V, ResultType);
73
74  assert(V->getType() == ResultType);
75  return V;
76}
77
78/// Utility to insert an atomic instruction based on Instrinsic::ID
79/// and the expression node.
80static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
81                               llvm::AtomicRMWInst::BinOp Kind,
82                               const CallExpr *E) {
83  QualType T = E->getType();
84  assert(E->getArg(0)->getType()->isPointerType());
85  assert(CGF.getContext().hasSameUnqualifiedType(T,
86                                  E->getArg(0)->getType()->getPointeeType()));
87  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
88
89  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
90  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
91
92  llvm::IntegerType *IntType =
93    llvm::IntegerType::get(CGF.getLLVMContext(),
94                           CGF.getContext().getTypeSize(T));
95  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
96
97  llvm::Value *Args[2];
98  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
99  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
100  llvm::Type *ValueType = Args[1]->getType();
101  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
102
103  llvm::Value *Result =
104      CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
105                                  llvm::SequentiallyConsistent);
106  Result = EmitFromInt(CGF, Result, T, ValueType);
107  return RValue::get(Result);
108}
109
110/// Utility to insert an atomic instruction based Instrinsic::ID and
111/// the expression node, where the return value is the result of the
112/// operation.
113static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
114                                   llvm::AtomicRMWInst::BinOp Kind,
115                                   const CallExpr *E,
116                                   Instruction::BinaryOps Op) {
117  QualType T = E->getType();
118  assert(E->getArg(0)->getType()->isPointerType());
119  assert(CGF.getContext().hasSameUnqualifiedType(T,
120                                  E->getArg(0)->getType()->getPointeeType()));
121  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
122
123  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
124  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
125
126  llvm::IntegerType *IntType =
127    llvm::IntegerType::get(CGF.getLLVMContext(),
128                           CGF.getContext().getTypeSize(T));
129  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
130
131  llvm::Value *Args[2];
132  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
133  llvm::Type *ValueType = Args[1]->getType();
134  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
135  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
136
137  llvm::Value *Result =
138      CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
139                                  llvm::SequentiallyConsistent);
140  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
141  Result = EmitFromInt(CGF, Result, T, ValueType);
142  return RValue::get(Result);
143}
144
145/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
146/// which must be a scalar floating point type.
147static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
148  const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
149  assert(ValTyP && "isn't scalar fp type!");
150
151  StringRef FnName;
152  switch (ValTyP->getKind()) {
153  default: llvm_unreachable("Isn't a scalar fp type!");
154  case BuiltinType::Float:      FnName = "fabsf"; break;
155  case BuiltinType::Double:     FnName = "fabs"; break;
156  case BuiltinType::LongDouble: FnName = "fabsl"; break;
157  }
158
159  // The prototype is something that takes and returns whatever V's type is.
160  llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
161                                                   false);
162  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
163
164  return CGF.EmitNounwindRuntimeCall(Fn, V, "abs");
165}
166
167static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
168                              const CallExpr *E, llvm::Value *calleeValue) {
169  return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E->getLocStart(),
170                      ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
171}
172
173/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
174/// depending on IntrinsicID.
175///
176/// \arg CGF The current codegen function.
177/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
178/// \arg X The first argument to the llvm.*.with.overflow.*.
179/// \arg Y The second argument to the llvm.*.with.overflow.*.
180/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
181/// \returns The result (i.e. sum/product) returned by the intrinsic.
182static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
183                                          const llvm::Intrinsic::ID IntrinsicID,
184                                          llvm::Value *X, llvm::Value *Y,
185                                          llvm::Value *&Carry) {
186  // Make sure we have integers of the same width.
187  assert(X->getType() == Y->getType() &&
188         "Arguments must be the same type. (Did you forget to make sure both "
189         "arguments have the same integer width?)");
190
191  llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
192  llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
193  Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
194  return CGF.Builder.CreateExtractValue(Tmp, 0);
195}
196
197RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
198                                        unsigned BuiltinID, const CallExpr *E) {
199  // See if we can constant fold this builtin.  If so, don't emit it at all.
200  Expr::EvalResult Result;
201  if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
202      !Result.hasSideEffects()) {
203    if (Result.Val.isInt())
204      return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
205                                                Result.Val.getInt()));
206    if (Result.Val.isFloat())
207      return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
208                                               Result.Val.getFloat()));
209  }
210
211  switch (BuiltinID) {
212  default: break;  // Handle intrinsics and libm functions below.
213  case Builtin::BI__builtin___CFStringMakeConstantString:
214  case Builtin::BI__builtin___NSStringMakeConstantString:
215    return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
216  case Builtin::BI__builtin_stdarg_start:
217  case Builtin::BI__builtin_va_start:
218  case Builtin::BI__builtin_va_end: {
219    Value *ArgValue = EmitVAListRef(E->getArg(0));
220    llvm::Type *DestType = Int8PtrTy;
221    if (ArgValue->getType() != DestType)
222      ArgValue = Builder.CreateBitCast(ArgValue, DestType,
223                                       ArgValue->getName().data());
224
225    Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
226      Intrinsic::vaend : Intrinsic::vastart;
227    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
228  }
229  case Builtin::BI__builtin_va_copy: {
230    Value *DstPtr = EmitVAListRef(E->getArg(0));
231    Value *SrcPtr = EmitVAListRef(E->getArg(1));
232
233    llvm::Type *Type = Int8PtrTy;
234
235    DstPtr = Builder.CreateBitCast(DstPtr, Type);
236    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
237    return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
238                                           DstPtr, SrcPtr));
239  }
240  case Builtin::BI__builtin_abs:
241  case Builtin::BI__builtin_labs:
242  case Builtin::BI__builtin_llabs: {
243    Value *ArgValue = EmitScalarExpr(E->getArg(0));
244
245    Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
246    Value *CmpResult =
247    Builder.CreateICmpSGE(ArgValue,
248                          llvm::Constant::getNullValue(ArgValue->getType()),
249                                                            "abscond");
250    Value *Result =
251      Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
252
253    return RValue::get(Result);
254  }
255
256  case Builtin::BI__builtin_conj:
257  case Builtin::BI__builtin_conjf:
258  case Builtin::BI__builtin_conjl: {
259    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
260    Value *Real = ComplexVal.first;
261    Value *Imag = ComplexVal.second;
262    Value *Zero =
263      Imag->getType()->isFPOrFPVectorTy()
264        ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
265        : llvm::Constant::getNullValue(Imag->getType());
266
267    Imag = Builder.CreateFSub(Zero, Imag, "sub");
268    return RValue::getComplex(std::make_pair(Real, Imag));
269  }
270  case Builtin::BI__builtin_creal:
271  case Builtin::BI__builtin_crealf:
272  case Builtin::BI__builtin_creall:
273  case Builtin::BIcreal:
274  case Builtin::BIcrealf:
275  case Builtin::BIcreall: {
276    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
277    return RValue::get(ComplexVal.first);
278  }
279
280  case Builtin::BI__builtin_cimag:
281  case Builtin::BI__builtin_cimagf:
282  case Builtin::BI__builtin_cimagl:
283  case Builtin::BIcimag:
284  case Builtin::BIcimagf:
285  case Builtin::BIcimagl: {
286    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
287    return RValue::get(ComplexVal.second);
288  }
289
290  case Builtin::BI__builtin_ctzs:
291  case Builtin::BI__builtin_ctz:
292  case Builtin::BI__builtin_ctzl:
293  case Builtin::BI__builtin_ctzll: {
294    Value *ArgValue = EmitScalarExpr(E->getArg(0));
295
296    llvm::Type *ArgType = ArgValue->getType();
297    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
298
299    llvm::Type *ResultType = ConvertType(E->getType());
300    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
301    Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
302    if (Result->getType() != ResultType)
303      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
304                                     "cast");
305    return RValue::get(Result);
306  }
307  case Builtin::BI__builtin_clzs:
308  case Builtin::BI__builtin_clz:
309  case Builtin::BI__builtin_clzl:
310  case Builtin::BI__builtin_clzll: {
311    Value *ArgValue = EmitScalarExpr(E->getArg(0));
312
313    llvm::Type *ArgType = ArgValue->getType();
314    Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
315
316    llvm::Type *ResultType = ConvertType(E->getType());
317    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
318    Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
319    if (Result->getType() != ResultType)
320      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
321                                     "cast");
322    return RValue::get(Result);
323  }
324  case Builtin::BI__builtin_ffs:
325  case Builtin::BI__builtin_ffsl:
326  case Builtin::BI__builtin_ffsll: {
327    // ffs(x) -> x ? cttz(x) + 1 : 0
328    Value *ArgValue = EmitScalarExpr(E->getArg(0));
329
330    llvm::Type *ArgType = ArgValue->getType();
331    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
332
333    llvm::Type *ResultType = ConvertType(E->getType());
334    Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
335                                                       Builder.getTrue()),
336                                   llvm::ConstantInt::get(ArgType, 1));
337    Value *Zero = llvm::Constant::getNullValue(ArgType);
338    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
339    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
340    if (Result->getType() != ResultType)
341      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
342                                     "cast");
343    return RValue::get(Result);
344  }
345  case Builtin::BI__builtin_parity:
346  case Builtin::BI__builtin_parityl:
347  case Builtin::BI__builtin_parityll: {
348    // parity(x) -> ctpop(x) & 1
349    Value *ArgValue = EmitScalarExpr(E->getArg(0));
350
351    llvm::Type *ArgType = ArgValue->getType();
352    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
353
354    llvm::Type *ResultType = ConvertType(E->getType());
355    Value *Tmp = Builder.CreateCall(F, ArgValue);
356    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
357    if (Result->getType() != ResultType)
358      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
359                                     "cast");
360    return RValue::get(Result);
361  }
362  case Builtin::BI__builtin_popcount:
363  case Builtin::BI__builtin_popcountl:
364  case Builtin::BI__builtin_popcountll: {
365    Value *ArgValue = EmitScalarExpr(E->getArg(0));
366
367    llvm::Type *ArgType = ArgValue->getType();
368    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
369
370    llvm::Type *ResultType = ConvertType(E->getType());
371    Value *Result = Builder.CreateCall(F, ArgValue);
372    if (Result->getType() != ResultType)
373      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
374                                     "cast");
375    return RValue::get(Result);
376  }
377  case Builtin::BI__builtin_expect: {
378    Value *ArgValue = EmitScalarExpr(E->getArg(0));
379    llvm::Type *ArgType = ArgValue->getType();
380
381    Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
382    Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
383
384    Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
385                                        "expval");
386    return RValue::get(Result);
387  }
388  case Builtin::BI__builtin_bswap16:
389  case Builtin::BI__builtin_bswap32:
390  case Builtin::BI__builtin_bswap64: {
391    Value *ArgValue = EmitScalarExpr(E->getArg(0));
392    llvm::Type *ArgType = ArgValue->getType();
393    Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
394    return RValue::get(Builder.CreateCall(F, ArgValue));
395  }
396  case Builtin::BI__builtin_object_size: {
397    // We rely on constant folding to deal with expressions with side effects.
398    assert(!E->getArg(0)->HasSideEffects(getContext()) &&
399           "should have been constant folded");
400
401    // We pass this builtin onto the optimizer so that it can
402    // figure out the object size in more complex cases.
403    llvm::Type *ResType = ConvertType(E->getType());
404
405    // LLVM only supports 0 and 2, make sure that we pass along that
406    // as a boolean.
407    Value *Ty = EmitScalarExpr(E->getArg(1));
408    ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
409    assert(CI);
410    uint64_t val = CI->getZExtValue();
411    CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
412    // FIXME: Get right address space.
413    llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) };
414    Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
415    return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
416  }
417  case Builtin::BI__builtin_prefetch: {
418    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
419    // FIXME: Technically these constants should of type 'int', yes?
420    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
421      llvm::ConstantInt::get(Int32Ty, 0);
422    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
423      llvm::ConstantInt::get(Int32Ty, 3);
424    Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
425    Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
426    return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
427  }
428  case Builtin::BI__builtin_readcyclecounter: {
429    Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
430    return RValue::get(Builder.CreateCall(F));
431  }
432  case Builtin::BI__builtin_trap: {
433    Value *F = CGM.getIntrinsic(Intrinsic::trap);
434    return RValue::get(Builder.CreateCall(F));
435  }
436  case Builtin::BI__debugbreak: {
437    Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
438    return RValue::get(Builder.CreateCall(F));
439  }
440  case Builtin::BI__builtin_unreachable: {
441    if (SanOpts->Unreachable)
442      EmitCheck(Builder.getFalse(), "builtin_unreachable",
443                EmitCheckSourceLocation(E->getExprLoc()),
444                ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
445    else
446      Builder.CreateUnreachable();
447
448    // We do need to preserve an insertion point.
449    EmitBlock(createBasicBlock("unreachable.cont"));
450
451    return RValue::get(0);
452  }
453
454  case Builtin::BI__builtin_powi:
455  case Builtin::BI__builtin_powif:
456  case Builtin::BI__builtin_powil: {
457    Value *Base = EmitScalarExpr(E->getArg(0));
458    Value *Exponent = EmitScalarExpr(E->getArg(1));
459    llvm::Type *ArgType = Base->getType();
460    Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
461    return RValue::get(Builder.CreateCall2(F, Base, Exponent));
462  }
463
464  case Builtin::BI__builtin_isgreater:
465  case Builtin::BI__builtin_isgreaterequal:
466  case Builtin::BI__builtin_isless:
467  case Builtin::BI__builtin_islessequal:
468  case Builtin::BI__builtin_islessgreater:
469  case Builtin::BI__builtin_isunordered: {
470    // Ordered comparisons: we know the arguments to these are matching scalar
471    // floating point values.
472    Value *LHS = EmitScalarExpr(E->getArg(0));
473    Value *RHS = EmitScalarExpr(E->getArg(1));
474
475    switch (BuiltinID) {
476    default: llvm_unreachable("Unknown ordered comparison");
477    case Builtin::BI__builtin_isgreater:
478      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
479      break;
480    case Builtin::BI__builtin_isgreaterequal:
481      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
482      break;
483    case Builtin::BI__builtin_isless:
484      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
485      break;
486    case Builtin::BI__builtin_islessequal:
487      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
488      break;
489    case Builtin::BI__builtin_islessgreater:
490      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
491      break;
492    case Builtin::BI__builtin_isunordered:
493      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
494      break;
495    }
496    // ZExt bool to int type.
497    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
498  }
499  case Builtin::BI__builtin_isnan: {
500    Value *V = EmitScalarExpr(E->getArg(0));
501    V = Builder.CreateFCmpUNO(V, V, "cmp");
502    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
503  }
504
505  case Builtin::BI__builtin_isinf: {
506    // isinf(x) --> fabs(x) == infinity
507    Value *V = EmitScalarExpr(E->getArg(0));
508    V = EmitFAbs(*this, V, E->getArg(0)->getType());
509
510    V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
511    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
512  }
513
514  // TODO: BI__builtin_isinf_sign
515  //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
516
517  case Builtin::BI__builtin_isnormal: {
518    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
519    Value *V = EmitScalarExpr(E->getArg(0));
520    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
521
522    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
523    Value *IsLessThanInf =
524      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
525    APFloat Smallest = APFloat::getSmallestNormalized(
526                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
527    Value *IsNormal =
528      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
529                            "isnormal");
530    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
531    V = Builder.CreateAnd(V, IsNormal, "and");
532    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
533  }
534
535  case Builtin::BI__builtin_isfinite: {
536    // isfinite(x) --> x == x && fabs(x) != infinity;
537    Value *V = EmitScalarExpr(E->getArg(0));
538    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
539
540    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
541    Value *IsNotInf =
542      Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
543
544    V = Builder.CreateAnd(Eq, IsNotInf, "and");
545    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
546  }
547
548  case Builtin::BI__builtin_fpclassify: {
549    Value *V = EmitScalarExpr(E->getArg(5));
550    llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
551
552    // Create Result
553    BasicBlock *Begin = Builder.GetInsertBlock();
554    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
555    Builder.SetInsertPoint(End);
556    PHINode *Result =
557      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
558                        "fpclassify_result");
559
560    // if (V==0) return FP_ZERO
561    Builder.SetInsertPoint(Begin);
562    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
563                                          "iszero");
564    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
565    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
566    Builder.CreateCondBr(IsZero, End, NotZero);
567    Result->addIncoming(ZeroLiteral, Begin);
568
569    // if (V != V) return FP_NAN
570    Builder.SetInsertPoint(NotZero);
571    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
572    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
573    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
574    Builder.CreateCondBr(IsNan, End, NotNan);
575    Result->addIncoming(NanLiteral, NotZero);
576
577    // if (fabs(V) == infinity) return FP_INFINITY
578    Builder.SetInsertPoint(NotNan);
579    Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
580    Value *IsInf =
581      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
582                            "isinf");
583    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
584    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
585    Builder.CreateCondBr(IsInf, End, NotInf);
586    Result->addIncoming(InfLiteral, NotNan);
587
588    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
589    Builder.SetInsertPoint(NotInf);
590    APFloat Smallest = APFloat::getSmallestNormalized(
591        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
592    Value *IsNormal =
593      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
594                            "isnormal");
595    Value *NormalResult =
596      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
597                           EmitScalarExpr(E->getArg(3)));
598    Builder.CreateBr(End);
599    Result->addIncoming(NormalResult, NotInf);
600
601    // return Result
602    Builder.SetInsertPoint(End);
603    return RValue::get(Result);
604  }
605
606  case Builtin::BIalloca:
607  case Builtin::BI_alloca:
608  case Builtin::BI__builtin_alloca: {
609    Value *Size = EmitScalarExpr(E->getArg(0));
610    return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
611  }
612  case Builtin::BIbzero:
613  case Builtin::BI__builtin_bzero: {
614    std::pair<llvm::Value*, unsigned> Dest =
615        EmitPointerWithAlignment(E->getArg(0));
616    Value *SizeVal = EmitScalarExpr(E->getArg(1));
617    Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
618                         Dest.second, false);
619    return RValue::get(Dest.first);
620  }
621  case Builtin::BImemcpy:
622  case Builtin::BI__builtin_memcpy: {
623    std::pair<llvm::Value*, unsigned> Dest =
624        EmitPointerWithAlignment(E->getArg(0));
625    std::pair<llvm::Value*, unsigned> Src =
626        EmitPointerWithAlignment(E->getArg(1));
627    Value *SizeVal = EmitScalarExpr(E->getArg(2));
628    unsigned Align = std::min(Dest.second, Src.second);
629    Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
630    return RValue::get(Dest.first);
631  }
632
633  case Builtin::BI__builtin___memcpy_chk: {
634    // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
635    llvm::APSInt Size, DstSize;
636    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
637        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
638      break;
639    if (Size.ugt(DstSize))
640      break;
641    std::pair<llvm::Value*, unsigned> Dest =
642        EmitPointerWithAlignment(E->getArg(0));
643    std::pair<llvm::Value*, unsigned> Src =
644        EmitPointerWithAlignment(E->getArg(1));
645    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
646    unsigned Align = std::min(Dest.second, Src.second);
647    Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
648    return RValue::get(Dest.first);
649  }
650
651  case Builtin::BI__builtin_objc_memmove_collectable: {
652    Value *Address = EmitScalarExpr(E->getArg(0));
653    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
654    Value *SizeVal = EmitScalarExpr(E->getArg(2));
655    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
656                                                  Address, SrcAddr, SizeVal);
657    return RValue::get(Address);
658  }
659
660  case Builtin::BI__builtin___memmove_chk: {
661    // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
662    llvm::APSInt Size, DstSize;
663    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
664        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
665      break;
666    if (Size.ugt(DstSize))
667      break;
668    std::pair<llvm::Value*, unsigned> Dest =
669        EmitPointerWithAlignment(E->getArg(0));
670    std::pair<llvm::Value*, unsigned> Src =
671        EmitPointerWithAlignment(E->getArg(1));
672    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
673    unsigned Align = std::min(Dest.second, Src.second);
674    Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
675    return RValue::get(Dest.first);
676  }
677
678  case Builtin::BImemmove:
679  case Builtin::BI__builtin_memmove: {
680    std::pair<llvm::Value*, unsigned> Dest =
681        EmitPointerWithAlignment(E->getArg(0));
682    std::pair<llvm::Value*, unsigned> Src =
683        EmitPointerWithAlignment(E->getArg(1));
684    Value *SizeVal = EmitScalarExpr(E->getArg(2));
685    unsigned Align = std::min(Dest.second, Src.second);
686    Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
687    return RValue::get(Dest.first);
688  }
689  case Builtin::BImemset:
690  case Builtin::BI__builtin_memset: {
691    std::pair<llvm::Value*, unsigned> Dest =
692        EmitPointerWithAlignment(E->getArg(0));
693    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
694                                         Builder.getInt8Ty());
695    Value *SizeVal = EmitScalarExpr(E->getArg(2));
696    Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
697    return RValue::get(Dest.first);
698  }
699  case Builtin::BI__builtin___memset_chk: {
700    // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
701    llvm::APSInt Size, DstSize;
702    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
703        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
704      break;
705    if (Size.ugt(DstSize))
706      break;
707    std::pair<llvm::Value*, unsigned> Dest =
708        EmitPointerWithAlignment(E->getArg(0));
709    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
710                                         Builder.getInt8Ty());
711    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
712    Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
713    return RValue::get(Dest.first);
714  }
715  case Builtin::BI__builtin_dwarf_cfa: {
716    // The offset in bytes from the first argument to the CFA.
717    //
718    // Why on earth is this in the frontend?  Is there any reason at
719    // all that the backend can't reasonably determine this while
720    // lowering llvm.eh.dwarf.cfa()?
721    //
722    // TODO: If there's a satisfactory reason, add a target hook for
723    // this instead of hard-coding 0, which is correct for most targets.
724    int32_t Offset = 0;
725
726    Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
727    return RValue::get(Builder.CreateCall(F,
728                                      llvm::ConstantInt::get(Int32Ty, Offset)));
729  }
730  case Builtin::BI__builtin_return_address: {
731    Value *Depth = EmitScalarExpr(E->getArg(0));
732    Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
733    Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
734    return RValue::get(Builder.CreateCall(F, Depth));
735  }
736  case Builtin::BI__builtin_frame_address: {
737    Value *Depth = EmitScalarExpr(E->getArg(0));
738    Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
739    Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
740    return RValue::get(Builder.CreateCall(F, Depth));
741  }
742  case Builtin::BI__builtin_extract_return_addr: {
743    Value *Address = EmitScalarExpr(E->getArg(0));
744    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
745    return RValue::get(Result);
746  }
747  case Builtin::BI__builtin_frob_return_addr: {
748    Value *Address = EmitScalarExpr(E->getArg(0));
749    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
750    return RValue::get(Result);
751  }
752  case Builtin::BI__builtin_dwarf_sp_column: {
753    llvm::IntegerType *Ty
754      = cast<llvm::IntegerType>(ConvertType(E->getType()));
755    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
756    if (Column == -1) {
757      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
758      return RValue::get(llvm::UndefValue::get(Ty));
759    }
760    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
761  }
762  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
763    Value *Address = EmitScalarExpr(E->getArg(0));
764    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
765      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
766    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
767  }
768  case Builtin::BI__builtin_eh_return: {
769    Value *Int = EmitScalarExpr(E->getArg(0));
770    Value *Ptr = EmitScalarExpr(E->getArg(1));
771
772    llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
773    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
774           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
775    Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
776                                  ? Intrinsic::eh_return_i32
777                                  : Intrinsic::eh_return_i64);
778    Builder.CreateCall2(F, Int, Ptr);
779    Builder.CreateUnreachable();
780
781    // We do need to preserve an insertion point.
782    EmitBlock(createBasicBlock("builtin_eh_return.cont"));
783
784    return RValue::get(0);
785  }
786  case Builtin::BI__builtin_unwind_init: {
787    Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
788    return RValue::get(Builder.CreateCall(F));
789  }
790  case Builtin::BI__builtin_extend_pointer: {
791    // Extends a pointer to the size of an _Unwind_Word, which is
792    // uint64_t on all platforms.  Generally this gets poked into a
793    // register and eventually used as an address, so if the
794    // addressing registers are wider than pointers and the platform
795    // doesn't implicitly ignore high-order bits when doing
796    // addressing, we need to make sure we zext / sext based on
797    // the platform's expectations.
798    //
799    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
800
801    // Cast the pointer to intptr_t.
802    Value *Ptr = EmitScalarExpr(E->getArg(0));
803    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
804
805    // If that's 64 bits, we're done.
806    if (IntPtrTy->getBitWidth() == 64)
807      return RValue::get(Result);
808
809    // Otherwise, ask the codegen data what to do.
810    if (getTargetHooks().extendPointerWithSExt())
811      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
812    else
813      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
814  }
815  case Builtin::BI__builtin_setjmp: {
816    // Buffer is a void**.
817    Value *Buf = EmitScalarExpr(E->getArg(0));
818
819    // Store the frame pointer to the setjmp buffer.
820    Value *FrameAddr =
821      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
822                         ConstantInt::get(Int32Ty, 0));
823    Builder.CreateStore(FrameAddr, Buf);
824
825    // Store the stack pointer to the setjmp buffer.
826    Value *StackAddr =
827      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
828    Value *StackSaveSlot =
829      Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
830    Builder.CreateStore(StackAddr, StackSaveSlot);
831
832    // Call LLVM's EH setjmp, which is lightweight.
833    Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
834    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
835    return RValue::get(Builder.CreateCall(F, Buf));
836  }
837  case Builtin::BI__builtin_longjmp: {
838    Value *Buf = EmitScalarExpr(E->getArg(0));
839    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
840
841    // Call LLVM's EH longjmp, which is lightweight.
842    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
843
844    // longjmp doesn't return; mark this as unreachable.
845    Builder.CreateUnreachable();
846
847    // We do need to preserve an insertion point.
848    EmitBlock(createBasicBlock("longjmp.cont"));
849
850    return RValue::get(0);
851  }
852  case Builtin::BI__sync_fetch_and_add:
853  case Builtin::BI__sync_fetch_and_sub:
854  case Builtin::BI__sync_fetch_and_or:
855  case Builtin::BI__sync_fetch_and_and:
856  case Builtin::BI__sync_fetch_and_xor:
857  case Builtin::BI__sync_add_and_fetch:
858  case Builtin::BI__sync_sub_and_fetch:
859  case Builtin::BI__sync_and_and_fetch:
860  case Builtin::BI__sync_or_and_fetch:
861  case Builtin::BI__sync_xor_and_fetch:
862  case Builtin::BI__sync_val_compare_and_swap:
863  case Builtin::BI__sync_bool_compare_and_swap:
864  case Builtin::BI__sync_lock_test_and_set:
865  case Builtin::BI__sync_lock_release:
866  case Builtin::BI__sync_swap:
867    llvm_unreachable("Shouldn't make it through sema");
868  case Builtin::BI__sync_fetch_and_add_1:
869  case Builtin::BI__sync_fetch_and_add_2:
870  case Builtin::BI__sync_fetch_and_add_4:
871  case Builtin::BI__sync_fetch_and_add_8:
872  case Builtin::BI__sync_fetch_and_add_16:
873    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
874  case Builtin::BI__sync_fetch_and_sub_1:
875  case Builtin::BI__sync_fetch_and_sub_2:
876  case Builtin::BI__sync_fetch_and_sub_4:
877  case Builtin::BI__sync_fetch_and_sub_8:
878  case Builtin::BI__sync_fetch_and_sub_16:
879    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
880  case Builtin::BI__sync_fetch_and_or_1:
881  case Builtin::BI__sync_fetch_and_or_2:
882  case Builtin::BI__sync_fetch_and_or_4:
883  case Builtin::BI__sync_fetch_and_or_8:
884  case Builtin::BI__sync_fetch_and_or_16:
885    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
886  case Builtin::BI__sync_fetch_and_and_1:
887  case Builtin::BI__sync_fetch_and_and_2:
888  case Builtin::BI__sync_fetch_and_and_4:
889  case Builtin::BI__sync_fetch_and_and_8:
890  case Builtin::BI__sync_fetch_and_and_16:
891    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
892  case Builtin::BI__sync_fetch_and_xor_1:
893  case Builtin::BI__sync_fetch_and_xor_2:
894  case Builtin::BI__sync_fetch_and_xor_4:
895  case Builtin::BI__sync_fetch_and_xor_8:
896  case Builtin::BI__sync_fetch_and_xor_16:
897    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
898
899  // Clang extensions: not overloaded yet.
900  case Builtin::BI__sync_fetch_and_min:
901    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
902  case Builtin::BI__sync_fetch_and_max:
903    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
904  case Builtin::BI__sync_fetch_and_umin:
905    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
906  case Builtin::BI__sync_fetch_and_umax:
907    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
908
909  case Builtin::BI__sync_add_and_fetch_1:
910  case Builtin::BI__sync_add_and_fetch_2:
911  case Builtin::BI__sync_add_and_fetch_4:
912  case Builtin::BI__sync_add_and_fetch_8:
913  case Builtin::BI__sync_add_and_fetch_16:
914    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
915                                llvm::Instruction::Add);
916  case Builtin::BI__sync_sub_and_fetch_1:
917  case Builtin::BI__sync_sub_and_fetch_2:
918  case Builtin::BI__sync_sub_and_fetch_4:
919  case Builtin::BI__sync_sub_and_fetch_8:
920  case Builtin::BI__sync_sub_and_fetch_16:
921    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
922                                llvm::Instruction::Sub);
923  case Builtin::BI__sync_and_and_fetch_1:
924  case Builtin::BI__sync_and_and_fetch_2:
925  case Builtin::BI__sync_and_and_fetch_4:
926  case Builtin::BI__sync_and_and_fetch_8:
927  case Builtin::BI__sync_and_and_fetch_16:
928    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
929                                llvm::Instruction::And);
930  case Builtin::BI__sync_or_and_fetch_1:
931  case Builtin::BI__sync_or_and_fetch_2:
932  case Builtin::BI__sync_or_and_fetch_4:
933  case Builtin::BI__sync_or_and_fetch_8:
934  case Builtin::BI__sync_or_and_fetch_16:
935    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
936                                llvm::Instruction::Or);
937  case Builtin::BI__sync_xor_and_fetch_1:
938  case Builtin::BI__sync_xor_and_fetch_2:
939  case Builtin::BI__sync_xor_and_fetch_4:
940  case Builtin::BI__sync_xor_and_fetch_8:
941  case Builtin::BI__sync_xor_and_fetch_16:
942    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
943                                llvm::Instruction::Xor);
944
945  case Builtin::BI__sync_val_compare_and_swap_1:
946  case Builtin::BI__sync_val_compare_and_swap_2:
947  case Builtin::BI__sync_val_compare_and_swap_4:
948  case Builtin::BI__sync_val_compare_and_swap_8:
949  case Builtin::BI__sync_val_compare_and_swap_16: {
950    QualType T = E->getType();
951    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
952    unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
953
954    llvm::IntegerType *IntType =
955      llvm::IntegerType::get(getLLVMContext(),
956                             getContext().getTypeSize(T));
957    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
958
959    Value *Args[3];
960    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
961    Args[1] = EmitScalarExpr(E->getArg(1));
962    llvm::Type *ValueType = Args[1]->getType();
963    Args[1] = EmitToInt(*this, Args[1], T, IntType);
964    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
965
966    Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
967                                                llvm::SequentiallyConsistent);
968    Result = EmitFromInt(*this, Result, T, ValueType);
969    return RValue::get(Result);
970  }
971
972  case Builtin::BI__sync_bool_compare_and_swap_1:
973  case Builtin::BI__sync_bool_compare_and_swap_2:
974  case Builtin::BI__sync_bool_compare_and_swap_4:
975  case Builtin::BI__sync_bool_compare_and_swap_8:
976  case Builtin::BI__sync_bool_compare_and_swap_16: {
977    QualType T = E->getArg(1)->getType();
978    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
979    unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
980
981    llvm::IntegerType *IntType =
982      llvm::IntegerType::get(getLLVMContext(),
983                             getContext().getTypeSize(T));
984    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
985
986    Value *Args[3];
987    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
988    Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
989    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
990
991    Value *OldVal = Args[1];
992    Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
993                                                 llvm::SequentiallyConsistent);
994    Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
995    // zext bool to int.
996    Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
997    return RValue::get(Result);
998  }
999
1000  case Builtin::BI__sync_swap_1:
1001  case Builtin::BI__sync_swap_2:
1002  case Builtin::BI__sync_swap_4:
1003  case Builtin::BI__sync_swap_8:
1004  case Builtin::BI__sync_swap_16:
1005    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1006
1007  case Builtin::BI__sync_lock_test_and_set_1:
1008  case Builtin::BI__sync_lock_test_and_set_2:
1009  case Builtin::BI__sync_lock_test_and_set_4:
1010  case Builtin::BI__sync_lock_test_and_set_8:
1011  case Builtin::BI__sync_lock_test_and_set_16:
1012    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1013
1014  case Builtin::BI__sync_lock_release_1:
1015  case Builtin::BI__sync_lock_release_2:
1016  case Builtin::BI__sync_lock_release_4:
1017  case Builtin::BI__sync_lock_release_8:
1018  case Builtin::BI__sync_lock_release_16: {
1019    Value *Ptr = EmitScalarExpr(E->getArg(0));
1020    QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1021    CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1022    llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1023                                             StoreSize.getQuantity() * 8);
1024    Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1025    llvm::StoreInst *Store =
1026      Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
1027    Store->setAlignment(StoreSize.getQuantity());
1028    Store->setAtomic(llvm::Release);
1029    return RValue::get(0);
1030  }
1031
1032  case Builtin::BI__sync_synchronize: {
1033    // We assume this is supposed to correspond to a C++0x-style
1034    // sequentially-consistent fence (i.e. this is only usable for
1035    // synchonization, not device I/O or anything like that). This intrinsic
1036    // is really badly designed in the sense that in theory, there isn't
1037    // any way to safely use it... but in practice, it mostly works
1038    // to use it with non-atomic loads and stores to get acquire/release
1039    // semantics.
1040    Builder.CreateFence(llvm::SequentiallyConsistent);
1041    return RValue::get(0);
1042  }
1043
1044  case Builtin::BI__c11_atomic_is_lock_free:
1045  case Builtin::BI__atomic_is_lock_free: {
1046    // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1047    // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1048    // _Atomic(T) is always properly-aligned.
1049    const char *LibCallName = "__atomic_is_lock_free";
1050    CallArgList Args;
1051    Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1052             getContext().getSizeType());
1053    if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1054      Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1055               getContext().VoidPtrTy);
1056    else
1057      Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1058               getContext().VoidPtrTy);
1059    const CGFunctionInfo &FuncInfo =
1060        CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1061                                               FunctionType::ExtInfo(),
1062                                               RequiredArgs::All);
1063    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1064    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1065    return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1066  }
1067
1068  case Builtin::BI__atomic_test_and_set: {
1069    // Look at the argument type to determine whether this is a volatile
1070    // operation. The parameter type is always volatile.
1071    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1072    bool Volatile =
1073        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1074
1075    Value *Ptr = EmitScalarExpr(E->getArg(0));
1076    unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1077    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1078    Value *NewVal = Builder.getInt8(1);
1079    Value *Order = EmitScalarExpr(E->getArg(1));
1080    if (isa<llvm::ConstantInt>(Order)) {
1081      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1082      AtomicRMWInst *Result = 0;
1083      switch (ord) {
1084      case 0:  // memory_order_relaxed
1085      default: // invalid order
1086        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1087                                         Ptr, NewVal,
1088                                         llvm::Monotonic);
1089        break;
1090      case 1:  // memory_order_consume
1091      case 2:  // memory_order_acquire
1092        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1093                                         Ptr, NewVal,
1094                                         llvm::Acquire);
1095        break;
1096      case 3:  // memory_order_release
1097        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1098                                         Ptr, NewVal,
1099                                         llvm::Release);
1100        break;
1101      case 4:  // memory_order_acq_rel
1102        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1103                                         Ptr, NewVal,
1104                                         llvm::AcquireRelease);
1105        break;
1106      case 5:  // memory_order_seq_cst
1107        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1108                                         Ptr, NewVal,
1109                                         llvm::SequentiallyConsistent);
1110        break;
1111      }
1112      Result->setVolatile(Volatile);
1113      return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1114    }
1115
1116    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1117
1118    llvm::BasicBlock *BBs[5] = {
1119      createBasicBlock("monotonic", CurFn),
1120      createBasicBlock("acquire", CurFn),
1121      createBasicBlock("release", CurFn),
1122      createBasicBlock("acqrel", CurFn),
1123      createBasicBlock("seqcst", CurFn)
1124    };
1125    llvm::AtomicOrdering Orders[5] = {
1126      llvm::Monotonic, llvm::Acquire, llvm::Release,
1127      llvm::AcquireRelease, llvm::SequentiallyConsistent
1128    };
1129
1130    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1131    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1132
1133    Builder.SetInsertPoint(ContBB);
1134    PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1135
1136    for (unsigned i = 0; i < 5; ++i) {
1137      Builder.SetInsertPoint(BBs[i]);
1138      AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1139                                                   Ptr, NewVal, Orders[i]);
1140      RMW->setVolatile(Volatile);
1141      Result->addIncoming(RMW, BBs[i]);
1142      Builder.CreateBr(ContBB);
1143    }
1144
1145    SI->addCase(Builder.getInt32(0), BBs[0]);
1146    SI->addCase(Builder.getInt32(1), BBs[1]);
1147    SI->addCase(Builder.getInt32(2), BBs[1]);
1148    SI->addCase(Builder.getInt32(3), BBs[2]);
1149    SI->addCase(Builder.getInt32(4), BBs[3]);
1150    SI->addCase(Builder.getInt32(5), BBs[4]);
1151
1152    Builder.SetInsertPoint(ContBB);
1153    return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1154  }
1155
1156  case Builtin::BI__atomic_clear: {
1157    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1158    bool Volatile =
1159        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1160
1161    Value *Ptr = EmitScalarExpr(E->getArg(0));
1162    unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1163    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1164    Value *NewVal = Builder.getInt8(0);
1165    Value *Order = EmitScalarExpr(E->getArg(1));
1166    if (isa<llvm::ConstantInt>(Order)) {
1167      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1168      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1169      Store->setAlignment(1);
1170      switch (ord) {
1171      case 0:  // memory_order_relaxed
1172      default: // invalid order
1173        Store->setOrdering(llvm::Monotonic);
1174        break;
1175      case 3:  // memory_order_release
1176        Store->setOrdering(llvm::Release);
1177        break;
1178      case 5:  // memory_order_seq_cst
1179        Store->setOrdering(llvm::SequentiallyConsistent);
1180        break;
1181      }
1182      return RValue::get(0);
1183    }
1184
1185    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1186
1187    llvm::BasicBlock *BBs[3] = {
1188      createBasicBlock("monotonic", CurFn),
1189      createBasicBlock("release", CurFn),
1190      createBasicBlock("seqcst", CurFn)
1191    };
1192    llvm::AtomicOrdering Orders[3] = {
1193      llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1194    };
1195
1196    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1197    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1198
1199    for (unsigned i = 0; i < 3; ++i) {
1200      Builder.SetInsertPoint(BBs[i]);
1201      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1202      Store->setAlignment(1);
1203      Store->setOrdering(Orders[i]);
1204      Builder.CreateBr(ContBB);
1205    }
1206
1207    SI->addCase(Builder.getInt32(0), BBs[0]);
1208    SI->addCase(Builder.getInt32(3), BBs[1]);
1209    SI->addCase(Builder.getInt32(5), BBs[2]);
1210
1211    Builder.SetInsertPoint(ContBB);
1212    return RValue::get(0);
1213  }
1214
1215  case Builtin::BI__atomic_thread_fence:
1216  case Builtin::BI__atomic_signal_fence:
1217  case Builtin::BI__c11_atomic_thread_fence:
1218  case Builtin::BI__c11_atomic_signal_fence: {
1219    llvm::SynchronizationScope Scope;
1220    if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1221        BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1222      Scope = llvm::SingleThread;
1223    else
1224      Scope = llvm::CrossThread;
1225    Value *Order = EmitScalarExpr(E->getArg(0));
1226    if (isa<llvm::ConstantInt>(Order)) {
1227      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1228      switch (ord) {
1229      case 0:  // memory_order_relaxed
1230      default: // invalid order
1231        break;
1232      case 1:  // memory_order_consume
1233      case 2:  // memory_order_acquire
1234        Builder.CreateFence(llvm::Acquire, Scope);
1235        break;
1236      case 3:  // memory_order_release
1237        Builder.CreateFence(llvm::Release, Scope);
1238        break;
1239      case 4:  // memory_order_acq_rel
1240        Builder.CreateFence(llvm::AcquireRelease, Scope);
1241        break;
1242      case 5:  // memory_order_seq_cst
1243        Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1244        break;
1245      }
1246      return RValue::get(0);
1247    }
1248
1249    llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1250    AcquireBB = createBasicBlock("acquire", CurFn);
1251    ReleaseBB = createBasicBlock("release", CurFn);
1252    AcqRelBB = createBasicBlock("acqrel", CurFn);
1253    SeqCstBB = createBasicBlock("seqcst", CurFn);
1254    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1255
1256    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1257    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1258
1259    Builder.SetInsertPoint(AcquireBB);
1260    Builder.CreateFence(llvm::Acquire, Scope);
1261    Builder.CreateBr(ContBB);
1262    SI->addCase(Builder.getInt32(1), AcquireBB);
1263    SI->addCase(Builder.getInt32(2), AcquireBB);
1264
1265    Builder.SetInsertPoint(ReleaseBB);
1266    Builder.CreateFence(llvm::Release, Scope);
1267    Builder.CreateBr(ContBB);
1268    SI->addCase(Builder.getInt32(3), ReleaseBB);
1269
1270    Builder.SetInsertPoint(AcqRelBB);
1271    Builder.CreateFence(llvm::AcquireRelease, Scope);
1272    Builder.CreateBr(ContBB);
1273    SI->addCase(Builder.getInt32(4), AcqRelBB);
1274
1275    Builder.SetInsertPoint(SeqCstBB);
1276    Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1277    Builder.CreateBr(ContBB);
1278    SI->addCase(Builder.getInt32(5), SeqCstBB);
1279
1280    Builder.SetInsertPoint(ContBB);
1281    return RValue::get(0);
1282  }
1283
1284    // Library functions with special handling.
1285  case Builtin::BIsqrt:
1286  case Builtin::BIsqrtf:
1287  case Builtin::BIsqrtl: {
1288    // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
1289    // in finite- or unsafe-math mode (the intrinsic has different semantics
1290    // for handling negative numbers compared to the library function, so
1291    // -fmath-errno=0 is not enough).
1292    if (!FD->hasAttr<ConstAttr>())
1293      break;
1294    if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
1295          CGM.getCodeGenOpts().NoNaNsFPMath))
1296      break;
1297    Value *Arg0 = EmitScalarExpr(E->getArg(0));
1298    llvm::Type *ArgType = Arg0->getType();
1299    Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
1300    return RValue::get(Builder.CreateCall(F, Arg0));
1301  }
1302
1303  case Builtin::BIpow:
1304  case Builtin::BIpowf:
1305  case Builtin::BIpowl: {
1306    // Transform a call to pow* into a @llvm.pow.* intrinsic call.
1307    if (!FD->hasAttr<ConstAttr>())
1308      break;
1309    Value *Base = EmitScalarExpr(E->getArg(0));
1310    Value *Exponent = EmitScalarExpr(E->getArg(1));
1311    llvm::Type *ArgType = Base->getType();
1312    Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1313    return RValue::get(Builder.CreateCall2(F, Base, Exponent));
1314    break;
1315  }
1316
1317  case Builtin::BIfma:
1318  case Builtin::BIfmaf:
1319  case Builtin::BIfmal:
1320  case Builtin::BI__builtin_fma:
1321  case Builtin::BI__builtin_fmaf:
1322  case Builtin::BI__builtin_fmal: {
1323    // Rewrite fma to intrinsic.
1324    Value *FirstArg = EmitScalarExpr(E->getArg(0));
1325    llvm::Type *ArgType = FirstArg->getType();
1326    Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1327    return RValue::get(Builder.CreateCall3(F, FirstArg,
1328                                              EmitScalarExpr(E->getArg(1)),
1329                                              EmitScalarExpr(E->getArg(2))));
1330  }
1331
1332  case Builtin::BI__builtin_signbit:
1333  case Builtin::BI__builtin_signbitf:
1334  case Builtin::BI__builtin_signbitl: {
1335    LLVMContext &C = CGM.getLLVMContext();
1336
1337    Value *Arg = EmitScalarExpr(E->getArg(0));
1338    llvm::Type *ArgTy = Arg->getType();
1339    if (ArgTy->isPPC_FP128Ty())
1340      break; // FIXME: I'm not sure what the right implementation is here.
1341    int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1342    llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1343    Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1344    Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1345    Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1346    return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1347  }
1348  case Builtin::BI__builtin_annotation: {
1349    llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1350    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1351                                      AnnVal->getType());
1352
1353    // Get the annotation string, go through casts. Sema requires this to be a
1354    // non-wide string literal, potentially casted, so the cast<> is safe.
1355    const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1356    StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1357    return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1358  }
1359  case Builtin::BI__builtin_addcb:
1360  case Builtin::BI__builtin_addcs:
1361  case Builtin::BI__builtin_addc:
1362  case Builtin::BI__builtin_addcl:
1363  case Builtin::BI__builtin_addcll:
1364  case Builtin::BI__builtin_subcb:
1365  case Builtin::BI__builtin_subcs:
1366  case Builtin::BI__builtin_subc:
1367  case Builtin::BI__builtin_subcl:
1368  case Builtin::BI__builtin_subcll: {
1369
1370    // We translate all of these builtins from expressions of the form:
1371    //   int x = ..., y = ..., carryin = ..., carryout, result;
1372    //   result = __builtin_addc(x, y, carryin, &carryout);
1373    //
1374    // to LLVM IR of the form:
1375    //
1376    //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1377    //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1378    //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1379    //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1380    //                                                       i32 %carryin)
1381    //   %result = extractvalue {i32, i1} %tmp2, 0
1382    //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1383    //   %tmp3 = or i1 %carry1, %carry2
1384    //   %tmp4 = zext i1 %tmp3 to i32
1385    //   store i32 %tmp4, i32* %carryout
1386
1387    // Scalarize our inputs.
1388    llvm::Value *X = EmitScalarExpr(E->getArg(0));
1389    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1390    llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1391    std::pair<llvm::Value*, unsigned> CarryOutPtr =
1392      EmitPointerWithAlignment(E->getArg(3));
1393
1394    // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1395    llvm::Intrinsic::ID IntrinsicId;
1396    switch (BuiltinID) {
1397    default: llvm_unreachable("Unknown multiprecision builtin id.");
1398    case Builtin::BI__builtin_addcb:
1399    case Builtin::BI__builtin_addcs:
1400    case Builtin::BI__builtin_addc:
1401    case Builtin::BI__builtin_addcl:
1402    case Builtin::BI__builtin_addcll:
1403      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1404      break;
1405    case Builtin::BI__builtin_subcb:
1406    case Builtin::BI__builtin_subcs:
1407    case Builtin::BI__builtin_subc:
1408    case Builtin::BI__builtin_subcl:
1409    case Builtin::BI__builtin_subcll:
1410      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1411      break;
1412    }
1413
1414    // Construct our resulting LLVM IR expression.
1415    llvm::Value *Carry1;
1416    llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1417                                              X, Y, Carry1);
1418    llvm::Value *Carry2;
1419    llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1420                                              Sum1, Carryin, Carry2);
1421    llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1422                                               X->getType());
1423    llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
1424                                                         CarryOutPtr.first);
1425    CarryOutStore->setAlignment(CarryOutPtr.second);
1426    return RValue::get(Sum2);
1427  }
1428  case Builtin::BI__builtin_uadd_overflow:
1429  case Builtin::BI__builtin_uaddl_overflow:
1430  case Builtin::BI__builtin_uaddll_overflow:
1431  case Builtin::BI__builtin_usub_overflow:
1432  case Builtin::BI__builtin_usubl_overflow:
1433  case Builtin::BI__builtin_usubll_overflow:
1434  case Builtin::BI__builtin_umul_overflow:
1435  case Builtin::BI__builtin_umull_overflow:
1436  case Builtin::BI__builtin_umulll_overflow:
1437  case Builtin::BI__builtin_sadd_overflow:
1438  case Builtin::BI__builtin_saddl_overflow:
1439  case Builtin::BI__builtin_saddll_overflow:
1440  case Builtin::BI__builtin_ssub_overflow:
1441  case Builtin::BI__builtin_ssubl_overflow:
1442  case Builtin::BI__builtin_ssubll_overflow:
1443  case Builtin::BI__builtin_smul_overflow:
1444  case Builtin::BI__builtin_smull_overflow:
1445  case Builtin::BI__builtin_smulll_overflow: {
1446
1447    // We translate all of these builtins directly to the relevant llvm IR node.
1448
1449    // Scalarize our inputs.
1450    llvm::Value *X = EmitScalarExpr(E->getArg(0));
1451    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1452    std::pair<llvm::Value *, unsigned> SumOutPtr =
1453      EmitPointerWithAlignment(E->getArg(2));
1454
1455    // Decide which of the overflow intrinsics we are lowering to:
1456    llvm::Intrinsic::ID IntrinsicId;
1457    switch (BuiltinID) {
1458    default: llvm_unreachable("Unknown security overflow builtin id.");
1459    case Builtin::BI__builtin_uadd_overflow:
1460    case Builtin::BI__builtin_uaddl_overflow:
1461    case Builtin::BI__builtin_uaddll_overflow:
1462      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1463      break;
1464    case Builtin::BI__builtin_usub_overflow:
1465    case Builtin::BI__builtin_usubl_overflow:
1466    case Builtin::BI__builtin_usubll_overflow:
1467      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1468      break;
1469    case Builtin::BI__builtin_umul_overflow:
1470    case Builtin::BI__builtin_umull_overflow:
1471    case Builtin::BI__builtin_umulll_overflow:
1472      IntrinsicId = llvm::Intrinsic::umul_with_overflow;
1473      break;
1474    case Builtin::BI__builtin_sadd_overflow:
1475    case Builtin::BI__builtin_saddl_overflow:
1476    case Builtin::BI__builtin_saddll_overflow:
1477      IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
1478      break;
1479    case Builtin::BI__builtin_ssub_overflow:
1480    case Builtin::BI__builtin_ssubl_overflow:
1481    case Builtin::BI__builtin_ssubll_overflow:
1482      IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
1483      break;
1484    case Builtin::BI__builtin_smul_overflow:
1485    case Builtin::BI__builtin_smull_overflow:
1486    case Builtin::BI__builtin_smulll_overflow:
1487      IntrinsicId = llvm::Intrinsic::smul_with_overflow;
1488      break;
1489    }
1490
1491
1492    llvm::Value *Carry;
1493    llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
1494    llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first);
1495    SumOutStore->setAlignment(SumOutPtr.second);
1496
1497    return RValue::get(Carry);
1498  }
1499  case Builtin::BI__builtin_addressof:
1500    return RValue::get(EmitLValue(E->getArg(0)).getAddress());
1501  case Builtin::BI__noop:
1502    return RValue::get(0);
1503  }
1504
1505  // If this is an alias for a lib function (e.g. __builtin_sin), emit
1506  // the call using the normal call path, but using the unmangled
1507  // version of the function name.
1508  if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1509    return emitLibraryCall(*this, FD, E,
1510                           CGM.getBuiltinLibFunction(FD, BuiltinID));
1511
1512  // If this is a predefined lib function (e.g. malloc), emit the call
1513  // using exactly the normal call path.
1514  if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1515    return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1516
1517  // See if we have a target specific intrinsic.
1518  const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1519  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1520  if (const char *Prefix =
1521      llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()))
1522    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1523
1524  if (IntrinsicID != Intrinsic::not_intrinsic) {
1525    SmallVector<Value*, 16> Args;
1526
1527    // Find out if any arguments are required to be integer constant
1528    // expressions.
1529    unsigned ICEArguments = 0;
1530    ASTContext::GetBuiltinTypeError Error;
1531    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1532    assert(Error == ASTContext::GE_None && "Should not codegen an error");
1533
1534    Function *F = CGM.getIntrinsic(IntrinsicID);
1535    llvm::FunctionType *FTy = F->getFunctionType();
1536
1537    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1538      Value *ArgValue;
1539      // If this is a normal argument, just emit it as a scalar.
1540      if ((ICEArguments & (1 << i)) == 0) {
1541        ArgValue = EmitScalarExpr(E->getArg(i));
1542      } else {
1543        // If this is required to be a constant, constant fold it so that we
1544        // know that the generated intrinsic gets a ConstantInt.
1545        llvm::APSInt Result;
1546        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1547        assert(IsConst && "Constant arg isn't actually constant?");
1548        (void)IsConst;
1549        ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1550      }
1551
1552      // If the intrinsic arg type is different from the builtin arg type
1553      // we need to do a bit cast.
1554      llvm::Type *PTy = FTy->getParamType(i);
1555      if (PTy != ArgValue->getType()) {
1556        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1557               "Must be able to losslessly bit cast to param");
1558        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1559      }
1560
1561      Args.push_back(ArgValue);
1562    }
1563
1564    Value *V = Builder.CreateCall(F, Args);
1565    QualType BuiltinRetType = E->getType();
1566
1567    llvm::Type *RetTy = VoidTy;
1568    if (!BuiltinRetType->isVoidType())
1569      RetTy = ConvertType(BuiltinRetType);
1570
1571    if (RetTy != V->getType()) {
1572      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1573             "Must be able to losslessly bit cast result type");
1574      V = Builder.CreateBitCast(V, RetTy);
1575    }
1576
1577    return RValue::get(V);
1578  }
1579
1580  // See if we have a target specific builtin that needs to be lowered.
1581  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1582    return RValue::get(V);
1583
1584  ErrorUnsupported(E, "builtin function");
1585
1586  // Unknown builtin, for now just dump it out and return undef.
1587  return GetUndefRValue(E->getType());
1588}
1589
1590Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1591                                              const CallExpr *E) {
1592  switch (getTarget().getTriple().getArch()) {
1593  case llvm::Triple::aarch64:
1594    return EmitAArch64BuiltinExpr(BuiltinID, E);
1595  case llvm::Triple::arm:
1596  case llvm::Triple::thumb:
1597    return EmitARMBuiltinExpr(BuiltinID, E);
1598  case llvm::Triple::x86:
1599  case llvm::Triple::x86_64:
1600    return EmitX86BuiltinExpr(BuiltinID, E);
1601  case llvm::Triple::ppc:
1602  case llvm::Triple::ppc64:
1603  case llvm::Triple::ppc64le:
1604    return EmitPPCBuiltinExpr(BuiltinID, E);
1605  default:
1606    return 0;
1607  }
1608}
1609
1610static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
1611                                     NeonTypeFlags TypeFlags,
1612                                     bool V1Ty=false) {
1613  int IsQuad = TypeFlags.isQuad();
1614  switch (TypeFlags.getEltType()) {
1615  case NeonTypeFlags::Int8:
1616  case NeonTypeFlags::Poly8:
1617    return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
1618  case NeonTypeFlags::Int16:
1619  case NeonTypeFlags::Poly16:
1620  case NeonTypeFlags::Float16:
1621    return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
1622  case NeonTypeFlags::Int32:
1623    return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
1624  case NeonTypeFlags::Int64:
1625  case NeonTypeFlags::Poly64:
1626    return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
1627  case NeonTypeFlags::Float32:
1628    return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
1629  case NeonTypeFlags::Float64:
1630    return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
1631  }
1632  llvm_unreachable("Unknown vector element type!");
1633}
1634
1635Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1636  unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1637  Value* SV = llvm::ConstantVector::getSplat(nElts, C);
1638  return Builder.CreateShuffleVector(V, V, SV, "lane");
1639}
1640
1641Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1642                                     const char *name,
1643                                     unsigned shift, bool rightshift) {
1644  unsigned j = 0;
1645  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1646       ai != ae; ++ai, ++j)
1647    if (shift > 0 && shift == j)
1648      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1649    else
1650      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1651
1652  return Builder.CreateCall(F, Ops, name);
1653}
1654
1655Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1656                                            bool neg) {
1657  int SV = cast<ConstantInt>(V)->getSExtValue();
1658
1659  llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1660  llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1661  return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
1662}
1663
1664// \brief Right-shift a vector by a constant.
1665Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
1666                                          llvm::Type *Ty, bool usgn,
1667                                          const char *name) {
1668  llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1669
1670  int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
1671  int EltSize = VTy->getScalarSizeInBits();
1672
1673  Vec = Builder.CreateBitCast(Vec, Ty);
1674
1675  // lshr/ashr are undefined when the shift amount is equal to the vector
1676  // element size.
1677  if (ShiftAmt == EltSize) {
1678    if (usgn) {
1679      // Right-shifting an unsigned value by its size yields 0.
1680      llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0);
1681      return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero);
1682    } else {
1683      // Right-shifting a signed value by its size is equivalent
1684      // to a shift of size-1.
1685      --ShiftAmt;
1686      Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
1687    }
1688  }
1689
1690  Shift = EmitNeonShiftVector(Shift, Ty, false);
1691  if (usgn)
1692    return Builder.CreateLShr(Vec, Shift, name);
1693  else
1694    return Builder.CreateAShr(Vec, Shift, name);
1695}
1696
1697/// GetPointeeAlignment - Given an expression with a pointer type, find the
1698/// alignment of the type referenced by the pointer.  Skip over implicit
1699/// casts.
1700std::pair<llvm::Value*, unsigned>
1701CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
1702  assert(Addr->getType()->isPointerType());
1703  Addr = Addr->IgnoreParens();
1704  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
1705    if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
1706        ICE->getSubExpr()->getType()->isPointerType()) {
1707      std::pair<llvm::Value*, unsigned> Ptr =
1708          EmitPointerWithAlignment(ICE->getSubExpr());
1709      Ptr.first = Builder.CreateBitCast(Ptr.first,
1710                                        ConvertType(Addr->getType()));
1711      return Ptr;
1712    } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1713      LValue LV = EmitLValue(ICE->getSubExpr());
1714      unsigned Align = LV.getAlignment().getQuantity();
1715      if (!Align) {
1716        // FIXME: Once LValues are fixed to always set alignment,
1717        // zap this code.
1718        QualType PtTy = ICE->getSubExpr()->getType();
1719        if (!PtTy->isIncompleteType())
1720          Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1721        else
1722          Align = 1;
1723      }
1724      return std::make_pair(LV.getAddress(), Align);
1725    }
1726  }
1727  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
1728    if (UO->getOpcode() == UO_AddrOf) {
1729      LValue LV = EmitLValue(UO->getSubExpr());
1730      unsigned Align = LV.getAlignment().getQuantity();
1731      if (!Align) {
1732        // FIXME: Once LValues are fixed to always set alignment,
1733        // zap this code.
1734        QualType PtTy = UO->getSubExpr()->getType();
1735        if (!PtTy->isIncompleteType())
1736          Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1737        else
1738          Align = 1;
1739      }
1740      return std::make_pair(LV.getAddress(), Align);
1741    }
1742  }
1743
1744  unsigned Align = 1;
1745  QualType PtTy = Addr->getType()->getPointeeType();
1746  if (!PtTy->isIncompleteType())
1747    Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1748
1749  return std::make_pair(EmitScalarExpr(Addr), Align);
1750}
1751
1752static Value *EmitAArch64ScalarBuiltinExpr(CodeGenFunction &CGF,
1753                                           unsigned BuiltinID,
1754                                           const CallExpr *E) {
1755  unsigned int Int = 0;
1756  // Scalar result generated across vectors
1757  bool AcrossVec = false;
1758  // Extend element of one-element vector
1759  bool ExtendEle = false;
1760  bool OverloadInt = false;
1761  bool OverloadCmpInt = false;
1762  bool IsFpCmpZInt = false;
1763  bool OverloadCvtInt = false;
1764  bool OverloadWideInt = false;
1765  bool OverloadNarrowInt = false;
1766  const char *s = NULL;
1767
1768  SmallVector<Value *, 4> Ops;
1769  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1770    Ops.push_back(CGF.EmitScalarExpr(E->getArg(i)));
1771  }
1772
1773  // AArch64 scalar builtins are not overloaded, they do not have an extra
1774  // argument that specifies the vector type, need to handle each case.
1775  switch (BuiltinID) {
1776  default: break;
1777  case AArch64::BI__builtin_neon_vdups_lane_f32:
1778  case AArch64::BI__builtin_neon_vdupd_lane_f64:
1779  case AArch64::BI__builtin_neon_vdups_laneq_f32:
1780  case AArch64::BI__builtin_neon_vdupd_laneq_f64: {
1781    return CGF.Builder.CreateExtractElement(Ops[0], Ops[1], "vdup_lane");
1782  }
1783  case AArch64::BI__builtin_neon_vdupb_lane_i8:
1784  case AArch64::BI__builtin_neon_vduph_lane_i16:
1785  case AArch64::BI__builtin_neon_vdups_lane_i32:
1786  case AArch64::BI__builtin_neon_vdupd_lane_i64:
1787  case AArch64::BI__builtin_neon_vdupb_laneq_i8:
1788  case AArch64::BI__builtin_neon_vduph_laneq_i16:
1789  case AArch64::BI__builtin_neon_vdups_laneq_i32:
1790  case AArch64::BI__builtin_neon_vdupd_laneq_i64: {
1791    // The backend treats Neon scalar types as v1ix types
1792    // So we want to dup lane from any vector to v1ix vector
1793    // with shufflevector
1794    s = "vdup_lane";
1795    Value* SV = llvm::ConstantVector::getSplat(1, cast<ConstantInt>(Ops[1]));
1796    Value *Result = CGF.Builder.CreateShuffleVector(Ops[0], Ops[0], SV, s);
1797    llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1798    // AArch64 intrinsic one-element vector type cast to
1799    // scalar type expected by the builtin
1800    return CGF.Builder.CreateBitCast(Result, Ty, s);
1801  }
1802  case AArch64::BI__builtin_neon_vqdmlalh_lane_s16 :
1803  case AArch64::BI__builtin_neon_vqdmlalh_laneq_s16 :
1804  case AArch64::BI__builtin_neon_vqdmlals_lane_s32 :
1805  case AArch64::BI__builtin_neon_vqdmlals_laneq_s32 :
1806  case AArch64::BI__builtin_neon_vqdmlslh_lane_s16 :
1807  case AArch64::BI__builtin_neon_vqdmlslh_laneq_s16 :
1808  case AArch64::BI__builtin_neon_vqdmlsls_lane_s32 :
1809  case AArch64::BI__builtin_neon_vqdmlsls_laneq_s32 : {
1810    Int = Intrinsic::arm_neon_vqadds;
1811    if (BuiltinID == AArch64::BI__builtin_neon_vqdmlslh_lane_s16 ||
1812        BuiltinID == AArch64::BI__builtin_neon_vqdmlslh_laneq_s16 ||
1813        BuiltinID == AArch64::BI__builtin_neon_vqdmlsls_lane_s32 ||
1814        BuiltinID == AArch64::BI__builtin_neon_vqdmlsls_laneq_s32) {
1815      Int = Intrinsic::arm_neon_vqsubs;
1816    }
1817    // create vqdmull call with b * c[i]
1818    llvm::Type *Ty = CGF.ConvertType(E->getArg(1)->getType());
1819    llvm::VectorType *OpVTy = llvm::VectorType::get(Ty, 1);
1820    Ty = CGF.ConvertType(E->getArg(0)->getType());
1821    llvm::VectorType *ResVTy = llvm::VectorType::get(Ty, 1);
1822    Value *F = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, ResVTy);
1823    Value *V = UndefValue::get(OpVTy);
1824    llvm::Constant *CI = ConstantInt::get(CGF.Int32Ty, 0);
1825    SmallVector<Value *, 2> MulOps;
1826    MulOps.push_back(Ops[1]);
1827    MulOps.push_back(Ops[2]);
1828    MulOps[0] = CGF.Builder.CreateInsertElement(V, MulOps[0], CI);
1829    MulOps[1] = CGF.Builder.CreateExtractElement(MulOps[1], Ops[3], "extract");
1830    MulOps[1] = CGF.Builder.CreateInsertElement(V, MulOps[1], CI);
1831    Value *MulRes = CGF.Builder.CreateCall2(F, MulOps[0], MulOps[1]);
1832    // create vqadds call with a +/- vqdmull result
1833    F = CGF.CGM.getIntrinsic(Int, ResVTy);
1834    SmallVector<Value *, 2> AddOps;
1835    AddOps.push_back(Ops[0]);
1836    AddOps.push_back(MulRes);
1837    V = UndefValue::get(ResVTy);
1838    AddOps[0] = CGF.Builder.CreateInsertElement(V, AddOps[0], CI);
1839    Value *AddRes = CGF.Builder.CreateCall2(F, AddOps[0], AddOps[1]);
1840    return CGF.Builder.CreateBitCast(AddRes, Ty);
1841  }
1842  case AArch64::BI__builtin_neon_vfmas_lane_f32:
1843  case AArch64::BI__builtin_neon_vfmas_laneq_f32:
1844  case AArch64::BI__builtin_neon_vfmad_lane_f64:
1845  case AArch64::BI__builtin_neon_vfmad_laneq_f64: {
1846    llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1847    Value *F = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
1848    Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
1849    return CGF.Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
1850  }
1851  // Scalar Floating-point Multiply Extended
1852  case AArch64::BI__builtin_neon_vmulxs_f32:
1853  case AArch64::BI__builtin_neon_vmulxd_f64: {
1854    Int = Intrinsic::aarch64_neon_vmulx;
1855    llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1856    return CGF.EmitNeonCall(CGF.CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
1857  }
1858  case AArch64::BI__builtin_neon_vmul_n_f64: {
1859    // v1f64 vmul_n_f64  should be mapped to Neon scalar mul lane
1860    llvm::Type *VTy = GetNeonType(&CGF,
1861      NeonTypeFlags(NeonTypeFlags::Float64, false, false));
1862    Ops[0] = CGF.Builder.CreateBitCast(Ops[0], VTy);
1863    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1864    Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], Idx, "extract");
1865    Value *Result = CGF.Builder.CreateFMul(Ops[0], Ops[1]);
1866    return CGF.Builder.CreateBitCast(Result, VTy);
1867  }
1868  case AArch64::BI__builtin_neon_vget_lane_i8:
1869  case AArch64::BI__builtin_neon_vget_lane_i16:
1870  case AArch64::BI__builtin_neon_vget_lane_i32:
1871  case AArch64::BI__builtin_neon_vget_lane_i64:
1872  case AArch64::BI__builtin_neon_vget_lane_f32:
1873  case AArch64::BI__builtin_neon_vget_lane_f64:
1874  case AArch64::BI__builtin_neon_vgetq_lane_i8:
1875  case AArch64::BI__builtin_neon_vgetq_lane_i16:
1876  case AArch64::BI__builtin_neon_vgetq_lane_i32:
1877  case AArch64::BI__builtin_neon_vgetq_lane_i64:
1878  case AArch64::BI__builtin_neon_vgetq_lane_f32:
1879  case AArch64::BI__builtin_neon_vgetq_lane_f64:
1880    return CGF.EmitARMBuiltinExpr(ARM::BI__builtin_neon_vget_lane_i8, E);
1881  case AArch64::BI__builtin_neon_vset_lane_i8:
1882  case AArch64::BI__builtin_neon_vset_lane_i16:
1883  case AArch64::BI__builtin_neon_vset_lane_i32:
1884  case AArch64::BI__builtin_neon_vset_lane_i64:
1885  case AArch64::BI__builtin_neon_vset_lane_f32:
1886  case AArch64::BI__builtin_neon_vset_lane_f64:
1887  case AArch64::BI__builtin_neon_vsetq_lane_i8:
1888  case AArch64::BI__builtin_neon_vsetq_lane_i16:
1889  case AArch64::BI__builtin_neon_vsetq_lane_i32:
1890  case AArch64::BI__builtin_neon_vsetq_lane_i64:
1891  case AArch64::BI__builtin_neon_vsetq_lane_f32:
1892  case AArch64::BI__builtin_neon_vsetq_lane_f64:
1893    return CGF.EmitARMBuiltinExpr(ARM::BI__builtin_neon_vset_lane_i8, E);
1894  // Crypto
1895  case AArch64::BI__builtin_neon_vsha1h_u32:
1896    Int = Intrinsic::arm_neon_sha1h;
1897    s = "sha1h"; OverloadInt = true; break;
1898  case AArch64::BI__builtin_neon_vsha1cq_u32:
1899    Int = Intrinsic::aarch64_neon_sha1c;
1900    s = "sha1c"; break;
1901  case AArch64::BI__builtin_neon_vsha1pq_u32:
1902    Int = Intrinsic::aarch64_neon_sha1p;
1903    s = "sha1p"; break;
1904  case AArch64::BI__builtin_neon_vsha1mq_u32:
1905    Int = Intrinsic::aarch64_neon_sha1m;
1906    s = "sha1m"; break;
1907  // Scalar Add
1908  case AArch64::BI__builtin_neon_vaddd_s64:
1909    Int = Intrinsic::aarch64_neon_vaddds;
1910    s = "vaddds"; break;
1911  case AArch64::BI__builtin_neon_vaddd_u64:
1912    Int = Intrinsic::aarch64_neon_vadddu;
1913    s = "vadddu"; break;
1914  // Scalar Sub
1915  case AArch64::BI__builtin_neon_vsubd_s64:
1916    Int = Intrinsic::aarch64_neon_vsubds;
1917    s = "vsubds"; break;
1918  case AArch64::BI__builtin_neon_vsubd_u64:
1919    Int = Intrinsic::aarch64_neon_vsubdu;
1920    s = "vsubdu"; break;
1921  // Scalar Saturating Add
1922  case AArch64::BI__builtin_neon_vqaddb_s8:
1923  case AArch64::BI__builtin_neon_vqaddh_s16:
1924  case AArch64::BI__builtin_neon_vqadds_s32:
1925  case AArch64::BI__builtin_neon_vqaddd_s64:
1926    Int = Intrinsic::arm_neon_vqadds;
1927    s = "vqadds"; OverloadInt = true; break;
1928  case AArch64::BI__builtin_neon_vqaddb_u8:
1929  case AArch64::BI__builtin_neon_vqaddh_u16:
1930  case AArch64::BI__builtin_neon_vqadds_u32:
1931  case AArch64::BI__builtin_neon_vqaddd_u64:
1932    Int = Intrinsic::arm_neon_vqaddu;
1933    s = "vqaddu"; OverloadInt = true; break;
1934  // Scalar Saturating Sub
1935  case AArch64::BI__builtin_neon_vqsubb_s8:
1936  case AArch64::BI__builtin_neon_vqsubh_s16:
1937  case AArch64::BI__builtin_neon_vqsubs_s32:
1938  case AArch64::BI__builtin_neon_vqsubd_s64:
1939    Int = Intrinsic::arm_neon_vqsubs;
1940    s = "vqsubs"; OverloadInt = true; break;
1941  case AArch64::BI__builtin_neon_vqsubb_u8:
1942  case AArch64::BI__builtin_neon_vqsubh_u16:
1943  case AArch64::BI__builtin_neon_vqsubs_u32:
1944  case AArch64::BI__builtin_neon_vqsubd_u64:
1945    Int = Intrinsic::arm_neon_vqsubu;
1946    s = "vqsubu"; OverloadInt = true; break;
1947  // Scalar Shift Left
1948  case AArch64::BI__builtin_neon_vshld_s64:
1949    Int = Intrinsic::aarch64_neon_vshlds;
1950    s = "vshlds"; break;
1951  case AArch64::BI__builtin_neon_vshld_u64:
1952    Int = Intrinsic::aarch64_neon_vshldu;
1953    s = "vshldu"; break;
1954  // Scalar Saturating Shift Left
1955  case AArch64::BI__builtin_neon_vqshlb_s8:
1956  case AArch64::BI__builtin_neon_vqshlh_s16:
1957  case AArch64::BI__builtin_neon_vqshls_s32:
1958  case AArch64::BI__builtin_neon_vqshld_s64:
1959    Int = Intrinsic::aarch64_neon_vqshls;
1960    s = "vqshls"; OverloadInt = true; break;
1961  case AArch64::BI__builtin_neon_vqshlb_u8:
1962  case AArch64::BI__builtin_neon_vqshlh_u16:
1963  case AArch64::BI__builtin_neon_vqshls_u32:
1964  case AArch64::BI__builtin_neon_vqshld_u64:
1965    Int = Intrinsic::aarch64_neon_vqshlu;
1966    s = "vqshlu"; OverloadInt = true; break;
1967  // Scalar Rouding Shift Left
1968  case AArch64::BI__builtin_neon_vrshld_s64:
1969    Int = Intrinsic::aarch64_neon_vrshlds;
1970    s = "vrshlds"; break;
1971  case AArch64::BI__builtin_neon_vrshld_u64:
1972    Int = Intrinsic::aarch64_neon_vrshldu;
1973    s = "vrshldu"; break;
1974  // Scalar Saturating Rouding Shift Left
1975  case AArch64::BI__builtin_neon_vqrshlb_s8:
1976  case AArch64::BI__builtin_neon_vqrshlh_s16:
1977  case AArch64::BI__builtin_neon_vqrshls_s32:
1978  case AArch64::BI__builtin_neon_vqrshld_s64:
1979    Int = Intrinsic::aarch64_neon_vqrshls;
1980    s = "vqrshls"; OverloadInt = true; break;
1981  case AArch64::BI__builtin_neon_vqrshlb_u8:
1982  case AArch64::BI__builtin_neon_vqrshlh_u16:
1983  case AArch64::BI__builtin_neon_vqrshls_u32:
1984  case AArch64::BI__builtin_neon_vqrshld_u64:
1985    Int = Intrinsic::aarch64_neon_vqrshlu;
1986    s = "vqrshlu"; OverloadInt = true; break;
1987  // Scalar Reduce Pairwise Add
1988  case AArch64::BI__builtin_neon_vpaddd_s64:
1989  case AArch64::BI__builtin_neon_vpaddd_u64:
1990    Int = Intrinsic::aarch64_neon_vpadd; s = "vpadd";
1991    break;
1992  case AArch64::BI__builtin_neon_vpadds_f32:
1993    Int = Intrinsic::aarch64_neon_vpfadd; s = "vpfadd";
1994    break;
1995  case AArch64::BI__builtin_neon_vpaddd_f64:
1996    Int = Intrinsic::aarch64_neon_vpfaddq; s = "vpfaddq";
1997    break;
1998  // Scalar Reduce Pairwise Floating Point Max
1999  case AArch64::BI__builtin_neon_vpmaxs_f32:
2000    Int = Intrinsic::aarch64_neon_vpmax; s = "vpmax";
2001    break;
2002  case AArch64::BI__builtin_neon_vpmaxqd_f64:
2003    Int = Intrinsic::aarch64_neon_vpmaxq; s = "vpmaxq";
2004    break;
2005  // Scalar Reduce Pairwise Floating Point Min
2006  case AArch64::BI__builtin_neon_vpmins_f32:
2007    Int = Intrinsic::aarch64_neon_vpmin; s = "vpmin";
2008    break;
2009  case AArch64::BI__builtin_neon_vpminqd_f64:
2010    Int = Intrinsic::aarch64_neon_vpminq; s = "vpminq";
2011    break;
2012  // Scalar Reduce Pairwise Floating Point Maxnm
2013  case AArch64::BI__builtin_neon_vpmaxnms_f32:
2014    Int = Intrinsic::aarch64_neon_vpfmaxnm; s = "vpfmaxnm";
2015    break;
2016  case AArch64::BI__builtin_neon_vpmaxnmqd_f64:
2017    Int = Intrinsic::aarch64_neon_vpfmaxnmq; s = "vpfmaxnmq";
2018    break;
2019  // Scalar Reduce Pairwise Floating Point Minnm
2020  case AArch64::BI__builtin_neon_vpminnms_f32:
2021    Int = Intrinsic::aarch64_neon_vpfminnm; s = "vpfminnm";
2022    break;
2023  case AArch64::BI__builtin_neon_vpminnmqd_f64:
2024    Int = Intrinsic::aarch64_neon_vpfminnmq; s = "vpfminnmq";
2025    break;
2026  // The followings are intrinsics with scalar results generated AcrossVec vectors
2027  case AArch64::BI__builtin_neon_vaddlv_s8:
2028  case AArch64::BI__builtin_neon_vaddlv_s16:
2029  case AArch64::BI__builtin_neon_vaddlvq_s8:
2030  case AArch64::BI__builtin_neon_vaddlvq_s16:
2031  case AArch64::BI__builtin_neon_vaddlvq_s32:
2032    Int = Intrinsic::aarch64_neon_saddlv;
2033    AcrossVec = true; ExtendEle = true; s = "saddlv"; break;
2034  case AArch64::BI__builtin_neon_vaddlv_u8:
2035  case AArch64::BI__builtin_neon_vaddlv_u16:
2036  case AArch64::BI__builtin_neon_vaddlvq_u8:
2037  case AArch64::BI__builtin_neon_vaddlvq_u16:
2038  case AArch64::BI__builtin_neon_vaddlvq_u32:
2039    Int = Intrinsic::aarch64_neon_uaddlv;
2040    AcrossVec = true; ExtendEle = true; s = "uaddlv"; break;
2041  case AArch64::BI__builtin_neon_vmaxv_s8:
2042  case AArch64::BI__builtin_neon_vmaxv_s16:
2043  case AArch64::BI__builtin_neon_vmaxvq_s8:
2044  case AArch64::BI__builtin_neon_vmaxvq_s16:
2045  case AArch64::BI__builtin_neon_vmaxvq_s32:
2046    Int = Intrinsic::aarch64_neon_smaxv;
2047    AcrossVec = true; ExtendEle = false; s = "smaxv"; break;
2048  case AArch64::BI__builtin_neon_vmaxv_u8:
2049  case AArch64::BI__builtin_neon_vmaxv_u16:
2050  case AArch64::BI__builtin_neon_vmaxvq_u8:
2051  case AArch64::BI__builtin_neon_vmaxvq_u16:
2052  case AArch64::BI__builtin_neon_vmaxvq_u32:
2053    Int = Intrinsic::aarch64_neon_umaxv;
2054    AcrossVec = true; ExtendEle = false; s = "umaxv"; break;
2055  case AArch64::BI__builtin_neon_vminv_s8:
2056  case AArch64::BI__builtin_neon_vminv_s16:
2057  case AArch64::BI__builtin_neon_vminvq_s8:
2058  case AArch64::BI__builtin_neon_vminvq_s16:
2059  case AArch64::BI__builtin_neon_vminvq_s32:
2060    Int = Intrinsic::aarch64_neon_sminv;
2061    AcrossVec = true; ExtendEle = false; s = "sminv"; break;
2062  case AArch64::BI__builtin_neon_vminv_u8:
2063  case AArch64::BI__builtin_neon_vminv_u16:
2064  case AArch64::BI__builtin_neon_vminvq_u8:
2065  case AArch64::BI__builtin_neon_vminvq_u16:
2066  case AArch64::BI__builtin_neon_vminvq_u32:
2067    Int = Intrinsic::aarch64_neon_uminv;
2068    AcrossVec = true; ExtendEle = false; s = "uminv"; break;
2069  case AArch64::BI__builtin_neon_vaddv_s8:
2070  case AArch64::BI__builtin_neon_vaddv_s16:
2071  case AArch64::BI__builtin_neon_vaddvq_s8:
2072  case AArch64::BI__builtin_neon_vaddvq_s16:
2073  case AArch64::BI__builtin_neon_vaddvq_s32:
2074  case AArch64::BI__builtin_neon_vaddvq_s64:
2075  case AArch64::BI__builtin_neon_vaddv_u8:
2076  case AArch64::BI__builtin_neon_vaddv_u16:
2077  case AArch64::BI__builtin_neon_vaddvq_u8:
2078  case AArch64::BI__builtin_neon_vaddvq_u16:
2079  case AArch64::BI__builtin_neon_vaddvq_u32:
2080  case AArch64::BI__builtin_neon_vaddvq_u64:
2081  case AArch64::BI__builtin_neon_vaddv_f32:
2082  case AArch64::BI__builtin_neon_vaddvq_f32:
2083  case AArch64::BI__builtin_neon_vaddvq_f64:
2084    Int = Intrinsic::aarch64_neon_vaddv;
2085    AcrossVec = true; ExtendEle = false; s = "vaddv"; break;
2086  case AArch64::BI__builtin_neon_vmaxv_f32:
2087  case AArch64::BI__builtin_neon_vmaxvq_f32:
2088  case AArch64::BI__builtin_neon_vmaxvq_f64:
2089    Int = Intrinsic::aarch64_neon_vmaxv;
2090    AcrossVec = true; ExtendEle = false; s = "vmaxv"; break;
2091  case AArch64::BI__builtin_neon_vminv_f32:
2092  case AArch64::BI__builtin_neon_vminvq_f32:
2093  case AArch64::BI__builtin_neon_vminvq_f64:
2094    Int = Intrinsic::aarch64_neon_vminv;
2095    AcrossVec = true; ExtendEle = false; s = "vminv"; break;
2096  case AArch64::BI__builtin_neon_vmaxnmv_f32:
2097  case AArch64::BI__builtin_neon_vmaxnmvq_f32:
2098  case AArch64::BI__builtin_neon_vmaxnmvq_f64:
2099    Int = Intrinsic::aarch64_neon_vmaxnmv;
2100    AcrossVec = true; ExtendEle = false; s = "vmaxnmv"; break;
2101  case AArch64::BI__builtin_neon_vminnmv_f32:
2102  case AArch64::BI__builtin_neon_vminnmvq_f32:
2103  case AArch64::BI__builtin_neon_vminnmvq_f64:
2104    Int = Intrinsic::aarch64_neon_vminnmv;
2105    AcrossVec = true; ExtendEle = false; s = "vminnmv"; break;
2106  // Scalar Integer Saturating Doubling Multiply Half High
2107  case AArch64::BI__builtin_neon_vqdmulhh_s16:
2108  case AArch64::BI__builtin_neon_vqdmulhs_s32:
2109    Int = Intrinsic::arm_neon_vqdmulh;
2110    s = "vqdmulh"; OverloadInt = true; break;
2111  // Scalar Integer Saturating Rounding Doubling Multiply Half High
2112  case AArch64::BI__builtin_neon_vqrdmulhh_s16:
2113  case AArch64::BI__builtin_neon_vqrdmulhs_s32:
2114    Int = Intrinsic::arm_neon_vqrdmulh;
2115    s = "vqrdmulh"; OverloadInt = true; break;
2116  // Scalar Floating-point Reciprocal Step and
2117  case AArch64::BI__builtin_neon_vrecpss_f32:
2118  case AArch64::BI__builtin_neon_vrecpsd_f64:
2119    Int = Intrinsic::arm_neon_vrecps;
2120    s = "vrecps"; OverloadInt = true; break;
2121  // Scalar Floating-point Reciprocal Square Root Step
2122  case AArch64::BI__builtin_neon_vrsqrtss_f32:
2123  case AArch64::BI__builtin_neon_vrsqrtsd_f64:
2124    Int = Intrinsic::arm_neon_vrsqrts;
2125    s = "vrsqrts"; OverloadInt = true; break;
2126  // Scalar Signed Integer Convert To Floating-point
2127  case AArch64::BI__builtin_neon_vcvts_f32_s32:
2128    Int = Intrinsic::aarch64_neon_vcvtf32_s32,
2129    s = "vcvtf"; OverloadInt = false; break;
2130  case AArch64::BI__builtin_neon_vcvtd_f64_s64:
2131    Int = Intrinsic::aarch64_neon_vcvtf64_s64,
2132    s = "vcvtf"; OverloadInt = false; break;
2133  // Scalar Unsigned Integer Convert To Floating-point
2134  case AArch64::BI__builtin_neon_vcvts_f32_u32:
2135    Int = Intrinsic::aarch64_neon_vcvtf32_u32,
2136    s = "vcvtf"; OverloadInt = false; break;
2137  case AArch64::BI__builtin_neon_vcvtd_f64_u64:
2138    Int = Intrinsic::aarch64_neon_vcvtf64_u64,
2139    s = "vcvtf"; OverloadInt = false; break;
2140  // Scalar Floating-point Converts
2141  case AArch64::BI__builtin_neon_vcvtxd_f32_f64:
2142    Int = Intrinsic::aarch64_neon_fcvtxn;
2143    s = "vcvtxn"; OverloadCvtInt = true; break;
2144  case AArch64::BI__builtin_neon_vcvtas_s32_f32:
2145  case AArch64::BI__builtin_neon_vcvtad_s64_f64:
2146    Int = Intrinsic::aarch64_neon_fcvtas;
2147    s = "vcvtas"; OverloadCvtInt = true; break;
2148  case AArch64::BI__builtin_neon_vcvtas_u32_f32:
2149  case AArch64::BI__builtin_neon_vcvtad_u64_f64:
2150    Int = Intrinsic::aarch64_neon_fcvtau;
2151    s = "vcvtau"; OverloadCvtInt = true; break;
2152  case AArch64::BI__builtin_neon_vcvtms_s32_f32:
2153  case AArch64::BI__builtin_neon_vcvtmd_s64_f64:
2154    Int = Intrinsic::aarch64_neon_fcvtms;
2155    s = "vcvtms"; OverloadCvtInt = true; break;
2156  case AArch64::BI__builtin_neon_vcvtms_u32_f32:
2157  case AArch64::BI__builtin_neon_vcvtmd_u64_f64:
2158    Int = Intrinsic::aarch64_neon_fcvtmu;
2159    s = "vcvtmu"; OverloadCvtInt = true; break;
2160  case AArch64::BI__builtin_neon_vcvtns_s32_f32:
2161  case AArch64::BI__builtin_neon_vcvtnd_s64_f64:
2162    Int = Intrinsic::aarch64_neon_fcvtns;
2163    s = "vcvtns"; OverloadCvtInt = true; break;
2164  case AArch64::BI__builtin_neon_vcvtns_u32_f32:
2165  case AArch64::BI__builtin_neon_vcvtnd_u64_f64:
2166    Int = Intrinsic::aarch64_neon_fcvtnu;
2167    s = "vcvtnu"; OverloadCvtInt = true; break;
2168  case AArch64::BI__builtin_neon_vcvtps_s32_f32:
2169  case AArch64::BI__builtin_neon_vcvtpd_s64_f64:
2170    Int = Intrinsic::aarch64_neon_fcvtps;
2171    s = "vcvtps"; OverloadCvtInt = true; break;
2172  case AArch64::BI__builtin_neon_vcvtps_u32_f32:
2173  case AArch64::BI__builtin_neon_vcvtpd_u64_f64:
2174    Int = Intrinsic::aarch64_neon_fcvtpu;
2175    s = "vcvtpu"; OverloadCvtInt = true; break;
2176  case AArch64::BI__builtin_neon_vcvts_s32_f32:
2177  case AArch64::BI__builtin_neon_vcvtd_s64_f64:
2178    Int = Intrinsic::aarch64_neon_fcvtzs;
2179    s = "vcvtzs"; OverloadCvtInt = true; break;
2180  case AArch64::BI__builtin_neon_vcvts_u32_f32:
2181  case AArch64::BI__builtin_neon_vcvtd_u64_f64:
2182    Int = Intrinsic::aarch64_neon_fcvtzu;
2183    s = "vcvtzu"; OverloadCvtInt = true; break;
2184  // Scalar Floating-point Reciprocal Estimate
2185  case AArch64::BI__builtin_neon_vrecpes_f32:
2186  case AArch64::BI__builtin_neon_vrecped_f64:
2187    Int = Intrinsic::arm_neon_vrecpe;
2188    s = "vrecpe"; OverloadInt = true; break;
2189  // Scalar Floating-point Reciprocal Exponent
2190  case AArch64::BI__builtin_neon_vrecpxs_f32:
2191  case AArch64::BI__builtin_neon_vrecpxd_f64:
2192    Int = Intrinsic::aarch64_neon_vrecpx;
2193    s = "vrecpx"; OverloadInt = true; break;
2194  // Scalar Floating-point Reciprocal Square Root Estimate
2195  case AArch64::BI__builtin_neon_vrsqrtes_f32:
2196  case AArch64::BI__builtin_neon_vrsqrted_f64:
2197    Int = Intrinsic::arm_neon_vrsqrte;
2198    s = "vrsqrte"; OverloadInt = true; break;
2199  // Scalar Compare Equal
2200  case AArch64::BI__builtin_neon_vceqd_s64:
2201  case AArch64::BI__builtin_neon_vceqd_u64:
2202    Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2203    OverloadCmpInt = true; break;
2204  // Scalar Compare Equal To Zero
2205  case AArch64::BI__builtin_neon_vceqzd_s64:
2206  case AArch64::BI__builtin_neon_vceqzd_u64:
2207    Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2208    // Add implicit zero operand.
2209    Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2210    OverloadCmpInt = true; break;
2211  // Scalar Compare Greater Than or Equal
2212  case AArch64::BI__builtin_neon_vcged_s64:
2213    Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2214    OverloadCmpInt = true; break;
2215  case AArch64::BI__builtin_neon_vcged_u64:
2216    Int = Intrinsic::aarch64_neon_vchs; s = "vcge";
2217    OverloadCmpInt = true; break;
2218  // Scalar Compare Greater Than or Equal To Zero
2219  case AArch64::BI__builtin_neon_vcgezd_s64:
2220    Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2221    // Add implicit zero operand.
2222    Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2223    OverloadCmpInt = true; break;
2224  // Scalar Compare Greater Than
2225  case AArch64::BI__builtin_neon_vcgtd_s64:
2226    Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2227    OverloadCmpInt = true; break;
2228  case AArch64::BI__builtin_neon_vcgtd_u64:
2229    Int = Intrinsic::aarch64_neon_vchi; s = "vcgt";
2230    OverloadCmpInt = true; break;
2231  // Scalar Compare Greater Than Zero
2232  case AArch64::BI__builtin_neon_vcgtzd_s64:
2233    Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2234    // Add implicit zero operand.
2235    Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2236    OverloadCmpInt = true; break;
2237  // Scalar Compare Less Than or Equal
2238  case AArch64::BI__builtin_neon_vcled_s64:
2239    Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2240    OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2241  case AArch64::BI__builtin_neon_vcled_u64:
2242    Int = Intrinsic::aarch64_neon_vchs; s = "vchs";
2243    OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2244  // Scalar Compare Less Than or Equal To Zero
2245  case AArch64::BI__builtin_neon_vclezd_s64:
2246    Int = Intrinsic::aarch64_neon_vclez; s = "vcle";
2247    // Add implicit zero operand.
2248    Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2249    OverloadCmpInt = true; break;
2250  // Scalar Compare Less Than
2251  case AArch64::BI__builtin_neon_vcltd_s64:
2252    Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2253    OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2254  case AArch64::BI__builtin_neon_vcltd_u64:
2255    Int = Intrinsic::aarch64_neon_vchi; s = "vchi";
2256    OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2257  // Scalar Compare Less Than Zero
2258  case AArch64::BI__builtin_neon_vcltzd_s64:
2259    Int = Intrinsic::aarch64_neon_vcltz; s = "vclt";
2260    // Add implicit zero operand.
2261    Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2262    OverloadCmpInt = true; break;
2263  // Scalar Floating-point Compare Equal
2264  case AArch64::BI__builtin_neon_vceqs_f32:
2265  case AArch64::BI__builtin_neon_vceqd_f64:
2266    Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2267    OverloadCmpInt = true; break;
2268  // Scalar Floating-point Compare Equal To Zero
2269  case AArch64::BI__builtin_neon_vceqzs_f32:
2270  case AArch64::BI__builtin_neon_vceqzd_f64:
2271    Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2272    // Add implicit zero operand.
2273    Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2274    IsFpCmpZInt = true;
2275    OverloadCmpInt = true; break;
2276  // Scalar Floating-point Compare Greater Than Or Equal
2277  case AArch64::BI__builtin_neon_vcges_f32:
2278  case AArch64::BI__builtin_neon_vcged_f64:
2279    Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2280    OverloadCmpInt = true; break;
2281  // Scalar Floating-point Compare Greater Than Or Equal To Zero
2282  case AArch64::BI__builtin_neon_vcgezs_f32:
2283  case AArch64::BI__builtin_neon_vcgezd_f64:
2284    Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2285    // Add implicit zero operand.
2286    Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2287    IsFpCmpZInt = true;
2288    OverloadCmpInt = true; break;
2289  // Scalar Floating-point Compare Greather Than
2290  case AArch64::BI__builtin_neon_vcgts_f32:
2291  case AArch64::BI__builtin_neon_vcgtd_f64:
2292    Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2293    OverloadCmpInt = true; break;
2294  // Scalar Floating-point Compare Greather Than Zero
2295  case AArch64::BI__builtin_neon_vcgtzs_f32:
2296  case AArch64::BI__builtin_neon_vcgtzd_f64:
2297    Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2298    // Add implicit zero operand.
2299    Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2300    IsFpCmpZInt = true;
2301    OverloadCmpInt = true; break;
2302  // Scalar Floating-point Compare Less Than or Equal
2303  case AArch64::BI__builtin_neon_vcles_f32:
2304  case AArch64::BI__builtin_neon_vcled_f64:
2305    Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2306    OverloadCmpInt = true; break;
2307  // Scalar Floating-point Compare Less Than Or Equal To Zero
2308  case AArch64::BI__builtin_neon_vclezs_f32:
2309  case AArch64::BI__builtin_neon_vclezd_f64:
2310    Int = Intrinsic::aarch64_neon_vclez; s = "vcle";
2311    // Add implicit zero operand.
2312    Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2313    IsFpCmpZInt = true;
2314    OverloadCmpInt = true; break;
2315  // Scalar Floating-point Compare Less Than Zero
2316  case AArch64::BI__builtin_neon_vclts_f32:
2317  case AArch64::BI__builtin_neon_vcltd_f64:
2318    Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2319    OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2320  // Scalar Floating-point Compare Less Than Zero
2321  case AArch64::BI__builtin_neon_vcltzs_f32:
2322  case AArch64::BI__builtin_neon_vcltzd_f64:
2323    Int = Intrinsic::aarch64_neon_vcltz; s = "vclt";
2324    // Add implicit zero operand.
2325    Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2326    IsFpCmpZInt = true;
2327    OverloadCmpInt = true; break;
2328  // Scalar Floating-point Absolute Compare Greater Than Or Equal
2329  case AArch64::BI__builtin_neon_vcages_f32:
2330  case AArch64::BI__builtin_neon_vcaged_f64:
2331    Int = Intrinsic::aarch64_neon_vcage; s = "vcage";
2332    OverloadCmpInt = true; break;
2333  // Scalar Floating-point Absolute Compare Greater Than
2334  case AArch64::BI__builtin_neon_vcagts_f32:
2335  case AArch64::BI__builtin_neon_vcagtd_f64:
2336    Int = Intrinsic::aarch64_neon_vcagt; s = "vcagt";
2337    OverloadCmpInt = true; break;
2338  // Scalar Floating-point Absolute Compare Less Than Or Equal
2339  case AArch64::BI__builtin_neon_vcales_f32:
2340  case AArch64::BI__builtin_neon_vcaled_f64:
2341    Int = Intrinsic::aarch64_neon_vcage; s = "vcage";
2342    OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2343  // Scalar Floating-point Absolute Compare Less Than
2344  case AArch64::BI__builtin_neon_vcalts_f32:
2345  case AArch64::BI__builtin_neon_vcaltd_f64:
2346    Int = Intrinsic::aarch64_neon_vcagt; s = "vcalt";
2347    OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2348  // Scalar Compare Bitwise Test Bits
2349  case AArch64::BI__builtin_neon_vtstd_s64:
2350  case AArch64::BI__builtin_neon_vtstd_u64:
2351    Int = Intrinsic::aarch64_neon_vtstd; s = "vtst";
2352    OverloadCmpInt = true; break;
2353  // Scalar Absolute Value
2354  case AArch64::BI__builtin_neon_vabsd_s64:
2355    Int = Intrinsic::aarch64_neon_vabs;
2356    s = "vabs"; OverloadInt = false; break;
2357  // Scalar Absolute Difference
2358  case AArch64::BI__builtin_neon_vabds_f32:
2359  case AArch64::BI__builtin_neon_vabdd_f64:
2360    Int = Intrinsic::aarch64_neon_vabd;
2361    s = "vabd"; OverloadInt = true; break;
2362  // Scalar Signed Saturating Absolute Value
2363  case AArch64::BI__builtin_neon_vqabsb_s8:
2364  case AArch64::BI__builtin_neon_vqabsh_s16:
2365  case AArch64::BI__builtin_neon_vqabss_s32:
2366  case AArch64::BI__builtin_neon_vqabsd_s64:
2367    Int = Intrinsic::arm_neon_vqabs;
2368    s = "vqabs"; OverloadInt = true; break;
2369  // Scalar Negate
2370  case AArch64::BI__builtin_neon_vnegd_s64:
2371    Int = Intrinsic::aarch64_neon_vneg;
2372    s = "vneg"; OverloadInt = false; break;
2373  // Scalar Signed Saturating Negate
2374  case AArch64::BI__builtin_neon_vqnegb_s8:
2375  case AArch64::BI__builtin_neon_vqnegh_s16:
2376  case AArch64::BI__builtin_neon_vqnegs_s32:
2377  case AArch64::BI__builtin_neon_vqnegd_s64:
2378    Int = Intrinsic::arm_neon_vqneg;
2379    s = "vqneg"; OverloadInt = true; break;
2380  // Scalar Signed Saturating Accumulated of Unsigned Value
2381  case AArch64::BI__builtin_neon_vuqaddb_s8:
2382  case AArch64::BI__builtin_neon_vuqaddh_s16:
2383  case AArch64::BI__builtin_neon_vuqadds_s32:
2384  case AArch64::BI__builtin_neon_vuqaddd_s64:
2385    Int = Intrinsic::aarch64_neon_vuqadd;
2386    s = "vuqadd"; OverloadInt = true; break;
2387  // Scalar Unsigned Saturating Accumulated of Signed Value
2388  case AArch64::BI__builtin_neon_vsqaddb_u8:
2389  case AArch64::BI__builtin_neon_vsqaddh_u16:
2390  case AArch64::BI__builtin_neon_vsqadds_u32:
2391  case AArch64::BI__builtin_neon_vsqaddd_u64:
2392    Int = Intrinsic::aarch64_neon_vsqadd;
2393    s = "vsqadd"; OverloadInt = true; break;
2394  // Signed Saturating Doubling Multiply-Add Long
2395  case AArch64::BI__builtin_neon_vqdmlalh_s16:
2396  case AArch64::BI__builtin_neon_vqdmlals_s32:
2397    Int = Intrinsic::aarch64_neon_vqdmlal;
2398    s = "vqdmlal"; OverloadWideInt = true; break;
2399  // Signed Saturating Doubling Multiply-Subtract Long
2400  case AArch64::BI__builtin_neon_vqdmlslh_s16:
2401  case AArch64::BI__builtin_neon_vqdmlsls_s32:
2402    Int = Intrinsic::aarch64_neon_vqdmlsl;
2403    s = "vqdmlsl"; OverloadWideInt = true; break;
2404  // Signed Saturating Doubling Multiply Long
2405  case AArch64::BI__builtin_neon_vqdmullh_s16:
2406  case AArch64::BI__builtin_neon_vqdmulls_s32:
2407    Int = Intrinsic::arm_neon_vqdmull;
2408    s = "vqdmull"; OverloadWideInt = true; break;
2409  // Scalar Signed Saturating Extract Unsigned Narrow
2410  case AArch64::BI__builtin_neon_vqmovunh_s16:
2411  case AArch64::BI__builtin_neon_vqmovuns_s32:
2412  case AArch64::BI__builtin_neon_vqmovund_s64:
2413    Int = Intrinsic::arm_neon_vqmovnsu;
2414    s = "vqmovun"; OverloadNarrowInt = true; break;
2415  // Scalar Signed Saturating Extract Narrow
2416  case AArch64::BI__builtin_neon_vqmovnh_s16:
2417  case AArch64::BI__builtin_neon_vqmovns_s32:
2418  case AArch64::BI__builtin_neon_vqmovnd_s64:
2419    Int = Intrinsic::arm_neon_vqmovns;
2420    s = "vqmovn"; OverloadNarrowInt = true; break;
2421  // Scalar Unsigned Saturating Extract Narrow
2422  case AArch64::BI__builtin_neon_vqmovnh_u16:
2423  case AArch64::BI__builtin_neon_vqmovns_u32:
2424  case AArch64::BI__builtin_neon_vqmovnd_u64:
2425    Int = Intrinsic::arm_neon_vqmovnu;
2426    s = "vqmovn"; OverloadNarrowInt = true; break;
2427  // Scalar Signed Shift Right (Immediate)
2428  case AArch64::BI__builtin_neon_vshrd_n_s64:
2429    Int = Intrinsic::aarch64_neon_vshrds_n;
2430    s = "vsshr"; OverloadInt = false; break;
2431  // Scalar Unsigned Shift Right (Immediate)
2432  case AArch64::BI__builtin_neon_vshrd_n_u64:
2433    Int = Intrinsic::aarch64_neon_vshrdu_n;
2434    s = "vushr"; OverloadInt = false; break;
2435  // Scalar Signed Rounding Shift Right (Immediate)
2436  case AArch64::BI__builtin_neon_vrshrd_n_s64:
2437    Int = Intrinsic::aarch64_neon_vsrshr;
2438    s = "vsrshr"; OverloadInt = true; break;
2439  // Scalar Unsigned Rounding Shift Right (Immediate)
2440  case AArch64::BI__builtin_neon_vrshrd_n_u64:
2441    Int = Intrinsic::aarch64_neon_vurshr;
2442    s = "vurshr"; OverloadInt = true; break;
2443  // Scalar Signed Shift Right and Accumulate (Immediate)
2444  case AArch64::BI__builtin_neon_vsrad_n_s64:
2445    Int = Intrinsic::aarch64_neon_vsrads_n;
2446    s = "vssra"; OverloadInt = false; break;
2447  // Scalar Unsigned Shift Right and Accumulate (Immediate)
2448  case AArch64::BI__builtin_neon_vsrad_n_u64:
2449    Int = Intrinsic::aarch64_neon_vsradu_n;
2450    s = "vusra"; OverloadInt = false; break;
2451  // Scalar Signed Rounding Shift Right and Accumulate (Immediate)
2452  case AArch64::BI__builtin_neon_vrsrad_n_s64:
2453    Int = Intrinsic::aarch64_neon_vrsrads_n;
2454    s = "vsrsra"; OverloadInt = false; break;
2455  // Scalar Unsigned Rounding Shift Right and Accumulate (Immediate)
2456  case AArch64::BI__builtin_neon_vrsrad_n_u64:
2457    Int = Intrinsic::aarch64_neon_vrsradu_n;
2458    s = "vursra"; OverloadInt = false; break;
2459  // Scalar Signed/Unsigned Shift Left (Immediate)
2460  case AArch64::BI__builtin_neon_vshld_n_s64:
2461  case AArch64::BI__builtin_neon_vshld_n_u64:
2462    Int = Intrinsic::aarch64_neon_vshld_n;
2463    s = "vshl"; OverloadInt = false; break;
2464  // Signed Saturating Shift Left (Immediate)
2465  case AArch64::BI__builtin_neon_vqshlb_n_s8:
2466  case AArch64::BI__builtin_neon_vqshlh_n_s16:
2467  case AArch64::BI__builtin_neon_vqshls_n_s32:
2468  case AArch64::BI__builtin_neon_vqshld_n_s64:
2469    Int = Intrinsic::aarch64_neon_vqshls_n;
2470    s = "vsqshl"; OverloadInt = true; break;
2471  // Unsigned Saturating Shift Left (Immediate)
2472  case AArch64::BI__builtin_neon_vqshlb_n_u8:
2473  case AArch64::BI__builtin_neon_vqshlh_n_u16:
2474  case AArch64::BI__builtin_neon_vqshls_n_u32:
2475  case AArch64::BI__builtin_neon_vqshld_n_u64:
2476    Int = Intrinsic::aarch64_neon_vqshlu_n;
2477    s = "vuqshl"; OverloadInt = true; break;
2478  // Signed Saturating Shift Left Unsigned (Immediate)
2479  case AArch64::BI__builtin_neon_vqshlub_n_s8:
2480  case AArch64::BI__builtin_neon_vqshluh_n_s16:
2481  case AArch64::BI__builtin_neon_vqshlus_n_s32:
2482  case AArch64::BI__builtin_neon_vqshlud_n_s64:
2483    Int = Intrinsic::aarch64_neon_vsqshlu;
2484    s = "vsqshlu"; OverloadInt = true; break;
2485  // Shift Right And Insert (Immediate)
2486  case AArch64::BI__builtin_neon_vsrid_n_s64:
2487  case AArch64::BI__builtin_neon_vsrid_n_u64:
2488    Int = Intrinsic::aarch64_neon_vsri;
2489    s = "vsri"; OverloadInt = true; break;
2490  // Shift Left And Insert (Immediate)
2491  case AArch64::BI__builtin_neon_vslid_n_s64:
2492  case AArch64::BI__builtin_neon_vslid_n_u64:
2493    Int = Intrinsic::aarch64_neon_vsli;
2494    s = "vsli"; OverloadInt = true; break;
2495  // Signed Saturating Shift Right Narrow (Immediate)
2496  case AArch64::BI__builtin_neon_vqshrnh_n_s16:
2497  case AArch64::BI__builtin_neon_vqshrns_n_s32:
2498  case AArch64::BI__builtin_neon_vqshrnd_n_s64:
2499    Int = Intrinsic::aarch64_neon_vsqshrn;
2500    s = "vsqshrn"; OverloadInt = true; break;
2501  // Unsigned Saturating Shift Right Narrow (Immediate)
2502  case AArch64::BI__builtin_neon_vqshrnh_n_u16:
2503  case AArch64::BI__builtin_neon_vqshrns_n_u32:
2504  case AArch64::BI__builtin_neon_vqshrnd_n_u64:
2505    Int = Intrinsic::aarch64_neon_vuqshrn;
2506    s = "vuqshrn"; OverloadInt = true; break;
2507  // Signed Saturating Rounded Shift Right Narrow (Immediate)
2508  case AArch64::BI__builtin_neon_vqrshrnh_n_s16:
2509  case AArch64::BI__builtin_neon_vqrshrns_n_s32:
2510  case AArch64::BI__builtin_neon_vqrshrnd_n_s64:
2511    Int = Intrinsic::aarch64_neon_vsqrshrn;
2512    s = "vsqrshrn"; OverloadInt = true; break;
2513  // Unsigned Saturating Rounded Shift Right Narrow (Immediate)
2514  case AArch64::BI__builtin_neon_vqrshrnh_n_u16:
2515  case AArch64::BI__builtin_neon_vqrshrns_n_u32:
2516  case AArch64::BI__builtin_neon_vqrshrnd_n_u64:
2517    Int = Intrinsic::aarch64_neon_vuqrshrn;
2518    s = "vuqrshrn"; OverloadInt = true; break;
2519  // Signed Saturating Shift Right Unsigned Narrow (Immediate)
2520  case AArch64::BI__builtin_neon_vqshrunh_n_s16:
2521  case AArch64::BI__builtin_neon_vqshruns_n_s32:
2522  case AArch64::BI__builtin_neon_vqshrund_n_s64:
2523    Int = Intrinsic::aarch64_neon_vsqshrun;
2524    s = "vsqshrun"; OverloadInt = true; break;
2525  // Signed Saturating Rounded Shift Right Unsigned Narrow (Immediate)
2526  case AArch64::BI__builtin_neon_vqrshrunh_n_s16:
2527  case AArch64::BI__builtin_neon_vqrshruns_n_s32:
2528  case AArch64::BI__builtin_neon_vqrshrund_n_s64:
2529    Int = Intrinsic::aarch64_neon_vsqrshrun;
2530    s = "vsqrshrun"; OverloadInt = true; break;
2531  // Scalar Signed Fixed-point Convert To Floating-Point (Immediate)
2532  case AArch64::BI__builtin_neon_vcvts_n_f32_s32:
2533    Int = Intrinsic::aarch64_neon_vcvtf32_n_s32;
2534    s = "vcvtf"; OverloadInt = false; break;
2535  case AArch64::BI__builtin_neon_vcvtd_n_f64_s64:
2536    Int = Intrinsic::aarch64_neon_vcvtf64_n_s64;
2537    s = "vcvtf"; OverloadInt = false; break;
2538  // Scalar Unsigned Fixed-point Convert To Floating-Point (Immediate)
2539  case AArch64::BI__builtin_neon_vcvts_n_f32_u32:
2540    Int = Intrinsic::aarch64_neon_vcvtf32_n_u32;
2541    s = "vcvtf"; OverloadInt = false; break;
2542  case AArch64::BI__builtin_neon_vcvtd_n_f64_u64:
2543    Int = Intrinsic::aarch64_neon_vcvtf64_n_u64;
2544    s = "vcvtf"; OverloadInt = false; break;
2545  // Scalar Floating-point Convert To Signed Fixed-point (Immediate)
2546  case AArch64::BI__builtin_neon_vcvts_n_s32_f32:
2547    Int = Intrinsic::aarch64_neon_vcvts_n_s32_f32;
2548    s = "fcvtzs"; OverloadInt = false; break;
2549  case AArch64::BI__builtin_neon_vcvtd_n_s64_f64:
2550    Int = Intrinsic::aarch64_neon_vcvtd_n_s64_f64;
2551    s = "fcvtzs"; OverloadInt = false; break;
2552  // Scalar Floating-point Convert To Unsigned Fixed-point (Immediate)
2553  case AArch64::BI__builtin_neon_vcvts_n_u32_f32:
2554    Int = Intrinsic::aarch64_neon_vcvts_n_u32_f32;
2555    s = "fcvtzu"; OverloadInt = false; break;
2556  case AArch64::BI__builtin_neon_vcvtd_n_u64_f64:
2557    Int = Intrinsic::aarch64_neon_vcvtd_n_u64_f64;
2558    s = "fcvtzu"; OverloadInt = false; break;
2559  }
2560
2561  if (!Int)
2562    return 0;
2563
2564  // AArch64 scalar builtin that returns scalar type
2565  // and should be mapped to AArch64 intrinsic that returns
2566  // one-element vector type.
2567  Function *F = 0;
2568  if (AcrossVec) {
2569    // Gen arg type
2570    const Expr *Arg = E->getArg(E->getNumArgs()-1);
2571    llvm::Type *Ty = CGF.ConvertType(Arg->getType());
2572    llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
2573    llvm::Type *ETy = VTy->getElementType();
2574    llvm::VectorType *RTy = llvm::VectorType::get(ETy, 1);
2575
2576    if (ExtendEle) {
2577      assert(!ETy->isFloatingPointTy());
2578      RTy = llvm::VectorType::getExtendedElementVectorType(RTy);
2579    }
2580
2581    llvm::Type *Tys[2] = {RTy, VTy};
2582    F = CGF.CGM.getIntrinsic(Int, Tys);
2583    assert(E->getNumArgs() == 1);
2584  } else if (OverloadInt) {
2585    // Determine the type of this overloaded AArch64 intrinsic
2586    llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
2587    llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2588    assert(VTy);
2589
2590    F = CGF.CGM.getIntrinsic(Int, VTy);
2591  } else if (OverloadWideInt || OverloadNarrowInt) {
2592    // Determine the type of this overloaded AArch64 intrinsic
2593    const Expr *Arg = E->getArg(E->getNumArgs()-1);
2594    llvm::Type *Ty = CGF.ConvertType(Arg->getType());
2595    llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2596    llvm::VectorType *RTy = OverloadWideInt ?
2597      llvm::VectorType::getExtendedElementVectorType(VTy) :
2598      llvm::VectorType::getTruncatedElementVectorType(VTy);
2599    F = CGF.CGM.getIntrinsic(Int, RTy);
2600  } else if (OverloadCmpInt) {
2601    // Determine the types of this overloaded AArch64 intrinsic
2602    SmallVector<llvm::Type *, 3> Tys;
2603    const Expr *Arg = E->getArg(E->getNumArgs()-1);
2604    llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
2605    llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2606    Tys.push_back(VTy);
2607    Ty = CGF.ConvertType(Arg->getType());
2608    VTy = llvm::VectorType::get(Ty, 1);
2609    Tys.push_back(VTy);
2610    if(IsFpCmpZInt)
2611      VTy = llvm::VectorType::get(CGF.FloatTy, 1);
2612    Tys.push_back(VTy);
2613
2614    F = CGF.CGM.getIntrinsic(Int, Tys);
2615  } else if (OverloadCvtInt) {
2616    // Determine the types of this overloaded AArch64 intrinsic
2617    SmallVector<llvm::Type *, 2> Tys;
2618    const Expr *Arg = E->getArg(E->getNumArgs()-1);
2619    llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
2620    llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2621    Tys.push_back(VTy);
2622    Ty = CGF.ConvertType(Arg->getType());
2623    VTy = llvm::VectorType::get(Ty, 1);
2624    Tys.push_back(VTy);
2625
2626    F = CGF.CGM.getIntrinsic(Int, Tys);
2627  } else
2628    F = CGF.CGM.getIntrinsic(Int);
2629
2630  Value *Result = CGF.EmitNeonCall(F, Ops, s);
2631  llvm::Type *ResultType = CGF.ConvertType(E->getType());
2632  // AArch64 intrinsic one-element vector type cast to
2633  // scalar type expected by the builtin
2634  return CGF.Builder.CreateBitCast(Result, ResultType, s);
2635}
2636
2637Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
2638    Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
2639    const CmpInst::Predicate Ip, const Twine &Name) {
2640  llvm::Type *OTy = ((llvm::User *)Op)->getOperand(0)->getType();
2641  if (OTy->isPointerTy())
2642    OTy = Ty;
2643  Op = Builder.CreateBitCast(Op, OTy);
2644  if (((llvm::VectorType *)OTy)->getElementType()->isFloatingPointTy()) {
2645    Op = Builder.CreateFCmp(Fp, Op, ConstantAggregateZero::get(OTy));
2646  } else {
2647    Op = Builder.CreateICmp(Ip, Op, ConstantAggregateZero::get(OTy));
2648  }
2649  return Builder.CreateZExt(Op, Ty, Name);
2650}
2651
2652static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
2653                                 Value *ExtOp, Value *IndexOp,
2654                                 llvm::Type *ResTy, unsigned IntID,
2655                                 const char *Name) {
2656  SmallVector<Value *, 2> TblOps;
2657  if (ExtOp)
2658    TblOps.push_back(ExtOp);
2659
2660  // Build a vector containing sequential number like (0, 1, 2, ..., 15)
2661  SmallVector<Constant*, 16> Indices;
2662  llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
2663  for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
2664    Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
2665    Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
2666  }
2667  Value *SV = llvm::ConstantVector::get(Indices);
2668
2669  int PairPos = 0, End = Ops.size() - 1;
2670  while (PairPos < End) {
2671    TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
2672                                                     Ops[PairPos+1], SV, Name));
2673    PairPos += 2;
2674  }
2675
2676  // If there's an odd number of 64-bit lookup table, fill the high 64-bit
2677  // of the 128-bit lookup table with zero.
2678  if (PairPos == End) {
2679    Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
2680    TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
2681                                                     ZeroTbl, SV, Name));
2682  }
2683
2684  TblTy = llvm::VectorType::get(TblTy->getElementType(),
2685                                2*TblTy->getNumElements());
2686  llvm::Type *Tys[2] = { ResTy, TblTy };
2687
2688  Function *TblF;
2689  TblOps.push_back(IndexOp);
2690  TblF = CGF.CGM.getIntrinsic(IntID, Tys);
2691
2692  return CGF.EmitNeonCall(TblF, TblOps, Name);
2693}
2694
2695static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF,
2696                                        unsigned BuiltinID,
2697                                        const CallExpr *E) {
2698  unsigned int Int = 0;
2699  const char *s = NULL;
2700
2701  unsigned TblPos;
2702  switch (BuiltinID) {
2703  default:
2704    return 0;
2705  case AArch64::BI__builtin_neon_vtbl1_v:
2706  case AArch64::BI__builtin_neon_vqtbl1_v:
2707  case AArch64::BI__builtin_neon_vqtbl1q_v:
2708  case AArch64::BI__builtin_neon_vtbl2_v:
2709  case AArch64::BI__builtin_neon_vqtbl2_v:
2710  case AArch64::BI__builtin_neon_vqtbl2q_v:
2711  case AArch64::BI__builtin_neon_vtbl3_v:
2712  case AArch64::BI__builtin_neon_vqtbl3_v:
2713  case AArch64::BI__builtin_neon_vqtbl3q_v:
2714  case AArch64::BI__builtin_neon_vtbl4_v:
2715  case AArch64::BI__builtin_neon_vqtbl4_v:
2716  case AArch64::BI__builtin_neon_vqtbl4q_v:
2717    TblPos = 0;
2718    break;
2719  case AArch64::BI__builtin_neon_vtbx1_v:
2720  case AArch64::BI__builtin_neon_vqtbx1_v:
2721  case AArch64::BI__builtin_neon_vqtbx1q_v:
2722  case AArch64::BI__builtin_neon_vtbx2_v:
2723  case AArch64::BI__builtin_neon_vqtbx2_v:
2724  case AArch64::BI__builtin_neon_vqtbx2q_v:
2725  case AArch64::BI__builtin_neon_vtbx3_v:
2726  case AArch64::BI__builtin_neon_vqtbx3_v:
2727  case AArch64::BI__builtin_neon_vqtbx3q_v:
2728  case AArch64::BI__builtin_neon_vtbx4_v:
2729  case AArch64::BI__builtin_neon_vqtbx4_v:
2730  case AArch64::BI__builtin_neon_vqtbx4q_v:
2731    TblPos = 1;
2732    break;
2733  }
2734
2735  assert(E->getNumArgs() >= 3);
2736
2737  // Get the last argument, which specifies the vector type.
2738  llvm::APSInt Result;
2739  const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2740  if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
2741    return 0;
2742
2743  // Determine the type of this overloaded NEON intrinsic.
2744  NeonTypeFlags Type(Result.getZExtValue());
2745  llvm::VectorType *VTy = GetNeonType(&CGF, Type);
2746  llvm::Type *Ty = VTy;
2747  if (!Ty)
2748    return 0;
2749
2750  SmallVector<Value *, 4> Ops;
2751  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
2752    Ops.push_back(CGF.EmitScalarExpr(E->getArg(i)));
2753  }
2754
2755  Arg = E->getArg(TblPos);
2756  llvm::Type *TblTy = CGF.ConvertType(Arg->getType());
2757  llvm::VectorType *VTblTy = cast<llvm::VectorType>(TblTy);
2758  llvm::Type *Tys[2] = { Ty, VTblTy };
2759  unsigned nElts = VTy->getNumElements();
2760
2761  // AArch64 scalar builtins are not overloaded, they do not have an extra
2762  // argument that specifies the vector type, need to handle each case.
2763  SmallVector<Value *, 2> TblOps;
2764  switch (BuiltinID) {
2765  case AArch64::BI__builtin_neon_vtbl1_v: {
2766    TblOps.push_back(Ops[0]);
2767    return packTBLDVectorList(CGF, TblOps, 0, Ops[1], Ty,
2768                              Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2769  }
2770  case AArch64::BI__builtin_neon_vtbl2_v: {
2771    TblOps.push_back(Ops[0]);
2772    TblOps.push_back(Ops[1]);
2773    return packTBLDVectorList(CGF, TblOps, 0, Ops[2], Ty,
2774                              Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2775  }
2776  case AArch64::BI__builtin_neon_vtbl3_v: {
2777    TblOps.push_back(Ops[0]);
2778    TblOps.push_back(Ops[1]);
2779    TblOps.push_back(Ops[2]);
2780    return packTBLDVectorList(CGF, TblOps, 0, Ops[3], Ty,
2781                              Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2782  }
2783  case AArch64::BI__builtin_neon_vtbl4_v: {
2784    TblOps.push_back(Ops[0]);
2785    TblOps.push_back(Ops[1]);
2786    TblOps.push_back(Ops[2]);
2787    TblOps.push_back(Ops[3]);
2788    return packTBLDVectorList(CGF, TblOps, 0, Ops[4], Ty,
2789                              Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2790  }
2791  case AArch64::BI__builtin_neon_vtbx1_v: {
2792    TblOps.push_back(Ops[1]);
2793    Value *TblRes = packTBLDVectorList(CGF, TblOps, 0, Ops[2], Ty,
2794                                    Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2795
2796    llvm::Constant *Eight = ConstantInt::get(VTy->getElementType(), 8);
2797    Value* EightV = llvm::ConstantVector::getSplat(nElts, Eight);
2798    Value *CmpRes = CGF.Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
2799    CmpRes = CGF.Builder.CreateSExt(CmpRes, Ty);
2800
2801    SmallVector<Value *, 4> BslOps;
2802    BslOps.push_back(CmpRes);
2803    BslOps.push_back(Ops[0]);
2804    BslOps.push_back(TblRes);
2805    Function *BslF = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty);
2806    return CGF.EmitNeonCall(BslF, BslOps, "vbsl");
2807  }
2808  case AArch64::BI__builtin_neon_vtbx2_v: {
2809    TblOps.push_back(Ops[1]);
2810    TblOps.push_back(Ops[2]);
2811    return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[3], Ty,
2812                              Intrinsic::aarch64_neon_vtbx1, "vtbx1");
2813  }
2814  case AArch64::BI__builtin_neon_vtbx3_v: {
2815    TblOps.push_back(Ops[1]);
2816    TblOps.push_back(Ops[2]);
2817    TblOps.push_back(Ops[3]);
2818    Value *TblRes = packTBLDVectorList(CGF, TblOps, 0, Ops[4], Ty,
2819                                       Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2820
2821    llvm::Constant *TwentyFour = ConstantInt::get(VTy->getElementType(), 24);
2822    Value* TwentyFourV = llvm::ConstantVector::getSplat(nElts, TwentyFour);
2823    Value *CmpRes = CGF.Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
2824                                           TwentyFourV);
2825    CmpRes = CGF.Builder.CreateSExt(CmpRes, Ty);
2826
2827    SmallVector<Value *, 4> BslOps;
2828    BslOps.push_back(CmpRes);
2829    BslOps.push_back(Ops[0]);
2830    BslOps.push_back(TblRes);
2831    Function *BslF = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty);
2832    return CGF.EmitNeonCall(BslF, BslOps, "vbsl");
2833  }
2834  case AArch64::BI__builtin_neon_vtbx4_v: {
2835    TblOps.push_back(Ops[1]);
2836    TblOps.push_back(Ops[2]);
2837    TblOps.push_back(Ops[3]);
2838    TblOps.push_back(Ops[4]);
2839    return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[5], Ty,
2840                              Intrinsic::aarch64_neon_vtbx2, "vtbx2");
2841  }
2842  case AArch64::BI__builtin_neon_vqtbl1_v:
2843  case AArch64::BI__builtin_neon_vqtbl1q_v:
2844    Int = Intrinsic::aarch64_neon_vtbl1; s = "vtbl1"; break;
2845  case AArch64::BI__builtin_neon_vqtbl2_v:
2846  case AArch64::BI__builtin_neon_vqtbl2q_v: {
2847    Int = Intrinsic::aarch64_neon_vtbl2; s = "vtbl2"; break;
2848  case AArch64::BI__builtin_neon_vqtbl3_v:
2849  case AArch64::BI__builtin_neon_vqtbl3q_v:
2850    Int = Intrinsic::aarch64_neon_vtbl3; s = "vtbl3"; break;
2851  case AArch64::BI__builtin_neon_vqtbl4_v:
2852  case AArch64::BI__builtin_neon_vqtbl4q_v:
2853    Int = Intrinsic::aarch64_neon_vtbl4; s = "vtbl4"; break;
2854  case AArch64::BI__builtin_neon_vqtbx1_v:
2855  case AArch64::BI__builtin_neon_vqtbx1q_v:
2856    Int = Intrinsic::aarch64_neon_vtbx1; s = "vtbx1"; break;
2857  case AArch64::BI__builtin_neon_vqtbx2_v:
2858  case AArch64::BI__builtin_neon_vqtbx2q_v:
2859    Int = Intrinsic::aarch64_neon_vtbx2; s = "vtbx2"; break;
2860  case AArch64::BI__builtin_neon_vqtbx3_v:
2861  case AArch64::BI__builtin_neon_vqtbx3q_v:
2862    Int = Intrinsic::aarch64_neon_vtbx3; s = "vtbx3"; break;
2863  case AArch64::BI__builtin_neon_vqtbx4_v:
2864  case AArch64::BI__builtin_neon_vqtbx4q_v:
2865    Int = Intrinsic::aarch64_neon_vtbx4; s = "vtbx4"; break;
2866  }
2867  }
2868
2869  if (!Int)
2870    return 0;
2871
2872  Function *F = CGF.CGM.getIntrinsic(Int, Tys);
2873  return CGF.EmitNeonCall(F, Ops, s);
2874}
2875
2876Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
2877                                               const CallExpr *E) {
2878  // Process AArch64 scalar builtins
2879  if (Value *Result = EmitAArch64ScalarBuiltinExpr(*this, BuiltinID, E))
2880    return Result;
2881
2882  // Process AArch64 table lookup builtins
2883  if (Value *Result = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E))
2884    return Result;
2885
2886  if (BuiltinID == AArch64::BI__clear_cache) {
2887    assert(E->getNumArgs() == 2 &&
2888           "Variadic __clear_cache slipped through on AArch64");
2889
2890    const FunctionDecl *FD = E->getDirectCallee();
2891    SmallVector<Value *, 2> Ops;
2892    for (unsigned i = 0; i < E->getNumArgs(); i++)
2893      Ops.push_back(EmitScalarExpr(E->getArg(i)));
2894    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
2895    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
2896    StringRef Name = FD->getName();
2897    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
2898  }
2899
2900  SmallVector<Value *, 4> Ops;
2901  llvm::Value *Align = 0; // Alignment for load/store
2902  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
2903    if (i == 0) {
2904      switch (BuiltinID) {
2905      case AArch64::BI__builtin_neon_vst1_x2_v:
2906      case AArch64::BI__builtin_neon_vst1q_x2_v:
2907      case AArch64::BI__builtin_neon_vst1_x3_v:
2908      case AArch64::BI__builtin_neon_vst1q_x3_v:
2909      case AArch64::BI__builtin_neon_vst1_x4_v:
2910      case AArch64::BI__builtin_neon_vst1q_x4_v:
2911      // Handle ld1/st1 lane in this function a little different from ARM.
2912      case AArch64::BI__builtin_neon_vld1_lane_v:
2913      case AArch64::BI__builtin_neon_vld1q_lane_v:
2914      case AArch64::BI__builtin_neon_vst1_lane_v:
2915      case AArch64::BI__builtin_neon_vst1q_lane_v:
2916        // Get the alignment for the argument in addition to the value;
2917        // we'll use it later.
2918        std::pair<llvm::Value *, unsigned> Src =
2919            EmitPointerWithAlignment(E->getArg(0));
2920        Ops.push_back(Src.first);
2921        Align = Builder.getInt32(Src.second);
2922        continue;
2923      }
2924    }
2925    if (i == 1) {
2926      switch (BuiltinID) {
2927      case AArch64::BI__builtin_neon_vld1_x2_v:
2928      case AArch64::BI__builtin_neon_vld1q_x2_v:
2929      case AArch64::BI__builtin_neon_vld1_x3_v:
2930      case AArch64::BI__builtin_neon_vld1q_x3_v:
2931      case AArch64::BI__builtin_neon_vld1_x4_v:
2932      case AArch64::BI__builtin_neon_vld1q_x4_v:
2933      // Handle ld1/st1 dup lane in this function a little different from ARM.
2934      case AArch64::BI__builtin_neon_vld2_dup_v:
2935      case AArch64::BI__builtin_neon_vld2q_dup_v:
2936      case AArch64::BI__builtin_neon_vld3_dup_v:
2937      case AArch64::BI__builtin_neon_vld3q_dup_v:
2938      case AArch64::BI__builtin_neon_vld4_dup_v:
2939      case AArch64::BI__builtin_neon_vld4q_dup_v:
2940      case AArch64::BI__builtin_neon_vld2_lane_v:
2941      case AArch64::BI__builtin_neon_vld2q_lane_v:
2942        // Get the alignment for the argument in addition to the value;
2943        // we'll use it later.
2944        std::pair<llvm::Value *, unsigned> Src =
2945            EmitPointerWithAlignment(E->getArg(1));
2946        Ops.push_back(Src.first);
2947        Align = Builder.getInt32(Src.second);
2948        continue;
2949      }
2950    }
2951    Ops.push_back(EmitScalarExpr(E->getArg(i)));
2952  }
2953
2954  // Get the last argument, which specifies the vector type.
2955  llvm::APSInt Result;
2956  const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2957  if (!Arg->isIntegerConstantExpr(Result, getContext()))
2958    return 0;
2959
2960  // Determine the type of this overloaded NEON intrinsic.
2961  NeonTypeFlags Type(Result.getZExtValue());
2962  bool usgn = Type.isUnsigned();
2963  bool quad = Type.isQuad();
2964
2965  llvm::VectorType *VTy = GetNeonType(this, Type);
2966  llvm::Type *Ty = VTy;
2967  if (!Ty)
2968    return 0;
2969
2970  unsigned Int;
2971  switch (BuiltinID) {
2972  default:
2973    return 0;
2974
2975  // AArch64 builtins mapping to legacy ARM v7 builtins.
2976  // FIXME: the mapped builtins listed correspond to what has been tested
2977  // in aarch64-neon-intrinsics.c so far.
2978  case AArch64::BI__builtin_neon_vuzp_v:
2979    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vuzp_v, E);
2980  case AArch64::BI__builtin_neon_vuzpq_v:
2981    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vuzpq_v, E);
2982  case AArch64::BI__builtin_neon_vzip_v:
2983    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vzip_v, E);
2984  case AArch64::BI__builtin_neon_vzipq_v:
2985    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vzipq_v, E);
2986  case AArch64::BI__builtin_neon_vtrn_v:
2987    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtrn_v, E);
2988  case AArch64::BI__builtin_neon_vtrnq_v:
2989    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtrnq_v, E);
2990  case AArch64::BI__builtin_neon_vext_v:
2991    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vext_v, E);
2992  case AArch64::BI__builtin_neon_vextq_v:
2993    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vextq_v, E);
2994  case AArch64::BI__builtin_neon_vmul_v:
2995    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmul_v, E);
2996  case AArch64::BI__builtin_neon_vmulq_v:
2997    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmulq_v, E);
2998  case AArch64::BI__builtin_neon_vabd_v:
2999    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabd_v, E);
3000  case AArch64::BI__builtin_neon_vabdq_v:
3001    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabdq_v, E);
3002  case AArch64::BI__builtin_neon_vfma_v:
3003    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfma_v, E);
3004  case AArch64::BI__builtin_neon_vfmaq_v:
3005    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfmaq_v, E);
3006  case AArch64::BI__builtin_neon_vbsl_v:
3007    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbsl_v, E);
3008  case AArch64::BI__builtin_neon_vbslq_v:
3009    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbslq_v, E);
3010  case AArch64::BI__builtin_neon_vrsqrts_v:
3011    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrts_v, E);
3012  case AArch64::BI__builtin_neon_vrsqrtsq_v:
3013    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrtsq_v, E);
3014  case AArch64::BI__builtin_neon_vrecps_v:
3015    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecps_v, E);
3016  case AArch64::BI__builtin_neon_vrecpsq_v:
3017    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecpsq_v, E);
3018  case AArch64::BI__builtin_neon_vcale_v:
3019    if (VTy->getVectorNumElements() == 1) {
3020      std::swap(Ops[0], Ops[1]);
3021    } else {
3022      return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcale_v, E);
3023    }
3024  case AArch64::BI__builtin_neon_vcage_v:
3025    if (VTy->getVectorNumElements() == 1) {
3026      // Determine the types of this overloaded AArch64 intrinsic
3027      SmallVector<llvm::Type *, 3> Tys;
3028      Tys.push_back(VTy);
3029      VTy = llvm::VectorType::get(DoubleTy, 1);
3030      Tys.push_back(VTy);
3031      Tys.push_back(VTy);
3032      Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vcage, Tys);
3033      return EmitNeonCall(F, Ops, "vcage");
3034    }
3035    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcage_v, E);
3036  case AArch64::BI__builtin_neon_vcaleq_v:
3037    std::swap(Ops[0], Ops[1]);
3038  case AArch64::BI__builtin_neon_vcageq_v: {
3039    Function *F;
3040    if (VTy->getElementType()->isIntegerTy(64))
3041      F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgeq);
3042    else
3043      F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
3044    return EmitNeonCall(F, Ops, "vcage");
3045  }
3046  case AArch64::BI__builtin_neon_vcalt_v:
3047    if (VTy->getVectorNumElements() == 1) {
3048      std::swap(Ops[0], Ops[1]);
3049    } else {
3050      return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcalt_v, E);
3051    }
3052  case AArch64::BI__builtin_neon_vcagt_v:
3053    if (VTy->getVectorNumElements() == 1) {
3054      // Determine the types of this overloaded AArch64 intrinsic
3055      SmallVector<llvm::Type *, 3> Tys;
3056      Tys.push_back(VTy);
3057      VTy = llvm::VectorType::get(DoubleTy, 1);
3058      Tys.push_back(VTy);
3059      Tys.push_back(VTy);
3060      Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vcagt, Tys);
3061      return EmitNeonCall(F, Ops, "vcagt");
3062    }
3063    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcagt_v, E);
3064  case AArch64::BI__builtin_neon_vcaltq_v:
3065    std::swap(Ops[0], Ops[1]);
3066  case AArch64::BI__builtin_neon_vcagtq_v: {
3067    Function *F;
3068    if (VTy->getElementType()->isIntegerTy(64))
3069      F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgtq);
3070    else
3071      F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
3072    return EmitNeonCall(F, Ops, "vcagt");
3073  }
3074  case AArch64::BI__builtin_neon_vtst_v:
3075    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtst_v, E);
3076  case AArch64::BI__builtin_neon_vtstq_v:
3077    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtstq_v, E);
3078  case AArch64::BI__builtin_neon_vhadd_v:
3079    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhadd_v, E);
3080  case AArch64::BI__builtin_neon_vhaddq_v:
3081    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhaddq_v, E);
3082  case AArch64::BI__builtin_neon_vhsub_v:
3083    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsub_v, E);
3084  case AArch64::BI__builtin_neon_vhsubq_v:
3085    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsubq_v, E);
3086  case AArch64::BI__builtin_neon_vrhadd_v:
3087    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhadd_v, E);
3088  case AArch64::BI__builtin_neon_vrhaddq_v:
3089    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhaddq_v, E);
3090  case AArch64::BI__builtin_neon_vqadd_v:
3091    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqadd_v, E);
3092  case AArch64::BI__builtin_neon_vqaddq_v:
3093    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqaddq_v, E);
3094  case AArch64::BI__builtin_neon_vqsub_v:
3095    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsub_v, E);
3096  case AArch64::BI__builtin_neon_vqsubq_v:
3097    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsubq_v, E);
3098  case AArch64::BI__builtin_neon_vshl_v:
3099    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_v, E);
3100  case AArch64::BI__builtin_neon_vshlq_v:
3101    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_v, E);
3102  case AArch64::BI__builtin_neon_vqshl_v:
3103    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_v, E);
3104  case AArch64::BI__builtin_neon_vqshlq_v:
3105    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_v, E);
3106  case AArch64::BI__builtin_neon_vrshl_v:
3107    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshl_v, E);
3108  case AArch64::BI__builtin_neon_vrshlq_v:
3109    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshlq_v, E);
3110  case AArch64::BI__builtin_neon_vqrshl_v:
3111    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshl_v, E);
3112  case AArch64::BI__builtin_neon_vqrshlq_v:
3113    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshlq_v, E);
3114  case AArch64::BI__builtin_neon_vaddhn_v:
3115    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vaddhn_v, E);
3116  case AArch64::BI__builtin_neon_vraddhn_v:
3117    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vraddhn_v, E);
3118  case AArch64::BI__builtin_neon_vsubhn_v:
3119    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsubhn_v, E);
3120  case AArch64::BI__builtin_neon_vrsubhn_v:
3121    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsubhn_v, E);
3122  case AArch64::BI__builtin_neon_vmull_v:
3123    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmull_v, E);
3124  case AArch64::BI__builtin_neon_vqdmull_v:
3125    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmull_v, E);
3126  case AArch64::BI__builtin_neon_vqdmlal_v:
3127    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlal_v, E);
3128  case AArch64::BI__builtin_neon_vqdmlsl_v:
3129    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlsl_v, E);
3130  case AArch64::BI__builtin_neon_vmax_v:
3131    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmax_v, E);
3132  case AArch64::BI__builtin_neon_vmaxq_v:
3133    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmaxq_v, E);
3134  case AArch64::BI__builtin_neon_vmin_v:
3135    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmin_v, E);
3136  case AArch64::BI__builtin_neon_vminq_v:
3137    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vminq_v, E);
3138  case AArch64::BI__builtin_neon_vpmax_v:
3139    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmax_v, E);
3140  case AArch64::BI__builtin_neon_vpmin_v:
3141    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmin_v, E);
3142  case AArch64::BI__builtin_neon_vpadd_v:
3143    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpadd_v, E);
3144  case AArch64::BI__builtin_neon_vqdmulh_v:
3145    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulh_v, E);
3146  case AArch64::BI__builtin_neon_vqdmulhq_v:
3147    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulhq_v, E);
3148  case AArch64::BI__builtin_neon_vqrdmulh_v:
3149    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulh_v, E);
3150  case AArch64::BI__builtin_neon_vqrdmulhq_v:
3151    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulhq_v, E);
3152
3153  // Shift by immediate
3154  case AArch64::BI__builtin_neon_vshr_n_v:
3155    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshr_n_v, E);
3156  case AArch64::BI__builtin_neon_vshrq_n_v:
3157    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshrq_n_v, E);
3158  case AArch64::BI__builtin_neon_vrshr_n_v:
3159  case AArch64::BI__builtin_neon_vrshrq_n_v:
3160    Int = usgn ? Intrinsic::aarch64_neon_vurshr
3161               : Intrinsic::aarch64_neon_vsrshr;
3162    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n");
3163  case AArch64::BI__builtin_neon_vsra_n_v:
3164    if (VTy->getElementType()->isIntegerTy(64)) {
3165      Int = usgn ? Intrinsic::aarch64_neon_vsradu_n
3166                 : Intrinsic::aarch64_neon_vsrads_n;
3167      return EmitNeonCall(CGM.getIntrinsic(Int), Ops, "vsra_n");
3168    }
3169    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsra_n_v, E);
3170  case AArch64::BI__builtin_neon_vsraq_n_v:
3171    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsraq_n_v, E);
3172  case AArch64::BI__builtin_neon_vrsra_n_v:
3173    if (VTy->getElementType()->isIntegerTy(64)) {
3174      Int = usgn ? Intrinsic::aarch64_neon_vrsradu_n
3175                 : Intrinsic::aarch64_neon_vrsrads_n;
3176      return EmitNeonCall(CGM.getIntrinsic(Int), Ops, "vrsra_n");
3177    }
3178    // fall through
3179  case AArch64::BI__builtin_neon_vrsraq_n_v: {
3180    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3181    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3182    Int = usgn ? Intrinsic::aarch64_neon_vurshr
3183               : Intrinsic::aarch64_neon_vsrshr;
3184    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
3185    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
3186  }
3187  case AArch64::BI__builtin_neon_vshl_n_v:
3188    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_n_v, E);
3189  case AArch64::BI__builtin_neon_vshlq_n_v:
3190    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_n_v, E);
3191  case AArch64::BI__builtin_neon_vqshl_n_v:
3192    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_n_v, E);
3193  case AArch64::BI__builtin_neon_vqshlq_n_v:
3194    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_n_v, E);
3195  case AArch64::BI__builtin_neon_vqshlu_n_v:
3196  case AArch64::BI__builtin_neon_vqshluq_n_v:
3197    Int = Intrinsic::aarch64_neon_vsqshlu;
3198    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n");
3199  case AArch64::BI__builtin_neon_vsri_n_v:
3200  case AArch64::BI__builtin_neon_vsriq_n_v:
3201    Int = Intrinsic::aarch64_neon_vsri;
3202    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsri_n");
3203  case AArch64::BI__builtin_neon_vsli_n_v:
3204  case AArch64::BI__builtin_neon_vsliq_n_v:
3205    Int = Intrinsic::aarch64_neon_vsli;
3206    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsli_n");
3207  case AArch64::BI__builtin_neon_vshll_n_v: {
3208    llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
3209    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3210    if (usgn)
3211      Ops[0] = Builder.CreateZExt(Ops[0], VTy);
3212    else
3213      Ops[0] = Builder.CreateSExt(Ops[0], VTy);
3214    Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
3215    return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
3216  }
3217  case AArch64::BI__builtin_neon_vshrn_n_v: {
3218    llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
3219    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3220    Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
3221    if (usgn)
3222      Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
3223    else
3224      Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
3225    return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
3226  }
3227  case AArch64::BI__builtin_neon_vqshrun_n_v:
3228    Int = Intrinsic::aarch64_neon_vsqshrun;
3229    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
3230  case AArch64::BI__builtin_neon_vrshrn_n_v:
3231    Int = Intrinsic::aarch64_neon_vrshrn;
3232    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
3233  case AArch64::BI__builtin_neon_vqrshrun_n_v:
3234    Int = Intrinsic::aarch64_neon_vsqrshrun;
3235    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
3236  case AArch64::BI__builtin_neon_vqshrn_n_v:
3237    Int = usgn ? Intrinsic::aarch64_neon_vuqshrn
3238               : Intrinsic::aarch64_neon_vsqshrn;
3239    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
3240  case AArch64::BI__builtin_neon_vqrshrn_n_v:
3241    Int = usgn ? Intrinsic::aarch64_neon_vuqrshrn
3242               : Intrinsic::aarch64_neon_vsqrshrn;
3243    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
3244
3245  // Convert
3246  case AArch64::BI__builtin_neon_vmovl_v:
3247    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmovl_v, E);
3248  case AArch64::BI__builtin_neon_vcvt_n_f32_v:
3249    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_f32_v, E);
3250  case AArch64::BI__builtin_neon_vcvtq_n_f32_v:
3251    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_f32_v, E);
3252  case AArch64::BI__builtin_neon_vcvt_n_f64_v:
3253  case AArch64::BI__builtin_neon_vcvtq_n_f64_v: {
3254    llvm::Type *FloatTy =
3255        GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
3256    llvm::Type *Tys[2] = { FloatTy, Ty };
3257    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
3258               : Intrinsic::arm_neon_vcvtfxs2fp;
3259    Function *F = CGM.getIntrinsic(Int, Tys);
3260    return EmitNeonCall(F, Ops, "vcvt_n");
3261  }
3262  case AArch64::BI__builtin_neon_vcvt_n_s32_v:
3263    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_s32_v, E);
3264  case AArch64::BI__builtin_neon_vcvtq_n_s32_v:
3265    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_s32_v, E);
3266  case AArch64::BI__builtin_neon_vcvt_n_u32_v:
3267    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_u32_v, E);
3268  case AArch64::BI__builtin_neon_vcvtq_n_u32_v:
3269    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_u32_v, E);
3270  case AArch64::BI__builtin_neon_vcvt_n_s64_v:
3271  case AArch64::BI__builtin_neon_vcvt_n_u64_v:
3272  case AArch64::BI__builtin_neon_vcvtq_n_s64_v:
3273  case AArch64::BI__builtin_neon_vcvtq_n_u64_v: {
3274    llvm::Type *FloatTy =
3275        GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
3276    llvm::Type *Tys[2] = { Ty, FloatTy };
3277    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
3278               : Intrinsic::arm_neon_vcvtfp2fxs;
3279    Function *F = CGM.getIntrinsic(Int, Tys);
3280    return EmitNeonCall(F, Ops, "vcvt_n");
3281  }
3282
3283  // Load/Store
3284  case AArch64::BI__builtin_neon_vld1_v:
3285    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1_v, E);
3286  case AArch64::BI__builtin_neon_vld1q_v:
3287    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1q_v, E);
3288  case AArch64::BI__builtin_neon_vld2_v:
3289    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2_v, E);
3290  case AArch64::BI__builtin_neon_vld2q_v:
3291    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_v, E);
3292  case AArch64::BI__builtin_neon_vld3_v:
3293    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3_v, E);
3294  case AArch64::BI__builtin_neon_vld3q_v:
3295    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3q_v, E);
3296  case AArch64::BI__builtin_neon_vld4_v:
3297    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4_v, E);
3298  case AArch64::BI__builtin_neon_vld4q_v:
3299    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4q_v, E);
3300  case AArch64::BI__builtin_neon_vst1_v:
3301    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst1_v, E);
3302  case AArch64::BI__builtin_neon_vst1q_v:
3303    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst1q_v, E);
3304  case AArch64::BI__builtin_neon_vst2_v:
3305    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2_v, E);
3306  case AArch64::BI__builtin_neon_vst2q_v:
3307    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2q_v, E);
3308  case AArch64::BI__builtin_neon_vst3_v:
3309    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3_v, E);
3310  case AArch64::BI__builtin_neon_vst3q_v:
3311    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3q_v, E);
3312  case AArch64::BI__builtin_neon_vst4_v:
3313    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4_v, E);
3314  case AArch64::BI__builtin_neon_vst4q_v:
3315    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4q_v, E);
3316  case AArch64::BI__builtin_neon_vld1_x2_v:
3317  case AArch64::BI__builtin_neon_vld1q_x2_v:
3318  case AArch64::BI__builtin_neon_vld1_x3_v:
3319  case AArch64::BI__builtin_neon_vld1q_x3_v:
3320  case AArch64::BI__builtin_neon_vld1_x4_v:
3321  case AArch64::BI__builtin_neon_vld1q_x4_v: {
3322    unsigned Int;
3323    switch (BuiltinID) {
3324    case AArch64::BI__builtin_neon_vld1_x2_v:
3325    case AArch64::BI__builtin_neon_vld1q_x2_v:
3326      Int = Intrinsic::aarch64_neon_vld1x2;
3327      break;
3328    case AArch64::BI__builtin_neon_vld1_x3_v:
3329    case AArch64::BI__builtin_neon_vld1q_x3_v:
3330      Int = Intrinsic::aarch64_neon_vld1x3;
3331      break;
3332    case AArch64::BI__builtin_neon_vld1_x4_v:
3333    case AArch64::BI__builtin_neon_vld1q_x4_v:
3334      Int = Intrinsic::aarch64_neon_vld1x4;
3335      break;
3336    }
3337    Function *F = CGM.getIntrinsic(Int, Ty);
3338    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld1xN");
3339    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3340    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3341    return Builder.CreateStore(Ops[1], Ops[0]);
3342  }
3343  case AArch64::BI__builtin_neon_vst1_x2_v:
3344  case AArch64::BI__builtin_neon_vst1q_x2_v:
3345  case AArch64::BI__builtin_neon_vst1_x3_v:
3346  case AArch64::BI__builtin_neon_vst1q_x3_v:
3347  case AArch64::BI__builtin_neon_vst1_x4_v:
3348  case AArch64::BI__builtin_neon_vst1q_x4_v: {
3349    Ops.push_back(Align);
3350    unsigned Int;
3351    switch (BuiltinID) {
3352    case AArch64::BI__builtin_neon_vst1_x2_v:
3353    case AArch64::BI__builtin_neon_vst1q_x2_v:
3354      Int = Intrinsic::aarch64_neon_vst1x2;
3355      break;
3356    case AArch64::BI__builtin_neon_vst1_x3_v:
3357    case AArch64::BI__builtin_neon_vst1q_x3_v:
3358      Int = Intrinsic::aarch64_neon_vst1x3;
3359      break;
3360    case AArch64::BI__builtin_neon_vst1_x4_v:
3361    case AArch64::BI__builtin_neon_vst1q_x4_v:
3362      Int = Intrinsic::aarch64_neon_vst1x4;
3363      break;
3364    }
3365    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "");
3366  }
3367  case AArch64::BI__builtin_neon_vld1_lane_v:
3368  case AArch64::BI__builtin_neon_vld1q_lane_v: {
3369    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3370    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
3371    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3372    LoadInst *Ld = Builder.CreateLoad(Ops[0]);
3373    Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3374    return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
3375  }
3376  case AArch64::BI__builtin_neon_vld2_lane_v:
3377    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_lane_v, E);
3378  case AArch64::BI__builtin_neon_vld2q_lane_v:
3379    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_lane_v, E);
3380  case AArch64::BI__builtin_neon_vld3_lane_v:
3381    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3_lane_v, E);
3382  case AArch64::BI__builtin_neon_vld3q_lane_v:
3383    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3q_lane_v, E);
3384  case AArch64::BI__builtin_neon_vld4_lane_v:
3385    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4_lane_v, E);
3386  case AArch64::BI__builtin_neon_vld4q_lane_v:
3387    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4q_lane_v, E);
3388  case AArch64::BI__builtin_neon_vst1_lane_v:
3389  case AArch64::BI__builtin_neon_vst1q_lane_v: {
3390    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3391    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
3392    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3393    StoreInst *St =
3394        Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
3395    St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3396    return St;
3397  }
3398  case AArch64::BI__builtin_neon_vst2_lane_v:
3399    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2_lane_v, E);
3400  case AArch64::BI__builtin_neon_vst2q_lane_v:
3401    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2q_lane_v, E);
3402  case AArch64::BI__builtin_neon_vst3_lane_v:
3403    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3_lane_v, E);
3404  case AArch64::BI__builtin_neon_vst3q_lane_v:
3405    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3q_lane_v, E);
3406  case AArch64::BI__builtin_neon_vst4_lane_v:
3407    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4_lane_v, E);
3408  case AArch64::BI__builtin_neon_vst4q_lane_v:
3409    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4q_lane_v, E);
3410  case AArch64::BI__builtin_neon_vld1_dup_v:
3411    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1_dup_v, E);
3412  case AArch64::BI__builtin_neon_vld1q_dup_v:
3413    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1q_dup_v, E);
3414  case AArch64::BI__builtin_neon_vld2_dup_v:
3415  case AArch64::BI__builtin_neon_vld2q_dup_v:
3416  case AArch64::BI__builtin_neon_vld3_dup_v:
3417  case AArch64::BI__builtin_neon_vld3q_dup_v:
3418  case AArch64::BI__builtin_neon_vld4_dup_v:
3419  case AArch64::BI__builtin_neon_vld4q_dup_v: {
3420    // Handle 64-bit x 1 elements as a special-case.  There is no "dup" needed.
3421    if (VTy->getElementType()->getPrimitiveSizeInBits() == 64 &&
3422        VTy->getNumElements() == 1) {
3423      switch (BuiltinID) {
3424      case AArch64::BI__builtin_neon_vld2_dup_v:
3425        Int = Intrinsic::arm_neon_vld2;
3426        break;
3427      case AArch64::BI__builtin_neon_vld3_dup_v:
3428        Int = Intrinsic::arm_neon_vld3;
3429        break;
3430      case AArch64::BI__builtin_neon_vld4_dup_v:
3431        Int = Intrinsic::arm_neon_vld4;
3432        break;
3433      default:
3434        llvm_unreachable("unknown vld_dup intrinsic?");
3435      }
3436      Function *F = CGM.getIntrinsic(Int, Ty);
3437      Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
3438      Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3439      Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3440      return Builder.CreateStore(Ops[1], Ops[0]);
3441    }
3442    switch (BuiltinID) {
3443    case AArch64::BI__builtin_neon_vld2_dup_v:
3444    case AArch64::BI__builtin_neon_vld2q_dup_v:
3445      Int = Intrinsic::arm_neon_vld2lane;
3446      break;
3447    case AArch64::BI__builtin_neon_vld3_dup_v:
3448    case AArch64::BI__builtin_neon_vld3q_dup_v:
3449      Int = Intrinsic::arm_neon_vld3lane;
3450      break;
3451    case AArch64::BI__builtin_neon_vld4_dup_v:
3452    case AArch64::BI__builtin_neon_vld4q_dup_v:
3453      Int = Intrinsic::arm_neon_vld4lane;
3454      break;
3455    }
3456    Function *F = CGM.getIntrinsic(Int, Ty);
3457    llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
3458
3459    SmallVector<Value *, 6> Args;
3460    Args.push_back(Ops[1]);
3461    Args.append(STy->getNumElements(), UndefValue::get(Ty));
3462
3463    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
3464    Args.push_back(CI);
3465    Args.push_back(Align);
3466
3467    Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
3468    // splat lane 0 to all elts in each vector of the result.
3469    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3470      Value *Val = Builder.CreateExtractValue(Ops[1], i);
3471      Value *Elt = Builder.CreateBitCast(Val, Ty);
3472      Elt = EmitNeonSplat(Elt, CI);
3473      Elt = Builder.CreateBitCast(Elt, Val->getType());
3474      Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
3475    }
3476    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3477    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3478    return Builder.CreateStore(Ops[1], Ops[0]);
3479  }
3480
3481  // Crypto
3482  case AArch64::BI__builtin_neon_vaeseq_v:
3483    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aese, Ty),
3484                        Ops, "aese");
3485  case AArch64::BI__builtin_neon_vaesdq_v:
3486    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesd, Ty),
3487                        Ops, "aesd");
3488  case AArch64::BI__builtin_neon_vaesmcq_v:
3489    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesmc, Ty),
3490                        Ops, "aesmc");
3491  case AArch64::BI__builtin_neon_vaesimcq_v:
3492    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesimc, Ty),
3493                        Ops, "aesimc");
3494  case AArch64::BI__builtin_neon_vsha1su1q_v:
3495    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1su1, Ty),
3496                        Ops, "sha1su1");
3497  case AArch64::BI__builtin_neon_vsha256su0q_v:
3498    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256su0, Ty),
3499                        Ops, "sha256su0");
3500  case AArch64::BI__builtin_neon_vsha1su0q_v:
3501    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1su0, Ty),
3502                        Ops, "sha1su0");
3503  case AArch64::BI__builtin_neon_vsha256hq_v:
3504    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256h, Ty),
3505                        Ops, "sha256h");
3506  case AArch64::BI__builtin_neon_vsha256h2q_v:
3507    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256h2, Ty),
3508                        Ops, "sha256h2");
3509  case AArch64::BI__builtin_neon_vsha256su1q_v:
3510    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256su1, Ty),
3511                        Ops, "sha256su1");
3512  case AArch64::BI__builtin_neon_vmul_lane_v:
3513  case AArch64::BI__builtin_neon_vmul_laneq_v: {
3514    // v1f64 vmul_lane should be mapped to Neon scalar mul lane
3515    bool Quad = false;
3516    if (BuiltinID == AArch64::BI__builtin_neon_vmul_laneq_v)
3517      Quad = true;
3518    Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3519    llvm::Type *VTy = GetNeonType(this,
3520      NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
3521    Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
3522    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
3523    Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
3524    return Builder.CreateBitCast(Result, Ty);
3525  }
3526
3527  // AArch64-only builtins
3528  case AArch64::BI__builtin_neon_vfmaq_laneq_v: {
3529    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3530    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3531    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3532
3533    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3534    Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
3535    return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3536  }
3537  case AArch64::BI__builtin_neon_vfmaq_lane_v: {
3538    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3539    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3540    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3541
3542    llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3543    llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
3544                                            VTy->getNumElements() / 2);
3545    Ops[2] = Builder.CreateBitCast(Ops[2], STy);
3546    Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
3547                                               cast<ConstantInt>(Ops[3]));
3548    Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
3549
3550    return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3551  }
3552  case AArch64::BI__builtin_neon_vfma_lane_v: {
3553    llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3554    // v1f64 fma should be mapped to Neon scalar f64 fma
3555    if (VTy && VTy->getElementType() == DoubleTy) {
3556      Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3557      Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
3558      llvm::Type *VTy = GetNeonType(this,
3559        NeonTypeFlags(NeonTypeFlags::Float64, false, false));
3560      Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
3561      Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
3562      Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
3563      Value *Result = Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3564      return Builder.CreateBitCast(Result, Ty);
3565    }
3566    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3567    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3568    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3569
3570    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3571    Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
3572    return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3573  }
3574  case AArch64::BI__builtin_neon_vfma_laneq_v: {
3575    llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3576    // v1f64 fma should be mapped to Neon scalar f64 fma
3577    if (VTy && VTy->getElementType() == DoubleTy) {
3578      Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3579      Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
3580      llvm::Type *VTy = GetNeonType(this,
3581        NeonTypeFlags(NeonTypeFlags::Float64, false, true));
3582      Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
3583      Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
3584      Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
3585      Value *Result = Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3586      return Builder.CreateBitCast(Result, Ty);
3587    }
3588    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3589    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3590    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3591
3592    llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
3593                                            VTy->getNumElements() * 2);
3594    Ops[2] = Builder.CreateBitCast(Ops[2], STy);
3595    Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
3596                                               cast<ConstantInt>(Ops[3]));
3597    Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
3598
3599    return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3600  }
3601  case AArch64::BI__builtin_neon_vfms_v:
3602  case AArch64::BI__builtin_neon_vfmsq_v: {
3603    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3604    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3605    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3606    Ops[1] = Builder.CreateFNeg(Ops[1]);
3607    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3608
3609    // LLVM's fma intrinsic puts the accumulator in the last position, but the
3610    // AArch64 intrinsic has it first.
3611    return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3612  }
3613  case AArch64::BI__builtin_neon_vmaxnm_v:
3614  case AArch64::BI__builtin_neon_vmaxnmq_v: {
3615    Int = Intrinsic::aarch64_neon_vmaxnm;
3616    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
3617  }
3618  case AArch64::BI__builtin_neon_vminnm_v:
3619  case AArch64::BI__builtin_neon_vminnmq_v: {
3620    Int = Intrinsic::aarch64_neon_vminnm;
3621    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
3622  }
3623  case AArch64::BI__builtin_neon_vpmaxnm_v:
3624  case AArch64::BI__builtin_neon_vpmaxnmq_v: {
3625    Int = Intrinsic::aarch64_neon_vpmaxnm;
3626    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
3627  }
3628  case AArch64::BI__builtin_neon_vpminnm_v:
3629  case AArch64::BI__builtin_neon_vpminnmq_v: {
3630    Int = Intrinsic::aarch64_neon_vpminnm;
3631    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
3632  }
3633  case AArch64::BI__builtin_neon_vpmaxq_v: {
3634    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
3635    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
3636  }
3637  case AArch64::BI__builtin_neon_vpminq_v: {
3638    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
3639    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
3640  }
3641  case AArch64::BI__builtin_neon_vpaddq_v: {
3642    Int = Intrinsic::arm_neon_vpadd;
3643    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpadd");
3644  }
3645  case AArch64::BI__builtin_neon_vmulx_v:
3646  case AArch64::BI__builtin_neon_vmulxq_v: {
3647    Int = Intrinsic::aarch64_neon_vmulx;
3648    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
3649  }
3650  case AArch64::BI__builtin_neon_vpaddl_v:
3651  case AArch64::BI__builtin_neon_vpaddlq_v:
3652    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpaddl_v, E);
3653  case AArch64::BI__builtin_neon_vpadal_v:
3654  case AArch64::BI__builtin_neon_vpadalq_v:
3655    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpadal_v, E);
3656  case AArch64::BI__builtin_neon_vqabs_v:
3657  case AArch64::BI__builtin_neon_vqabsq_v:
3658    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqabs_v, E);
3659  case AArch64::BI__builtin_neon_vqneg_v:
3660  case AArch64::BI__builtin_neon_vqnegq_v:
3661    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqneg_v, E);
3662  case AArch64::BI__builtin_neon_vabs_v:
3663  case AArch64::BI__builtin_neon_vabsq_v: {
3664    if (VTy->getElementType()->isFloatingPointTy()) {
3665      return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
3666    }
3667    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabs_v, E);
3668  }
3669  case AArch64::BI__builtin_neon_vsqadd_v:
3670  case AArch64::BI__builtin_neon_vsqaddq_v: {
3671    Int = Intrinsic::aarch64_neon_usqadd;
3672    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
3673  }
3674  case AArch64::BI__builtin_neon_vuqadd_v:
3675  case AArch64::BI__builtin_neon_vuqaddq_v: {
3676    Int = Intrinsic::aarch64_neon_suqadd;
3677    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
3678  }
3679  case AArch64::BI__builtin_neon_vcls_v:
3680  case AArch64::BI__builtin_neon_vclsq_v:
3681    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcls_v, E);
3682  case AArch64::BI__builtin_neon_vclz_v:
3683  case AArch64::BI__builtin_neon_vclzq_v:
3684    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vclz_v, E);
3685  case AArch64::BI__builtin_neon_vcnt_v:
3686  case AArch64::BI__builtin_neon_vcntq_v:
3687    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcnt_v, E);
3688  case AArch64::BI__builtin_neon_vrbit_v:
3689  case AArch64::BI__builtin_neon_vrbitq_v:
3690    Int = Intrinsic::aarch64_neon_rbit;
3691    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
3692  case AArch64::BI__builtin_neon_vmovn_v:
3693    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmovn_v, E);
3694  case AArch64::BI__builtin_neon_vqmovun_v:
3695    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqmovun_v, E);
3696  case AArch64::BI__builtin_neon_vqmovn_v:
3697    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqmovn_v, E);
3698  case AArch64::BI__builtin_neon_vcvt_f16_v:
3699    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f16_v, E);
3700  case AArch64::BI__builtin_neon_vcvt_f32_f16:
3701    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f32_f16, E);
3702  case AArch64::BI__builtin_neon_vcvt_f32_f64: {
3703    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3704    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, false));
3705    return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
3706  }
3707  case AArch64::BI__builtin_neon_vcvtx_f32_v: {
3708    llvm::Type *EltTy = FloatTy;
3709    llvm::Type *ResTy = llvm::VectorType::get(EltTy, 2);
3710    llvm::Type *Tys[2] = { ResTy, Ty };
3711    Int = Intrinsic::aarch64_neon_fcvtxn;
3712    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtx_f32_f64");
3713  }
3714  case AArch64::BI__builtin_neon_vcvt_f64_f32: {
3715    llvm::Type *OpTy =
3716        GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, false));
3717    Ops[0] = Builder.CreateBitCast(Ops[0], OpTy);
3718    return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
3719  }
3720  case AArch64::BI__builtin_neon_vcvt_f64_v:
3721  case AArch64::BI__builtin_neon_vcvtq_f64_v: {
3722    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3723    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
3724    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
3725                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
3726  }
3727  case AArch64::BI__builtin_neon_vrndn_v:
3728  case AArch64::BI__builtin_neon_vrndnq_v: {
3729    Int = Intrinsic::aarch64_neon_frintn;
3730    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
3731  }
3732  case AArch64::BI__builtin_neon_vrnda_v:
3733  case AArch64::BI__builtin_neon_vrndaq_v: {
3734    Int = Intrinsic::round;
3735    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
3736  }
3737  case AArch64::BI__builtin_neon_vrndp_v:
3738  case AArch64::BI__builtin_neon_vrndpq_v: {
3739    Int = Intrinsic::ceil;
3740    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
3741  }
3742  case AArch64::BI__builtin_neon_vrndm_v:
3743  case AArch64::BI__builtin_neon_vrndmq_v: {
3744    Int = Intrinsic::floor;
3745    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
3746  }
3747  case AArch64::BI__builtin_neon_vrndx_v:
3748  case AArch64::BI__builtin_neon_vrndxq_v: {
3749    Int = Intrinsic::rint;
3750    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
3751  }
3752  case AArch64::BI__builtin_neon_vrnd_v:
3753  case AArch64::BI__builtin_neon_vrndq_v: {
3754    Int = Intrinsic::trunc;
3755    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd");
3756  }
3757  case AArch64::BI__builtin_neon_vrndi_v:
3758  case AArch64::BI__builtin_neon_vrndiq_v: {
3759    Int = Intrinsic::nearbyint;
3760    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
3761  }
3762  case AArch64::BI__builtin_neon_vcvt_s32_v:
3763  case AArch64::BI__builtin_neon_vcvt_u32_v:
3764  case AArch64::BI__builtin_neon_vcvtq_s32_v:
3765  case AArch64::BI__builtin_neon_vcvtq_u32_v:
3766    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_u32_v, E);
3767  case AArch64::BI__builtin_neon_vcvt_s64_v:
3768  case AArch64::BI__builtin_neon_vcvt_u64_v:
3769  case AArch64::BI__builtin_neon_vcvtq_s64_v:
3770  case AArch64::BI__builtin_neon_vcvtq_u64_v: {
3771    llvm::Type *DoubleTy =
3772        GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
3773    Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3774    return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
3775                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
3776  }
3777  case AArch64::BI__builtin_neon_vcvtn_s32_v:
3778  case AArch64::BI__builtin_neon_vcvtnq_s32_v: {
3779    llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3780    llvm::Type *Tys[2] = { Ty, OpTy };
3781    Int = Intrinsic::aarch64_neon_fcvtns;
3782    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtns_f32");
3783  }
3784  case AArch64::BI__builtin_neon_vcvtn_s64_v:
3785  case AArch64::BI__builtin_neon_vcvtnq_s64_v: {
3786    llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3787    llvm::Type *Tys[2] = { Ty, OpTy };
3788    Int = Intrinsic::aarch64_neon_fcvtns;
3789    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtns_f64");
3790  }
3791  case AArch64::BI__builtin_neon_vcvtn_u32_v:
3792  case AArch64::BI__builtin_neon_vcvtnq_u32_v: {
3793    llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3794    llvm::Type *Tys[2] = { Ty, OpTy };
3795    Int = Intrinsic::aarch64_neon_fcvtnu;
3796    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtnu_f32");
3797  }
3798  case AArch64::BI__builtin_neon_vcvtn_u64_v:
3799  case AArch64::BI__builtin_neon_vcvtnq_u64_v: {
3800    llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3801    llvm::Type *Tys[2] = { Ty, OpTy };
3802    Int = Intrinsic::aarch64_neon_fcvtnu;
3803    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtnu_f64");
3804  }
3805  case AArch64::BI__builtin_neon_vcvtp_s32_v:
3806  case AArch64::BI__builtin_neon_vcvtpq_s32_v: {
3807    llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3808    llvm::Type *Tys[2] = { Ty, OpTy };
3809    Int = Intrinsic::aarch64_neon_fcvtps;
3810    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtps_f32");
3811  }
3812  case AArch64::BI__builtin_neon_vcvtp_s64_v:
3813  case AArch64::BI__builtin_neon_vcvtpq_s64_v: {
3814    llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3815    llvm::Type *Tys[2] = { Ty, OpTy };
3816    Int = Intrinsic::aarch64_neon_fcvtps;
3817    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtps_f64");
3818  }
3819  case AArch64::BI__builtin_neon_vcvtp_u32_v:
3820  case AArch64::BI__builtin_neon_vcvtpq_u32_v: {
3821    llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3822    llvm::Type *Tys[2] = { Ty, OpTy };
3823    Int = Intrinsic::aarch64_neon_fcvtpu;
3824    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtpu_f32");
3825  }
3826  case AArch64::BI__builtin_neon_vcvtp_u64_v:
3827  case AArch64::BI__builtin_neon_vcvtpq_u64_v: {
3828    llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3829    llvm::Type *Tys[2] = { Ty, OpTy };
3830    Int = Intrinsic::aarch64_neon_fcvtpu;
3831    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtpu_f64");
3832  }
3833  case AArch64::BI__builtin_neon_vcvtm_s32_v:
3834  case AArch64::BI__builtin_neon_vcvtmq_s32_v: {
3835    llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3836    llvm::Type *Tys[2] = { Ty, OpTy };
3837    Int = Intrinsic::aarch64_neon_fcvtms;
3838    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtms_f32");
3839  }
3840  case AArch64::BI__builtin_neon_vcvtm_s64_v:
3841  case AArch64::BI__builtin_neon_vcvtmq_s64_v: {
3842    llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3843    llvm::Type *Tys[2] = { Ty, OpTy };
3844    Int = Intrinsic::aarch64_neon_fcvtms;
3845    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtms_f64");
3846  }
3847  case AArch64::BI__builtin_neon_vcvtm_u32_v:
3848  case AArch64::BI__builtin_neon_vcvtmq_u32_v: {
3849    llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3850    llvm::Type *Tys[2] = { Ty, OpTy };
3851    Int = Intrinsic::aarch64_neon_fcvtmu;
3852    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtmu_f32");
3853  }
3854  case AArch64::BI__builtin_neon_vcvtm_u64_v:
3855  case AArch64::BI__builtin_neon_vcvtmq_u64_v: {
3856    llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3857    llvm::Type *Tys[2] = { Ty, OpTy };
3858    Int = Intrinsic::aarch64_neon_fcvtmu;
3859    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtmu_f64");
3860  }
3861  case AArch64::BI__builtin_neon_vcvta_s32_v:
3862  case AArch64::BI__builtin_neon_vcvtaq_s32_v: {
3863    llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3864    llvm::Type *Tys[2] = { Ty, OpTy };
3865    Int = Intrinsic::aarch64_neon_fcvtas;
3866    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtas_f32");
3867  }
3868  case AArch64::BI__builtin_neon_vcvta_s64_v:
3869  case AArch64::BI__builtin_neon_vcvtaq_s64_v: {
3870    llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3871    llvm::Type *Tys[2] = { Ty, OpTy };
3872    Int = Intrinsic::aarch64_neon_fcvtas;
3873    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtas_f64");
3874  }
3875  case AArch64::BI__builtin_neon_vcvta_u32_v:
3876  case AArch64::BI__builtin_neon_vcvtaq_u32_v: {
3877    llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3878    llvm::Type *Tys[2] = { Ty, OpTy };
3879    Int = Intrinsic::aarch64_neon_fcvtau;
3880    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtau_f32");
3881  }
3882  case AArch64::BI__builtin_neon_vcvta_u64_v:
3883  case AArch64::BI__builtin_neon_vcvtaq_u64_v: {
3884    llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3885    llvm::Type *Tys[2] = { Ty, OpTy };
3886    Int = Intrinsic::aarch64_neon_fcvtau;
3887    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtau_f64");
3888  }
3889  case AArch64::BI__builtin_neon_vrecpe_v:
3890  case AArch64::BI__builtin_neon_vrecpeq_v:
3891    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecpe_v, E);
3892  case AArch64::BI__builtin_neon_vrsqrte_v:
3893  case AArch64::BI__builtin_neon_vrsqrteq_v:
3894    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrte_v, E);
3895  case AArch64::BI__builtin_neon_vsqrt_v:
3896  case AArch64::BI__builtin_neon_vsqrtq_v: {
3897    Int = Intrinsic::sqrt;
3898    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
3899  }
3900  case AArch64::BI__builtin_neon_vcvt_f32_v:
3901  case AArch64::BI__builtin_neon_vcvtq_f32_v:
3902    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f32_v, E);
3903  case AArch64::BI__builtin_neon_vceqz_v:
3904  case AArch64::BI__builtin_neon_vceqzq_v:
3905    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
3906                                         ICmpInst::ICMP_EQ, "vceqz");
3907  case AArch64::BI__builtin_neon_vcgez_v:
3908  case AArch64::BI__builtin_neon_vcgezq_v:
3909    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
3910                                         ICmpInst::ICMP_SGE, "vcgez");
3911  case AArch64::BI__builtin_neon_vclez_v:
3912  case AArch64::BI__builtin_neon_vclezq_v:
3913    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
3914                                         ICmpInst::ICMP_SLE, "vclez");
3915  case AArch64::BI__builtin_neon_vcgtz_v:
3916  case AArch64::BI__builtin_neon_vcgtzq_v:
3917    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
3918                                         ICmpInst::ICMP_SGT, "vcgtz");
3919  case AArch64::BI__builtin_neon_vcltz_v:
3920  case AArch64::BI__builtin_neon_vcltzq_v:
3921    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
3922                                         ICmpInst::ICMP_SLT, "vcltz");
3923  }
3924}
3925
3926Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
3927                                           const CallExpr *E) {
3928  if (BuiltinID == ARM::BI__clear_cache) {
3929    assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
3930    const FunctionDecl *FD = E->getDirectCallee();
3931    SmallVector<Value*, 2> Ops;
3932    for (unsigned i = 0; i < 2; i++)
3933      Ops.push_back(EmitScalarExpr(E->getArg(i)));
3934    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
3935    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
3936    StringRef Name = FD->getName();
3937    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
3938  }
3939
3940  if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
3941      (BuiltinID == ARM::BI__builtin_arm_ldrex &&
3942       getContext().getTypeSize(E->getType()) == 64)) {
3943    Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
3944
3945    Value *LdPtr = EmitScalarExpr(E->getArg(0));
3946    Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
3947                                    "ldrexd");
3948
3949    Value *Val0 = Builder.CreateExtractValue(Val, 1);
3950    Value *Val1 = Builder.CreateExtractValue(Val, 0);
3951    Val0 = Builder.CreateZExt(Val0, Int64Ty);
3952    Val1 = Builder.CreateZExt(Val1, Int64Ty);
3953
3954    Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
3955    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
3956    Val = Builder.CreateOr(Val, Val1);
3957    return Builder.CreateBitCast(Val, ConvertType(E->getType()));
3958  }
3959
3960  if (BuiltinID == ARM::BI__builtin_arm_ldrex) {
3961    Value *LoadAddr = EmitScalarExpr(E->getArg(0));
3962
3963    QualType Ty = E->getType();
3964    llvm::Type *RealResTy = ConvertType(Ty);
3965    llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
3966                                                  getContext().getTypeSize(Ty));
3967    LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
3968
3969    Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrex, LoadAddr->getType());
3970    Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
3971
3972    if (RealResTy->isPointerTy())
3973      return Builder.CreateIntToPtr(Val, RealResTy);
3974    else {
3975      Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
3976      return Builder.CreateBitCast(Val, RealResTy);
3977    }
3978  }
3979
3980  if (BuiltinID == ARM::BI__builtin_arm_strexd ||
3981      (BuiltinID == ARM::BI__builtin_arm_strex &&
3982       getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
3983    Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
3984    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
3985
3986    Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
3987    Value *Val = EmitScalarExpr(E->getArg(0));
3988    Builder.CreateStore(Val, Tmp);
3989
3990    Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
3991    Val = Builder.CreateLoad(LdPtr);
3992
3993    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
3994    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
3995    Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
3996    return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
3997  }
3998
3999  if (BuiltinID == ARM::BI__builtin_arm_strex) {
4000    Value *StoreVal = EmitScalarExpr(E->getArg(0));
4001    Value *StoreAddr = EmitScalarExpr(E->getArg(1));
4002
4003    QualType Ty = E->getArg(0)->getType();
4004    llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
4005                                                 getContext().getTypeSize(Ty));
4006    StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
4007
4008    if (StoreVal->getType()->isPointerTy())
4009      StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
4010    else {
4011      StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
4012      StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
4013    }
4014
4015    Function *F = CGM.getIntrinsic(Intrinsic::arm_strex, StoreAddr->getType());
4016    return Builder.CreateCall2(F, StoreVal, StoreAddr, "strex");
4017  }
4018
4019  if (BuiltinID == ARM::BI__builtin_arm_clrex) {
4020    Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
4021    return Builder.CreateCall(F);
4022  }
4023
4024  if (BuiltinID == ARM::BI__builtin_arm_sevl) {
4025    Function *F = CGM.getIntrinsic(Intrinsic::arm_sevl);
4026    return Builder.CreateCall(F);
4027  }
4028
4029  // CRC32
4030  Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
4031  switch (BuiltinID) {
4032  case ARM::BI__builtin_arm_crc32b:
4033    CRCIntrinsicID = Intrinsic::arm_crc32b; break;
4034  case ARM::BI__builtin_arm_crc32cb:
4035    CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
4036  case ARM::BI__builtin_arm_crc32h:
4037    CRCIntrinsicID = Intrinsic::arm_crc32h; break;
4038  case ARM::BI__builtin_arm_crc32ch:
4039    CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
4040  case ARM::BI__builtin_arm_crc32w:
4041  case ARM::BI__builtin_arm_crc32d:
4042    CRCIntrinsicID = Intrinsic::arm_crc32w; break;
4043  case ARM::BI__builtin_arm_crc32cw:
4044  case ARM::BI__builtin_arm_crc32cd:
4045    CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
4046  }
4047
4048  if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
4049    Value *Arg0 = EmitScalarExpr(E->getArg(0));
4050    Value *Arg1 = EmitScalarExpr(E->getArg(1));
4051
4052    // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
4053    // intrinsics, hence we need different codegen for these cases.
4054    if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
4055        BuiltinID == ARM::BI__builtin_arm_crc32cd) {
4056      Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
4057      Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
4058      Value *Arg1b = Builder.CreateLShr(Arg1, C1);
4059      Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
4060
4061      Function *F = CGM.getIntrinsic(CRCIntrinsicID);
4062      Value *Res = Builder.CreateCall2(F, Arg0, Arg1a);
4063      return Builder.CreateCall2(F, Res, Arg1b);
4064    } else {
4065      Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
4066
4067      Function *F = CGM.getIntrinsic(CRCIntrinsicID);
4068      return Builder.CreateCall2(F, Arg0, Arg1);
4069    }
4070  }
4071
4072  SmallVector<Value*, 4> Ops;
4073  llvm::Value *Align = 0;
4074  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
4075    if (i == 0) {
4076      switch (BuiltinID) {
4077      case ARM::BI__builtin_neon_vld1_v:
4078      case ARM::BI__builtin_neon_vld1q_v:
4079      case ARM::BI__builtin_neon_vld1q_lane_v:
4080      case ARM::BI__builtin_neon_vld1_lane_v:
4081      case ARM::BI__builtin_neon_vld1_dup_v:
4082      case ARM::BI__builtin_neon_vld1q_dup_v:
4083      case ARM::BI__builtin_neon_vst1_v:
4084      case ARM::BI__builtin_neon_vst1q_v:
4085      case ARM::BI__builtin_neon_vst1q_lane_v:
4086      case ARM::BI__builtin_neon_vst1_lane_v:
4087      case ARM::BI__builtin_neon_vst2_v:
4088      case ARM::BI__builtin_neon_vst2q_v:
4089      case ARM::BI__builtin_neon_vst2_lane_v:
4090      case ARM::BI__builtin_neon_vst2q_lane_v:
4091      case ARM::BI__builtin_neon_vst3_v:
4092      case ARM::BI__builtin_neon_vst3q_v:
4093      case ARM::BI__builtin_neon_vst3_lane_v:
4094      case ARM::BI__builtin_neon_vst3q_lane_v:
4095      case ARM::BI__builtin_neon_vst4_v:
4096      case ARM::BI__builtin_neon_vst4q_v:
4097      case ARM::BI__builtin_neon_vst4_lane_v:
4098      case ARM::BI__builtin_neon_vst4q_lane_v:
4099        // Get the alignment for the argument in addition to the value;
4100        // we'll use it later.
4101        std::pair<llvm::Value*, unsigned> Src =
4102            EmitPointerWithAlignment(E->getArg(0));
4103        Ops.push_back(Src.first);
4104        Align = Builder.getInt32(Src.second);
4105        continue;
4106      }
4107    }
4108    if (i == 1) {
4109      switch (BuiltinID) {
4110      case ARM::BI__builtin_neon_vld2_v:
4111      case ARM::BI__builtin_neon_vld2q_v:
4112      case ARM::BI__builtin_neon_vld3_v:
4113      case ARM::BI__builtin_neon_vld3q_v:
4114      case ARM::BI__builtin_neon_vld4_v:
4115      case ARM::BI__builtin_neon_vld4q_v:
4116      case ARM::BI__builtin_neon_vld2_lane_v:
4117      case ARM::BI__builtin_neon_vld2q_lane_v:
4118      case ARM::BI__builtin_neon_vld3_lane_v:
4119      case ARM::BI__builtin_neon_vld3q_lane_v:
4120      case ARM::BI__builtin_neon_vld4_lane_v:
4121      case ARM::BI__builtin_neon_vld4q_lane_v:
4122      case ARM::BI__builtin_neon_vld2_dup_v:
4123      case ARM::BI__builtin_neon_vld3_dup_v:
4124      case ARM::BI__builtin_neon_vld4_dup_v:
4125        // Get the alignment for the argument in addition to the value;
4126        // we'll use it later.
4127        std::pair<llvm::Value*, unsigned> Src =
4128            EmitPointerWithAlignment(E->getArg(1));
4129        Ops.push_back(Src.first);
4130        Align = Builder.getInt32(Src.second);
4131        continue;
4132      }
4133    }
4134    Ops.push_back(EmitScalarExpr(E->getArg(i)));
4135  }
4136
4137  // vget_lane and vset_lane are not overloaded and do not have an extra
4138  // argument that specifies the vector type.
4139  switch (BuiltinID) {
4140  default: break;
4141  case ARM::BI__builtin_neon_vget_lane_i8:
4142  case ARM::BI__builtin_neon_vget_lane_i16:
4143  case ARM::BI__builtin_neon_vget_lane_i32:
4144  case ARM::BI__builtin_neon_vget_lane_i64:
4145  case ARM::BI__builtin_neon_vget_lane_f32:
4146  case ARM::BI__builtin_neon_vgetq_lane_i8:
4147  case ARM::BI__builtin_neon_vgetq_lane_i16:
4148  case ARM::BI__builtin_neon_vgetq_lane_i32:
4149  case ARM::BI__builtin_neon_vgetq_lane_i64:
4150  case ARM::BI__builtin_neon_vgetq_lane_f32:
4151    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4152                                        "vget_lane");
4153  case ARM::BI__builtin_neon_vset_lane_i8:
4154  case ARM::BI__builtin_neon_vset_lane_i16:
4155  case ARM::BI__builtin_neon_vset_lane_i32:
4156  case ARM::BI__builtin_neon_vset_lane_i64:
4157  case ARM::BI__builtin_neon_vset_lane_f32:
4158  case ARM::BI__builtin_neon_vsetq_lane_i8:
4159  case ARM::BI__builtin_neon_vsetq_lane_i16:
4160  case ARM::BI__builtin_neon_vsetq_lane_i32:
4161  case ARM::BI__builtin_neon_vsetq_lane_i64:
4162  case ARM::BI__builtin_neon_vsetq_lane_f32:
4163    Ops.push_back(EmitScalarExpr(E->getArg(2)));
4164    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4165  }
4166
4167  // Get the last argument, which specifies the vector type.
4168  llvm::APSInt Result;
4169  const Expr *Arg = E->getArg(E->getNumArgs()-1);
4170  if (!Arg->isIntegerConstantExpr(Result, getContext()))
4171    return 0;
4172
4173  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
4174      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
4175    // Determine the overloaded type of this builtin.
4176    llvm::Type *Ty;
4177    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
4178      Ty = FloatTy;
4179    else
4180      Ty = DoubleTy;
4181
4182    // Determine whether this is an unsigned conversion or not.
4183    bool usgn = Result.getZExtValue() == 1;
4184    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
4185
4186    // Call the appropriate intrinsic.
4187    Function *F = CGM.getIntrinsic(Int, Ty);
4188    return Builder.CreateCall(F, Ops, "vcvtr");
4189  }
4190
4191  // Determine the type of this overloaded NEON intrinsic.
4192  NeonTypeFlags Type(Result.getZExtValue());
4193  bool usgn = Type.isUnsigned();
4194  bool quad = Type.isQuad();
4195  bool rightShift = false;
4196
4197  llvm::VectorType *VTy = GetNeonType(this, Type);
4198  llvm::Type *Ty = VTy;
4199  if (!Ty)
4200    return 0;
4201
4202  unsigned Int;
4203  switch (BuiltinID) {
4204  default: return 0;
4205  case ARM::BI__builtin_neon_vbsl_v:
4206  case ARM::BI__builtin_neon_vbslq_v:
4207    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty),
4208                        Ops, "vbsl");
4209  case ARM::BI__builtin_neon_vabd_v:
4210  case ARM::BI__builtin_neon_vabdq_v:
4211    Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
4212    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
4213  case ARM::BI__builtin_neon_vabs_v:
4214  case ARM::BI__builtin_neon_vabsq_v:
4215    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
4216                        Ops, "vabs");
4217  case ARM::BI__builtin_neon_vaddhn_v: {
4218    llvm::VectorType *SrcTy =
4219        llvm::VectorType::getExtendedElementVectorType(VTy);
4220
4221    // %sum = add <4 x i32> %lhs, %rhs
4222    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4223    Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4224    Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
4225
4226    // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4227    Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
4228                                       SrcTy->getScalarSizeInBits() / 2);
4229    ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
4230    Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
4231
4232    // %res = trunc <4 x i32> %high to <4 x i16>
4233    return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
4234  }
4235  case ARM::BI__builtin_neon_vcale_v:
4236    std::swap(Ops[0], Ops[1]);
4237  case ARM::BI__builtin_neon_vcage_v: {
4238    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
4239    return EmitNeonCall(F, Ops, "vcage");
4240  }
4241  case ARM::BI__builtin_neon_vcaleq_v:
4242    std::swap(Ops[0], Ops[1]);
4243  case ARM::BI__builtin_neon_vcageq_v: {
4244    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
4245    return EmitNeonCall(F, Ops, "vcage");
4246  }
4247  case ARM::BI__builtin_neon_vcalt_v:
4248    std::swap(Ops[0], Ops[1]);
4249  case ARM::BI__builtin_neon_vcagt_v: {
4250    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
4251    return EmitNeonCall(F, Ops, "vcagt");
4252  }
4253  case ARM::BI__builtin_neon_vcaltq_v:
4254    std::swap(Ops[0], Ops[1]);
4255  case ARM::BI__builtin_neon_vcagtq_v: {
4256    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
4257    return EmitNeonCall(F, Ops, "vcagt");
4258  }
4259  case ARM::BI__builtin_neon_vcls_v:
4260  case ARM::BI__builtin_neon_vclsq_v: {
4261    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
4262    return EmitNeonCall(F, Ops, "vcls");
4263  }
4264  case ARM::BI__builtin_neon_vclz_v:
4265  case ARM::BI__builtin_neon_vclzq_v: {
4266    // Generate target-independent intrinsic; also need to add second argument
4267    // for whether or not clz of zero is undefined; on ARM it isn't.
4268    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty);
4269    Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
4270    return EmitNeonCall(F, Ops, "vclz");
4271  }
4272  case ARM::BI__builtin_neon_vcnt_v:
4273  case ARM::BI__builtin_neon_vcntq_v: {
4274    // generate target-independent intrinsic
4275    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty);
4276    return EmitNeonCall(F, Ops, "vctpop");
4277  }
4278  case ARM::BI__builtin_neon_vcvt_f16_v: {
4279    assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
4280           "unexpected vcvt_f16_v builtin");
4281    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
4282    return EmitNeonCall(F, Ops, "vcvt");
4283  }
4284  case ARM::BI__builtin_neon_vcvt_f32_f16: {
4285    assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
4286           "unexpected vcvt_f32_f16 builtin");
4287    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
4288    return EmitNeonCall(F, Ops, "vcvt");
4289  }
4290  case ARM::BI__builtin_neon_vcvt_f32_v:
4291  case ARM::BI__builtin_neon_vcvtq_f32_v:
4292    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4293    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4294    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
4295                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
4296  case ARM::BI__builtin_neon_vcvt_s32_v:
4297  case ARM::BI__builtin_neon_vcvt_u32_v:
4298  case ARM::BI__builtin_neon_vcvtq_s32_v:
4299  case ARM::BI__builtin_neon_vcvtq_u32_v: {
4300    llvm::Type *FloatTy =
4301      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4302    Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
4303    return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
4304                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
4305  }
4306  case ARM::BI__builtin_neon_vcvt_n_f32_v:
4307  case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
4308    llvm::Type *FloatTy =
4309      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4310    llvm::Type *Tys[2] = { FloatTy, Ty };
4311    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
4312               : Intrinsic::arm_neon_vcvtfxs2fp;
4313    Function *F = CGM.getIntrinsic(Int, Tys);
4314    return EmitNeonCall(F, Ops, "vcvt_n");
4315  }
4316  case ARM::BI__builtin_neon_vcvt_n_s32_v:
4317  case ARM::BI__builtin_neon_vcvt_n_u32_v:
4318  case ARM::BI__builtin_neon_vcvtq_n_s32_v:
4319  case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
4320    llvm::Type *FloatTy =
4321      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4322    llvm::Type *Tys[2] = { Ty, FloatTy };
4323    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
4324               : Intrinsic::arm_neon_vcvtfp2fxs;
4325    Function *F = CGM.getIntrinsic(Int, Tys);
4326    return EmitNeonCall(F, Ops, "vcvt_n");
4327  }
4328  case ARM::BI__builtin_neon_vext_v:
4329  case ARM::BI__builtin_neon_vextq_v: {
4330    int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
4331    SmallVector<Constant*, 16> Indices;
4332    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4333      Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
4334
4335    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4336    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4337    Value *SV = llvm::ConstantVector::get(Indices);
4338    return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
4339  }
4340  case ARM::BI__builtin_neon_vhadd_v:
4341  case ARM::BI__builtin_neon_vhaddq_v:
4342    Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
4343    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
4344  case ARM::BI__builtin_neon_vhsub_v:
4345  case ARM::BI__builtin_neon_vhsubq_v:
4346    Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
4347    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
4348  case ARM::BI__builtin_neon_vld1_v:
4349  case ARM::BI__builtin_neon_vld1q_v:
4350    Ops.push_back(Align);
4351    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
4352                        Ops, "vld1");
4353  case ARM::BI__builtin_neon_vld1q_lane_v:
4354    // Handle 64-bit integer elements as a special case.  Use shuffles of
4355    // one-element vectors to avoid poor code for i64 in the backend.
4356    if (VTy->getElementType()->isIntegerTy(64)) {
4357      // Extract the other lane.
4358      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4359      int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
4360      Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
4361      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
4362      // Load the value as a one-element vector.
4363      Ty = llvm::VectorType::get(VTy->getElementType(), 1);
4364      Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
4365      Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
4366      // Combine them.
4367      SmallVector<Constant*, 2> Indices;
4368      Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
4369      Indices.push_back(ConstantInt::get(Int32Ty, Lane));
4370      SV = llvm::ConstantVector::get(Indices);
4371      return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
4372    }
4373    // fall through
4374  case ARM::BI__builtin_neon_vld1_lane_v: {
4375    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4376    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
4377    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4378    LoadInst *Ld = Builder.CreateLoad(Ops[0]);
4379    Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4380    return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
4381  }
4382  case ARM::BI__builtin_neon_vld1_dup_v:
4383  case ARM::BI__builtin_neon_vld1q_dup_v: {
4384    Value *V = UndefValue::get(Ty);
4385    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
4386    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4387    LoadInst *Ld = Builder.CreateLoad(Ops[0]);
4388    Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4389    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
4390    Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
4391    return EmitNeonSplat(Ops[0], CI);
4392  }
4393  case ARM::BI__builtin_neon_vld2_v:
4394  case ARM::BI__builtin_neon_vld2q_v: {
4395    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
4396    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
4397    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4398    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4399    return Builder.CreateStore(Ops[1], Ops[0]);
4400  }
4401  case ARM::BI__builtin_neon_vld3_v:
4402  case ARM::BI__builtin_neon_vld3q_v: {
4403    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
4404    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
4405    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4406    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4407    return Builder.CreateStore(Ops[1], Ops[0]);
4408  }
4409  case ARM::BI__builtin_neon_vld4_v:
4410  case ARM::BI__builtin_neon_vld4q_v: {
4411    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
4412    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
4413    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4414    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4415    return Builder.CreateStore(Ops[1], Ops[0]);
4416  }
4417  case ARM::BI__builtin_neon_vld2_lane_v:
4418  case ARM::BI__builtin_neon_vld2q_lane_v: {
4419    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
4420    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4421    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4422    Ops.push_back(Align);
4423    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
4424    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4425    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4426    return Builder.CreateStore(Ops[1], Ops[0]);
4427  }
4428  case ARM::BI__builtin_neon_vld3_lane_v:
4429  case ARM::BI__builtin_neon_vld3q_lane_v: {
4430    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
4431    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4432    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4433    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
4434    Ops.push_back(Align);
4435    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
4436    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4437    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4438    return Builder.CreateStore(Ops[1], Ops[0]);
4439  }
4440  case ARM::BI__builtin_neon_vld4_lane_v:
4441  case ARM::BI__builtin_neon_vld4q_lane_v: {
4442    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
4443    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4444    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4445    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
4446    Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
4447    Ops.push_back(Align);
4448    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
4449    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4450    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4451    return Builder.CreateStore(Ops[1], Ops[0]);
4452  }
4453  case ARM::BI__builtin_neon_vld2_dup_v:
4454  case ARM::BI__builtin_neon_vld3_dup_v:
4455  case ARM::BI__builtin_neon_vld4_dup_v: {
4456    // Handle 64-bit elements as a special-case.  There is no "dup" needed.
4457    if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
4458      switch (BuiltinID) {
4459      case ARM::BI__builtin_neon_vld2_dup_v:
4460        Int = Intrinsic::arm_neon_vld2;
4461        break;
4462      case ARM::BI__builtin_neon_vld3_dup_v:
4463        Int = Intrinsic::arm_neon_vld3;
4464        break;
4465      case ARM::BI__builtin_neon_vld4_dup_v:
4466        Int = Intrinsic::arm_neon_vld4;
4467        break;
4468      default: llvm_unreachable("unknown vld_dup intrinsic?");
4469      }
4470      Function *F = CGM.getIntrinsic(Int, Ty);
4471      Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
4472      Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4473      Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4474      return Builder.CreateStore(Ops[1], Ops[0]);
4475    }
4476    switch (BuiltinID) {
4477    case ARM::BI__builtin_neon_vld2_dup_v:
4478      Int = Intrinsic::arm_neon_vld2lane;
4479      break;
4480    case ARM::BI__builtin_neon_vld3_dup_v:
4481      Int = Intrinsic::arm_neon_vld3lane;
4482      break;
4483    case ARM::BI__builtin_neon_vld4_dup_v:
4484      Int = Intrinsic::arm_neon_vld4lane;
4485      break;
4486    default: llvm_unreachable("unknown vld_dup intrinsic?");
4487    }
4488    Function *F = CGM.getIntrinsic(Int, Ty);
4489    llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
4490
4491    SmallVector<Value*, 6> Args;
4492    Args.push_back(Ops[1]);
4493    Args.append(STy->getNumElements(), UndefValue::get(Ty));
4494
4495    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
4496    Args.push_back(CI);
4497    Args.push_back(Align);
4498
4499    Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
4500    // splat lane 0 to all elts in each vector of the result.
4501    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4502      Value *Val = Builder.CreateExtractValue(Ops[1], i);
4503      Value *Elt = Builder.CreateBitCast(Val, Ty);
4504      Elt = EmitNeonSplat(Elt, CI);
4505      Elt = Builder.CreateBitCast(Elt, Val->getType());
4506      Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
4507    }
4508    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4509    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4510    return Builder.CreateStore(Ops[1], Ops[0]);
4511  }
4512  case ARM::BI__builtin_neon_vmax_v:
4513  case ARM::BI__builtin_neon_vmaxq_v:
4514    Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
4515    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
4516  case ARM::BI__builtin_neon_vmin_v:
4517  case ARM::BI__builtin_neon_vminq_v:
4518    Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
4519    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
4520  case ARM::BI__builtin_neon_vmovl_v: {
4521    llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
4522    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
4523    if (usgn)
4524      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
4525    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
4526  }
4527  case ARM::BI__builtin_neon_vmovn_v: {
4528    llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
4529    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
4530    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
4531  }
4532  case ARM::BI__builtin_neon_vmul_v:
4533  case ARM::BI__builtin_neon_vmulq_v:
4534    assert(Type.isPoly() && "vmul builtin only supported for polynomial types");
4535    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
4536                        Ops, "vmul");
4537  case ARM::BI__builtin_neon_vmull_v:
4538    // FIXME: the integer vmull operations could be emitted in terms of pure
4539    // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
4540    // hoisting the exts outside loops. Until global ISel comes along that can
4541    // see through such movement this leads to bad CodeGen. So we need an
4542    // intrinsic for now.
4543    Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
4544    Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
4545    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
4546  case ARM::BI__builtin_neon_vfma_v:
4547  case ARM::BI__builtin_neon_vfmaq_v: {
4548    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4549    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4550    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4551    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4552
4553    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
4554    return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
4555  }
4556  case ARM::BI__builtin_neon_vpadal_v:
4557  case ARM::BI__builtin_neon_vpadalq_v: {
4558    Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
4559    // The source operand type has twice as many elements of half the size.
4560    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4561    llvm::Type *EltTy =
4562      llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4563    llvm::Type *NarrowTy =
4564      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4565    llvm::Type *Tys[2] = { Ty, NarrowTy };
4566    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
4567  }
4568  case ARM::BI__builtin_neon_vpadd_v:
4569    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
4570                        Ops, "vpadd");
4571  case ARM::BI__builtin_neon_vpaddl_v:
4572  case ARM::BI__builtin_neon_vpaddlq_v: {
4573    Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
4574    // The source operand type has twice as many elements of half the size.
4575    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4576    llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4577    llvm::Type *NarrowTy =
4578      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4579    llvm::Type *Tys[2] = { Ty, NarrowTy };
4580    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
4581  }
4582  case ARM::BI__builtin_neon_vpmax_v:
4583    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
4584    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
4585  case ARM::BI__builtin_neon_vpmin_v:
4586    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
4587    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
4588  case ARM::BI__builtin_neon_vqabs_v:
4589  case ARM::BI__builtin_neon_vqabsq_v:
4590    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
4591                        Ops, "vqabs");
4592  case ARM::BI__builtin_neon_vqadd_v:
4593  case ARM::BI__builtin_neon_vqaddq_v:
4594    Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
4595    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
4596  case ARM::BI__builtin_neon_vqdmlal_v: {
4597    SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
4598    Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4599                              MulOps, "vqdmlal");
4600
4601    SmallVector<Value *, 2> AddOps;
4602    AddOps.push_back(Ops[0]);
4603    AddOps.push_back(Mul);
4604    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqadds, Ty),
4605                        AddOps, "vqdmlal");
4606  }
4607  case ARM::BI__builtin_neon_vqdmlsl_v: {
4608    SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
4609    Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4610                              MulOps, "vqdmlsl");
4611
4612    SmallVector<Value *, 2> SubOps;
4613    SubOps.push_back(Ops[0]);
4614    SubOps.push_back(Mul);
4615    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqsubs, Ty),
4616                        SubOps, "vqdmlsl");
4617  }
4618  case ARM::BI__builtin_neon_vqdmulh_v:
4619  case ARM::BI__builtin_neon_vqdmulhq_v:
4620    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
4621                        Ops, "vqdmulh");
4622  case ARM::BI__builtin_neon_vqdmull_v:
4623    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4624                        Ops, "vqdmull");
4625  case ARM::BI__builtin_neon_vqmovn_v:
4626    Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
4627    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
4628  case ARM::BI__builtin_neon_vqmovun_v:
4629    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
4630                        Ops, "vqdmull");
4631  case ARM::BI__builtin_neon_vqneg_v:
4632  case ARM::BI__builtin_neon_vqnegq_v:
4633    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
4634                        Ops, "vqneg");
4635  case ARM::BI__builtin_neon_vqrdmulh_v:
4636  case ARM::BI__builtin_neon_vqrdmulhq_v:
4637    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
4638                        Ops, "vqrdmulh");
4639  case ARM::BI__builtin_neon_vqrshl_v:
4640  case ARM::BI__builtin_neon_vqrshlq_v:
4641    Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
4642    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
4643  case ARM::BI__builtin_neon_vqrshrn_n_v:
4644    Int =
4645      usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
4646    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
4647                        1, true);
4648  case ARM::BI__builtin_neon_vqrshrun_n_v:
4649    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
4650                        Ops, "vqrshrun_n", 1, true);
4651  case ARM::BI__builtin_neon_vqshl_v:
4652  case ARM::BI__builtin_neon_vqshlq_v:
4653    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
4654    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
4655  case ARM::BI__builtin_neon_vqshl_n_v:
4656  case ARM::BI__builtin_neon_vqshlq_n_v:
4657    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
4658    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
4659                        1, false);
4660  case ARM::BI__builtin_neon_vqshlu_n_v:
4661  case ARM::BI__builtin_neon_vqshluq_n_v:
4662    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
4663                        Ops, "vqshlu", 1, false);
4664  case ARM::BI__builtin_neon_vqshrn_n_v:
4665    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
4666    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
4667                        1, true);
4668  case ARM::BI__builtin_neon_vqshrun_n_v:
4669    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
4670                        Ops, "vqshrun_n", 1, true);
4671  case ARM::BI__builtin_neon_vqsub_v:
4672  case ARM::BI__builtin_neon_vqsubq_v:
4673    Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
4674    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
4675  case ARM::BI__builtin_neon_vraddhn_v:
4676    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
4677                        Ops, "vraddhn");
4678  case ARM::BI__builtin_neon_vrecpe_v:
4679  case ARM::BI__builtin_neon_vrecpeq_v:
4680    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
4681                        Ops, "vrecpe");
4682  case ARM::BI__builtin_neon_vrecps_v:
4683  case ARM::BI__builtin_neon_vrecpsq_v:
4684    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
4685                        Ops, "vrecps");
4686  case ARM::BI__builtin_neon_vrhadd_v:
4687  case ARM::BI__builtin_neon_vrhaddq_v:
4688    Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
4689    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
4690  case ARM::BI__builtin_neon_vrshl_v:
4691  case ARM::BI__builtin_neon_vrshlq_v:
4692    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4693    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
4694  case ARM::BI__builtin_neon_vrshrn_n_v:
4695    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
4696                        Ops, "vrshrn_n", 1, true);
4697  case ARM::BI__builtin_neon_vrshr_n_v:
4698  case ARM::BI__builtin_neon_vrshrq_n_v:
4699    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4700    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
4701  case ARM::BI__builtin_neon_vrsqrte_v:
4702  case ARM::BI__builtin_neon_vrsqrteq_v:
4703    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
4704                        Ops, "vrsqrte");
4705  case ARM::BI__builtin_neon_vrsqrts_v:
4706  case ARM::BI__builtin_neon_vrsqrtsq_v:
4707    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
4708                        Ops, "vrsqrts");
4709  case ARM::BI__builtin_neon_vrsra_n_v:
4710  case ARM::BI__builtin_neon_vrsraq_n_v:
4711    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4712    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4713    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
4714    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4715    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
4716    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
4717  case ARM::BI__builtin_neon_vrsubhn_v:
4718    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
4719                        Ops, "vrsubhn");
4720  case ARM::BI__builtin_neon_vshl_v:
4721  case ARM::BI__builtin_neon_vshlq_v:
4722    Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
4723    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
4724  case ARM::BI__builtin_neon_vshll_n_v:
4725    Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
4726    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
4727  case ARM::BI__builtin_neon_vshl_n_v:
4728  case ARM::BI__builtin_neon_vshlq_n_v:
4729    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
4730    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
4731                             "vshl_n");
4732  case ARM::BI__builtin_neon_vshrn_n_v:
4733    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
4734                        Ops, "vshrn_n", 1, true);
4735  case ARM::BI__builtin_neon_vshr_n_v:
4736  case ARM::BI__builtin_neon_vshrq_n_v:
4737    return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, usgn, "vshr_n");
4738  case ARM::BI__builtin_neon_vsri_n_v:
4739  case ARM::BI__builtin_neon_vsriq_n_v:
4740    rightShift = true;
4741  case ARM::BI__builtin_neon_vsli_n_v:
4742  case ARM::BI__builtin_neon_vsliq_n_v:
4743    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
4744    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
4745                        Ops, "vsli_n");
4746  case ARM::BI__builtin_neon_vsra_n_v:
4747  case ARM::BI__builtin_neon_vsraq_n_v:
4748    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4749    Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
4750    return Builder.CreateAdd(Ops[0], Ops[1]);
4751  case ARM::BI__builtin_neon_vst1_v:
4752  case ARM::BI__builtin_neon_vst1q_v:
4753    Ops.push_back(Align);
4754    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
4755                        Ops, "");
4756  case ARM::BI__builtin_neon_vst1q_lane_v:
4757    // Handle 64-bit integer elements as a special case.  Use a shuffle to get
4758    // a one-element vector and avoid poor code for i64 in the backend.
4759    if (VTy->getElementType()->isIntegerTy(64)) {
4760      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4761      Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
4762      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
4763      Ops[2] = Align;
4764      return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
4765                                                 Ops[1]->getType()), Ops);
4766    }
4767    // fall through
4768  case ARM::BI__builtin_neon_vst1_lane_v: {
4769    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4770    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
4771    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4772    StoreInst *St = Builder.CreateStore(Ops[1],
4773                                        Builder.CreateBitCast(Ops[0], Ty));
4774    St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4775    return St;
4776  }
4777  case ARM::BI__builtin_neon_vst2_v:
4778  case ARM::BI__builtin_neon_vst2q_v:
4779    Ops.push_back(Align);
4780    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
4781                        Ops, "");
4782  case ARM::BI__builtin_neon_vst2_lane_v:
4783  case ARM::BI__builtin_neon_vst2q_lane_v:
4784    Ops.push_back(Align);
4785    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
4786                        Ops, "");
4787  case ARM::BI__builtin_neon_vst3_v:
4788  case ARM::BI__builtin_neon_vst3q_v:
4789    Ops.push_back(Align);
4790    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
4791                        Ops, "");
4792  case ARM::BI__builtin_neon_vst3_lane_v:
4793  case ARM::BI__builtin_neon_vst3q_lane_v:
4794    Ops.push_back(Align);
4795    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
4796                        Ops, "");
4797  case ARM::BI__builtin_neon_vst4_v:
4798  case ARM::BI__builtin_neon_vst4q_v:
4799    Ops.push_back(Align);
4800    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
4801                        Ops, "");
4802  case ARM::BI__builtin_neon_vst4_lane_v:
4803  case ARM::BI__builtin_neon_vst4q_lane_v:
4804    Ops.push_back(Align);
4805    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
4806                        Ops, "");
4807  case ARM::BI__builtin_neon_vsubhn_v: {
4808    llvm::VectorType *SrcTy =
4809        llvm::VectorType::getExtendedElementVectorType(VTy);
4810
4811    // %sum = add <4 x i32> %lhs, %rhs
4812    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4813    Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4814    Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
4815
4816    // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4817    Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
4818                                       SrcTy->getScalarSizeInBits() / 2);
4819    ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
4820    Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
4821
4822    // %res = trunc <4 x i32> %high to <4 x i16>
4823    return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
4824  }
4825  case ARM::BI__builtin_neon_vtbl1_v:
4826    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
4827                        Ops, "vtbl1");
4828  case ARM::BI__builtin_neon_vtbl2_v:
4829    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
4830                        Ops, "vtbl2");
4831  case ARM::BI__builtin_neon_vtbl3_v:
4832    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
4833                        Ops, "vtbl3");
4834  case ARM::BI__builtin_neon_vtbl4_v:
4835    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
4836                        Ops, "vtbl4");
4837  case ARM::BI__builtin_neon_vtbx1_v:
4838    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
4839                        Ops, "vtbx1");
4840  case ARM::BI__builtin_neon_vtbx2_v:
4841    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
4842                        Ops, "vtbx2");
4843  case ARM::BI__builtin_neon_vtbx3_v:
4844    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
4845                        Ops, "vtbx3");
4846  case ARM::BI__builtin_neon_vtbx4_v:
4847    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
4848                        Ops, "vtbx4");
4849  case ARM::BI__builtin_neon_vtst_v:
4850  case ARM::BI__builtin_neon_vtstq_v: {
4851    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4852    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4853    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
4854    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
4855                                ConstantAggregateZero::get(Ty));
4856    return Builder.CreateSExt(Ops[0], Ty, "vtst");
4857  }
4858  case ARM::BI__builtin_neon_vtrn_v:
4859  case ARM::BI__builtin_neon_vtrnq_v: {
4860    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4861    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4862    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4863    Value *SV = 0;
4864
4865    for (unsigned vi = 0; vi != 2; ++vi) {
4866      SmallVector<Constant*, 16> Indices;
4867      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4868        Indices.push_back(Builder.getInt32(i+vi));
4869        Indices.push_back(Builder.getInt32(i+e+vi));
4870      }
4871      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4872      SV = llvm::ConstantVector::get(Indices);
4873      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
4874      SV = Builder.CreateStore(SV, Addr);
4875    }
4876    return SV;
4877  }
4878  case ARM::BI__builtin_neon_vuzp_v:
4879  case ARM::BI__builtin_neon_vuzpq_v: {
4880    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4881    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4882    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4883    Value *SV = 0;
4884
4885    for (unsigned vi = 0; vi != 2; ++vi) {
4886      SmallVector<Constant*, 16> Indices;
4887      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4888        Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
4889
4890      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4891      SV = llvm::ConstantVector::get(Indices);
4892      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
4893      SV = Builder.CreateStore(SV, Addr);
4894    }
4895    return SV;
4896  }
4897  case ARM::BI__builtin_neon_vzip_v:
4898  case ARM::BI__builtin_neon_vzipq_v: {
4899    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4900    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4901    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4902    Value *SV = 0;
4903
4904    for (unsigned vi = 0; vi != 2; ++vi) {
4905      SmallVector<Constant*, 16> Indices;
4906      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4907        Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
4908        Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
4909      }
4910      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4911      SV = llvm::ConstantVector::get(Indices);
4912      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
4913      SV = Builder.CreateStore(SV, Addr);
4914    }
4915    return SV;
4916  }
4917  }
4918}
4919
4920llvm::Value *CodeGenFunction::
4921BuildVector(ArrayRef<llvm::Value*> Ops) {
4922  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
4923         "Not a power-of-two sized vector!");
4924  bool AllConstants = true;
4925  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
4926    AllConstants &= isa<Constant>(Ops[i]);
4927
4928  // If this is a constant vector, create a ConstantVector.
4929  if (AllConstants) {
4930    SmallVector<llvm::Constant*, 16> CstOps;
4931    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4932      CstOps.push_back(cast<Constant>(Ops[i]));
4933    return llvm::ConstantVector::get(CstOps);
4934  }
4935
4936  // Otherwise, insertelement the values to build the vector.
4937  Value *Result =
4938    llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
4939
4940  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4941    Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
4942
4943  return Result;
4944}
4945
4946Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
4947                                           const CallExpr *E) {
4948  SmallVector<Value*, 4> Ops;
4949
4950  // Find out if any arguments are required to be integer constant expressions.
4951  unsigned ICEArguments = 0;
4952  ASTContext::GetBuiltinTypeError Error;
4953  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4954  assert(Error == ASTContext::GE_None && "Should not codegen an error");
4955
4956  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
4957    // If this is a normal argument, just emit it as a scalar.
4958    if ((ICEArguments & (1 << i)) == 0) {
4959      Ops.push_back(EmitScalarExpr(E->getArg(i)));
4960      continue;
4961    }
4962
4963    // If this is required to be a constant, constant fold it so that we know
4964    // that the generated intrinsic gets a ConstantInt.
4965    llvm::APSInt Result;
4966    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
4967    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
4968    Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
4969  }
4970
4971  switch (BuiltinID) {
4972  default: return 0;
4973  case X86::BI__builtin_ia32_vec_init_v8qi:
4974  case X86::BI__builtin_ia32_vec_init_v4hi:
4975  case X86::BI__builtin_ia32_vec_init_v2si:
4976    return Builder.CreateBitCast(BuildVector(Ops),
4977                                 llvm::Type::getX86_MMXTy(getLLVMContext()));
4978  case X86::BI__builtin_ia32_vec_ext_v2si:
4979    return Builder.CreateExtractElement(Ops[0],
4980                                  llvm::ConstantInt::get(Ops[1]->getType(), 0));
4981  case X86::BI__builtin_ia32_ldmxcsr: {
4982    Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
4983    Builder.CreateStore(Ops[0], Tmp);
4984    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
4985                              Builder.CreateBitCast(Tmp, Int8PtrTy));
4986  }
4987  case X86::BI__builtin_ia32_stmxcsr: {
4988    Value *Tmp = CreateMemTemp(E->getType());
4989    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
4990                       Builder.CreateBitCast(Tmp, Int8PtrTy));
4991    return Builder.CreateLoad(Tmp, "stmxcsr");
4992  }
4993  case X86::BI__builtin_ia32_storehps:
4994  case X86::BI__builtin_ia32_storelps: {
4995    llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
4996    llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
4997
4998    // cast val v2i64
4999    Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
5000
5001    // extract (0, 1)
5002    unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
5003    llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
5004    Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
5005
5006    // cast pointer to i64 & store
5007    Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
5008    return Builder.CreateStore(Ops[1], Ops[0]);
5009  }
5010  case X86::BI__builtin_ia32_palignr: {
5011    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5012
5013    // If palignr is shifting the pair of input vectors less than 9 bytes,
5014    // emit a shuffle instruction.
5015    if (shiftVal <= 8) {
5016      SmallVector<llvm::Constant*, 8> Indices;
5017      for (unsigned i = 0; i != 8; ++i)
5018        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
5019
5020      Value* SV = llvm::ConstantVector::get(Indices);
5021      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5022    }
5023
5024    // If palignr is shifting the pair of input vectors more than 8 but less
5025    // than 16 bytes, emit a logical right shift of the destination.
5026    if (shiftVal < 16) {
5027      // MMX has these as 1 x i64 vectors for some odd optimization reasons.
5028      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
5029
5030      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5031      Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
5032
5033      // create i32 constant
5034      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
5035      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
5036    }
5037
5038    // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
5039    return llvm::Constant::getNullValue(ConvertType(E->getType()));
5040  }
5041  case X86::BI__builtin_ia32_palignr128: {
5042    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5043
5044    // If palignr is shifting the pair of input vectors less than 17 bytes,
5045    // emit a shuffle instruction.
5046    if (shiftVal <= 16) {
5047      SmallVector<llvm::Constant*, 16> Indices;
5048      for (unsigned i = 0; i != 16; ++i)
5049        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
5050
5051      Value* SV = llvm::ConstantVector::get(Indices);
5052      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5053    }
5054
5055    // If palignr is shifting the pair of input vectors more than 16 but less
5056    // than 32 bytes, emit a logical right shift of the destination.
5057    if (shiftVal < 32) {
5058      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
5059
5060      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5061      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
5062
5063      // create i32 constant
5064      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
5065      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
5066    }
5067
5068    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
5069    return llvm::Constant::getNullValue(ConvertType(E->getType()));
5070  }
5071  case X86::BI__builtin_ia32_palignr256: {
5072    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5073
5074    // If palignr is shifting the pair of input vectors less than 17 bytes,
5075    // emit a shuffle instruction.
5076    if (shiftVal <= 16) {
5077      SmallVector<llvm::Constant*, 32> Indices;
5078      // 256-bit palignr operates on 128-bit lanes so we need to handle that
5079      for (unsigned l = 0; l != 2; ++l) {
5080        unsigned LaneStart = l * 16;
5081        unsigned LaneEnd = (l+1) * 16;
5082        for (unsigned i = 0; i != 16; ++i) {
5083          unsigned Idx = shiftVal + i + LaneStart;
5084          if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
5085          Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
5086        }
5087      }
5088
5089      Value* SV = llvm::ConstantVector::get(Indices);
5090      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5091    }
5092
5093    // If palignr is shifting the pair of input vectors more than 16 but less
5094    // than 32 bytes, emit a logical right shift of the destination.
5095    if (shiftVal < 32) {
5096      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
5097
5098      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5099      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
5100
5101      // create i32 constant
5102      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
5103      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
5104    }
5105
5106    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
5107    return llvm::Constant::getNullValue(ConvertType(E->getType()));
5108  }
5109  case X86::BI__builtin_ia32_movntps:
5110  case X86::BI__builtin_ia32_movntps256:
5111  case X86::BI__builtin_ia32_movntpd:
5112  case X86::BI__builtin_ia32_movntpd256:
5113  case X86::BI__builtin_ia32_movntdq:
5114  case X86::BI__builtin_ia32_movntdq256:
5115  case X86::BI__builtin_ia32_movnti:
5116  case X86::BI__builtin_ia32_movnti64: {
5117    llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
5118                                           Builder.getInt32(1));
5119
5120    // Convert the type of the pointer to a pointer to the stored type.
5121    Value *BC = Builder.CreateBitCast(Ops[0],
5122                                llvm::PointerType::getUnqual(Ops[1]->getType()),
5123                                      "cast");
5124    StoreInst *SI = Builder.CreateStore(Ops[1], BC);
5125    SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
5126
5127    // If the operand is an integer, we can't assume alignment. Otherwise,
5128    // assume natural alignment.
5129    QualType ArgTy = E->getArg(1)->getType();
5130    unsigned Align;
5131    if (ArgTy->isIntegerType())
5132      Align = 1;
5133    else
5134      Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
5135    SI->setAlignment(Align);
5136    return SI;
5137  }
5138  // 3DNow!
5139  case X86::BI__builtin_ia32_pswapdsf:
5140  case X86::BI__builtin_ia32_pswapdsi: {
5141    const char *name = 0;
5142    Intrinsic::ID ID = Intrinsic::not_intrinsic;
5143    switch(BuiltinID) {
5144    default: llvm_unreachable("Unsupported intrinsic!");
5145    case X86::BI__builtin_ia32_pswapdsf:
5146    case X86::BI__builtin_ia32_pswapdsi:
5147      name = "pswapd";
5148      ID = Intrinsic::x86_3dnowa_pswapd;
5149      break;
5150    }
5151    llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
5152    Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
5153    llvm::Function *F = CGM.getIntrinsic(ID);
5154    return Builder.CreateCall(F, Ops, name);
5155  }
5156  case X86::BI__builtin_ia32_rdrand16_step:
5157  case X86::BI__builtin_ia32_rdrand32_step:
5158  case X86::BI__builtin_ia32_rdrand64_step:
5159  case X86::BI__builtin_ia32_rdseed16_step:
5160  case X86::BI__builtin_ia32_rdseed32_step:
5161  case X86::BI__builtin_ia32_rdseed64_step: {
5162    Intrinsic::ID ID;
5163    switch (BuiltinID) {
5164    default: llvm_unreachable("Unsupported intrinsic!");
5165    case X86::BI__builtin_ia32_rdrand16_step:
5166      ID = Intrinsic::x86_rdrand_16;
5167      break;
5168    case X86::BI__builtin_ia32_rdrand32_step:
5169      ID = Intrinsic::x86_rdrand_32;
5170      break;
5171    case X86::BI__builtin_ia32_rdrand64_step:
5172      ID = Intrinsic::x86_rdrand_64;
5173      break;
5174    case X86::BI__builtin_ia32_rdseed16_step:
5175      ID = Intrinsic::x86_rdseed_16;
5176      break;
5177    case X86::BI__builtin_ia32_rdseed32_step:
5178      ID = Intrinsic::x86_rdseed_32;
5179      break;
5180    case X86::BI__builtin_ia32_rdseed64_step:
5181      ID = Intrinsic::x86_rdseed_64;
5182      break;
5183    }
5184
5185    Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
5186    Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
5187    return Builder.CreateExtractValue(Call, 1);
5188  }
5189  // AVX2 broadcast
5190  case X86::BI__builtin_ia32_vbroadcastsi256: {
5191    Value *VecTmp = CreateMemTemp(E->getArg(0)->getType());
5192    Builder.CreateStore(Ops[0], VecTmp);
5193    Value *F = CGM.getIntrinsic(Intrinsic::x86_avx2_vbroadcasti128);
5194    return Builder.CreateCall(F, Builder.CreateBitCast(VecTmp, Int8PtrTy));
5195  }
5196  }
5197}
5198
5199
5200Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
5201                                           const CallExpr *E) {
5202  SmallVector<Value*, 4> Ops;
5203
5204  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
5205    Ops.push_back(EmitScalarExpr(E->getArg(i)));
5206
5207  Intrinsic::ID ID = Intrinsic::not_intrinsic;
5208
5209  switch (BuiltinID) {
5210  default: return 0;
5211
5212  // vec_ld, vec_lvsl, vec_lvsr
5213  case PPC::BI__builtin_altivec_lvx:
5214  case PPC::BI__builtin_altivec_lvxl:
5215  case PPC::BI__builtin_altivec_lvebx:
5216  case PPC::BI__builtin_altivec_lvehx:
5217  case PPC::BI__builtin_altivec_lvewx:
5218  case PPC::BI__builtin_altivec_lvsl:
5219  case PPC::BI__builtin_altivec_lvsr:
5220  {
5221    Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
5222
5223    Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
5224    Ops.pop_back();
5225
5226    switch (BuiltinID) {
5227    default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
5228    case PPC::BI__builtin_altivec_lvx:
5229      ID = Intrinsic::ppc_altivec_lvx;
5230      break;
5231    case PPC::BI__builtin_altivec_lvxl:
5232      ID = Intrinsic::ppc_altivec_lvxl;
5233      break;
5234    case PPC::BI__builtin_altivec_lvebx:
5235      ID = Intrinsic::ppc_altivec_lvebx;
5236      break;
5237    case PPC::BI__builtin_altivec_lvehx:
5238      ID = Intrinsic::ppc_altivec_lvehx;
5239      break;
5240    case PPC::BI__builtin_altivec_lvewx:
5241      ID = Intrinsic::ppc_altivec_lvewx;
5242      break;
5243    case PPC::BI__builtin_altivec_lvsl:
5244      ID = Intrinsic::ppc_altivec_lvsl;
5245      break;
5246    case PPC::BI__builtin_altivec_lvsr:
5247      ID = Intrinsic::ppc_altivec_lvsr;
5248      break;
5249    }
5250    llvm::Function *F = CGM.getIntrinsic(ID);
5251    return Builder.CreateCall(F, Ops, "");
5252  }
5253
5254  // vec_st
5255  case PPC::BI__builtin_altivec_stvx:
5256  case PPC::BI__builtin_altivec_stvxl:
5257  case PPC::BI__builtin_altivec_stvebx:
5258  case PPC::BI__builtin_altivec_stvehx:
5259  case PPC::BI__builtin_altivec_stvewx:
5260  {
5261    Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
5262    Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
5263    Ops.pop_back();
5264
5265    switch (BuiltinID) {
5266    default: llvm_unreachable("Unsupported st intrinsic!");
5267    case PPC::BI__builtin_altivec_stvx:
5268      ID = Intrinsic::ppc_altivec_stvx;
5269      break;
5270    case PPC::BI__builtin_altivec_stvxl:
5271      ID = Intrinsic::ppc_altivec_stvxl;
5272      break;
5273    case PPC::BI__builtin_altivec_stvebx:
5274      ID = Intrinsic::ppc_altivec_stvebx;
5275      break;
5276    case PPC::BI__builtin_altivec_stvehx:
5277      ID = Intrinsic::ppc_altivec_stvehx;
5278      break;
5279    case PPC::BI__builtin_altivec_stvewx:
5280      ID = Intrinsic::ppc_altivec_stvewx;
5281      break;
5282    }
5283    llvm::Function *F = CGM.getIntrinsic(ID);
5284    return Builder.CreateCall(F, Ops, "");
5285  }
5286  }
5287}
5288