1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47  // The ABI assumes that lambda closure types that occur within
48  // default arguments live in the context of the function. However, due to
49  // the way in which Clang parses and creates function declarations, this is
50  // not the case: the lambda closure type ends up living in the context
51  // where the function itself resides, because the function declaration itself
52  // had not yet been created. Fix the context here.
53  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54    if (RD->isLambda())
55      if (ParmVarDecl *ContextParam
56            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57        return ContextParam->getDeclContext();
58  }
59
60  // Perform the same check for block literals.
61  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
62    if (ParmVarDecl *ContextParam
63          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
64      return ContextParam->getDeclContext();
65  }
66
67  const DeclContext *DC = D->getDeclContext();
68  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
69    return getEffectiveDeclContext(CD);
70
71  return DC;
72}
73
74static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
75  return getEffectiveDeclContext(cast<Decl>(DC));
76}
77
78static bool isLocalContainerContext(const DeclContext *DC) {
79  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
80}
81
82static const RecordDecl *GetLocalClassDecl(const Decl *D) {
83  const DeclContext *DC = getEffectiveDeclContext(D);
84  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
85    if (isLocalContainerContext(DC))
86      return dyn_cast<RecordDecl>(D);
87    D = cast<Decl>(DC);
88    DC = getEffectiveDeclContext(D);
89  }
90  return 0;
91}
92
93static const FunctionDecl *getStructor(const FunctionDecl *fn) {
94  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
95    return ftd->getTemplatedDecl();
96
97  return fn;
98}
99
100static const NamedDecl *getStructor(const NamedDecl *decl) {
101  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
102  return (fn ? getStructor(fn) : decl);
103}
104
105static const unsigned UnknownArity = ~0U;
106
107class ItaniumMangleContextImpl : public ItaniumMangleContext {
108  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
109  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
110  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
111  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
112
113public:
114  explicit ItaniumMangleContextImpl(ASTContext &Context,
115                                    DiagnosticsEngine &Diags)
116      : ItaniumMangleContext(Context, Diags) {}
117
118  uint64_t getAnonymousStructId(const TagDecl *TD) {
119    std::pair<llvm::DenseMap<const TagDecl *,
120      uint64_t>::iterator, bool> Result =
121      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
122    return Result.first->second;
123  }
124
125  /// @name Mangler Entry Points
126  /// @{
127
128  bool shouldMangleCXXName(const NamedDecl *D);
129  void mangleCXXName(const NamedDecl *D, raw_ostream &);
130  void mangleThunk(const CXXMethodDecl *MD,
131                   const ThunkInfo &Thunk,
132                   raw_ostream &);
133  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
134                          const ThisAdjustment &ThisAdjustment,
135                          raw_ostream &);
136  void mangleReferenceTemporary(const VarDecl *D,
137                                raw_ostream &);
138  void mangleCXXVTable(const CXXRecordDecl *RD,
139                       raw_ostream &);
140  void mangleCXXVTT(const CXXRecordDecl *RD,
141                    raw_ostream &);
142  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
143                           const CXXRecordDecl *Type,
144                           raw_ostream &);
145  void mangleCXXRTTI(QualType T, raw_ostream &);
146  void mangleCXXRTTIName(QualType T, raw_ostream &);
147  void mangleTypeName(QualType T, raw_ostream &);
148  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
149                     raw_ostream &);
150  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
151                     raw_ostream &);
152
153  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &);
154  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out);
155  void mangleDynamicAtExitDestructor(const VarDecl *D, raw_ostream &Out);
156  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
157  void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
158
159  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
160    // Lambda closure types are already numbered.
161    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
162      if (RD->isLambda())
163        return false;
164
165    // Anonymous tags are already numbered.
166    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
167      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
168        return false;
169    }
170
171    // Use the canonical number for externally visible decls.
172    if (ND->isExternallyVisible()) {
173      unsigned discriminator = getASTContext().getManglingNumber(ND);
174      if (discriminator == 1)
175        return false;
176      disc = discriminator - 2;
177      return true;
178    }
179
180    // Make up a reasonable number for internal decls.
181    unsigned &discriminator = Uniquifier[ND];
182    if (!discriminator) {
183      const DeclContext *DC = getEffectiveDeclContext(ND);
184      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
185    }
186    if (discriminator == 1)
187      return false;
188    disc = discriminator-2;
189    return true;
190  }
191  /// @}
192};
193
194/// CXXNameMangler - Manage the mangling of a single name.
195class CXXNameMangler {
196  ItaniumMangleContextImpl &Context;
197  raw_ostream &Out;
198
199  /// The "structor" is the top-level declaration being mangled, if
200  /// that's not a template specialization; otherwise it's the pattern
201  /// for that specialization.
202  const NamedDecl *Structor;
203  unsigned StructorType;
204
205  /// SeqID - The next subsitution sequence number.
206  unsigned SeqID;
207
208  class FunctionTypeDepthState {
209    unsigned Bits;
210
211    enum { InResultTypeMask = 1 };
212
213  public:
214    FunctionTypeDepthState() : Bits(0) {}
215
216    /// The number of function types we're inside.
217    unsigned getDepth() const {
218      return Bits >> 1;
219    }
220
221    /// True if we're in the return type of the innermost function type.
222    bool isInResultType() const {
223      return Bits & InResultTypeMask;
224    }
225
226    FunctionTypeDepthState push() {
227      FunctionTypeDepthState tmp = *this;
228      Bits = (Bits & ~InResultTypeMask) + 2;
229      return tmp;
230    }
231
232    void enterResultType() {
233      Bits |= InResultTypeMask;
234    }
235
236    void leaveResultType() {
237      Bits &= ~InResultTypeMask;
238    }
239
240    void pop(FunctionTypeDepthState saved) {
241      assert(getDepth() == saved.getDepth() + 1);
242      Bits = saved.Bits;
243    }
244
245  } FunctionTypeDepth;
246
247  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
248
249  ASTContext &getASTContext() const { return Context.getASTContext(); }
250
251public:
252  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
253                 const NamedDecl *D = 0)
254    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
255      SeqID(0) {
256    // These can't be mangled without a ctor type or dtor type.
257    assert(!D || (!isa<CXXDestructorDecl>(D) &&
258                  !isa<CXXConstructorDecl>(D)));
259  }
260  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
261                 const CXXConstructorDecl *D, CXXCtorType Type)
262    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
263      SeqID(0) { }
264  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
265                 const CXXDestructorDecl *D, CXXDtorType Type)
266    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
267      SeqID(0) { }
268
269#if MANGLE_CHECKER
270  ~CXXNameMangler() {
271    if (Out.str()[0] == '\01')
272      return;
273
274    int status = 0;
275    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
276    assert(status == 0 && "Could not demangle mangled name!");
277    free(result);
278  }
279#endif
280  raw_ostream &getStream() { return Out; }
281
282  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
283  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
284  void mangleNumber(const llvm::APSInt &I);
285  void mangleNumber(int64_t Number);
286  void mangleFloat(const llvm::APFloat &F);
287  void mangleFunctionEncoding(const FunctionDecl *FD);
288  void mangleName(const NamedDecl *ND);
289  void mangleType(QualType T);
290  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
291
292private:
293  bool mangleSubstitution(const NamedDecl *ND);
294  bool mangleSubstitution(QualType T);
295  bool mangleSubstitution(TemplateName Template);
296  bool mangleSubstitution(uintptr_t Ptr);
297
298  void mangleExistingSubstitution(QualType type);
299  void mangleExistingSubstitution(TemplateName name);
300
301  bool mangleStandardSubstitution(const NamedDecl *ND);
302
303  void addSubstitution(const NamedDecl *ND) {
304    ND = cast<NamedDecl>(ND->getCanonicalDecl());
305
306    addSubstitution(reinterpret_cast<uintptr_t>(ND));
307  }
308  void addSubstitution(QualType T);
309  void addSubstitution(TemplateName Template);
310  void addSubstitution(uintptr_t Ptr);
311
312  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
313                              NamedDecl *firstQualifierLookup,
314                              bool recursive = false);
315  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
316                            NamedDecl *firstQualifierLookup,
317                            DeclarationName name,
318                            unsigned KnownArity = UnknownArity);
319
320  void mangleName(const TemplateDecl *TD,
321                  const TemplateArgument *TemplateArgs,
322                  unsigned NumTemplateArgs);
323  void mangleUnqualifiedName(const NamedDecl *ND) {
324    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
325  }
326  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
327                             unsigned KnownArity);
328  void mangleUnscopedName(const NamedDecl *ND);
329  void mangleUnscopedTemplateName(const TemplateDecl *ND);
330  void mangleUnscopedTemplateName(TemplateName);
331  void mangleSourceName(const IdentifierInfo *II);
332  void mangleLocalName(const Decl *D);
333  void mangleBlockForPrefix(const BlockDecl *Block);
334  void mangleUnqualifiedBlock(const BlockDecl *Block);
335  void mangleLambda(const CXXRecordDecl *Lambda);
336  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
337                        bool NoFunction=false);
338  void mangleNestedName(const TemplateDecl *TD,
339                        const TemplateArgument *TemplateArgs,
340                        unsigned NumTemplateArgs);
341  void manglePrefix(NestedNameSpecifier *qualifier);
342  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
343  void manglePrefix(QualType type);
344  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
345  void mangleTemplatePrefix(TemplateName Template);
346  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
347  void mangleQualifiers(Qualifiers Quals);
348  void mangleRefQualifier(RefQualifierKind RefQualifier);
349
350  void mangleObjCMethodName(const ObjCMethodDecl *MD);
351
352  // Declare manglers for every type class.
353#define ABSTRACT_TYPE(CLASS, PARENT)
354#define NON_CANONICAL_TYPE(CLASS, PARENT)
355#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
356#include "clang/AST/TypeNodes.def"
357
358  void mangleType(const TagType*);
359  void mangleType(TemplateName);
360  void mangleBareFunctionType(const FunctionType *T,
361                              bool MangleReturnType);
362  void mangleNeonVectorType(const VectorType *T);
363  void mangleAArch64NeonVectorType(const VectorType *T);
364
365  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
366  void mangleMemberExpr(const Expr *base, bool isArrow,
367                        NestedNameSpecifier *qualifier,
368                        NamedDecl *firstQualifierLookup,
369                        DeclarationName name,
370                        unsigned knownArity);
371  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
372  void mangleCXXCtorType(CXXCtorType T);
373  void mangleCXXDtorType(CXXDtorType T);
374
375  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
376  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
377                          unsigned NumTemplateArgs);
378  void mangleTemplateArgs(const TemplateArgumentList &AL);
379  void mangleTemplateArg(TemplateArgument A);
380
381  void mangleTemplateParameter(unsigned Index);
382
383  void mangleFunctionParam(const ParmVarDecl *parm);
384};
385
386}
387
388bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
389  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
390  if (FD) {
391    LanguageLinkage L = FD->getLanguageLinkage();
392    // Overloadable functions need mangling.
393    if (FD->hasAttr<OverloadableAttr>())
394      return true;
395
396    // "main" is not mangled.
397    if (FD->isMain())
398      return false;
399
400    // C++ functions and those whose names are not a simple identifier need
401    // mangling.
402    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
403      return true;
404
405    // C functions are not mangled.
406    if (L == CLanguageLinkage)
407      return false;
408  }
409
410  // Otherwise, no mangling is done outside C++ mode.
411  if (!getASTContext().getLangOpts().CPlusPlus)
412    return false;
413
414  const VarDecl *VD = dyn_cast<VarDecl>(D);
415  if (VD) {
416    // C variables are not mangled.
417    if (VD->isExternC())
418      return false;
419
420    // Variables at global scope with non-internal linkage are not mangled
421    const DeclContext *DC = getEffectiveDeclContext(D);
422    // Check for extern variable declared locally.
423    if (DC->isFunctionOrMethod() && D->hasLinkage())
424      while (!DC->isNamespace() && !DC->isTranslationUnit())
425        DC = getEffectiveParentContext(DC);
426    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
427        !isa<VarTemplateSpecializationDecl>(D))
428      return false;
429  }
430
431  return true;
432}
433
434void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
435  // <mangled-name> ::= _Z <encoding>
436  //            ::= <data name>
437  //            ::= <special-name>
438  Out << Prefix;
439  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
440    mangleFunctionEncoding(FD);
441  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
442    mangleName(VD);
443  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
444    mangleName(IFD->getAnonField());
445  else
446    mangleName(cast<FieldDecl>(D));
447}
448
449void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
450  // <encoding> ::= <function name> <bare-function-type>
451  mangleName(FD);
452
453  // Don't mangle in the type if this isn't a decl we should typically mangle.
454  if (!Context.shouldMangleDeclName(FD))
455    return;
456
457  // Whether the mangling of a function type includes the return type depends on
458  // the context and the nature of the function. The rules for deciding whether
459  // the return type is included are:
460  //
461  //   1. Template functions (names or types) have return types encoded, with
462  //   the exceptions listed below.
463  //   2. Function types not appearing as part of a function name mangling,
464  //   e.g. parameters, pointer types, etc., have return type encoded, with the
465  //   exceptions listed below.
466  //   3. Non-template function names do not have return types encoded.
467  //
468  // The exceptions mentioned in (1) and (2) above, for which the return type is
469  // never included, are
470  //   1. Constructors.
471  //   2. Destructors.
472  //   3. Conversion operator functions, e.g. operator int.
473  bool MangleReturnType = false;
474  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
475    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
476          isa<CXXConversionDecl>(FD)))
477      MangleReturnType = true;
478
479    // Mangle the type of the primary template.
480    FD = PrimaryTemplate->getTemplatedDecl();
481  }
482
483  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
484                         MangleReturnType);
485}
486
487static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
488  while (isa<LinkageSpecDecl>(DC)) {
489    DC = getEffectiveParentContext(DC);
490  }
491
492  return DC;
493}
494
495/// isStd - Return whether a given namespace is the 'std' namespace.
496static bool isStd(const NamespaceDecl *NS) {
497  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
498                                ->isTranslationUnit())
499    return false;
500
501  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
502  return II && II->isStr("std");
503}
504
505// isStdNamespace - Return whether a given decl context is a toplevel 'std'
506// namespace.
507static bool isStdNamespace(const DeclContext *DC) {
508  if (!DC->isNamespace())
509    return false;
510
511  return isStd(cast<NamespaceDecl>(DC));
512}
513
514static const TemplateDecl *
515isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
516  // Check if we have a function template.
517  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
518    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
519      TemplateArgs = FD->getTemplateSpecializationArgs();
520      return TD;
521    }
522  }
523
524  // Check if we have a class template.
525  if (const ClassTemplateSpecializationDecl *Spec =
526        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
527    TemplateArgs = &Spec->getTemplateArgs();
528    return Spec->getSpecializedTemplate();
529  }
530
531  // Check if we have a variable template.
532  if (const VarTemplateSpecializationDecl *Spec =
533          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
534    TemplateArgs = &Spec->getTemplateArgs();
535    return Spec->getSpecializedTemplate();
536  }
537
538  return 0;
539}
540
541static bool isLambda(const NamedDecl *ND) {
542  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
543  if (!Record)
544    return false;
545
546  return Record->isLambda();
547}
548
549void CXXNameMangler::mangleName(const NamedDecl *ND) {
550  //  <name> ::= <nested-name>
551  //         ::= <unscoped-name>
552  //         ::= <unscoped-template-name> <template-args>
553  //         ::= <local-name>
554  //
555  const DeclContext *DC = getEffectiveDeclContext(ND);
556
557  // If this is an extern variable declared locally, the relevant DeclContext
558  // is that of the containing namespace, or the translation unit.
559  // FIXME: This is a hack; extern variables declared locally should have
560  // a proper semantic declaration context!
561  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
562    while (!DC->isNamespace() && !DC->isTranslationUnit())
563      DC = getEffectiveParentContext(DC);
564  else if (GetLocalClassDecl(ND)) {
565    mangleLocalName(ND);
566    return;
567  }
568
569  DC = IgnoreLinkageSpecDecls(DC);
570
571  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
572    // Check if we have a template.
573    const TemplateArgumentList *TemplateArgs = 0;
574    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
575      mangleUnscopedTemplateName(TD);
576      mangleTemplateArgs(*TemplateArgs);
577      return;
578    }
579
580    mangleUnscopedName(ND);
581    return;
582  }
583
584  if (isLocalContainerContext(DC)) {
585    mangleLocalName(ND);
586    return;
587  }
588
589  mangleNestedName(ND, DC);
590}
591void CXXNameMangler::mangleName(const TemplateDecl *TD,
592                                const TemplateArgument *TemplateArgs,
593                                unsigned NumTemplateArgs) {
594  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
595
596  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
597    mangleUnscopedTemplateName(TD);
598    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
599  } else {
600    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
601  }
602}
603
604void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
605  //  <unscoped-name> ::= <unqualified-name>
606  //                  ::= St <unqualified-name>   # ::std::
607
608  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
609    Out << "St";
610
611  mangleUnqualifiedName(ND);
612}
613
614void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
615  //     <unscoped-template-name> ::= <unscoped-name>
616  //                              ::= <substitution>
617  if (mangleSubstitution(ND))
618    return;
619
620  // <template-template-param> ::= <template-param>
621  if (const TemplateTemplateParmDecl *TTP
622                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
623    mangleTemplateParameter(TTP->getIndex());
624    return;
625  }
626
627  mangleUnscopedName(ND->getTemplatedDecl());
628  addSubstitution(ND);
629}
630
631void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
632  //     <unscoped-template-name> ::= <unscoped-name>
633  //                              ::= <substitution>
634  if (TemplateDecl *TD = Template.getAsTemplateDecl())
635    return mangleUnscopedTemplateName(TD);
636
637  if (mangleSubstitution(Template))
638    return;
639
640  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
641  assert(Dependent && "Not a dependent template name?");
642  if (const IdentifierInfo *Id = Dependent->getIdentifier())
643    mangleSourceName(Id);
644  else
645    mangleOperatorName(Dependent->getOperator(), UnknownArity);
646
647  addSubstitution(Template);
648}
649
650void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
651  // ABI:
652  //   Floating-point literals are encoded using a fixed-length
653  //   lowercase hexadecimal string corresponding to the internal
654  //   representation (IEEE on Itanium), high-order bytes first,
655  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
656  //   on Itanium.
657  // The 'without leading zeroes' thing seems to be an editorial
658  // mistake; see the discussion on cxx-abi-dev beginning on
659  // 2012-01-16.
660
661  // Our requirements here are just barely weird enough to justify
662  // using a custom algorithm instead of post-processing APInt::toString().
663
664  llvm::APInt valueBits = f.bitcastToAPInt();
665  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
666  assert(numCharacters != 0);
667
668  // Allocate a buffer of the right number of characters.
669  SmallVector<char, 20> buffer;
670  buffer.set_size(numCharacters);
671
672  // Fill the buffer left-to-right.
673  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
674    // The bit-index of the next hex digit.
675    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
676
677    // Project out 4 bits starting at 'digitIndex'.
678    llvm::integerPart hexDigit
679      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
680    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
681    hexDigit &= 0xF;
682
683    // Map that over to a lowercase hex digit.
684    static const char charForHex[16] = {
685      '0', '1', '2', '3', '4', '5', '6', '7',
686      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
687    };
688    buffer[stringIndex] = charForHex[hexDigit];
689  }
690
691  Out.write(buffer.data(), numCharacters);
692}
693
694void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
695  if (Value.isSigned() && Value.isNegative()) {
696    Out << 'n';
697    Value.abs().print(Out, /*signed*/ false);
698  } else {
699    Value.print(Out, /*signed*/ false);
700  }
701}
702
703void CXXNameMangler::mangleNumber(int64_t Number) {
704  //  <number> ::= [n] <non-negative decimal integer>
705  if (Number < 0) {
706    Out << 'n';
707    Number = -Number;
708  }
709
710  Out << Number;
711}
712
713void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
714  //  <call-offset>  ::= h <nv-offset> _
715  //                 ::= v <v-offset> _
716  //  <nv-offset>    ::= <offset number>        # non-virtual base override
717  //  <v-offset>     ::= <offset number> _ <virtual offset number>
718  //                      # virtual base override, with vcall offset
719  if (!Virtual) {
720    Out << 'h';
721    mangleNumber(NonVirtual);
722    Out << '_';
723    return;
724  }
725
726  Out << 'v';
727  mangleNumber(NonVirtual);
728  Out << '_';
729  mangleNumber(Virtual);
730  Out << '_';
731}
732
733void CXXNameMangler::manglePrefix(QualType type) {
734  if (const TemplateSpecializationType *TST =
735        type->getAs<TemplateSpecializationType>()) {
736    if (!mangleSubstitution(QualType(TST, 0))) {
737      mangleTemplatePrefix(TST->getTemplateName());
738
739      // FIXME: GCC does not appear to mangle the template arguments when
740      // the template in question is a dependent template name. Should we
741      // emulate that badness?
742      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
743      addSubstitution(QualType(TST, 0));
744    }
745  } else if (const DependentTemplateSpecializationType *DTST
746               = type->getAs<DependentTemplateSpecializationType>()) {
747    TemplateName Template
748      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
749                                                 DTST->getIdentifier());
750    mangleTemplatePrefix(Template);
751
752    // FIXME: GCC does not appear to mangle the template arguments when
753    // the template in question is a dependent template name. Should we
754    // emulate that badness?
755    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
756  } else {
757    // We use the QualType mangle type variant here because it handles
758    // substitutions.
759    mangleType(type);
760  }
761}
762
763/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
764///
765/// \param firstQualifierLookup - the entity found by unqualified lookup
766///   for the first name in the qualifier, if this is for a member expression
767/// \param recursive - true if this is being called recursively,
768///   i.e. if there is more prefix "to the right".
769void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
770                                            NamedDecl *firstQualifierLookup,
771                                            bool recursive) {
772
773  // x, ::x
774  // <unresolved-name> ::= [gs] <base-unresolved-name>
775
776  // T::x / decltype(p)::x
777  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
778
779  // T::N::x /decltype(p)::N::x
780  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
781  //                       <base-unresolved-name>
782
783  // A::x, N::y, A<T>::z; "gs" means leading "::"
784  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
785  //                       <base-unresolved-name>
786
787  switch (qualifier->getKind()) {
788  case NestedNameSpecifier::Global:
789    Out << "gs";
790
791    // We want an 'sr' unless this is the entire NNS.
792    if (recursive)
793      Out << "sr";
794
795    // We never want an 'E' here.
796    return;
797
798  case NestedNameSpecifier::Namespace:
799    if (qualifier->getPrefix())
800      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
801                             /*recursive*/ true);
802    else
803      Out << "sr";
804    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
805    break;
806  case NestedNameSpecifier::NamespaceAlias:
807    if (qualifier->getPrefix())
808      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
809                             /*recursive*/ true);
810    else
811      Out << "sr";
812    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
813    break;
814
815  case NestedNameSpecifier::TypeSpec:
816  case NestedNameSpecifier::TypeSpecWithTemplate: {
817    const Type *type = qualifier->getAsType();
818
819    // We only want to use an unresolved-type encoding if this is one of:
820    //   - a decltype
821    //   - a template type parameter
822    //   - a template template parameter with arguments
823    // In all of these cases, we should have no prefix.
824    if (qualifier->getPrefix()) {
825      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
826                             /*recursive*/ true);
827    } else {
828      // Otherwise, all the cases want this.
829      Out << "sr";
830    }
831
832    // Only certain other types are valid as prefixes;  enumerate them.
833    switch (type->getTypeClass()) {
834    case Type::Builtin:
835    case Type::Complex:
836    case Type::Decayed:
837    case Type::Pointer:
838    case Type::BlockPointer:
839    case Type::LValueReference:
840    case Type::RValueReference:
841    case Type::MemberPointer:
842    case Type::ConstantArray:
843    case Type::IncompleteArray:
844    case Type::VariableArray:
845    case Type::DependentSizedArray:
846    case Type::DependentSizedExtVector:
847    case Type::Vector:
848    case Type::ExtVector:
849    case Type::FunctionProto:
850    case Type::FunctionNoProto:
851    case Type::Enum:
852    case Type::Paren:
853    case Type::Elaborated:
854    case Type::Attributed:
855    case Type::Auto:
856    case Type::PackExpansion:
857    case Type::ObjCObject:
858    case Type::ObjCInterface:
859    case Type::ObjCObjectPointer:
860    case Type::Atomic:
861      llvm_unreachable("type is illegal as a nested name specifier");
862
863    case Type::SubstTemplateTypeParmPack:
864      // FIXME: not clear how to mangle this!
865      // template <class T...> class A {
866      //   template <class U...> void foo(decltype(T::foo(U())) x...);
867      // };
868      Out << "_SUBSTPACK_";
869      break;
870
871    // <unresolved-type> ::= <template-param>
872    //                   ::= <decltype>
873    //                   ::= <template-template-param> <template-args>
874    // (this last is not official yet)
875    case Type::TypeOfExpr:
876    case Type::TypeOf:
877    case Type::Decltype:
878    case Type::TemplateTypeParm:
879    case Type::UnaryTransform:
880    case Type::SubstTemplateTypeParm:
881    unresolvedType:
882      assert(!qualifier->getPrefix());
883
884      // We only get here recursively if we're followed by identifiers.
885      if (recursive) Out << 'N';
886
887      // This seems to do everything we want.  It's not really
888      // sanctioned for a substituted template parameter, though.
889      mangleType(QualType(type, 0));
890
891      // We never want to print 'E' directly after an unresolved-type,
892      // so we return directly.
893      return;
894
895    case Type::Typedef:
896      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
897      break;
898
899    case Type::UnresolvedUsing:
900      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
901                         ->getIdentifier());
902      break;
903
904    case Type::Record:
905      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
906      break;
907
908    case Type::TemplateSpecialization: {
909      const TemplateSpecializationType *tst
910        = cast<TemplateSpecializationType>(type);
911      TemplateName name = tst->getTemplateName();
912      switch (name.getKind()) {
913      case TemplateName::Template:
914      case TemplateName::QualifiedTemplate: {
915        TemplateDecl *temp = name.getAsTemplateDecl();
916
917        // If the base is a template template parameter, this is an
918        // unresolved type.
919        assert(temp && "no template for template specialization type");
920        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
921
922        mangleSourceName(temp->getIdentifier());
923        break;
924      }
925
926      case TemplateName::OverloadedTemplate:
927      case TemplateName::DependentTemplate:
928        llvm_unreachable("invalid base for a template specialization type");
929
930      case TemplateName::SubstTemplateTemplateParm: {
931        SubstTemplateTemplateParmStorage *subst
932          = name.getAsSubstTemplateTemplateParm();
933        mangleExistingSubstitution(subst->getReplacement());
934        break;
935      }
936
937      case TemplateName::SubstTemplateTemplateParmPack: {
938        // FIXME: not clear how to mangle this!
939        // template <template <class U> class T...> class A {
940        //   template <class U...> void foo(decltype(T<U>::foo) x...);
941        // };
942        Out << "_SUBSTPACK_";
943        break;
944      }
945      }
946
947      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
948      break;
949    }
950
951    case Type::InjectedClassName:
952      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
953                         ->getIdentifier());
954      break;
955
956    case Type::DependentName:
957      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
958      break;
959
960    case Type::DependentTemplateSpecialization: {
961      const DependentTemplateSpecializationType *tst
962        = cast<DependentTemplateSpecializationType>(type);
963      mangleSourceName(tst->getIdentifier());
964      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
965      break;
966    }
967    }
968    break;
969  }
970
971  case NestedNameSpecifier::Identifier:
972    // Member expressions can have these without prefixes.
973    if (qualifier->getPrefix()) {
974      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
975                             /*recursive*/ true);
976    } else if (firstQualifierLookup) {
977
978      // Try to make a proper qualifier out of the lookup result, and
979      // then just recurse on that.
980      NestedNameSpecifier *newQualifier;
981      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
982        QualType type = getASTContext().getTypeDeclType(typeDecl);
983
984        // Pretend we had a different nested name specifier.
985        newQualifier = NestedNameSpecifier::Create(getASTContext(),
986                                                   /*prefix*/ 0,
987                                                   /*template*/ false,
988                                                   type.getTypePtr());
989      } else if (NamespaceDecl *nspace =
990                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
991        newQualifier = NestedNameSpecifier::Create(getASTContext(),
992                                                   /*prefix*/ 0,
993                                                   nspace);
994      } else if (NamespaceAliasDecl *alias =
995                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
996        newQualifier = NestedNameSpecifier::Create(getASTContext(),
997                                                   /*prefix*/ 0,
998                                                   alias);
999      } else {
1000        // No sensible mangling to do here.
1001        newQualifier = 0;
1002      }
1003
1004      if (newQualifier)
1005        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1006
1007    } else {
1008      Out << "sr";
1009    }
1010
1011    mangleSourceName(qualifier->getAsIdentifier());
1012    break;
1013  }
1014
1015  // If this was the innermost part of the NNS, and we fell out to
1016  // here, append an 'E'.
1017  if (!recursive)
1018    Out << 'E';
1019}
1020
1021/// Mangle an unresolved-name, which is generally used for names which
1022/// weren't resolved to specific entities.
1023void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1024                                          NamedDecl *firstQualifierLookup,
1025                                          DeclarationName name,
1026                                          unsigned knownArity) {
1027  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1028  mangleUnqualifiedName(0, name, knownArity);
1029}
1030
1031static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1032  assert(RD->isAnonymousStructOrUnion() &&
1033         "Expected anonymous struct or union!");
1034
1035  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1036       I != E; ++I) {
1037    if (I->getIdentifier())
1038      return *I;
1039
1040    if (const RecordType *RT = I->getType()->getAs<RecordType>())
1041      if (const FieldDecl *NamedDataMember =
1042          FindFirstNamedDataMember(RT->getDecl()))
1043        return NamedDataMember;
1044    }
1045
1046  // We didn't find a named data member.
1047  return 0;
1048}
1049
1050void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1051                                           DeclarationName Name,
1052                                           unsigned KnownArity) {
1053  //  <unqualified-name> ::= <operator-name>
1054  //                     ::= <ctor-dtor-name>
1055  //                     ::= <source-name>
1056  switch (Name.getNameKind()) {
1057  case DeclarationName::Identifier: {
1058    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1059      // We must avoid conflicts between internally- and externally-
1060      // linked variable and function declaration names in the same TU:
1061      //   void test() { extern void foo(); }
1062      //   static void foo();
1063      // This naming convention is the same as that followed by GCC,
1064      // though it shouldn't actually matter.
1065      if (ND && ND->getFormalLinkage() == InternalLinkage &&
1066          getEffectiveDeclContext(ND)->isFileContext())
1067        Out << 'L';
1068
1069      mangleSourceName(II);
1070      break;
1071    }
1072
1073    // Otherwise, an anonymous entity.  We must have a declaration.
1074    assert(ND && "mangling empty name without declaration");
1075
1076    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1077      if (NS->isAnonymousNamespace()) {
1078        // This is how gcc mangles these names.
1079        Out << "12_GLOBAL__N_1";
1080        break;
1081      }
1082    }
1083
1084    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1085      // We must have an anonymous union or struct declaration.
1086      const RecordDecl *RD =
1087        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1088
1089      // Itanium C++ ABI 5.1.2:
1090      //
1091      //   For the purposes of mangling, the name of an anonymous union is
1092      //   considered to be the name of the first named data member found by a
1093      //   pre-order, depth-first, declaration-order walk of the data members of
1094      //   the anonymous union. If there is no such data member (i.e., if all of
1095      //   the data members in the union are unnamed), then there is no way for
1096      //   a program to refer to the anonymous union, and there is therefore no
1097      //   need to mangle its name.
1098      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1099
1100      // It's actually possible for various reasons for us to get here
1101      // with an empty anonymous struct / union.  Fortunately, it
1102      // doesn't really matter what name we generate.
1103      if (!FD) break;
1104      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1105
1106      mangleSourceName(FD->getIdentifier());
1107      break;
1108    }
1109
1110    // Class extensions have no name as a category, and it's possible
1111    // for them to be the semantic parent of certain declarations
1112    // (primarily, tag decls defined within declarations).  Such
1113    // declarations will always have internal linkage, so the name
1114    // doesn't really matter, but we shouldn't crash on them.  For
1115    // safety, just handle all ObjC containers here.
1116    if (isa<ObjCContainerDecl>(ND))
1117      break;
1118
1119    // We must have an anonymous struct.
1120    const TagDecl *TD = cast<TagDecl>(ND);
1121    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1122      assert(TD->getDeclContext() == D->getDeclContext() &&
1123             "Typedef should not be in another decl context!");
1124      assert(D->getDeclName().getAsIdentifierInfo() &&
1125             "Typedef was not named!");
1126      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1127      break;
1128    }
1129
1130    // <unnamed-type-name> ::= <closure-type-name>
1131    //
1132    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1133    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1134    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1135      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1136        mangleLambda(Record);
1137        break;
1138      }
1139    }
1140
1141    if (TD->isExternallyVisible()) {
1142      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1143      Out << "Ut";
1144      if (UnnamedMangle > 1)
1145        Out << llvm::utostr(UnnamedMangle - 2);
1146      Out << '_';
1147      break;
1148    }
1149
1150    // Get a unique id for the anonymous struct.
1151    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1152
1153    // Mangle it as a source name in the form
1154    // [n] $_<id>
1155    // where n is the length of the string.
1156    SmallString<8> Str;
1157    Str += "$_";
1158    Str += llvm::utostr(AnonStructId);
1159
1160    Out << Str.size();
1161    Out << Str.str();
1162    break;
1163  }
1164
1165  case DeclarationName::ObjCZeroArgSelector:
1166  case DeclarationName::ObjCOneArgSelector:
1167  case DeclarationName::ObjCMultiArgSelector:
1168    llvm_unreachable("Can't mangle Objective-C selector names here!");
1169
1170  case DeclarationName::CXXConstructorName:
1171    if (ND == Structor)
1172      // If the named decl is the C++ constructor we're mangling, use the type
1173      // we were given.
1174      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1175    else
1176      // Otherwise, use the complete constructor name. This is relevant if a
1177      // class with a constructor is declared within a constructor.
1178      mangleCXXCtorType(Ctor_Complete);
1179    break;
1180
1181  case DeclarationName::CXXDestructorName:
1182    if (ND == Structor)
1183      // If the named decl is the C++ destructor we're mangling, use the type we
1184      // were given.
1185      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1186    else
1187      // Otherwise, use the complete destructor name. This is relevant if a
1188      // class with a destructor is declared within a destructor.
1189      mangleCXXDtorType(Dtor_Complete);
1190    break;
1191
1192  case DeclarationName::CXXConversionFunctionName:
1193    // <operator-name> ::= cv <type>    # (cast)
1194    Out << "cv";
1195    mangleType(Name.getCXXNameType());
1196    break;
1197
1198  case DeclarationName::CXXOperatorName: {
1199    unsigned Arity;
1200    if (ND) {
1201      Arity = cast<FunctionDecl>(ND)->getNumParams();
1202
1203      // If we have a C++ member function, we need to include the 'this' pointer.
1204      // FIXME: This does not make sense for operators that are static, but their
1205      // names stay the same regardless of the arity (operator new for instance).
1206      if (isa<CXXMethodDecl>(ND))
1207        Arity++;
1208    } else
1209      Arity = KnownArity;
1210
1211    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1212    break;
1213  }
1214
1215  case DeclarationName::CXXLiteralOperatorName:
1216    // FIXME: This mangling is not yet official.
1217    Out << "li";
1218    mangleSourceName(Name.getCXXLiteralIdentifier());
1219    break;
1220
1221  case DeclarationName::CXXUsingDirective:
1222    llvm_unreachable("Can't mangle a using directive name!");
1223  }
1224}
1225
1226void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1227  // <source-name> ::= <positive length number> <identifier>
1228  // <number> ::= [n] <non-negative decimal integer>
1229  // <identifier> ::= <unqualified source code identifier>
1230  Out << II->getLength() << II->getName();
1231}
1232
1233void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1234                                      const DeclContext *DC,
1235                                      bool NoFunction) {
1236  // <nested-name>
1237  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1238  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1239  //       <template-args> E
1240
1241  Out << 'N';
1242  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1243    Qualifiers MethodQuals =
1244        Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1245    // We do not consider restrict a distinguishing attribute for overloading
1246    // purposes so we must not mangle it.
1247    MethodQuals.removeRestrict();
1248    mangleQualifiers(MethodQuals);
1249    mangleRefQualifier(Method->getRefQualifier());
1250  }
1251
1252  // Check if we have a template.
1253  const TemplateArgumentList *TemplateArgs = 0;
1254  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1255    mangleTemplatePrefix(TD, NoFunction);
1256    mangleTemplateArgs(*TemplateArgs);
1257  }
1258  else {
1259    manglePrefix(DC, NoFunction);
1260    mangleUnqualifiedName(ND);
1261  }
1262
1263  Out << 'E';
1264}
1265void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1266                                      const TemplateArgument *TemplateArgs,
1267                                      unsigned NumTemplateArgs) {
1268  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1269
1270  Out << 'N';
1271
1272  mangleTemplatePrefix(TD);
1273  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1274
1275  Out << 'E';
1276}
1277
1278void CXXNameMangler::mangleLocalName(const Decl *D) {
1279  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1280  //              := Z <function encoding> E s [<discriminator>]
1281  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1282  //                 _ <entity name>
1283  // <discriminator> := _ <non-negative number>
1284  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1285  const RecordDecl *RD = GetLocalClassDecl(D);
1286  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1287
1288  Out << 'Z';
1289
1290  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1291    mangleObjCMethodName(MD);
1292  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1293    mangleBlockForPrefix(BD);
1294  else
1295    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1296
1297  Out << 'E';
1298
1299  if (RD) {
1300    // The parameter number is omitted for the last parameter, 0 for the
1301    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1302    // <entity name> will of course contain a <closure-type-name>: Its
1303    // numbering will be local to the particular argument in which it appears
1304    // -- other default arguments do not affect its encoding.
1305    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1306    if (CXXRD->isLambda()) {
1307      if (const ParmVarDecl *Parm
1308              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1309        if (const FunctionDecl *Func
1310              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1311          Out << 'd';
1312          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1313          if (Num > 1)
1314            mangleNumber(Num - 2);
1315          Out << '_';
1316        }
1317      }
1318    }
1319
1320    // Mangle the name relative to the closest enclosing function.
1321    // equality ok because RD derived from ND above
1322    if (D == RD)  {
1323      mangleUnqualifiedName(RD);
1324    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1325      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1326      mangleUnqualifiedBlock(BD);
1327    } else {
1328      const NamedDecl *ND = cast<NamedDecl>(D);
1329      mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1330    }
1331  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1332    // Mangle a block in a default parameter; see above explanation for
1333    // lambdas.
1334    if (const ParmVarDecl *Parm
1335            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1336      if (const FunctionDecl *Func
1337            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1338        Out << 'd';
1339        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1340        if (Num > 1)
1341          mangleNumber(Num - 2);
1342        Out << '_';
1343      }
1344    }
1345
1346    mangleUnqualifiedBlock(BD);
1347  } else {
1348    mangleUnqualifiedName(cast<NamedDecl>(D));
1349  }
1350
1351  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1352    unsigned disc;
1353    if (Context.getNextDiscriminator(ND, disc)) {
1354      if (disc < 10)
1355        Out << '_' << disc;
1356      else
1357        Out << "__" << disc << '_';
1358    }
1359  }
1360}
1361
1362void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1363  if (GetLocalClassDecl(Block)) {
1364    mangleLocalName(Block);
1365    return;
1366  }
1367  const DeclContext *DC = getEffectiveDeclContext(Block);
1368  if (isLocalContainerContext(DC)) {
1369    mangleLocalName(Block);
1370    return;
1371  }
1372  manglePrefix(getEffectiveDeclContext(Block));
1373  mangleUnqualifiedBlock(Block);
1374}
1375
1376void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1377  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1378    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1379        Context->getDeclContext()->isRecord()) {
1380      if (const IdentifierInfo *Name
1381            = cast<NamedDecl>(Context)->getIdentifier()) {
1382        mangleSourceName(Name);
1383        Out << 'M';
1384      }
1385    }
1386  }
1387
1388  // If we have a block mangling number, use it.
1389  unsigned Number = Block->getBlockManglingNumber();
1390  // Otherwise, just make up a number. It doesn't matter what it is because
1391  // the symbol in question isn't externally visible.
1392  if (!Number)
1393    Number = Context.getBlockId(Block, false);
1394  Out << "Ub";
1395  if (Number > 1)
1396    Out << Number - 2;
1397  Out << '_';
1398}
1399
1400void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1401  // If the context of a closure type is an initializer for a class member
1402  // (static or nonstatic), it is encoded in a qualified name with a final
1403  // <prefix> of the form:
1404  //
1405  //   <data-member-prefix> := <member source-name> M
1406  //
1407  // Technically, the data-member-prefix is part of the <prefix>. However,
1408  // since a closure type will always be mangled with a prefix, it's easier
1409  // to emit that last part of the prefix here.
1410  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1411    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1412        Context->getDeclContext()->isRecord()) {
1413      if (const IdentifierInfo *Name
1414            = cast<NamedDecl>(Context)->getIdentifier()) {
1415        mangleSourceName(Name);
1416        Out << 'M';
1417      }
1418    }
1419  }
1420
1421  Out << "Ul";
1422  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1423                                   getAs<FunctionProtoType>();
1424  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1425  Out << "E";
1426
1427  // The number is omitted for the first closure type with a given
1428  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1429  // (in lexical order) with that same <lambda-sig> and context.
1430  //
1431  // The AST keeps track of the number for us.
1432  unsigned Number = Lambda->getLambdaManglingNumber();
1433  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1434  if (Number > 1)
1435    mangleNumber(Number - 2);
1436  Out << '_';
1437}
1438
1439void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1440  switch (qualifier->getKind()) {
1441  case NestedNameSpecifier::Global:
1442    // nothing
1443    return;
1444
1445  case NestedNameSpecifier::Namespace:
1446    mangleName(qualifier->getAsNamespace());
1447    return;
1448
1449  case NestedNameSpecifier::NamespaceAlias:
1450    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1451    return;
1452
1453  case NestedNameSpecifier::TypeSpec:
1454  case NestedNameSpecifier::TypeSpecWithTemplate:
1455    manglePrefix(QualType(qualifier->getAsType(), 0));
1456    return;
1457
1458  case NestedNameSpecifier::Identifier:
1459    // Member expressions can have these without prefixes, but that
1460    // should end up in mangleUnresolvedPrefix instead.
1461    assert(qualifier->getPrefix());
1462    manglePrefix(qualifier->getPrefix());
1463
1464    mangleSourceName(qualifier->getAsIdentifier());
1465    return;
1466  }
1467
1468  llvm_unreachable("unexpected nested name specifier");
1469}
1470
1471void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1472  //  <prefix> ::= <prefix> <unqualified-name>
1473  //           ::= <template-prefix> <template-args>
1474  //           ::= <template-param>
1475  //           ::= # empty
1476  //           ::= <substitution>
1477
1478  DC = IgnoreLinkageSpecDecls(DC);
1479
1480  if (DC->isTranslationUnit())
1481    return;
1482
1483  if (NoFunction && isLocalContainerContext(DC))
1484    return;
1485
1486  assert(!isLocalContainerContext(DC));
1487
1488  const NamedDecl *ND = cast<NamedDecl>(DC);
1489  if (mangleSubstitution(ND))
1490    return;
1491
1492  // Check if we have a template.
1493  const TemplateArgumentList *TemplateArgs = 0;
1494  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1495    mangleTemplatePrefix(TD);
1496    mangleTemplateArgs(*TemplateArgs);
1497  } else {
1498    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1499    mangleUnqualifiedName(ND);
1500  }
1501
1502  addSubstitution(ND);
1503}
1504
1505void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1506  // <template-prefix> ::= <prefix> <template unqualified-name>
1507  //                   ::= <template-param>
1508  //                   ::= <substitution>
1509  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1510    return mangleTemplatePrefix(TD);
1511
1512  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1513    manglePrefix(Qualified->getQualifier());
1514
1515  if (OverloadedTemplateStorage *Overloaded
1516                                      = Template.getAsOverloadedTemplate()) {
1517    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1518                          UnknownArity);
1519    return;
1520  }
1521
1522  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1523  assert(Dependent && "Unknown template name kind?");
1524  manglePrefix(Dependent->getQualifier());
1525  mangleUnscopedTemplateName(Template);
1526}
1527
1528void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1529                                          bool NoFunction) {
1530  // <template-prefix> ::= <prefix> <template unqualified-name>
1531  //                   ::= <template-param>
1532  //                   ::= <substitution>
1533  // <template-template-param> ::= <template-param>
1534  //                               <substitution>
1535
1536  if (mangleSubstitution(ND))
1537    return;
1538
1539  // <template-template-param> ::= <template-param>
1540  if (const TemplateTemplateParmDecl *TTP
1541                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1542    mangleTemplateParameter(TTP->getIndex());
1543    return;
1544  }
1545
1546  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1547  mangleUnqualifiedName(ND->getTemplatedDecl());
1548  addSubstitution(ND);
1549}
1550
1551/// Mangles a template name under the production <type>.  Required for
1552/// template template arguments.
1553///   <type> ::= <class-enum-type>
1554///          ::= <template-param>
1555///          ::= <substitution>
1556void CXXNameMangler::mangleType(TemplateName TN) {
1557  if (mangleSubstitution(TN))
1558    return;
1559
1560  TemplateDecl *TD = 0;
1561
1562  switch (TN.getKind()) {
1563  case TemplateName::QualifiedTemplate:
1564    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1565    goto HaveDecl;
1566
1567  case TemplateName::Template:
1568    TD = TN.getAsTemplateDecl();
1569    goto HaveDecl;
1570
1571  HaveDecl:
1572    if (isa<TemplateTemplateParmDecl>(TD))
1573      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1574    else
1575      mangleName(TD);
1576    break;
1577
1578  case TemplateName::OverloadedTemplate:
1579    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1580
1581  case TemplateName::DependentTemplate: {
1582    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1583    assert(Dependent->isIdentifier());
1584
1585    // <class-enum-type> ::= <name>
1586    // <name> ::= <nested-name>
1587    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1588    mangleSourceName(Dependent->getIdentifier());
1589    break;
1590  }
1591
1592  case TemplateName::SubstTemplateTemplateParm: {
1593    // Substituted template parameters are mangled as the substituted
1594    // template.  This will check for the substitution twice, which is
1595    // fine, but we have to return early so that we don't try to *add*
1596    // the substitution twice.
1597    SubstTemplateTemplateParmStorage *subst
1598      = TN.getAsSubstTemplateTemplateParm();
1599    mangleType(subst->getReplacement());
1600    return;
1601  }
1602
1603  case TemplateName::SubstTemplateTemplateParmPack: {
1604    // FIXME: not clear how to mangle this!
1605    // template <template <class> class T...> class A {
1606    //   template <template <class> class U...> void foo(B<T,U> x...);
1607    // };
1608    Out << "_SUBSTPACK_";
1609    break;
1610  }
1611  }
1612
1613  addSubstitution(TN);
1614}
1615
1616void
1617CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1618  switch (OO) {
1619  // <operator-name> ::= nw     # new
1620  case OO_New: Out << "nw"; break;
1621  //              ::= na        # new[]
1622  case OO_Array_New: Out << "na"; break;
1623  //              ::= dl        # delete
1624  case OO_Delete: Out << "dl"; break;
1625  //              ::= da        # delete[]
1626  case OO_Array_Delete: Out << "da"; break;
1627  //              ::= ps        # + (unary)
1628  //              ::= pl        # + (binary or unknown)
1629  case OO_Plus:
1630    Out << (Arity == 1? "ps" : "pl"); break;
1631  //              ::= ng        # - (unary)
1632  //              ::= mi        # - (binary or unknown)
1633  case OO_Minus:
1634    Out << (Arity == 1? "ng" : "mi"); break;
1635  //              ::= ad        # & (unary)
1636  //              ::= an        # & (binary or unknown)
1637  case OO_Amp:
1638    Out << (Arity == 1? "ad" : "an"); break;
1639  //              ::= de        # * (unary)
1640  //              ::= ml        # * (binary or unknown)
1641  case OO_Star:
1642    // Use binary when unknown.
1643    Out << (Arity == 1? "de" : "ml"); break;
1644  //              ::= co        # ~
1645  case OO_Tilde: Out << "co"; break;
1646  //              ::= dv        # /
1647  case OO_Slash: Out << "dv"; break;
1648  //              ::= rm        # %
1649  case OO_Percent: Out << "rm"; break;
1650  //              ::= or        # |
1651  case OO_Pipe: Out << "or"; break;
1652  //              ::= eo        # ^
1653  case OO_Caret: Out << "eo"; break;
1654  //              ::= aS        # =
1655  case OO_Equal: Out << "aS"; break;
1656  //              ::= pL        # +=
1657  case OO_PlusEqual: Out << "pL"; break;
1658  //              ::= mI        # -=
1659  case OO_MinusEqual: Out << "mI"; break;
1660  //              ::= mL        # *=
1661  case OO_StarEqual: Out << "mL"; break;
1662  //              ::= dV        # /=
1663  case OO_SlashEqual: Out << "dV"; break;
1664  //              ::= rM        # %=
1665  case OO_PercentEqual: Out << "rM"; break;
1666  //              ::= aN        # &=
1667  case OO_AmpEqual: Out << "aN"; break;
1668  //              ::= oR        # |=
1669  case OO_PipeEqual: Out << "oR"; break;
1670  //              ::= eO        # ^=
1671  case OO_CaretEqual: Out << "eO"; break;
1672  //              ::= ls        # <<
1673  case OO_LessLess: Out << "ls"; break;
1674  //              ::= rs        # >>
1675  case OO_GreaterGreater: Out << "rs"; break;
1676  //              ::= lS        # <<=
1677  case OO_LessLessEqual: Out << "lS"; break;
1678  //              ::= rS        # >>=
1679  case OO_GreaterGreaterEqual: Out << "rS"; break;
1680  //              ::= eq        # ==
1681  case OO_EqualEqual: Out << "eq"; break;
1682  //              ::= ne        # !=
1683  case OO_ExclaimEqual: Out << "ne"; break;
1684  //              ::= lt        # <
1685  case OO_Less: Out << "lt"; break;
1686  //              ::= gt        # >
1687  case OO_Greater: Out << "gt"; break;
1688  //              ::= le        # <=
1689  case OO_LessEqual: Out << "le"; break;
1690  //              ::= ge        # >=
1691  case OO_GreaterEqual: Out << "ge"; break;
1692  //              ::= nt        # !
1693  case OO_Exclaim: Out << "nt"; break;
1694  //              ::= aa        # &&
1695  case OO_AmpAmp: Out << "aa"; break;
1696  //              ::= oo        # ||
1697  case OO_PipePipe: Out << "oo"; break;
1698  //              ::= pp        # ++
1699  case OO_PlusPlus: Out << "pp"; break;
1700  //              ::= mm        # --
1701  case OO_MinusMinus: Out << "mm"; break;
1702  //              ::= cm        # ,
1703  case OO_Comma: Out << "cm"; break;
1704  //              ::= pm        # ->*
1705  case OO_ArrowStar: Out << "pm"; break;
1706  //              ::= pt        # ->
1707  case OO_Arrow: Out << "pt"; break;
1708  //              ::= cl        # ()
1709  case OO_Call: Out << "cl"; break;
1710  //              ::= ix        # []
1711  case OO_Subscript: Out << "ix"; break;
1712
1713  //              ::= qu        # ?
1714  // The conditional operator can't be overloaded, but we still handle it when
1715  // mangling expressions.
1716  case OO_Conditional: Out << "qu"; break;
1717
1718  case OO_None:
1719  case NUM_OVERLOADED_OPERATORS:
1720    llvm_unreachable("Not an overloaded operator");
1721  }
1722}
1723
1724void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1725  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1726  if (Quals.hasRestrict())
1727    Out << 'r';
1728  if (Quals.hasVolatile())
1729    Out << 'V';
1730  if (Quals.hasConst())
1731    Out << 'K';
1732
1733  if (Quals.hasAddressSpace()) {
1734    // Address space extension:
1735    //
1736    //   <type> ::= U <target-addrspace>
1737    //   <type> ::= U <OpenCL-addrspace>
1738    //   <type> ::= U <CUDA-addrspace>
1739
1740    SmallString<64> ASString;
1741    unsigned AS = Quals.getAddressSpace();
1742
1743    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1744      //  <target-addrspace> ::= "AS" <address-space-number>
1745      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1746      ASString = "AS" + llvm::utostr_32(TargetAS);
1747    } else {
1748      switch (AS) {
1749      default: llvm_unreachable("Not a language specific address space");
1750      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1751      case LangAS::opencl_global:   ASString = "CLglobal";   break;
1752      case LangAS::opencl_local:    ASString = "CLlocal";    break;
1753      case LangAS::opencl_constant: ASString = "CLconstant"; break;
1754      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1755      case LangAS::cuda_device:     ASString = "CUdevice";   break;
1756      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
1757      case LangAS::cuda_shared:     ASString = "CUshared";   break;
1758      }
1759    }
1760    Out << 'U' << ASString.size() << ASString;
1761  }
1762
1763  StringRef LifetimeName;
1764  switch (Quals.getObjCLifetime()) {
1765  // Objective-C ARC Extension:
1766  //
1767  //   <type> ::= U "__strong"
1768  //   <type> ::= U "__weak"
1769  //   <type> ::= U "__autoreleasing"
1770  case Qualifiers::OCL_None:
1771    break;
1772
1773  case Qualifiers::OCL_Weak:
1774    LifetimeName = "__weak";
1775    break;
1776
1777  case Qualifiers::OCL_Strong:
1778    LifetimeName = "__strong";
1779    break;
1780
1781  case Qualifiers::OCL_Autoreleasing:
1782    LifetimeName = "__autoreleasing";
1783    break;
1784
1785  case Qualifiers::OCL_ExplicitNone:
1786    // The __unsafe_unretained qualifier is *not* mangled, so that
1787    // __unsafe_unretained types in ARC produce the same manglings as the
1788    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1789    // better ABI compatibility.
1790    //
1791    // It's safe to do this because unqualified 'id' won't show up
1792    // in any type signatures that need to be mangled.
1793    break;
1794  }
1795  if (!LifetimeName.empty())
1796    Out << 'U' << LifetimeName.size() << LifetimeName;
1797}
1798
1799void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1800  // <ref-qualifier> ::= R                # lvalue reference
1801  //                 ::= O                # rvalue-reference
1802  switch (RefQualifier) {
1803  case RQ_None:
1804    break;
1805
1806  case RQ_LValue:
1807    Out << 'R';
1808    break;
1809
1810  case RQ_RValue:
1811    Out << 'O';
1812    break;
1813  }
1814}
1815
1816void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1817  Context.mangleObjCMethodName(MD, Out);
1818}
1819
1820void CXXNameMangler::mangleType(QualType T) {
1821  // If our type is instantiation-dependent but not dependent, we mangle
1822  // it as it was written in the source, removing any top-level sugar.
1823  // Otherwise, use the canonical type.
1824  //
1825  // FIXME: This is an approximation of the instantiation-dependent name
1826  // mangling rules, since we should really be using the type as written and
1827  // augmented via semantic analysis (i.e., with implicit conversions and
1828  // default template arguments) for any instantiation-dependent type.
1829  // Unfortunately, that requires several changes to our AST:
1830  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1831  //     uniqued, so that we can handle substitutions properly
1832  //   - Default template arguments will need to be represented in the
1833  //     TemplateSpecializationType, since they need to be mangled even though
1834  //     they aren't written.
1835  //   - Conversions on non-type template arguments need to be expressed, since
1836  //     they can affect the mangling of sizeof/alignof.
1837  if (!T->isInstantiationDependentType() || T->isDependentType())
1838    T = T.getCanonicalType();
1839  else {
1840    // Desugar any types that are purely sugar.
1841    do {
1842      // Don't desugar through template specialization types that aren't
1843      // type aliases. We need to mangle the template arguments as written.
1844      if (const TemplateSpecializationType *TST
1845                                      = dyn_cast<TemplateSpecializationType>(T))
1846        if (!TST->isTypeAlias())
1847          break;
1848
1849      QualType Desugared
1850        = T.getSingleStepDesugaredType(Context.getASTContext());
1851      if (Desugared == T)
1852        break;
1853
1854      T = Desugared;
1855    } while (true);
1856  }
1857  SplitQualType split = T.split();
1858  Qualifiers quals = split.Quals;
1859  const Type *ty = split.Ty;
1860
1861  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1862  if (isSubstitutable && mangleSubstitution(T))
1863    return;
1864
1865  // If we're mangling a qualified array type, push the qualifiers to
1866  // the element type.
1867  if (quals && isa<ArrayType>(T)) {
1868    ty = Context.getASTContext().getAsArrayType(T);
1869    quals = Qualifiers();
1870
1871    // Note that we don't update T: we want to add the
1872    // substitution at the original type.
1873  }
1874
1875  if (quals) {
1876    mangleQualifiers(quals);
1877    // Recurse:  even if the qualified type isn't yet substitutable,
1878    // the unqualified type might be.
1879    mangleType(QualType(ty, 0));
1880  } else {
1881    switch (ty->getTypeClass()) {
1882#define ABSTRACT_TYPE(CLASS, PARENT)
1883#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1884    case Type::CLASS: \
1885      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1886      return;
1887#define TYPE(CLASS, PARENT) \
1888    case Type::CLASS: \
1889      mangleType(static_cast<const CLASS##Type*>(ty)); \
1890      break;
1891#include "clang/AST/TypeNodes.def"
1892    }
1893  }
1894
1895  // Add the substitution.
1896  if (isSubstitutable)
1897    addSubstitution(T);
1898}
1899
1900void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1901  if (!mangleStandardSubstitution(ND))
1902    mangleName(ND);
1903}
1904
1905void CXXNameMangler::mangleType(const BuiltinType *T) {
1906  //  <type>         ::= <builtin-type>
1907  //  <builtin-type> ::= v  # void
1908  //                 ::= w  # wchar_t
1909  //                 ::= b  # bool
1910  //                 ::= c  # char
1911  //                 ::= a  # signed char
1912  //                 ::= h  # unsigned char
1913  //                 ::= s  # short
1914  //                 ::= t  # unsigned short
1915  //                 ::= i  # int
1916  //                 ::= j  # unsigned int
1917  //                 ::= l  # long
1918  //                 ::= m  # unsigned long
1919  //                 ::= x  # long long, __int64
1920  //                 ::= y  # unsigned long long, __int64
1921  //                 ::= n  # __int128
1922  // UNSUPPORTED:    ::= o  # unsigned __int128
1923  //                 ::= f  # float
1924  //                 ::= d  # double
1925  //                 ::= e  # long double, __float80
1926  // UNSUPPORTED:    ::= g  # __float128
1927  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1928  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1929  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1930  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1931  //                 ::= Di # char32_t
1932  //                 ::= Ds # char16_t
1933  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1934  //                 ::= u <source-name>    # vendor extended type
1935  switch (T->getKind()) {
1936  case BuiltinType::Void: Out << 'v'; break;
1937  case BuiltinType::Bool: Out << 'b'; break;
1938  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1939  case BuiltinType::UChar: Out << 'h'; break;
1940  case BuiltinType::UShort: Out << 't'; break;
1941  case BuiltinType::UInt: Out << 'j'; break;
1942  case BuiltinType::ULong: Out << 'm'; break;
1943  case BuiltinType::ULongLong: Out << 'y'; break;
1944  case BuiltinType::UInt128: Out << 'o'; break;
1945  case BuiltinType::SChar: Out << 'a'; break;
1946  case BuiltinType::WChar_S:
1947  case BuiltinType::WChar_U: Out << 'w'; break;
1948  case BuiltinType::Char16: Out << "Ds"; break;
1949  case BuiltinType::Char32: Out << "Di"; break;
1950  case BuiltinType::Short: Out << 's'; break;
1951  case BuiltinType::Int: Out << 'i'; break;
1952  case BuiltinType::Long: Out << 'l'; break;
1953  case BuiltinType::LongLong: Out << 'x'; break;
1954  case BuiltinType::Int128: Out << 'n'; break;
1955  case BuiltinType::Half: Out << "Dh"; break;
1956  case BuiltinType::Float: Out << 'f'; break;
1957  case BuiltinType::Double: Out << 'd'; break;
1958  case BuiltinType::LongDouble: Out << 'e'; break;
1959  case BuiltinType::NullPtr: Out << "Dn"; break;
1960
1961#define BUILTIN_TYPE(Id, SingletonId)
1962#define PLACEHOLDER_TYPE(Id, SingletonId) \
1963  case BuiltinType::Id:
1964#include "clang/AST/BuiltinTypes.def"
1965  case BuiltinType::Dependent:
1966    llvm_unreachable("mangling a placeholder type");
1967  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1968  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1969  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1970  case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1971  case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1972  case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1973  case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1974  case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1975  case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
1976  case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
1977  case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
1978  }
1979}
1980
1981// <type>          ::= <function-type>
1982// <function-type> ::= [<CV-qualifiers>] F [Y]
1983//                      <bare-function-type> [<ref-qualifier>] E
1984void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1985  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
1986  // e.g. "const" in "int (A::*)() const".
1987  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1988
1989  Out << 'F';
1990
1991  // FIXME: We don't have enough information in the AST to produce the 'Y'
1992  // encoding for extern "C" function types.
1993  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1994
1995  // Mangle the ref-qualifier, if present.
1996  mangleRefQualifier(T->getRefQualifier());
1997
1998  Out << 'E';
1999}
2000void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2001  llvm_unreachable("Can't mangle K&R function prototypes");
2002}
2003void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2004                                            bool MangleReturnType) {
2005  // We should never be mangling something without a prototype.
2006  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2007
2008  // Record that we're in a function type.  See mangleFunctionParam
2009  // for details on what we're trying to achieve here.
2010  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2011
2012  // <bare-function-type> ::= <signature type>+
2013  if (MangleReturnType) {
2014    FunctionTypeDepth.enterResultType();
2015    mangleType(Proto->getResultType());
2016    FunctionTypeDepth.leaveResultType();
2017  }
2018
2019  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
2020    //   <builtin-type> ::= v   # void
2021    Out << 'v';
2022
2023    FunctionTypeDepth.pop(saved);
2024    return;
2025  }
2026
2027  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2028                                         ArgEnd = Proto->arg_type_end();
2029       Arg != ArgEnd; ++Arg)
2030    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
2031
2032  FunctionTypeDepth.pop(saved);
2033
2034  // <builtin-type>      ::= z  # ellipsis
2035  if (Proto->isVariadic())
2036    Out << 'z';
2037}
2038
2039// <type>            ::= <class-enum-type>
2040// <class-enum-type> ::= <name>
2041void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2042  mangleName(T->getDecl());
2043}
2044
2045// <type>            ::= <class-enum-type>
2046// <class-enum-type> ::= <name>
2047void CXXNameMangler::mangleType(const EnumType *T) {
2048  mangleType(static_cast<const TagType*>(T));
2049}
2050void CXXNameMangler::mangleType(const RecordType *T) {
2051  mangleType(static_cast<const TagType*>(T));
2052}
2053void CXXNameMangler::mangleType(const TagType *T) {
2054  mangleName(T->getDecl());
2055}
2056
2057// <type>       ::= <array-type>
2058// <array-type> ::= A <positive dimension number> _ <element type>
2059//              ::= A [<dimension expression>] _ <element type>
2060void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2061  Out << 'A' << T->getSize() << '_';
2062  mangleType(T->getElementType());
2063}
2064void CXXNameMangler::mangleType(const VariableArrayType *T) {
2065  Out << 'A';
2066  // decayed vla types (size 0) will just be skipped.
2067  if (T->getSizeExpr())
2068    mangleExpression(T->getSizeExpr());
2069  Out << '_';
2070  mangleType(T->getElementType());
2071}
2072void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2073  Out << 'A';
2074  mangleExpression(T->getSizeExpr());
2075  Out << '_';
2076  mangleType(T->getElementType());
2077}
2078void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2079  Out << "A_";
2080  mangleType(T->getElementType());
2081}
2082
2083// <type>                   ::= <pointer-to-member-type>
2084// <pointer-to-member-type> ::= M <class type> <member type>
2085void CXXNameMangler::mangleType(const MemberPointerType *T) {
2086  Out << 'M';
2087  mangleType(QualType(T->getClass(), 0));
2088  QualType PointeeType = T->getPointeeType();
2089  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2090    mangleType(FPT);
2091
2092    // Itanium C++ ABI 5.1.8:
2093    //
2094    //   The type of a non-static member function is considered to be different,
2095    //   for the purposes of substitution, from the type of a namespace-scope or
2096    //   static member function whose type appears similar. The types of two
2097    //   non-static member functions are considered to be different, for the
2098    //   purposes of substitution, if the functions are members of different
2099    //   classes. In other words, for the purposes of substitution, the class of
2100    //   which the function is a member is considered part of the type of
2101    //   function.
2102
2103    // Given that we already substitute member function pointers as a
2104    // whole, the net effect of this rule is just to unconditionally
2105    // suppress substitution on the function type in a member pointer.
2106    // We increment the SeqID here to emulate adding an entry to the
2107    // substitution table.
2108    ++SeqID;
2109  } else
2110    mangleType(PointeeType);
2111}
2112
2113// <type>           ::= <template-param>
2114void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2115  mangleTemplateParameter(T->getIndex());
2116}
2117
2118// <type>           ::= <template-param>
2119void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2120  // FIXME: not clear how to mangle this!
2121  // template <class T...> class A {
2122  //   template <class U...> void foo(T(*)(U) x...);
2123  // };
2124  Out << "_SUBSTPACK_";
2125}
2126
2127// <type> ::= P <type>   # pointer-to
2128void CXXNameMangler::mangleType(const PointerType *T) {
2129  Out << 'P';
2130  mangleType(T->getPointeeType());
2131}
2132void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2133  Out << 'P';
2134  mangleType(T->getPointeeType());
2135}
2136
2137// <type> ::= R <type>   # reference-to
2138void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2139  Out << 'R';
2140  mangleType(T->getPointeeType());
2141}
2142
2143// <type> ::= O <type>   # rvalue reference-to (C++0x)
2144void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2145  Out << 'O';
2146  mangleType(T->getPointeeType());
2147}
2148
2149// <type> ::= C <type>   # complex pair (C 2000)
2150void CXXNameMangler::mangleType(const ComplexType *T) {
2151  Out << 'C';
2152  mangleType(T->getElementType());
2153}
2154
2155// ARM's ABI for Neon vector types specifies that they should be mangled as
2156// if they are structs (to match ARM's initial implementation).  The
2157// vector type must be one of the special types predefined by ARM.
2158void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2159  QualType EltType = T->getElementType();
2160  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2161  const char *EltName = 0;
2162  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2163    switch (cast<BuiltinType>(EltType)->getKind()) {
2164    case BuiltinType::SChar:     EltName = "poly8_t"; break;
2165    case BuiltinType::Short:     EltName = "poly16_t"; break;
2166    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2167    }
2168  } else {
2169    switch (cast<BuiltinType>(EltType)->getKind()) {
2170    case BuiltinType::SChar:     EltName = "int8_t"; break;
2171    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2172    case BuiltinType::Short:     EltName = "int16_t"; break;
2173    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2174    case BuiltinType::Int:       EltName = "int32_t"; break;
2175    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2176    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2177    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2178    case BuiltinType::Float:     EltName = "float32_t"; break;
2179    case BuiltinType::Half:      EltName = "float16_t";break;
2180    default:
2181      llvm_unreachable("unexpected Neon vector element type");
2182    }
2183  }
2184  const char *BaseName = 0;
2185  unsigned BitSize = (T->getNumElements() *
2186                      getASTContext().getTypeSize(EltType));
2187  if (BitSize == 64)
2188    BaseName = "__simd64_";
2189  else {
2190    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2191    BaseName = "__simd128_";
2192  }
2193  Out << strlen(BaseName) + strlen(EltName);
2194  Out << BaseName << EltName;
2195}
2196
2197static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2198  switch (EltType->getKind()) {
2199  case BuiltinType::SChar:
2200    return "Int8";
2201  case BuiltinType::Short:
2202    return "Int16";
2203  case BuiltinType::Int:
2204    return "Int32";
2205  case BuiltinType::LongLong:
2206    return "Int64";
2207  case BuiltinType::UChar:
2208    return "Uint8";
2209  case BuiltinType::UShort:
2210    return "Uint16";
2211  case BuiltinType::UInt:
2212    return "Uint32";
2213  case BuiltinType::ULongLong:
2214    return "Uint64";
2215  case BuiltinType::Half:
2216    return "Float16";
2217  case BuiltinType::Float:
2218    return "Float32";
2219  case BuiltinType::Double:
2220    return "Float64";
2221  default:
2222    llvm_unreachable("Unexpected vector element base type");
2223  }
2224}
2225
2226// AArch64's ABI for Neon vector types specifies that they should be mangled as
2227// the equivalent internal name. The vector type must be one of the special
2228// types predefined by ARM.
2229void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2230  QualType EltType = T->getElementType();
2231  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2232  unsigned BitSize =
2233      (T->getNumElements() * getASTContext().getTypeSize(EltType));
2234  (void)BitSize; // Silence warning.
2235
2236  assert((BitSize == 64 || BitSize == 128) &&
2237         "Neon vector type not 64 or 128 bits");
2238
2239  StringRef EltName;
2240  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2241    switch (cast<BuiltinType>(EltType)->getKind()) {
2242    case BuiltinType::UChar:
2243      EltName = "Poly8";
2244      break;
2245    case BuiltinType::UShort:
2246      EltName = "Poly16";
2247      break;
2248    case BuiltinType::ULongLong:
2249      EltName = "Poly64";
2250      break;
2251    default:
2252      llvm_unreachable("unexpected Neon polynomial vector element type");
2253    }
2254  } else
2255    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2256
2257  std::string TypeName =
2258      ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2259  Out << TypeName.length() << TypeName;
2260}
2261
2262// GNU extension: vector types
2263// <type>                  ::= <vector-type>
2264// <vector-type>           ::= Dv <positive dimension number> _
2265//                                    <extended element type>
2266//                         ::= Dv [<dimension expression>] _ <element type>
2267// <extended element type> ::= <element type>
2268//                         ::= p # AltiVec vector pixel
2269//                         ::= b # Altivec vector bool
2270void CXXNameMangler::mangleType(const VectorType *T) {
2271  if ((T->getVectorKind() == VectorType::NeonVector ||
2272       T->getVectorKind() == VectorType::NeonPolyVector)) {
2273    if (getASTContext().getTargetInfo().getTriple().getArch() ==
2274        llvm::Triple::aarch64)
2275      mangleAArch64NeonVectorType(T);
2276    else
2277      mangleNeonVectorType(T);
2278    return;
2279  }
2280  Out << "Dv" << T->getNumElements() << '_';
2281  if (T->getVectorKind() == VectorType::AltiVecPixel)
2282    Out << 'p';
2283  else if (T->getVectorKind() == VectorType::AltiVecBool)
2284    Out << 'b';
2285  else
2286    mangleType(T->getElementType());
2287}
2288void CXXNameMangler::mangleType(const ExtVectorType *T) {
2289  mangleType(static_cast<const VectorType*>(T));
2290}
2291void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2292  Out << "Dv";
2293  mangleExpression(T->getSizeExpr());
2294  Out << '_';
2295  mangleType(T->getElementType());
2296}
2297
2298void CXXNameMangler::mangleType(const PackExpansionType *T) {
2299  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2300  Out << "Dp";
2301  mangleType(T->getPattern());
2302}
2303
2304void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2305  mangleSourceName(T->getDecl()->getIdentifier());
2306}
2307
2308void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2309  if (!T->qual_empty()) {
2310    // Mangle protocol qualifiers.
2311    SmallString<64> QualStr;
2312    llvm::raw_svector_ostream QualOS(QualStr);
2313    QualOS << "objcproto";
2314    ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2315    for ( ; i != e; ++i) {
2316      StringRef name = (*i)->getName();
2317      QualOS << name.size() << name;
2318    }
2319    QualOS.flush();
2320    Out << 'U' << QualStr.size() << QualStr;
2321  }
2322  mangleType(T->getBaseType());
2323}
2324
2325void CXXNameMangler::mangleType(const BlockPointerType *T) {
2326  Out << "U13block_pointer";
2327  mangleType(T->getPointeeType());
2328}
2329
2330void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2331  // Mangle injected class name types as if the user had written the
2332  // specialization out fully.  It may not actually be possible to see
2333  // this mangling, though.
2334  mangleType(T->getInjectedSpecializationType());
2335}
2336
2337void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2338  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2339    mangleName(TD, T->getArgs(), T->getNumArgs());
2340  } else {
2341    if (mangleSubstitution(QualType(T, 0)))
2342      return;
2343
2344    mangleTemplatePrefix(T->getTemplateName());
2345
2346    // FIXME: GCC does not appear to mangle the template arguments when
2347    // the template in question is a dependent template name. Should we
2348    // emulate that badness?
2349    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2350    addSubstitution(QualType(T, 0));
2351  }
2352}
2353
2354void CXXNameMangler::mangleType(const DependentNameType *T) {
2355  // Typename types are always nested
2356  Out << 'N';
2357  manglePrefix(T->getQualifier());
2358  mangleSourceName(T->getIdentifier());
2359  Out << 'E';
2360}
2361
2362void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2363  // Dependently-scoped template types are nested if they have a prefix.
2364  Out << 'N';
2365
2366  // TODO: avoid making this TemplateName.
2367  TemplateName Prefix =
2368    getASTContext().getDependentTemplateName(T->getQualifier(),
2369                                             T->getIdentifier());
2370  mangleTemplatePrefix(Prefix);
2371
2372  // FIXME: GCC does not appear to mangle the template arguments when
2373  // the template in question is a dependent template name. Should we
2374  // emulate that badness?
2375  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2376  Out << 'E';
2377}
2378
2379void CXXNameMangler::mangleType(const TypeOfType *T) {
2380  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2381  // "extension with parameters" mangling.
2382  Out << "u6typeof";
2383}
2384
2385void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2386  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2387  // "extension with parameters" mangling.
2388  Out << "u6typeof";
2389}
2390
2391void CXXNameMangler::mangleType(const DecltypeType *T) {
2392  Expr *E = T->getUnderlyingExpr();
2393
2394  // type ::= Dt <expression> E  # decltype of an id-expression
2395  //                             #   or class member access
2396  //      ::= DT <expression> E  # decltype of an expression
2397
2398  // This purports to be an exhaustive list of id-expressions and
2399  // class member accesses.  Note that we do not ignore parentheses;
2400  // parentheses change the semantics of decltype for these
2401  // expressions (and cause the mangler to use the other form).
2402  if (isa<DeclRefExpr>(E) ||
2403      isa<MemberExpr>(E) ||
2404      isa<UnresolvedLookupExpr>(E) ||
2405      isa<DependentScopeDeclRefExpr>(E) ||
2406      isa<CXXDependentScopeMemberExpr>(E) ||
2407      isa<UnresolvedMemberExpr>(E))
2408    Out << "Dt";
2409  else
2410    Out << "DT";
2411  mangleExpression(E);
2412  Out << 'E';
2413}
2414
2415void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2416  // If this is dependent, we need to record that. If not, we simply
2417  // mangle it as the underlying type since they are equivalent.
2418  if (T->isDependentType()) {
2419    Out << 'U';
2420
2421    switch (T->getUTTKind()) {
2422      case UnaryTransformType::EnumUnderlyingType:
2423        Out << "3eut";
2424        break;
2425    }
2426  }
2427
2428  mangleType(T->getUnderlyingType());
2429}
2430
2431void CXXNameMangler::mangleType(const AutoType *T) {
2432  QualType D = T->getDeducedType();
2433  // <builtin-type> ::= Da  # dependent auto
2434  if (D.isNull())
2435    Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2436  else
2437    mangleType(D);
2438}
2439
2440void CXXNameMangler::mangleType(const AtomicType *T) {
2441  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2442  // (Until there's a standardized mangling...)
2443  Out << "U7_Atomic";
2444  mangleType(T->getValueType());
2445}
2446
2447void CXXNameMangler::mangleIntegerLiteral(QualType T,
2448                                          const llvm::APSInt &Value) {
2449  //  <expr-primary> ::= L <type> <value number> E # integer literal
2450  Out << 'L';
2451
2452  mangleType(T);
2453  if (T->isBooleanType()) {
2454    // Boolean values are encoded as 0/1.
2455    Out << (Value.getBoolValue() ? '1' : '0');
2456  } else {
2457    mangleNumber(Value);
2458  }
2459  Out << 'E';
2460
2461}
2462
2463/// Mangles a member expression.
2464void CXXNameMangler::mangleMemberExpr(const Expr *base,
2465                                      bool isArrow,
2466                                      NestedNameSpecifier *qualifier,
2467                                      NamedDecl *firstQualifierLookup,
2468                                      DeclarationName member,
2469                                      unsigned arity) {
2470  // <expression> ::= dt <expression> <unresolved-name>
2471  //              ::= pt <expression> <unresolved-name>
2472  if (base) {
2473    if (base->isImplicitCXXThis()) {
2474      // Note: GCC mangles member expressions to the implicit 'this' as
2475      // *this., whereas we represent them as this->. The Itanium C++ ABI
2476      // does not specify anything here, so we follow GCC.
2477      Out << "dtdefpT";
2478    } else {
2479      Out << (isArrow ? "pt" : "dt");
2480      mangleExpression(base);
2481    }
2482  }
2483  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2484}
2485
2486/// Look at the callee of the given call expression and determine if
2487/// it's a parenthesized id-expression which would have triggered ADL
2488/// otherwise.
2489static bool isParenthesizedADLCallee(const CallExpr *call) {
2490  const Expr *callee = call->getCallee();
2491  const Expr *fn = callee->IgnoreParens();
2492
2493  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2494  // too, but for those to appear in the callee, it would have to be
2495  // parenthesized.
2496  if (callee == fn) return false;
2497
2498  // Must be an unresolved lookup.
2499  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2500  if (!lookup) return false;
2501
2502  assert(!lookup->requiresADL());
2503
2504  // Must be an unqualified lookup.
2505  if (lookup->getQualifier()) return false;
2506
2507  // Must not have found a class member.  Note that if one is a class
2508  // member, they're all class members.
2509  if (lookup->getNumDecls() > 0 &&
2510      (*lookup->decls_begin())->isCXXClassMember())
2511    return false;
2512
2513  // Otherwise, ADL would have been triggered.
2514  return true;
2515}
2516
2517void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2518  // <expression> ::= <unary operator-name> <expression>
2519  //              ::= <binary operator-name> <expression> <expression>
2520  //              ::= <trinary operator-name> <expression> <expression> <expression>
2521  //              ::= cv <type> expression           # conversion with one argument
2522  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2523  //              ::= st <type>                      # sizeof (a type)
2524  //              ::= at <type>                      # alignof (a type)
2525  //              ::= <template-param>
2526  //              ::= <function-param>
2527  //              ::= sr <type> <unqualified-name>                   # dependent name
2528  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2529  //              ::= ds <expression> <expression>                   # expr.*expr
2530  //              ::= sZ <template-param>                            # size of a parameter pack
2531  //              ::= sZ <function-param>    # size of a function parameter pack
2532  //              ::= <expr-primary>
2533  // <expr-primary> ::= L <type> <value number> E    # integer literal
2534  //                ::= L <type <value float> E      # floating literal
2535  //                ::= L <mangled-name> E           # external name
2536  //                ::= fpT                          # 'this' expression
2537  QualType ImplicitlyConvertedToType;
2538
2539recurse:
2540  switch (E->getStmtClass()) {
2541  case Expr::NoStmtClass:
2542#define ABSTRACT_STMT(Type)
2543#define EXPR(Type, Base)
2544#define STMT(Type, Base) \
2545  case Expr::Type##Class:
2546#include "clang/AST/StmtNodes.inc"
2547    // fallthrough
2548
2549  // These all can only appear in local or variable-initialization
2550  // contexts and so should never appear in a mangling.
2551  case Expr::AddrLabelExprClass:
2552  case Expr::DesignatedInitExprClass:
2553  case Expr::ImplicitValueInitExprClass:
2554  case Expr::ParenListExprClass:
2555  case Expr::LambdaExprClass:
2556  case Expr::MSPropertyRefExprClass:
2557    llvm_unreachable("unexpected statement kind");
2558
2559  // FIXME: invent manglings for all these.
2560  case Expr::BlockExprClass:
2561  case Expr::CXXPseudoDestructorExprClass:
2562  case Expr::ChooseExprClass:
2563  case Expr::CompoundLiteralExprClass:
2564  case Expr::ExtVectorElementExprClass:
2565  case Expr::GenericSelectionExprClass:
2566  case Expr::ObjCEncodeExprClass:
2567  case Expr::ObjCIsaExprClass:
2568  case Expr::ObjCIvarRefExprClass:
2569  case Expr::ObjCMessageExprClass:
2570  case Expr::ObjCPropertyRefExprClass:
2571  case Expr::ObjCProtocolExprClass:
2572  case Expr::ObjCSelectorExprClass:
2573  case Expr::ObjCStringLiteralClass:
2574  case Expr::ObjCBoxedExprClass:
2575  case Expr::ObjCArrayLiteralClass:
2576  case Expr::ObjCDictionaryLiteralClass:
2577  case Expr::ObjCSubscriptRefExprClass:
2578  case Expr::ObjCIndirectCopyRestoreExprClass:
2579  case Expr::OffsetOfExprClass:
2580  case Expr::PredefinedExprClass:
2581  case Expr::ShuffleVectorExprClass:
2582  case Expr::ConvertVectorExprClass:
2583  case Expr::StmtExprClass:
2584  case Expr::UnaryTypeTraitExprClass:
2585  case Expr::BinaryTypeTraitExprClass:
2586  case Expr::TypeTraitExprClass:
2587  case Expr::ArrayTypeTraitExprClass:
2588  case Expr::ExpressionTraitExprClass:
2589  case Expr::VAArgExprClass:
2590  case Expr::CXXUuidofExprClass:
2591  case Expr::CUDAKernelCallExprClass:
2592  case Expr::AsTypeExprClass:
2593  case Expr::PseudoObjectExprClass:
2594  case Expr::AtomicExprClass:
2595  {
2596    // As bad as this diagnostic is, it's better than crashing.
2597    DiagnosticsEngine &Diags = Context.getDiags();
2598    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2599                                     "cannot yet mangle expression type %0");
2600    Diags.Report(E->getExprLoc(), DiagID)
2601      << E->getStmtClassName() << E->getSourceRange();
2602    break;
2603  }
2604
2605  // Even gcc-4.5 doesn't mangle this.
2606  case Expr::BinaryConditionalOperatorClass: {
2607    DiagnosticsEngine &Diags = Context.getDiags();
2608    unsigned DiagID =
2609      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2610                "?: operator with omitted middle operand cannot be mangled");
2611    Diags.Report(E->getExprLoc(), DiagID)
2612      << E->getStmtClassName() << E->getSourceRange();
2613    break;
2614  }
2615
2616  // These are used for internal purposes and cannot be meaningfully mangled.
2617  case Expr::OpaqueValueExprClass:
2618    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2619
2620  case Expr::InitListExprClass: {
2621    // Proposal by Jason Merrill, 2012-01-03
2622    Out << "il";
2623    const InitListExpr *InitList = cast<InitListExpr>(E);
2624    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2625      mangleExpression(InitList->getInit(i));
2626    Out << "E";
2627    break;
2628  }
2629
2630  case Expr::CXXDefaultArgExprClass:
2631    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2632    break;
2633
2634  case Expr::CXXDefaultInitExprClass:
2635    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2636    break;
2637
2638  case Expr::CXXStdInitializerListExprClass:
2639    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2640    break;
2641
2642  case Expr::SubstNonTypeTemplateParmExprClass:
2643    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2644                     Arity);
2645    break;
2646
2647  case Expr::UserDefinedLiteralClass:
2648    // We follow g++'s approach of mangling a UDL as a call to the literal
2649    // operator.
2650  case Expr::CXXMemberCallExprClass: // fallthrough
2651  case Expr::CallExprClass: {
2652    const CallExpr *CE = cast<CallExpr>(E);
2653
2654    // <expression> ::= cp <simple-id> <expression>* E
2655    // We use this mangling only when the call would use ADL except
2656    // for being parenthesized.  Per discussion with David
2657    // Vandervoorde, 2011.04.25.
2658    if (isParenthesizedADLCallee(CE)) {
2659      Out << "cp";
2660      // The callee here is a parenthesized UnresolvedLookupExpr with
2661      // no qualifier and should always get mangled as a <simple-id>
2662      // anyway.
2663
2664    // <expression> ::= cl <expression>* E
2665    } else {
2666      Out << "cl";
2667    }
2668
2669    mangleExpression(CE->getCallee(), CE->getNumArgs());
2670    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2671      mangleExpression(CE->getArg(I));
2672    Out << 'E';
2673    break;
2674  }
2675
2676  case Expr::CXXNewExprClass: {
2677    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2678    if (New->isGlobalNew()) Out << "gs";
2679    Out << (New->isArray() ? "na" : "nw");
2680    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2681           E = New->placement_arg_end(); I != E; ++I)
2682      mangleExpression(*I);
2683    Out << '_';
2684    mangleType(New->getAllocatedType());
2685    if (New->hasInitializer()) {
2686      // Proposal by Jason Merrill, 2012-01-03
2687      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2688        Out << "il";
2689      else
2690        Out << "pi";
2691      const Expr *Init = New->getInitializer();
2692      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2693        // Directly inline the initializers.
2694        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2695                                                  E = CCE->arg_end();
2696             I != E; ++I)
2697          mangleExpression(*I);
2698      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2699        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2700          mangleExpression(PLE->getExpr(i));
2701      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2702                 isa<InitListExpr>(Init)) {
2703        // Only take InitListExprs apart for list-initialization.
2704        const InitListExpr *InitList = cast<InitListExpr>(Init);
2705        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2706          mangleExpression(InitList->getInit(i));
2707      } else
2708        mangleExpression(Init);
2709    }
2710    Out << 'E';
2711    break;
2712  }
2713
2714  case Expr::MemberExprClass: {
2715    const MemberExpr *ME = cast<MemberExpr>(E);
2716    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2717                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2718                     Arity);
2719    break;
2720  }
2721
2722  case Expr::UnresolvedMemberExprClass: {
2723    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2724    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2725                     ME->getQualifier(), 0, ME->getMemberName(),
2726                     Arity);
2727    if (ME->hasExplicitTemplateArgs())
2728      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2729    break;
2730  }
2731
2732  case Expr::CXXDependentScopeMemberExprClass: {
2733    const CXXDependentScopeMemberExpr *ME
2734      = cast<CXXDependentScopeMemberExpr>(E);
2735    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2736                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2737                     ME->getMember(), Arity);
2738    if (ME->hasExplicitTemplateArgs())
2739      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2740    break;
2741  }
2742
2743  case Expr::UnresolvedLookupExprClass: {
2744    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2745    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2746
2747    // All the <unresolved-name> productions end in a
2748    // base-unresolved-name, where <template-args> are just tacked
2749    // onto the end.
2750    if (ULE->hasExplicitTemplateArgs())
2751      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2752    break;
2753  }
2754
2755  case Expr::CXXUnresolvedConstructExprClass: {
2756    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2757    unsigned N = CE->arg_size();
2758
2759    Out << "cv";
2760    mangleType(CE->getType());
2761    if (N != 1) Out << '_';
2762    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2763    if (N != 1) Out << 'E';
2764    break;
2765  }
2766
2767  case Expr::CXXTemporaryObjectExprClass:
2768  case Expr::CXXConstructExprClass: {
2769    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2770    unsigned N = CE->getNumArgs();
2771
2772    // Proposal by Jason Merrill, 2012-01-03
2773    if (CE->isListInitialization())
2774      Out << "tl";
2775    else
2776      Out << "cv";
2777    mangleType(CE->getType());
2778    if (N != 1) Out << '_';
2779    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2780    if (N != 1) Out << 'E';
2781    break;
2782  }
2783
2784  case Expr::CXXScalarValueInitExprClass:
2785    Out <<"cv";
2786    mangleType(E->getType());
2787    Out <<"_E";
2788    break;
2789
2790  case Expr::CXXNoexceptExprClass:
2791    Out << "nx";
2792    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2793    break;
2794
2795  case Expr::UnaryExprOrTypeTraitExprClass: {
2796    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2797
2798    if (!SAE->isInstantiationDependent()) {
2799      // Itanium C++ ABI:
2800      //   If the operand of a sizeof or alignof operator is not
2801      //   instantiation-dependent it is encoded as an integer literal
2802      //   reflecting the result of the operator.
2803      //
2804      //   If the result of the operator is implicitly converted to a known
2805      //   integer type, that type is used for the literal; otherwise, the type
2806      //   of std::size_t or std::ptrdiff_t is used.
2807      QualType T = (ImplicitlyConvertedToType.isNull() ||
2808                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2809                                                    : ImplicitlyConvertedToType;
2810      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2811      mangleIntegerLiteral(T, V);
2812      break;
2813    }
2814
2815    switch(SAE->getKind()) {
2816    case UETT_SizeOf:
2817      Out << 's';
2818      break;
2819    case UETT_AlignOf:
2820      Out << 'a';
2821      break;
2822    case UETT_VecStep:
2823      DiagnosticsEngine &Diags = Context.getDiags();
2824      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2825                                     "cannot yet mangle vec_step expression");
2826      Diags.Report(DiagID);
2827      return;
2828    }
2829    if (SAE->isArgumentType()) {
2830      Out << 't';
2831      mangleType(SAE->getArgumentType());
2832    } else {
2833      Out << 'z';
2834      mangleExpression(SAE->getArgumentExpr());
2835    }
2836    break;
2837  }
2838
2839  case Expr::CXXThrowExprClass: {
2840    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2841    //  <expression> ::= tw <expression>  # throw expression
2842    //               ::= tr               # rethrow
2843    if (TE->getSubExpr()) {
2844      Out << "tw";
2845      mangleExpression(TE->getSubExpr());
2846    } else {
2847      Out << "tr";
2848    }
2849    break;
2850  }
2851
2852  case Expr::CXXTypeidExprClass: {
2853    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2854    //  <expression> ::= ti <type>        # typeid (type)
2855    //               ::= te <expression>  # typeid (expression)
2856    if (TIE->isTypeOperand()) {
2857      Out << "ti";
2858      mangleType(TIE->getTypeOperand(Context.getASTContext()));
2859    } else {
2860      Out << "te";
2861      mangleExpression(TIE->getExprOperand());
2862    }
2863    break;
2864  }
2865
2866  case Expr::CXXDeleteExprClass: {
2867    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2868    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
2869    //               ::= [gs] da <expression>  # [::] delete [] expr
2870    if (DE->isGlobalDelete()) Out << "gs";
2871    Out << (DE->isArrayForm() ? "da" : "dl");
2872    mangleExpression(DE->getArgument());
2873    break;
2874  }
2875
2876  case Expr::UnaryOperatorClass: {
2877    const UnaryOperator *UO = cast<UnaryOperator>(E);
2878    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2879                       /*Arity=*/1);
2880    mangleExpression(UO->getSubExpr());
2881    break;
2882  }
2883
2884  case Expr::ArraySubscriptExprClass: {
2885    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2886
2887    // Array subscript is treated as a syntactically weird form of
2888    // binary operator.
2889    Out << "ix";
2890    mangleExpression(AE->getLHS());
2891    mangleExpression(AE->getRHS());
2892    break;
2893  }
2894
2895  case Expr::CompoundAssignOperatorClass: // fallthrough
2896  case Expr::BinaryOperatorClass: {
2897    const BinaryOperator *BO = cast<BinaryOperator>(E);
2898    if (BO->getOpcode() == BO_PtrMemD)
2899      Out << "ds";
2900    else
2901      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2902                         /*Arity=*/2);
2903    mangleExpression(BO->getLHS());
2904    mangleExpression(BO->getRHS());
2905    break;
2906  }
2907
2908  case Expr::ConditionalOperatorClass: {
2909    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2910    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2911    mangleExpression(CO->getCond());
2912    mangleExpression(CO->getLHS(), Arity);
2913    mangleExpression(CO->getRHS(), Arity);
2914    break;
2915  }
2916
2917  case Expr::ImplicitCastExprClass: {
2918    ImplicitlyConvertedToType = E->getType();
2919    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2920    goto recurse;
2921  }
2922
2923  case Expr::ObjCBridgedCastExprClass: {
2924    // Mangle ownership casts as a vendor extended operator __bridge,
2925    // __bridge_transfer, or __bridge_retain.
2926    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2927    Out << "v1U" << Kind.size() << Kind;
2928  }
2929  // Fall through to mangle the cast itself.
2930
2931  case Expr::CStyleCastExprClass:
2932  case Expr::CXXStaticCastExprClass:
2933  case Expr::CXXDynamicCastExprClass:
2934  case Expr::CXXReinterpretCastExprClass:
2935  case Expr::CXXConstCastExprClass:
2936  case Expr::CXXFunctionalCastExprClass: {
2937    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2938    Out << "cv";
2939    mangleType(ECE->getType());
2940    mangleExpression(ECE->getSubExpr());
2941    break;
2942  }
2943
2944  case Expr::CXXOperatorCallExprClass: {
2945    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2946    unsigned NumArgs = CE->getNumArgs();
2947    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2948    // Mangle the arguments.
2949    for (unsigned i = 0; i != NumArgs; ++i)
2950      mangleExpression(CE->getArg(i));
2951    break;
2952  }
2953
2954  case Expr::ParenExprClass:
2955    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2956    break;
2957
2958  case Expr::DeclRefExprClass: {
2959    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2960
2961    switch (D->getKind()) {
2962    default:
2963      //  <expr-primary> ::= L <mangled-name> E # external name
2964      Out << 'L';
2965      mangle(D, "_Z");
2966      Out << 'E';
2967      break;
2968
2969    case Decl::ParmVar:
2970      mangleFunctionParam(cast<ParmVarDecl>(D));
2971      break;
2972
2973    case Decl::EnumConstant: {
2974      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2975      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2976      break;
2977    }
2978
2979    case Decl::NonTypeTemplateParm: {
2980      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2981      mangleTemplateParameter(PD->getIndex());
2982      break;
2983    }
2984
2985    }
2986
2987    break;
2988  }
2989
2990  case Expr::SubstNonTypeTemplateParmPackExprClass:
2991    // FIXME: not clear how to mangle this!
2992    // template <unsigned N...> class A {
2993    //   template <class U...> void foo(U (&x)[N]...);
2994    // };
2995    Out << "_SUBSTPACK_";
2996    break;
2997
2998  case Expr::FunctionParmPackExprClass: {
2999    // FIXME: not clear how to mangle this!
3000    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3001    Out << "v110_SUBSTPACK";
3002    mangleFunctionParam(FPPE->getParameterPack());
3003    break;
3004  }
3005
3006  case Expr::DependentScopeDeclRefExprClass: {
3007    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3008    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
3009
3010    // All the <unresolved-name> productions end in a
3011    // base-unresolved-name, where <template-args> are just tacked
3012    // onto the end.
3013    if (DRE->hasExplicitTemplateArgs())
3014      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3015    break;
3016  }
3017
3018  case Expr::CXXBindTemporaryExprClass:
3019    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3020    break;
3021
3022  case Expr::ExprWithCleanupsClass:
3023    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3024    break;
3025
3026  case Expr::FloatingLiteralClass: {
3027    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3028    Out << 'L';
3029    mangleType(FL->getType());
3030    mangleFloat(FL->getValue());
3031    Out << 'E';
3032    break;
3033  }
3034
3035  case Expr::CharacterLiteralClass:
3036    Out << 'L';
3037    mangleType(E->getType());
3038    Out << cast<CharacterLiteral>(E)->getValue();
3039    Out << 'E';
3040    break;
3041
3042  // FIXME. __objc_yes/__objc_no are mangled same as true/false
3043  case Expr::ObjCBoolLiteralExprClass:
3044    Out << "Lb";
3045    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3046    Out << 'E';
3047    break;
3048
3049  case Expr::CXXBoolLiteralExprClass:
3050    Out << "Lb";
3051    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3052    Out << 'E';
3053    break;
3054
3055  case Expr::IntegerLiteralClass: {
3056    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3057    if (E->getType()->isSignedIntegerType())
3058      Value.setIsSigned(true);
3059    mangleIntegerLiteral(E->getType(), Value);
3060    break;
3061  }
3062
3063  case Expr::ImaginaryLiteralClass: {
3064    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3065    // Mangle as if a complex literal.
3066    // Proposal from David Vandevoorde, 2010.06.30.
3067    Out << 'L';
3068    mangleType(E->getType());
3069    if (const FloatingLiteral *Imag =
3070          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3071      // Mangle a floating-point zero of the appropriate type.
3072      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3073      Out << '_';
3074      mangleFloat(Imag->getValue());
3075    } else {
3076      Out << "0_";
3077      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3078      if (IE->getSubExpr()->getType()->isSignedIntegerType())
3079        Value.setIsSigned(true);
3080      mangleNumber(Value);
3081    }
3082    Out << 'E';
3083    break;
3084  }
3085
3086  case Expr::StringLiteralClass: {
3087    // Revised proposal from David Vandervoorde, 2010.07.15.
3088    Out << 'L';
3089    assert(isa<ConstantArrayType>(E->getType()));
3090    mangleType(E->getType());
3091    Out << 'E';
3092    break;
3093  }
3094
3095  case Expr::GNUNullExprClass:
3096    // FIXME: should this really be mangled the same as nullptr?
3097    // fallthrough
3098
3099  case Expr::CXXNullPtrLiteralExprClass: {
3100    Out << "LDnE";
3101    break;
3102  }
3103
3104  case Expr::PackExpansionExprClass:
3105    Out << "sp";
3106    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3107    break;
3108
3109  case Expr::SizeOfPackExprClass: {
3110    Out << "sZ";
3111    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3112    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3113      mangleTemplateParameter(TTP->getIndex());
3114    else if (const NonTypeTemplateParmDecl *NTTP
3115                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3116      mangleTemplateParameter(NTTP->getIndex());
3117    else if (const TemplateTemplateParmDecl *TempTP
3118                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
3119      mangleTemplateParameter(TempTP->getIndex());
3120    else
3121      mangleFunctionParam(cast<ParmVarDecl>(Pack));
3122    break;
3123  }
3124
3125  case Expr::MaterializeTemporaryExprClass: {
3126    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3127    break;
3128  }
3129
3130  case Expr::CXXThisExprClass:
3131    Out << "fpT";
3132    break;
3133  }
3134}
3135
3136/// Mangle an expression which refers to a parameter variable.
3137///
3138/// <expression>     ::= <function-param>
3139/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3140/// <function-param> ::= fp <top-level CV-qualifiers>
3141///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3142/// <function-param> ::= fL <L-1 non-negative number>
3143///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3144/// <function-param> ::= fL <L-1 non-negative number>
3145///                      p <top-level CV-qualifiers>
3146///                      <I-1 non-negative number> _         # L > 0, I > 0
3147///
3148/// L is the nesting depth of the parameter, defined as 1 if the
3149/// parameter comes from the innermost function prototype scope
3150/// enclosing the current context, 2 if from the next enclosing
3151/// function prototype scope, and so on, with one special case: if
3152/// we've processed the full parameter clause for the innermost
3153/// function type, then L is one less.  This definition conveniently
3154/// makes it irrelevant whether a function's result type was written
3155/// trailing or leading, but is otherwise overly complicated; the
3156/// numbering was first designed without considering references to
3157/// parameter in locations other than return types, and then the
3158/// mangling had to be generalized without changing the existing
3159/// manglings.
3160///
3161/// I is the zero-based index of the parameter within its parameter
3162/// declaration clause.  Note that the original ABI document describes
3163/// this using 1-based ordinals.
3164void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3165  unsigned parmDepth = parm->getFunctionScopeDepth();
3166  unsigned parmIndex = parm->getFunctionScopeIndex();
3167
3168  // Compute 'L'.
3169  // parmDepth does not include the declaring function prototype.
3170  // FunctionTypeDepth does account for that.
3171  assert(parmDepth < FunctionTypeDepth.getDepth());
3172  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3173  if (FunctionTypeDepth.isInResultType())
3174    nestingDepth--;
3175
3176  if (nestingDepth == 0) {
3177    Out << "fp";
3178  } else {
3179    Out << "fL" << (nestingDepth - 1) << 'p';
3180  }
3181
3182  // Top-level qualifiers.  We don't have to worry about arrays here,
3183  // because parameters declared as arrays should already have been
3184  // transformed to have pointer type. FIXME: apparently these don't
3185  // get mangled if used as an rvalue of a known non-class type?
3186  assert(!parm->getType()->isArrayType()
3187         && "parameter's type is still an array type?");
3188  mangleQualifiers(parm->getType().getQualifiers());
3189
3190  // Parameter index.
3191  if (parmIndex != 0) {
3192    Out << (parmIndex - 1);
3193  }
3194  Out << '_';
3195}
3196
3197void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3198  // <ctor-dtor-name> ::= C1  # complete object constructor
3199  //                  ::= C2  # base object constructor
3200  //                  ::= C3  # complete object allocating constructor
3201  //
3202  switch (T) {
3203  case Ctor_Complete:
3204    Out << "C1";
3205    break;
3206  case Ctor_Base:
3207    Out << "C2";
3208    break;
3209  case Ctor_CompleteAllocating:
3210    Out << "C3";
3211    break;
3212  }
3213}
3214
3215void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3216  // <ctor-dtor-name> ::= D0  # deleting destructor
3217  //                  ::= D1  # complete object destructor
3218  //                  ::= D2  # base object destructor
3219  //
3220  switch (T) {
3221  case Dtor_Deleting:
3222    Out << "D0";
3223    break;
3224  case Dtor_Complete:
3225    Out << "D1";
3226    break;
3227  case Dtor_Base:
3228    Out << "D2";
3229    break;
3230  }
3231}
3232
3233void CXXNameMangler::mangleTemplateArgs(
3234                          const ASTTemplateArgumentListInfo &TemplateArgs) {
3235  // <template-args> ::= I <template-arg>+ E
3236  Out << 'I';
3237  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3238    mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3239  Out << 'E';
3240}
3241
3242void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3243  // <template-args> ::= I <template-arg>+ E
3244  Out << 'I';
3245  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3246    mangleTemplateArg(AL[i]);
3247  Out << 'E';
3248}
3249
3250void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3251                                        unsigned NumTemplateArgs) {
3252  // <template-args> ::= I <template-arg>+ E
3253  Out << 'I';
3254  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3255    mangleTemplateArg(TemplateArgs[i]);
3256  Out << 'E';
3257}
3258
3259void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3260  // <template-arg> ::= <type>              # type or template
3261  //                ::= X <expression> E    # expression
3262  //                ::= <expr-primary>      # simple expressions
3263  //                ::= J <template-arg>* E # argument pack
3264  if (!A.isInstantiationDependent() || A.isDependent())
3265    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3266
3267  switch (A.getKind()) {
3268  case TemplateArgument::Null:
3269    llvm_unreachable("Cannot mangle NULL template argument");
3270
3271  case TemplateArgument::Type:
3272    mangleType(A.getAsType());
3273    break;
3274  case TemplateArgument::Template:
3275    // This is mangled as <type>.
3276    mangleType(A.getAsTemplate());
3277    break;
3278  case TemplateArgument::TemplateExpansion:
3279    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3280    Out << "Dp";
3281    mangleType(A.getAsTemplateOrTemplatePattern());
3282    break;
3283  case TemplateArgument::Expression: {
3284    // It's possible to end up with a DeclRefExpr here in certain
3285    // dependent cases, in which case we should mangle as a
3286    // declaration.
3287    const Expr *E = A.getAsExpr()->IgnoreParens();
3288    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3289      const ValueDecl *D = DRE->getDecl();
3290      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3291        Out << "L";
3292        mangle(D, "_Z");
3293        Out << 'E';
3294        break;
3295      }
3296    }
3297
3298    Out << 'X';
3299    mangleExpression(E);
3300    Out << 'E';
3301    break;
3302  }
3303  case TemplateArgument::Integral:
3304    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3305    break;
3306  case TemplateArgument::Declaration: {
3307    //  <expr-primary> ::= L <mangled-name> E # external name
3308    // Clang produces AST's where pointer-to-member-function expressions
3309    // and pointer-to-function expressions are represented as a declaration not
3310    // an expression. We compensate for it here to produce the correct mangling.
3311    ValueDecl *D = A.getAsDecl();
3312    bool compensateMangling = !A.isDeclForReferenceParam();
3313    if (compensateMangling) {
3314      Out << 'X';
3315      mangleOperatorName(OO_Amp, 1);
3316    }
3317
3318    Out << 'L';
3319    // References to external entities use the mangled name; if the name would
3320    // not normally be manged then mangle it as unqualified.
3321    //
3322    // FIXME: The ABI specifies that external names here should have _Z, but
3323    // gcc leaves this off.
3324    if (compensateMangling)
3325      mangle(D, "_Z");
3326    else
3327      mangle(D, "Z");
3328    Out << 'E';
3329
3330    if (compensateMangling)
3331      Out << 'E';
3332
3333    break;
3334  }
3335  case TemplateArgument::NullPtr: {
3336    //  <expr-primary> ::= L <type> 0 E
3337    Out << 'L';
3338    mangleType(A.getNullPtrType());
3339    Out << "0E";
3340    break;
3341  }
3342  case TemplateArgument::Pack: {
3343    //  <template-arg> ::= J <template-arg>* E
3344    Out << 'J';
3345    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3346                                      PAEnd = A.pack_end();
3347         PA != PAEnd; ++PA)
3348      mangleTemplateArg(*PA);
3349    Out << 'E';
3350  }
3351  }
3352}
3353
3354void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3355  // <template-param> ::= T_    # first template parameter
3356  //                  ::= T <parameter-2 non-negative number> _
3357  if (Index == 0)
3358    Out << "T_";
3359  else
3360    Out << 'T' << (Index - 1) << '_';
3361}
3362
3363void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3364  bool result = mangleSubstitution(type);
3365  assert(result && "no existing substitution for type");
3366  (void) result;
3367}
3368
3369void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3370  bool result = mangleSubstitution(tname);
3371  assert(result && "no existing substitution for template name");
3372  (void) result;
3373}
3374
3375// <substitution> ::= S <seq-id> _
3376//                ::= S_
3377bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3378  // Try one of the standard substitutions first.
3379  if (mangleStandardSubstitution(ND))
3380    return true;
3381
3382  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3383  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3384}
3385
3386/// \brief Determine whether the given type has any qualifiers that are
3387/// relevant for substitutions.
3388static bool hasMangledSubstitutionQualifiers(QualType T) {
3389  Qualifiers Qs = T.getQualifiers();
3390  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3391}
3392
3393bool CXXNameMangler::mangleSubstitution(QualType T) {
3394  if (!hasMangledSubstitutionQualifiers(T)) {
3395    if (const RecordType *RT = T->getAs<RecordType>())
3396      return mangleSubstitution(RT->getDecl());
3397  }
3398
3399  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3400
3401  return mangleSubstitution(TypePtr);
3402}
3403
3404bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3405  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3406    return mangleSubstitution(TD);
3407
3408  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3409  return mangleSubstitution(
3410                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3411}
3412
3413bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3414  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3415  if (I == Substitutions.end())
3416    return false;
3417
3418  unsigned SeqID = I->second;
3419  if (SeqID == 0)
3420    Out << "S_";
3421  else {
3422    SeqID--;
3423
3424    // <seq-id> is encoded in base-36, using digits and upper case letters.
3425    char Buffer[10];
3426    char *BufferPtr = llvm::array_endof(Buffer);
3427
3428    if (SeqID == 0) *--BufferPtr = '0';
3429
3430    while (SeqID) {
3431      assert(BufferPtr > Buffer && "Buffer overflow!");
3432
3433      char c = static_cast<char>(SeqID % 36);
3434
3435      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3436      SeqID /= 36;
3437    }
3438
3439    Out << 'S'
3440        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3441        << '_';
3442  }
3443
3444  return true;
3445}
3446
3447static bool isCharType(QualType T) {
3448  if (T.isNull())
3449    return false;
3450
3451  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3452    T->isSpecificBuiltinType(BuiltinType::Char_U);
3453}
3454
3455/// isCharSpecialization - Returns whether a given type is a template
3456/// specialization of a given name with a single argument of type char.
3457static bool isCharSpecialization(QualType T, const char *Name) {
3458  if (T.isNull())
3459    return false;
3460
3461  const RecordType *RT = T->getAs<RecordType>();
3462  if (!RT)
3463    return false;
3464
3465  const ClassTemplateSpecializationDecl *SD =
3466    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3467  if (!SD)
3468    return false;
3469
3470  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3471    return false;
3472
3473  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3474  if (TemplateArgs.size() != 1)
3475    return false;
3476
3477  if (!isCharType(TemplateArgs[0].getAsType()))
3478    return false;
3479
3480  return SD->getIdentifier()->getName() == Name;
3481}
3482
3483template <std::size_t StrLen>
3484static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3485                                       const char (&Str)[StrLen]) {
3486  if (!SD->getIdentifier()->isStr(Str))
3487    return false;
3488
3489  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3490  if (TemplateArgs.size() != 2)
3491    return false;
3492
3493  if (!isCharType(TemplateArgs[0].getAsType()))
3494    return false;
3495
3496  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3497    return false;
3498
3499  return true;
3500}
3501
3502bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3503  // <substitution> ::= St # ::std::
3504  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3505    if (isStd(NS)) {
3506      Out << "St";
3507      return true;
3508    }
3509  }
3510
3511  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3512    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3513      return false;
3514
3515    // <substitution> ::= Sa # ::std::allocator
3516    if (TD->getIdentifier()->isStr("allocator")) {
3517      Out << "Sa";
3518      return true;
3519    }
3520
3521    // <<substitution> ::= Sb # ::std::basic_string
3522    if (TD->getIdentifier()->isStr("basic_string")) {
3523      Out << "Sb";
3524      return true;
3525    }
3526  }
3527
3528  if (const ClassTemplateSpecializationDecl *SD =
3529        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3530    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3531      return false;
3532
3533    //    <substitution> ::= Ss # ::std::basic_string<char,
3534    //                            ::std::char_traits<char>,
3535    //                            ::std::allocator<char> >
3536    if (SD->getIdentifier()->isStr("basic_string")) {
3537      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3538
3539      if (TemplateArgs.size() != 3)
3540        return false;
3541
3542      if (!isCharType(TemplateArgs[0].getAsType()))
3543        return false;
3544
3545      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3546        return false;
3547
3548      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3549        return false;
3550
3551      Out << "Ss";
3552      return true;
3553    }
3554
3555    //    <substitution> ::= Si # ::std::basic_istream<char,
3556    //                            ::std::char_traits<char> >
3557    if (isStreamCharSpecialization(SD, "basic_istream")) {
3558      Out << "Si";
3559      return true;
3560    }
3561
3562    //    <substitution> ::= So # ::std::basic_ostream<char,
3563    //                            ::std::char_traits<char> >
3564    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3565      Out << "So";
3566      return true;
3567    }
3568
3569    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3570    //                            ::std::char_traits<char> >
3571    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3572      Out << "Sd";
3573      return true;
3574    }
3575  }
3576  return false;
3577}
3578
3579void CXXNameMangler::addSubstitution(QualType T) {
3580  if (!hasMangledSubstitutionQualifiers(T)) {
3581    if (const RecordType *RT = T->getAs<RecordType>()) {
3582      addSubstitution(RT->getDecl());
3583      return;
3584    }
3585  }
3586
3587  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3588  addSubstitution(TypePtr);
3589}
3590
3591void CXXNameMangler::addSubstitution(TemplateName Template) {
3592  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3593    return addSubstitution(TD);
3594
3595  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3596  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3597}
3598
3599void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3600  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3601  Substitutions[Ptr] = SeqID++;
3602}
3603
3604//
3605
3606/// \brief Mangles the name of the declaration D and emits that name to the
3607/// given output stream.
3608///
3609/// If the declaration D requires a mangled name, this routine will emit that
3610/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3611/// and this routine will return false. In this case, the caller should just
3612/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3613/// name.
3614void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3615                                             raw_ostream &Out) {
3616  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3617          "Invalid mangleName() call, argument is not a variable or function!");
3618  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3619         "Invalid mangleName() call on 'structor decl!");
3620
3621  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3622                                 getASTContext().getSourceManager(),
3623                                 "Mangling declaration");
3624
3625  CXXNameMangler Mangler(*this, Out, D);
3626  return Mangler.mangle(D);
3627}
3628
3629void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3630                                             CXXCtorType Type,
3631                                             raw_ostream &Out) {
3632  CXXNameMangler Mangler(*this, Out, D, Type);
3633  Mangler.mangle(D);
3634}
3635
3636void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3637                                             CXXDtorType Type,
3638                                             raw_ostream &Out) {
3639  CXXNameMangler Mangler(*this, Out, D, Type);
3640  Mangler.mangle(D);
3641}
3642
3643void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3644                                           const ThunkInfo &Thunk,
3645                                           raw_ostream &Out) {
3646  //  <special-name> ::= T <call-offset> <base encoding>
3647  //                      # base is the nominal target function of thunk
3648  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3649  //                      # base is the nominal target function of thunk
3650  //                      # first call-offset is 'this' adjustment
3651  //                      # second call-offset is result adjustment
3652
3653  assert(!isa<CXXDestructorDecl>(MD) &&
3654         "Use mangleCXXDtor for destructor decls!");
3655  CXXNameMangler Mangler(*this, Out);
3656  Mangler.getStream() << "_ZT";
3657  if (!Thunk.Return.isEmpty())
3658    Mangler.getStream() << 'c';
3659
3660  // Mangle the 'this' pointer adjustment.
3661  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
3662                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
3663
3664  // Mangle the return pointer adjustment if there is one.
3665  if (!Thunk.Return.isEmpty())
3666    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3667                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3668
3669  Mangler.mangleFunctionEncoding(MD);
3670}
3671
3672void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3673    const CXXDestructorDecl *DD, CXXDtorType Type,
3674    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
3675  //  <special-name> ::= T <call-offset> <base encoding>
3676  //                      # base is the nominal target function of thunk
3677  CXXNameMangler Mangler(*this, Out, DD, Type);
3678  Mangler.getStream() << "_ZT";
3679
3680  // Mangle the 'this' pointer adjustment.
3681  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3682                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
3683
3684  Mangler.mangleFunctionEncoding(DD);
3685}
3686
3687/// mangleGuardVariable - Returns the mangled name for a guard variable
3688/// for the passed in VarDecl.
3689void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3690                                                         raw_ostream &Out) {
3691  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3692  //                                            # initialization
3693  CXXNameMangler Mangler(*this, Out);
3694  Mangler.getStream() << "_ZGV";
3695  Mangler.mangleName(D);
3696}
3697
3698void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3699                                                        raw_ostream &Out) {
3700  // These symbols are internal in the Itanium ABI, so the names don't matter.
3701  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3702  // avoid duplicate symbols.
3703  Out << "__cxx_global_var_init";
3704}
3705
3706void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3707                                                             raw_ostream &Out) {
3708  // Prefix the mangling of D with __dtor_.
3709  CXXNameMangler Mangler(*this, Out);
3710  Mangler.getStream() << "__dtor_";
3711  if (shouldMangleDeclName(D))
3712    Mangler.mangle(D);
3713  else
3714    Mangler.getStream() << D->getName();
3715}
3716
3717void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3718                                                            raw_ostream &Out) {
3719  //  <special-name> ::= TH <object name>
3720  CXXNameMangler Mangler(*this, Out);
3721  Mangler.getStream() << "_ZTH";
3722  Mangler.mangleName(D);
3723}
3724
3725void
3726ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3727                                                          raw_ostream &Out) {
3728  //  <special-name> ::= TW <object name>
3729  CXXNameMangler Mangler(*this, Out);
3730  Mangler.getStream() << "_ZTW";
3731  Mangler.mangleName(D);
3732}
3733
3734void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
3735                                                        raw_ostream &Out) {
3736  // We match the GCC mangling here.
3737  //  <special-name> ::= GR <object name>
3738  CXXNameMangler Mangler(*this, Out);
3739  Mangler.getStream() << "_ZGR";
3740  Mangler.mangleName(D);
3741}
3742
3743void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
3744                                               raw_ostream &Out) {
3745  // <special-name> ::= TV <type>  # virtual table
3746  CXXNameMangler Mangler(*this, Out);
3747  Mangler.getStream() << "_ZTV";
3748  Mangler.mangleNameOrStandardSubstitution(RD);
3749}
3750
3751void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
3752                                            raw_ostream &Out) {
3753  // <special-name> ::= TT <type>  # VTT structure
3754  CXXNameMangler Mangler(*this, Out);
3755  Mangler.getStream() << "_ZTT";
3756  Mangler.mangleNameOrStandardSubstitution(RD);
3757}
3758
3759void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3760                                                   int64_t Offset,
3761                                                   const CXXRecordDecl *Type,
3762                                                   raw_ostream &Out) {
3763  // <special-name> ::= TC <type> <offset number> _ <base type>
3764  CXXNameMangler Mangler(*this, Out);
3765  Mangler.getStream() << "_ZTC";
3766  Mangler.mangleNameOrStandardSubstitution(RD);
3767  Mangler.getStream() << Offset;
3768  Mangler.getStream() << '_';
3769  Mangler.mangleNameOrStandardSubstitution(Type);
3770}
3771
3772void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
3773  // <special-name> ::= TI <type>  # typeinfo structure
3774  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3775  CXXNameMangler Mangler(*this, Out);
3776  Mangler.getStream() << "_ZTI";
3777  Mangler.mangleType(Ty);
3778}
3779
3780void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
3781                                                 raw_ostream &Out) {
3782  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3783  CXXNameMangler Mangler(*this, Out);
3784  Mangler.getStream() << "_ZTS";
3785  Mangler.mangleType(Ty);
3786}
3787
3788void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
3789  mangleCXXRTTIName(Ty, Out);
3790}
3791
3792ItaniumMangleContext *
3793ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3794  return new ItaniumMangleContextImpl(Context, Diags);
3795}
3796