1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/Mangle.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Lexer.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Sema/SemaDiagnostic.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstring>
37using namespace clang;
38
39const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40  const Expr *E = ignoreParenBaseCasts();
41
42  QualType DerivedType = E->getType();
43  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44    DerivedType = PTy->getPointeeType();
45
46  if (DerivedType->isDependentType())
47    return NULL;
48
49  const RecordType *Ty = DerivedType->castAs<RecordType>();
50  Decl *D = Ty->getDecl();
51  return cast<CXXRecordDecl>(D);
52}
53
54const Expr *Expr::skipRValueSubobjectAdjustments(
55    SmallVectorImpl<const Expr *> &CommaLHSs,
56    SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57  const Expr *E = this;
58  while (true) {
59    E = E->IgnoreParens();
60
61    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62      if ((CE->getCastKind() == CK_DerivedToBase ||
63           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64          E->getType()->isRecordType()) {
65        E = CE->getSubExpr();
66        CXXRecordDecl *Derived
67          = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69        continue;
70      }
71
72      if (CE->getCastKind() == CK_NoOp) {
73        E = CE->getSubExpr();
74        continue;
75      }
76    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77      if (!ME->isArrow()) {
78        assert(ME->getBase()->getType()->isRecordType());
79        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80          if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81            E = ME->getBase();
82            Adjustments.push_back(SubobjectAdjustment(Field));
83            continue;
84          }
85        }
86      }
87    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88      if (BO->isPtrMemOp()) {
89        assert(BO->getRHS()->isRValue());
90        E = BO->getLHS();
91        const MemberPointerType *MPT =
92          BO->getRHS()->getType()->getAs<MemberPointerType>();
93        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94        continue;
95      } else if (BO->getOpcode() == BO_Comma) {
96        CommaLHSs.push_back(BO->getLHS());
97        E = BO->getRHS();
98        continue;
99      }
100    }
101
102    // Nothing changed.
103    break;
104  }
105  return E;
106}
107
108const Expr *
109Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
110  const Expr *E = this;
111
112  // This might be a default initializer for a reference member. Walk over the
113  // wrapper node for that.
114  if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
115    E = DAE->getExpr();
116
117  // Look through single-element init lists that claim to be lvalues. They're
118  // just syntactic wrappers in this case.
119  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
120    if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
121      E = ILE->getInit(0);
122      if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
123        E = DAE->getExpr();
124    }
125  }
126
127  // Look through expressions for materialized temporaries (for now).
128  if (const MaterializeTemporaryExpr *M
129      = dyn_cast<MaterializeTemporaryExpr>(E)) {
130    MTE = M;
131    E = M->GetTemporaryExpr();
132  }
133
134  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
135    E = DAE->getExpr();
136  return E;
137}
138
139/// isKnownToHaveBooleanValue - Return true if this is an integer expression
140/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
141/// but also int expressions which are produced by things like comparisons in
142/// C.
143bool Expr::isKnownToHaveBooleanValue() const {
144  const Expr *E = IgnoreParens();
145
146  // If this value has _Bool type, it is obvious 0/1.
147  if (E->getType()->isBooleanType()) return true;
148  // If this is a non-scalar-integer type, we don't care enough to try.
149  if (!E->getType()->isIntegralOrEnumerationType()) return false;
150
151  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
152    switch (UO->getOpcode()) {
153    case UO_Plus:
154      return UO->getSubExpr()->isKnownToHaveBooleanValue();
155    default:
156      return false;
157    }
158  }
159
160  // Only look through implicit casts.  If the user writes
161  // '(int) (a && b)' treat it as an arbitrary int.
162  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
163    return CE->getSubExpr()->isKnownToHaveBooleanValue();
164
165  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
166    switch (BO->getOpcode()) {
167    default: return false;
168    case BO_LT:   // Relational operators.
169    case BO_GT:
170    case BO_LE:
171    case BO_GE:
172    case BO_EQ:   // Equality operators.
173    case BO_NE:
174    case BO_LAnd: // AND operator.
175    case BO_LOr:  // Logical OR operator.
176      return true;
177
178    case BO_And:  // Bitwise AND operator.
179    case BO_Xor:  // Bitwise XOR operator.
180    case BO_Or:   // Bitwise OR operator.
181      // Handle things like (x==2)|(y==12).
182      return BO->getLHS()->isKnownToHaveBooleanValue() &&
183             BO->getRHS()->isKnownToHaveBooleanValue();
184
185    case BO_Comma:
186    case BO_Assign:
187      return BO->getRHS()->isKnownToHaveBooleanValue();
188    }
189  }
190
191  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
192    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
193           CO->getFalseExpr()->isKnownToHaveBooleanValue();
194
195  return false;
196}
197
198// Amusing macro metaprogramming hack: check whether a class provides
199// a more specific implementation of getExprLoc().
200//
201// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
202namespace {
203  /// This implementation is used when a class provides a custom
204  /// implementation of getExprLoc.
205  template <class E, class T>
206  SourceLocation getExprLocImpl(const Expr *expr,
207                                SourceLocation (T::*v)() const) {
208    return static_cast<const E*>(expr)->getExprLoc();
209  }
210
211  /// This implementation is used when a class doesn't provide
212  /// a custom implementation of getExprLoc.  Overload resolution
213  /// should pick it over the implementation above because it's
214  /// more specialized according to function template partial ordering.
215  template <class E>
216  SourceLocation getExprLocImpl(const Expr *expr,
217                                SourceLocation (Expr::*v)() const) {
218    return static_cast<const E*>(expr)->getLocStart();
219  }
220}
221
222SourceLocation Expr::getExprLoc() const {
223  switch (getStmtClass()) {
224  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
225#define ABSTRACT_STMT(type)
226#define STMT(type, base) \
227  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
228#define EXPR(type, base) \
229  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
230#include "clang/AST/StmtNodes.inc"
231  }
232  llvm_unreachable("unknown statement kind");
233}
234
235//===----------------------------------------------------------------------===//
236// Primary Expressions.
237//===----------------------------------------------------------------------===//
238
239/// \brief Compute the type-, value-, and instantiation-dependence of a
240/// declaration reference
241/// based on the declaration being referenced.
242static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
243                                     QualType T, bool &TypeDependent,
244                                     bool &ValueDependent,
245                                     bool &InstantiationDependent) {
246  TypeDependent = false;
247  ValueDependent = false;
248  InstantiationDependent = false;
249
250  // (TD) C++ [temp.dep.expr]p3:
251  //   An id-expression is type-dependent if it contains:
252  //
253  // and
254  //
255  // (VD) C++ [temp.dep.constexpr]p2:
256  //  An identifier is value-dependent if it is:
257
258  //  (TD)  - an identifier that was declared with dependent type
259  //  (VD)  - a name declared with a dependent type,
260  if (T->isDependentType()) {
261    TypeDependent = true;
262    ValueDependent = true;
263    InstantiationDependent = true;
264    return;
265  } else if (T->isInstantiationDependentType()) {
266    InstantiationDependent = true;
267  }
268
269  //  (TD)  - a conversion-function-id that specifies a dependent type
270  if (D->getDeclName().getNameKind()
271                                == DeclarationName::CXXConversionFunctionName) {
272    QualType T = D->getDeclName().getCXXNameType();
273    if (T->isDependentType()) {
274      TypeDependent = true;
275      ValueDependent = true;
276      InstantiationDependent = true;
277      return;
278    }
279
280    if (T->isInstantiationDependentType())
281      InstantiationDependent = true;
282  }
283
284  //  (VD)  - the name of a non-type template parameter,
285  if (isa<NonTypeTemplateParmDecl>(D)) {
286    ValueDependent = true;
287    InstantiationDependent = true;
288    return;
289  }
290
291  //  (VD) - a constant with integral or enumeration type and is
292  //         initialized with an expression that is value-dependent.
293  //  (VD) - a constant with literal type and is initialized with an
294  //         expression that is value-dependent [C++11].
295  //  (VD) - FIXME: Missing from the standard:
296  //       -  an entity with reference type and is initialized with an
297  //          expression that is value-dependent [C++11]
298  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
299    if ((Ctx.getLangOpts().CPlusPlus11 ?
300           Var->getType()->isLiteralType(Ctx) :
301           Var->getType()->isIntegralOrEnumerationType()) &&
302        (Var->getType().isConstQualified() ||
303         Var->getType()->isReferenceType())) {
304      if (const Expr *Init = Var->getAnyInitializer())
305        if (Init->isValueDependent()) {
306          ValueDependent = true;
307          InstantiationDependent = true;
308        }
309    }
310
311    // (VD) - FIXME: Missing from the standard:
312    //      -  a member function or a static data member of the current
313    //         instantiation
314    if (Var->isStaticDataMember() &&
315        Var->getDeclContext()->isDependentContext()) {
316      ValueDependent = true;
317      InstantiationDependent = true;
318      TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
319      if (TInfo->getType()->isIncompleteArrayType())
320        TypeDependent = true;
321    }
322
323    return;
324  }
325
326  // (VD) - FIXME: Missing from the standard:
327  //      -  a member function or a static data member of the current
328  //         instantiation
329  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
330    ValueDependent = true;
331    InstantiationDependent = true;
332  }
333}
334
335void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
336  bool TypeDependent = false;
337  bool ValueDependent = false;
338  bool InstantiationDependent = false;
339  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
340                           ValueDependent, InstantiationDependent);
341
342  // (TD) C++ [temp.dep.expr]p3:
343  //   An id-expression is type-dependent if it contains:
344  //
345  // and
346  //
347  // (VD) C++ [temp.dep.constexpr]p2:
348  //  An identifier is value-dependent if it is:
349  if (!TypeDependent && !ValueDependent &&
350      hasExplicitTemplateArgs() &&
351      TemplateSpecializationType::anyDependentTemplateArguments(
352                                                            getTemplateArgs(),
353                                                       getNumTemplateArgs(),
354                                                      InstantiationDependent)) {
355    TypeDependent = true;
356    ValueDependent = true;
357    InstantiationDependent = true;
358  }
359
360  ExprBits.TypeDependent = TypeDependent;
361  ExprBits.ValueDependent = ValueDependent;
362  ExprBits.InstantiationDependent = InstantiationDependent;
363
364  // Is the declaration a parameter pack?
365  if (getDecl()->isParameterPack())
366    ExprBits.ContainsUnexpandedParameterPack = true;
367}
368
369DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
370                         NestedNameSpecifierLoc QualifierLoc,
371                         SourceLocation TemplateKWLoc,
372                         ValueDecl *D, bool RefersToEnclosingLocal,
373                         const DeclarationNameInfo &NameInfo,
374                         NamedDecl *FoundD,
375                         const TemplateArgumentListInfo *TemplateArgs,
376                         QualType T, ExprValueKind VK)
377  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
378    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
379  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
380  if (QualifierLoc)
381    getInternalQualifierLoc() = QualifierLoc;
382  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
383  if (FoundD)
384    getInternalFoundDecl() = FoundD;
385  DeclRefExprBits.HasTemplateKWAndArgsInfo
386    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
387  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
388  if (TemplateArgs) {
389    bool Dependent = false;
390    bool InstantiationDependent = false;
391    bool ContainsUnexpandedParameterPack = false;
392    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
393                                               Dependent,
394                                               InstantiationDependent,
395                                               ContainsUnexpandedParameterPack);
396    if (InstantiationDependent)
397      setInstantiationDependent(true);
398  } else if (TemplateKWLoc.isValid()) {
399    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
400  }
401  DeclRefExprBits.HadMultipleCandidates = 0;
402
403  computeDependence(Ctx);
404}
405
406DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
407                                 NestedNameSpecifierLoc QualifierLoc,
408                                 SourceLocation TemplateKWLoc,
409                                 ValueDecl *D,
410                                 bool RefersToEnclosingLocal,
411                                 SourceLocation NameLoc,
412                                 QualType T,
413                                 ExprValueKind VK,
414                                 NamedDecl *FoundD,
415                                 const TemplateArgumentListInfo *TemplateArgs) {
416  return Create(Context, QualifierLoc, TemplateKWLoc, D,
417                RefersToEnclosingLocal,
418                DeclarationNameInfo(D->getDeclName(), NameLoc),
419                T, VK, FoundD, TemplateArgs);
420}
421
422DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
423                                 NestedNameSpecifierLoc QualifierLoc,
424                                 SourceLocation TemplateKWLoc,
425                                 ValueDecl *D,
426                                 bool RefersToEnclosingLocal,
427                                 const DeclarationNameInfo &NameInfo,
428                                 QualType T,
429                                 ExprValueKind VK,
430                                 NamedDecl *FoundD,
431                                 const TemplateArgumentListInfo *TemplateArgs) {
432  // Filter out cases where the found Decl is the same as the value refenenced.
433  if (D == FoundD)
434    FoundD = 0;
435
436  std::size_t Size = sizeof(DeclRefExpr);
437  if (QualifierLoc)
438    Size += sizeof(NestedNameSpecifierLoc);
439  if (FoundD)
440    Size += sizeof(NamedDecl *);
441  if (TemplateArgs)
442    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
443  else if (TemplateKWLoc.isValid())
444    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
445
446  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
447  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
448                               RefersToEnclosingLocal,
449                               NameInfo, FoundD, TemplateArgs, T, VK);
450}
451
452DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
453                                      bool HasQualifier,
454                                      bool HasFoundDecl,
455                                      bool HasTemplateKWAndArgsInfo,
456                                      unsigned NumTemplateArgs) {
457  std::size_t Size = sizeof(DeclRefExpr);
458  if (HasQualifier)
459    Size += sizeof(NestedNameSpecifierLoc);
460  if (HasFoundDecl)
461    Size += sizeof(NamedDecl *);
462  if (HasTemplateKWAndArgsInfo)
463    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
464
465  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
466  return new (Mem) DeclRefExpr(EmptyShell());
467}
468
469SourceLocation DeclRefExpr::getLocStart() const {
470  if (hasQualifier())
471    return getQualifierLoc().getBeginLoc();
472  return getNameInfo().getLocStart();
473}
474SourceLocation DeclRefExpr::getLocEnd() const {
475  if (hasExplicitTemplateArgs())
476    return getRAngleLoc();
477  return getNameInfo().getLocEnd();
478}
479
480// FIXME: Maybe this should use DeclPrinter with a special "print predefined
481// expr" policy instead.
482std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
483  ASTContext &Context = CurrentDecl->getASTContext();
484
485  if (IT == PredefinedExpr::FuncDName) {
486    if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
487      OwningPtr<MangleContext> MC;
488      MC.reset(Context.createMangleContext());
489
490      if (MC->shouldMangleDeclName(ND)) {
491        SmallString<256> Buffer;
492        llvm::raw_svector_ostream Out(Buffer);
493        if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
494          MC->mangleCXXCtor(CD, Ctor_Base, Out);
495        else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
496          MC->mangleCXXDtor(DD, Dtor_Base, Out);
497        else
498          MC->mangleName(ND, Out);
499
500        Out.flush();
501        if (!Buffer.empty() && Buffer.front() == '\01')
502          return Buffer.substr(1);
503        return Buffer.str();
504      } else
505        return ND->getIdentifier()->getName();
506    }
507    return "";
508  }
509  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
510    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
511      return FD->getNameAsString();
512
513    SmallString<256> Name;
514    llvm::raw_svector_ostream Out(Name);
515
516    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
517      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
518        Out << "virtual ";
519      if (MD->isStatic())
520        Out << "static ";
521    }
522
523    PrintingPolicy Policy(Context.getLangOpts());
524    std::string Proto;
525    llvm::raw_string_ostream POut(Proto);
526    FD->printQualifiedName(POut, Policy);
527
528    const FunctionDecl *Decl = FD;
529    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
530      Decl = Pattern;
531    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
532    const FunctionProtoType *FT = 0;
533    if (FD->hasWrittenPrototype())
534      FT = dyn_cast<FunctionProtoType>(AFT);
535
536    POut << "(";
537    if (FT) {
538      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
539        if (i) POut << ", ";
540        POut << Decl->getParamDecl(i)->getType().stream(Policy);
541      }
542
543      if (FT->isVariadic()) {
544        if (FD->getNumParams()) POut << ", ";
545        POut << "...";
546      }
547    }
548    POut << ")";
549
550    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
551      const FunctionType *FT = MD->getType()->castAs<FunctionType>();
552      if (FT->isConst())
553        POut << " const";
554      if (FT->isVolatile())
555        POut << " volatile";
556      RefQualifierKind Ref = MD->getRefQualifier();
557      if (Ref == RQ_LValue)
558        POut << " &";
559      else if (Ref == RQ_RValue)
560        POut << " &&";
561    }
562
563    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
564    SpecsTy Specs;
565    const DeclContext *Ctx = FD->getDeclContext();
566    while (Ctx && isa<NamedDecl>(Ctx)) {
567      const ClassTemplateSpecializationDecl *Spec
568                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
569      if (Spec && !Spec->isExplicitSpecialization())
570        Specs.push_back(Spec);
571      Ctx = Ctx->getParent();
572    }
573
574    std::string TemplateParams;
575    llvm::raw_string_ostream TOut(TemplateParams);
576    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
577         I != E; ++I) {
578      const TemplateParameterList *Params
579                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
580      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
581      assert(Params->size() == Args.size());
582      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
583        StringRef Param = Params->getParam(i)->getName();
584        if (Param.empty()) continue;
585        TOut << Param << " = ";
586        Args.get(i).print(Policy, TOut);
587        TOut << ", ";
588      }
589    }
590
591    FunctionTemplateSpecializationInfo *FSI
592                                          = FD->getTemplateSpecializationInfo();
593    if (FSI && !FSI->isExplicitSpecialization()) {
594      const TemplateParameterList* Params
595                                  = FSI->getTemplate()->getTemplateParameters();
596      const TemplateArgumentList* Args = FSI->TemplateArguments;
597      assert(Params->size() == Args->size());
598      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
599        StringRef Param = Params->getParam(i)->getName();
600        if (Param.empty()) continue;
601        TOut << Param << " = ";
602        Args->get(i).print(Policy, TOut);
603        TOut << ", ";
604      }
605    }
606
607    TOut.flush();
608    if (!TemplateParams.empty()) {
609      // remove the trailing comma and space
610      TemplateParams.resize(TemplateParams.size() - 2);
611      POut << " [" << TemplateParams << "]";
612    }
613
614    POut.flush();
615
616    // Print "auto" for all deduced return types. This includes C++1y return
617    // type deduction and lambdas. For trailing return types resolve the
618    // decltype expression. Otherwise print the real type when this is
619    // not a constructor or destructor.
620    if ((isa<CXXMethodDecl>(FD) &&
621         cast<CXXMethodDecl>(FD)->getParent()->isLambda()) ||
622        (FT && FT->getResultType()->getAs<AutoType>()))
623      Proto = "auto " + Proto;
624    else if (FT && FT->getResultType()->getAs<DecltypeType>())
625      FT->getResultType()->getAs<DecltypeType>()->getUnderlyingType()
626          .getAsStringInternal(Proto, Policy);
627    else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
628      AFT->getResultType().getAsStringInternal(Proto, Policy);
629
630    Out << Proto;
631
632    Out.flush();
633    return Name.str().str();
634  }
635  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
636    for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
637      // Skip to its enclosing function or method, but not its enclosing
638      // CapturedDecl.
639      if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
640        const Decl *D = Decl::castFromDeclContext(DC);
641        return ComputeName(IT, D);
642      }
643    llvm_unreachable("CapturedDecl not inside a function or method");
644  }
645  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
646    SmallString<256> Name;
647    llvm::raw_svector_ostream Out(Name);
648    Out << (MD->isInstanceMethod() ? '-' : '+');
649    Out << '[';
650
651    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
652    // a null check to avoid a crash.
653    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
654      Out << *ID;
655
656    if (const ObjCCategoryImplDecl *CID =
657        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
658      Out << '(' << *CID << ')';
659
660    Out <<  ' ';
661    Out << MD->getSelector().getAsString();
662    Out <<  ']';
663
664    Out.flush();
665    return Name.str().str();
666  }
667  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
668    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
669    return "top level";
670  }
671  return "";
672}
673
674void APNumericStorage::setIntValue(const ASTContext &C,
675                                   const llvm::APInt &Val) {
676  if (hasAllocation())
677    C.Deallocate(pVal);
678
679  BitWidth = Val.getBitWidth();
680  unsigned NumWords = Val.getNumWords();
681  const uint64_t* Words = Val.getRawData();
682  if (NumWords > 1) {
683    pVal = new (C) uint64_t[NumWords];
684    std::copy(Words, Words + NumWords, pVal);
685  } else if (NumWords == 1)
686    VAL = Words[0];
687  else
688    VAL = 0;
689}
690
691IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
692                               QualType type, SourceLocation l)
693  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
694         false, false),
695    Loc(l) {
696  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
697  assert(V.getBitWidth() == C.getIntWidth(type) &&
698         "Integer type is not the correct size for constant.");
699  setValue(C, V);
700}
701
702IntegerLiteral *
703IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
704                       QualType type, SourceLocation l) {
705  return new (C) IntegerLiteral(C, V, type, l);
706}
707
708IntegerLiteral *
709IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
710  return new (C) IntegerLiteral(Empty);
711}
712
713FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
714                                 bool isexact, QualType Type, SourceLocation L)
715  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
716         false, false), Loc(L) {
717  setSemantics(V.getSemantics());
718  FloatingLiteralBits.IsExact = isexact;
719  setValue(C, V);
720}
721
722FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
723  : Expr(FloatingLiteralClass, Empty) {
724  setRawSemantics(IEEEhalf);
725  FloatingLiteralBits.IsExact = false;
726}
727
728FloatingLiteral *
729FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
730                        bool isexact, QualType Type, SourceLocation L) {
731  return new (C) FloatingLiteral(C, V, isexact, Type, L);
732}
733
734FloatingLiteral *
735FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
736  return new (C) FloatingLiteral(C, Empty);
737}
738
739const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
740  switch(FloatingLiteralBits.Semantics) {
741  case IEEEhalf:
742    return llvm::APFloat::IEEEhalf;
743  case IEEEsingle:
744    return llvm::APFloat::IEEEsingle;
745  case IEEEdouble:
746    return llvm::APFloat::IEEEdouble;
747  case x87DoubleExtended:
748    return llvm::APFloat::x87DoubleExtended;
749  case IEEEquad:
750    return llvm::APFloat::IEEEquad;
751  case PPCDoubleDouble:
752    return llvm::APFloat::PPCDoubleDouble;
753  }
754  llvm_unreachable("Unrecognised floating semantics");
755}
756
757void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
758  if (&Sem == &llvm::APFloat::IEEEhalf)
759    FloatingLiteralBits.Semantics = IEEEhalf;
760  else if (&Sem == &llvm::APFloat::IEEEsingle)
761    FloatingLiteralBits.Semantics = IEEEsingle;
762  else if (&Sem == &llvm::APFloat::IEEEdouble)
763    FloatingLiteralBits.Semantics = IEEEdouble;
764  else if (&Sem == &llvm::APFloat::x87DoubleExtended)
765    FloatingLiteralBits.Semantics = x87DoubleExtended;
766  else if (&Sem == &llvm::APFloat::IEEEquad)
767    FloatingLiteralBits.Semantics = IEEEquad;
768  else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
769    FloatingLiteralBits.Semantics = PPCDoubleDouble;
770  else
771    llvm_unreachable("Unknown floating semantics");
772}
773
774/// getValueAsApproximateDouble - This returns the value as an inaccurate
775/// double.  Note that this may cause loss of precision, but is useful for
776/// debugging dumps, etc.
777double FloatingLiteral::getValueAsApproximateDouble() const {
778  llvm::APFloat V = getValue();
779  bool ignored;
780  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
781            &ignored);
782  return V.convertToDouble();
783}
784
785int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
786  int CharByteWidth = 0;
787  switch(k) {
788    case Ascii:
789    case UTF8:
790      CharByteWidth = target.getCharWidth();
791      break;
792    case Wide:
793      CharByteWidth = target.getWCharWidth();
794      break;
795    case UTF16:
796      CharByteWidth = target.getChar16Width();
797      break;
798    case UTF32:
799      CharByteWidth = target.getChar32Width();
800      break;
801  }
802  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
803  CharByteWidth /= 8;
804  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
805         && "character byte widths supported are 1, 2, and 4 only");
806  return CharByteWidth;
807}
808
809StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
810                                     StringKind Kind, bool Pascal, QualType Ty,
811                                     const SourceLocation *Loc,
812                                     unsigned NumStrs) {
813  // Allocate enough space for the StringLiteral plus an array of locations for
814  // any concatenated string tokens.
815  void *Mem = C.Allocate(sizeof(StringLiteral)+
816                         sizeof(SourceLocation)*(NumStrs-1),
817                         llvm::alignOf<StringLiteral>());
818  StringLiteral *SL = new (Mem) StringLiteral(Ty);
819
820  // OPTIMIZE: could allocate this appended to the StringLiteral.
821  SL->setString(C,Str,Kind,Pascal);
822
823  SL->TokLocs[0] = Loc[0];
824  SL->NumConcatenated = NumStrs;
825
826  if (NumStrs != 1)
827    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
828  return SL;
829}
830
831StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
832                                          unsigned NumStrs) {
833  void *Mem = C.Allocate(sizeof(StringLiteral)+
834                         sizeof(SourceLocation)*(NumStrs-1),
835                         llvm::alignOf<StringLiteral>());
836  StringLiteral *SL = new (Mem) StringLiteral(QualType());
837  SL->CharByteWidth = 0;
838  SL->Length = 0;
839  SL->NumConcatenated = NumStrs;
840  return SL;
841}
842
843void StringLiteral::outputString(raw_ostream &OS) const {
844  switch (getKind()) {
845  case Ascii: break; // no prefix.
846  case Wide:  OS << 'L'; break;
847  case UTF8:  OS << "u8"; break;
848  case UTF16: OS << 'u'; break;
849  case UTF32: OS << 'U'; break;
850  }
851  OS << '"';
852  static const char Hex[] = "0123456789ABCDEF";
853
854  unsigned LastSlashX = getLength();
855  for (unsigned I = 0, N = getLength(); I != N; ++I) {
856    switch (uint32_t Char = getCodeUnit(I)) {
857    default:
858      // FIXME: Convert UTF-8 back to codepoints before rendering.
859
860      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
861      // Leave invalid surrogates alone; we'll use \x for those.
862      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
863          Char <= 0xdbff) {
864        uint32_t Trail = getCodeUnit(I + 1);
865        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
866          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
867          ++I;
868        }
869      }
870
871      if (Char > 0xff) {
872        // If this is a wide string, output characters over 0xff using \x
873        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
874        // codepoint: use \x escapes for invalid codepoints.
875        if (getKind() == Wide ||
876            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
877          // FIXME: Is this the best way to print wchar_t?
878          OS << "\\x";
879          int Shift = 28;
880          while ((Char >> Shift) == 0)
881            Shift -= 4;
882          for (/**/; Shift >= 0; Shift -= 4)
883            OS << Hex[(Char >> Shift) & 15];
884          LastSlashX = I;
885          break;
886        }
887
888        if (Char > 0xffff)
889          OS << "\\U00"
890             << Hex[(Char >> 20) & 15]
891             << Hex[(Char >> 16) & 15];
892        else
893          OS << "\\u";
894        OS << Hex[(Char >> 12) & 15]
895           << Hex[(Char >>  8) & 15]
896           << Hex[(Char >>  4) & 15]
897           << Hex[(Char >>  0) & 15];
898        break;
899      }
900
901      // If we used \x... for the previous character, and this character is a
902      // hexadecimal digit, prevent it being slurped as part of the \x.
903      if (LastSlashX + 1 == I) {
904        switch (Char) {
905          case '0': case '1': case '2': case '3': case '4':
906          case '5': case '6': case '7': case '8': case '9':
907          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
908          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
909            OS << "\"\"";
910        }
911      }
912
913      assert(Char <= 0xff &&
914             "Characters above 0xff should already have been handled.");
915
916      if (isPrintable(Char))
917        OS << (char)Char;
918      else  // Output anything hard as an octal escape.
919        OS << '\\'
920           << (char)('0' + ((Char >> 6) & 7))
921           << (char)('0' + ((Char >> 3) & 7))
922           << (char)('0' + ((Char >> 0) & 7));
923      break;
924    // Handle some common non-printable cases to make dumps prettier.
925    case '\\': OS << "\\\\"; break;
926    case '"': OS << "\\\""; break;
927    case '\n': OS << "\\n"; break;
928    case '\t': OS << "\\t"; break;
929    case '\a': OS << "\\a"; break;
930    case '\b': OS << "\\b"; break;
931    }
932  }
933  OS << '"';
934}
935
936void StringLiteral::setString(const ASTContext &C, StringRef Str,
937                              StringKind Kind, bool IsPascal) {
938  //FIXME: we assume that the string data comes from a target that uses the same
939  // code unit size and endianess for the type of string.
940  this->Kind = Kind;
941  this->IsPascal = IsPascal;
942
943  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
944  assert((Str.size()%CharByteWidth == 0)
945         && "size of data must be multiple of CharByteWidth");
946  Length = Str.size()/CharByteWidth;
947
948  switch(CharByteWidth) {
949    case 1: {
950      char *AStrData = new (C) char[Length];
951      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
952      StrData.asChar = AStrData;
953      break;
954    }
955    case 2: {
956      uint16_t *AStrData = new (C) uint16_t[Length];
957      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
958      StrData.asUInt16 = AStrData;
959      break;
960    }
961    case 4: {
962      uint32_t *AStrData = new (C) uint32_t[Length];
963      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
964      StrData.asUInt32 = AStrData;
965      break;
966    }
967    default:
968      assert(false && "unsupported CharByteWidth");
969  }
970}
971
972/// getLocationOfByte - Return a source location that points to the specified
973/// byte of this string literal.
974///
975/// Strings are amazingly complex.  They can be formed from multiple tokens and
976/// can have escape sequences in them in addition to the usual trigraph and
977/// escaped newline business.  This routine handles this complexity.
978///
979SourceLocation StringLiteral::
980getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
981                  const LangOptions &Features, const TargetInfo &Target) const {
982  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
983         "Only narrow string literals are currently supported");
984
985  // Loop over all of the tokens in this string until we find the one that
986  // contains the byte we're looking for.
987  unsigned TokNo = 0;
988  while (1) {
989    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
990    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
991
992    // Get the spelling of the string so that we can get the data that makes up
993    // the string literal, not the identifier for the macro it is potentially
994    // expanded through.
995    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
996
997    // Re-lex the token to get its length and original spelling.
998    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
999    bool Invalid = false;
1000    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1001    if (Invalid)
1002      return StrTokSpellingLoc;
1003
1004    const char *StrData = Buffer.data()+LocInfo.second;
1005
1006    // Create a lexer starting at the beginning of this token.
1007    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1008                   Buffer.begin(), StrData, Buffer.end());
1009    Token TheTok;
1010    TheLexer.LexFromRawLexer(TheTok);
1011
1012    // Use the StringLiteralParser to compute the length of the string in bytes.
1013    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
1014    unsigned TokNumBytes = SLP.GetStringLength();
1015
1016    // If the byte is in this token, return the location of the byte.
1017    if (ByteNo < TokNumBytes ||
1018        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1019      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1020
1021      // Now that we know the offset of the token in the spelling, use the
1022      // preprocessor to get the offset in the original source.
1023      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1024    }
1025
1026    // Move to the next string token.
1027    ++TokNo;
1028    ByteNo -= TokNumBytes;
1029  }
1030}
1031
1032
1033
1034/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1035/// corresponds to, e.g. "sizeof" or "[pre]++".
1036StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1037  switch (Op) {
1038  case UO_PostInc: return "++";
1039  case UO_PostDec: return "--";
1040  case UO_PreInc:  return "++";
1041  case UO_PreDec:  return "--";
1042  case UO_AddrOf:  return "&";
1043  case UO_Deref:   return "*";
1044  case UO_Plus:    return "+";
1045  case UO_Minus:   return "-";
1046  case UO_Not:     return "~";
1047  case UO_LNot:    return "!";
1048  case UO_Real:    return "__real";
1049  case UO_Imag:    return "__imag";
1050  case UO_Extension: return "__extension__";
1051  }
1052  llvm_unreachable("Unknown unary operator");
1053}
1054
1055UnaryOperatorKind
1056UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1057  switch (OO) {
1058  default: llvm_unreachable("No unary operator for overloaded function");
1059  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1060  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1061  case OO_Amp:        return UO_AddrOf;
1062  case OO_Star:       return UO_Deref;
1063  case OO_Plus:       return UO_Plus;
1064  case OO_Minus:      return UO_Minus;
1065  case OO_Tilde:      return UO_Not;
1066  case OO_Exclaim:    return UO_LNot;
1067  }
1068}
1069
1070OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1071  switch (Opc) {
1072  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1073  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1074  case UO_AddrOf: return OO_Amp;
1075  case UO_Deref: return OO_Star;
1076  case UO_Plus: return OO_Plus;
1077  case UO_Minus: return OO_Minus;
1078  case UO_Not: return OO_Tilde;
1079  case UO_LNot: return OO_Exclaim;
1080  default: return OO_None;
1081  }
1082}
1083
1084
1085//===----------------------------------------------------------------------===//
1086// Postfix Operators.
1087//===----------------------------------------------------------------------===//
1088
1089CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
1090                   unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
1091                   ExprValueKind VK, SourceLocation rparenloc)
1092  : Expr(SC, t, VK, OK_Ordinary,
1093         fn->isTypeDependent(),
1094         fn->isValueDependent(),
1095         fn->isInstantiationDependent(),
1096         fn->containsUnexpandedParameterPack()),
1097    NumArgs(args.size()) {
1098
1099  SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1100  SubExprs[FN] = fn;
1101  for (unsigned i = 0; i != args.size(); ++i) {
1102    if (args[i]->isTypeDependent())
1103      ExprBits.TypeDependent = true;
1104    if (args[i]->isValueDependent())
1105      ExprBits.ValueDependent = true;
1106    if (args[i]->isInstantiationDependent())
1107      ExprBits.InstantiationDependent = true;
1108    if (args[i]->containsUnexpandedParameterPack())
1109      ExprBits.ContainsUnexpandedParameterPack = true;
1110
1111    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1112  }
1113
1114  CallExprBits.NumPreArgs = NumPreArgs;
1115  RParenLoc = rparenloc;
1116}
1117
1118CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1119                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
1120  : Expr(CallExprClass, t, VK, OK_Ordinary,
1121         fn->isTypeDependent(),
1122         fn->isValueDependent(),
1123         fn->isInstantiationDependent(),
1124         fn->containsUnexpandedParameterPack()),
1125    NumArgs(args.size()) {
1126
1127  SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1128  SubExprs[FN] = fn;
1129  for (unsigned i = 0; i != args.size(); ++i) {
1130    if (args[i]->isTypeDependent())
1131      ExprBits.TypeDependent = true;
1132    if (args[i]->isValueDependent())
1133      ExprBits.ValueDependent = true;
1134    if (args[i]->isInstantiationDependent())
1135      ExprBits.InstantiationDependent = true;
1136    if (args[i]->containsUnexpandedParameterPack())
1137      ExprBits.ContainsUnexpandedParameterPack = true;
1138
1139    SubExprs[i+PREARGS_START] = args[i];
1140  }
1141
1142  CallExprBits.NumPreArgs = 0;
1143  RParenLoc = rparenloc;
1144}
1145
1146CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1147  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1148  // FIXME: Why do we allocate this?
1149  SubExprs = new (C) Stmt*[PREARGS_START];
1150  CallExprBits.NumPreArgs = 0;
1151}
1152
1153CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1154                   EmptyShell Empty)
1155  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1156  // FIXME: Why do we allocate this?
1157  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1158  CallExprBits.NumPreArgs = NumPreArgs;
1159}
1160
1161Decl *CallExpr::getCalleeDecl() {
1162  Expr *CEE = getCallee()->IgnoreParenImpCasts();
1163
1164  while (SubstNonTypeTemplateParmExpr *NTTP
1165                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1166    CEE = NTTP->getReplacement()->IgnoreParenCasts();
1167  }
1168
1169  // If we're calling a dereference, look at the pointer instead.
1170  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1171    if (BO->isPtrMemOp())
1172      CEE = BO->getRHS()->IgnoreParenCasts();
1173  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1174    if (UO->getOpcode() == UO_Deref)
1175      CEE = UO->getSubExpr()->IgnoreParenCasts();
1176  }
1177  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1178    return DRE->getDecl();
1179  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1180    return ME->getMemberDecl();
1181
1182  return 0;
1183}
1184
1185FunctionDecl *CallExpr::getDirectCallee() {
1186  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1187}
1188
1189/// setNumArgs - This changes the number of arguments present in this call.
1190/// Any orphaned expressions are deleted by this, and any new operands are set
1191/// to null.
1192void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1193  // No change, just return.
1194  if (NumArgs == getNumArgs()) return;
1195
1196  // If shrinking # arguments, just delete the extras and forgot them.
1197  if (NumArgs < getNumArgs()) {
1198    this->NumArgs = NumArgs;
1199    return;
1200  }
1201
1202  // Otherwise, we are growing the # arguments.  New an bigger argument array.
1203  unsigned NumPreArgs = getNumPreArgs();
1204  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1205  // Copy over args.
1206  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1207    NewSubExprs[i] = SubExprs[i];
1208  // Null out new args.
1209  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1210       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1211    NewSubExprs[i] = 0;
1212
1213  if (SubExprs) C.Deallocate(SubExprs);
1214  SubExprs = NewSubExprs;
1215  this->NumArgs = NumArgs;
1216}
1217
1218/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1219/// not, return 0.
1220unsigned CallExpr::isBuiltinCall() const {
1221  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1222  // function. As a result, we try and obtain the DeclRefExpr from the
1223  // ImplicitCastExpr.
1224  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1225  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1226    return 0;
1227
1228  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1229  if (!DRE)
1230    return 0;
1231
1232  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1233  if (!FDecl)
1234    return 0;
1235
1236  if (!FDecl->getIdentifier())
1237    return 0;
1238
1239  return FDecl->getBuiltinID();
1240}
1241
1242bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1243  if (unsigned BI = isBuiltinCall())
1244    return Ctx.BuiltinInfo.isUnevaluated(BI);
1245  return false;
1246}
1247
1248QualType CallExpr::getCallReturnType() const {
1249  QualType CalleeType = getCallee()->getType();
1250  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1251    CalleeType = FnTypePtr->getPointeeType();
1252  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1253    CalleeType = BPT->getPointeeType();
1254  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1255    // This should never be overloaded and so should never return null.
1256    CalleeType = Expr::findBoundMemberType(getCallee());
1257
1258  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1259  return FnType->getResultType();
1260}
1261
1262SourceLocation CallExpr::getLocStart() const {
1263  if (isa<CXXOperatorCallExpr>(this))
1264    return cast<CXXOperatorCallExpr>(this)->getLocStart();
1265
1266  SourceLocation begin = getCallee()->getLocStart();
1267  if (begin.isInvalid() && getNumArgs() > 0)
1268    begin = getArg(0)->getLocStart();
1269  return begin;
1270}
1271SourceLocation CallExpr::getLocEnd() const {
1272  if (isa<CXXOperatorCallExpr>(this))
1273    return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1274
1275  SourceLocation end = getRParenLoc();
1276  if (end.isInvalid() && getNumArgs() > 0)
1277    end = getArg(getNumArgs() - 1)->getLocEnd();
1278  return end;
1279}
1280
1281OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1282                                   SourceLocation OperatorLoc,
1283                                   TypeSourceInfo *tsi,
1284                                   ArrayRef<OffsetOfNode> comps,
1285                                   ArrayRef<Expr*> exprs,
1286                                   SourceLocation RParenLoc) {
1287  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1288                         sizeof(OffsetOfNode) * comps.size() +
1289                         sizeof(Expr*) * exprs.size());
1290
1291  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1292                                RParenLoc);
1293}
1294
1295OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1296                                        unsigned numComps, unsigned numExprs) {
1297  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1298                         sizeof(OffsetOfNode) * numComps +
1299                         sizeof(Expr*) * numExprs);
1300  return new (Mem) OffsetOfExpr(numComps, numExprs);
1301}
1302
1303OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1304                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1305                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1306                           SourceLocation RParenLoc)
1307  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1308         /*TypeDependent=*/false,
1309         /*ValueDependent=*/tsi->getType()->isDependentType(),
1310         tsi->getType()->isInstantiationDependentType(),
1311         tsi->getType()->containsUnexpandedParameterPack()),
1312    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1313    NumComps(comps.size()), NumExprs(exprs.size())
1314{
1315  for (unsigned i = 0; i != comps.size(); ++i) {
1316    setComponent(i, comps[i]);
1317  }
1318
1319  for (unsigned i = 0; i != exprs.size(); ++i) {
1320    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1321      ExprBits.ValueDependent = true;
1322    if (exprs[i]->containsUnexpandedParameterPack())
1323      ExprBits.ContainsUnexpandedParameterPack = true;
1324
1325    setIndexExpr(i, exprs[i]);
1326  }
1327}
1328
1329IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1330  assert(getKind() == Field || getKind() == Identifier);
1331  if (getKind() == Field)
1332    return getField()->getIdentifier();
1333
1334  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1335}
1336
1337MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow,
1338                               NestedNameSpecifierLoc QualifierLoc,
1339                               SourceLocation TemplateKWLoc,
1340                               ValueDecl *memberdecl,
1341                               DeclAccessPair founddecl,
1342                               DeclarationNameInfo nameinfo,
1343                               const TemplateArgumentListInfo *targs,
1344                               QualType ty,
1345                               ExprValueKind vk,
1346                               ExprObjectKind ok) {
1347  std::size_t Size = sizeof(MemberExpr);
1348
1349  bool hasQualOrFound = (QualifierLoc ||
1350                         founddecl.getDecl() != memberdecl ||
1351                         founddecl.getAccess() != memberdecl->getAccess());
1352  if (hasQualOrFound)
1353    Size += sizeof(MemberNameQualifier);
1354
1355  if (targs)
1356    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1357  else if (TemplateKWLoc.isValid())
1358    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1359
1360  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1361  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1362                                       ty, vk, ok);
1363
1364  if (hasQualOrFound) {
1365    // FIXME: Wrong. We should be looking at the member declaration we found.
1366    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1367      E->setValueDependent(true);
1368      E->setTypeDependent(true);
1369      E->setInstantiationDependent(true);
1370    }
1371    else if (QualifierLoc &&
1372             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1373      E->setInstantiationDependent(true);
1374
1375    E->HasQualifierOrFoundDecl = true;
1376
1377    MemberNameQualifier *NQ = E->getMemberQualifier();
1378    NQ->QualifierLoc = QualifierLoc;
1379    NQ->FoundDecl = founddecl;
1380  }
1381
1382  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1383
1384  if (targs) {
1385    bool Dependent = false;
1386    bool InstantiationDependent = false;
1387    bool ContainsUnexpandedParameterPack = false;
1388    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1389                                                  Dependent,
1390                                                  InstantiationDependent,
1391                                             ContainsUnexpandedParameterPack);
1392    if (InstantiationDependent)
1393      E->setInstantiationDependent(true);
1394  } else if (TemplateKWLoc.isValid()) {
1395    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1396  }
1397
1398  return E;
1399}
1400
1401SourceLocation MemberExpr::getLocStart() const {
1402  if (isImplicitAccess()) {
1403    if (hasQualifier())
1404      return getQualifierLoc().getBeginLoc();
1405    return MemberLoc;
1406  }
1407
1408  // FIXME: We don't want this to happen. Rather, we should be able to
1409  // detect all kinds of implicit accesses more cleanly.
1410  SourceLocation BaseStartLoc = getBase()->getLocStart();
1411  if (BaseStartLoc.isValid())
1412    return BaseStartLoc;
1413  return MemberLoc;
1414}
1415SourceLocation MemberExpr::getLocEnd() const {
1416  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1417  if (hasExplicitTemplateArgs())
1418    EndLoc = getRAngleLoc();
1419  else if (EndLoc.isInvalid())
1420    EndLoc = getBase()->getLocEnd();
1421  return EndLoc;
1422}
1423
1424void CastExpr::CheckCastConsistency() const {
1425  switch (getCastKind()) {
1426  case CK_DerivedToBase:
1427  case CK_UncheckedDerivedToBase:
1428  case CK_DerivedToBaseMemberPointer:
1429  case CK_BaseToDerived:
1430  case CK_BaseToDerivedMemberPointer:
1431    assert(!path_empty() && "Cast kind should have a base path!");
1432    break;
1433
1434  case CK_CPointerToObjCPointerCast:
1435    assert(getType()->isObjCObjectPointerType());
1436    assert(getSubExpr()->getType()->isPointerType());
1437    goto CheckNoBasePath;
1438
1439  case CK_BlockPointerToObjCPointerCast:
1440    assert(getType()->isObjCObjectPointerType());
1441    assert(getSubExpr()->getType()->isBlockPointerType());
1442    goto CheckNoBasePath;
1443
1444  case CK_ReinterpretMemberPointer:
1445    assert(getType()->isMemberPointerType());
1446    assert(getSubExpr()->getType()->isMemberPointerType());
1447    goto CheckNoBasePath;
1448
1449  case CK_BitCast:
1450    // Arbitrary casts to C pointer types count as bitcasts.
1451    // Otherwise, we should only have block and ObjC pointer casts
1452    // here if they stay within the type kind.
1453    if (!getType()->isPointerType()) {
1454      assert(getType()->isObjCObjectPointerType() ==
1455             getSubExpr()->getType()->isObjCObjectPointerType());
1456      assert(getType()->isBlockPointerType() ==
1457             getSubExpr()->getType()->isBlockPointerType());
1458    }
1459    goto CheckNoBasePath;
1460
1461  case CK_AnyPointerToBlockPointerCast:
1462    assert(getType()->isBlockPointerType());
1463    assert(getSubExpr()->getType()->isAnyPointerType() &&
1464           !getSubExpr()->getType()->isBlockPointerType());
1465    goto CheckNoBasePath;
1466
1467  case CK_CopyAndAutoreleaseBlockObject:
1468    assert(getType()->isBlockPointerType());
1469    assert(getSubExpr()->getType()->isBlockPointerType());
1470    goto CheckNoBasePath;
1471
1472  case CK_FunctionToPointerDecay:
1473    assert(getType()->isPointerType());
1474    assert(getSubExpr()->getType()->isFunctionType());
1475    goto CheckNoBasePath;
1476
1477  // These should not have an inheritance path.
1478  case CK_Dynamic:
1479  case CK_ToUnion:
1480  case CK_ArrayToPointerDecay:
1481  case CK_NullToMemberPointer:
1482  case CK_NullToPointer:
1483  case CK_ConstructorConversion:
1484  case CK_IntegralToPointer:
1485  case CK_PointerToIntegral:
1486  case CK_ToVoid:
1487  case CK_VectorSplat:
1488  case CK_IntegralCast:
1489  case CK_IntegralToFloating:
1490  case CK_FloatingToIntegral:
1491  case CK_FloatingCast:
1492  case CK_ObjCObjectLValueCast:
1493  case CK_FloatingRealToComplex:
1494  case CK_FloatingComplexToReal:
1495  case CK_FloatingComplexCast:
1496  case CK_FloatingComplexToIntegralComplex:
1497  case CK_IntegralRealToComplex:
1498  case CK_IntegralComplexToReal:
1499  case CK_IntegralComplexCast:
1500  case CK_IntegralComplexToFloatingComplex:
1501  case CK_ARCProduceObject:
1502  case CK_ARCConsumeObject:
1503  case CK_ARCReclaimReturnedObject:
1504  case CK_ARCExtendBlockObject:
1505  case CK_ZeroToOCLEvent:
1506    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1507    goto CheckNoBasePath;
1508
1509  case CK_Dependent:
1510  case CK_LValueToRValue:
1511  case CK_NoOp:
1512  case CK_AtomicToNonAtomic:
1513  case CK_NonAtomicToAtomic:
1514  case CK_PointerToBoolean:
1515  case CK_IntegralToBoolean:
1516  case CK_FloatingToBoolean:
1517  case CK_MemberPointerToBoolean:
1518  case CK_FloatingComplexToBoolean:
1519  case CK_IntegralComplexToBoolean:
1520  case CK_LValueBitCast:            // -> bool&
1521  case CK_UserDefinedConversion:    // operator bool()
1522  case CK_BuiltinFnToFnPtr:
1523  CheckNoBasePath:
1524    assert(path_empty() && "Cast kind should not have a base path!");
1525    break;
1526  }
1527}
1528
1529const char *CastExpr::getCastKindName() const {
1530  switch (getCastKind()) {
1531  case CK_Dependent:
1532    return "Dependent";
1533  case CK_BitCast:
1534    return "BitCast";
1535  case CK_LValueBitCast:
1536    return "LValueBitCast";
1537  case CK_LValueToRValue:
1538    return "LValueToRValue";
1539  case CK_NoOp:
1540    return "NoOp";
1541  case CK_BaseToDerived:
1542    return "BaseToDerived";
1543  case CK_DerivedToBase:
1544    return "DerivedToBase";
1545  case CK_UncheckedDerivedToBase:
1546    return "UncheckedDerivedToBase";
1547  case CK_Dynamic:
1548    return "Dynamic";
1549  case CK_ToUnion:
1550    return "ToUnion";
1551  case CK_ArrayToPointerDecay:
1552    return "ArrayToPointerDecay";
1553  case CK_FunctionToPointerDecay:
1554    return "FunctionToPointerDecay";
1555  case CK_NullToMemberPointer:
1556    return "NullToMemberPointer";
1557  case CK_NullToPointer:
1558    return "NullToPointer";
1559  case CK_BaseToDerivedMemberPointer:
1560    return "BaseToDerivedMemberPointer";
1561  case CK_DerivedToBaseMemberPointer:
1562    return "DerivedToBaseMemberPointer";
1563  case CK_ReinterpretMemberPointer:
1564    return "ReinterpretMemberPointer";
1565  case CK_UserDefinedConversion:
1566    return "UserDefinedConversion";
1567  case CK_ConstructorConversion:
1568    return "ConstructorConversion";
1569  case CK_IntegralToPointer:
1570    return "IntegralToPointer";
1571  case CK_PointerToIntegral:
1572    return "PointerToIntegral";
1573  case CK_PointerToBoolean:
1574    return "PointerToBoolean";
1575  case CK_ToVoid:
1576    return "ToVoid";
1577  case CK_VectorSplat:
1578    return "VectorSplat";
1579  case CK_IntegralCast:
1580    return "IntegralCast";
1581  case CK_IntegralToBoolean:
1582    return "IntegralToBoolean";
1583  case CK_IntegralToFloating:
1584    return "IntegralToFloating";
1585  case CK_FloatingToIntegral:
1586    return "FloatingToIntegral";
1587  case CK_FloatingCast:
1588    return "FloatingCast";
1589  case CK_FloatingToBoolean:
1590    return "FloatingToBoolean";
1591  case CK_MemberPointerToBoolean:
1592    return "MemberPointerToBoolean";
1593  case CK_CPointerToObjCPointerCast:
1594    return "CPointerToObjCPointerCast";
1595  case CK_BlockPointerToObjCPointerCast:
1596    return "BlockPointerToObjCPointerCast";
1597  case CK_AnyPointerToBlockPointerCast:
1598    return "AnyPointerToBlockPointerCast";
1599  case CK_ObjCObjectLValueCast:
1600    return "ObjCObjectLValueCast";
1601  case CK_FloatingRealToComplex:
1602    return "FloatingRealToComplex";
1603  case CK_FloatingComplexToReal:
1604    return "FloatingComplexToReal";
1605  case CK_FloatingComplexToBoolean:
1606    return "FloatingComplexToBoolean";
1607  case CK_FloatingComplexCast:
1608    return "FloatingComplexCast";
1609  case CK_FloatingComplexToIntegralComplex:
1610    return "FloatingComplexToIntegralComplex";
1611  case CK_IntegralRealToComplex:
1612    return "IntegralRealToComplex";
1613  case CK_IntegralComplexToReal:
1614    return "IntegralComplexToReal";
1615  case CK_IntegralComplexToBoolean:
1616    return "IntegralComplexToBoolean";
1617  case CK_IntegralComplexCast:
1618    return "IntegralComplexCast";
1619  case CK_IntegralComplexToFloatingComplex:
1620    return "IntegralComplexToFloatingComplex";
1621  case CK_ARCConsumeObject:
1622    return "ARCConsumeObject";
1623  case CK_ARCProduceObject:
1624    return "ARCProduceObject";
1625  case CK_ARCReclaimReturnedObject:
1626    return "ARCReclaimReturnedObject";
1627  case CK_ARCExtendBlockObject:
1628    return "ARCCExtendBlockObject";
1629  case CK_AtomicToNonAtomic:
1630    return "AtomicToNonAtomic";
1631  case CK_NonAtomicToAtomic:
1632    return "NonAtomicToAtomic";
1633  case CK_CopyAndAutoreleaseBlockObject:
1634    return "CopyAndAutoreleaseBlockObject";
1635  case CK_BuiltinFnToFnPtr:
1636    return "BuiltinFnToFnPtr";
1637  case CK_ZeroToOCLEvent:
1638    return "ZeroToOCLEvent";
1639  }
1640
1641  llvm_unreachable("Unhandled cast kind!");
1642}
1643
1644Expr *CastExpr::getSubExprAsWritten() {
1645  Expr *SubExpr = 0;
1646  CastExpr *E = this;
1647  do {
1648    SubExpr = E->getSubExpr();
1649
1650    // Skip through reference binding to temporary.
1651    if (MaterializeTemporaryExpr *Materialize
1652                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1653      SubExpr = Materialize->GetTemporaryExpr();
1654
1655    // Skip any temporary bindings; they're implicit.
1656    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1657      SubExpr = Binder->getSubExpr();
1658
1659    // Conversions by constructor and conversion functions have a
1660    // subexpression describing the call; strip it off.
1661    if (E->getCastKind() == CK_ConstructorConversion)
1662      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1663    else if (E->getCastKind() == CK_UserDefinedConversion)
1664      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1665
1666    // If the subexpression we're left with is an implicit cast, look
1667    // through that, too.
1668  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1669
1670  return SubExpr;
1671}
1672
1673CXXBaseSpecifier **CastExpr::path_buffer() {
1674  switch (getStmtClass()) {
1675#define ABSTRACT_STMT(x)
1676#define CASTEXPR(Type, Base) \
1677  case Stmt::Type##Class: \
1678    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1679#define STMT(Type, Base)
1680#include "clang/AST/StmtNodes.inc"
1681  default:
1682    llvm_unreachable("non-cast expressions not possible here");
1683  }
1684}
1685
1686void CastExpr::setCastPath(const CXXCastPath &Path) {
1687  assert(Path.size() == path_size());
1688  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1689}
1690
1691ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1692                                           CastKind Kind, Expr *Operand,
1693                                           const CXXCastPath *BasePath,
1694                                           ExprValueKind VK) {
1695  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1696  void *Buffer =
1697    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1698  ImplicitCastExpr *E =
1699    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1700  if (PathSize) E->setCastPath(*BasePath);
1701  return E;
1702}
1703
1704ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1705                                                unsigned PathSize) {
1706  void *Buffer =
1707    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1708  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1709}
1710
1711
1712CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1713                                       ExprValueKind VK, CastKind K, Expr *Op,
1714                                       const CXXCastPath *BasePath,
1715                                       TypeSourceInfo *WrittenTy,
1716                                       SourceLocation L, SourceLocation R) {
1717  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1718  void *Buffer =
1719    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1720  CStyleCastExpr *E =
1721    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1722  if (PathSize) E->setCastPath(*BasePath);
1723  return E;
1724}
1725
1726CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1727                                            unsigned PathSize) {
1728  void *Buffer =
1729    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1730  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1731}
1732
1733/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1734/// corresponds to, e.g. "<<=".
1735StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1736  switch (Op) {
1737  case BO_PtrMemD:   return ".*";
1738  case BO_PtrMemI:   return "->*";
1739  case BO_Mul:       return "*";
1740  case BO_Div:       return "/";
1741  case BO_Rem:       return "%";
1742  case BO_Add:       return "+";
1743  case BO_Sub:       return "-";
1744  case BO_Shl:       return "<<";
1745  case BO_Shr:       return ">>";
1746  case BO_LT:        return "<";
1747  case BO_GT:        return ">";
1748  case BO_LE:        return "<=";
1749  case BO_GE:        return ">=";
1750  case BO_EQ:        return "==";
1751  case BO_NE:        return "!=";
1752  case BO_And:       return "&";
1753  case BO_Xor:       return "^";
1754  case BO_Or:        return "|";
1755  case BO_LAnd:      return "&&";
1756  case BO_LOr:       return "||";
1757  case BO_Assign:    return "=";
1758  case BO_MulAssign: return "*=";
1759  case BO_DivAssign: return "/=";
1760  case BO_RemAssign: return "%=";
1761  case BO_AddAssign: return "+=";
1762  case BO_SubAssign: return "-=";
1763  case BO_ShlAssign: return "<<=";
1764  case BO_ShrAssign: return ">>=";
1765  case BO_AndAssign: return "&=";
1766  case BO_XorAssign: return "^=";
1767  case BO_OrAssign:  return "|=";
1768  case BO_Comma:     return ",";
1769  }
1770
1771  llvm_unreachable("Invalid OpCode!");
1772}
1773
1774BinaryOperatorKind
1775BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1776  switch (OO) {
1777  default: llvm_unreachable("Not an overloadable binary operator");
1778  case OO_Plus: return BO_Add;
1779  case OO_Minus: return BO_Sub;
1780  case OO_Star: return BO_Mul;
1781  case OO_Slash: return BO_Div;
1782  case OO_Percent: return BO_Rem;
1783  case OO_Caret: return BO_Xor;
1784  case OO_Amp: return BO_And;
1785  case OO_Pipe: return BO_Or;
1786  case OO_Equal: return BO_Assign;
1787  case OO_Less: return BO_LT;
1788  case OO_Greater: return BO_GT;
1789  case OO_PlusEqual: return BO_AddAssign;
1790  case OO_MinusEqual: return BO_SubAssign;
1791  case OO_StarEqual: return BO_MulAssign;
1792  case OO_SlashEqual: return BO_DivAssign;
1793  case OO_PercentEqual: return BO_RemAssign;
1794  case OO_CaretEqual: return BO_XorAssign;
1795  case OO_AmpEqual: return BO_AndAssign;
1796  case OO_PipeEqual: return BO_OrAssign;
1797  case OO_LessLess: return BO_Shl;
1798  case OO_GreaterGreater: return BO_Shr;
1799  case OO_LessLessEqual: return BO_ShlAssign;
1800  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1801  case OO_EqualEqual: return BO_EQ;
1802  case OO_ExclaimEqual: return BO_NE;
1803  case OO_LessEqual: return BO_LE;
1804  case OO_GreaterEqual: return BO_GE;
1805  case OO_AmpAmp: return BO_LAnd;
1806  case OO_PipePipe: return BO_LOr;
1807  case OO_Comma: return BO_Comma;
1808  case OO_ArrowStar: return BO_PtrMemI;
1809  }
1810}
1811
1812OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1813  static const OverloadedOperatorKind OverOps[] = {
1814    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1815    OO_Star, OO_Slash, OO_Percent,
1816    OO_Plus, OO_Minus,
1817    OO_LessLess, OO_GreaterGreater,
1818    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1819    OO_EqualEqual, OO_ExclaimEqual,
1820    OO_Amp,
1821    OO_Caret,
1822    OO_Pipe,
1823    OO_AmpAmp,
1824    OO_PipePipe,
1825    OO_Equal, OO_StarEqual,
1826    OO_SlashEqual, OO_PercentEqual,
1827    OO_PlusEqual, OO_MinusEqual,
1828    OO_LessLessEqual, OO_GreaterGreaterEqual,
1829    OO_AmpEqual, OO_CaretEqual,
1830    OO_PipeEqual,
1831    OO_Comma
1832  };
1833  return OverOps[Opc];
1834}
1835
1836InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1837                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1838  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1839         false, false),
1840    InitExprs(C, initExprs.size()),
1841    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
1842{
1843  sawArrayRangeDesignator(false);
1844  for (unsigned I = 0; I != initExprs.size(); ++I) {
1845    if (initExprs[I]->isTypeDependent())
1846      ExprBits.TypeDependent = true;
1847    if (initExprs[I]->isValueDependent())
1848      ExprBits.ValueDependent = true;
1849    if (initExprs[I]->isInstantiationDependent())
1850      ExprBits.InstantiationDependent = true;
1851    if (initExprs[I]->containsUnexpandedParameterPack())
1852      ExprBits.ContainsUnexpandedParameterPack = true;
1853  }
1854
1855  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1856}
1857
1858void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1859  if (NumInits > InitExprs.size())
1860    InitExprs.reserve(C, NumInits);
1861}
1862
1863void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1864  InitExprs.resize(C, NumInits, 0);
1865}
1866
1867Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1868  if (Init >= InitExprs.size()) {
1869    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1870    InitExprs.back() = expr;
1871    return 0;
1872  }
1873
1874  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1875  InitExprs[Init] = expr;
1876  return Result;
1877}
1878
1879void InitListExpr::setArrayFiller(Expr *filler) {
1880  assert(!hasArrayFiller() && "Filler already set!");
1881  ArrayFillerOrUnionFieldInit = filler;
1882  // Fill out any "holes" in the array due to designated initializers.
1883  Expr **inits = getInits();
1884  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1885    if (inits[i] == 0)
1886      inits[i] = filler;
1887}
1888
1889bool InitListExpr::isStringLiteralInit() const {
1890  if (getNumInits() != 1)
1891    return false;
1892  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1893  if (!AT || !AT->getElementType()->isIntegerType())
1894    return false;
1895  const Expr *Init = getInit(0)->IgnoreParens();
1896  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1897}
1898
1899SourceLocation InitListExpr::getLocStart() const {
1900  if (InitListExpr *SyntacticForm = getSyntacticForm())
1901    return SyntacticForm->getLocStart();
1902  SourceLocation Beg = LBraceLoc;
1903  if (Beg.isInvalid()) {
1904    // Find the first non-null initializer.
1905    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1906                                     E = InitExprs.end();
1907      I != E; ++I) {
1908      if (Stmt *S = *I) {
1909        Beg = S->getLocStart();
1910        break;
1911      }
1912    }
1913  }
1914  return Beg;
1915}
1916
1917SourceLocation InitListExpr::getLocEnd() const {
1918  if (InitListExpr *SyntacticForm = getSyntacticForm())
1919    return SyntacticForm->getLocEnd();
1920  SourceLocation End = RBraceLoc;
1921  if (End.isInvalid()) {
1922    // Find the first non-null initializer from the end.
1923    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1924         E = InitExprs.rend();
1925         I != E; ++I) {
1926      if (Stmt *S = *I) {
1927        End = S->getLocEnd();
1928        break;
1929      }
1930    }
1931  }
1932  return End;
1933}
1934
1935/// getFunctionType - Return the underlying function type for this block.
1936///
1937const FunctionProtoType *BlockExpr::getFunctionType() const {
1938  // The block pointer is never sugared, but the function type might be.
1939  return cast<BlockPointerType>(getType())
1940           ->getPointeeType()->castAs<FunctionProtoType>();
1941}
1942
1943SourceLocation BlockExpr::getCaretLocation() const {
1944  return TheBlock->getCaretLocation();
1945}
1946const Stmt *BlockExpr::getBody() const {
1947  return TheBlock->getBody();
1948}
1949Stmt *BlockExpr::getBody() {
1950  return TheBlock->getBody();
1951}
1952
1953
1954//===----------------------------------------------------------------------===//
1955// Generic Expression Routines
1956//===----------------------------------------------------------------------===//
1957
1958/// isUnusedResultAWarning - Return true if this immediate expression should
1959/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1960/// with location to warn on and the source range[s] to report with the
1961/// warning.
1962bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1963                                  SourceRange &R1, SourceRange &R2,
1964                                  ASTContext &Ctx) const {
1965  // Don't warn if the expr is type dependent. The type could end up
1966  // instantiating to void.
1967  if (isTypeDependent())
1968    return false;
1969
1970  switch (getStmtClass()) {
1971  default:
1972    if (getType()->isVoidType())
1973      return false;
1974    WarnE = this;
1975    Loc = getExprLoc();
1976    R1 = getSourceRange();
1977    return true;
1978  case ParenExprClass:
1979    return cast<ParenExpr>(this)->getSubExpr()->
1980      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1981  case GenericSelectionExprClass:
1982    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1983      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1984  case ChooseExprClass:
1985    return cast<ChooseExpr>(this)->getChosenSubExpr()->
1986      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1987  case UnaryOperatorClass: {
1988    const UnaryOperator *UO = cast<UnaryOperator>(this);
1989
1990    switch (UO->getOpcode()) {
1991    case UO_Plus:
1992    case UO_Minus:
1993    case UO_AddrOf:
1994    case UO_Not:
1995    case UO_LNot:
1996    case UO_Deref:
1997      break;
1998    case UO_PostInc:
1999    case UO_PostDec:
2000    case UO_PreInc:
2001    case UO_PreDec:                 // ++/--
2002      return false;  // Not a warning.
2003    case UO_Real:
2004    case UO_Imag:
2005      // accessing a piece of a volatile complex is a side-effect.
2006      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2007          .isVolatileQualified())
2008        return false;
2009      break;
2010    case UO_Extension:
2011      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2012    }
2013    WarnE = this;
2014    Loc = UO->getOperatorLoc();
2015    R1 = UO->getSubExpr()->getSourceRange();
2016    return true;
2017  }
2018  case BinaryOperatorClass: {
2019    const BinaryOperator *BO = cast<BinaryOperator>(this);
2020    switch (BO->getOpcode()) {
2021      default:
2022        break;
2023      // Consider the RHS of comma for side effects. LHS was checked by
2024      // Sema::CheckCommaOperands.
2025      case BO_Comma:
2026        // ((foo = <blah>), 0) is an idiom for hiding the result (and
2027        // lvalue-ness) of an assignment written in a macro.
2028        if (IntegerLiteral *IE =
2029              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2030          if (IE->getValue() == 0)
2031            return false;
2032        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2033      // Consider '||', '&&' to have side effects if the LHS or RHS does.
2034      case BO_LAnd:
2035      case BO_LOr:
2036        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2037            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2038          return false;
2039        break;
2040    }
2041    if (BO->isAssignmentOp())
2042      return false;
2043    WarnE = this;
2044    Loc = BO->getOperatorLoc();
2045    R1 = BO->getLHS()->getSourceRange();
2046    R2 = BO->getRHS()->getSourceRange();
2047    return true;
2048  }
2049  case CompoundAssignOperatorClass:
2050  case VAArgExprClass:
2051  case AtomicExprClass:
2052    return false;
2053
2054  case ConditionalOperatorClass: {
2055    // If only one of the LHS or RHS is a warning, the operator might
2056    // be being used for control flow. Only warn if both the LHS and
2057    // RHS are warnings.
2058    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2059    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2060      return false;
2061    if (!Exp->getLHS())
2062      return true;
2063    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2064  }
2065
2066  case MemberExprClass:
2067    WarnE = this;
2068    Loc = cast<MemberExpr>(this)->getMemberLoc();
2069    R1 = SourceRange(Loc, Loc);
2070    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2071    return true;
2072
2073  case ArraySubscriptExprClass:
2074    WarnE = this;
2075    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2076    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2077    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2078    return true;
2079
2080  case CXXOperatorCallExprClass: {
2081    // We warn about operator== and operator!= even when user-defined operator
2082    // overloads as there is no reasonable way to define these such that they
2083    // have non-trivial, desirable side-effects. See the -Wunused-comparison
2084    // warning: these operators are commonly typo'ed, and so warning on them
2085    // provides additional value as well. If this list is updated,
2086    // DiagnoseUnusedComparison should be as well.
2087    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2088    if (Op->getOperator() == OO_EqualEqual ||
2089        Op->getOperator() == OO_ExclaimEqual) {
2090      WarnE = this;
2091      Loc = Op->getOperatorLoc();
2092      R1 = Op->getSourceRange();
2093      return true;
2094    }
2095
2096    // Fallthrough for generic call handling.
2097  }
2098  case CallExprClass:
2099  case CXXMemberCallExprClass:
2100  case UserDefinedLiteralClass: {
2101    // If this is a direct call, get the callee.
2102    const CallExpr *CE = cast<CallExpr>(this);
2103    if (const Decl *FD = CE->getCalleeDecl()) {
2104      // If the callee has attribute pure, const, or warn_unused_result, warn
2105      // about it. void foo() { strlen("bar"); } should warn.
2106      //
2107      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2108      // updated to match for QoI.
2109      if (FD->getAttr<WarnUnusedResultAttr>() ||
2110          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
2111        WarnE = this;
2112        Loc = CE->getCallee()->getLocStart();
2113        R1 = CE->getCallee()->getSourceRange();
2114
2115        if (unsigned NumArgs = CE->getNumArgs())
2116          R2 = SourceRange(CE->getArg(0)->getLocStart(),
2117                           CE->getArg(NumArgs-1)->getLocEnd());
2118        return true;
2119      }
2120    }
2121    return false;
2122  }
2123
2124  // If we don't know precisely what we're looking at, let's not warn.
2125  case UnresolvedLookupExprClass:
2126  case CXXUnresolvedConstructExprClass:
2127    return false;
2128
2129  case CXXTemporaryObjectExprClass:
2130  case CXXConstructExprClass: {
2131    if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2132      if (Type->hasAttr<WarnUnusedAttr>()) {
2133        WarnE = this;
2134        Loc = getLocStart();
2135        R1 = getSourceRange();
2136        return true;
2137      }
2138    }
2139    return false;
2140  }
2141
2142  case ObjCMessageExprClass: {
2143    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2144    if (Ctx.getLangOpts().ObjCAutoRefCount &&
2145        ME->isInstanceMessage() &&
2146        !ME->getType()->isVoidType() &&
2147        ME->getMethodFamily() == OMF_init) {
2148      WarnE = this;
2149      Loc = getExprLoc();
2150      R1 = ME->getSourceRange();
2151      return true;
2152    }
2153
2154    const ObjCMethodDecl *MD = ME->getMethodDecl();
2155    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
2156      WarnE = this;
2157      Loc = getExprLoc();
2158      return true;
2159    }
2160    return false;
2161  }
2162
2163  case ObjCPropertyRefExprClass:
2164    WarnE = this;
2165    Loc = getExprLoc();
2166    R1 = getSourceRange();
2167    return true;
2168
2169  case PseudoObjectExprClass: {
2170    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2171
2172    // Only complain about things that have the form of a getter.
2173    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2174        isa<BinaryOperator>(PO->getSyntacticForm()))
2175      return false;
2176
2177    WarnE = this;
2178    Loc = getExprLoc();
2179    R1 = getSourceRange();
2180    return true;
2181  }
2182
2183  case StmtExprClass: {
2184    // Statement exprs don't logically have side effects themselves, but are
2185    // sometimes used in macros in ways that give them a type that is unused.
2186    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2187    // however, if the result of the stmt expr is dead, we don't want to emit a
2188    // warning.
2189    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2190    if (!CS->body_empty()) {
2191      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2192        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2193      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2194        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2195          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2196    }
2197
2198    if (getType()->isVoidType())
2199      return false;
2200    WarnE = this;
2201    Loc = cast<StmtExpr>(this)->getLParenLoc();
2202    R1 = getSourceRange();
2203    return true;
2204  }
2205  case CXXFunctionalCastExprClass:
2206  case CStyleCastExprClass: {
2207    // Ignore an explicit cast to void unless the operand is a non-trivial
2208    // volatile lvalue.
2209    const CastExpr *CE = cast<CastExpr>(this);
2210    if (CE->getCastKind() == CK_ToVoid) {
2211      if (CE->getSubExpr()->isGLValue() &&
2212          CE->getSubExpr()->getType().isVolatileQualified()) {
2213        const DeclRefExpr *DRE =
2214            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2215        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2216              cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2217          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2218                                                          R1, R2, Ctx);
2219        }
2220      }
2221      return false;
2222    }
2223
2224    // If this is a cast to a constructor conversion, check the operand.
2225    // Otherwise, the result of the cast is unused.
2226    if (CE->getCastKind() == CK_ConstructorConversion)
2227      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2228
2229    WarnE = this;
2230    if (const CXXFunctionalCastExpr *CXXCE =
2231            dyn_cast<CXXFunctionalCastExpr>(this)) {
2232      Loc = CXXCE->getLocStart();
2233      R1 = CXXCE->getSubExpr()->getSourceRange();
2234    } else {
2235      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2236      Loc = CStyleCE->getLParenLoc();
2237      R1 = CStyleCE->getSubExpr()->getSourceRange();
2238    }
2239    return true;
2240  }
2241  case ImplicitCastExprClass: {
2242    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2243
2244    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2245    if (ICE->getCastKind() == CK_LValueToRValue &&
2246        ICE->getSubExpr()->getType().isVolatileQualified())
2247      return false;
2248
2249    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2250  }
2251  case CXXDefaultArgExprClass:
2252    return (cast<CXXDefaultArgExpr>(this)
2253            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2254  case CXXDefaultInitExprClass:
2255    return (cast<CXXDefaultInitExpr>(this)
2256            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2257
2258  case CXXNewExprClass:
2259    // FIXME: In theory, there might be new expressions that don't have side
2260    // effects (e.g. a placement new with an uninitialized POD).
2261  case CXXDeleteExprClass:
2262    return false;
2263  case CXXBindTemporaryExprClass:
2264    return (cast<CXXBindTemporaryExpr>(this)
2265            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2266  case ExprWithCleanupsClass:
2267    return (cast<ExprWithCleanups>(this)
2268            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2269  }
2270}
2271
2272/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2273/// returns true, if it is; false otherwise.
2274bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2275  const Expr *E = IgnoreParens();
2276  switch (E->getStmtClass()) {
2277  default:
2278    return false;
2279  case ObjCIvarRefExprClass:
2280    return true;
2281  case Expr::UnaryOperatorClass:
2282    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2283  case ImplicitCastExprClass:
2284    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2285  case MaterializeTemporaryExprClass:
2286    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2287                                                      ->isOBJCGCCandidate(Ctx);
2288  case CStyleCastExprClass:
2289    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2290  case DeclRefExprClass: {
2291    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2292
2293    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2294      if (VD->hasGlobalStorage())
2295        return true;
2296      QualType T = VD->getType();
2297      // dereferencing to a  pointer is always a gc'able candidate,
2298      // unless it is __weak.
2299      return T->isPointerType() &&
2300             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2301    }
2302    return false;
2303  }
2304  case MemberExprClass: {
2305    const MemberExpr *M = cast<MemberExpr>(E);
2306    return M->getBase()->isOBJCGCCandidate(Ctx);
2307  }
2308  case ArraySubscriptExprClass:
2309    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2310  }
2311}
2312
2313bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2314  if (isTypeDependent())
2315    return false;
2316  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2317}
2318
2319QualType Expr::findBoundMemberType(const Expr *expr) {
2320  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2321
2322  // Bound member expressions are always one of these possibilities:
2323  //   x->m      x.m      x->*y      x.*y
2324  // (possibly parenthesized)
2325
2326  expr = expr->IgnoreParens();
2327  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2328    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2329    return mem->getMemberDecl()->getType();
2330  }
2331
2332  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2333    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2334                      ->getPointeeType();
2335    assert(type->isFunctionType());
2336    return type;
2337  }
2338
2339  assert(isa<UnresolvedMemberExpr>(expr));
2340  return QualType();
2341}
2342
2343Expr* Expr::IgnoreParens() {
2344  Expr* E = this;
2345  while (true) {
2346    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2347      E = P->getSubExpr();
2348      continue;
2349    }
2350    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2351      if (P->getOpcode() == UO_Extension) {
2352        E = P->getSubExpr();
2353        continue;
2354      }
2355    }
2356    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2357      if (!P->isResultDependent()) {
2358        E = P->getResultExpr();
2359        continue;
2360      }
2361    }
2362    if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2363      if (!P->isConditionDependent()) {
2364        E = P->getChosenSubExpr();
2365        continue;
2366      }
2367    }
2368    return E;
2369  }
2370}
2371
2372/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2373/// or CastExprs or ImplicitCastExprs, returning their operand.
2374Expr *Expr::IgnoreParenCasts() {
2375  Expr *E = this;
2376  while (true) {
2377    E = E->IgnoreParens();
2378    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2379      E = P->getSubExpr();
2380      continue;
2381    }
2382    if (MaterializeTemporaryExpr *Materialize
2383                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2384      E = Materialize->GetTemporaryExpr();
2385      continue;
2386    }
2387    if (SubstNonTypeTemplateParmExpr *NTTP
2388                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2389      E = NTTP->getReplacement();
2390      continue;
2391    }
2392    return E;
2393  }
2394}
2395
2396/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2397/// casts.  This is intended purely as a temporary workaround for code
2398/// that hasn't yet been rewritten to do the right thing about those
2399/// casts, and may disappear along with the last internal use.
2400Expr *Expr::IgnoreParenLValueCasts() {
2401  Expr *E = this;
2402  while (true) {
2403    E = E->IgnoreParens();
2404    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2405      if (P->getCastKind() == CK_LValueToRValue) {
2406        E = P->getSubExpr();
2407        continue;
2408      }
2409    } else if (MaterializeTemporaryExpr *Materialize
2410                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2411      E = Materialize->GetTemporaryExpr();
2412      continue;
2413    } else if (SubstNonTypeTemplateParmExpr *NTTP
2414                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2415      E = NTTP->getReplacement();
2416      continue;
2417    }
2418    break;
2419  }
2420  return E;
2421}
2422
2423Expr *Expr::ignoreParenBaseCasts() {
2424  Expr *E = this;
2425  while (true) {
2426    E = E->IgnoreParens();
2427    if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2428      if (CE->getCastKind() == CK_DerivedToBase ||
2429          CE->getCastKind() == CK_UncheckedDerivedToBase ||
2430          CE->getCastKind() == CK_NoOp) {
2431        E = CE->getSubExpr();
2432        continue;
2433      }
2434    }
2435
2436    return E;
2437  }
2438}
2439
2440Expr *Expr::IgnoreParenImpCasts() {
2441  Expr *E = this;
2442  while (true) {
2443    E = E->IgnoreParens();
2444    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2445      E = P->getSubExpr();
2446      continue;
2447    }
2448    if (MaterializeTemporaryExpr *Materialize
2449                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2450      E = Materialize->GetTemporaryExpr();
2451      continue;
2452    }
2453    if (SubstNonTypeTemplateParmExpr *NTTP
2454                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2455      E = NTTP->getReplacement();
2456      continue;
2457    }
2458    return E;
2459  }
2460}
2461
2462Expr *Expr::IgnoreConversionOperator() {
2463  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2464    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2465      return MCE->getImplicitObjectArgument();
2466  }
2467  return this;
2468}
2469
2470/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2471/// value (including ptr->int casts of the same size).  Strip off any
2472/// ParenExpr or CastExprs, returning their operand.
2473Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2474  Expr *E = this;
2475  while (true) {
2476    E = E->IgnoreParens();
2477
2478    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2479      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2480      // ptr<->int casts of the same width.  We also ignore all identity casts.
2481      Expr *SE = P->getSubExpr();
2482
2483      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2484        E = SE;
2485        continue;
2486      }
2487
2488      if ((E->getType()->isPointerType() ||
2489           E->getType()->isIntegralType(Ctx)) &&
2490          (SE->getType()->isPointerType() ||
2491           SE->getType()->isIntegralType(Ctx)) &&
2492          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2493        E = SE;
2494        continue;
2495      }
2496    }
2497
2498    if (SubstNonTypeTemplateParmExpr *NTTP
2499                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2500      E = NTTP->getReplacement();
2501      continue;
2502    }
2503
2504    return E;
2505  }
2506}
2507
2508bool Expr::isDefaultArgument() const {
2509  const Expr *E = this;
2510  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2511    E = M->GetTemporaryExpr();
2512
2513  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2514    E = ICE->getSubExprAsWritten();
2515
2516  return isa<CXXDefaultArgExpr>(E);
2517}
2518
2519/// \brief Skip over any no-op casts and any temporary-binding
2520/// expressions.
2521static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2522  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2523    E = M->GetTemporaryExpr();
2524
2525  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2526    if (ICE->getCastKind() == CK_NoOp)
2527      E = ICE->getSubExpr();
2528    else
2529      break;
2530  }
2531
2532  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2533    E = BE->getSubExpr();
2534
2535  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2536    if (ICE->getCastKind() == CK_NoOp)
2537      E = ICE->getSubExpr();
2538    else
2539      break;
2540  }
2541
2542  return E->IgnoreParens();
2543}
2544
2545/// isTemporaryObject - Determines if this expression produces a
2546/// temporary of the given class type.
2547bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2548  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2549    return false;
2550
2551  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2552
2553  // Temporaries are by definition pr-values of class type.
2554  if (!E->Classify(C).isPRValue()) {
2555    // In this context, property reference is a message call and is pr-value.
2556    if (!isa<ObjCPropertyRefExpr>(E))
2557      return false;
2558  }
2559
2560  // Black-list a few cases which yield pr-values of class type that don't
2561  // refer to temporaries of that type:
2562
2563  // - implicit derived-to-base conversions
2564  if (isa<ImplicitCastExpr>(E)) {
2565    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2566    case CK_DerivedToBase:
2567    case CK_UncheckedDerivedToBase:
2568      return false;
2569    default:
2570      break;
2571    }
2572  }
2573
2574  // - member expressions (all)
2575  if (isa<MemberExpr>(E))
2576    return false;
2577
2578  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2579    if (BO->isPtrMemOp())
2580      return false;
2581
2582  // - opaque values (all)
2583  if (isa<OpaqueValueExpr>(E))
2584    return false;
2585
2586  return true;
2587}
2588
2589bool Expr::isImplicitCXXThis() const {
2590  const Expr *E = this;
2591
2592  // Strip away parentheses and casts we don't care about.
2593  while (true) {
2594    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2595      E = Paren->getSubExpr();
2596      continue;
2597    }
2598
2599    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2600      if (ICE->getCastKind() == CK_NoOp ||
2601          ICE->getCastKind() == CK_LValueToRValue ||
2602          ICE->getCastKind() == CK_DerivedToBase ||
2603          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2604        E = ICE->getSubExpr();
2605        continue;
2606      }
2607    }
2608
2609    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2610      if (UnOp->getOpcode() == UO_Extension) {
2611        E = UnOp->getSubExpr();
2612        continue;
2613      }
2614    }
2615
2616    if (const MaterializeTemporaryExpr *M
2617                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2618      E = M->GetTemporaryExpr();
2619      continue;
2620    }
2621
2622    break;
2623  }
2624
2625  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2626    return This->isImplicit();
2627
2628  return false;
2629}
2630
2631/// hasAnyTypeDependentArguments - Determines if any of the expressions
2632/// in Exprs is type-dependent.
2633bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2634  for (unsigned I = 0; I < Exprs.size(); ++I)
2635    if (Exprs[I]->isTypeDependent())
2636      return true;
2637
2638  return false;
2639}
2640
2641bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2642  // This function is attempting whether an expression is an initializer
2643  // which can be evaluated at compile-time. It very closely parallels
2644  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2645  // will lead to unexpected results.  Like ConstExprEmitter, it falls back
2646  // to isEvaluatable most of the time.
2647  //
2648  // If we ever capture reference-binding directly in the AST, we can
2649  // kill the second parameter.
2650
2651  if (IsForRef) {
2652    EvalResult Result;
2653    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2654  }
2655
2656  switch (getStmtClass()) {
2657  default: break;
2658  case StringLiteralClass:
2659  case ObjCEncodeExprClass:
2660    return true;
2661  case CXXTemporaryObjectExprClass:
2662  case CXXConstructExprClass: {
2663    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2664
2665    if (CE->getConstructor()->isTrivial() &&
2666        CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2667      // Trivial default constructor
2668      if (!CE->getNumArgs()) return true;
2669
2670      // Trivial copy constructor
2671      assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2672      return CE->getArg(0)->isConstantInitializer(Ctx, false);
2673    }
2674
2675    break;
2676  }
2677  case CompoundLiteralExprClass: {
2678    // This handles gcc's extension that allows global initializers like
2679    // "struct x {int x;} x = (struct x) {};".
2680    // FIXME: This accepts other cases it shouldn't!
2681    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2682    return Exp->isConstantInitializer(Ctx, false);
2683  }
2684  case InitListExprClass: {
2685    const InitListExpr *ILE = cast<InitListExpr>(this);
2686    if (ILE->getType()->isArrayType()) {
2687      unsigned numInits = ILE->getNumInits();
2688      for (unsigned i = 0; i < numInits; i++) {
2689        if (!ILE->getInit(i)->isConstantInitializer(Ctx, false))
2690          return false;
2691      }
2692      return true;
2693    }
2694
2695    if (ILE->getType()->isRecordType()) {
2696      unsigned ElementNo = 0;
2697      RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2698      for (RecordDecl::field_iterator Field = RD->field_begin(),
2699           FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
2700        // If this is a union, skip all the fields that aren't being initialized.
2701        if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
2702          continue;
2703
2704        // Don't emit anonymous bitfields, they just affect layout.
2705        if (Field->isUnnamedBitfield())
2706          continue;
2707
2708        if (ElementNo < ILE->getNumInits()) {
2709          const Expr *Elt = ILE->getInit(ElementNo++);
2710          if (Field->isBitField()) {
2711            // Bitfields have to evaluate to an integer.
2712            llvm::APSInt ResultTmp;
2713            if (!Elt->EvaluateAsInt(ResultTmp, Ctx))
2714              return false;
2715          } else {
2716            bool RefType = Field->getType()->isReferenceType();
2717            if (!Elt->isConstantInitializer(Ctx, RefType))
2718              return false;
2719          }
2720        }
2721      }
2722      return true;
2723    }
2724
2725    break;
2726  }
2727  case ImplicitValueInitExprClass:
2728    return true;
2729  case ParenExprClass:
2730    return cast<ParenExpr>(this)->getSubExpr()
2731      ->isConstantInitializer(Ctx, IsForRef);
2732  case GenericSelectionExprClass:
2733    return cast<GenericSelectionExpr>(this)->getResultExpr()
2734      ->isConstantInitializer(Ctx, IsForRef);
2735  case ChooseExprClass:
2736    if (cast<ChooseExpr>(this)->isConditionDependent())
2737      return false;
2738    return cast<ChooseExpr>(this)->getChosenSubExpr()
2739      ->isConstantInitializer(Ctx, IsForRef);
2740  case UnaryOperatorClass: {
2741    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2742    if (Exp->getOpcode() == UO_Extension)
2743      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2744    break;
2745  }
2746  case CXXFunctionalCastExprClass:
2747  case CXXStaticCastExprClass:
2748  case ImplicitCastExprClass:
2749  case CStyleCastExprClass:
2750  case ObjCBridgedCastExprClass:
2751  case CXXDynamicCastExprClass:
2752  case CXXReinterpretCastExprClass:
2753  case CXXConstCastExprClass: {
2754    const CastExpr *CE = cast<CastExpr>(this);
2755
2756    // Handle misc casts we want to ignore.
2757    if (CE->getCastKind() == CK_NoOp ||
2758        CE->getCastKind() == CK_LValueToRValue ||
2759        CE->getCastKind() == CK_ToUnion ||
2760        CE->getCastKind() == CK_ConstructorConversion ||
2761        CE->getCastKind() == CK_NonAtomicToAtomic ||
2762        CE->getCastKind() == CK_AtomicToNonAtomic)
2763      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2764
2765    break;
2766  }
2767  case MaterializeTemporaryExprClass:
2768    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2769                                            ->isConstantInitializer(Ctx, false);
2770
2771  case SubstNonTypeTemplateParmExprClass:
2772    return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2773                                            ->isConstantInitializer(Ctx, false);
2774  case CXXDefaultArgExprClass:
2775    return cast<CXXDefaultArgExpr>(this)->getExpr()
2776                                            ->isConstantInitializer(Ctx, false);
2777  case CXXDefaultInitExprClass:
2778    return cast<CXXDefaultInitExpr>(this)->getExpr()
2779                                            ->isConstantInitializer(Ctx, false);
2780  }
2781  return isEvaluatable(Ctx);
2782}
2783
2784bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2785  if (isInstantiationDependent())
2786    return true;
2787
2788  switch (getStmtClass()) {
2789  case NoStmtClass:
2790  #define ABSTRACT_STMT(Type)
2791  #define STMT(Type, Base) case Type##Class:
2792  #define EXPR(Type, Base)
2793  #include "clang/AST/StmtNodes.inc"
2794    llvm_unreachable("unexpected Expr kind");
2795
2796  case DependentScopeDeclRefExprClass:
2797  case CXXUnresolvedConstructExprClass:
2798  case CXXDependentScopeMemberExprClass:
2799  case UnresolvedLookupExprClass:
2800  case UnresolvedMemberExprClass:
2801  case PackExpansionExprClass:
2802  case SubstNonTypeTemplateParmPackExprClass:
2803  case FunctionParmPackExprClass:
2804    llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2805
2806  case DeclRefExprClass:
2807  case ObjCIvarRefExprClass:
2808  case PredefinedExprClass:
2809  case IntegerLiteralClass:
2810  case FloatingLiteralClass:
2811  case ImaginaryLiteralClass:
2812  case StringLiteralClass:
2813  case CharacterLiteralClass:
2814  case OffsetOfExprClass:
2815  case ImplicitValueInitExprClass:
2816  case UnaryExprOrTypeTraitExprClass:
2817  case AddrLabelExprClass:
2818  case GNUNullExprClass:
2819  case CXXBoolLiteralExprClass:
2820  case CXXNullPtrLiteralExprClass:
2821  case CXXThisExprClass:
2822  case CXXScalarValueInitExprClass:
2823  case TypeTraitExprClass:
2824  case UnaryTypeTraitExprClass:
2825  case BinaryTypeTraitExprClass:
2826  case ArrayTypeTraitExprClass:
2827  case ExpressionTraitExprClass:
2828  case CXXNoexceptExprClass:
2829  case SizeOfPackExprClass:
2830  case ObjCStringLiteralClass:
2831  case ObjCEncodeExprClass:
2832  case ObjCBoolLiteralExprClass:
2833  case CXXUuidofExprClass:
2834  case OpaqueValueExprClass:
2835    // These never have a side-effect.
2836    return false;
2837
2838  case CallExprClass:
2839  case MSPropertyRefExprClass:
2840  case CompoundAssignOperatorClass:
2841  case VAArgExprClass:
2842  case AtomicExprClass:
2843  case StmtExprClass:
2844  case CXXOperatorCallExprClass:
2845  case CXXMemberCallExprClass:
2846  case UserDefinedLiteralClass:
2847  case CXXThrowExprClass:
2848  case CXXNewExprClass:
2849  case CXXDeleteExprClass:
2850  case ExprWithCleanupsClass:
2851  case CXXBindTemporaryExprClass:
2852  case BlockExprClass:
2853  case CUDAKernelCallExprClass:
2854    // These always have a side-effect.
2855    return true;
2856
2857  case ParenExprClass:
2858  case ArraySubscriptExprClass:
2859  case MemberExprClass:
2860  case ConditionalOperatorClass:
2861  case BinaryConditionalOperatorClass:
2862  case CompoundLiteralExprClass:
2863  case ExtVectorElementExprClass:
2864  case DesignatedInitExprClass:
2865  case ParenListExprClass:
2866  case CXXPseudoDestructorExprClass:
2867  case CXXStdInitializerListExprClass:
2868  case SubstNonTypeTemplateParmExprClass:
2869  case MaterializeTemporaryExprClass:
2870  case ShuffleVectorExprClass:
2871  case ConvertVectorExprClass:
2872  case AsTypeExprClass:
2873    // These have a side-effect if any subexpression does.
2874    break;
2875
2876  case UnaryOperatorClass:
2877    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2878      return true;
2879    break;
2880
2881  case BinaryOperatorClass:
2882    if (cast<BinaryOperator>(this)->isAssignmentOp())
2883      return true;
2884    break;
2885
2886  case InitListExprClass:
2887    // FIXME: The children for an InitListExpr doesn't include the array filler.
2888    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2889      if (E->HasSideEffects(Ctx))
2890        return true;
2891    break;
2892
2893  case GenericSelectionExprClass:
2894    return cast<GenericSelectionExpr>(this)->getResultExpr()->
2895        HasSideEffects(Ctx);
2896
2897  case ChooseExprClass:
2898    return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx);
2899
2900  case CXXDefaultArgExprClass:
2901    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2902
2903  case CXXDefaultInitExprClass:
2904    if (const Expr *E = cast<CXXDefaultInitExpr>(this)->getExpr())
2905      return E->HasSideEffects(Ctx);
2906    // If we've not yet parsed the initializer, assume it has side-effects.
2907    return true;
2908
2909  case CXXDynamicCastExprClass: {
2910    // A dynamic_cast expression has side-effects if it can throw.
2911    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2912    if (DCE->getTypeAsWritten()->isReferenceType() &&
2913        DCE->getCastKind() == CK_Dynamic)
2914      return true;
2915  } // Fall through.
2916  case ImplicitCastExprClass:
2917  case CStyleCastExprClass:
2918  case CXXStaticCastExprClass:
2919  case CXXReinterpretCastExprClass:
2920  case CXXConstCastExprClass:
2921  case CXXFunctionalCastExprClass: {
2922    const CastExpr *CE = cast<CastExpr>(this);
2923    if (CE->getCastKind() == CK_LValueToRValue &&
2924        CE->getSubExpr()->getType().isVolatileQualified())
2925      return true;
2926    break;
2927  }
2928
2929  case CXXTypeidExprClass:
2930    // typeid might throw if its subexpression is potentially-evaluated, so has
2931    // side-effects in that case whether or not its subexpression does.
2932    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2933
2934  case CXXConstructExprClass:
2935  case CXXTemporaryObjectExprClass: {
2936    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2937    if (!CE->getConstructor()->isTrivial())
2938      return true;
2939    // A trivial constructor does not add any side-effects of its own. Just look
2940    // at its arguments.
2941    break;
2942  }
2943
2944  case LambdaExprClass: {
2945    const LambdaExpr *LE = cast<LambdaExpr>(this);
2946    for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2947                                      E = LE->capture_end(); I != E; ++I)
2948      if (I->getCaptureKind() == LCK_ByCopy)
2949        // FIXME: Only has a side-effect if the variable is volatile or if
2950        // the copy would invoke a non-trivial copy constructor.
2951        return true;
2952    return false;
2953  }
2954
2955  case PseudoObjectExprClass: {
2956    // Only look for side-effects in the semantic form, and look past
2957    // OpaqueValueExpr bindings in that form.
2958    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2959    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2960                                                    E = PO->semantics_end();
2961         I != E; ++I) {
2962      const Expr *Subexpr = *I;
2963      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2964        Subexpr = OVE->getSourceExpr();
2965      if (Subexpr->HasSideEffects(Ctx))
2966        return true;
2967    }
2968    return false;
2969  }
2970
2971  case ObjCBoxedExprClass:
2972  case ObjCArrayLiteralClass:
2973  case ObjCDictionaryLiteralClass:
2974  case ObjCMessageExprClass:
2975  case ObjCSelectorExprClass:
2976  case ObjCProtocolExprClass:
2977  case ObjCPropertyRefExprClass:
2978  case ObjCIsaExprClass:
2979  case ObjCIndirectCopyRestoreExprClass:
2980  case ObjCSubscriptRefExprClass:
2981  case ObjCBridgedCastExprClass:
2982    // FIXME: Classify these cases better.
2983    return true;
2984  }
2985
2986  // Recurse to children.
2987  for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2988    if (const Stmt *S = *SubStmts)
2989      if (cast<Expr>(S)->HasSideEffects(Ctx))
2990        return true;
2991
2992  return false;
2993}
2994
2995namespace {
2996  /// \brief Look for a call to a non-trivial function within an expression.
2997  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2998  {
2999    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3000
3001    bool NonTrivial;
3002
3003  public:
3004    explicit NonTrivialCallFinder(ASTContext &Context)
3005      : Inherited(Context), NonTrivial(false) { }
3006
3007    bool hasNonTrivialCall() const { return NonTrivial; }
3008
3009    void VisitCallExpr(CallExpr *E) {
3010      if (CXXMethodDecl *Method
3011          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
3012        if (Method->isTrivial()) {
3013          // Recurse to children of the call.
3014          Inherited::VisitStmt(E);
3015          return;
3016        }
3017      }
3018
3019      NonTrivial = true;
3020    }
3021
3022    void VisitCXXConstructExpr(CXXConstructExpr *E) {
3023      if (E->getConstructor()->isTrivial()) {
3024        // Recurse to children of the call.
3025        Inherited::VisitStmt(E);
3026        return;
3027      }
3028
3029      NonTrivial = true;
3030    }
3031
3032    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3033      if (E->getTemporary()->getDestructor()->isTrivial()) {
3034        Inherited::VisitStmt(E);
3035        return;
3036      }
3037
3038      NonTrivial = true;
3039    }
3040  };
3041}
3042
3043bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
3044  NonTrivialCallFinder Finder(Ctx);
3045  Finder.Visit(this);
3046  return Finder.hasNonTrivialCall();
3047}
3048
3049/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3050/// pointer constant or not, as well as the specific kind of constant detected.
3051/// Null pointer constants can be integer constant expressions with the
3052/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3053/// (a GNU extension).
3054Expr::NullPointerConstantKind
3055Expr::isNullPointerConstant(ASTContext &Ctx,
3056                            NullPointerConstantValueDependence NPC) const {
3057  if (isValueDependent() &&
3058      (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MicrosoftMode)) {
3059    switch (NPC) {
3060    case NPC_NeverValueDependent:
3061      llvm_unreachable("Unexpected value dependent expression!");
3062    case NPC_ValueDependentIsNull:
3063      if (isTypeDependent() || getType()->isIntegralType(Ctx))
3064        return NPCK_ZeroExpression;
3065      else
3066        return NPCK_NotNull;
3067
3068    case NPC_ValueDependentIsNotNull:
3069      return NPCK_NotNull;
3070    }
3071  }
3072
3073  // Strip off a cast to void*, if it exists. Except in C++.
3074  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3075    if (!Ctx.getLangOpts().CPlusPlus) {
3076      // Check that it is a cast to void*.
3077      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3078        QualType Pointee = PT->getPointeeType();
3079        if (!Pointee.hasQualifiers() &&
3080            Pointee->isVoidType() &&                              // to void*
3081            CE->getSubExpr()->getType()->isIntegerType())         // from int.
3082          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3083      }
3084    }
3085  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3086    // Ignore the ImplicitCastExpr type entirely.
3087    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3088  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3089    // Accept ((void*)0) as a null pointer constant, as many other
3090    // implementations do.
3091    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3092  } else if (const GenericSelectionExpr *GE =
3093               dyn_cast<GenericSelectionExpr>(this)) {
3094    if (GE->isResultDependent())
3095      return NPCK_NotNull;
3096    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3097  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3098    if (CE->isConditionDependent())
3099      return NPCK_NotNull;
3100    return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3101  } else if (const CXXDefaultArgExpr *DefaultArg
3102               = dyn_cast<CXXDefaultArgExpr>(this)) {
3103    // See through default argument expressions.
3104    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3105  } else if (const CXXDefaultInitExpr *DefaultInit
3106               = dyn_cast<CXXDefaultInitExpr>(this)) {
3107    // See through default initializer expressions.
3108    return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3109  } else if (isa<GNUNullExpr>(this)) {
3110    // The GNU __null extension is always a null pointer constant.
3111    return NPCK_GNUNull;
3112  } else if (const MaterializeTemporaryExpr *M
3113                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
3114    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3115  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3116    if (const Expr *Source = OVE->getSourceExpr())
3117      return Source->isNullPointerConstant(Ctx, NPC);
3118  }
3119
3120  // C++11 nullptr_t is always a null pointer constant.
3121  if (getType()->isNullPtrType())
3122    return NPCK_CXX11_nullptr;
3123
3124  if (const RecordType *UT = getType()->getAsUnionType())
3125    if (!Ctx.getLangOpts().CPlusPlus11 &&
3126        UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3127      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3128        const Expr *InitExpr = CLE->getInitializer();
3129        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3130          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3131      }
3132  // This expression must be an integer type.
3133  if (!getType()->isIntegerType() ||
3134      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3135    return NPCK_NotNull;
3136
3137  if (Ctx.getLangOpts().CPlusPlus11) {
3138    // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3139    // value zero or a prvalue of type std::nullptr_t.
3140    // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3141    const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3142    if (Lit && !Lit->getValue())
3143      return NPCK_ZeroLiteral;
3144    else if (!Ctx.getLangOpts().MicrosoftMode ||
3145             !isCXX98IntegralConstantExpr(Ctx))
3146      return NPCK_NotNull;
3147  } else {
3148    // If we have an integer constant expression, we need to *evaluate* it and
3149    // test for the value 0.
3150    if (!isIntegerConstantExpr(Ctx))
3151      return NPCK_NotNull;
3152  }
3153
3154  if (EvaluateKnownConstInt(Ctx) != 0)
3155    return NPCK_NotNull;
3156
3157  if (isa<IntegerLiteral>(this))
3158    return NPCK_ZeroLiteral;
3159  return NPCK_ZeroExpression;
3160}
3161
3162/// \brief If this expression is an l-value for an Objective C
3163/// property, find the underlying property reference expression.
3164const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3165  const Expr *E = this;
3166  while (true) {
3167    assert((E->getValueKind() == VK_LValue &&
3168            E->getObjectKind() == OK_ObjCProperty) &&
3169           "expression is not a property reference");
3170    E = E->IgnoreParenCasts();
3171    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3172      if (BO->getOpcode() == BO_Comma) {
3173        E = BO->getRHS();
3174        continue;
3175      }
3176    }
3177
3178    break;
3179  }
3180
3181  return cast<ObjCPropertyRefExpr>(E);
3182}
3183
3184bool Expr::isObjCSelfExpr() const {
3185  const Expr *E = IgnoreParenImpCasts();
3186
3187  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3188  if (!DRE)
3189    return false;
3190
3191  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3192  if (!Param)
3193    return false;
3194
3195  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3196  if (!M)
3197    return false;
3198
3199  return M->getSelfDecl() == Param;
3200}
3201
3202FieldDecl *Expr::getSourceBitField() {
3203  Expr *E = this->IgnoreParens();
3204
3205  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3206    if (ICE->getCastKind() == CK_LValueToRValue ||
3207        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3208      E = ICE->getSubExpr()->IgnoreParens();
3209    else
3210      break;
3211  }
3212
3213  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3214    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3215      if (Field->isBitField())
3216        return Field;
3217
3218  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3219    if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3220      if (Ivar->isBitField())
3221        return Ivar;
3222
3223  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3224    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3225      if (Field->isBitField())
3226        return Field;
3227
3228  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3229    if (BinOp->isAssignmentOp() && BinOp->getLHS())
3230      return BinOp->getLHS()->getSourceBitField();
3231
3232    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3233      return BinOp->getRHS()->getSourceBitField();
3234  }
3235
3236  return 0;
3237}
3238
3239bool Expr::refersToVectorElement() const {
3240  const Expr *E = this->IgnoreParens();
3241
3242  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3243    if (ICE->getValueKind() != VK_RValue &&
3244        ICE->getCastKind() == CK_NoOp)
3245      E = ICE->getSubExpr()->IgnoreParens();
3246    else
3247      break;
3248  }
3249
3250  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3251    return ASE->getBase()->getType()->isVectorType();
3252
3253  if (isa<ExtVectorElementExpr>(E))
3254    return true;
3255
3256  return false;
3257}
3258
3259/// isArrow - Return true if the base expression is a pointer to vector,
3260/// return false if the base expression is a vector.
3261bool ExtVectorElementExpr::isArrow() const {
3262  return getBase()->getType()->isPointerType();
3263}
3264
3265unsigned ExtVectorElementExpr::getNumElements() const {
3266  if (const VectorType *VT = getType()->getAs<VectorType>())
3267    return VT->getNumElements();
3268  return 1;
3269}
3270
3271/// containsDuplicateElements - Return true if any element access is repeated.
3272bool ExtVectorElementExpr::containsDuplicateElements() const {
3273  // FIXME: Refactor this code to an accessor on the AST node which returns the
3274  // "type" of component access, and share with code below and in Sema.
3275  StringRef Comp = Accessor->getName();
3276
3277  // Halving swizzles do not contain duplicate elements.
3278  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3279    return false;
3280
3281  // Advance past s-char prefix on hex swizzles.
3282  if (Comp[0] == 's' || Comp[0] == 'S')
3283    Comp = Comp.substr(1);
3284
3285  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3286    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3287        return true;
3288
3289  return false;
3290}
3291
3292/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3293void ExtVectorElementExpr::getEncodedElementAccess(
3294                                  SmallVectorImpl<unsigned> &Elts) const {
3295  StringRef Comp = Accessor->getName();
3296  if (Comp[0] == 's' || Comp[0] == 'S')
3297    Comp = Comp.substr(1);
3298
3299  bool isHi =   Comp == "hi";
3300  bool isLo =   Comp == "lo";
3301  bool isEven = Comp == "even";
3302  bool isOdd  = Comp == "odd";
3303
3304  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3305    uint64_t Index;
3306
3307    if (isHi)
3308      Index = e + i;
3309    else if (isLo)
3310      Index = i;
3311    else if (isEven)
3312      Index = 2 * i;
3313    else if (isOdd)
3314      Index = 2 * i + 1;
3315    else
3316      Index = ExtVectorType::getAccessorIdx(Comp[i]);
3317
3318    Elts.push_back(Index);
3319  }
3320}
3321
3322ObjCMessageExpr::ObjCMessageExpr(QualType T,
3323                                 ExprValueKind VK,
3324                                 SourceLocation LBracLoc,
3325                                 SourceLocation SuperLoc,
3326                                 bool IsInstanceSuper,
3327                                 QualType SuperType,
3328                                 Selector Sel,
3329                                 ArrayRef<SourceLocation> SelLocs,
3330                                 SelectorLocationsKind SelLocsK,
3331                                 ObjCMethodDecl *Method,
3332                                 ArrayRef<Expr *> Args,
3333                                 SourceLocation RBracLoc,
3334                                 bool isImplicit)
3335  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3336         /*TypeDependent=*/false, /*ValueDependent=*/false,
3337         /*InstantiationDependent=*/false,
3338         /*ContainsUnexpandedParameterPack=*/false),
3339    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3340                                                       : Sel.getAsOpaquePtr())),
3341    Kind(IsInstanceSuper? SuperInstance : SuperClass),
3342    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3343    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3344{
3345  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3346  setReceiverPointer(SuperType.getAsOpaquePtr());
3347}
3348
3349ObjCMessageExpr::ObjCMessageExpr(QualType T,
3350                                 ExprValueKind VK,
3351                                 SourceLocation LBracLoc,
3352                                 TypeSourceInfo *Receiver,
3353                                 Selector Sel,
3354                                 ArrayRef<SourceLocation> SelLocs,
3355                                 SelectorLocationsKind SelLocsK,
3356                                 ObjCMethodDecl *Method,
3357                                 ArrayRef<Expr *> Args,
3358                                 SourceLocation RBracLoc,
3359                                 bool isImplicit)
3360  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3361         T->isDependentType(), T->isInstantiationDependentType(),
3362         T->containsUnexpandedParameterPack()),
3363    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3364                                                       : Sel.getAsOpaquePtr())),
3365    Kind(Class),
3366    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3367    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3368{
3369  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3370  setReceiverPointer(Receiver);
3371}
3372
3373ObjCMessageExpr::ObjCMessageExpr(QualType T,
3374                                 ExprValueKind VK,
3375                                 SourceLocation LBracLoc,
3376                                 Expr *Receiver,
3377                                 Selector Sel,
3378                                 ArrayRef<SourceLocation> SelLocs,
3379                                 SelectorLocationsKind SelLocsK,
3380                                 ObjCMethodDecl *Method,
3381                                 ArrayRef<Expr *> Args,
3382                                 SourceLocation RBracLoc,
3383                                 bool isImplicit)
3384  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3385         Receiver->isTypeDependent(),
3386         Receiver->isInstantiationDependent(),
3387         Receiver->containsUnexpandedParameterPack()),
3388    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3389                                                       : Sel.getAsOpaquePtr())),
3390    Kind(Instance),
3391    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3392    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3393{
3394  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3395  setReceiverPointer(Receiver);
3396}
3397
3398void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3399                                         ArrayRef<SourceLocation> SelLocs,
3400                                         SelectorLocationsKind SelLocsK) {
3401  setNumArgs(Args.size());
3402  Expr **MyArgs = getArgs();
3403  for (unsigned I = 0; I != Args.size(); ++I) {
3404    if (Args[I]->isTypeDependent())
3405      ExprBits.TypeDependent = true;
3406    if (Args[I]->isValueDependent())
3407      ExprBits.ValueDependent = true;
3408    if (Args[I]->isInstantiationDependent())
3409      ExprBits.InstantiationDependent = true;
3410    if (Args[I]->containsUnexpandedParameterPack())
3411      ExprBits.ContainsUnexpandedParameterPack = true;
3412
3413    MyArgs[I] = Args[I];
3414  }
3415
3416  SelLocsKind = SelLocsK;
3417  if (!isImplicit()) {
3418    if (SelLocsK == SelLoc_NonStandard)
3419      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3420  }
3421}
3422
3423ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3424                                         ExprValueKind VK,
3425                                         SourceLocation LBracLoc,
3426                                         SourceLocation SuperLoc,
3427                                         bool IsInstanceSuper,
3428                                         QualType SuperType,
3429                                         Selector Sel,
3430                                         ArrayRef<SourceLocation> SelLocs,
3431                                         ObjCMethodDecl *Method,
3432                                         ArrayRef<Expr *> Args,
3433                                         SourceLocation RBracLoc,
3434                                         bool isImplicit) {
3435  assert((!SelLocs.empty() || isImplicit) &&
3436         "No selector locs for non-implicit message");
3437  ObjCMessageExpr *Mem;
3438  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3439  if (isImplicit)
3440    Mem = alloc(Context, Args.size(), 0);
3441  else
3442    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3443  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3444                                   SuperType, Sel, SelLocs, SelLocsK,
3445                                   Method, Args, RBracLoc, isImplicit);
3446}
3447
3448ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3449                                         ExprValueKind VK,
3450                                         SourceLocation LBracLoc,
3451                                         TypeSourceInfo *Receiver,
3452                                         Selector Sel,
3453                                         ArrayRef<SourceLocation> SelLocs,
3454                                         ObjCMethodDecl *Method,
3455                                         ArrayRef<Expr *> Args,
3456                                         SourceLocation RBracLoc,
3457                                         bool isImplicit) {
3458  assert((!SelLocs.empty() || isImplicit) &&
3459         "No selector locs for non-implicit message");
3460  ObjCMessageExpr *Mem;
3461  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3462  if (isImplicit)
3463    Mem = alloc(Context, Args.size(), 0);
3464  else
3465    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3466  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3467                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3468                                   isImplicit);
3469}
3470
3471ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3472                                         ExprValueKind VK,
3473                                         SourceLocation LBracLoc,
3474                                         Expr *Receiver,
3475                                         Selector Sel,
3476                                         ArrayRef<SourceLocation> SelLocs,
3477                                         ObjCMethodDecl *Method,
3478                                         ArrayRef<Expr *> Args,
3479                                         SourceLocation RBracLoc,
3480                                         bool isImplicit) {
3481  assert((!SelLocs.empty() || isImplicit) &&
3482         "No selector locs for non-implicit message");
3483  ObjCMessageExpr *Mem;
3484  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3485  if (isImplicit)
3486    Mem = alloc(Context, Args.size(), 0);
3487  else
3488    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3489  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3490                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3491                                   isImplicit);
3492}
3493
3494ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
3495                                              unsigned NumArgs,
3496                                              unsigned NumStoredSelLocs) {
3497  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3498  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3499}
3500
3501ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3502                                        ArrayRef<Expr *> Args,
3503                                        SourceLocation RBraceLoc,
3504                                        ArrayRef<SourceLocation> SelLocs,
3505                                        Selector Sel,
3506                                        SelectorLocationsKind &SelLocsK) {
3507  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3508  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3509                                                               : 0;
3510  return alloc(C, Args.size(), NumStoredSelLocs);
3511}
3512
3513ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3514                                        unsigned NumArgs,
3515                                        unsigned NumStoredSelLocs) {
3516  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3517    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3518  return (ObjCMessageExpr *)C.Allocate(Size,
3519                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3520}
3521
3522void ObjCMessageExpr::getSelectorLocs(
3523                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3524  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3525    SelLocs.push_back(getSelectorLoc(i));
3526}
3527
3528SourceRange ObjCMessageExpr::getReceiverRange() const {
3529  switch (getReceiverKind()) {
3530  case Instance:
3531    return getInstanceReceiver()->getSourceRange();
3532
3533  case Class:
3534    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3535
3536  case SuperInstance:
3537  case SuperClass:
3538    return getSuperLoc();
3539  }
3540
3541  llvm_unreachable("Invalid ReceiverKind!");
3542}
3543
3544Selector ObjCMessageExpr::getSelector() const {
3545  if (HasMethod)
3546    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3547                                                               ->getSelector();
3548  return Selector(SelectorOrMethod);
3549}
3550
3551QualType ObjCMessageExpr::getReceiverType() const {
3552  switch (getReceiverKind()) {
3553  case Instance:
3554    return getInstanceReceiver()->getType();
3555  case Class:
3556    return getClassReceiver();
3557  case SuperInstance:
3558  case SuperClass:
3559    return getSuperType();
3560  }
3561
3562  llvm_unreachable("unexpected receiver kind");
3563}
3564
3565ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3566  QualType T = getReceiverType();
3567
3568  if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3569    return Ptr->getInterfaceDecl();
3570
3571  if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3572    return Ty->getInterface();
3573
3574  return 0;
3575}
3576
3577StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3578  switch (getBridgeKind()) {
3579  case OBC_Bridge:
3580    return "__bridge";
3581  case OBC_BridgeTransfer:
3582    return "__bridge_transfer";
3583  case OBC_BridgeRetained:
3584    return "__bridge_retained";
3585  }
3586
3587  llvm_unreachable("Invalid BridgeKind!");
3588}
3589
3590ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3591                                     QualType Type, SourceLocation BLoc,
3592                                     SourceLocation RP)
3593   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3594          Type->isDependentType(), Type->isDependentType(),
3595          Type->isInstantiationDependentType(),
3596          Type->containsUnexpandedParameterPack()),
3597     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3598{
3599  SubExprs = new (C) Stmt*[args.size()];
3600  for (unsigned i = 0; i != args.size(); i++) {
3601    if (args[i]->isTypeDependent())
3602      ExprBits.TypeDependent = true;
3603    if (args[i]->isValueDependent())
3604      ExprBits.ValueDependent = true;
3605    if (args[i]->isInstantiationDependent())
3606      ExprBits.InstantiationDependent = true;
3607    if (args[i]->containsUnexpandedParameterPack())
3608      ExprBits.ContainsUnexpandedParameterPack = true;
3609
3610    SubExprs[i] = args[i];
3611  }
3612}
3613
3614void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3615  if (SubExprs) C.Deallocate(SubExprs);
3616
3617  this->NumExprs = Exprs.size();
3618  SubExprs = new (C) Stmt*[NumExprs];
3619  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3620}
3621
3622GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3623                               SourceLocation GenericLoc, Expr *ControllingExpr,
3624                               ArrayRef<TypeSourceInfo*> AssocTypes,
3625                               ArrayRef<Expr*> AssocExprs,
3626                               SourceLocation DefaultLoc,
3627                               SourceLocation RParenLoc,
3628                               bool ContainsUnexpandedParameterPack,
3629                               unsigned ResultIndex)
3630  : Expr(GenericSelectionExprClass,
3631         AssocExprs[ResultIndex]->getType(),
3632         AssocExprs[ResultIndex]->getValueKind(),
3633         AssocExprs[ResultIndex]->getObjectKind(),
3634         AssocExprs[ResultIndex]->isTypeDependent(),
3635         AssocExprs[ResultIndex]->isValueDependent(),
3636         AssocExprs[ResultIndex]->isInstantiationDependent(),
3637         ContainsUnexpandedParameterPack),
3638    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3639    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3640    NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3641    GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3642  SubExprs[CONTROLLING] = ControllingExpr;
3643  assert(AssocTypes.size() == AssocExprs.size());
3644  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3645  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3646}
3647
3648GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3649                               SourceLocation GenericLoc, Expr *ControllingExpr,
3650                               ArrayRef<TypeSourceInfo*> AssocTypes,
3651                               ArrayRef<Expr*> AssocExprs,
3652                               SourceLocation DefaultLoc,
3653                               SourceLocation RParenLoc,
3654                               bool ContainsUnexpandedParameterPack)
3655  : Expr(GenericSelectionExprClass,
3656         Context.DependentTy,
3657         VK_RValue,
3658         OK_Ordinary,
3659         /*isTypeDependent=*/true,
3660         /*isValueDependent=*/true,
3661         /*isInstantiationDependent=*/true,
3662         ContainsUnexpandedParameterPack),
3663    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3664    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3665    NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3666    DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3667  SubExprs[CONTROLLING] = ControllingExpr;
3668  assert(AssocTypes.size() == AssocExprs.size());
3669  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3670  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3671}
3672
3673//===----------------------------------------------------------------------===//
3674//  DesignatedInitExpr
3675//===----------------------------------------------------------------------===//
3676
3677IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3678  assert(Kind == FieldDesignator && "Only valid on a field designator");
3679  if (Field.NameOrField & 0x01)
3680    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3681  else
3682    return getField()->getIdentifier();
3683}
3684
3685DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3686                                       unsigned NumDesignators,
3687                                       const Designator *Designators,
3688                                       SourceLocation EqualOrColonLoc,
3689                                       bool GNUSyntax,
3690                                       ArrayRef<Expr*> IndexExprs,
3691                                       Expr *Init)
3692  : Expr(DesignatedInitExprClass, Ty,
3693         Init->getValueKind(), Init->getObjectKind(),
3694         Init->isTypeDependent(), Init->isValueDependent(),
3695         Init->isInstantiationDependent(),
3696         Init->containsUnexpandedParameterPack()),
3697    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3698    NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3699  this->Designators = new (C) Designator[NumDesignators];
3700
3701  // Record the initializer itself.
3702  child_range Child = children();
3703  *Child++ = Init;
3704
3705  // Copy the designators and their subexpressions, computing
3706  // value-dependence along the way.
3707  unsigned IndexIdx = 0;
3708  for (unsigned I = 0; I != NumDesignators; ++I) {
3709    this->Designators[I] = Designators[I];
3710
3711    if (this->Designators[I].isArrayDesignator()) {
3712      // Compute type- and value-dependence.
3713      Expr *Index = IndexExprs[IndexIdx];
3714      if (Index->isTypeDependent() || Index->isValueDependent())
3715        ExprBits.ValueDependent = true;
3716      if (Index->isInstantiationDependent())
3717        ExprBits.InstantiationDependent = true;
3718      // Propagate unexpanded parameter packs.
3719      if (Index->containsUnexpandedParameterPack())
3720        ExprBits.ContainsUnexpandedParameterPack = true;
3721
3722      // Copy the index expressions into permanent storage.
3723      *Child++ = IndexExprs[IndexIdx++];
3724    } else if (this->Designators[I].isArrayRangeDesignator()) {
3725      // Compute type- and value-dependence.
3726      Expr *Start = IndexExprs[IndexIdx];
3727      Expr *End = IndexExprs[IndexIdx + 1];
3728      if (Start->isTypeDependent() || Start->isValueDependent() ||
3729          End->isTypeDependent() || End->isValueDependent()) {
3730        ExprBits.ValueDependent = true;
3731        ExprBits.InstantiationDependent = true;
3732      } else if (Start->isInstantiationDependent() ||
3733                 End->isInstantiationDependent()) {
3734        ExprBits.InstantiationDependent = true;
3735      }
3736
3737      // Propagate unexpanded parameter packs.
3738      if (Start->containsUnexpandedParameterPack() ||
3739          End->containsUnexpandedParameterPack())
3740        ExprBits.ContainsUnexpandedParameterPack = true;
3741
3742      // Copy the start/end expressions into permanent storage.
3743      *Child++ = IndexExprs[IndexIdx++];
3744      *Child++ = IndexExprs[IndexIdx++];
3745    }
3746  }
3747
3748  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3749}
3750
3751DesignatedInitExpr *
3752DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
3753                           unsigned NumDesignators,
3754                           ArrayRef<Expr*> IndexExprs,
3755                           SourceLocation ColonOrEqualLoc,
3756                           bool UsesColonSyntax, Expr *Init) {
3757  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3758                         sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3759  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3760                                      ColonOrEqualLoc, UsesColonSyntax,
3761                                      IndexExprs, Init);
3762}
3763
3764DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3765                                                    unsigned NumIndexExprs) {
3766  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3767                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3768  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3769}
3770
3771void DesignatedInitExpr::setDesignators(const ASTContext &C,
3772                                        const Designator *Desigs,
3773                                        unsigned NumDesigs) {
3774  Designators = new (C) Designator[NumDesigs];
3775  NumDesignators = NumDesigs;
3776  for (unsigned I = 0; I != NumDesigs; ++I)
3777    Designators[I] = Desigs[I];
3778}
3779
3780SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3781  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3782  if (size() == 1)
3783    return DIE->getDesignator(0)->getSourceRange();
3784  return SourceRange(DIE->getDesignator(0)->getLocStart(),
3785                     DIE->getDesignator(size()-1)->getLocEnd());
3786}
3787
3788SourceLocation DesignatedInitExpr::getLocStart() const {
3789  SourceLocation StartLoc;
3790  Designator &First =
3791    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3792  if (First.isFieldDesignator()) {
3793    if (GNUSyntax)
3794      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3795    else
3796      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3797  } else
3798    StartLoc =
3799      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3800  return StartLoc;
3801}
3802
3803SourceLocation DesignatedInitExpr::getLocEnd() const {
3804  return getInit()->getLocEnd();
3805}
3806
3807Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3808  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3809  char *Ptr = static_cast<char *>(
3810                  const_cast<void *>(static_cast<const void *>(this)));
3811  Ptr += sizeof(DesignatedInitExpr);
3812  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3813  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3814}
3815
3816Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3817  assert(D.Kind == Designator::ArrayRangeDesignator &&
3818         "Requires array range designator");
3819  char *Ptr = static_cast<char *>(
3820                  const_cast<void *>(static_cast<const void *>(this)));
3821  Ptr += sizeof(DesignatedInitExpr);
3822  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3823  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3824}
3825
3826Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3827  assert(D.Kind == Designator::ArrayRangeDesignator &&
3828         "Requires array range designator");
3829  char *Ptr = static_cast<char *>(
3830                  const_cast<void *>(static_cast<const void *>(this)));
3831  Ptr += sizeof(DesignatedInitExpr);
3832  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3833  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3834}
3835
3836/// \brief Replaces the designator at index @p Idx with the series
3837/// of designators in [First, Last).
3838void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3839                                          const Designator *First,
3840                                          const Designator *Last) {
3841  unsigned NumNewDesignators = Last - First;
3842  if (NumNewDesignators == 0) {
3843    std::copy_backward(Designators + Idx + 1,
3844                       Designators + NumDesignators,
3845                       Designators + Idx);
3846    --NumNewDesignators;
3847    return;
3848  } else if (NumNewDesignators == 1) {
3849    Designators[Idx] = *First;
3850    return;
3851  }
3852
3853  Designator *NewDesignators
3854    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3855  std::copy(Designators, Designators + Idx, NewDesignators);
3856  std::copy(First, Last, NewDesignators + Idx);
3857  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3858            NewDesignators + Idx + NumNewDesignators);
3859  Designators = NewDesignators;
3860  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3861}
3862
3863ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3864                             ArrayRef<Expr*> exprs,
3865                             SourceLocation rparenloc)
3866  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3867         false, false, false, false),
3868    NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3869  Exprs = new (C) Stmt*[exprs.size()];
3870  for (unsigned i = 0; i != exprs.size(); ++i) {
3871    if (exprs[i]->isTypeDependent())
3872      ExprBits.TypeDependent = true;
3873    if (exprs[i]->isValueDependent())
3874      ExprBits.ValueDependent = true;
3875    if (exprs[i]->isInstantiationDependent())
3876      ExprBits.InstantiationDependent = true;
3877    if (exprs[i]->containsUnexpandedParameterPack())
3878      ExprBits.ContainsUnexpandedParameterPack = true;
3879
3880    Exprs[i] = exprs[i];
3881  }
3882}
3883
3884const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3885  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3886    e = ewc->getSubExpr();
3887  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3888    e = m->GetTemporaryExpr();
3889  e = cast<CXXConstructExpr>(e)->getArg(0);
3890  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3891    e = ice->getSubExpr();
3892  return cast<OpaqueValueExpr>(e);
3893}
3894
3895PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3896                                           EmptyShell sh,
3897                                           unsigned numSemanticExprs) {
3898  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3899                                    (1 + numSemanticExprs) * sizeof(Expr*),
3900                                  llvm::alignOf<PseudoObjectExpr>());
3901  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3902}
3903
3904PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3905  : Expr(PseudoObjectExprClass, shell) {
3906  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3907}
3908
3909PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
3910                                           ArrayRef<Expr*> semantics,
3911                                           unsigned resultIndex) {
3912  assert(syntax && "no syntactic expression!");
3913  assert(semantics.size() && "no semantic expressions!");
3914
3915  QualType type;
3916  ExprValueKind VK;
3917  if (resultIndex == NoResult) {
3918    type = C.VoidTy;
3919    VK = VK_RValue;
3920  } else {
3921    assert(resultIndex < semantics.size());
3922    type = semantics[resultIndex]->getType();
3923    VK = semantics[resultIndex]->getValueKind();
3924    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3925  }
3926
3927  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3928                              (1 + semantics.size()) * sizeof(Expr*),
3929                            llvm::alignOf<PseudoObjectExpr>());
3930  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3931                                      resultIndex);
3932}
3933
3934PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3935                                   Expr *syntax, ArrayRef<Expr*> semantics,
3936                                   unsigned resultIndex)
3937  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3938         /*filled in at end of ctor*/ false, false, false, false) {
3939  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3940  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3941
3942  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3943    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3944    getSubExprsBuffer()[i] = E;
3945
3946    if (E->isTypeDependent())
3947      ExprBits.TypeDependent = true;
3948    if (E->isValueDependent())
3949      ExprBits.ValueDependent = true;
3950    if (E->isInstantiationDependent())
3951      ExprBits.InstantiationDependent = true;
3952    if (E->containsUnexpandedParameterPack())
3953      ExprBits.ContainsUnexpandedParameterPack = true;
3954
3955    if (isa<OpaqueValueExpr>(E))
3956      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3957             "opaque-value semantic expressions for pseudo-object "
3958             "operations must have sources");
3959  }
3960}
3961
3962//===----------------------------------------------------------------------===//
3963//  ExprIterator.
3964//===----------------------------------------------------------------------===//
3965
3966Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3967Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3968Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3969const Expr* ConstExprIterator::operator[](size_t idx) const {
3970  return cast<Expr>(I[idx]);
3971}
3972const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3973const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3974
3975//===----------------------------------------------------------------------===//
3976//  Child Iterators for iterating over subexpressions/substatements
3977//===----------------------------------------------------------------------===//
3978
3979// UnaryExprOrTypeTraitExpr
3980Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3981  // If this is of a type and the type is a VLA type (and not a typedef), the
3982  // size expression of the VLA needs to be treated as an executable expression.
3983  // Why isn't this weirdness documented better in StmtIterator?
3984  if (isArgumentType()) {
3985    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3986                                   getArgumentType().getTypePtr()))
3987      return child_range(child_iterator(T), child_iterator());
3988    return child_range();
3989  }
3990  return child_range(&Argument.Ex, &Argument.Ex + 1);
3991}
3992
3993// ObjCMessageExpr
3994Stmt::child_range ObjCMessageExpr::children() {
3995  Stmt **begin;
3996  if (getReceiverKind() == Instance)
3997    begin = reinterpret_cast<Stmt **>(this + 1);
3998  else
3999    begin = reinterpret_cast<Stmt **>(getArgs());
4000  return child_range(begin,
4001                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
4002}
4003
4004ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
4005                                   QualType T, ObjCMethodDecl *Method,
4006                                   SourceRange SR)
4007  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
4008         false, false, false, false),
4009    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
4010{
4011  Expr **SaveElements = getElements();
4012  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
4013    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
4014      ExprBits.ValueDependent = true;
4015    if (Elements[I]->isInstantiationDependent())
4016      ExprBits.InstantiationDependent = true;
4017    if (Elements[I]->containsUnexpandedParameterPack())
4018      ExprBits.ContainsUnexpandedParameterPack = true;
4019
4020    SaveElements[I] = Elements[I];
4021  }
4022}
4023
4024ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
4025                                           ArrayRef<Expr *> Elements,
4026                                           QualType T, ObjCMethodDecl * Method,
4027                                           SourceRange SR) {
4028  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4029                         + Elements.size() * sizeof(Expr *));
4030  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
4031}
4032
4033ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
4034                                                unsigned NumElements) {
4035
4036  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4037                         + NumElements * sizeof(Expr *));
4038  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
4039}
4040
4041ObjCDictionaryLiteral::ObjCDictionaryLiteral(
4042                                             ArrayRef<ObjCDictionaryElement> VK,
4043                                             bool HasPackExpansions,
4044                                             QualType T, ObjCMethodDecl *method,
4045                                             SourceRange SR)
4046  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
4047         false, false),
4048    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
4049    DictWithObjectsMethod(method)
4050{
4051  KeyValuePair *KeyValues = getKeyValues();
4052  ExpansionData *Expansions = getExpansionData();
4053  for (unsigned I = 0; I < NumElements; I++) {
4054    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
4055        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
4056      ExprBits.ValueDependent = true;
4057    if (VK[I].Key->isInstantiationDependent() ||
4058        VK[I].Value->isInstantiationDependent())
4059      ExprBits.InstantiationDependent = true;
4060    if (VK[I].EllipsisLoc.isInvalid() &&
4061        (VK[I].Key->containsUnexpandedParameterPack() ||
4062         VK[I].Value->containsUnexpandedParameterPack()))
4063      ExprBits.ContainsUnexpandedParameterPack = true;
4064
4065    KeyValues[I].Key = VK[I].Key;
4066    KeyValues[I].Value = VK[I].Value;
4067    if (Expansions) {
4068      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4069      if (VK[I].NumExpansions)
4070        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4071      else
4072        Expansions[I].NumExpansionsPlusOne = 0;
4073    }
4074  }
4075}
4076
4077ObjCDictionaryLiteral *
4078ObjCDictionaryLiteral::Create(const ASTContext &C,
4079                              ArrayRef<ObjCDictionaryElement> VK,
4080                              bool HasPackExpansions,
4081                              QualType T, ObjCMethodDecl *method,
4082                              SourceRange SR) {
4083  unsigned ExpansionsSize = 0;
4084  if (HasPackExpansions)
4085    ExpansionsSize = sizeof(ExpansionData) * VK.size();
4086
4087  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4088                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4089  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4090}
4091
4092ObjCDictionaryLiteral *
4093ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
4094                                   bool HasPackExpansions) {
4095  unsigned ExpansionsSize = 0;
4096  if (HasPackExpansions)
4097    ExpansionsSize = sizeof(ExpansionData) * NumElements;
4098  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4099                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4100  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4101                                         HasPackExpansions);
4102}
4103
4104ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
4105                                                   Expr *base,
4106                                                   Expr *key, QualType T,
4107                                                   ObjCMethodDecl *getMethod,
4108                                                   ObjCMethodDecl *setMethod,
4109                                                   SourceLocation RB) {
4110  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4111  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4112                                        OK_ObjCSubscript,
4113                                        getMethod, setMethod, RB);
4114}
4115
4116AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4117                       QualType t, AtomicOp op, SourceLocation RP)
4118  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4119         false, false, false, false),
4120    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4121{
4122  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4123  for (unsigned i = 0; i != args.size(); i++) {
4124    if (args[i]->isTypeDependent())
4125      ExprBits.TypeDependent = true;
4126    if (args[i]->isValueDependent())
4127      ExprBits.ValueDependent = true;
4128    if (args[i]->isInstantiationDependent())
4129      ExprBits.InstantiationDependent = true;
4130    if (args[i]->containsUnexpandedParameterPack())
4131      ExprBits.ContainsUnexpandedParameterPack = true;
4132
4133    SubExprs[i] = args[i];
4134  }
4135}
4136
4137unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4138  switch (Op) {
4139  case AO__c11_atomic_init:
4140  case AO__c11_atomic_load:
4141  case AO__atomic_load_n:
4142    return 2;
4143
4144  case AO__c11_atomic_store:
4145  case AO__c11_atomic_exchange:
4146  case AO__atomic_load:
4147  case AO__atomic_store:
4148  case AO__atomic_store_n:
4149  case AO__atomic_exchange_n:
4150  case AO__c11_atomic_fetch_add:
4151  case AO__c11_atomic_fetch_sub:
4152  case AO__c11_atomic_fetch_and:
4153  case AO__c11_atomic_fetch_or:
4154  case AO__c11_atomic_fetch_xor:
4155  case AO__atomic_fetch_add:
4156  case AO__atomic_fetch_sub:
4157  case AO__atomic_fetch_and:
4158  case AO__atomic_fetch_or:
4159  case AO__atomic_fetch_xor:
4160  case AO__atomic_fetch_nand:
4161  case AO__atomic_add_fetch:
4162  case AO__atomic_sub_fetch:
4163  case AO__atomic_and_fetch:
4164  case AO__atomic_or_fetch:
4165  case AO__atomic_xor_fetch:
4166  case AO__atomic_nand_fetch:
4167    return 3;
4168
4169  case AO__atomic_exchange:
4170    return 4;
4171
4172  case AO__c11_atomic_compare_exchange_strong:
4173  case AO__c11_atomic_compare_exchange_weak:
4174    return 5;
4175
4176  case AO__atomic_compare_exchange:
4177  case AO__atomic_compare_exchange_n:
4178    return 6;
4179  }
4180  llvm_unreachable("unknown atomic op");
4181}
4182