1//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the C++ Decl subclasses, other than those for templates
12/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CLANG_AST_DECLCXX_H
17#define LLVM_CLANG_AST_DECLCXX_H
18
19#include "clang/AST/ASTUnresolvedSet.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeLoc.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/Support/Compiler.h"
28
29namespace clang {
30
31class ClassTemplateDecl;
32class ClassTemplateSpecializationDecl;
33class CXXBasePath;
34class CXXBasePaths;
35class CXXConstructorDecl;
36class CXXConversionDecl;
37class CXXDestructorDecl;
38class CXXMethodDecl;
39class CXXRecordDecl;
40class CXXMemberLookupCriteria;
41class CXXFinalOverriderMap;
42class CXXIndirectPrimaryBaseSet;
43class FriendDecl;
44class LambdaExpr;
45class UsingDecl;
46
47/// \brief Represents any kind of function declaration, whether it is a
48/// concrete function or a function template.
49class AnyFunctionDecl {
50  NamedDecl *Function;
51
52  AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
53
54public:
55  AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
56  AnyFunctionDecl(FunctionTemplateDecl *FTD);
57
58  /// \brief Implicily converts any function or function template into a
59  /// named declaration.
60  operator NamedDecl *() const { return Function; }
61
62  /// \brief Retrieve the underlying function or function template.
63  NamedDecl *get() const { return Function; }
64
65  static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
66    return AnyFunctionDecl(ND);
67  }
68};
69
70} // end namespace clang
71
72namespace llvm {
73  // Provide PointerLikeTypeTraits for non-cvr pointers.
74  template<>
75  class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
76  public:
77    static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
78      return F.get();
79    }
80    static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
81      return ::clang::AnyFunctionDecl::getFromNamedDecl(
82                                      static_cast< ::clang::NamedDecl*>(P));
83    }
84
85    enum { NumLowBitsAvailable = 2 };
86  };
87
88} // end namespace llvm
89
90namespace clang {
91
92/// \brief Represents an access specifier followed by colon ':'.
93///
94/// An objects of this class represents sugar for the syntactic occurrence
95/// of an access specifier followed by a colon in the list of member
96/// specifiers of a C++ class definition.
97///
98/// Note that they do not represent other uses of access specifiers,
99/// such as those occurring in a list of base specifiers.
100/// Also note that this class has nothing to do with so-called
101/// "access declarations" (C++98 11.3 [class.access.dcl]).
102class AccessSpecDecl : public Decl {
103  virtual void anchor();
104  /// \brief The location of the ':'.
105  SourceLocation ColonLoc;
106
107  AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
108                 SourceLocation ASLoc, SourceLocation ColonLoc)
109    : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
110    setAccess(AS);
111  }
112  AccessSpecDecl(EmptyShell Empty)
113    : Decl(AccessSpec, Empty) { }
114public:
115  /// \brief The location of the access specifier.
116  SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
117  /// \brief Sets the location of the access specifier.
118  void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
119
120  /// \brief The location of the colon following the access specifier.
121  SourceLocation getColonLoc() const { return ColonLoc; }
122  /// \brief Sets the location of the colon.
123  void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
124
125  SourceRange getSourceRange() const LLVM_READONLY {
126    return SourceRange(getAccessSpecifierLoc(), getColonLoc());
127  }
128
129  static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
130                                DeclContext *DC, SourceLocation ASLoc,
131                                SourceLocation ColonLoc) {
132    return new (C) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
133  }
134  static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
135
136  // Implement isa/cast/dyncast/etc.
137  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
138  static bool classofKind(Kind K) { return K == AccessSpec; }
139};
140
141
142/// \brief Represents a base class of a C++ class.
143///
144/// Each CXXBaseSpecifier represents a single, direct base class (or
145/// struct) of a C++ class (or struct). It specifies the type of that
146/// base class, whether it is a virtual or non-virtual base, and what
147/// level of access (public, protected, private) is used for the
148/// derivation. For example:
149///
150/// \code
151///   class A { };
152///   class B { };
153///   class C : public virtual A, protected B { };
154/// \endcode
155///
156/// In this code, C will have two CXXBaseSpecifiers, one for "public
157/// virtual A" and the other for "protected B".
158class CXXBaseSpecifier {
159  /// \brief The source code range that covers the full base
160  /// specifier, including the "virtual" (if present) and access
161  /// specifier (if present).
162  SourceRange Range;
163
164  /// \brief The source location of the ellipsis, if this is a pack
165  /// expansion.
166  SourceLocation EllipsisLoc;
167
168  /// \brief Whether this is a virtual base class or not.
169  bool Virtual : 1;
170
171  /// \brief Whether this is the base of a class (true) or of a struct (false).
172  ///
173  /// This determines the mapping from the access specifier as written in the
174  /// source code to the access specifier used for semantic analysis.
175  bool BaseOfClass : 1;
176
177  /// \brief Access specifier as written in the source code (may be AS_none).
178  ///
179  /// The actual type of data stored here is an AccessSpecifier, but we use
180  /// "unsigned" here to work around a VC++ bug.
181  unsigned Access : 2;
182
183  /// \brief Whether the class contains a using declaration
184  /// to inherit the named class's constructors.
185  bool InheritConstructors : 1;
186
187  /// \brief The type of the base class.
188  ///
189  /// This will be a class or struct (or a typedef of such). The source code
190  /// range does not include the \c virtual or the access specifier.
191  TypeSourceInfo *BaseTypeInfo;
192
193public:
194  CXXBaseSpecifier() { }
195
196  CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
197                   TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
198    : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
199      Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
200
201  /// \brief Retrieves the source range that contains the entire base specifier.
202  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
203  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
204  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
205
206  /// \brief Determines whether the base class is a virtual base class (or not).
207  bool isVirtual() const { return Virtual; }
208
209  /// \brief Determine whether this base class is a base of a class declared
210  /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
211  bool isBaseOfClass() const { return BaseOfClass; }
212
213  /// \brief Determine whether this base specifier is a pack expansion.
214  bool isPackExpansion() const { return EllipsisLoc.isValid(); }
215
216  /// \brief Determine whether this base class's constructors get inherited.
217  bool getInheritConstructors() const { return InheritConstructors; }
218
219  /// \brief Set that this base class's constructors should be inherited.
220  void setInheritConstructors(bool Inherit = true) {
221    InheritConstructors = Inherit;
222  }
223
224  /// \brief For a pack expansion, determine the location of the ellipsis.
225  SourceLocation getEllipsisLoc() const {
226    return EllipsisLoc;
227  }
228
229  /// \brief Returns the access specifier for this base specifier.
230  ///
231  /// This is the actual base specifier as used for semantic analysis, so
232  /// the result can never be AS_none. To retrieve the access specifier as
233  /// written in the source code, use getAccessSpecifierAsWritten().
234  AccessSpecifier getAccessSpecifier() const {
235    if ((AccessSpecifier)Access == AS_none)
236      return BaseOfClass? AS_private : AS_public;
237    else
238      return (AccessSpecifier)Access;
239  }
240
241  /// \brief Retrieves the access specifier as written in the source code
242  /// (which may mean that no access specifier was explicitly written).
243  ///
244  /// Use getAccessSpecifier() to retrieve the access specifier for use in
245  /// semantic analysis.
246  AccessSpecifier getAccessSpecifierAsWritten() const {
247    return (AccessSpecifier)Access;
248  }
249
250  /// \brief Retrieves the type of the base class.
251  ///
252  /// This type will always be an unqualified class type.
253  QualType getType() const {
254    return BaseTypeInfo->getType().getUnqualifiedType();
255  }
256
257  /// \brief Retrieves the type and source location of the base class.
258  TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
259};
260
261/// The inheritance model to use for member pointers of a given CXXRecordDecl.
262enum MSInheritanceModel {
263  MSIM_Single,
264  MSIM_SinglePolymorphic,
265  MSIM_Multiple,
266  MSIM_MultiplePolymorphic,
267  MSIM_Virtual,
268  MSIM_Unspecified
269};
270
271/// \brief Represents a C++ struct/union/class.
272///
273/// FIXME: This class will disappear once we've properly taught RecordDecl
274/// to deal with C++-specific things.
275class CXXRecordDecl : public RecordDecl {
276
277  friend void TagDecl::startDefinition();
278
279  /// Values used in DefinitionData fields to represent special members.
280  enum SpecialMemberFlags {
281    SMF_DefaultConstructor = 0x1,
282    SMF_CopyConstructor = 0x2,
283    SMF_MoveConstructor = 0x4,
284    SMF_CopyAssignment = 0x8,
285    SMF_MoveAssignment = 0x10,
286    SMF_Destructor = 0x20,
287    SMF_All = 0x3f
288  };
289
290  struct DefinitionData {
291    DefinitionData(CXXRecordDecl *D);
292
293    /// \brief True if this class has any user-declared constructors.
294    bool UserDeclaredConstructor : 1;
295
296    /// \brief The user-declared special members which this class has.
297    unsigned UserDeclaredSpecialMembers : 6;
298
299    /// \brief True when this class is an aggregate.
300    bool Aggregate : 1;
301
302    /// \brief True when this class is a POD-type.
303    bool PlainOldData : 1;
304
305    /// true when this class is empty for traits purposes,
306    /// i.e. has no data members other than 0-width bit-fields, has no
307    /// virtual function/base, and doesn't inherit from a non-empty
308    /// class. Doesn't take union-ness into account.
309    bool Empty : 1;
310
311    /// \brief True when this class is polymorphic, i.e., has at
312    /// least one virtual member or derives from a polymorphic class.
313    bool Polymorphic : 1;
314
315    /// \brief True when this class is abstract, i.e., has at least
316    /// one pure virtual function, (that can come from a base class).
317    bool Abstract : 1;
318
319    /// \brief True when this class has standard layout.
320    ///
321    /// C++11 [class]p7.  A standard-layout class is a class that:
322    /// * has no non-static data members of type non-standard-layout class (or
323    ///   array of such types) or reference,
324    /// * has no virtual functions (10.3) and no virtual base classes (10.1),
325    /// * has the same access control (Clause 11) for all non-static data
326    ///   members
327    /// * has no non-standard-layout base classes,
328    /// * either has no non-static data members in the most derived class and at
329    ///   most one base class with non-static data members, or has no base
330    ///   classes with non-static data members, and
331    /// * has no base classes of the same type as the first non-static data
332    ///   member.
333    bool IsStandardLayout : 1;
334
335    /// \brief True when there are no non-empty base classes.
336    ///
337    /// This is a helper bit of state used to implement IsStandardLayout more
338    /// efficiently.
339    bool HasNoNonEmptyBases : 1;
340
341    /// \brief True when there are private non-static data members.
342    bool HasPrivateFields : 1;
343
344    /// \brief True when there are protected non-static data members.
345    bool HasProtectedFields : 1;
346
347    /// \brief True when there are private non-static data members.
348    bool HasPublicFields : 1;
349
350    /// \brief True if this class (or any subobject) has mutable fields.
351    bool HasMutableFields : 1;
352
353    /// \brief True if there no non-field members declared by the user.
354    bool HasOnlyCMembers : 1;
355
356    /// \brief True if any field has an in-class initializer.
357    bool HasInClassInitializer : 1;
358
359    /// \brief True if any field is of reference type, and does not have an
360    /// in-class initializer.
361    ///
362    /// In this case, value-initialization of this class is illegal in C++98
363    /// even if the class has a trivial default constructor.
364    bool HasUninitializedReferenceMember : 1;
365
366    /// \brief These flags are \c true if a defaulted corresponding special
367    /// member can't be fully analyzed without performing overload resolution.
368    /// @{
369    bool NeedOverloadResolutionForMoveConstructor : 1;
370    bool NeedOverloadResolutionForMoveAssignment : 1;
371    bool NeedOverloadResolutionForDestructor : 1;
372    /// @}
373
374    /// \brief These flags are \c true if an implicit defaulted corresponding
375    /// special member would be defined as deleted.
376    /// @{
377    bool DefaultedMoveConstructorIsDeleted : 1;
378    bool DefaultedMoveAssignmentIsDeleted : 1;
379    bool DefaultedDestructorIsDeleted : 1;
380    /// @}
381
382    /// \brief The trivial special members which this class has, per
383    /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
384    /// C++11 [class.dtor]p5, or would have if the member were not suppressed.
385    ///
386    /// This excludes any user-declared but not user-provided special members
387    /// which have been declared but not yet defined.
388    unsigned HasTrivialSpecialMembers : 6;
389
390    /// \brief The declared special members of this class which are known to be
391    /// non-trivial.
392    ///
393    /// This excludes any user-declared but not user-provided special members
394    /// which have been declared but not yet defined, and any implicit special
395    /// members which have not yet been declared.
396    unsigned DeclaredNonTrivialSpecialMembers : 6;
397
398    /// \brief True when this class has a destructor with no semantic effect.
399    bool HasIrrelevantDestructor : 1;
400
401    /// \brief True when this class has at least one user-declared constexpr
402    /// constructor which is neither the copy nor move constructor.
403    bool HasConstexprNonCopyMoveConstructor : 1;
404
405    /// \brief True if a defaulted default constructor for this class would
406    /// be constexpr.
407    bool DefaultedDefaultConstructorIsConstexpr : 1;
408
409    /// \brief True if this class has a constexpr default constructor.
410    ///
411    /// This is true for either a user-declared constexpr default constructor
412    /// or an implicitly declared constexpr default constructor..
413    bool HasConstexprDefaultConstructor : 1;
414
415    /// \brief True when this class contains at least one non-static data
416    /// member or base class of non-literal or volatile type.
417    bool HasNonLiteralTypeFieldsOrBases : 1;
418
419    /// \brief True when visible conversion functions are already computed
420    /// and are available.
421    bool ComputedVisibleConversions : 1;
422
423    /// \brief Whether we have a C++11 user-provided default constructor (not
424    /// explicitly deleted or defaulted).
425    bool UserProvidedDefaultConstructor : 1;
426
427    /// \brief The special members which have been declared for this class,
428    /// either by the user or implicitly.
429    unsigned DeclaredSpecialMembers : 6;
430
431    /// \brief Whether an implicit copy constructor would have a const-qualified
432    /// parameter.
433    bool ImplicitCopyConstructorHasConstParam : 1;
434
435    /// \brief Whether an implicit copy assignment operator would have a
436    /// const-qualified parameter.
437    bool ImplicitCopyAssignmentHasConstParam : 1;
438
439    /// \brief Whether any declared copy constructor has a const-qualified
440    /// parameter.
441    bool HasDeclaredCopyConstructorWithConstParam : 1;
442
443    /// \brief Whether any declared copy assignment operator has either a
444    /// const-qualified reference parameter or a non-reference parameter.
445    bool HasDeclaredCopyAssignmentWithConstParam : 1;
446
447    /// \brief Whether this class describes a C++ lambda.
448    bool IsLambda : 1;
449
450    /// \brief The number of base class specifiers in Bases.
451    unsigned NumBases;
452
453    /// \brief The number of virtual base class specifiers in VBases.
454    unsigned NumVBases;
455
456    /// \brief Base classes of this class.
457    ///
458    /// FIXME: This is wasted space for a union.
459    LazyCXXBaseSpecifiersPtr Bases;
460
461    /// \brief direct and indirect virtual base classes of this class.
462    LazyCXXBaseSpecifiersPtr VBases;
463
464    /// \brief The conversion functions of this C++ class (but not its
465    /// inherited conversion functions).
466    ///
467    /// Each of the entries in this overload set is a CXXConversionDecl.
468    LazyASTUnresolvedSet Conversions;
469
470    /// \brief The conversion functions of this C++ class and all those
471    /// inherited conversion functions that are visible in this class.
472    ///
473    /// Each of the entries in this overload set is a CXXConversionDecl or a
474    /// FunctionTemplateDecl.
475    LazyASTUnresolvedSet VisibleConversions;
476
477    /// \brief The declaration which defines this record.
478    CXXRecordDecl *Definition;
479
480    /// \brief The first friend declaration in this class, or null if there
481    /// aren't any.
482    ///
483    /// This is actually currently stored in reverse order.
484    LazyDeclPtr FirstFriend;
485
486    /// \brief Retrieve the set of direct base classes.
487    CXXBaseSpecifier *getBases() const {
488      if (!Bases.isOffset())
489        return Bases.get(0);
490      return getBasesSlowCase();
491    }
492
493    /// \brief Retrieve the set of virtual base classes.
494    CXXBaseSpecifier *getVBases() const {
495      if (!VBases.isOffset())
496        return VBases.get(0);
497      return getVBasesSlowCase();
498    }
499
500  private:
501    CXXBaseSpecifier *getBasesSlowCase() const;
502    CXXBaseSpecifier *getVBasesSlowCase() const;
503  } *DefinitionData;
504
505  /// \brief Describes a C++ closure type (generated by a lambda expression).
506  struct LambdaDefinitionData : public DefinitionData {
507    typedef LambdaExpr::Capture Capture;
508
509       LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info,
510                         bool Dependent, bool IsGeneric,
511                         LambdaCaptureDefault CaptureDefault)
512      : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
513        CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0),
514        ManglingNumber(0), ContextDecl(0), Captures(0), MethodTyInfo(Info)
515    {
516      IsLambda = true;
517    }
518
519    /// \brief Whether this lambda is known to be dependent, even if its
520    /// context isn't dependent.
521    ///
522    /// A lambda with a non-dependent context can be dependent if it occurs
523    /// within the default argument of a function template, because the
524    /// lambda will have been created with the enclosing context as its
525    /// declaration context, rather than function. This is an unfortunate
526    /// artifact of having to parse the default arguments before.
527    unsigned Dependent : 1;
528
529    /// \brief Whether this lambda is a generic lambda.
530    unsigned IsGenericLambda : 1;
531
532    /// \brief The Default Capture.
533    unsigned CaptureDefault : 2;
534
535    /// \brief The number of captures in this lambda is limited 2^NumCaptures.
536    unsigned NumCaptures : 15;
537
538    /// \brief The number of explicit captures in this lambda.
539    unsigned NumExplicitCaptures : 13;
540
541    /// \brief The number used to indicate this lambda expression for name
542    /// mangling in the Itanium C++ ABI.
543    unsigned ManglingNumber;
544
545    /// \brief The declaration that provides context for this lambda, if the
546    /// actual DeclContext does not suffice. This is used for lambdas that
547    /// occur within default arguments of function parameters within the class
548    /// or within a data member initializer.
549    Decl *ContextDecl;
550
551    /// \brief The list of captures, both explicit and implicit, for this
552    /// lambda.
553    Capture *Captures;
554
555    /// \brief The type of the call method.
556    TypeSourceInfo *MethodTyInfo;
557
558  };
559
560  struct DefinitionData &data() {
561    assert(DefinitionData && "queried property of class with no definition");
562    return *DefinitionData;
563  }
564
565  const struct DefinitionData &data() const {
566    assert(DefinitionData && "queried property of class with no definition");
567    return *DefinitionData;
568  }
569
570  struct LambdaDefinitionData &getLambdaData() const {
571    assert(DefinitionData && "queried property of lambda with no definition");
572    assert(DefinitionData->IsLambda &&
573           "queried lambda property of non-lambda class");
574    return static_cast<LambdaDefinitionData &>(*DefinitionData);
575  }
576
577  /// \brief The template or declaration that this declaration
578  /// describes or was instantiated from, respectively.
579  ///
580  /// For non-templates, this value will be null. For record
581  /// declarations that describe a class template, this will be a
582  /// pointer to a ClassTemplateDecl. For member
583  /// classes of class template specializations, this will be the
584  /// MemberSpecializationInfo referring to the member class that was
585  /// instantiated or specialized.
586  llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
587    TemplateOrInstantiation;
588
589  friend class DeclContext;
590  friend class LambdaExpr;
591
592  /// \brief Called from setBases and addedMember to notify the class that a
593  /// direct or virtual base class or a member of class type has been added.
594  void addedClassSubobject(CXXRecordDecl *Base);
595
596  /// \brief Notify the class that member has been added.
597  ///
598  /// This routine helps maintain information about the class based on which
599  /// members have been added. It will be invoked by DeclContext::addDecl()
600  /// whenever a member is added to this record.
601  void addedMember(Decl *D);
602
603  void markedVirtualFunctionPure();
604  friend void FunctionDecl::setPure(bool);
605
606  friend class ASTNodeImporter;
607
608  /// \brief Get the head of our list of friend declarations, possibly
609  /// deserializing the friends from an external AST source.
610  FriendDecl *getFirstFriend() const;
611
612protected:
613  CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
614                SourceLocation StartLoc, SourceLocation IdLoc,
615                IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
616
617public:
618  /// \brief Iterator that traverses the base classes of a class.
619  typedef CXXBaseSpecifier*       base_class_iterator;
620
621  /// \brief Iterator that traverses the base classes of a class.
622  typedef const CXXBaseSpecifier* base_class_const_iterator;
623
624  /// \brief Iterator that traverses the base classes of a class in reverse
625  /// order.
626  typedef std::reverse_iterator<base_class_iterator>
627    reverse_base_class_iterator;
628
629  /// \brief Iterator that traverses the base classes of a class in reverse
630  /// order.
631  typedef std::reverse_iterator<base_class_const_iterator>
632    reverse_base_class_const_iterator;
633
634  virtual CXXRecordDecl *getCanonicalDecl() {
635    return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
636  }
637  virtual const CXXRecordDecl *getCanonicalDecl() const {
638    return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
639  }
640
641  CXXRecordDecl *getPreviousDecl() {
642    return cast_or_null<CXXRecordDecl>(
643            static_cast<RecordDecl *>(this)->getPreviousDecl());
644  }
645  const CXXRecordDecl *getPreviousDecl() const {
646    return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
647  }
648
649  CXXRecordDecl *getMostRecentDecl() {
650    return cast<CXXRecordDecl>(
651            static_cast<RecordDecl *>(this)->getMostRecentDecl());
652  }
653
654  const CXXRecordDecl *getMostRecentDecl() const {
655    return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
656  }
657
658  CXXRecordDecl *getDefinition() const {
659    if (!DefinitionData) return 0;
660    return data().Definition;
661  }
662
663  bool hasDefinition() const { return DefinitionData != 0; }
664
665  static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
666                               SourceLocation StartLoc, SourceLocation IdLoc,
667                               IdentifierInfo *Id, CXXRecordDecl* PrevDecl=0,
668                               bool DelayTypeCreation = false);
669  static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
670                                     TypeSourceInfo *Info, SourceLocation Loc,
671                                     bool DependentLambda, bool IsGeneric,
672                                     LambdaCaptureDefault CaptureDefault);
673  static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
674
675  bool isDynamicClass() const {
676    return data().Polymorphic || data().NumVBases != 0;
677  }
678
679  /// \brief Sets the base classes of this struct or class.
680  void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
681
682  /// \brief Retrieves the number of base classes of this class.
683  unsigned getNumBases() const { return data().NumBases; }
684
685  base_class_iterator bases_begin() { return data().getBases(); }
686  base_class_const_iterator bases_begin() const { return data().getBases(); }
687  base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
688  base_class_const_iterator bases_end() const {
689    return bases_begin() + data().NumBases;
690  }
691  reverse_base_class_iterator       bases_rbegin() {
692    return reverse_base_class_iterator(bases_end());
693  }
694  reverse_base_class_const_iterator bases_rbegin() const {
695    return reverse_base_class_const_iterator(bases_end());
696  }
697  reverse_base_class_iterator bases_rend() {
698    return reverse_base_class_iterator(bases_begin());
699  }
700  reverse_base_class_const_iterator bases_rend() const {
701    return reverse_base_class_const_iterator(bases_begin());
702  }
703
704  /// \brief Retrieves the number of virtual base classes of this class.
705  unsigned getNumVBases() const { return data().NumVBases; }
706
707  base_class_iterator vbases_begin() { return data().getVBases(); }
708  base_class_const_iterator vbases_begin() const { return data().getVBases(); }
709  base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
710  base_class_const_iterator vbases_end() const {
711    return vbases_begin() + data().NumVBases;
712  }
713  reverse_base_class_iterator vbases_rbegin() {
714    return reverse_base_class_iterator(vbases_end());
715  }
716  reverse_base_class_const_iterator vbases_rbegin() const {
717    return reverse_base_class_const_iterator(vbases_end());
718  }
719  reverse_base_class_iterator vbases_rend() {
720    return reverse_base_class_iterator(vbases_begin());
721  }
722  reverse_base_class_const_iterator vbases_rend() const {
723    return reverse_base_class_const_iterator(vbases_begin());
724 }
725
726  /// \brief Determine whether this class has any dependent base classes which
727  /// are not the current instantiation.
728  bool hasAnyDependentBases() const;
729
730  /// Iterator access to method members.  The method iterator visits
731  /// all method members of the class, including non-instance methods,
732  /// special methods, etc.
733  typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
734
735  /// \brief Method begin iterator.  Iterates in the order the methods
736  /// were declared.
737  method_iterator method_begin() const {
738    return method_iterator(decls_begin());
739  }
740  /// \brief Method past-the-end iterator.
741  method_iterator method_end() const {
742    return method_iterator(decls_end());
743  }
744
745  /// Iterator access to constructor members.
746  typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
747
748  ctor_iterator ctor_begin() const {
749    return ctor_iterator(decls_begin());
750  }
751  ctor_iterator ctor_end() const {
752    return ctor_iterator(decls_end());
753  }
754
755  /// An iterator over friend declarations.  All of these are defined
756  /// in DeclFriend.h.
757  class friend_iterator;
758  friend_iterator friend_begin() const;
759  friend_iterator friend_end() const;
760  void pushFriendDecl(FriendDecl *FD);
761
762  /// Determines whether this record has any friends.
763  bool hasFriends() const {
764    return data().FirstFriend.isValid();
765  }
766
767  /// \brief \c true if we know for sure that this class has a single,
768  /// accessible, unambiguous move constructor that is not deleted.
769  bool hasSimpleMoveConstructor() const {
770    return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
771           !data().DefaultedMoveConstructorIsDeleted;
772  }
773  /// \brief \c true if we know for sure that this class has a single,
774  /// accessible, unambiguous move assignment operator that is not deleted.
775  bool hasSimpleMoveAssignment() const {
776    return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
777           !data().DefaultedMoveAssignmentIsDeleted;
778  }
779  /// \brief \c true if we know for sure that this class has an accessible
780  /// destructor that is not deleted.
781  bool hasSimpleDestructor() const {
782    return !hasUserDeclaredDestructor() &&
783           !data().DefaultedDestructorIsDeleted;
784  }
785
786  /// \brief Determine whether this class has any default constructors.
787  bool hasDefaultConstructor() const {
788    return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
789           needsImplicitDefaultConstructor();
790  }
791
792  /// \brief Determine if we need to declare a default constructor for
793  /// this class.
794  ///
795  /// This value is used for lazy creation of default constructors.
796  bool needsImplicitDefaultConstructor() const {
797    return !data().UserDeclaredConstructor &&
798           !(data().DeclaredSpecialMembers & SMF_DefaultConstructor);
799  }
800
801  /// \brief Determine whether this class has any user-declared constructors.
802  ///
803  /// When true, a default constructor will not be implicitly declared.
804  bool hasUserDeclaredConstructor() const {
805    return data().UserDeclaredConstructor;
806  }
807
808  /// \brief Whether this class has a user-provided default constructor
809  /// per C++11.
810  bool hasUserProvidedDefaultConstructor() const {
811    return data().UserProvidedDefaultConstructor;
812  }
813
814  /// \brief Determine whether this class has a user-declared copy constructor.
815  ///
816  /// When false, a copy constructor will be implicitly declared.
817  bool hasUserDeclaredCopyConstructor() const {
818    return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
819  }
820
821  /// \brief Determine whether this class needs an implicit copy
822  /// constructor to be lazily declared.
823  bool needsImplicitCopyConstructor() const {
824    return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
825  }
826
827  /// \brief Determine whether we need to eagerly declare a defaulted copy
828  /// constructor for this class.
829  bool needsOverloadResolutionForCopyConstructor() const {
830    return data().HasMutableFields;
831  }
832
833  /// \brief Determine whether an implicit copy constructor for this type
834  /// would have a parameter with a const-qualified reference type.
835  bool implicitCopyConstructorHasConstParam() const {
836    return data().ImplicitCopyConstructorHasConstParam;
837  }
838
839  /// \brief Determine whether this class has a copy constructor with
840  /// a parameter type which is a reference to a const-qualified type.
841  bool hasCopyConstructorWithConstParam() const {
842    return data().HasDeclaredCopyConstructorWithConstParam ||
843           (needsImplicitCopyConstructor() &&
844            implicitCopyConstructorHasConstParam());
845  }
846
847  /// \brief Whether this class has a user-declared move constructor or
848  /// assignment operator.
849  ///
850  /// When false, a move constructor and assignment operator may be
851  /// implicitly declared.
852  bool hasUserDeclaredMoveOperation() const {
853    return data().UserDeclaredSpecialMembers &
854             (SMF_MoveConstructor | SMF_MoveAssignment);
855  }
856
857  /// \brief Determine whether this class has had a move constructor
858  /// declared by the user.
859  bool hasUserDeclaredMoveConstructor() const {
860    return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
861  }
862
863  /// \brief Determine whether this class has a move constructor.
864  bool hasMoveConstructor() const {
865    return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
866           needsImplicitMoveConstructor();
867  }
868
869  /// \brief Set that we attempted to declare an implicitly move
870  /// constructor, but overload resolution failed so we deleted it.
871  void setImplicitMoveConstructorIsDeleted() {
872    assert((data().DefaultedMoveConstructorIsDeleted ||
873            needsOverloadResolutionForMoveConstructor()) &&
874           "move constructor should not be deleted");
875    data().DefaultedMoveConstructorIsDeleted = true;
876  }
877
878  /// \brief Determine whether this class should get an implicit move
879  /// constructor or if any existing special member function inhibits this.
880  bool needsImplicitMoveConstructor() const {
881    return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
882           !hasUserDeclaredCopyConstructor() &&
883           !hasUserDeclaredCopyAssignment() &&
884           !hasUserDeclaredMoveAssignment() &&
885           !hasUserDeclaredDestructor();
886  }
887
888  /// \brief Determine whether we need to eagerly declare a defaulted move
889  /// constructor for this class.
890  bool needsOverloadResolutionForMoveConstructor() const {
891    return data().NeedOverloadResolutionForMoveConstructor;
892  }
893
894  /// \brief Determine whether this class has a user-declared copy assignment
895  /// operator.
896  ///
897  /// When false, a copy assigment operator will be implicitly declared.
898  bool hasUserDeclaredCopyAssignment() const {
899    return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
900  }
901
902  /// \brief Determine whether this class needs an implicit copy
903  /// assignment operator to be lazily declared.
904  bool needsImplicitCopyAssignment() const {
905    return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
906  }
907
908  /// \brief Determine whether we need to eagerly declare a defaulted copy
909  /// assignment operator for this class.
910  bool needsOverloadResolutionForCopyAssignment() const {
911    return data().HasMutableFields;
912  }
913
914  /// \brief Determine whether an implicit copy assignment operator for this
915  /// type would have a parameter with a const-qualified reference type.
916  bool implicitCopyAssignmentHasConstParam() const {
917    return data().ImplicitCopyAssignmentHasConstParam;
918  }
919
920  /// \brief Determine whether this class has a copy assignment operator with
921  /// a parameter type which is a reference to a const-qualified type or is not
922  /// a reference.
923  bool hasCopyAssignmentWithConstParam() const {
924    return data().HasDeclaredCopyAssignmentWithConstParam ||
925           (needsImplicitCopyAssignment() &&
926            implicitCopyAssignmentHasConstParam());
927  }
928
929  /// \brief Determine whether this class has had a move assignment
930  /// declared by the user.
931  bool hasUserDeclaredMoveAssignment() const {
932    return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
933  }
934
935  /// \brief Determine whether this class has a move assignment operator.
936  bool hasMoveAssignment() const {
937    return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
938           needsImplicitMoveAssignment();
939  }
940
941  /// \brief Set that we attempted to declare an implicit move assignment
942  /// operator, but overload resolution failed so we deleted it.
943  void setImplicitMoveAssignmentIsDeleted() {
944    assert((data().DefaultedMoveAssignmentIsDeleted ||
945            needsOverloadResolutionForMoveAssignment()) &&
946           "move assignment should not be deleted");
947    data().DefaultedMoveAssignmentIsDeleted = true;
948  }
949
950  /// \brief Determine whether this class should get an implicit move
951  /// assignment operator or if any existing special member function inhibits
952  /// this.
953  bool needsImplicitMoveAssignment() const {
954    return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
955           !hasUserDeclaredCopyConstructor() &&
956           !hasUserDeclaredCopyAssignment() &&
957           !hasUserDeclaredMoveConstructor() &&
958           !hasUserDeclaredDestructor();
959  }
960
961  /// \brief Determine whether we need to eagerly declare a move assignment
962  /// operator for this class.
963  bool needsOverloadResolutionForMoveAssignment() const {
964    return data().NeedOverloadResolutionForMoveAssignment;
965  }
966
967  /// \brief Determine whether this class has a user-declared destructor.
968  ///
969  /// When false, a destructor will be implicitly declared.
970  bool hasUserDeclaredDestructor() const {
971    return data().UserDeclaredSpecialMembers & SMF_Destructor;
972  }
973
974  /// \brief Determine whether this class needs an implicit destructor to
975  /// be lazily declared.
976  bool needsImplicitDestructor() const {
977    return !(data().DeclaredSpecialMembers & SMF_Destructor);
978  }
979
980  /// \brief Determine whether we need to eagerly declare a destructor for this
981  /// class.
982  bool needsOverloadResolutionForDestructor() const {
983    return data().NeedOverloadResolutionForDestructor;
984  }
985
986  /// \brief Determine whether this class describes a lambda function object.
987  bool isLambda() const { return hasDefinition() && data().IsLambda; }
988
989  /// \brief Determine whether this class describes a generic
990  /// lambda function object (i.e. function call operator is
991  /// a template).
992  bool isGenericLambda() const;
993
994  /// \brief Retrieve the lambda call operator of the closure type
995  /// if this is a closure type.
996  CXXMethodDecl *getLambdaCallOperator() const;
997
998  /// \brief Retrieve the lambda static invoker, the address of which
999  /// is returned by the conversion operator, and the body of which
1000  /// is forwarded to the lambda call operator.
1001  CXXMethodDecl *getLambdaStaticInvoker() const;
1002
1003  /// \brief Retrieve the generic lambda's template parameter list.
1004  /// Returns null if the class does not represent a lambda or a generic
1005  /// lambda.
1006  TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1007
1008  LambdaCaptureDefault getLambdaCaptureDefault() const {
1009    assert(isLambda());
1010    return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1011  }
1012
1013  /// \brief For a closure type, retrieve the mapping from captured
1014  /// variables and \c this to the non-static data members that store the
1015  /// values or references of the captures.
1016  ///
1017  /// \param Captures Will be populated with the mapping from captured
1018  /// variables to the corresponding fields.
1019  ///
1020  /// \param ThisCapture Will be set to the field declaration for the
1021  /// \c this capture.
1022  ///
1023  /// \note No entries will be added for init-captures, as they do not capture
1024  /// variables.
1025  void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1026                        FieldDecl *&ThisCapture) const;
1027
1028  typedef const LambdaExpr::Capture* capture_const_iterator;
1029  capture_const_iterator captures_begin() const {
1030    return isLambda() ? getLambdaData().Captures : NULL;
1031  }
1032  capture_const_iterator captures_end() const {
1033    return isLambda() ? captures_begin() + getLambdaData().NumCaptures : NULL;
1034  }
1035
1036  typedef UnresolvedSetIterator conversion_iterator;
1037  conversion_iterator conversion_begin() const {
1038    return data().Conversions.get(getASTContext()).begin();
1039  }
1040  conversion_iterator conversion_end() const {
1041    return data().Conversions.get(getASTContext()).end();
1042  }
1043
1044  /// Removes a conversion function from this class.  The conversion
1045  /// function must currently be a member of this class.  Furthermore,
1046  /// this class must currently be in the process of being defined.
1047  void removeConversion(const NamedDecl *Old);
1048
1049  /// \brief Get all conversion functions visible in current class,
1050  /// including conversion function templates.
1051  std::pair<conversion_iterator, conversion_iterator>
1052    getVisibleConversionFunctions();
1053
1054  /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1055  /// which is a class with no user-declared constructors, no private
1056  /// or protected non-static data members, no base classes, and no virtual
1057  /// functions (C++ [dcl.init.aggr]p1).
1058  bool isAggregate() const { return data().Aggregate; }
1059
1060  /// \brief Whether this class has any in-class initializers
1061  /// for non-static data members.
1062  bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1063
1064  /// \brief Whether this class or any of its subobjects has any members of
1065  /// reference type which would make value-initialization ill-formed.
1066  ///
1067  /// Per C++03 [dcl.init]p5:
1068  ///  - if T is a non-union class type without a user-declared constructor,
1069  ///    then every non-static data member and base-class component of T is
1070  ///    value-initialized [...] A program that calls for [...]
1071  ///    value-initialization of an entity of reference type is ill-formed.
1072  bool hasUninitializedReferenceMember() const {
1073    return !isUnion() && !hasUserDeclaredConstructor() &&
1074           data().HasUninitializedReferenceMember;
1075  }
1076
1077  /// \brief Whether this class is a POD-type (C++ [class]p4)
1078  ///
1079  /// For purposes of this function a class is POD if it is an aggregate
1080  /// that has no non-static non-POD data members, no reference data
1081  /// members, no user-defined copy assignment operator and no
1082  /// user-defined destructor.
1083  ///
1084  /// Note that this is the C++ TR1 definition of POD.
1085  bool isPOD() const { return data().PlainOldData; }
1086
1087  /// \brief True if this class is C-like, without C++-specific features, e.g.
1088  /// it contains only public fields, no bases, tag kind is not 'class', etc.
1089  bool isCLike() const;
1090
1091  /// \brief Determine whether this is an empty class in the sense of
1092  /// (C++11 [meta.unary.prop]).
1093  ///
1094  /// A non-union class is empty iff it has a virtual function, virtual base,
1095  /// data member (other than 0-width bit-field) or inherits from a non-empty
1096  /// class.
1097  ///
1098  /// \note This does NOT include a check for union-ness.
1099  bool isEmpty() const { return data().Empty; }
1100
1101  /// Whether this class is polymorphic (C++ [class.virtual]),
1102  /// which means that the class contains or inherits a virtual function.
1103  bool isPolymorphic() const { return data().Polymorphic; }
1104
1105  /// \brief Determine whether this class has a pure virtual function.
1106  ///
1107  /// The class is is abstract per (C++ [class.abstract]p2) if it declares
1108  /// a pure virtual function or inherits a pure virtual function that is
1109  /// not overridden.
1110  bool isAbstract() const { return data().Abstract; }
1111
1112  /// \brief Determine whether this class has standard layout per
1113  /// (C++ [class]p7)
1114  bool isStandardLayout() const { return data().IsStandardLayout; }
1115
1116  /// \brief Determine whether this class, or any of its class subobjects,
1117  /// contains a mutable field.
1118  bool hasMutableFields() const { return data().HasMutableFields; }
1119
1120  /// \brief Determine whether this class has a trivial default constructor
1121  /// (C++11 [class.ctor]p5).
1122  bool hasTrivialDefaultConstructor() const {
1123    return hasDefaultConstructor() &&
1124           (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1125  }
1126
1127  /// \brief Determine whether this class has a non-trivial default constructor
1128  /// (C++11 [class.ctor]p5).
1129  bool hasNonTrivialDefaultConstructor() const {
1130    return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1131           (needsImplicitDefaultConstructor() &&
1132            !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1133  }
1134
1135  /// \brief Determine whether this class has at least one constexpr constructor
1136  /// other than the copy or move constructors.
1137  bool hasConstexprNonCopyMoveConstructor() const {
1138    return data().HasConstexprNonCopyMoveConstructor ||
1139           (needsImplicitDefaultConstructor() &&
1140            defaultedDefaultConstructorIsConstexpr());
1141  }
1142
1143  /// \brief Determine whether a defaulted default constructor for this class
1144  /// would be constexpr.
1145  bool defaultedDefaultConstructorIsConstexpr() const {
1146    return data().DefaultedDefaultConstructorIsConstexpr &&
1147           (!isUnion() || hasInClassInitializer());
1148  }
1149
1150  /// \brief Determine whether this class has a constexpr default constructor.
1151  bool hasConstexprDefaultConstructor() const {
1152    return data().HasConstexprDefaultConstructor ||
1153           (needsImplicitDefaultConstructor() &&
1154            defaultedDefaultConstructorIsConstexpr());
1155  }
1156
1157  /// \brief Determine whether this class has a trivial copy constructor
1158  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1159  bool hasTrivialCopyConstructor() const {
1160    return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1161  }
1162
1163  /// \brief Determine whether this class has a non-trivial copy constructor
1164  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1165  bool hasNonTrivialCopyConstructor() const {
1166    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1167           !hasTrivialCopyConstructor();
1168  }
1169
1170  /// \brief Determine whether this class has a trivial move constructor
1171  /// (C++11 [class.copy]p12)
1172  bool hasTrivialMoveConstructor() const {
1173    return hasMoveConstructor() &&
1174           (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1175  }
1176
1177  /// \brief Determine whether this class has a non-trivial move constructor
1178  /// (C++11 [class.copy]p12)
1179  bool hasNonTrivialMoveConstructor() const {
1180    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1181           (needsImplicitMoveConstructor() &&
1182            !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1183  }
1184
1185  /// \brief Determine whether this class has a trivial copy assignment operator
1186  /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1187  bool hasTrivialCopyAssignment() const {
1188    return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1189  }
1190
1191  /// \brief Determine whether this class has a non-trivial copy assignment
1192  /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1193  bool hasNonTrivialCopyAssignment() const {
1194    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1195           !hasTrivialCopyAssignment();
1196  }
1197
1198  /// \brief Determine whether this class has a trivial move assignment operator
1199  /// (C++11 [class.copy]p25)
1200  bool hasTrivialMoveAssignment() const {
1201    return hasMoveAssignment() &&
1202           (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1203  }
1204
1205  /// \brief Determine whether this class has a non-trivial move assignment
1206  /// operator (C++11 [class.copy]p25)
1207  bool hasNonTrivialMoveAssignment() const {
1208    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1209           (needsImplicitMoveAssignment() &&
1210            !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1211  }
1212
1213  /// \brief Determine whether this class has a trivial destructor
1214  /// (C++ [class.dtor]p3)
1215  bool hasTrivialDestructor() const {
1216    return data().HasTrivialSpecialMembers & SMF_Destructor;
1217  }
1218
1219  /// \brief Determine whether this class has a non-trivial destructor
1220  /// (C++ [class.dtor]p3)
1221  bool hasNonTrivialDestructor() const {
1222    return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1223  }
1224
1225  /// \brief Determine whether this class has a destructor which has no
1226  /// semantic effect.
1227  ///
1228  /// Any such destructor will be trivial, public, defaulted and not deleted,
1229  /// and will call only irrelevant destructors.
1230  bool hasIrrelevantDestructor() const {
1231    return data().HasIrrelevantDestructor;
1232  }
1233
1234  /// \brief Determine whether this class has a non-literal or/ volatile type
1235  /// non-static data member or base class.
1236  bool hasNonLiteralTypeFieldsOrBases() const {
1237    return data().HasNonLiteralTypeFieldsOrBases;
1238  }
1239
1240  /// \brief Determine whether this class is considered trivially copyable per
1241  /// (C++11 [class]p6).
1242  bool isTriviallyCopyable() const;
1243
1244  /// \brief Determine whether this class is considered trivial.
1245  ///
1246  /// C++11 [class]p6:
1247  ///    "A trivial class is a class that has a trivial default constructor and
1248  ///    is trivially copiable."
1249  bool isTrivial() const {
1250    return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1251  }
1252
1253  /// \brief Determine whether this class is a literal type.
1254  ///
1255  /// C++11 [basic.types]p10:
1256  ///   A class type that has all the following properties:
1257  ///     - it has a trivial destructor
1258  ///     - every constructor call and full-expression in the
1259  ///       brace-or-equal-intializers for non-static data members (if any) is
1260  ///       a constant expression.
1261  ///     - it is an aggregate type or has at least one constexpr constructor
1262  ///       or constructor template that is not a copy or move constructor, and
1263  ///     - all of its non-static data members and base classes are of literal
1264  ///       types
1265  ///
1266  /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1267  /// treating types with trivial default constructors as literal types.
1268  bool isLiteral() const {
1269    return hasTrivialDestructor() &&
1270           (isAggregate() || hasConstexprNonCopyMoveConstructor() ||
1271            hasTrivialDefaultConstructor()) &&
1272           !hasNonLiteralTypeFieldsOrBases();
1273  }
1274
1275  /// \brief If this record is an instantiation of a member class,
1276  /// retrieves the member class from which it was instantiated.
1277  ///
1278  /// This routine will return non-null for (non-templated) member
1279  /// classes of class templates. For example, given:
1280  ///
1281  /// \code
1282  /// template<typename T>
1283  /// struct X {
1284  ///   struct A { };
1285  /// };
1286  /// \endcode
1287  ///
1288  /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1289  /// whose parent is the class template specialization X<int>. For
1290  /// this declaration, getInstantiatedFromMemberClass() will return
1291  /// the CXXRecordDecl X<T>::A. When a complete definition of
1292  /// X<int>::A is required, it will be instantiated from the
1293  /// declaration returned by getInstantiatedFromMemberClass().
1294  CXXRecordDecl *getInstantiatedFromMemberClass() const;
1295
1296  /// \brief If this class is an instantiation of a member class of a
1297  /// class template specialization, retrieves the member specialization
1298  /// information.
1299  MemberSpecializationInfo *getMemberSpecializationInfo() const {
1300    return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1301  }
1302
1303  /// \brief Specify that this record is an instantiation of the
1304  /// member class \p RD.
1305  void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1306                                     TemplateSpecializationKind TSK);
1307
1308  /// \brief Retrieves the class template that is described by this
1309  /// class declaration.
1310  ///
1311  /// Every class template is represented as a ClassTemplateDecl and a
1312  /// CXXRecordDecl. The former contains template properties (such as
1313  /// the template parameter lists) while the latter contains the
1314  /// actual description of the template's
1315  /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1316  /// CXXRecordDecl that from a ClassTemplateDecl, while
1317  /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1318  /// a CXXRecordDecl.
1319  ClassTemplateDecl *getDescribedClassTemplate() const {
1320    return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
1321  }
1322
1323  void setDescribedClassTemplate(ClassTemplateDecl *Template) {
1324    TemplateOrInstantiation = Template;
1325  }
1326
1327  /// \brief Determine whether this particular class is a specialization or
1328  /// instantiation of a class template or member class of a class template,
1329  /// and how it was instantiated or specialized.
1330  TemplateSpecializationKind getTemplateSpecializationKind() const;
1331
1332  /// \brief Set the kind of specialization or template instantiation this is.
1333  void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1334
1335  /// \brief Returns the destructor decl for this class.
1336  CXXDestructorDecl *getDestructor() const;
1337
1338  /// \brief If the class is a local class [class.local], returns
1339  /// the enclosing function declaration.
1340  const FunctionDecl *isLocalClass() const {
1341    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1342      return RD->isLocalClass();
1343
1344    return dyn_cast<FunctionDecl>(getDeclContext());
1345  }
1346
1347  FunctionDecl *isLocalClass() {
1348    return const_cast<FunctionDecl*>(
1349        const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1350  }
1351
1352  /// \brief Determine whether this dependent class is a current instantiation,
1353  /// when viewed from within the given context.
1354  bool isCurrentInstantiation(const DeclContext *CurContext) const;
1355
1356  /// \brief Determine whether this class is derived from the class \p Base.
1357  ///
1358  /// This routine only determines whether this class is derived from \p Base,
1359  /// but does not account for factors that may make a Derived -> Base class
1360  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1361  /// base class subobjects.
1362  ///
1363  /// \param Base the base class we are searching for.
1364  ///
1365  /// \returns true if this class is derived from Base, false otherwise.
1366  bool isDerivedFrom(const CXXRecordDecl *Base) const;
1367
1368  /// \brief Determine whether this class is derived from the type \p Base.
1369  ///
1370  /// This routine only determines whether this class is derived from \p Base,
1371  /// but does not account for factors that may make a Derived -> Base class
1372  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1373  /// base class subobjects.
1374  ///
1375  /// \param Base the base class we are searching for.
1376  ///
1377  /// \param Paths will contain the paths taken from the current class to the
1378  /// given \p Base class.
1379  ///
1380  /// \returns true if this class is derived from \p Base, false otherwise.
1381  ///
1382  /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than
1383  /// tangling input and output in \p Paths
1384  bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1385
1386  /// \brief Determine whether this class is virtually derived from
1387  /// the class \p Base.
1388  ///
1389  /// This routine only determines whether this class is virtually
1390  /// derived from \p Base, but does not account for factors that may
1391  /// make a Derived -> Base class ill-formed, such as
1392  /// private/protected inheritance or multiple, ambiguous base class
1393  /// subobjects.
1394  ///
1395  /// \param Base the base class we are searching for.
1396  ///
1397  /// \returns true if this class is virtually derived from Base,
1398  /// false otherwise.
1399  bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1400
1401  /// \brief Determine whether this class is provably not derived from
1402  /// the type \p Base.
1403  bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1404
1405  /// \brief Function type used by forallBases() as a callback.
1406  ///
1407  /// \param BaseDefinition the definition of the base class
1408  ///
1409  /// \returns true if this base matched the search criteria
1410  typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition,
1411                                   void *UserData);
1412
1413  /// \brief Determines if the given callback holds for all the direct
1414  /// or indirect base classes of this type.
1415  ///
1416  /// The class itself does not count as a base class.  This routine
1417  /// returns false if the class has non-computable base classes.
1418  ///
1419  /// \param BaseMatches Callback invoked for each (direct or indirect) base
1420  /// class of this type, or if \p AllowShortCircuit is true then until a call
1421  /// returns false.
1422  ///
1423  /// \param UserData Passed as the second argument of every call to
1424  /// \p BaseMatches.
1425  ///
1426  /// \param AllowShortCircuit if false, forces the callback to be called
1427  /// for every base class, even if a dependent or non-matching base was
1428  /// found.
1429  bool forallBases(ForallBasesCallback *BaseMatches, void *UserData,
1430                   bool AllowShortCircuit = true) const;
1431
1432  /// \brief Function type used by lookupInBases() to determine whether a
1433  /// specific base class subobject matches the lookup criteria.
1434  ///
1435  /// \param Specifier the base-class specifier that describes the inheritance
1436  /// from the base class we are trying to match.
1437  ///
1438  /// \param Path the current path, from the most-derived class down to the
1439  /// base named by the \p Specifier.
1440  ///
1441  /// \param UserData a single pointer to user-specified data, provided to
1442  /// lookupInBases().
1443  ///
1444  /// \returns true if this base matched the search criteria, false otherwise.
1445  typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier,
1446                                   CXXBasePath &Path,
1447                                   void *UserData);
1448
1449  /// \brief Look for entities within the base classes of this C++ class,
1450  /// transitively searching all base class subobjects.
1451  ///
1452  /// This routine uses the callback function \p BaseMatches to find base
1453  /// classes meeting some search criteria, walking all base class subobjects
1454  /// and populating the given \p Paths structure with the paths through the
1455  /// inheritance hierarchy that resulted in a match. On a successful search,
1456  /// the \p Paths structure can be queried to retrieve the matching paths and
1457  /// to determine if there were any ambiguities.
1458  ///
1459  /// \param BaseMatches callback function used to determine whether a given
1460  /// base matches the user-defined search criteria.
1461  ///
1462  /// \param UserData user data pointer that will be provided to \p BaseMatches.
1463  ///
1464  /// \param Paths used to record the paths from this class to its base class
1465  /// subobjects that match the search criteria.
1466  ///
1467  /// \returns true if there exists any path from this class to a base class
1468  /// subobject that matches the search criteria.
1469  bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData,
1470                     CXXBasePaths &Paths) const;
1471
1472  /// \brief Base-class lookup callback that determines whether the given
1473  /// base class specifier refers to a specific class declaration.
1474  ///
1475  /// This callback can be used with \c lookupInBases() to determine whether
1476  /// a given derived class has is a base class subobject of a particular type.
1477  /// The user data pointer should refer to the canonical CXXRecordDecl of the
1478  /// base class that we are searching for.
1479  static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1480                            CXXBasePath &Path, void *BaseRecord);
1481
1482  /// \brief Base-class lookup callback that determines whether the
1483  /// given base class specifier refers to a specific class
1484  /// declaration and describes virtual derivation.
1485  ///
1486  /// This callback can be used with \c lookupInBases() to determine
1487  /// whether a given derived class has is a virtual base class
1488  /// subobject of a particular type.  The user data pointer should
1489  /// refer to the canonical CXXRecordDecl of the base class that we
1490  /// are searching for.
1491  static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1492                                   CXXBasePath &Path, void *BaseRecord);
1493
1494  /// \brief Base-class lookup callback that determines whether there exists
1495  /// a tag with the given name.
1496  ///
1497  /// This callback can be used with \c lookupInBases() to find tag members
1498  /// of the given name within a C++ class hierarchy. The user data pointer
1499  /// is an opaque \c DeclarationName pointer.
1500  static bool FindTagMember(const CXXBaseSpecifier *Specifier,
1501                            CXXBasePath &Path, void *Name);
1502
1503  /// \brief Base-class lookup callback that determines whether there exists
1504  /// a member with the given name.
1505  ///
1506  /// This callback can be used with \c lookupInBases() to find members
1507  /// of the given name within a C++ class hierarchy. The user data pointer
1508  /// is an opaque \c DeclarationName pointer.
1509  static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
1510                                 CXXBasePath &Path, void *Name);
1511
1512  /// \brief Base-class lookup callback that determines whether there exists
1513  /// a member with the given name that can be used in a nested-name-specifier.
1514  ///
1515  /// This callback can be used with \c lookupInBases() to find membes of
1516  /// the given name within a C++ class hierarchy that can occur within
1517  /// nested-name-specifiers.
1518  static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
1519                                            CXXBasePath &Path,
1520                                            void *UserData);
1521
1522  /// \brief Retrieve the final overriders for each virtual member
1523  /// function in the class hierarchy where this class is the
1524  /// most-derived class in the class hierarchy.
1525  void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1526
1527  /// \brief Get the indirect primary bases for this class.
1528  void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1529
1530  /// Renders and displays an inheritance diagram
1531  /// for this C++ class and all of its base classes (transitively) using
1532  /// GraphViz.
1533  void viewInheritance(ASTContext& Context) const;
1534
1535  /// \brief Calculates the access of a decl that is reached
1536  /// along a path.
1537  static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1538                                     AccessSpecifier DeclAccess) {
1539    assert(DeclAccess != AS_none);
1540    if (DeclAccess == AS_private) return AS_none;
1541    return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1542  }
1543
1544  /// \brief Indicates that the declaration of a defaulted or deleted special
1545  /// member function is now complete.
1546  void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1547
1548  /// \brief Indicates that the definition of this class is now complete.
1549  virtual void completeDefinition();
1550
1551  /// \brief Indicates that the definition of this class is now complete,
1552  /// and provides a final overrider map to help determine
1553  ///
1554  /// \param FinalOverriders The final overrider map for this class, which can
1555  /// be provided as an optimization for abstract-class checking. If NULL,
1556  /// final overriders will be computed if they are needed to complete the
1557  /// definition.
1558  void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1559
1560  /// \brief Determine whether this class may end up being abstract, even though
1561  /// it is not yet known to be abstract.
1562  ///
1563  /// \returns true if this class is not known to be abstract but has any
1564  /// base classes that are abstract. In this case, \c completeDefinition()
1565  /// will need to compute final overriders to determine whether the class is
1566  /// actually abstract.
1567  bool mayBeAbstract() const;
1568
1569  /// \brief If this is the closure type of a lambda expression, retrieve the
1570  /// number to be used for name mangling in the Itanium C++ ABI.
1571  ///
1572  /// Zero indicates that this closure type has internal linkage, so the
1573  /// mangling number does not matter, while a non-zero value indicates which
1574  /// lambda expression this is in this particular context.
1575  unsigned getLambdaManglingNumber() const {
1576    assert(isLambda() && "Not a lambda closure type!");
1577    return getLambdaData().ManglingNumber;
1578  }
1579
1580  /// \brief Retrieve the declaration that provides additional context for a
1581  /// lambda, when the normal declaration context is not specific enough.
1582  ///
1583  /// Certain contexts (default arguments of in-class function parameters and
1584  /// the initializers of data members) have separate name mangling rules for
1585  /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1586  /// the declaration in which the lambda occurs, e.g., the function parameter
1587  /// or the non-static data member. Otherwise, it returns NULL to imply that
1588  /// the declaration context suffices.
1589  Decl *getLambdaContextDecl() const {
1590    assert(isLambda() && "Not a lambda closure type!");
1591    return getLambdaData().ContextDecl;
1592  }
1593
1594  /// \brief Set the mangling number and context declaration for a lambda
1595  /// class.
1596  void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
1597    getLambdaData().ManglingNumber = ManglingNumber;
1598    getLambdaData().ContextDecl = ContextDecl;
1599  }
1600
1601  /// \brief Returns the inheritance model used for this record.
1602  MSInheritanceModel getMSInheritanceModel() const;
1603
1604  /// \brief Determine whether this lambda expression was known to be dependent
1605  /// at the time it was created, even if its context does not appear to be
1606  /// dependent.
1607  ///
1608  /// This flag is a workaround for an issue with parsing, where default
1609  /// arguments are parsed before their enclosing function declarations have
1610  /// been created. This means that any lambda expressions within those
1611  /// default arguments will have as their DeclContext the context enclosing
1612  /// the function declaration, which may be non-dependent even when the
1613  /// function declaration itself is dependent. This flag indicates when we
1614  /// know that the lambda is dependent despite that.
1615  bool isDependentLambda() const {
1616    return isLambda() && getLambdaData().Dependent;
1617  }
1618
1619  TypeSourceInfo *getLambdaTypeInfo() const {
1620    return getLambdaData().MethodTyInfo;
1621  }
1622
1623  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1624  static bool classofKind(Kind K) {
1625    return K >= firstCXXRecord && K <= lastCXXRecord;
1626  }
1627
1628  friend class ASTDeclReader;
1629  friend class ASTDeclWriter;
1630  friend class ASTReader;
1631  friend class ASTWriter;
1632};
1633
1634/// \brief Represents a static or instance method of a struct/union/class.
1635///
1636/// In the terminology of the C++ Standard, these are the (static and
1637/// non-static) member functions, whether virtual or not.
1638class CXXMethodDecl : public FunctionDecl {
1639  virtual void anchor();
1640protected:
1641  CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation StartLoc,
1642                const DeclarationNameInfo &NameInfo,
1643                QualType T, TypeSourceInfo *TInfo,
1644                StorageClass SC, bool isInline,
1645                bool isConstexpr, SourceLocation EndLocation)
1646    : FunctionDecl(DK, RD, StartLoc, NameInfo, T, TInfo,
1647                   SC, isInline, isConstexpr) {
1648    if (EndLocation.isValid())
1649      setRangeEnd(EndLocation);
1650  }
1651
1652public:
1653  static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
1654                               SourceLocation StartLoc,
1655                               const DeclarationNameInfo &NameInfo,
1656                               QualType T, TypeSourceInfo *TInfo,
1657                               StorageClass SC,
1658                               bool isInline,
1659                               bool isConstexpr,
1660                               SourceLocation EndLocation);
1661
1662  static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1663
1664  bool isStatic() const;
1665  bool isInstance() const { return !isStatic(); }
1666
1667  /// Returns true if the given operator is implicitly static in a record
1668  /// context.
1669  static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
1670    // [class.free]p1:
1671    // Any allocation function for a class T is a static member
1672    // (even if not explicitly declared static).
1673    // [class.free]p6 Any deallocation function for a class X is a static member
1674    // (even if not explicitly declared static).
1675    return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
1676           OOK == OO_Array_Delete;
1677  }
1678
1679  bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
1680  bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
1681
1682  bool isVirtual() const {
1683    CXXMethodDecl *CD =
1684      cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
1685
1686    // Methods declared in interfaces are automatically (pure) virtual.
1687    if (CD->isVirtualAsWritten() ||
1688          (CD->getParent()->isInterface() && CD->isUserProvided()))
1689      return true;
1690
1691    return (CD->begin_overridden_methods() != CD->end_overridden_methods());
1692  }
1693
1694  /// \brief Determine whether this is a usual deallocation function
1695  /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
1696  /// delete or delete[] operator with a particular signature.
1697  bool isUsualDeallocationFunction() const;
1698
1699  /// \brief Determine whether this is a copy-assignment operator, regardless
1700  /// of whether it was declared implicitly or explicitly.
1701  bool isCopyAssignmentOperator() const;
1702
1703  /// \brief Determine whether this is a move assignment operator.
1704  bool isMoveAssignmentOperator() const;
1705
1706  CXXMethodDecl *getCanonicalDecl() {
1707    return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
1708  }
1709  const CXXMethodDecl *getCanonicalDecl() const {
1710    return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
1711  }
1712
1713  CXXMethodDecl *getMostRecentDecl() {
1714    return cast<CXXMethodDecl>(
1715            static_cast<FunctionDecl *>(this)->getMostRecentDecl());
1716  }
1717  const CXXMethodDecl *getMostRecentDecl() const {
1718    return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
1719  }
1720
1721  /// True if this method is user-declared and was not
1722  /// deleted or defaulted on its first declaration.
1723  bool isUserProvided() const {
1724    return !(isDeleted() || getCanonicalDecl()->isDefaulted());
1725  }
1726
1727  ///
1728  void addOverriddenMethod(const CXXMethodDecl *MD);
1729
1730  typedef const CXXMethodDecl *const* method_iterator;
1731
1732  method_iterator begin_overridden_methods() const;
1733  method_iterator end_overridden_methods() const;
1734  unsigned size_overridden_methods() const;
1735
1736  /// Returns the parent of this method declaration, which
1737  /// is the class in which this method is defined.
1738  const CXXRecordDecl *getParent() const {
1739    return cast<CXXRecordDecl>(FunctionDecl::getParent());
1740  }
1741
1742  /// Returns the parent of this method declaration, which
1743  /// is the class in which this method is defined.
1744  CXXRecordDecl *getParent() {
1745    return const_cast<CXXRecordDecl *>(
1746             cast<CXXRecordDecl>(FunctionDecl::getParent()));
1747  }
1748
1749  /// \brief Returns the type of the \c this pointer.
1750  ///
1751  /// Should only be called for instance (i.e., non-static) methods.
1752  QualType getThisType(ASTContext &C) const;
1753
1754  unsigned getTypeQualifiers() const {
1755    return getType()->getAs<FunctionProtoType>()->getTypeQuals();
1756  }
1757
1758  /// \brief Retrieve the ref-qualifier associated with this method.
1759  ///
1760  /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
1761  /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
1762  /// @code
1763  /// struct X {
1764  ///   void f() &;
1765  ///   void g() &&;
1766  ///   void h();
1767  /// };
1768  /// @endcode
1769  RefQualifierKind getRefQualifier() const {
1770    return getType()->getAs<FunctionProtoType>()->getRefQualifier();
1771  }
1772
1773  bool hasInlineBody() const;
1774
1775  /// \brief Determine whether this is a lambda closure type's static member
1776  /// function that is used for the result of the lambda's conversion to
1777  /// function pointer (for a lambda with no captures).
1778  ///
1779  /// The function itself, if used, will have a placeholder body that will be
1780  /// supplied by IR generation to either forward to the function call operator
1781  /// or clone the function call operator.
1782  bool isLambdaStaticInvoker() const;
1783
1784  /// \brief Find the method in \p RD that corresponds to this one.
1785  ///
1786  /// Find if \p RD or one of the classes it inherits from override this method.
1787  /// If so, return it. \p RD is assumed to be a subclass of the class defining
1788  /// this method (or be the class itself), unless \p MayBeBase is set to true.
1789  CXXMethodDecl *
1790  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1791                                bool MayBeBase = false);
1792
1793  const CXXMethodDecl *
1794  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1795                                bool MayBeBase = false) const {
1796    return const_cast<CXXMethodDecl *>(this)
1797              ->getCorrespondingMethodInClass(RD, MayBeBase);
1798  }
1799
1800  // Implement isa/cast/dyncast/etc.
1801  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1802  static bool classofKind(Kind K) {
1803    return K >= firstCXXMethod && K <= lastCXXMethod;
1804  }
1805};
1806
1807/// \brief Represents a C++ base or member initializer.
1808///
1809/// This is part of a constructor initializer that
1810/// initializes one non-static member variable or one base class. For
1811/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
1812/// initializers:
1813///
1814/// \code
1815/// class A { };
1816/// class B : public A {
1817///   float f;
1818/// public:
1819///   B(A& a) : A(a), f(3.14159) { }
1820/// };
1821/// \endcode
1822class CXXCtorInitializer {
1823  /// \brief Either the base class name/delegating constructor type (stored as
1824  /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
1825  /// (IndirectFieldDecl*) being initialized.
1826  llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
1827    Initializee;
1828
1829  /// \brief The source location for the field name or, for a base initializer
1830  /// pack expansion, the location of the ellipsis.
1831  ///
1832  /// In the case of a delegating
1833  /// constructor, it will still include the type's source location as the
1834  /// Initializee points to the CXXConstructorDecl (to allow loop detection).
1835  SourceLocation MemberOrEllipsisLocation;
1836
1837  /// \brief The argument used to initialize the base or member, which may
1838  /// end up constructing an object (when multiple arguments are involved).
1839  Stmt *Init;
1840
1841  /// \brief Location of the left paren of the ctor-initializer.
1842  SourceLocation LParenLoc;
1843
1844  /// \brief Location of the right paren of the ctor-initializer.
1845  SourceLocation RParenLoc;
1846
1847  /// \brief If the initializee is a type, whether that type makes this
1848  /// a delegating initialization.
1849  bool IsDelegating : 1;
1850
1851  /// \brief If the initializer is a base initializer, this keeps track
1852  /// of whether the base is virtual or not.
1853  bool IsVirtual : 1;
1854
1855  /// \brief Whether or not the initializer is explicitly written
1856  /// in the sources.
1857  bool IsWritten : 1;
1858
1859  /// If IsWritten is true, then this number keeps track of the textual order
1860  /// of this initializer in the original sources, counting from 0; otherwise,
1861  /// it stores the number of array index variables stored after this object
1862  /// in memory.
1863  unsigned SourceOrderOrNumArrayIndices : 13;
1864
1865  CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
1866                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1867                     SourceLocation R, VarDecl **Indices, unsigned NumIndices);
1868
1869public:
1870  /// \brief Creates a new base-class initializer.
1871  explicit
1872  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
1873                     SourceLocation L, Expr *Init, SourceLocation R,
1874                     SourceLocation EllipsisLoc);
1875
1876  /// \brief Creates a new member initializer.
1877  explicit
1878  CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
1879                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1880                     SourceLocation R);
1881
1882  /// \brief Creates a new anonymous field initializer.
1883  explicit
1884  CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
1885                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1886                     SourceLocation R);
1887
1888  /// \brief Creates a new delegating initializer.
1889  explicit
1890  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
1891                     SourceLocation L, Expr *Init, SourceLocation R);
1892
1893  /// \brief Creates a new member initializer that optionally contains
1894  /// array indices used to describe an elementwise initialization.
1895  static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member,
1896                                    SourceLocation MemberLoc, SourceLocation L,
1897                                    Expr *Init, SourceLocation R,
1898                                    VarDecl **Indices, unsigned NumIndices);
1899
1900  /// \brief Determine whether this initializer is initializing a base class.
1901  bool isBaseInitializer() const {
1902    return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
1903  }
1904
1905  /// \brief Determine whether this initializer is initializing a non-static
1906  /// data member.
1907  bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
1908
1909  bool isAnyMemberInitializer() const {
1910    return isMemberInitializer() || isIndirectMemberInitializer();
1911  }
1912
1913  bool isIndirectMemberInitializer() const {
1914    return Initializee.is<IndirectFieldDecl*>();
1915  }
1916
1917  /// \brief Determine whether this initializer is an implicit initializer
1918  /// generated for a field with an initializer defined on the member
1919  /// declaration.
1920  ///
1921  /// In-class member initializers (also known as "non-static data member
1922  /// initializations", NSDMIs) were introduced in C++11.
1923  bool isInClassMemberInitializer() const {
1924    return isa<CXXDefaultInitExpr>(Init);
1925  }
1926
1927  /// \brief Determine whether this initializer is creating a delegating
1928  /// constructor.
1929  bool isDelegatingInitializer() const {
1930    return Initializee.is<TypeSourceInfo*>() && IsDelegating;
1931  }
1932
1933  /// \brief Determine whether this initializer is a pack expansion.
1934  bool isPackExpansion() const {
1935    return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
1936  }
1937
1938  // \brief For a pack expansion, returns the location of the ellipsis.
1939  SourceLocation getEllipsisLoc() const {
1940    assert(isPackExpansion() && "Initializer is not a pack expansion");
1941    return MemberOrEllipsisLocation;
1942  }
1943
1944  /// If this is a base class initializer, returns the type of the
1945  /// base class with location information. Otherwise, returns an NULL
1946  /// type location.
1947  TypeLoc getBaseClassLoc() const;
1948
1949  /// If this is a base class initializer, returns the type of the base class.
1950  /// Otherwise, returns null.
1951  const Type *getBaseClass() const;
1952
1953  /// Returns whether the base is virtual or not.
1954  bool isBaseVirtual() const {
1955    assert(isBaseInitializer() && "Must call this on base initializer!");
1956
1957    return IsVirtual;
1958  }
1959
1960  /// \brief Returns the declarator information for a base class or delegating
1961  /// initializer.
1962  TypeSourceInfo *getTypeSourceInfo() const {
1963    return Initializee.dyn_cast<TypeSourceInfo *>();
1964  }
1965
1966  /// \brief If this is a member initializer, returns the declaration of the
1967  /// non-static data member being initialized. Otherwise, returns null.
1968  FieldDecl *getMember() const {
1969    if (isMemberInitializer())
1970      return Initializee.get<FieldDecl*>();
1971    return 0;
1972  }
1973  FieldDecl *getAnyMember() const {
1974    if (isMemberInitializer())
1975      return Initializee.get<FieldDecl*>();
1976    if (isIndirectMemberInitializer())
1977      return Initializee.get<IndirectFieldDecl*>()->getAnonField();
1978    return 0;
1979  }
1980
1981  IndirectFieldDecl *getIndirectMember() const {
1982    if (isIndirectMemberInitializer())
1983      return Initializee.get<IndirectFieldDecl*>();
1984    return 0;
1985  }
1986
1987  SourceLocation getMemberLocation() const {
1988    return MemberOrEllipsisLocation;
1989  }
1990
1991  /// \brief Determine the source location of the initializer.
1992  SourceLocation getSourceLocation() const;
1993
1994  /// \brief Determine the source range covering the entire initializer.
1995  SourceRange getSourceRange() const LLVM_READONLY;
1996
1997  /// \brief Determine whether this initializer is explicitly written
1998  /// in the source code.
1999  bool isWritten() const { return IsWritten; }
2000
2001  /// \brief Return the source position of the initializer, counting from 0.
2002  /// If the initializer was implicit, -1 is returned.
2003  int getSourceOrder() const {
2004    return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1;
2005  }
2006
2007  /// \brief Set the source order of this initializer.
2008  ///
2009  /// This can only be called once for each initializer; it cannot be called
2010  /// on an initializer having a positive number of (implicit) array indices.
2011  ///
2012  /// This assumes that the initialzier was written in the source code, and
2013  /// ensures that isWritten() returns true.
2014  void setSourceOrder(int pos) {
2015    assert(!IsWritten &&
2016           "calling twice setSourceOrder() on the same initializer");
2017    assert(SourceOrderOrNumArrayIndices == 0 &&
2018           "setSourceOrder() used when there are implicit array indices");
2019    assert(pos >= 0 &&
2020           "setSourceOrder() used to make an initializer implicit");
2021    IsWritten = true;
2022    SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos);
2023  }
2024
2025  SourceLocation getLParenLoc() const { return LParenLoc; }
2026  SourceLocation getRParenLoc() const { return RParenLoc; }
2027
2028  /// \brief Determine the number of implicit array indices used while
2029  /// described an array member initialization.
2030  unsigned getNumArrayIndices() const {
2031    return IsWritten ? 0 : SourceOrderOrNumArrayIndices;
2032  }
2033
2034  /// \brief Retrieve a particular array index variable used to
2035  /// describe an array member initialization.
2036  VarDecl *getArrayIndex(unsigned I) {
2037    assert(I < getNumArrayIndices() && "Out of bounds member array index");
2038    return reinterpret_cast<VarDecl **>(this + 1)[I];
2039  }
2040  const VarDecl *getArrayIndex(unsigned I) const {
2041    assert(I < getNumArrayIndices() && "Out of bounds member array index");
2042    return reinterpret_cast<const VarDecl * const *>(this + 1)[I];
2043  }
2044  void setArrayIndex(unsigned I, VarDecl *Index) {
2045    assert(I < getNumArrayIndices() && "Out of bounds member array index");
2046    reinterpret_cast<VarDecl **>(this + 1)[I] = Index;
2047  }
2048  ArrayRef<VarDecl *> getArrayIndexes() {
2049    assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init");
2050    return ArrayRef<VarDecl *>(reinterpret_cast<VarDecl **>(this + 1),
2051                               getNumArrayIndices());
2052  }
2053
2054  /// \brief Get the initializer.
2055  Expr *getInit() const { return static_cast<Expr*>(Init); }
2056};
2057
2058/// \brief Represents a C++ constructor within a class.
2059///
2060/// For example:
2061///
2062/// \code
2063/// class X {
2064/// public:
2065///   explicit X(int); // represented by a CXXConstructorDecl.
2066/// };
2067/// \endcode
2068class CXXConstructorDecl : public CXXMethodDecl {
2069  virtual void anchor();
2070  /// \brief Whether this constructor declaration has the \c explicit keyword
2071  /// specified.
2072  bool IsExplicitSpecified : 1;
2073
2074  /// \name Support for base and member initializers.
2075  /// \{
2076  /// \brief The arguments used to initialize the base or member.
2077  CXXCtorInitializer **CtorInitializers;
2078  unsigned NumCtorInitializers;
2079  /// \}
2080
2081  CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2082                     const DeclarationNameInfo &NameInfo,
2083                     QualType T, TypeSourceInfo *TInfo,
2084                     bool isExplicitSpecified, bool isInline,
2085                     bool isImplicitlyDeclared, bool isConstexpr)
2086    : CXXMethodDecl(CXXConstructor, RD, StartLoc, NameInfo, T, TInfo,
2087                    SC_None, isInline, isConstexpr, SourceLocation()),
2088      IsExplicitSpecified(isExplicitSpecified), CtorInitializers(0),
2089      NumCtorInitializers(0) {
2090    setImplicit(isImplicitlyDeclared);
2091  }
2092
2093public:
2094  static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2095  static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2096                                    SourceLocation StartLoc,
2097                                    const DeclarationNameInfo &NameInfo,
2098                                    QualType T, TypeSourceInfo *TInfo,
2099                                    bool isExplicit,
2100                                    bool isInline, bool isImplicitlyDeclared,
2101                                    bool isConstexpr);
2102
2103  /// \brief Determine whether this constructor declaration has the
2104  /// \c explicit keyword specified.
2105  bool isExplicitSpecified() const { return IsExplicitSpecified; }
2106
2107  /// \brief Determine whether this constructor was marked "explicit" or not.
2108  bool isExplicit() const {
2109    return cast<CXXConstructorDecl>(getFirstDecl())->isExplicitSpecified();
2110  }
2111
2112  /// \brief Iterates through the member/base initializer list.
2113  typedef CXXCtorInitializer **init_iterator;
2114
2115  /// \brief Iterates through the member/base initializer list.
2116  typedef CXXCtorInitializer * const * init_const_iterator;
2117
2118  /// \brief Retrieve an iterator to the first initializer.
2119  init_iterator       init_begin()       { return CtorInitializers; }
2120  /// \brief Retrieve an iterator to the first initializer.
2121  init_const_iterator init_begin() const { return CtorInitializers; }
2122
2123  /// \brief Retrieve an iterator past the last initializer.
2124  init_iterator       init_end()       {
2125    return CtorInitializers + NumCtorInitializers;
2126  }
2127  /// \brief Retrieve an iterator past the last initializer.
2128  init_const_iterator init_end() const {
2129    return CtorInitializers + NumCtorInitializers;
2130  }
2131
2132  typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
2133  typedef std::reverse_iterator<init_const_iterator>
2134          init_const_reverse_iterator;
2135
2136  init_reverse_iterator init_rbegin() {
2137    return init_reverse_iterator(init_end());
2138  }
2139  init_const_reverse_iterator init_rbegin() const {
2140    return init_const_reverse_iterator(init_end());
2141  }
2142
2143  init_reverse_iterator init_rend() {
2144    return init_reverse_iterator(init_begin());
2145  }
2146  init_const_reverse_iterator init_rend() const {
2147    return init_const_reverse_iterator(init_begin());
2148  }
2149
2150  /// \brief Determine the number of arguments used to initialize the member
2151  /// or base.
2152  unsigned getNumCtorInitializers() const {
2153      return NumCtorInitializers;
2154  }
2155
2156  void setNumCtorInitializers(unsigned numCtorInitializers) {
2157    NumCtorInitializers = numCtorInitializers;
2158  }
2159
2160  void setCtorInitializers(CXXCtorInitializer ** initializers) {
2161    CtorInitializers = initializers;
2162  }
2163
2164  /// \brief Determine whether this constructor is a delegating constructor.
2165  bool isDelegatingConstructor() const {
2166    return (getNumCtorInitializers() == 1) &&
2167      CtorInitializers[0]->isDelegatingInitializer();
2168  }
2169
2170  /// \brief When this constructor delegates to another, retrieve the target.
2171  CXXConstructorDecl *getTargetConstructor() const;
2172
2173  /// Whether this constructor is a default
2174  /// constructor (C++ [class.ctor]p5), which can be used to
2175  /// default-initialize a class of this type.
2176  bool isDefaultConstructor() const;
2177
2178  /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2,
2179  /// which can be used to copy the class.
2180  ///
2181  /// \p TypeQuals will be set to the qualifiers on the
2182  /// argument type. For example, \p TypeQuals would be set to \c
2183  /// Qualifiers::Const for the following copy constructor:
2184  ///
2185  /// \code
2186  /// class X {
2187  /// public:
2188  ///   X(const X&);
2189  /// };
2190  /// \endcode
2191  bool isCopyConstructor(unsigned &TypeQuals) const;
2192
2193  /// Whether this constructor is a copy
2194  /// constructor (C++ [class.copy]p2, which can be used to copy the
2195  /// class.
2196  bool isCopyConstructor() const {
2197    unsigned TypeQuals = 0;
2198    return isCopyConstructor(TypeQuals);
2199  }
2200
2201  /// \brief Determine whether this constructor is a move constructor
2202  /// (C++0x [class.copy]p3), which can be used to move values of the class.
2203  ///
2204  /// \param TypeQuals If this constructor is a move constructor, will be set
2205  /// to the type qualifiers on the referent of the first parameter's type.
2206  bool isMoveConstructor(unsigned &TypeQuals) const;
2207
2208  /// \brief Determine whether this constructor is a move constructor
2209  /// (C++0x [class.copy]p3), which can be used to move values of the class.
2210  bool isMoveConstructor() const {
2211    unsigned TypeQuals = 0;
2212    return isMoveConstructor(TypeQuals);
2213  }
2214
2215  /// \brief Determine whether this is a copy or move constructor.
2216  ///
2217  /// \param TypeQuals Will be set to the type qualifiers on the reference
2218  /// parameter, if in fact this is a copy or move constructor.
2219  bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2220
2221  /// \brief Determine whether this a copy or move constructor.
2222  bool isCopyOrMoveConstructor() const {
2223    unsigned Quals;
2224    return isCopyOrMoveConstructor(Quals);
2225  }
2226
2227  /// Whether this constructor is a
2228  /// converting constructor (C++ [class.conv.ctor]), which can be
2229  /// used for user-defined conversions.
2230  bool isConvertingConstructor(bool AllowExplicit) const;
2231
2232  /// \brief Determine whether this is a member template specialization that
2233  /// would copy the object to itself. Such constructors are never used to copy
2234  /// an object.
2235  bool isSpecializationCopyingObject() const;
2236
2237  /// \brief Get the constructor that this inheriting constructor is based on.
2238  const CXXConstructorDecl *getInheritedConstructor() const;
2239
2240  /// \brief Set the constructor that this inheriting constructor is based on.
2241  void setInheritedConstructor(const CXXConstructorDecl *BaseCtor);
2242
2243  const CXXConstructorDecl *getCanonicalDecl() const {
2244    return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2245  }
2246  CXXConstructorDecl *getCanonicalDecl() {
2247    return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2248  }
2249
2250  // Implement isa/cast/dyncast/etc.
2251  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2252  static bool classofKind(Kind K) { return K == CXXConstructor; }
2253
2254  friend class ASTDeclReader;
2255  friend class ASTDeclWriter;
2256};
2257
2258/// \brief Represents a C++ destructor within a class.
2259///
2260/// For example:
2261///
2262/// \code
2263/// class X {
2264/// public:
2265///   ~X(); // represented by a CXXDestructorDecl.
2266/// };
2267/// \endcode
2268class CXXDestructorDecl : public CXXMethodDecl {
2269  virtual void anchor();
2270
2271  FunctionDecl *OperatorDelete;
2272
2273  CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2274                    const DeclarationNameInfo &NameInfo,
2275                    QualType T, TypeSourceInfo *TInfo,
2276                    bool isInline, bool isImplicitlyDeclared)
2277    : CXXMethodDecl(CXXDestructor, RD, StartLoc, NameInfo, T, TInfo,
2278                    SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
2279      OperatorDelete(0) {
2280    setImplicit(isImplicitlyDeclared);
2281  }
2282
2283public:
2284  static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2285                                   SourceLocation StartLoc,
2286                                   const DeclarationNameInfo &NameInfo,
2287                                   QualType T, TypeSourceInfo* TInfo,
2288                                   bool isInline,
2289                                   bool isImplicitlyDeclared);
2290  static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2291
2292  void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; }
2293  const FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2294
2295  // Implement isa/cast/dyncast/etc.
2296  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2297  static bool classofKind(Kind K) { return K == CXXDestructor; }
2298
2299  friend class ASTDeclReader;
2300  friend class ASTDeclWriter;
2301};
2302
2303/// \brief Represents a C++ conversion function within a class.
2304///
2305/// For example:
2306///
2307/// \code
2308/// class X {
2309/// public:
2310///   operator bool();
2311/// };
2312/// \endcode
2313class CXXConversionDecl : public CXXMethodDecl {
2314  virtual void anchor();
2315  /// Whether this conversion function declaration is marked
2316  /// "explicit", meaning that it can only be applied when the user
2317  /// explicitly wrote a cast. This is a C++0x feature.
2318  bool IsExplicitSpecified : 1;
2319
2320  CXXConversionDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2321                    const DeclarationNameInfo &NameInfo,
2322                    QualType T, TypeSourceInfo *TInfo,
2323                    bool isInline, bool isExplicitSpecified,
2324                    bool isConstexpr, SourceLocation EndLocation)
2325    : CXXMethodDecl(CXXConversion, RD, StartLoc, NameInfo, T, TInfo,
2326                    SC_None, isInline, isConstexpr, EndLocation),
2327      IsExplicitSpecified(isExplicitSpecified) { }
2328
2329public:
2330  static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2331                                   SourceLocation StartLoc,
2332                                   const DeclarationNameInfo &NameInfo,
2333                                   QualType T, TypeSourceInfo *TInfo,
2334                                   bool isInline, bool isExplicit,
2335                                   bool isConstexpr,
2336                                   SourceLocation EndLocation);
2337  static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2338
2339  /// Whether this conversion function declaration is marked
2340  /// "explicit", meaning that it can only be used for direct initialization
2341  /// (including explitly written casts).  This is a C++11 feature.
2342  bool isExplicitSpecified() const { return IsExplicitSpecified; }
2343
2344  /// \brief Whether this is an explicit conversion operator (C++11 and later).
2345  ///
2346  /// Explicit conversion operators are only considered for direct
2347  /// initialization, e.g., when the user has explicitly written a cast.
2348  bool isExplicit() const {
2349    return cast<CXXConversionDecl>(getFirstDecl())->isExplicitSpecified();
2350  }
2351
2352  /// \brief Returns the type that this conversion function is converting to.
2353  QualType getConversionType() const {
2354    return getType()->getAs<FunctionType>()->getResultType();
2355  }
2356
2357  /// \brief Determine whether this conversion function is a conversion from
2358  /// a lambda closure type to a block pointer.
2359  bool isLambdaToBlockPointerConversion() const;
2360
2361  // Implement isa/cast/dyncast/etc.
2362  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2363  static bool classofKind(Kind K) { return K == CXXConversion; }
2364
2365  friend class ASTDeclReader;
2366  friend class ASTDeclWriter;
2367};
2368
2369/// \brief Represents a linkage specification.
2370///
2371/// For example:
2372/// \code
2373///   extern "C" void foo();
2374/// \endcode
2375class LinkageSpecDecl : public Decl, public DeclContext {
2376  virtual void anchor();
2377public:
2378  /// \brief Represents the language in a linkage specification.
2379  ///
2380  /// The values are part of the serialization ABI for
2381  /// ASTs and cannot be changed without altering that ABI.  To help
2382  /// ensure a stable ABI for this, we choose the DW_LANG_ encodings
2383  /// from the dwarf standard.
2384  enum LanguageIDs {
2385    lang_c = /* DW_LANG_C */ 0x0002,
2386    lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
2387  };
2388private:
2389  /// \brief The language for this linkage specification.
2390  unsigned Language : 3;
2391  /// \brief True if this linkage spec has braces.
2392  ///
2393  /// This is needed so that hasBraces() returns the correct result while the
2394  /// linkage spec body is being parsed.  Once RBraceLoc has been set this is
2395  /// not used, so it doesn't need to be serialized.
2396  unsigned HasBraces : 1;
2397  /// \brief The source location for the extern keyword.
2398  SourceLocation ExternLoc;
2399  /// \brief The source location for the right brace (if valid).
2400  SourceLocation RBraceLoc;
2401
2402  LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2403                  SourceLocation LangLoc, LanguageIDs lang, bool HasBraces)
2404    : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2405      Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc),
2406      RBraceLoc(SourceLocation()) { }
2407
2408public:
2409  static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2410                                 SourceLocation ExternLoc,
2411                                 SourceLocation LangLoc, LanguageIDs Lang,
2412                                 bool HasBraces);
2413  static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2414
2415  /// \brief Return the language specified by this linkage specification.
2416  LanguageIDs getLanguage() const { return LanguageIDs(Language); }
2417  /// \brief Set the language specified by this linkage specification.
2418  void setLanguage(LanguageIDs L) { Language = L; }
2419
2420  /// \brief Determines whether this linkage specification had braces in
2421  /// its syntactic form.
2422  bool hasBraces() const {
2423    assert(!RBraceLoc.isValid() || HasBraces);
2424    return HasBraces;
2425  }
2426
2427  SourceLocation getExternLoc() const { return ExternLoc; }
2428  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2429  void setExternLoc(SourceLocation L) { ExternLoc = L; }
2430  void setRBraceLoc(SourceLocation L) {
2431    RBraceLoc = L;
2432    HasBraces = RBraceLoc.isValid();
2433  }
2434
2435  SourceLocation getLocEnd() const LLVM_READONLY {
2436    if (hasBraces())
2437      return getRBraceLoc();
2438    // No braces: get the end location of the (only) declaration in context
2439    // (if present).
2440    return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
2441  }
2442
2443  SourceRange getSourceRange() const LLVM_READONLY {
2444    return SourceRange(ExternLoc, getLocEnd());
2445  }
2446
2447  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2448  static bool classofKind(Kind K) { return K == LinkageSpec; }
2449  static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2450    return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2451  }
2452  static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2453    return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2454  }
2455};
2456
2457/// \brief Represents C++ using-directive.
2458///
2459/// For example:
2460/// \code
2461///    using namespace std;
2462/// \endcode
2463///
2464/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2465/// artificial names for all using-directives in order to store
2466/// them in DeclContext effectively.
2467class UsingDirectiveDecl : public NamedDecl {
2468  virtual void anchor();
2469  /// \brief The location of the \c using keyword.
2470  SourceLocation UsingLoc;
2471
2472  /// \brief The location of the \c namespace keyword.
2473  SourceLocation NamespaceLoc;
2474
2475  /// \brief The nested-name-specifier that precedes the namespace.
2476  NestedNameSpecifierLoc QualifierLoc;
2477
2478  /// \brief The namespace nominated by this using-directive.
2479  NamedDecl *NominatedNamespace;
2480
2481  /// Enclosing context containing both using-directive and nominated
2482  /// namespace.
2483  DeclContext *CommonAncestor;
2484
2485  /// \brief Returns special DeclarationName used by using-directives.
2486  ///
2487  /// This is only used by DeclContext for storing UsingDirectiveDecls in
2488  /// its lookup structure.
2489  static DeclarationName getName() {
2490    return DeclarationName::getUsingDirectiveName();
2491  }
2492
2493  UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2494                     SourceLocation NamespcLoc,
2495                     NestedNameSpecifierLoc QualifierLoc,
2496                     SourceLocation IdentLoc,
2497                     NamedDecl *Nominated,
2498                     DeclContext *CommonAncestor)
2499    : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2500      NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2501      NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
2502
2503public:
2504  /// \brief Retrieve the nested-name-specifier that qualifies the
2505  /// name of the namespace, with source-location information.
2506  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2507
2508  /// \brief Retrieve the nested-name-specifier that qualifies the
2509  /// name of the namespace.
2510  NestedNameSpecifier *getQualifier() const {
2511    return QualifierLoc.getNestedNameSpecifier();
2512  }
2513
2514  NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
2515  const NamedDecl *getNominatedNamespaceAsWritten() const {
2516    return NominatedNamespace;
2517  }
2518
2519  /// \brief Returns the namespace nominated by this using-directive.
2520  NamespaceDecl *getNominatedNamespace();
2521
2522  const NamespaceDecl *getNominatedNamespace() const {
2523    return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
2524  }
2525
2526  /// \brief Returns the common ancestor context of this using-directive and
2527  /// its nominated namespace.
2528  DeclContext *getCommonAncestor() { return CommonAncestor; }
2529  const DeclContext *getCommonAncestor() const { return CommonAncestor; }
2530
2531  /// \brief Return the location of the \c using keyword.
2532  SourceLocation getUsingLoc() const { return UsingLoc; }
2533
2534  // FIXME: Could omit 'Key' in name.
2535  /// \brief Returns the location of the \c namespace keyword.
2536  SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
2537
2538  /// \brief Returns the location of this using declaration's identifier.
2539  SourceLocation getIdentLocation() const { return getLocation(); }
2540
2541  static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
2542                                    SourceLocation UsingLoc,
2543                                    SourceLocation NamespaceLoc,
2544                                    NestedNameSpecifierLoc QualifierLoc,
2545                                    SourceLocation IdentLoc,
2546                                    NamedDecl *Nominated,
2547                                    DeclContext *CommonAncestor);
2548  static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2549
2550  SourceRange getSourceRange() const LLVM_READONLY {
2551    return SourceRange(UsingLoc, getLocation());
2552  }
2553
2554  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2555  static bool classofKind(Kind K) { return K == UsingDirective; }
2556
2557  // Friend for getUsingDirectiveName.
2558  friend class DeclContext;
2559
2560  friend class ASTDeclReader;
2561};
2562
2563/// \brief Represents a C++ namespace alias.
2564///
2565/// For example:
2566///
2567/// \code
2568/// namespace Foo = Bar;
2569/// \endcode
2570class NamespaceAliasDecl : public NamedDecl {
2571  virtual void anchor();
2572
2573  /// \brief The location of the \c namespace keyword.
2574  SourceLocation NamespaceLoc;
2575
2576  /// \brief The location of the namespace's identifier.
2577  ///
2578  /// This is accessed by TargetNameLoc.
2579  SourceLocation IdentLoc;
2580
2581  /// \brief The nested-name-specifier that precedes the namespace.
2582  NestedNameSpecifierLoc QualifierLoc;
2583
2584  /// \brief The Decl that this alias points to, either a NamespaceDecl or
2585  /// a NamespaceAliasDecl.
2586  NamedDecl *Namespace;
2587
2588  NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc,
2589                     SourceLocation AliasLoc, IdentifierInfo *Alias,
2590                     NestedNameSpecifierLoc QualifierLoc,
2591                     SourceLocation IdentLoc, NamedDecl *Namespace)
2592    : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias),
2593      NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
2594      QualifierLoc(QualifierLoc), Namespace(Namespace) { }
2595
2596  friend class ASTDeclReader;
2597
2598public:
2599  /// \brief Retrieve the nested-name-specifier that qualifies the
2600  /// name of the namespace, with source-location information.
2601  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2602
2603  /// \brief Retrieve the nested-name-specifier that qualifies the
2604  /// name of the namespace.
2605  NestedNameSpecifier *getQualifier() const {
2606    return QualifierLoc.getNestedNameSpecifier();
2607  }
2608
2609  /// \brief Retrieve the namespace declaration aliased by this directive.
2610  NamespaceDecl *getNamespace() {
2611    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
2612      return AD->getNamespace();
2613
2614    return cast<NamespaceDecl>(Namespace);
2615  }
2616
2617  const NamespaceDecl *getNamespace() const {
2618    return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
2619  }
2620
2621  /// Returns the location of the alias name, i.e. 'foo' in
2622  /// "namespace foo = ns::bar;".
2623  SourceLocation getAliasLoc() const { return getLocation(); }
2624
2625  /// Returns the location of the \c namespace keyword.
2626  SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
2627
2628  /// Returns the location of the identifier in the named namespace.
2629  SourceLocation getTargetNameLoc() const { return IdentLoc; }
2630
2631  /// \brief Retrieve the namespace that this alias refers to, which
2632  /// may either be a NamespaceDecl or a NamespaceAliasDecl.
2633  NamedDecl *getAliasedNamespace() const { return Namespace; }
2634
2635  static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
2636                                    SourceLocation NamespaceLoc,
2637                                    SourceLocation AliasLoc,
2638                                    IdentifierInfo *Alias,
2639                                    NestedNameSpecifierLoc QualifierLoc,
2640                                    SourceLocation IdentLoc,
2641                                    NamedDecl *Namespace);
2642
2643  static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2644
2645  virtual SourceRange getSourceRange() const LLVM_READONLY {
2646    return SourceRange(NamespaceLoc, IdentLoc);
2647  }
2648
2649  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2650  static bool classofKind(Kind K) { return K == NamespaceAlias; }
2651};
2652
2653/// \brief Represents a shadow declaration introduced into a scope by a
2654/// (resolved) using declaration.
2655///
2656/// For example,
2657/// \code
2658/// namespace A {
2659///   void foo();
2660/// }
2661/// namespace B {
2662///   using A::foo; // <- a UsingDecl
2663///                 // Also creates a UsingShadowDecl for A::foo() in B
2664/// }
2665/// \endcode
2666class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
2667  virtual void anchor();
2668
2669  /// The referenced declaration.
2670  NamedDecl *Underlying;
2671
2672  /// \brief The using declaration which introduced this decl or the next using
2673  /// shadow declaration contained in the aforementioned using declaration.
2674  NamedDecl *UsingOrNextShadow;
2675  friend class UsingDecl;
2676
2677  UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using,
2678                  NamedDecl *Target)
2679    : NamedDecl(UsingShadow, DC, Loc, DeclarationName()),
2680      Underlying(Target),
2681      UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) {
2682    if (Target) {
2683      setDeclName(Target->getDeclName());
2684      IdentifierNamespace = Target->getIdentifierNamespace();
2685    }
2686    setImplicit();
2687  }
2688
2689  typedef Redeclarable<UsingShadowDecl> redeclarable_base;
2690  virtual UsingShadowDecl *getNextRedeclaration() {
2691    return RedeclLink.getNext();
2692  }
2693  virtual UsingShadowDecl *getPreviousDeclImpl() {
2694    return getPreviousDecl();
2695  }
2696  virtual UsingShadowDecl *getMostRecentDeclImpl() {
2697    return getMostRecentDecl();
2698  }
2699
2700public:
2701  static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
2702                                 SourceLocation Loc, UsingDecl *Using,
2703                                 NamedDecl *Target) {
2704    return new (C) UsingShadowDecl(DC, Loc, Using, Target);
2705  }
2706
2707  static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2708
2709  typedef redeclarable_base::redecl_iterator redecl_iterator;
2710  using redeclarable_base::redecls_begin;
2711  using redeclarable_base::redecls_end;
2712  using redeclarable_base::getPreviousDecl;
2713  using redeclarable_base::getMostRecentDecl;
2714
2715  virtual UsingShadowDecl *getCanonicalDecl() {
2716    return getFirstDecl();
2717  }
2718  virtual const UsingShadowDecl *getCanonicalDecl() const {
2719    return getFirstDecl();
2720  }
2721
2722  /// \brief Gets the underlying declaration which has been brought into the
2723  /// local scope.
2724  NamedDecl *getTargetDecl() const { return Underlying; }
2725
2726  /// \brief Sets the underlying declaration which has been brought into the
2727  /// local scope.
2728  void setTargetDecl(NamedDecl* ND) {
2729    assert(ND && "Target decl is null!");
2730    Underlying = ND;
2731    IdentifierNamespace = ND->getIdentifierNamespace();
2732  }
2733
2734  /// \brief Gets the using declaration to which this declaration is tied.
2735  UsingDecl *getUsingDecl() const;
2736
2737  /// \brief The next using shadow declaration contained in the shadow decl
2738  /// chain of the using declaration which introduced this decl.
2739  UsingShadowDecl *getNextUsingShadowDecl() const {
2740    return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
2741  }
2742
2743  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2744  static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
2745
2746  friend class ASTDeclReader;
2747  friend class ASTDeclWriter;
2748};
2749
2750/// \brief Represents a C++ using-declaration.
2751///
2752/// For example:
2753/// \code
2754///    using someNameSpace::someIdentifier;
2755/// \endcode
2756class UsingDecl : public NamedDecl {
2757  virtual void anchor();
2758
2759  /// \brief The source location of the 'using' keyword itself.
2760  SourceLocation UsingLocation;
2761
2762  /// \brief The nested-name-specifier that precedes the name.
2763  NestedNameSpecifierLoc QualifierLoc;
2764
2765  /// \brief Provides source/type location info for the declaration name
2766  /// embedded in the ValueDecl base class.
2767  DeclarationNameLoc DNLoc;
2768
2769  /// \brief The first shadow declaration of the shadow decl chain associated
2770  /// with this using declaration.
2771  ///
2772  /// The bool member of the pair store whether this decl has the \c typename
2773  /// keyword.
2774  llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
2775
2776  UsingDecl(DeclContext *DC, SourceLocation UL,
2777            NestedNameSpecifierLoc QualifierLoc,
2778            const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
2779    : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
2780      UsingLocation(UL), QualifierLoc(QualifierLoc),
2781      DNLoc(NameInfo.getInfo()), FirstUsingShadow(0, HasTypenameKeyword) {
2782  }
2783
2784public:
2785  /// \brief Return the source location of the 'using' keyword.
2786  SourceLocation getUsingLoc() const { return UsingLocation; }
2787
2788  /// \brief Set the source location of the 'using' keyword.
2789  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
2790
2791  /// \brief Retrieve the nested-name-specifier that qualifies the name,
2792  /// with source-location information.
2793  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2794
2795  /// \brief Retrieve the nested-name-specifier that qualifies the name.
2796  NestedNameSpecifier *getQualifier() const {
2797    return QualifierLoc.getNestedNameSpecifier();
2798  }
2799
2800  DeclarationNameInfo getNameInfo() const {
2801    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2802  }
2803
2804  /// \brief Return true if it is a C++03 access declaration (no 'using').
2805  bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
2806
2807  /// \brief Return true if the using declaration has 'typename'.
2808  bool hasTypename() const { return FirstUsingShadow.getInt(); }
2809
2810  /// \brief Sets whether the using declaration has 'typename'.
2811  void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
2812
2813  /// \brief Iterates through the using shadow declarations associated with
2814  /// this using declaration.
2815  class shadow_iterator {
2816    /// \brief The current using shadow declaration.
2817    UsingShadowDecl *Current;
2818
2819  public:
2820    typedef UsingShadowDecl*          value_type;
2821    typedef UsingShadowDecl*          reference;
2822    typedef UsingShadowDecl*          pointer;
2823    typedef std::forward_iterator_tag iterator_category;
2824    typedef std::ptrdiff_t            difference_type;
2825
2826    shadow_iterator() : Current(0) { }
2827    explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
2828
2829    reference operator*() const { return Current; }
2830    pointer operator->() const { return Current; }
2831
2832    shadow_iterator& operator++() {
2833      Current = Current->getNextUsingShadowDecl();
2834      return *this;
2835    }
2836
2837    shadow_iterator operator++(int) {
2838      shadow_iterator tmp(*this);
2839      ++(*this);
2840      return tmp;
2841    }
2842
2843    friend bool operator==(shadow_iterator x, shadow_iterator y) {
2844      return x.Current == y.Current;
2845    }
2846    friend bool operator!=(shadow_iterator x, shadow_iterator y) {
2847      return x.Current != y.Current;
2848    }
2849  };
2850
2851  shadow_iterator shadow_begin() const {
2852    return shadow_iterator(FirstUsingShadow.getPointer());
2853  }
2854  shadow_iterator shadow_end() const { return shadow_iterator(); }
2855
2856  /// \brief Return the number of shadowed declarations associated with this
2857  /// using declaration.
2858  unsigned shadow_size() const {
2859    return std::distance(shadow_begin(), shadow_end());
2860  }
2861
2862  void addShadowDecl(UsingShadowDecl *S);
2863  void removeShadowDecl(UsingShadowDecl *S);
2864
2865  static UsingDecl *Create(ASTContext &C, DeclContext *DC,
2866                           SourceLocation UsingL,
2867                           NestedNameSpecifierLoc QualifierLoc,
2868                           const DeclarationNameInfo &NameInfo,
2869                           bool HasTypenameKeyword);
2870
2871  static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2872
2873  SourceRange getSourceRange() const LLVM_READONLY;
2874
2875  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2876  static bool classofKind(Kind K) { return K == Using; }
2877
2878  friend class ASTDeclReader;
2879  friend class ASTDeclWriter;
2880};
2881
2882/// \brief Represents a dependent using declaration which was not marked with
2883/// \c typename.
2884///
2885/// Unlike non-dependent using declarations, these *only* bring through
2886/// non-types; otherwise they would break two-phase lookup.
2887///
2888/// \code
2889/// template \<class T> class A : public Base<T> {
2890///   using Base<T>::foo;
2891/// };
2892/// \endcode
2893class UnresolvedUsingValueDecl : public ValueDecl {
2894  virtual void anchor();
2895
2896  /// \brief The source location of the 'using' keyword
2897  SourceLocation UsingLocation;
2898
2899  /// \brief The nested-name-specifier that precedes the name.
2900  NestedNameSpecifierLoc QualifierLoc;
2901
2902  /// \brief Provides source/type location info for the declaration name
2903  /// embedded in the ValueDecl base class.
2904  DeclarationNameLoc DNLoc;
2905
2906  UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
2907                           SourceLocation UsingLoc,
2908                           NestedNameSpecifierLoc QualifierLoc,
2909                           const DeclarationNameInfo &NameInfo)
2910    : ValueDecl(UnresolvedUsingValue, DC,
2911                NameInfo.getLoc(), NameInfo.getName(), Ty),
2912      UsingLocation(UsingLoc), QualifierLoc(QualifierLoc),
2913      DNLoc(NameInfo.getInfo())
2914  { }
2915
2916public:
2917  /// \brief Returns the source location of the 'using' keyword.
2918  SourceLocation getUsingLoc() const { return UsingLocation; }
2919
2920  /// \brief Set the source location of the 'using' keyword.
2921  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
2922
2923  /// \brief Return true if it is a C++03 access declaration (no 'using').
2924  bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
2925
2926  /// \brief Retrieve the nested-name-specifier that qualifies the name,
2927  /// with source-location information.
2928  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2929
2930  /// \brief Retrieve the nested-name-specifier that qualifies the name.
2931  NestedNameSpecifier *getQualifier() const {
2932    return QualifierLoc.getNestedNameSpecifier();
2933  }
2934
2935  DeclarationNameInfo getNameInfo() const {
2936    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2937  }
2938
2939  static UnresolvedUsingValueDecl *
2940    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
2941           NestedNameSpecifierLoc QualifierLoc,
2942           const DeclarationNameInfo &NameInfo);
2943
2944  static UnresolvedUsingValueDecl *
2945  CreateDeserialized(ASTContext &C, unsigned ID);
2946
2947  SourceRange getSourceRange() const LLVM_READONLY;
2948
2949  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2950  static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
2951
2952  friend class ASTDeclReader;
2953  friend class ASTDeclWriter;
2954};
2955
2956/// \brief Represents a dependent using declaration which was marked with
2957/// \c typename.
2958///
2959/// \code
2960/// template \<class T> class A : public Base<T> {
2961///   using typename Base<T>::foo;
2962/// };
2963/// \endcode
2964///
2965/// The type associated with an unresolved using typename decl is
2966/// currently always a typename type.
2967class UnresolvedUsingTypenameDecl : public TypeDecl {
2968  virtual void anchor();
2969
2970  /// \brief The source location of the 'typename' keyword
2971  SourceLocation TypenameLocation;
2972
2973  /// \brief The nested-name-specifier that precedes the name.
2974  NestedNameSpecifierLoc QualifierLoc;
2975
2976  UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
2977                              SourceLocation TypenameLoc,
2978                              NestedNameSpecifierLoc QualifierLoc,
2979                              SourceLocation TargetNameLoc,
2980                              IdentifierInfo *TargetName)
2981    : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
2982               UsingLoc),
2983      TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { }
2984
2985  friend class ASTDeclReader;
2986
2987public:
2988  /// \brief Returns the source location of the 'using' keyword.
2989  SourceLocation getUsingLoc() const { return getLocStart(); }
2990
2991  /// \brief Returns the source location of the 'typename' keyword.
2992  SourceLocation getTypenameLoc() const { return TypenameLocation; }
2993
2994  /// \brief Retrieve the nested-name-specifier that qualifies the name,
2995  /// with source-location information.
2996  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2997
2998  /// \brief Retrieve the nested-name-specifier that qualifies the name.
2999  NestedNameSpecifier *getQualifier() const {
3000    return QualifierLoc.getNestedNameSpecifier();
3001  }
3002
3003  static UnresolvedUsingTypenameDecl *
3004    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3005           SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
3006           SourceLocation TargetNameLoc, DeclarationName TargetName);
3007
3008  static UnresolvedUsingTypenameDecl *
3009  CreateDeserialized(ASTContext &C, unsigned ID);
3010
3011  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3012  static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
3013};
3014
3015/// \brief Represents a C++11 static_assert declaration.
3016class StaticAssertDecl : public Decl {
3017  virtual void anchor();
3018  llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
3019  StringLiteral *Message;
3020  SourceLocation RParenLoc;
3021
3022  StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
3023                   Expr *AssertExpr, StringLiteral *Message,
3024                   SourceLocation RParenLoc, bool Failed)
3025    : Decl(StaticAssert, DC, StaticAssertLoc),
3026      AssertExprAndFailed(AssertExpr, Failed), Message(Message),
3027      RParenLoc(RParenLoc) { }
3028
3029public:
3030  static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
3031                                  SourceLocation StaticAssertLoc,
3032                                  Expr *AssertExpr, StringLiteral *Message,
3033                                  SourceLocation RParenLoc, bool Failed);
3034  static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3035
3036  Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
3037  const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
3038
3039  StringLiteral *getMessage() { return Message; }
3040  const StringLiteral *getMessage() const { return Message; }
3041
3042  bool isFailed() const { return AssertExprAndFailed.getInt(); }
3043
3044  SourceLocation getRParenLoc() const { return RParenLoc; }
3045
3046  SourceRange getSourceRange() const LLVM_READONLY {
3047    return SourceRange(getLocation(), getRParenLoc());
3048  }
3049
3050  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3051  static bool classofKind(Kind K) { return K == StaticAssert; }
3052
3053  friend class ASTDeclReader;
3054};
3055
3056/// An instance of this class represents the declaration of a property
3057/// member.  This is a Microsoft extension to C++, first introduced in
3058/// Visual Studio .NET 2003 as a parallel to similar features in C#
3059/// and Managed C++.
3060///
3061/// A property must always be a non-static class member.
3062///
3063/// A property member superficially resembles a non-static data
3064/// member, except preceded by a property attribute:
3065///   __declspec(property(get=GetX, put=PutX)) int x;
3066/// Either (but not both) of the 'get' and 'put' names may be omitted.
3067///
3068/// A reference to a property is always an lvalue.  If the lvalue
3069/// undergoes lvalue-to-rvalue conversion, then a getter name is
3070/// required, and that member is called with no arguments.
3071/// If the lvalue is assigned into, then a setter name is required,
3072/// and that member is called with one argument, the value assigned.
3073/// Both operations are potentially overloaded.  Compound assignments
3074/// are permitted, as are the increment and decrement operators.
3075///
3076/// The getter and putter methods are permitted to be overloaded,
3077/// although their return and parameter types are subject to certain
3078/// restrictions according to the type of the property.
3079///
3080/// A property declared using an incomplete array type may
3081/// additionally be subscripted, adding extra parameters to the getter
3082/// and putter methods.
3083class MSPropertyDecl : public DeclaratorDecl {
3084  IdentifierInfo *GetterId, *SetterId;
3085
3086public:
3087  MSPropertyDecl(DeclContext *DC, SourceLocation L,
3088                 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
3089                 SourceLocation StartL, IdentifierInfo *Getter,
3090                 IdentifierInfo *Setter):
3091  DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL), GetterId(Getter),
3092  SetterId(Setter) {}
3093
3094  static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3095
3096  static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
3097
3098  bool hasGetter() const { return GetterId != NULL; }
3099  IdentifierInfo* getGetterId() const { return GetterId; }
3100  bool hasSetter() const { return SetterId != NULL; }
3101  IdentifierInfo* getSetterId() const { return SetterId; }
3102
3103  friend class ASTDeclReader;
3104};
3105
3106/// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
3107/// into a diagnostic with <<.
3108const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3109                                    AccessSpecifier AS);
3110
3111const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
3112                                    AccessSpecifier AS);
3113
3114} // end namespace clang
3115
3116#endif
3117