1//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements an idiom recognizer that transforms simple loops into a
11// non-loop form.  In cases that this kicks in, it can be a significant
12// performance win.
13//
14//===----------------------------------------------------------------------===//
15//
16// TODO List:
17//
18// Future loop memory idioms to recognize:
19//   memcmp, memmove, strlen, etc.
20// Future floating point idioms to recognize in -ffast-math mode:
21//   fpowi
22// Future integer operation idioms to recognize:
23//   ctpop, ctlz, cttz
24//
25// Beware that isel's default lowering for ctpop is highly inefficient for
26// i64 and larger types when i64 is legal and the value has few bits set.  It
27// would be good to enhance isel to emit a loop for ctpop in this case.
28//
29// We should enhance the memset/memcpy recognition to handle multiple stores in
30// the loop.  This would handle things like:
31//   void foo(_Complex float *P)
32//     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
33//
34// We should enhance this to handle negative strides through memory.
35// Alternatively (and perhaps better) we could rely on an earlier pass to force
36// forward iteration through memory, which is generally better for cache
37// behavior.  Negative strides *do* happen for memset/memcpy loops.
38//
39// This could recognize common matrix multiplies and dot product idioms and
40// replace them with calls to BLAS (if linked in??).
41//
42//===----------------------------------------------------------------------===//
43
44#define DEBUG_TYPE "loop-idiom"
45#include "llvm/Transforms/Scalar.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Analysis/AliasAnalysis.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Analysis/ScalarEvolutionExpander.h"
50#include "llvm/Analysis/ScalarEvolutionExpressions.h"
51#include "llvm/Analysis/TargetTransformInfo.h"
52#include "llvm/Analysis/ValueTracking.h"
53#include "llvm/IR/DataLayout.h"
54#include "llvm/IR/IRBuilder.h"
55#include "llvm/IR/IntrinsicInst.h"
56#include "llvm/IR/Module.h"
57#include "llvm/Support/Debug.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/Target/TargetLibraryInfo.h"
60#include "llvm/Transforms/Utils/Local.h"
61using namespace llvm;
62
63STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
64STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
65
66namespace {
67
68  class LoopIdiomRecognize;
69
70  /// This class defines some utility functions for loop idiom recognization.
71  class LIRUtil {
72  public:
73    /// Return true iff the block contains nothing but an uncondition branch
74    /// (aka goto instruction).
75    static bool isAlmostEmpty(BasicBlock *);
76
77    static BranchInst *getBranch(BasicBlock *BB) {
78      return dyn_cast<BranchInst>(BB->getTerminator());
79    }
80
81    /// Return the condition of the branch terminating the given basic block.
82    static Value *getBrCondtion(BasicBlock *);
83
84    /// Derive the precondition block (i.e the block that guards the loop
85    /// preheader) from the given preheader.
86    static BasicBlock *getPrecondBb(BasicBlock *PreHead);
87  };
88
89  /// This class is to recoginize idioms of population-count conducted in
90  /// a noncountable loop. Currently it only recognizes this pattern:
91  /// \code
92  ///   while(x) {cnt++; ...; x &= x - 1; ...}
93  /// \endcode
94  class NclPopcountRecognize {
95    LoopIdiomRecognize &LIR;
96    Loop *CurLoop;
97    BasicBlock *PreCondBB;
98
99    typedef IRBuilder<> IRBuilderTy;
100
101  public:
102    explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
103    bool recognize();
104
105  private:
106    /// Take a glimpse of the loop to see if we need to go ahead recoginizing
107    /// the idiom.
108    bool preliminaryScreen();
109
110    /// Check if the given conditional branch is based on the comparison
111    /// beween a variable and zero, and if the variable is non-zero, the
112    /// control yeilds to the loop entry. If the branch matches the behavior,
113    /// the variable involved in the comparion is returned. This function will
114    /// be called to see if the precondition and postcondition of the loop
115    /// are in desirable form.
116    Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
117
118    /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
119    /// is set to the instruction counting the pupulation bit. 2) \p CntPhi
120    /// is set to the corresponding phi node. 3) \p Var is set to the value
121    /// whose population bits are being counted.
122    bool detectIdiom
123      (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
124
125    /// Insert ctpop intrinsic function and some obviously dead instructions.
126    void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
127
128    /// Create llvm.ctpop.* intrinsic function.
129    CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
130  };
131
132  class LoopIdiomRecognize : public LoopPass {
133    Loop *CurLoop;
134    const DataLayout *TD;
135    DominatorTree *DT;
136    ScalarEvolution *SE;
137    TargetLibraryInfo *TLI;
138    const TargetTransformInfo *TTI;
139  public:
140    static char ID;
141    explicit LoopIdiomRecognize() : LoopPass(ID) {
142      initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
143      TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
144    }
145
146    bool runOnLoop(Loop *L, LPPassManager &LPM);
147    bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
148                        SmallVectorImpl<BasicBlock*> &ExitBlocks);
149
150    bool processLoopStore(StoreInst *SI, const SCEV *BECount);
151    bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
152
153    bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
154                                 unsigned StoreAlignment,
155                                 Value *SplatValue, Instruction *TheStore,
156                                 const SCEVAddRecExpr *Ev,
157                                 const SCEV *BECount);
158    bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
159                                    const SCEVAddRecExpr *StoreEv,
160                                    const SCEVAddRecExpr *LoadEv,
161                                    const SCEV *BECount);
162
163    /// This transformation requires natural loop information & requires that
164    /// loop preheaders be inserted into the CFG.
165    ///
166    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167      AU.addRequired<LoopInfo>();
168      AU.addPreserved<LoopInfo>();
169      AU.addRequiredID(LoopSimplifyID);
170      AU.addPreservedID(LoopSimplifyID);
171      AU.addRequiredID(LCSSAID);
172      AU.addPreservedID(LCSSAID);
173      AU.addRequired<AliasAnalysis>();
174      AU.addPreserved<AliasAnalysis>();
175      AU.addRequired<ScalarEvolution>();
176      AU.addPreserved<ScalarEvolution>();
177      AU.addPreserved<DominatorTree>();
178      AU.addRequired<DominatorTree>();
179      AU.addRequired<TargetLibraryInfo>();
180      AU.addRequired<TargetTransformInfo>();
181    }
182
183    const DataLayout *getDataLayout() {
184      return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
185    }
186
187    DominatorTree *getDominatorTree() {
188      return DT ? DT : (DT=&getAnalysis<DominatorTree>());
189    }
190
191    ScalarEvolution *getScalarEvolution() {
192      return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
193    }
194
195    TargetLibraryInfo *getTargetLibraryInfo() {
196      return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
197    }
198
199    const TargetTransformInfo *getTargetTransformInfo() {
200      return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
201    }
202
203    Loop *getLoop() const { return CurLoop; }
204
205  private:
206    bool runOnNoncountableLoop();
207    bool runOnCountableLoop();
208  };
209}
210
211char LoopIdiomRecognize::ID = 0;
212INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
213                      false, false)
214INITIALIZE_PASS_DEPENDENCY(LoopInfo)
215INITIALIZE_PASS_DEPENDENCY(DominatorTree)
216INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
217INITIALIZE_PASS_DEPENDENCY(LCSSA)
218INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
219INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
220INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
221INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
222INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
223                    false, false)
224
225Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
226
227/// deleteDeadInstruction - Delete this instruction.  Before we do, go through
228/// and zero out all the operands of this instruction.  If any of them become
229/// dead, delete them and the computation tree that feeds them.
230///
231static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
232                                  const TargetLibraryInfo *TLI) {
233  SmallVector<Instruction*, 32> NowDeadInsts;
234
235  NowDeadInsts.push_back(I);
236
237  // Before we touch this instruction, remove it from SE!
238  do {
239    Instruction *DeadInst = NowDeadInsts.pop_back_val();
240
241    // This instruction is dead, zap it, in stages.  Start by removing it from
242    // SCEV.
243    SE.forgetValue(DeadInst);
244
245    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
246      Value *Op = DeadInst->getOperand(op);
247      DeadInst->setOperand(op, 0);
248
249      // If this operand just became dead, add it to the NowDeadInsts list.
250      if (!Op->use_empty()) continue;
251
252      if (Instruction *OpI = dyn_cast<Instruction>(Op))
253        if (isInstructionTriviallyDead(OpI, TLI))
254          NowDeadInsts.push_back(OpI);
255    }
256
257    DeadInst->eraseFromParent();
258
259  } while (!NowDeadInsts.empty());
260}
261
262/// deleteIfDeadInstruction - If the specified value is a dead instruction,
263/// delete it and any recursively used instructions.
264static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
265                                    const TargetLibraryInfo *TLI) {
266  if (Instruction *I = dyn_cast<Instruction>(V))
267    if (isInstructionTriviallyDead(I, TLI))
268      deleteDeadInstruction(I, SE, TLI);
269}
270
271//===----------------------------------------------------------------------===//
272//
273//          Implementation of LIRUtil
274//
275//===----------------------------------------------------------------------===//
276
277// This function will return true iff the given block contains nothing but goto.
278// A typical usage of this function is to check if the preheader function is
279// "almost" empty such that generated intrinsic functions can be moved across
280// the preheader and be placed at the end of the precondition block without
281// the concern of breaking data dependence.
282bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
283  if (BranchInst *Br = getBranch(BB)) {
284    return Br->isUnconditional() && BB->size() == 1;
285  }
286  return false;
287}
288
289Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
290  BranchInst *Br = getBranch(BB);
291  return Br ? Br->getCondition() : 0;
292}
293
294BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
295  if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
296    BranchInst *Br = getBranch(BB);
297    return Br && Br->isConditional() ? BB : 0;
298  }
299  return 0;
300}
301
302//===----------------------------------------------------------------------===//
303//
304//          Implementation of NclPopcountRecognize
305//
306//===----------------------------------------------------------------------===//
307
308NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
309  LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
310}
311
312bool NclPopcountRecognize::preliminaryScreen() {
313  const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
314  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
315    return false;
316
317  // Counting population are usually conducted by few arithmetic instructions.
318  // Such instructions can be easilly "absorbed" by vacant slots in a
319  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
320  // in a compact loop.
321
322  // Give up if the loop has multiple blocks or multiple backedges.
323  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
324    return false;
325
326  BasicBlock *LoopBody = *(CurLoop->block_begin());
327  if (LoopBody->size() >= 20) {
328    // The loop is too big, bail out.
329    return false;
330  }
331
332  // It should have a preheader containing nothing but a goto instruction.
333  BasicBlock *PreHead = CurLoop->getLoopPreheader();
334  if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
335    return false;
336
337  // It should have a precondition block where the generated popcount instrinsic
338  // function will be inserted.
339  PreCondBB = LIRUtil::getPrecondBb(PreHead);
340  if (!PreCondBB)
341    return false;
342
343  return true;
344}
345
346Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
347                                             BasicBlock *LoopEntry) const {
348  if (!Br || !Br->isConditional())
349    return 0;
350
351  ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
352  if (!Cond)
353    return 0;
354
355  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
356  if (!CmpZero || !CmpZero->isZero())
357    return 0;
358
359  ICmpInst::Predicate Pred = Cond->getPredicate();
360  if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
361      (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
362    return Cond->getOperand(0);
363
364  return 0;
365}
366
367bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
368                                       PHINode *&CntPhi,
369                                       Value *&Var) const {
370  // Following code tries to detect this idiom:
371  //
372  //    if (x0 != 0)
373  //      goto loop-exit // the precondition of the loop
374  //    cnt0 = init-val;
375  //    do {
376  //       x1 = phi (x0, x2);
377  //       cnt1 = phi(cnt0, cnt2);
378  //
379  //       cnt2 = cnt1 + 1;
380  //        ...
381  //       x2 = x1 & (x1 - 1);
382  //        ...
383  //    } while(x != 0);
384  //
385  // loop-exit:
386  //
387
388  // step 1: Check to see if the look-back branch match this pattern:
389  //    "if (a!=0) goto loop-entry".
390  BasicBlock *LoopEntry;
391  Instruction *DefX2, *CountInst;
392  Value *VarX1, *VarX0;
393  PHINode *PhiX, *CountPhi;
394
395  DefX2 = CountInst = 0;
396  VarX1 = VarX0 = 0;
397  PhiX = CountPhi = 0;
398  LoopEntry = *(CurLoop->block_begin());
399
400  // step 1: Check if the loop-back branch is in desirable form.
401  {
402    if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
403      DefX2 = dyn_cast<Instruction>(T);
404    else
405      return false;
406  }
407
408  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
409  {
410    if (!DefX2 || DefX2->getOpcode() != Instruction::And)
411      return false;
412
413    BinaryOperator *SubOneOp;
414
415    if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
416      VarX1 = DefX2->getOperand(1);
417    else {
418      VarX1 = DefX2->getOperand(0);
419      SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
420    }
421    if (!SubOneOp)
422      return false;
423
424    Instruction *SubInst = cast<Instruction>(SubOneOp);
425    ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
426    if (!Dec ||
427        !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
428          (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
429      return false;
430    }
431  }
432
433  // step 3: Check the recurrence of variable X
434  {
435    PhiX = dyn_cast<PHINode>(VarX1);
436    if (!PhiX ||
437        (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
438      return false;
439    }
440  }
441
442  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
443  {
444    CountInst = NULL;
445    for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
446           IterE = LoopEntry->end(); Iter != IterE; Iter++) {
447      Instruction *Inst = Iter;
448      if (Inst->getOpcode() != Instruction::Add)
449        continue;
450
451      ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
452      if (!Inc || !Inc->isOne())
453        continue;
454
455      PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
456      if (!Phi || Phi->getParent() != LoopEntry)
457        continue;
458
459      // Check if the result of the instruction is live of the loop.
460      bool LiveOutLoop = false;
461      for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
462             I != E;  I++) {
463        if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
464          LiveOutLoop = true; break;
465        }
466      }
467
468      if (LiveOutLoop) {
469        CountInst = Inst;
470        CountPhi = Phi;
471        break;
472      }
473    }
474
475    if (!CountInst)
476      return false;
477  }
478
479  // step 5: check if the precondition is in this form:
480  //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
481  {
482    BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
483    Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
484    if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
485      return false;
486
487    CntInst = CountInst;
488    CntPhi = CountPhi;
489    Var = T;
490  }
491
492  return true;
493}
494
495void NclPopcountRecognize::transform(Instruction *CntInst,
496                                     PHINode *CntPhi, Value *Var) {
497
498  ScalarEvolution *SE = LIR.getScalarEvolution();
499  TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
500  BasicBlock *PreHead = CurLoop->getLoopPreheader();
501  BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
502  const DebugLoc DL = CntInst->getDebugLoc();
503
504  // Assuming before transformation, the loop is following:
505  //  if (x) // the precondition
506  //     do { cnt++; x &= x - 1; } while(x);
507
508  // Step 1: Insert the ctpop instruction at the end of the precondition block
509  IRBuilderTy Builder(PreCondBr);
510  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
511  {
512    PopCnt = createPopcntIntrinsic(Builder, Var, DL);
513    NewCount = PopCntZext =
514      Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
515
516    if (NewCount != PopCnt)
517      (cast<Instruction>(NewCount))->setDebugLoc(DL);
518
519    // TripCnt is exactly the number of iterations the loop has
520    TripCnt = NewCount;
521
522    // If the popoulation counter's initial value is not zero, insert Add Inst.
523    Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
524    ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
525    if (!InitConst || !InitConst->isZero()) {
526      NewCount = Builder.CreateAdd(NewCount, CntInitVal);
527      (cast<Instruction>(NewCount))->setDebugLoc(DL);
528    }
529  }
530
531  // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
532  //   "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
533  //   function would be partial dead code, and downstream passes will drag
534  //   it back from the precondition block to the preheader.
535  {
536    ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
537
538    Value *Opnd0 = PopCntZext;
539    Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
540    if (PreCond->getOperand(0) != Var)
541      std::swap(Opnd0, Opnd1);
542
543    ICmpInst *NewPreCond =
544      cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
545    PreCond->replaceAllUsesWith(NewPreCond);
546
547    deleteDeadInstruction(PreCond, *SE, TLI);
548  }
549
550  // Step 3: Note that the population count is exactly the trip count of the
551  // loop in question, which enble us to to convert the loop from noncountable
552  // loop into a countable one. The benefit is twofold:
553  //
554  //  - If the loop only counts population, the entire loop become dead after
555  //    the transformation. It is lots easier to prove a countable loop dead
556  //    than to prove a noncountable one. (In some C dialects, a infite loop
557  //    isn't dead even if it computes nothing useful. In general, DCE needs
558  //    to prove a noncountable loop finite before safely delete it.)
559  //
560  //  - If the loop also performs something else, it remains alive.
561  //    Since it is transformed to countable form, it can be aggressively
562  //    optimized by some optimizations which are in general not applicable
563  //    to a noncountable loop.
564  //
565  // After this step, this loop (conceptually) would look like following:
566  //   newcnt = __builtin_ctpop(x);
567  //   t = newcnt;
568  //   if (x)
569  //     do { cnt++; x &= x-1; t--) } while (t > 0);
570  BasicBlock *Body = *(CurLoop->block_begin());
571  {
572    BranchInst *LbBr = LIRUtil::getBranch(Body);
573    ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
574    Type *Ty = TripCnt->getType();
575
576    PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
577
578    Builder.SetInsertPoint(LbCond);
579    Value *Opnd1 = cast<Value>(TcPhi);
580    Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
581    Instruction *TcDec =
582      cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
583
584    TcPhi->addIncoming(TripCnt, PreHead);
585    TcPhi->addIncoming(TcDec, Body);
586
587    CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
588      CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
589    LbCond->setPredicate(Pred);
590    LbCond->setOperand(0, TcDec);
591    LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
592  }
593
594  // Step 4: All the references to the original population counter outside
595  //  the loop are replaced with the NewCount -- the value returned from
596  //  __builtin_ctpop().
597  {
598    SmallVector<Value *, 4> CntUses;
599    for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
600         I != E; I++) {
601      if (cast<Instruction>(*I)->getParent() != Body)
602        CntUses.push_back(*I);
603    }
604    for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
605      (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
606    }
607  }
608
609  // step 5: Forget the "non-computable" trip-count SCEV associated with the
610  //   loop. The loop would otherwise not be deleted even if it becomes empty.
611  SE->forgetLoop(CurLoop);
612}
613
614CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
615                                                      Value *Val, DebugLoc DL) {
616  Value *Ops[] = { Val };
617  Type *Tys[] = { Val->getType() };
618
619  Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
620  Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
621  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
622  CI->setDebugLoc(DL);
623
624  return CI;
625}
626
627/// recognize - detect population count idiom in a non-countable loop. If
628///   detected, transform the relevant code to popcount intrinsic function
629///   call, and return true; otherwise, return false.
630bool NclPopcountRecognize::recognize() {
631
632  if (!LIR.getTargetTransformInfo())
633    return false;
634
635  LIR.getScalarEvolution();
636
637  if (!preliminaryScreen())
638    return false;
639
640  Instruction *CntInst;
641  PHINode *CntPhi;
642  Value *Val;
643  if (!detectIdiom(CntInst, CntPhi, Val))
644    return false;
645
646  transform(CntInst, CntPhi, Val);
647  return true;
648}
649
650//===----------------------------------------------------------------------===//
651//
652//          Implementation of LoopIdiomRecognize
653//
654//===----------------------------------------------------------------------===//
655
656bool LoopIdiomRecognize::runOnCountableLoop() {
657  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
658  if (isa<SCEVCouldNotCompute>(BECount)) return false;
659
660  // If this loop executes exactly one time, then it should be peeled, not
661  // optimized by this pass.
662  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
663    if (BECst->getValue()->getValue() == 0)
664      return false;
665
666  // We require target data for now.
667  if (!getDataLayout())
668    return false;
669
670  // set DT
671  (void)getDominatorTree();
672
673  LoopInfo &LI = getAnalysis<LoopInfo>();
674  TLI = &getAnalysis<TargetLibraryInfo>();
675
676  // set TLI
677  (void)getTargetLibraryInfo();
678
679  SmallVector<BasicBlock*, 8> ExitBlocks;
680  CurLoop->getUniqueExitBlocks(ExitBlocks);
681
682  DEBUG(dbgs() << "loop-idiom Scanning: F["
683               << CurLoop->getHeader()->getParent()->getName()
684               << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
685
686  bool MadeChange = false;
687  // Scan all the blocks in the loop that are not in subloops.
688  for (Loop::block_iterator BI = CurLoop->block_begin(),
689         E = CurLoop->block_end(); BI != E; ++BI) {
690    // Ignore blocks in subloops.
691    if (LI.getLoopFor(*BI) != CurLoop)
692      continue;
693
694    MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
695  }
696  return MadeChange;
697}
698
699bool LoopIdiomRecognize::runOnNoncountableLoop() {
700  NclPopcountRecognize Popcount(*this);
701  if (Popcount.recognize())
702    return true;
703
704  return false;
705}
706
707bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
708  CurLoop = L;
709
710  // If the loop could not be converted to canonical form, it must have an
711  // indirectbr in it, just give up.
712  if (!L->getLoopPreheader())
713    return false;
714
715  // Disable loop idiom recognition if the function's name is a common idiom.
716  StringRef Name = L->getHeader()->getParent()->getName();
717  if (Name == "memset" || Name == "memcpy")
718    return false;
719
720  SE = &getAnalysis<ScalarEvolution>();
721  if (SE->hasLoopInvariantBackedgeTakenCount(L))
722    return runOnCountableLoop();
723  return runOnNoncountableLoop();
724}
725
726/// runOnLoopBlock - Process the specified block, which lives in a counted loop
727/// with the specified backedge count.  This block is known to be in the current
728/// loop and not in any subloops.
729bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
730                                     SmallVectorImpl<BasicBlock*> &ExitBlocks) {
731  // We can only promote stores in this block if they are unconditionally
732  // executed in the loop.  For a block to be unconditionally executed, it has
733  // to dominate all the exit blocks of the loop.  Verify this now.
734  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
735    if (!DT->dominates(BB, ExitBlocks[i]))
736      return false;
737
738  bool MadeChange = false;
739  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
740    Instruction *Inst = I++;
741    // Look for store instructions, which may be optimized to memset/memcpy.
742    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
743      WeakVH InstPtr(I);
744      if (!processLoopStore(SI, BECount)) continue;
745      MadeChange = true;
746
747      // If processing the store invalidated our iterator, start over from the
748      // top of the block.
749      if (InstPtr == 0)
750        I = BB->begin();
751      continue;
752    }
753
754    // Look for memset instructions, which may be optimized to a larger memset.
755    if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
756      WeakVH InstPtr(I);
757      if (!processLoopMemSet(MSI, BECount)) continue;
758      MadeChange = true;
759
760      // If processing the memset invalidated our iterator, start over from the
761      // top of the block.
762      if (InstPtr == 0)
763        I = BB->begin();
764      continue;
765    }
766  }
767
768  return MadeChange;
769}
770
771
772/// processLoopStore - See if this store can be promoted to a memset or memcpy.
773bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
774  if (!SI->isSimple()) return false;
775
776  Value *StoredVal = SI->getValueOperand();
777  Value *StorePtr = SI->getPointerOperand();
778
779  // Reject stores that are so large that they overflow an unsigned.
780  uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
781  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
782    return false;
783
784  // See if the pointer expression is an AddRec like {base,+,1} on the current
785  // loop, which indicates a strided store.  If we have something else, it's a
786  // random store we can't handle.
787  const SCEVAddRecExpr *StoreEv =
788    dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
789  if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
790    return false;
791
792  // Check to see if the stride matches the size of the store.  If so, then we
793  // know that every byte is touched in the loop.
794  unsigned StoreSize = (unsigned)SizeInBits >> 3;
795  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
796
797  if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
798    // TODO: Could also handle negative stride here someday, that will require
799    // the validity check in mayLoopAccessLocation to be updated though.
800    // Enable this to print exact negative strides.
801    if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
802      dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
803      dbgs() << "BB: " << *SI->getParent();
804    }
805
806    return false;
807  }
808
809  // See if we can optimize just this store in isolation.
810  if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
811                              StoredVal, SI, StoreEv, BECount))
812    return true;
813
814  // If the stored value is a strided load in the same loop with the same stride
815  // this this may be transformable into a memcpy.  This kicks in for stuff like
816  //   for (i) A[i] = B[i];
817  if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
818    const SCEVAddRecExpr *LoadEv =
819      dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
820    if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
821        StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
822      if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
823        return true;
824  }
825  //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
826
827  return false;
828}
829
830/// processLoopMemSet - See if this memset can be promoted to a large memset.
831bool LoopIdiomRecognize::
832processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
833  // We can only handle non-volatile memsets with a constant size.
834  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
835
836  // If we're not allowed to hack on memset, we fail.
837  if (!TLI->has(LibFunc::memset))
838    return false;
839
840  Value *Pointer = MSI->getDest();
841
842  // See if the pointer expression is an AddRec like {base,+,1} on the current
843  // loop, which indicates a strided store.  If we have something else, it's a
844  // random store we can't handle.
845  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
846  if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
847    return false;
848
849  // Reject memsets that are so large that they overflow an unsigned.
850  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
851  if ((SizeInBytes >> 32) != 0)
852    return false;
853
854  // Check to see if the stride matches the size of the memset.  If so, then we
855  // know that every byte is touched in the loop.
856  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
857
858  // TODO: Could also handle negative stride here someday, that will require the
859  // validity check in mayLoopAccessLocation to be updated though.
860  if (Stride == 0 || MSI->getLength() != Stride->getValue())
861    return false;
862
863  return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
864                                 MSI->getAlignment(), MSI->getValue(),
865                                 MSI, Ev, BECount);
866}
867
868
869/// mayLoopAccessLocation - Return true if the specified loop might access the
870/// specified pointer location, which is a loop-strided access.  The 'Access'
871/// argument specifies what the verboten forms of access are (read or write).
872static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
873                                  Loop *L, const SCEV *BECount,
874                                  unsigned StoreSize, AliasAnalysis &AA,
875                                  Instruction *IgnoredStore) {
876  // Get the location that may be stored across the loop.  Since the access is
877  // strided positively through memory, we say that the modified location starts
878  // at the pointer and has infinite size.
879  uint64_t AccessSize = AliasAnalysis::UnknownSize;
880
881  // If the loop iterates a fixed number of times, we can refine the access size
882  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
883  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
884    AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
885
886  // TODO: For this to be really effective, we have to dive into the pointer
887  // operand in the store.  Store to &A[i] of 100 will always return may alias
888  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
889  // which will then no-alias a store to &A[100].
890  AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
891
892  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
893       ++BI)
894    for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
895      if (&*I != IgnoredStore &&
896          (AA.getModRefInfo(I, StoreLoc) & Access))
897        return true;
898
899  return false;
900}
901
902/// getMemSetPatternValue - If a strided store of the specified value is safe to
903/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
904/// be passed in.  Otherwise, return null.
905///
906/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
907/// just replicate their input array and then pass on to memset_pattern16.
908static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
909  // If the value isn't a constant, we can't promote it to being in a constant
910  // array.  We could theoretically do a store to an alloca or something, but
911  // that doesn't seem worthwhile.
912  Constant *C = dyn_cast<Constant>(V);
913  if (C == 0) return 0;
914
915  // Only handle simple values that are a power of two bytes in size.
916  uint64_t Size = TD.getTypeSizeInBits(V->getType());
917  if (Size == 0 || (Size & 7) || (Size & (Size-1)))
918    return 0;
919
920  // Don't care enough about darwin/ppc to implement this.
921  if (TD.isBigEndian())
922    return 0;
923
924  // Convert to size in bytes.
925  Size /= 8;
926
927  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
928  // if the top and bottom are the same (e.g. for vectors and large integers).
929  if (Size > 16) return 0;
930
931  // If the constant is exactly 16 bytes, just use it.
932  if (Size == 16) return C;
933
934  // Otherwise, we'll use an array of the constants.
935  unsigned ArraySize = 16/Size;
936  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
937  return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
938}
939
940
941/// processLoopStridedStore - We see a strided store of some value.  If we can
942/// transform this into a memset or memset_pattern in the loop preheader, do so.
943bool LoopIdiomRecognize::
944processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
945                        unsigned StoreAlignment, Value *StoredVal,
946                        Instruction *TheStore, const SCEVAddRecExpr *Ev,
947                        const SCEV *BECount) {
948
949  // If the stored value is a byte-wise value (like i32 -1), then it may be
950  // turned into a memset of i8 -1, assuming that all the consecutive bytes
951  // are stored.  A store of i32 0x01020304 can never be turned into a memset,
952  // but it can be turned into memset_pattern if the target supports it.
953  Value *SplatValue = isBytewiseValue(StoredVal);
954  Constant *PatternValue = 0;
955
956  unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
957
958  // If we're allowed to form a memset, and the stored value would be acceptable
959  // for memset, use it.
960  if (SplatValue && TLI->has(LibFunc::memset) &&
961      // Verify that the stored value is loop invariant.  If not, we can't
962      // promote the memset.
963      CurLoop->isLoopInvariant(SplatValue)) {
964    // Keep and use SplatValue.
965    PatternValue = 0;
966  } else if (DestAS == 0 &&
967             TLI->has(LibFunc::memset_pattern16) &&
968             (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
969    // Don't create memset_pattern16s with address spaces.
970    // It looks like we can use PatternValue!
971    SplatValue = 0;
972  } else {
973    // Otherwise, this isn't an idiom we can transform.  For example, we can't
974    // do anything with a 3-byte store.
975    return false;
976  }
977
978  // The trip count of the loop and the base pointer of the addrec SCEV is
979  // guaranteed to be loop invariant, which means that it should dominate the
980  // header.  This allows us to insert code for it in the preheader.
981  BasicBlock *Preheader = CurLoop->getLoopPreheader();
982  IRBuilder<> Builder(Preheader->getTerminator());
983  SCEVExpander Expander(*SE, "loop-idiom");
984
985  Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
986
987  // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
988  // this into a memset in the loop preheader now if we want.  However, this
989  // would be unsafe to do if there is anything else in the loop that may read
990  // or write to the aliased location.  Check for any overlap by generating the
991  // base pointer and checking the region.
992  Value *BasePtr =
993    Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
994                           Preheader->getTerminator());
995
996  if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
997                            CurLoop, BECount,
998                            StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
999    Expander.clear();
1000    // If we generated new code for the base pointer, clean up.
1001    deleteIfDeadInstruction(BasePtr, *SE, TLI);
1002    return false;
1003  }
1004
1005  // Okay, everything looks good, insert the memset.
1006
1007  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1008  // pointer size if it isn't already.
1009  Type *IntPtr = Builder.getIntPtrTy(TD, DestAS);
1010  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1011
1012  const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
1013                                         SCEV::FlagNUW);
1014  if (StoreSize != 1) {
1015    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
1016                               SCEV::FlagNUW);
1017  }
1018
1019  Value *NumBytes =
1020    Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
1021
1022  CallInst *NewCall;
1023  if (SplatValue) {
1024    NewCall = Builder.CreateMemSet(BasePtr,
1025                                   SplatValue,
1026                                   NumBytes,
1027                                   StoreAlignment);
1028  } else {
1029    // Everything is emitted in default address space
1030    Type *Int8PtrTy = DestInt8PtrTy;
1031
1032    Module *M = TheStore->getParent()->getParent()->getParent();
1033    Value *MSP = M->getOrInsertFunction("memset_pattern16",
1034                                        Builder.getVoidTy(),
1035                                        Int8PtrTy,
1036                                        Int8PtrTy,
1037                                        IntPtr,
1038                                        (void*)0);
1039
1040    // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1041    // an constant array of 16-bytes.  Plop the value into a mergable global.
1042    GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1043                                            GlobalValue::InternalLinkage,
1044                                            PatternValue, ".memset_pattern");
1045    GV->setUnnamedAddr(true); // Ok to merge these.
1046    GV->setAlignment(16);
1047    Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1048    NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
1049  }
1050
1051  DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1052               << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
1053  NewCall->setDebugLoc(TheStore->getDebugLoc());
1054
1055  // Okay, the memset has been formed.  Zap the original store and anything that
1056  // feeds into it.
1057  deleteDeadInstruction(TheStore, *SE, TLI);
1058  ++NumMemSet;
1059  return true;
1060}
1061
1062/// processLoopStoreOfLoopLoad - We see a strided store whose value is a
1063/// same-strided load.
1064bool LoopIdiomRecognize::
1065processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
1066                           const SCEVAddRecExpr *StoreEv,
1067                           const SCEVAddRecExpr *LoadEv,
1068                           const SCEV *BECount) {
1069  // If we're not allowed to form memcpy, we fail.
1070  if (!TLI->has(LibFunc::memcpy))
1071    return false;
1072
1073  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1074
1075  // The trip count of the loop and the base pointer of the addrec SCEV is
1076  // guaranteed to be loop invariant, which means that it should dominate the
1077  // header.  This allows us to insert code for it in the preheader.
1078  BasicBlock *Preheader = CurLoop->getLoopPreheader();
1079  IRBuilder<> Builder(Preheader->getTerminator());
1080  SCEVExpander Expander(*SE, "loop-idiom");
1081
1082  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1083  // this into a memcpy in the loop preheader now if we want.  However, this
1084  // would be unsafe to do if there is anything else in the loop that may read
1085  // or write the memory region we're storing to.  This includes the load that
1086  // feeds the stores.  Check for an alias by generating the base address and
1087  // checking everything.
1088  Value *StoreBasePtr =
1089    Expander.expandCodeFor(StoreEv->getStart(),
1090                           Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
1091                           Preheader->getTerminator());
1092
1093  if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
1094                            CurLoop, BECount, StoreSize,
1095                            getAnalysis<AliasAnalysis>(), SI)) {
1096    Expander.clear();
1097    // If we generated new code for the base pointer, clean up.
1098    deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1099    return false;
1100  }
1101
1102  // For a memcpy, we have to make sure that the input array is not being
1103  // mutated by the loop.
1104  Value *LoadBasePtr =
1105    Expander.expandCodeFor(LoadEv->getStart(),
1106                           Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
1107                           Preheader->getTerminator());
1108
1109  if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
1110                            StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
1111    Expander.clear();
1112    // If we generated new code for the base pointer, clean up.
1113    deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
1114    deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1115    return false;
1116  }
1117
1118  // Okay, everything is safe, we can transform this!
1119
1120
1121  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1122  // pointer size if it isn't already.
1123  Type *IntPtrTy = Builder.getIntPtrTy(TD, SI->getPointerAddressSpace());
1124  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
1125
1126  const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
1127                                         SCEV::FlagNUW);
1128  if (StoreSize != 1)
1129    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
1130                               SCEV::FlagNUW);
1131
1132  Value *NumBytes =
1133    Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
1134
1135  CallInst *NewCall =
1136    Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
1137                         std::min(SI->getAlignment(), LI->getAlignment()));
1138  NewCall->setDebugLoc(SI->getDebugLoc());
1139
1140  DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1141               << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1142               << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
1143
1144
1145  // Okay, the memset has been formed.  Zap the original store and anything that
1146  // feeds into it.
1147  deleteDeadInstruction(SI, *SE, TLI);
1148  ++NumMemCpy;
1149  return true;
1150}
1151