1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCContext.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/MC/MCInstrInfo.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Support/raw_ostream.h"
27
28using namespace llvm;
29
30namespace {
31class X86MCCodeEmitter : public MCCodeEmitter {
32  X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
33  void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
34  const MCInstrInfo &MCII;
35  const MCSubtargetInfo &STI;
36  MCContext &Ctx;
37public:
38  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
39                   MCContext &ctx)
40    : MCII(mcii), STI(sti), Ctx(ctx) {
41  }
42
43  ~X86MCCodeEmitter() {}
44
45  bool is64BitMode() const {
46    // FIXME: Can tablegen auto-generate this?
47    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
48  }
49
50  bool is32BitMode() const {
51    // FIXME: Can tablegen auto-generate this?
52    return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
53  }
54
55  unsigned GetX86RegNum(const MCOperand &MO) const {
56    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
57  }
58
59  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
60  // 0-7 and the difference between the 2 groups is given by the REX prefix.
61  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
62  // in 1's complement form, example:
63  //
64  //  ModRM field => XMM9 => 1
65  //  VEX.VVVV    => XMM9 => ~9
66  //
67  // See table 4-35 of Intel AVX Programming Reference for details.
68  unsigned char getVEXRegisterEncoding(const MCInst &MI,
69                                       unsigned OpNum) const {
70    unsigned SrcReg = MI.getOperand(OpNum).getReg();
71    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
72    if (X86II::isX86_64ExtendedReg(SrcReg))
73      SrcRegNum |= 8;
74
75    // The registers represented through VEX_VVVV should
76    // be encoded in 1's complement form.
77    return (~SrcRegNum) & 0xf;
78  }
79
80  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
81                                             unsigned OpNum) const {
82    assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
83           "Invalid mask register as write-mask!");
84    unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
85    return MaskRegNum;
86  }
87
88  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
89    OS << (char)C;
90    ++CurByte;
91  }
92
93  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
94                    raw_ostream &OS) const {
95    // Output the constant in little endian byte order.
96    for (unsigned i = 0; i != Size; ++i) {
97      EmitByte(Val & 255, CurByte, OS);
98      Val >>= 8;
99    }
100  }
101
102  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
103                     unsigned ImmSize, MCFixupKind FixupKind,
104                     unsigned &CurByte, raw_ostream &OS,
105                     SmallVectorImpl<MCFixup> &Fixups,
106                     int ImmOffset = 0) const;
107
108  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
109                                        unsigned RM) {
110    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
111    return RM | (RegOpcode << 3) | (Mod << 6);
112  }
113
114  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
115                        unsigned &CurByte, raw_ostream &OS) const {
116    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
117  }
118
119  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
120                   unsigned &CurByte, raw_ostream &OS) const {
121    // SIB byte is in the same format as the ModRMByte.
122    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
123  }
124
125
126  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
127                        unsigned RegOpcodeField,
128                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
129                        SmallVectorImpl<MCFixup> &Fixups) const;
130
131  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
132                         SmallVectorImpl<MCFixup> &Fixups) const;
133
134  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
135                           const MCInst &MI, const MCInstrDesc &Desc,
136                           raw_ostream &OS) const;
137
138  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
139                                 int MemOperand, const MCInst &MI,
140                                 raw_ostream &OS) const;
141
142  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
143                        const MCInst &MI, const MCInstrDesc &Desc,
144                        raw_ostream &OS) const;
145};
146
147} // end anonymous namespace
148
149
150MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
151                                            const MCRegisterInfo &MRI,
152                                            const MCSubtargetInfo &STI,
153                                            MCContext &Ctx) {
154  return new X86MCCodeEmitter(MCII, STI, Ctx);
155}
156
157/// isDisp8 - Return true if this signed displacement fits in a 8-bit
158/// sign-extended field.
159static bool isDisp8(int Value) {
160  return Value == (signed char)Value;
161}
162
163/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
164/// compressed dispacement field.
165static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
166  assert(((TSFlags >> X86II::VEXShift) & X86II::EVEX) &&
167         "Compressed 8-bit displacement is only valid for EVEX inst.");
168
169  unsigned CD8E = (TSFlags >> X86II::EVEX_CD8EShift) & X86II::EVEX_CD8EMask;
170  unsigned CD8V = (TSFlags >> X86II::EVEX_CD8VShift) & X86II::EVEX_CD8VMask;
171
172  if (CD8V == 0 && CD8E == 0) {
173    CValue = Value;
174    return isDisp8(Value);
175  }
176
177  unsigned MemObjSize = 1U << CD8E;
178  if (CD8V & 4) {
179    // Fixed vector length
180    MemObjSize *= 1U << (CD8V & 0x3);
181  } else {
182    // Modified vector length
183    bool EVEX_b = (TSFlags >> X86II::VEXShift) & X86II::EVEX_B;
184    if (!EVEX_b) {
185      unsigned EVEX_LL = ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) ? 1 : 0;
186      EVEX_LL += ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2) ? 2 : 0;
187      assert(EVEX_LL < 3 && "");
188
189      unsigned NumElems = (1U << (EVEX_LL + 4)) / MemObjSize;
190      NumElems /= 1U << (CD8V & 0x3);
191
192      MemObjSize *= NumElems;
193    }
194  }
195
196  unsigned MemObjMask = MemObjSize - 1;
197  assert((MemObjSize & MemObjMask) == 0 && "Invalid memory object size.");
198
199  if (Value & MemObjMask) // Unaligned offset
200    return false;
201  Value /= MemObjSize;
202  bool Ret = (Value == (signed char)Value);
203
204  if (Ret)
205    CValue = Value;
206  return Ret;
207}
208
209/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
210/// in an instruction with the specified TSFlags.
211static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
212  unsigned Size = X86II::getSizeOfImm(TSFlags);
213  bool isPCRel = X86II::isImmPCRel(TSFlags);
214
215  return MCFixup::getKindForSize(Size, isPCRel);
216}
217
218/// Is32BitMemOperand - Return true if the specified instruction has
219/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
220static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
221  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
222  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
223
224  if ((BaseReg.getReg() != 0 &&
225       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
226      (IndexReg.getReg() != 0 &&
227       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
228    return true;
229  return false;
230}
231
232/// Is64BitMemOperand - Return true if the specified instruction has
233/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
234#ifndef NDEBUG
235static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
236  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
237  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
238
239  if ((BaseReg.getReg() != 0 &&
240       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
241      (IndexReg.getReg() != 0 &&
242       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
243    return true;
244  return false;
245}
246#endif
247
248/// Is16BitMemOperand - Return true if the specified instruction has
249/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
250static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
251  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
252  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
253
254  if ((BaseReg.getReg() != 0 &&
255       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
256      (IndexReg.getReg() != 0 &&
257       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
258    return true;
259  return false;
260}
261
262/// StartsWithGlobalOffsetTable - Check if this expression starts with
263///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
264///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
265/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
266/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
267/// of a binary expression.
268enum GlobalOffsetTableExprKind {
269  GOT_None,
270  GOT_Normal,
271  GOT_SymDiff
272};
273static GlobalOffsetTableExprKind
274StartsWithGlobalOffsetTable(const MCExpr *Expr) {
275  const MCExpr *RHS = 0;
276  if (Expr->getKind() == MCExpr::Binary) {
277    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
278    Expr = BE->getLHS();
279    RHS = BE->getRHS();
280  }
281
282  if (Expr->getKind() != MCExpr::SymbolRef)
283    return GOT_None;
284
285  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
286  const MCSymbol &S = Ref->getSymbol();
287  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
288    return GOT_None;
289  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
290    return GOT_SymDiff;
291  return GOT_Normal;
292}
293
294static bool HasSecRelSymbolRef(const MCExpr *Expr) {
295  if (Expr->getKind() == MCExpr::SymbolRef) {
296    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
297    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
298  }
299  return false;
300}
301
302void X86MCCodeEmitter::
303EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
304              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
305              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
306  const MCExpr *Expr = NULL;
307  if (DispOp.isImm()) {
308    // If this is a simple integer displacement that doesn't require a
309    // relocation, emit it now.
310    if (FixupKind != FK_PCRel_1 &&
311        FixupKind != FK_PCRel_2 &&
312        FixupKind != FK_PCRel_4) {
313      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
314      return;
315    }
316    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
317  } else {
318    Expr = DispOp.getExpr();
319  }
320
321  // If we have an immoffset, add it to the expression.
322  if ((FixupKind == FK_Data_4 ||
323       FixupKind == FK_Data_8 ||
324       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
325    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
326    if (Kind != GOT_None) {
327      assert(ImmOffset == 0);
328
329      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
330      if (Kind == GOT_Normal)
331        ImmOffset = CurByte;
332    } else if (Expr->getKind() == MCExpr::SymbolRef) {
333      if (HasSecRelSymbolRef(Expr)) {
334        FixupKind = MCFixupKind(FK_SecRel_4);
335      }
336    } else if (Expr->getKind() == MCExpr::Binary) {
337      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
338      if (HasSecRelSymbolRef(Bin->getLHS())
339          || HasSecRelSymbolRef(Bin->getRHS())) {
340        FixupKind = MCFixupKind(FK_SecRel_4);
341      }
342    }
343  }
344
345  // If the fixup is pc-relative, we need to bias the value to be relative to
346  // the start of the field, not the end of the field.
347  if (FixupKind == FK_PCRel_4 ||
348      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
349      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
350    ImmOffset -= 4;
351  if (FixupKind == FK_PCRel_2)
352    ImmOffset -= 2;
353  if (FixupKind == FK_PCRel_1)
354    ImmOffset -= 1;
355
356  if (ImmOffset)
357    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
358                                   Ctx);
359
360  // Emit a symbolic constant as a fixup and 4 zeros.
361  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
362  EmitConstant(0, Size, CurByte, OS);
363}
364
365void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
366                                        unsigned RegOpcodeField,
367                                        uint64_t TSFlags, unsigned &CurByte,
368                                        raw_ostream &OS,
369                                        SmallVectorImpl<MCFixup> &Fixups) const{
370  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
371  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
372  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
373  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
374  unsigned BaseReg = Base.getReg();
375  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
376
377  // Handle %rip relative addressing.
378  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
379    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
380    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
381    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
382
383    unsigned FixupKind = X86::reloc_riprel_4byte;
384
385    // movq loads are handled with a special relocation form which allows the
386    // linker to eliminate some loads for GOT references which end up in the
387    // same linkage unit.
388    if (MI.getOpcode() == X86::MOV64rm)
389      FixupKind = X86::reloc_riprel_4byte_movq_load;
390
391    // rip-relative addressing is actually relative to the *next* instruction.
392    // Since an immediate can follow the mod/rm byte for an instruction, this
393    // means that we need to bias the immediate field of the instruction with
394    // the size of the immediate field.  If we have this case, add it into the
395    // expression to emit.
396    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
397
398    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
399                  CurByte, OS, Fixups, -ImmSize);
400    return;
401  }
402
403  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
404
405  // Determine whether a SIB byte is needed.
406  // If no BaseReg, issue a RIP relative instruction only if the MCE can
407  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
408  // 2-7) and absolute references.
409
410  if (// The SIB byte must be used if there is an index register.
411      IndexReg.getReg() == 0 &&
412      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
413      // encode to an R/M value of 4, which indicates that a SIB byte is
414      // present.
415      BaseRegNo != N86::ESP &&
416      // If there is no base register and we're in 64-bit mode, we need a SIB
417      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
418      (!is64BitMode() || BaseReg != 0)) {
419
420    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
421      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
422      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
423      return;
424    }
425
426    // If the base is not EBP/ESP and there is no displacement, use simple
427    // indirect register encoding, this handles addresses like [EAX].  The
428    // encoding for [EBP] with no displacement means [disp32] so we handle it
429    // by emitting a displacement of 0 below.
430    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
431      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
432      return;
433    }
434
435    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
436    if (Disp.isImm()) {
437      if (!HasEVEX && isDisp8(Disp.getImm())) {
438        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
439        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
440        return;
441      }
442      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
443      // 32-bit displacement.
444      int CDisp8 = 0;
445      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
446        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
447        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
448                      CDisp8 - Disp.getImm());
449        return;
450      }
451    }
452
453    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
454    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
455    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
456                  Fixups);
457    return;
458  }
459
460  // We need a SIB byte, so start by outputting the ModR/M byte first
461  assert(IndexReg.getReg() != X86::ESP &&
462         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
463
464  bool ForceDisp32 = false;
465  bool ForceDisp8  = false;
466  int CDisp8 = 0;
467  int ImmOffset = 0;
468  if (BaseReg == 0) {
469    // If there is no base register, we emit the special case SIB byte with
470    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
471    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
472    ForceDisp32 = true;
473  } else if (!Disp.isImm()) {
474    // Emit the normal disp32 encoding.
475    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
476    ForceDisp32 = true;
477  } else if (Disp.getImm() == 0 &&
478             // Base reg can't be anything that ends up with '5' as the base
479             // reg, it is the magic [*] nomenclature that indicates no base.
480             BaseRegNo != N86::EBP) {
481    // Emit no displacement ModR/M byte
482    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
483  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
484    // Emit the disp8 encoding.
485    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
486    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
487  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
488    // Emit the disp8 encoding.
489    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
490    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
491    ImmOffset = CDisp8 - Disp.getImm();
492  } else {
493    // Emit the normal disp32 encoding.
494    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
495  }
496
497  // Calculate what the SS field value should be...
498  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
499  unsigned SS = SSTable[Scale.getImm()];
500
501  if (BaseReg == 0) {
502    // Handle the SIB byte for the case where there is no base, see Intel
503    // Manual 2A, table 2-7. The displacement has already been output.
504    unsigned IndexRegNo;
505    if (IndexReg.getReg())
506      IndexRegNo = GetX86RegNum(IndexReg);
507    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
508      IndexRegNo = 4;
509    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
510  } else {
511    unsigned IndexRegNo;
512    if (IndexReg.getReg())
513      IndexRegNo = GetX86RegNum(IndexReg);
514    else
515      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
516    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
517  }
518
519  // Do we need to output a displacement?
520  if (ForceDisp8)
521    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
522  else if (ForceDisp32 || Disp.getImm() != 0)
523    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
524                  CurByte, OS, Fixups);
525}
526
527/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
528/// called VEX.
529void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
530                                           int MemOperand, const MCInst &MI,
531                                           const MCInstrDesc &Desc,
532                                           raw_ostream &OS) const {
533  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
534  bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
535  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
536  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
537  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
538
539  // VEX_R: opcode externsion equivalent to REX.R in
540  // 1's complement (inverted) form
541  //
542  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
543  //  0: Same as REX_R=1 (64 bit mode only)
544  //
545  unsigned char VEX_R = 0x1;
546  unsigned char EVEX_R2 = 0x1;
547
548  // VEX_X: equivalent to REX.X, only used when a
549  // register is used for index in SIB Byte.
550  //
551  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
552  //  0: Same as REX.X=1 (64-bit mode only)
553  unsigned char VEX_X = 0x1;
554
555  // VEX_B:
556  //
557  //  1: Same as REX_B=0 (ignored in 32-bit mode)
558  //  0: Same as REX_B=1 (64 bit mode only)
559  //
560  unsigned char VEX_B = 0x1;
561
562  // VEX_W: opcode specific (use like REX.W, or used for
563  // opcode extension, or ignored, depending on the opcode byte)
564  unsigned char VEX_W = 0;
565
566  // XOP: Use XOP prefix byte 0x8f instead of VEX.
567  bool XOP = false;
568
569  // VEX_5M (VEX m-mmmmm field):
570  //
571  //  0b00000: Reserved for future use
572  //  0b00001: implied 0F leading opcode
573  //  0b00010: implied 0F 38 leading opcode bytes
574  //  0b00011: implied 0F 3A leading opcode bytes
575  //  0b00100-0b11111: Reserved for future use
576  //  0b01000: XOP map select - 08h instructions with imm byte
577  //  0b01001: XOP map select - 09h instructions with no imm byte
578  //  0b01010: XOP map select - 0Ah instructions with imm dword
579  unsigned char VEX_5M = 0x1;
580
581  // VEX_4V (VEX vvvv field): a register specifier
582  // (in 1's complement form) or 1111 if unused.
583  unsigned char VEX_4V = 0xf;
584  unsigned char EVEX_V2 = 0x1;
585
586  // VEX_L (Vector Length):
587  //
588  //  0: scalar or 128-bit vector
589  //  1: 256-bit vector
590  //
591  unsigned char VEX_L = 0;
592  unsigned char EVEX_L2 = 0;
593
594  // VEX_PP: opcode extension providing equivalent
595  // functionality of a SIMD prefix
596  //
597  //  0b00: None
598  //  0b01: 66
599  //  0b10: F3
600  //  0b11: F2
601  //
602  unsigned char VEX_PP = 0;
603
604  // EVEX_U
605  unsigned char EVEX_U = 1; // Always '1' so far
606
607  // EVEX_z
608  unsigned char EVEX_z = 0;
609
610  // EVEX_b
611  unsigned char EVEX_b = 0;
612
613  // EVEX_aaa
614  unsigned char EVEX_aaa = 0;
615
616  // Encode the operand size opcode prefix as needed.
617  if (TSFlags & X86II::OpSize)
618    VEX_PP = 0x01;
619
620  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
621    VEX_W = 1;
622
623  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
624    XOP = true;
625
626  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
627    VEX_L = 1;
628  if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
629    EVEX_L2 = 1;
630
631  if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
632    EVEX_z = 1;
633
634  if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
635    EVEX_b = 1;
636
637  switch (TSFlags & X86II::Op0Mask) {
638  default: llvm_unreachable("Invalid prefix!");
639  case X86II::T8:  // 0F 38
640    VEX_5M = 0x2;
641    break;
642  case X86II::TA:  // 0F 3A
643    VEX_5M = 0x3;
644    break;
645  case X86II::T8XS: // F3 0F 38
646    VEX_PP = 0x2;
647    VEX_5M = 0x2;
648    break;
649  case X86II::T8XD: // F2 0F 38
650    VEX_PP = 0x3;
651    VEX_5M = 0x2;
652    break;
653  case X86II::TAXD: // F2 0F 3A
654    VEX_PP = 0x3;
655    VEX_5M = 0x3;
656    break;
657  case X86II::XS:  // F3 0F
658    VEX_PP = 0x2;
659    break;
660  case X86II::XD:  // F2 0F
661    VEX_PP = 0x3;
662    break;
663  case X86II::XOP8:
664    VEX_5M = 0x8;
665    break;
666  case X86II::XOP9:
667    VEX_5M = 0x9;
668    break;
669  case X86II::XOPA:
670    VEX_5M = 0xA;
671    break;
672  case X86II::TB: // VEX_5M/VEX_PP already correct
673    break;
674  }
675
676
677  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
678  unsigned NumOps = Desc.getNumOperands();
679  unsigned CurOp = 0;
680  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
681    ++CurOp;
682  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
683           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
684    // Special case for AVX-512 GATHER with 2 TIED_TO operands
685    // Skip the first 2 operands: dst, mask_wb
686    CurOp += 2;
687  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
688           Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
689    // Special case for GATHER with 2 TIED_TO operands
690    // Skip the first 2 operands: dst, mask_wb
691    CurOp += 2;
692  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
693    // SCATTER
694    ++CurOp;
695
696  switch (TSFlags & X86II::FormMask) {
697  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
698  case X86II::MRMDestMem: {
699    // MRMDestMem instructions forms:
700    //  MemAddr, src1(ModR/M)
701    //  MemAddr, src1(VEX_4V), src2(ModR/M)
702    //  MemAddr, src1(ModR/M), imm8
703    //
704    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
705                                                 X86::AddrBaseReg).getReg()))
706      VEX_B = 0x0;
707    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
708                                                 X86::AddrIndexReg).getReg()))
709      VEX_X = 0x0;
710    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
711                                          X86::AddrIndexReg).getReg()))
712      EVEX_V2 = 0x0;
713
714    CurOp += X86::AddrNumOperands;
715
716    if (HasEVEX_K)
717      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
718
719    if (HasVEX_4V) {
720      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
721      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
722        EVEX_V2 = 0x0;
723      CurOp++;
724    }
725
726    const MCOperand &MO = MI.getOperand(CurOp);
727    if (MO.isReg()) {
728      if (X86II::isX86_64ExtendedReg(MO.getReg()))
729        VEX_R = 0x0;
730      if (HasEVEX && X86II::is32ExtendedReg(MO.getReg()))
731        EVEX_R2 = 0x0;
732    }
733    break;
734  }
735  case X86II::MRMSrcMem:
736    // MRMSrcMem instructions forms:
737    //  src1(ModR/M), MemAddr
738    //  src1(ModR/M), src2(VEX_4V), MemAddr
739    //  src1(ModR/M), MemAddr, imm8
740    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
741    //
742    //  FMA4:
743    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
744    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
745    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
746      VEX_R = 0x0;
747    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
748      EVEX_R2 = 0x0;
749    CurOp++;
750
751    if (HasEVEX_K)
752      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
753
754    if (HasVEX_4V) {
755      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
756      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
757        EVEX_V2 = 0x0;
758      CurOp++;
759    }
760
761    if (X86II::isX86_64ExtendedReg(
762               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
763      VEX_B = 0x0;
764    if (X86II::isX86_64ExtendedReg(
765               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
766      VEX_X = 0x0;
767    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
768                                          X86::AddrIndexReg).getReg()))
769      EVEX_V2 = 0x0;
770
771    if (HasVEX_4VOp3)
772      // Instruction format for 4VOp3:
773      //   src1(ModR/M), MemAddr, src3(VEX_4V)
774      // CurOp points to start of the MemoryOperand,
775      //   it skips TIED_TO operands if exist, then increments past src1.
776      // CurOp + X86::AddrNumOperands will point to src3.
777      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
778    break;
779  case X86II::MRM0m: case X86II::MRM1m:
780  case X86II::MRM2m: case X86II::MRM3m:
781  case X86II::MRM4m: case X86II::MRM5m:
782  case X86II::MRM6m: case X86II::MRM7m: {
783    // MRM[0-9]m instructions forms:
784    //  MemAddr
785    //  src1(VEX_4V), MemAddr
786    if (HasVEX_4V) {
787      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
788      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
789        EVEX_V2 = 0x0;
790      CurOp++;
791    }
792
793    if (HasEVEX_K)
794      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
795
796    if (X86II::isX86_64ExtendedReg(
797               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
798      VEX_B = 0x0;
799    if (X86II::isX86_64ExtendedReg(
800               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
801      VEX_X = 0x0;
802    break;
803  }
804  case X86II::MRMSrcReg:
805    // MRMSrcReg instructions forms:
806    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
807    //  dst(ModR/M), src1(ModR/M)
808    //  dst(ModR/M), src1(ModR/M), imm8
809    //
810    //  FMA4:
811    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
812    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
813    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
814      VEX_R = 0x0;
815    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
816      EVEX_R2 = 0x0;
817    CurOp++;
818
819    if (HasEVEX_K)
820      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
821
822    if (HasVEX_4V) {
823      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
824      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
825        EVEX_V2 = 0x0;
826      CurOp++;
827    }
828
829    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
830      CurOp++;
831
832    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
833      VEX_B = 0x0;
834    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
835      VEX_X = 0x0;
836    CurOp++;
837    if (HasVEX_4VOp3)
838      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
839    break;
840  case X86II::MRMDestReg:
841    // MRMDestReg instructions forms:
842    //  dst(ModR/M), src(ModR/M)
843    //  dst(ModR/M), src(ModR/M), imm8
844    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
845    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
846      VEX_B = 0x0;
847    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
848      VEX_X = 0x0;
849    CurOp++;
850
851    if (HasEVEX_K)
852      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
853
854    if (HasVEX_4V) {
855      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
856      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
857        EVEX_V2 = 0x0;
858      CurOp++;
859    }
860
861    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
862      VEX_R = 0x0;
863    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
864      EVEX_R2 = 0x0;
865    break;
866  case X86II::MRM0r: case X86II::MRM1r:
867  case X86II::MRM2r: case X86II::MRM3r:
868  case X86II::MRM4r: case X86II::MRM5r:
869  case X86II::MRM6r: case X86II::MRM7r:
870    // MRM0r-MRM7r instructions forms:
871    //  dst(VEX_4V), src(ModR/M), imm8
872    if (HasVEX_4V) {
873      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
874      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
875          EVEX_V2 = 0x0;
876      CurOp++;
877    }
878    if (HasEVEX_K)
879      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
880
881    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
882      VEX_B = 0x0;
883    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
884      VEX_X = 0x0;
885    break;
886  default: // RawFrm
887    break;
888  }
889
890  // Emit segment override opcode prefix as needed.
891  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
892
893  if (!HasEVEX) {
894    // VEX opcode prefix can have 2 or 3 bytes
895    //
896    //  3 bytes:
897    //    +-----+ +--------------+ +-------------------+
898    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
899    //    +-----+ +--------------+ +-------------------+
900    //  2 bytes:
901    //    +-----+ +-------------------+
902    //    | C5h | | R | vvvv | L | pp |
903    //    +-----+ +-------------------+
904    //
905    unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
906
907    if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
908      EmitByte(0xC5, CurByte, OS);
909      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
910      return;
911    }
912
913    // 3 byte VEX prefix
914    EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
915    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
916    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
917  } else {
918    // EVEX opcode prefix can have 4 bytes
919    //
920    // +-----+ +--------------+ +-------------------+ +------------------------+
921    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
922    // +-----+ +--------------+ +-------------------+ +------------------------+
923    assert((VEX_5M & 0x3) == VEX_5M
924           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
925
926    VEX_5M &= 0x3;
927
928    EmitByte(0x62, CurByte, OS);
929    EmitByte((VEX_R   << 7) |
930             (VEX_X   << 6) |
931             (VEX_B   << 5) |
932             (EVEX_R2 << 4) |
933             VEX_5M, CurByte, OS);
934    EmitByte((VEX_W   << 7) |
935             (VEX_4V  << 3) |
936             (EVEX_U  << 2) |
937             VEX_PP, CurByte, OS);
938    EmitByte((EVEX_z  << 7) |
939             (EVEX_L2 << 6) |
940             (VEX_L   << 5) |
941             (EVEX_b  << 4) |
942             (EVEX_V2 << 3) |
943             EVEX_aaa, CurByte, OS);
944  }
945}
946
947/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
948/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
949/// size, and 3) use of X86-64 extended registers.
950static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
951                                   const MCInstrDesc &Desc) {
952  unsigned REX = 0;
953  if (TSFlags & X86II::REX_W)
954    REX |= 1 << 3; // set REX.W
955
956  if (MI.getNumOperands() == 0) return REX;
957
958  unsigned NumOps = MI.getNumOperands();
959  // FIXME: MCInst should explicitize the two-addrness.
960  bool isTwoAddr = NumOps > 1 &&
961                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
962
963  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
964  unsigned i = isTwoAddr ? 1 : 0;
965  for (; i != NumOps; ++i) {
966    const MCOperand &MO = MI.getOperand(i);
967    if (!MO.isReg()) continue;
968    unsigned Reg = MO.getReg();
969    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
970    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
971    // that returns non-zero.
972    REX |= 0x40; // REX fixed encoding prefix
973    break;
974  }
975
976  switch (TSFlags & X86II::FormMask) {
977  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
978  case X86II::MRMSrcReg:
979    if (MI.getOperand(0).isReg() &&
980        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
981      REX |= 1 << 2; // set REX.R
982    i = isTwoAddr ? 2 : 1;
983    for (; i != NumOps; ++i) {
984      const MCOperand &MO = MI.getOperand(i);
985      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
986        REX |= 1 << 0; // set REX.B
987    }
988    break;
989  case X86II::MRMSrcMem: {
990    if (MI.getOperand(0).isReg() &&
991        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
992      REX |= 1 << 2; // set REX.R
993    unsigned Bit = 0;
994    i = isTwoAddr ? 2 : 1;
995    for (; i != NumOps; ++i) {
996      const MCOperand &MO = MI.getOperand(i);
997      if (MO.isReg()) {
998        if (X86II::isX86_64ExtendedReg(MO.getReg()))
999          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1000        Bit++;
1001      }
1002    }
1003    break;
1004  }
1005  case X86II::MRM0m: case X86II::MRM1m:
1006  case X86II::MRM2m: case X86II::MRM3m:
1007  case X86II::MRM4m: case X86II::MRM5m:
1008  case X86II::MRM6m: case X86II::MRM7m:
1009  case X86II::MRMDestMem: {
1010    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1011    i = isTwoAddr ? 1 : 0;
1012    if (NumOps > e && MI.getOperand(e).isReg() &&
1013        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
1014      REX |= 1 << 2; // set REX.R
1015    unsigned Bit = 0;
1016    for (; i != e; ++i) {
1017      const MCOperand &MO = MI.getOperand(i);
1018      if (MO.isReg()) {
1019        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1020          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1021        Bit++;
1022      }
1023    }
1024    break;
1025  }
1026  default:
1027    if (MI.getOperand(0).isReg() &&
1028        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1029      REX |= 1 << 0; // set REX.B
1030    i = isTwoAddr ? 2 : 1;
1031    for (unsigned e = NumOps; i != e; ++i) {
1032      const MCOperand &MO = MI.getOperand(i);
1033      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1034        REX |= 1 << 2; // set REX.R
1035    }
1036    break;
1037  }
1038  return REX;
1039}
1040
1041/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1042void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
1043                                        unsigned &CurByte, int MemOperand,
1044                                        const MCInst &MI,
1045                                        raw_ostream &OS) const {
1046  switch (TSFlags & X86II::SegOvrMask) {
1047  default: llvm_unreachable("Invalid segment!");
1048  case 0:
1049    // No segment override, check for explicit one on memory operand.
1050    if (MemOperand != -1) {   // If the instruction has a memory operand.
1051      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
1052      default: llvm_unreachable("Unknown segment register!");
1053      case 0: break;
1054      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1055      case X86::SS: EmitByte(0x36, CurByte, OS); break;
1056      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1057      case X86::ES: EmitByte(0x26, CurByte, OS); break;
1058      case X86::FS: EmitByte(0x64, CurByte, OS); break;
1059      case X86::GS: EmitByte(0x65, CurByte, OS); break;
1060      }
1061    }
1062    break;
1063  case X86II::FS:
1064    EmitByte(0x64, CurByte, OS);
1065    break;
1066  case X86II::GS:
1067    EmitByte(0x65, CurByte, OS);
1068    break;
1069  }
1070}
1071
1072/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1073///
1074/// MemOperand is the operand # of the start of a memory operand if present.  If
1075/// Not present, it is -1.
1076void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1077                                        int MemOperand, const MCInst &MI,
1078                                        const MCInstrDesc &Desc,
1079                                        raw_ostream &OS) const {
1080
1081  // Emit the lock opcode prefix as needed.
1082  if (TSFlags & X86II::LOCK)
1083    EmitByte(0xF0, CurByte, OS);
1084
1085  // Emit segment override opcode prefix as needed.
1086  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
1087
1088  // Emit the repeat opcode prefix as needed.
1089  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
1090    EmitByte(0xF3, CurByte, OS);
1091
1092  // Emit the address size opcode prefix as needed.
1093  bool need_address_override;
1094  if (TSFlags & X86II::AdSize) {
1095    need_address_override = true;
1096  } else if (MemOperand == -1) {
1097    need_address_override = false;
1098  } else if (is64BitMode()) {
1099    assert(!Is16BitMemOperand(MI, MemOperand));
1100    need_address_override = Is32BitMemOperand(MI, MemOperand);
1101  } else if (is32BitMode()) {
1102    assert(!Is64BitMemOperand(MI, MemOperand));
1103    need_address_override = Is16BitMemOperand(MI, MemOperand);
1104  } else {
1105    need_address_override = false;
1106  }
1107
1108  if (need_address_override)
1109    EmitByte(0x67, CurByte, OS);
1110
1111  // Emit the operand size opcode prefix as needed.
1112  if (TSFlags & X86II::OpSize)
1113    EmitByte(0x66, CurByte, OS);
1114
1115  bool Need0FPrefix = false;
1116  switch (TSFlags & X86II::Op0Mask) {
1117  default: llvm_unreachable("Invalid prefix!");
1118  case 0: break;  // No prefix!
1119  case X86II::REP: break; // already handled.
1120  case X86II::TB:  // Two-byte opcode prefix
1121  case X86II::T8:  // 0F 38
1122  case X86II::TA:  // 0F 3A
1123  case X86II::A6:  // 0F A6
1124  case X86II::A7:  // 0F A7
1125    Need0FPrefix = true;
1126    break;
1127  case X86II::T8XS: // F3 0F 38
1128    EmitByte(0xF3, CurByte, OS);
1129    Need0FPrefix = true;
1130    break;
1131  case X86II::T8XD: // F2 0F 38
1132    EmitByte(0xF2, CurByte, OS);
1133    Need0FPrefix = true;
1134    break;
1135  case X86II::TAXD: // F2 0F 3A
1136    EmitByte(0xF2, CurByte, OS);
1137    Need0FPrefix = true;
1138    break;
1139  case X86II::XS:   // F3 0F
1140    EmitByte(0xF3, CurByte, OS);
1141    Need0FPrefix = true;
1142    break;
1143  case X86II::XD:   // F2 0F
1144    EmitByte(0xF2, CurByte, OS);
1145    Need0FPrefix = true;
1146    break;
1147  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
1148  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
1149  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
1150  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
1151  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
1152  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
1153  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
1154  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
1155  }
1156
1157  // Handle REX prefix.
1158  // FIXME: Can this come before F2 etc to simplify emission?
1159  if (is64BitMode()) {
1160    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1161      EmitByte(0x40 | REX, CurByte, OS);
1162  }
1163
1164  // 0x0F escape code must be emitted just before the opcode.
1165  if (Need0FPrefix)
1166    EmitByte(0x0F, CurByte, OS);
1167
1168  // FIXME: Pull this up into previous switch if REX can be moved earlier.
1169  switch (TSFlags & X86II::Op0Mask) {
1170  case X86II::T8XS:  // F3 0F 38
1171  case X86II::T8XD:  // F2 0F 38
1172  case X86II::T8:    // 0F 38
1173    EmitByte(0x38, CurByte, OS);
1174    break;
1175  case X86II::TAXD:  // F2 0F 3A
1176  case X86II::TA:    // 0F 3A
1177    EmitByte(0x3A, CurByte, OS);
1178    break;
1179  case X86II::A6:    // 0F A6
1180    EmitByte(0xA6, CurByte, OS);
1181    break;
1182  case X86II::A7:    // 0F A7
1183    EmitByte(0xA7, CurByte, OS);
1184    break;
1185  }
1186}
1187
1188void X86MCCodeEmitter::
1189EncodeInstruction(const MCInst &MI, raw_ostream &OS,
1190                  SmallVectorImpl<MCFixup> &Fixups) const {
1191  unsigned Opcode = MI.getOpcode();
1192  const MCInstrDesc &Desc = MCII.get(Opcode);
1193  uint64_t TSFlags = Desc.TSFlags;
1194
1195  // Pseudo instructions don't get encoded.
1196  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1197    return;
1198
1199  unsigned NumOps = Desc.getNumOperands();
1200  unsigned CurOp = X86II::getOperandBias(Desc);
1201
1202  // Keep track of the current byte being emitted.
1203  unsigned CurByte = 0;
1204
1205  // Is this instruction encoded using the AVX VEX prefix?
1206  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
1207
1208  // It uses the VEX.VVVV field?
1209  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1210  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1211  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1212  const unsigned MemOp4_I8IMMOperand = 2;
1213
1214  // It uses the EVEX.aaa field?
1215  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
1216  bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
1217
1218  // Determine where the memory operand starts, if present.
1219  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1220  if (MemoryOperand != -1) MemoryOperand += CurOp;
1221
1222  if (!HasVEXPrefix)
1223    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1224  else
1225    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1226
1227  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1228
1229  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1230    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1231
1232  unsigned SrcRegNum = 0;
1233  switch (TSFlags & X86II::FormMask) {
1234  case X86II::MRMInitReg:
1235    llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
1236  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1237    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1238  case X86II::Pseudo:
1239    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1240  case X86II::RawFrm:
1241    EmitByte(BaseOpcode, CurByte, OS);
1242    break;
1243  case X86II::RawFrmImm8:
1244    EmitByte(BaseOpcode, CurByte, OS);
1245    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1246                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1247                  CurByte, OS, Fixups);
1248    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1249                  OS, Fixups);
1250    break;
1251  case X86II::RawFrmImm16:
1252    EmitByte(BaseOpcode, CurByte, OS);
1253    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1254                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1255                  CurByte, OS, Fixups);
1256    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1257                  OS, Fixups);
1258    break;
1259
1260  case X86II::AddRegFrm:
1261    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1262    break;
1263
1264  case X86II::MRMDestReg:
1265    EmitByte(BaseOpcode, CurByte, OS);
1266    SrcRegNum = CurOp + 1;
1267
1268    if (HasEVEX_K) // Skip writemask
1269      SrcRegNum++;
1270
1271    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1272      ++SrcRegNum;
1273
1274    EmitRegModRMByte(MI.getOperand(CurOp),
1275                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1276    CurOp = SrcRegNum + 1;
1277    break;
1278
1279  case X86II::MRMDestMem:
1280    EmitByte(BaseOpcode, CurByte, OS);
1281    SrcRegNum = CurOp + X86::AddrNumOperands;
1282
1283    if (HasEVEX_K) // Skip writemask
1284      SrcRegNum++;
1285
1286    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1287      ++SrcRegNum;
1288
1289    EmitMemModRMByte(MI, CurOp,
1290                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1291                     TSFlags, CurByte, OS, Fixups);
1292    CurOp = SrcRegNum + 1;
1293    break;
1294
1295  case X86II::MRMSrcReg:
1296    EmitByte(BaseOpcode, CurByte, OS);
1297    SrcRegNum = CurOp + 1;
1298
1299    if (HasEVEX_K) // Skip writemask
1300      SrcRegNum++;
1301
1302    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1303      ++SrcRegNum;
1304
1305    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1306      ++SrcRegNum;
1307
1308    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1309                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1310
1311    // 2 operands skipped with HasMemOp4, compensate accordingly
1312    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1313    if (HasVEX_4VOp3)
1314      ++CurOp;
1315    break;
1316
1317  case X86II::MRMSrcMem: {
1318    int AddrOperands = X86::AddrNumOperands;
1319    unsigned FirstMemOp = CurOp+1;
1320
1321    if (HasEVEX_K) { // Skip writemask
1322      ++AddrOperands;
1323      ++FirstMemOp;
1324    }
1325
1326    if (HasVEX_4V) {
1327      ++AddrOperands;
1328      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1329    }
1330    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1331      ++FirstMemOp;
1332
1333    EmitByte(BaseOpcode, CurByte, OS);
1334
1335    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1336                     TSFlags, CurByte, OS, Fixups);
1337    CurOp += AddrOperands + 1;
1338    if (HasVEX_4VOp3)
1339      ++CurOp;
1340    break;
1341  }
1342
1343  case X86II::MRM0r: case X86II::MRM1r:
1344  case X86II::MRM2r: case X86II::MRM3r:
1345  case X86II::MRM4r: case X86II::MRM5r:
1346  case X86II::MRM6r: case X86II::MRM7r:
1347    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1348      ++CurOp;
1349    EmitByte(BaseOpcode, CurByte, OS);
1350    EmitRegModRMByte(MI.getOperand(CurOp++),
1351                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
1352                     CurByte, OS);
1353    break;
1354  case X86II::MRM0m: case X86II::MRM1m:
1355  case X86II::MRM2m: case X86II::MRM3m:
1356  case X86II::MRM4m: case X86II::MRM5m:
1357  case X86II::MRM6m: case X86II::MRM7m:
1358    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1359      ++CurOp;
1360    EmitByte(BaseOpcode, CurByte, OS);
1361    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1362                     TSFlags, CurByte, OS, Fixups);
1363    CurOp += X86::AddrNumOperands;
1364    break;
1365  case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
1366  case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
1367  case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_D0:
1368  case X86II::MRM_D1: case X86II::MRM_D4: case X86II::MRM_D5:
1369  case X86II::MRM_D6: case X86II::MRM_D8: case X86II::MRM_D9:
1370  case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
1371  case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
1372  case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8:
1373  case X86II::MRM_F9:
1374    EmitByte(BaseOpcode, CurByte, OS);
1375
1376    unsigned char MRM;
1377    switch (TSFlags & X86II::FormMask) {
1378    default: llvm_unreachable("Invalid Form");
1379    case X86II::MRM_C1: MRM = 0xC1; break;
1380    case X86II::MRM_C2: MRM = 0xC2; break;
1381    case X86II::MRM_C3: MRM = 0xC3; break;
1382    case X86II::MRM_C4: MRM = 0xC4; break;
1383    case X86II::MRM_C8: MRM = 0xC8; break;
1384    case X86II::MRM_C9: MRM = 0xC9; break;
1385    case X86II::MRM_CA: MRM = 0xCA; break;
1386    case X86II::MRM_CB: MRM = 0xCB; break;
1387    case X86II::MRM_D0: MRM = 0xD0; break;
1388    case X86II::MRM_D1: MRM = 0xD1; break;
1389    case X86II::MRM_D4: MRM = 0xD4; break;
1390    case X86II::MRM_D5: MRM = 0xD5; break;
1391    case X86II::MRM_D6: MRM = 0xD6; break;
1392    case X86II::MRM_D8: MRM = 0xD8; break;
1393    case X86II::MRM_D9: MRM = 0xD9; break;
1394    case X86II::MRM_DA: MRM = 0xDA; break;
1395    case X86II::MRM_DB: MRM = 0xDB; break;
1396    case X86II::MRM_DC: MRM = 0xDC; break;
1397    case X86II::MRM_DD: MRM = 0xDD; break;
1398    case X86II::MRM_DE: MRM = 0xDE; break;
1399    case X86II::MRM_DF: MRM = 0xDF; break;
1400    case X86II::MRM_E8: MRM = 0xE8; break;
1401    case X86II::MRM_F0: MRM = 0xF0; break;
1402    case X86II::MRM_F8: MRM = 0xF8; break;
1403    case X86II::MRM_F9: MRM = 0xF9; break;
1404    }
1405    EmitByte(MRM, CurByte, OS);
1406    break;
1407  }
1408
1409  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1410  // according to the right size for the instruction. Some instructions
1411  // (SSE4a extrq and insertq) have two trailing immediates.
1412  while (CurOp != NumOps && NumOps - CurOp <= 2) {
1413    // The last source register of a 4 operand instruction in AVX is encoded
1414    // in bits[7:4] of a immediate byte.
1415    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1416      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1417                                                    : CurOp);
1418      ++CurOp;
1419      unsigned RegNum = GetX86RegNum(MO) << 4;
1420      if (X86II::isX86_64ExtendedReg(MO.getReg()))
1421        RegNum |= 1 << 7;
1422      // If there is an additional 5th operand it must be an immediate, which
1423      // is encoded in bits[3:0]
1424      if (CurOp != NumOps) {
1425        const MCOperand &MIMM = MI.getOperand(CurOp++);
1426        if (MIMM.isImm()) {
1427          unsigned Val = MIMM.getImm();
1428          assert(Val < 16 && "Immediate operand value out of range");
1429          RegNum |= Val;
1430        }
1431      }
1432      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1433                    CurByte, OS, Fixups);
1434    } else {
1435      unsigned FixupKind;
1436      // FIXME: Is there a better way to know that we need a signed relocation?
1437      if (MI.getOpcode() == X86::ADD64ri32 ||
1438          MI.getOpcode() == X86::MOV64ri32 ||
1439          MI.getOpcode() == X86::MOV64mi32 ||
1440          MI.getOpcode() == X86::PUSH64i32)
1441        FixupKind = X86::reloc_signed_4byte;
1442      else
1443        FixupKind = getImmFixupKind(TSFlags);
1444      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1445                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1446                    CurByte, OS, Fixups);
1447    }
1448  }
1449
1450  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1451    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1452
1453#ifndef NDEBUG
1454  // FIXME: Verify.
1455  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1456    errs() << "Cannot encode all operands of: ";
1457    MI.dump();
1458    errs() << '\n';
1459    abort();
1460  }
1461#endif
1462}
1463