1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/IR/Instructions.h"
16#include "LLVMContextImpl.h"
17#include "llvm/IR/Constants.h"
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Module.h"
22#include "llvm/IR/Operator.h"
23#include "llvm/Support/CallSite.h"
24#include "llvm/Support/ConstantRange.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30//                            CallSite Class
31//===----------------------------------------------------------------------===//
32
33User::op_iterator CallSite::getCallee() const {
34  Instruction *II(getInstruction());
35  return isCall()
36    ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37    : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38}
39
40//===----------------------------------------------------------------------===//
41//                            TerminatorInst Class
42//===----------------------------------------------------------------------===//
43
44// Out of line virtual method, so the vtable, etc has a home.
45TerminatorInst::~TerminatorInst() {
46}
47
48//===----------------------------------------------------------------------===//
49//                           UnaryInstruction Class
50//===----------------------------------------------------------------------===//
51
52// Out of line virtual method, so the vtable, etc has a home.
53UnaryInstruction::~UnaryInstruction() {
54}
55
56//===----------------------------------------------------------------------===//
57//                              SelectInst Class
58//===----------------------------------------------------------------------===//
59
60/// areInvalidOperands - Return a string if the specified operands are invalid
61/// for a select operation, otherwise return null.
62const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63  if (Op1->getType() != Op2->getType())
64    return "both values to select must have same type";
65
66  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67    // Vector select.
68    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69      return "vector select condition element type must be i1";
70    VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71    if (ET == 0)
72      return "selected values for vector select must be vectors";
73    if (ET->getNumElements() != VT->getNumElements())
74      return "vector select requires selected vectors to have "
75                   "the same vector length as select condition";
76  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77    return "select condition must be i1 or <n x i1>";
78  }
79  return 0;
80}
81
82
83//===----------------------------------------------------------------------===//
84//                               PHINode Class
85//===----------------------------------------------------------------------===//
86
87PHINode::PHINode(const PHINode &PN)
88  : Instruction(PN.getType(), Instruction::PHI,
89                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90    ReservedSpace(PN.getNumOperands()) {
91  std::copy(PN.op_begin(), PN.op_end(), op_begin());
92  std::copy(PN.block_begin(), PN.block_end(), block_begin());
93  SubclassOptionalData = PN.SubclassOptionalData;
94}
95
96PHINode::~PHINode() {
97  dropHungoffUses();
98}
99
100Use *PHINode::allocHungoffUses(unsigned N) const {
101  // Allocate the array of Uses of the incoming values, followed by a pointer
102  // (with bottom bit set) to the User, followed by the array of pointers to
103  // the incoming basic blocks.
104  size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105    + N * sizeof(BasicBlock*);
106  Use *Begin = static_cast<Use*>(::operator new(size));
107  Use *End = Begin + N;
108  (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109  return Use::initTags(Begin, End);
110}
111
112// removeIncomingValue - Remove an incoming value.  This is useful if a
113// predecessor basic block is deleted.
114Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115  Value *Removed = getIncomingValue(Idx);
116
117  // Move everything after this operand down.
118  //
119  // FIXME: we could just swap with the end of the list, then erase.  However,
120  // clients might not expect this to happen.  The code as it is thrashes the
121  // use/def lists, which is kinda lame.
122  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125  // Nuke the last value.
126  Op<-1>().set(0);
127  --NumOperands;
128
129  // If the PHI node is dead, because it has zero entries, nuke it now.
130  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131    // If anyone is using this PHI, make them use a dummy value instead...
132    replaceAllUsesWith(UndefValue::get(getType()));
133    eraseFromParent();
134  }
135  return Removed;
136}
137
138/// growOperands - grow operands - This grows the operand list in response
139/// to a push_back style of operation.  This grows the number of ops by 1.5
140/// times.
141///
142void PHINode::growOperands() {
143  unsigned e = getNumOperands();
144  unsigned NumOps = e + e / 2;
145  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
146
147  Use *OldOps = op_begin();
148  BasicBlock **OldBlocks = block_begin();
149
150  ReservedSpace = NumOps;
151  OperandList = allocHungoffUses(ReservedSpace);
152
153  std::copy(OldOps, OldOps + e, op_begin());
154  std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156  Use::zap(OldOps, OldOps + e, true);
157}
158
159/// hasConstantValue - If the specified PHI node always merges together the same
160/// value, return the value, otherwise return null.
161Value *PHINode::hasConstantValue() const {
162  // Exploit the fact that phi nodes always have at least one entry.
163  Value *ConstantValue = getIncomingValue(0);
164  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166      if (ConstantValue != this)
167        return 0; // Incoming values not all the same.
168       // The case where the first value is this PHI.
169      ConstantValue = getIncomingValue(i);
170    }
171  if (ConstantValue == this)
172    return UndefValue::get(getType());
173  return ConstantValue;
174}
175
176//===----------------------------------------------------------------------===//
177//                       LandingPadInst Implementation
178//===----------------------------------------------------------------------===//
179
180LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181                               unsigned NumReservedValues, const Twine &NameStr,
182                               Instruction *InsertBefore)
183  : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
184  init(PersonalityFn, 1 + NumReservedValues, NameStr);
185}
186
187LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188                               unsigned NumReservedValues, const Twine &NameStr,
189                               BasicBlock *InsertAtEnd)
190  : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
191  init(PersonalityFn, 1 + NumReservedValues, NameStr);
192}
193
194LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195  : Instruction(LP.getType(), Instruction::LandingPad,
196                allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197    ReservedSpace(LP.getNumOperands()) {
198  Use *OL = OperandList, *InOL = LP.OperandList;
199  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200    OL[I] = InOL[I];
201
202  setCleanup(LP.isCleanup());
203}
204
205LandingPadInst::~LandingPadInst() {
206  dropHungoffUses();
207}
208
209LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210                                       unsigned NumReservedClauses,
211                                       const Twine &NameStr,
212                                       Instruction *InsertBefore) {
213  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214                            InsertBefore);
215}
216
217LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218                                       unsigned NumReservedClauses,
219                                       const Twine &NameStr,
220                                       BasicBlock *InsertAtEnd) {
221  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222                            InsertAtEnd);
223}
224
225void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226                          const Twine &NameStr) {
227  ReservedSpace = NumReservedValues;
228  NumOperands = 1;
229  OperandList = allocHungoffUses(ReservedSpace);
230  OperandList[0] = PersFn;
231  setName(NameStr);
232  setCleanup(false);
233}
234
235/// growOperands - grow operands - This grows the operand list in response to a
236/// push_back style of operation. This grows the number of ops by 2 times.
237void LandingPadInst::growOperands(unsigned Size) {
238  unsigned e = getNumOperands();
239  if (ReservedSpace >= e + Size) return;
240  ReservedSpace = (e + Size / 2) * 2;
241
242  Use *NewOps = allocHungoffUses(ReservedSpace);
243  Use *OldOps = OperandList;
244  for (unsigned i = 0; i != e; ++i)
245      NewOps[i] = OldOps[i];
246
247  OperandList = NewOps;
248  Use::zap(OldOps, OldOps + e, true);
249}
250
251void LandingPadInst::addClause(Value *Val) {
252  unsigned OpNo = getNumOperands();
253  growOperands(1);
254  assert(OpNo < ReservedSpace && "Growing didn't work!");
255  ++NumOperands;
256  OperandList[OpNo] = Val;
257}
258
259//===----------------------------------------------------------------------===//
260//                        CallInst Implementation
261//===----------------------------------------------------------------------===//
262
263CallInst::~CallInst() {
264}
265
266void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267  assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268  Op<-1>() = Func;
269
270#ifndef NDEBUG
271  FunctionType *FTy =
272    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274  assert((Args.size() == FTy->getNumParams() ||
275          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276         "Calling a function with bad signature!");
277
278  for (unsigned i = 0; i != Args.size(); ++i)
279    assert((i >= FTy->getNumParams() ||
280            FTy->getParamType(i) == Args[i]->getType()) &&
281           "Calling a function with a bad signature!");
282#endif
283
284  std::copy(Args.begin(), Args.end(), op_begin());
285  setName(NameStr);
286}
287
288void CallInst::init(Value *Func, const Twine &NameStr) {
289  assert(NumOperands == 1 && "NumOperands not set up?");
290  Op<-1>() = Func;
291
292#ifndef NDEBUG
293  FunctionType *FTy =
294    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297#endif
298
299  setName(NameStr);
300}
301
302CallInst::CallInst(Value *Func, const Twine &Name,
303                   Instruction *InsertBefore)
304  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305                                   ->getElementType())->getReturnType(),
306                Instruction::Call,
307                OperandTraits<CallInst>::op_end(this) - 1,
308                1, InsertBefore) {
309  init(Func, Name);
310}
311
312CallInst::CallInst(Value *Func, const Twine &Name,
313                   BasicBlock *InsertAtEnd)
314  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315                                   ->getElementType())->getReturnType(),
316                Instruction::Call,
317                OperandTraits<CallInst>::op_end(this) - 1,
318                1, InsertAtEnd) {
319  init(Func, Name);
320}
321
322CallInst::CallInst(const CallInst &CI)
323  : Instruction(CI.getType(), Instruction::Call,
324                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325                CI.getNumOperands()) {
326  setAttributes(CI.getAttributes());
327  setTailCall(CI.isTailCall());
328  setCallingConv(CI.getCallingConv());
329
330  std::copy(CI.op_begin(), CI.op_end(), op_begin());
331  SubclassOptionalData = CI.SubclassOptionalData;
332}
333
334void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335  AttributeSet PAL = getAttributes();
336  PAL = PAL.addAttribute(getContext(), i, attr);
337  setAttributes(PAL);
338}
339
340void CallInst::removeAttribute(unsigned i, Attribute attr) {
341  AttributeSet PAL = getAttributes();
342  AttrBuilder B(attr);
343  LLVMContext &Context = getContext();
344  PAL = PAL.removeAttributes(Context, i,
345                             AttributeSet::get(Context, i, B));
346  setAttributes(PAL);
347}
348
349bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
350  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
351    return true;
352  if (const Function *F = getCalledFunction())
353    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
354  return false;
355}
356
357bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
358  if (AttributeList.hasAttribute(i, A))
359    return true;
360  if (const Function *F = getCalledFunction())
361    return F->getAttributes().hasAttribute(i, A);
362  return false;
363}
364
365/// IsConstantOne - Return true only if val is constant int 1
366static bool IsConstantOne(Value *val) {
367  assert(val && "IsConstantOne does not work with NULL val");
368  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
369}
370
371static Instruction *createMalloc(Instruction *InsertBefore,
372                                 BasicBlock *InsertAtEnd, Type *IntPtrTy,
373                                 Type *AllocTy, Value *AllocSize,
374                                 Value *ArraySize, Function *MallocF,
375                                 const Twine &Name) {
376  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
377         "createMalloc needs either InsertBefore or InsertAtEnd");
378
379  // malloc(type) becomes:
380  //       bitcast (i8* malloc(typeSize)) to type*
381  // malloc(type, arraySize) becomes:
382  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
383  if (!ArraySize)
384    ArraySize = ConstantInt::get(IntPtrTy, 1);
385  else if (ArraySize->getType() != IntPtrTy) {
386    if (InsertBefore)
387      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
388                                              "", InsertBefore);
389    else
390      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
391                                              "", InsertAtEnd);
392  }
393
394  if (!IsConstantOne(ArraySize)) {
395    if (IsConstantOne(AllocSize)) {
396      AllocSize = ArraySize;         // Operand * 1 = Operand
397    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
398      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
399                                                     false /*ZExt*/);
400      // Malloc arg is constant product of type size and array size
401      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
402    } else {
403      // Multiply type size by the array size...
404      if (InsertBefore)
405        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
406                                              "mallocsize", InsertBefore);
407      else
408        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
409                                              "mallocsize", InsertAtEnd);
410    }
411  }
412
413  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
414  // Create the call to Malloc.
415  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
416  Module* M = BB->getParent()->getParent();
417  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
418  Value *MallocFunc = MallocF;
419  if (!MallocFunc)
420    // prototype malloc as "void *malloc(size_t)"
421    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
422  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
423  CallInst *MCall = NULL;
424  Instruction *Result = NULL;
425  if (InsertBefore) {
426    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
427    Result = MCall;
428    if (Result->getType() != AllocPtrType)
429      // Create a cast instruction to convert to the right type...
430      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
431  } else {
432    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
433    Result = MCall;
434    if (Result->getType() != AllocPtrType) {
435      InsertAtEnd->getInstList().push_back(MCall);
436      // Create a cast instruction to convert to the right type...
437      Result = new BitCastInst(MCall, AllocPtrType, Name);
438    }
439  }
440  MCall->setTailCall();
441  if (Function *F = dyn_cast<Function>(MallocFunc)) {
442    MCall->setCallingConv(F->getCallingConv());
443    if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
444  }
445  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
446
447  return Result;
448}
449
450/// CreateMalloc - Generate the IR for a call to malloc:
451/// 1. Compute the malloc call's argument as the specified type's size,
452///    possibly multiplied by the array size if the array size is not
453///    constant 1.
454/// 2. Call malloc with that argument.
455/// 3. Bitcast the result of the malloc call to the specified type.
456Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
457                                    Type *IntPtrTy, Type *AllocTy,
458                                    Value *AllocSize, Value *ArraySize,
459                                    Function * MallocF,
460                                    const Twine &Name) {
461  return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
462                      ArraySize, MallocF, Name);
463}
464
465/// CreateMalloc - Generate the IR for a call to malloc:
466/// 1. Compute the malloc call's argument as the specified type's size,
467///    possibly multiplied by the array size if the array size is not
468///    constant 1.
469/// 2. Call malloc with that argument.
470/// 3. Bitcast the result of the malloc call to the specified type.
471/// Note: This function does not add the bitcast to the basic block, that is the
472/// responsibility of the caller.
473Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
474                                    Type *IntPtrTy, Type *AllocTy,
475                                    Value *AllocSize, Value *ArraySize,
476                                    Function *MallocF, const Twine &Name) {
477  return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
478                      ArraySize, MallocF, Name);
479}
480
481static Instruction* createFree(Value* Source, Instruction *InsertBefore,
482                               BasicBlock *InsertAtEnd) {
483  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
484         "createFree needs either InsertBefore or InsertAtEnd");
485  assert(Source->getType()->isPointerTy() &&
486         "Can not free something of nonpointer type!");
487
488  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
489  Module* M = BB->getParent()->getParent();
490
491  Type *VoidTy = Type::getVoidTy(M->getContext());
492  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
493  // prototype free as "void free(void*)"
494  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
495  CallInst* Result = NULL;
496  Value *PtrCast = Source;
497  if (InsertBefore) {
498    if (Source->getType() != IntPtrTy)
499      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
500    Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
501  } else {
502    if (Source->getType() != IntPtrTy)
503      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
504    Result = CallInst::Create(FreeFunc, PtrCast, "");
505  }
506  Result->setTailCall();
507  if (Function *F = dyn_cast<Function>(FreeFunc))
508    Result->setCallingConv(F->getCallingConv());
509
510  return Result;
511}
512
513/// CreateFree - Generate the IR for a call to the builtin free function.
514Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
515  return createFree(Source, InsertBefore, NULL);
516}
517
518/// CreateFree - Generate the IR for a call to the builtin free function.
519/// Note: This function does not add the call to the basic block, that is the
520/// responsibility of the caller.
521Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
522  Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
523  assert(FreeCall && "CreateFree did not create a CallInst");
524  return FreeCall;
525}
526
527//===----------------------------------------------------------------------===//
528//                        InvokeInst Implementation
529//===----------------------------------------------------------------------===//
530
531void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
532                      ArrayRef<Value *> Args, const Twine &NameStr) {
533  assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
534  Op<-3>() = Fn;
535  Op<-2>() = IfNormal;
536  Op<-1>() = IfException;
537
538#ifndef NDEBUG
539  FunctionType *FTy =
540    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
541
542  assert(((Args.size() == FTy->getNumParams()) ||
543          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
544         "Invoking a function with bad signature");
545
546  for (unsigned i = 0, e = Args.size(); i != e; i++)
547    assert((i >= FTy->getNumParams() ||
548            FTy->getParamType(i) == Args[i]->getType()) &&
549           "Invoking a function with a bad signature!");
550#endif
551
552  std::copy(Args.begin(), Args.end(), op_begin());
553  setName(NameStr);
554}
555
556InvokeInst::InvokeInst(const InvokeInst &II)
557  : TerminatorInst(II.getType(), Instruction::Invoke,
558                   OperandTraits<InvokeInst>::op_end(this)
559                   - II.getNumOperands(),
560                   II.getNumOperands()) {
561  setAttributes(II.getAttributes());
562  setCallingConv(II.getCallingConv());
563  std::copy(II.op_begin(), II.op_end(), op_begin());
564  SubclassOptionalData = II.SubclassOptionalData;
565}
566
567BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
568  return getSuccessor(idx);
569}
570unsigned InvokeInst::getNumSuccessorsV() const {
571  return getNumSuccessors();
572}
573void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
574  return setSuccessor(idx, B);
575}
576
577bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
578  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
579    return true;
580  if (const Function *F = getCalledFunction())
581    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
582  return false;
583}
584
585bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
586  if (AttributeList.hasAttribute(i, A))
587    return true;
588  if (const Function *F = getCalledFunction())
589    return F->getAttributes().hasAttribute(i, A);
590  return false;
591}
592
593void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
594  AttributeSet PAL = getAttributes();
595  PAL = PAL.addAttribute(getContext(), i, attr);
596  setAttributes(PAL);
597}
598
599void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
600  AttributeSet PAL = getAttributes();
601  AttrBuilder B(attr);
602  PAL = PAL.removeAttributes(getContext(), i,
603                             AttributeSet::get(getContext(), i, B));
604  setAttributes(PAL);
605}
606
607LandingPadInst *InvokeInst::getLandingPadInst() const {
608  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
609}
610
611//===----------------------------------------------------------------------===//
612//                        ReturnInst Implementation
613//===----------------------------------------------------------------------===//
614
615ReturnInst::ReturnInst(const ReturnInst &RI)
616  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
617                   OperandTraits<ReturnInst>::op_end(this) -
618                     RI.getNumOperands(),
619                   RI.getNumOperands()) {
620  if (RI.getNumOperands())
621    Op<0>() = RI.Op<0>();
622  SubclassOptionalData = RI.SubclassOptionalData;
623}
624
625ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
626  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
627                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
628                   InsertBefore) {
629  if (retVal)
630    Op<0>() = retVal;
631}
632ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
633  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
634                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
635                   InsertAtEnd) {
636  if (retVal)
637    Op<0>() = retVal;
638}
639ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
640  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
641                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
642}
643
644unsigned ReturnInst::getNumSuccessorsV() const {
645  return getNumSuccessors();
646}
647
648/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
649/// emit the vtable for the class in this translation unit.
650void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
651  llvm_unreachable("ReturnInst has no successors!");
652}
653
654BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
655  llvm_unreachable("ReturnInst has no successors!");
656}
657
658ReturnInst::~ReturnInst() {
659}
660
661//===----------------------------------------------------------------------===//
662//                        ResumeInst Implementation
663//===----------------------------------------------------------------------===//
664
665ResumeInst::ResumeInst(const ResumeInst &RI)
666  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667                   OperandTraits<ResumeInst>::op_begin(this), 1) {
668  Op<0>() = RI.Op<0>();
669}
670
671ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674  Op<0>() = Exn;
675}
676
677ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680  Op<0>() = Exn;
681}
682
683unsigned ResumeInst::getNumSuccessorsV() const {
684  return getNumSuccessors();
685}
686
687void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688  llvm_unreachable("ResumeInst has no successors!");
689}
690
691BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692  llvm_unreachable("ResumeInst has no successors!");
693}
694
695//===----------------------------------------------------------------------===//
696//                      UnreachableInst Implementation
697//===----------------------------------------------------------------------===//
698
699UnreachableInst::UnreachableInst(LLVMContext &Context,
700                                 Instruction *InsertBefore)
701  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
702                   0, 0, InsertBefore) {
703}
704UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
705  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
706                   0, 0, InsertAtEnd) {
707}
708
709unsigned UnreachableInst::getNumSuccessorsV() const {
710  return getNumSuccessors();
711}
712
713void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
714  llvm_unreachable("UnreachableInst has no successors!");
715}
716
717BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
718  llvm_unreachable("UnreachableInst has no successors!");
719}
720
721//===----------------------------------------------------------------------===//
722//                        BranchInst Implementation
723//===----------------------------------------------------------------------===//
724
725void BranchInst::AssertOK() {
726  if (isConditional())
727    assert(getCondition()->getType()->isIntegerTy(1) &&
728           "May only branch on boolean predicates!");
729}
730
731BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
732  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
733                   OperandTraits<BranchInst>::op_end(this) - 1,
734                   1, InsertBefore) {
735  assert(IfTrue != 0 && "Branch destination may not be null!");
736  Op<-1>() = IfTrue;
737}
738BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
739                       Instruction *InsertBefore)
740  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
741                   OperandTraits<BranchInst>::op_end(this) - 3,
742                   3, InsertBefore) {
743  Op<-1>() = IfTrue;
744  Op<-2>() = IfFalse;
745  Op<-3>() = Cond;
746#ifndef NDEBUG
747  AssertOK();
748#endif
749}
750
751BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
752  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
753                   OperandTraits<BranchInst>::op_end(this) - 1,
754                   1, InsertAtEnd) {
755  assert(IfTrue != 0 && "Branch destination may not be null!");
756  Op<-1>() = IfTrue;
757}
758
759BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
760           BasicBlock *InsertAtEnd)
761  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
762                   OperandTraits<BranchInst>::op_end(this) - 3,
763                   3, InsertAtEnd) {
764  Op<-1>() = IfTrue;
765  Op<-2>() = IfFalse;
766  Op<-3>() = Cond;
767#ifndef NDEBUG
768  AssertOK();
769#endif
770}
771
772
773BranchInst::BranchInst(const BranchInst &BI) :
774  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
775                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
776                 BI.getNumOperands()) {
777  Op<-1>() = BI.Op<-1>();
778  if (BI.getNumOperands() != 1) {
779    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
780    Op<-3>() = BI.Op<-3>();
781    Op<-2>() = BI.Op<-2>();
782  }
783  SubclassOptionalData = BI.SubclassOptionalData;
784}
785
786void BranchInst::swapSuccessors() {
787  assert(isConditional() &&
788         "Cannot swap successors of an unconditional branch");
789  Op<-1>().swap(Op<-2>());
790
791  // Update profile metadata if present and it matches our structural
792  // expectations.
793  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
794  if (!ProfileData || ProfileData->getNumOperands() != 3)
795    return;
796
797  // The first operand is the name. Fetch them backwards and build a new one.
798  Value *Ops[] = {
799    ProfileData->getOperand(0),
800    ProfileData->getOperand(2),
801    ProfileData->getOperand(1)
802  };
803  setMetadata(LLVMContext::MD_prof,
804              MDNode::get(ProfileData->getContext(), Ops));
805}
806
807BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
808  return getSuccessor(idx);
809}
810unsigned BranchInst::getNumSuccessorsV() const {
811  return getNumSuccessors();
812}
813void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
814  setSuccessor(idx, B);
815}
816
817
818//===----------------------------------------------------------------------===//
819//                        AllocaInst Implementation
820//===----------------------------------------------------------------------===//
821
822static Value *getAISize(LLVMContext &Context, Value *Amt) {
823  if (!Amt)
824    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
825  else {
826    assert(!isa<BasicBlock>(Amt) &&
827           "Passed basic block into allocation size parameter! Use other ctor");
828    assert(Amt->getType()->isIntegerTy() &&
829           "Allocation array size is not an integer!");
830  }
831  return Amt;
832}
833
834AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
835                       const Twine &Name, Instruction *InsertBefore)
836  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
837                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
838  setAlignment(0);
839  assert(!Ty->isVoidTy() && "Cannot allocate void!");
840  setName(Name);
841}
842
843AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
844                       const Twine &Name, BasicBlock *InsertAtEnd)
845  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
846                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
847  setAlignment(0);
848  assert(!Ty->isVoidTy() && "Cannot allocate void!");
849  setName(Name);
850}
851
852AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
853                       Instruction *InsertBefore)
854  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
855                     getAISize(Ty->getContext(), 0), InsertBefore) {
856  setAlignment(0);
857  assert(!Ty->isVoidTy() && "Cannot allocate void!");
858  setName(Name);
859}
860
861AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
862                       BasicBlock *InsertAtEnd)
863  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
864                     getAISize(Ty->getContext(), 0), InsertAtEnd) {
865  setAlignment(0);
866  assert(!Ty->isVoidTy() && "Cannot allocate void!");
867  setName(Name);
868}
869
870AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
871                       const Twine &Name, Instruction *InsertBefore)
872  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874  setAlignment(Align);
875  assert(!Ty->isVoidTy() && "Cannot allocate void!");
876  setName(Name);
877}
878
879AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
880                       const Twine &Name, BasicBlock *InsertAtEnd)
881  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883  setAlignment(Align);
884  assert(!Ty->isVoidTy() && "Cannot allocate void!");
885  setName(Name);
886}
887
888// Out of line virtual method, so the vtable, etc has a home.
889AllocaInst::~AllocaInst() {
890}
891
892void AllocaInst::setAlignment(unsigned Align) {
893  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894  assert(Align <= MaximumAlignment &&
895         "Alignment is greater than MaximumAlignment!");
896  setInstructionSubclassData(Log2_32(Align) + 1);
897  assert(getAlignment() == Align && "Alignment representation error!");
898}
899
900bool AllocaInst::isArrayAllocation() const {
901  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
902    return !CI->isOne();
903  return true;
904}
905
906Type *AllocaInst::getAllocatedType() const {
907  return getType()->getElementType();
908}
909
910/// isStaticAlloca - Return true if this alloca is in the entry block of the
911/// function and is a constant size.  If so, the code generator will fold it
912/// into the prolog/epilog code, so it is basically free.
913bool AllocaInst::isStaticAlloca() const {
914  // Must be constant size.
915  if (!isa<ConstantInt>(getArraySize())) return false;
916
917  // Must be in the entry block.
918  const BasicBlock *Parent = getParent();
919  return Parent == &Parent->getParent()->front();
920}
921
922//===----------------------------------------------------------------------===//
923//                           LoadInst Implementation
924//===----------------------------------------------------------------------===//
925
926void LoadInst::AssertOK() {
927  assert(getOperand(0)->getType()->isPointerTy() &&
928         "Ptr must have pointer type.");
929  assert(!(isAtomic() && getAlignment() == 0) &&
930         "Alignment required for atomic load");
931}
932
933LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
934  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
935                     Load, Ptr, InsertBef) {
936  setVolatile(false);
937  setAlignment(0);
938  setAtomic(NotAtomic);
939  AssertOK();
940  setName(Name);
941}
942
943LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
944  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
945                     Load, Ptr, InsertAE) {
946  setVolatile(false);
947  setAlignment(0);
948  setAtomic(NotAtomic);
949  AssertOK();
950  setName(Name);
951}
952
953LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
954                   Instruction *InsertBef)
955  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
956                     Load, Ptr, InsertBef) {
957  setVolatile(isVolatile);
958  setAlignment(0);
959  setAtomic(NotAtomic);
960  AssertOK();
961  setName(Name);
962}
963
964LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
965                   BasicBlock *InsertAE)
966  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
967                     Load, Ptr, InsertAE) {
968  setVolatile(isVolatile);
969  setAlignment(0);
970  setAtomic(NotAtomic);
971  AssertOK();
972  setName(Name);
973}
974
975LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
976                   unsigned Align, Instruction *InsertBef)
977  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
978                     Load, Ptr, InsertBef) {
979  setVolatile(isVolatile);
980  setAlignment(Align);
981  setAtomic(NotAtomic);
982  AssertOK();
983  setName(Name);
984}
985
986LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
987                   unsigned Align, BasicBlock *InsertAE)
988  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
989                     Load, Ptr, InsertAE) {
990  setVolatile(isVolatile);
991  setAlignment(Align);
992  setAtomic(NotAtomic);
993  AssertOK();
994  setName(Name);
995}
996
997LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
998                   unsigned Align, AtomicOrdering Order,
999                   SynchronizationScope SynchScope,
1000                   Instruction *InsertBef)
1001  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1002                     Load, Ptr, InsertBef) {
1003  setVolatile(isVolatile);
1004  setAlignment(Align);
1005  setAtomic(Order, SynchScope);
1006  AssertOK();
1007  setName(Name);
1008}
1009
1010LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1011                   unsigned Align, AtomicOrdering Order,
1012                   SynchronizationScope SynchScope,
1013                   BasicBlock *InsertAE)
1014  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1015                     Load, Ptr, InsertAE) {
1016  setVolatile(isVolatile);
1017  setAlignment(Align);
1018  setAtomic(Order, SynchScope);
1019  AssertOK();
1020  setName(Name);
1021}
1022
1023LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1024  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1025                     Load, Ptr, InsertBef) {
1026  setVolatile(false);
1027  setAlignment(0);
1028  setAtomic(NotAtomic);
1029  AssertOK();
1030  if (Name && Name[0]) setName(Name);
1031}
1032
1033LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1034  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1035                     Load, Ptr, InsertAE) {
1036  setVolatile(false);
1037  setAlignment(0);
1038  setAtomic(NotAtomic);
1039  AssertOK();
1040  if (Name && Name[0]) setName(Name);
1041}
1042
1043LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1044                   Instruction *InsertBef)
1045: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1046                   Load, Ptr, InsertBef) {
1047  setVolatile(isVolatile);
1048  setAlignment(0);
1049  setAtomic(NotAtomic);
1050  AssertOK();
1051  if (Name && Name[0]) setName(Name);
1052}
1053
1054LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1055                   BasicBlock *InsertAE)
1056  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1057                     Load, Ptr, InsertAE) {
1058  setVolatile(isVolatile);
1059  setAlignment(0);
1060  setAtomic(NotAtomic);
1061  AssertOK();
1062  if (Name && Name[0]) setName(Name);
1063}
1064
1065void LoadInst::setAlignment(unsigned Align) {
1066  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1067  assert(Align <= MaximumAlignment &&
1068         "Alignment is greater than MaximumAlignment!");
1069  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1070                             ((Log2_32(Align)+1)<<1));
1071  assert(getAlignment() == Align && "Alignment representation error!");
1072}
1073
1074//===----------------------------------------------------------------------===//
1075//                           StoreInst Implementation
1076//===----------------------------------------------------------------------===//
1077
1078void StoreInst::AssertOK() {
1079  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1080  assert(getOperand(1)->getType()->isPointerTy() &&
1081         "Ptr must have pointer type!");
1082  assert(getOperand(0)->getType() ==
1083                 cast<PointerType>(getOperand(1)->getType())->getElementType()
1084         && "Ptr must be a pointer to Val type!");
1085  assert(!(isAtomic() && getAlignment() == 0) &&
1086         "Alignment required for atomic load");
1087}
1088
1089
1090StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1091  : Instruction(Type::getVoidTy(val->getContext()), Store,
1092                OperandTraits<StoreInst>::op_begin(this),
1093                OperandTraits<StoreInst>::operands(this),
1094                InsertBefore) {
1095  Op<0>() = val;
1096  Op<1>() = addr;
1097  setVolatile(false);
1098  setAlignment(0);
1099  setAtomic(NotAtomic);
1100  AssertOK();
1101}
1102
1103StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1104  : Instruction(Type::getVoidTy(val->getContext()), Store,
1105                OperandTraits<StoreInst>::op_begin(this),
1106                OperandTraits<StoreInst>::operands(this),
1107                InsertAtEnd) {
1108  Op<0>() = val;
1109  Op<1>() = addr;
1110  setVolatile(false);
1111  setAlignment(0);
1112  setAtomic(NotAtomic);
1113  AssertOK();
1114}
1115
1116StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1117                     Instruction *InsertBefore)
1118  : Instruction(Type::getVoidTy(val->getContext()), Store,
1119                OperandTraits<StoreInst>::op_begin(this),
1120                OperandTraits<StoreInst>::operands(this),
1121                InsertBefore) {
1122  Op<0>() = val;
1123  Op<1>() = addr;
1124  setVolatile(isVolatile);
1125  setAlignment(0);
1126  setAtomic(NotAtomic);
1127  AssertOK();
1128}
1129
1130StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1131                     unsigned Align, Instruction *InsertBefore)
1132  : Instruction(Type::getVoidTy(val->getContext()), Store,
1133                OperandTraits<StoreInst>::op_begin(this),
1134                OperandTraits<StoreInst>::operands(this),
1135                InsertBefore) {
1136  Op<0>() = val;
1137  Op<1>() = addr;
1138  setVolatile(isVolatile);
1139  setAlignment(Align);
1140  setAtomic(NotAtomic);
1141  AssertOK();
1142}
1143
1144StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1145                     unsigned Align, AtomicOrdering Order,
1146                     SynchronizationScope SynchScope,
1147                     Instruction *InsertBefore)
1148  : Instruction(Type::getVoidTy(val->getContext()), Store,
1149                OperandTraits<StoreInst>::op_begin(this),
1150                OperandTraits<StoreInst>::operands(this),
1151                InsertBefore) {
1152  Op<0>() = val;
1153  Op<1>() = addr;
1154  setVolatile(isVolatile);
1155  setAlignment(Align);
1156  setAtomic(Order, SynchScope);
1157  AssertOK();
1158}
1159
1160StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1161                     BasicBlock *InsertAtEnd)
1162  : Instruction(Type::getVoidTy(val->getContext()), Store,
1163                OperandTraits<StoreInst>::op_begin(this),
1164                OperandTraits<StoreInst>::operands(this),
1165                InsertAtEnd) {
1166  Op<0>() = val;
1167  Op<1>() = addr;
1168  setVolatile(isVolatile);
1169  setAlignment(0);
1170  setAtomic(NotAtomic);
1171  AssertOK();
1172}
1173
1174StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1175                     unsigned Align, BasicBlock *InsertAtEnd)
1176  : Instruction(Type::getVoidTy(val->getContext()), Store,
1177                OperandTraits<StoreInst>::op_begin(this),
1178                OperandTraits<StoreInst>::operands(this),
1179                InsertAtEnd) {
1180  Op<0>() = val;
1181  Op<1>() = addr;
1182  setVolatile(isVolatile);
1183  setAlignment(Align);
1184  setAtomic(NotAtomic);
1185  AssertOK();
1186}
1187
1188StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1189                     unsigned Align, AtomicOrdering Order,
1190                     SynchronizationScope SynchScope,
1191                     BasicBlock *InsertAtEnd)
1192  : Instruction(Type::getVoidTy(val->getContext()), Store,
1193                OperandTraits<StoreInst>::op_begin(this),
1194                OperandTraits<StoreInst>::operands(this),
1195                InsertAtEnd) {
1196  Op<0>() = val;
1197  Op<1>() = addr;
1198  setVolatile(isVolatile);
1199  setAlignment(Align);
1200  setAtomic(Order, SynchScope);
1201  AssertOK();
1202}
1203
1204void StoreInst::setAlignment(unsigned Align) {
1205  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1206  assert(Align <= MaximumAlignment &&
1207         "Alignment is greater than MaximumAlignment!");
1208  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1209                             ((Log2_32(Align)+1) << 1));
1210  assert(getAlignment() == Align && "Alignment representation error!");
1211}
1212
1213//===----------------------------------------------------------------------===//
1214//                       AtomicCmpXchgInst Implementation
1215//===----------------------------------------------------------------------===//
1216
1217void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1218                             AtomicOrdering Ordering,
1219                             SynchronizationScope SynchScope) {
1220  Op<0>() = Ptr;
1221  Op<1>() = Cmp;
1222  Op<2>() = NewVal;
1223  setOrdering(Ordering);
1224  setSynchScope(SynchScope);
1225
1226  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1227         "All operands must be non-null!");
1228  assert(getOperand(0)->getType()->isPointerTy() &&
1229         "Ptr must have pointer type!");
1230  assert(getOperand(1)->getType() ==
1231                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1232         && "Ptr must be a pointer to Cmp type!");
1233  assert(getOperand(2)->getType() ==
1234                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1235         && "Ptr must be a pointer to NewVal type!");
1236  assert(Ordering != NotAtomic &&
1237         "AtomicCmpXchg instructions must be atomic!");
1238}
1239
1240AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1241                                     AtomicOrdering Ordering,
1242                                     SynchronizationScope SynchScope,
1243                                     Instruction *InsertBefore)
1244  : Instruction(Cmp->getType(), AtomicCmpXchg,
1245                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1246                OperandTraits<AtomicCmpXchgInst>::operands(this),
1247                InsertBefore) {
1248  Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1249}
1250
1251AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1252                                     AtomicOrdering Ordering,
1253                                     SynchronizationScope SynchScope,
1254                                     BasicBlock *InsertAtEnd)
1255  : Instruction(Cmp->getType(), AtomicCmpXchg,
1256                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1257                OperandTraits<AtomicCmpXchgInst>::operands(this),
1258                InsertAtEnd) {
1259  Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1260}
1261
1262//===----------------------------------------------------------------------===//
1263//                       AtomicRMWInst Implementation
1264//===----------------------------------------------------------------------===//
1265
1266void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1267                         AtomicOrdering Ordering,
1268                         SynchronizationScope SynchScope) {
1269  Op<0>() = Ptr;
1270  Op<1>() = Val;
1271  setOperation(Operation);
1272  setOrdering(Ordering);
1273  setSynchScope(SynchScope);
1274
1275  assert(getOperand(0) && getOperand(1) &&
1276         "All operands must be non-null!");
1277  assert(getOperand(0)->getType()->isPointerTy() &&
1278         "Ptr must have pointer type!");
1279  assert(getOperand(1)->getType() ==
1280         cast<PointerType>(getOperand(0)->getType())->getElementType()
1281         && "Ptr must be a pointer to Val type!");
1282  assert(Ordering != NotAtomic &&
1283         "AtomicRMW instructions must be atomic!");
1284}
1285
1286AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1287                             AtomicOrdering Ordering,
1288                             SynchronizationScope SynchScope,
1289                             Instruction *InsertBefore)
1290  : Instruction(Val->getType(), AtomicRMW,
1291                OperandTraits<AtomicRMWInst>::op_begin(this),
1292                OperandTraits<AtomicRMWInst>::operands(this),
1293                InsertBefore) {
1294  Init(Operation, Ptr, Val, Ordering, SynchScope);
1295}
1296
1297AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1298                             AtomicOrdering Ordering,
1299                             SynchronizationScope SynchScope,
1300                             BasicBlock *InsertAtEnd)
1301  : Instruction(Val->getType(), AtomicRMW,
1302                OperandTraits<AtomicRMWInst>::op_begin(this),
1303                OperandTraits<AtomicRMWInst>::operands(this),
1304                InsertAtEnd) {
1305  Init(Operation, Ptr, Val, Ordering, SynchScope);
1306}
1307
1308//===----------------------------------------------------------------------===//
1309//                       FenceInst Implementation
1310//===----------------------------------------------------------------------===//
1311
1312FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1313                     SynchronizationScope SynchScope,
1314                     Instruction *InsertBefore)
1315  : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
1316  setOrdering(Ordering);
1317  setSynchScope(SynchScope);
1318}
1319
1320FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1321                     SynchronizationScope SynchScope,
1322                     BasicBlock *InsertAtEnd)
1323  : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
1324  setOrdering(Ordering);
1325  setSynchScope(SynchScope);
1326}
1327
1328//===----------------------------------------------------------------------===//
1329//                       GetElementPtrInst Implementation
1330//===----------------------------------------------------------------------===//
1331
1332void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1333                             const Twine &Name) {
1334  assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1335  OperandList[0] = Ptr;
1336  std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1337  setName(Name);
1338}
1339
1340GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1341  : Instruction(GEPI.getType(), GetElementPtr,
1342                OperandTraits<GetElementPtrInst>::op_end(this)
1343                - GEPI.getNumOperands(),
1344                GEPI.getNumOperands()) {
1345  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1346  SubclassOptionalData = GEPI.SubclassOptionalData;
1347}
1348
1349/// getIndexedType - Returns the type of the element that would be accessed with
1350/// a gep instruction with the specified parameters.
1351///
1352/// The Idxs pointer should point to a continuous piece of memory containing the
1353/// indices, either as Value* or uint64_t.
1354///
1355/// A null type is returned if the indices are invalid for the specified
1356/// pointer type.
1357///
1358template <typename IndexTy>
1359static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1360  PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
1361  if (!PTy) return 0;   // Type isn't a pointer type!
1362  Type *Agg = PTy->getElementType();
1363
1364  // Handle the special case of the empty set index set, which is always valid.
1365  if (IdxList.empty())
1366    return Agg;
1367
1368  // If there is at least one index, the top level type must be sized, otherwise
1369  // it cannot be 'stepped over'.
1370  if (!Agg->isSized())
1371    return 0;
1372
1373  unsigned CurIdx = 1;
1374  for (; CurIdx != IdxList.size(); ++CurIdx) {
1375    CompositeType *CT = dyn_cast<CompositeType>(Agg);
1376    if (!CT || CT->isPointerTy()) return 0;
1377    IndexTy Index = IdxList[CurIdx];
1378    if (!CT->indexValid(Index)) return 0;
1379    Agg = CT->getTypeAtIndex(Index);
1380  }
1381  return CurIdx == IdxList.size() ? Agg : 0;
1382}
1383
1384Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1385  return getIndexedTypeInternal(Ptr, IdxList);
1386}
1387
1388Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1389                                        ArrayRef<Constant *> IdxList) {
1390  return getIndexedTypeInternal(Ptr, IdxList);
1391}
1392
1393Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1394  return getIndexedTypeInternal(Ptr, IdxList);
1395}
1396
1397/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1398/// zeros.  If so, the result pointer and the first operand have the same
1399/// value, just potentially different types.
1400bool GetElementPtrInst::hasAllZeroIndices() const {
1401  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1402    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1403      if (!CI->isZero()) return false;
1404    } else {
1405      return false;
1406    }
1407  }
1408  return true;
1409}
1410
1411/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1412/// constant integers.  If so, the result pointer and the first operand have
1413/// a constant offset between them.
1414bool GetElementPtrInst::hasAllConstantIndices() const {
1415  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1416    if (!isa<ConstantInt>(getOperand(i)))
1417      return false;
1418  }
1419  return true;
1420}
1421
1422void GetElementPtrInst::setIsInBounds(bool B) {
1423  cast<GEPOperator>(this)->setIsInBounds(B);
1424}
1425
1426bool GetElementPtrInst::isInBounds() const {
1427  return cast<GEPOperator>(this)->isInBounds();
1428}
1429
1430bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1431                                                 APInt &Offset) const {
1432  // Delegate to the generic GEPOperator implementation.
1433  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1434}
1435
1436//===----------------------------------------------------------------------===//
1437//                           ExtractElementInst Implementation
1438//===----------------------------------------------------------------------===//
1439
1440ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1441                                       const Twine &Name,
1442                                       Instruction *InsertBef)
1443  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1444                ExtractElement,
1445                OperandTraits<ExtractElementInst>::op_begin(this),
1446                2, InsertBef) {
1447  assert(isValidOperands(Val, Index) &&
1448         "Invalid extractelement instruction operands!");
1449  Op<0>() = Val;
1450  Op<1>() = Index;
1451  setName(Name);
1452}
1453
1454ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1455                                       const Twine &Name,
1456                                       BasicBlock *InsertAE)
1457  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1458                ExtractElement,
1459                OperandTraits<ExtractElementInst>::op_begin(this),
1460                2, InsertAE) {
1461  assert(isValidOperands(Val, Index) &&
1462         "Invalid extractelement instruction operands!");
1463
1464  Op<0>() = Val;
1465  Op<1>() = Index;
1466  setName(Name);
1467}
1468
1469
1470bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1471  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1472    return false;
1473  return true;
1474}
1475
1476
1477//===----------------------------------------------------------------------===//
1478//                           InsertElementInst Implementation
1479//===----------------------------------------------------------------------===//
1480
1481InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1482                                     const Twine &Name,
1483                                     Instruction *InsertBef)
1484  : Instruction(Vec->getType(), InsertElement,
1485                OperandTraits<InsertElementInst>::op_begin(this),
1486                3, InsertBef) {
1487  assert(isValidOperands(Vec, Elt, Index) &&
1488         "Invalid insertelement instruction operands!");
1489  Op<0>() = Vec;
1490  Op<1>() = Elt;
1491  Op<2>() = Index;
1492  setName(Name);
1493}
1494
1495InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1496                                     const Twine &Name,
1497                                     BasicBlock *InsertAE)
1498  : Instruction(Vec->getType(), InsertElement,
1499                OperandTraits<InsertElementInst>::op_begin(this),
1500                3, InsertAE) {
1501  assert(isValidOperands(Vec, Elt, Index) &&
1502         "Invalid insertelement instruction operands!");
1503
1504  Op<0>() = Vec;
1505  Op<1>() = Elt;
1506  Op<2>() = Index;
1507  setName(Name);
1508}
1509
1510bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1511                                        const Value *Index) {
1512  if (!Vec->getType()->isVectorTy())
1513    return false;   // First operand of insertelement must be vector type.
1514
1515  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1516    return false;// Second operand of insertelement must be vector element type.
1517
1518  if (!Index->getType()->isIntegerTy(32))
1519    return false;  // Third operand of insertelement must be i32.
1520  return true;
1521}
1522
1523
1524//===----------------------------------------------------------------------===//
1525//                      ShuffleVectorInst Implementation
1526//===----------------------------------------------------------------------===//
1527
1528ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1529                                     const Twine &Name,
1530                                     Instruction *InsertBefore)
1531: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1532                cast<VectorType>(Mask->getType())->getNumElements()),
1533              ShuffleVector,
1534              OperandTraits<ShuffleVectorInst>::op_begin(this),
1535              OperandTraits<ShuffleVectorInst>::operands(this),
1536              InsertBefore) {
1537  assert(isValidOperands(V1, V2, Mask) &&
1538         "Invalid shuffle vector instruction operands!");
1539  Op<0>() = V1;
1540  Op<1>() = V2;
1541  Op<2>() = Mask;
1542  setName(Name);
1543}
1544
1545ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1546                                     const Twine &Name,
1547                                     BasicBlock *InsertAtEnd)
1548: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1549                cast<VectorType>(Mask->getType())->getNumElements()),
1550              ShuffleVector,
1551              OperandTraits<ShuffleVectorInst>::op_begin(this),
1552              OperandTraits<ShuffleVectorInst>::operands(this),
1553              InsertAtEnd) {
1554  assert(isValidOperands(V1, V2, Mask) &&
1555         "Invalid shuffle vector instruction operands!");
1556
1557  Op<0>() = V1;
1558  Op<1>() = V2;
1559  Op<2>() = Mask;
1560  setName(Name);
1561}
1562
1563bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1564                                        const Value *Mask) {
1565  // V1 and V2 must be vectors of the same type.
1566  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1567    return false;
1568
1569  // Mask must be vector of i32.
1570  VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1571  if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1572    return false;
1573
1574  // Check to see if Mask is valid.
1575  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1576    return true;
1577
1578  if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1579    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1580    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1581      if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1582        if (CI->uge(V1Size*2))
1583          return false;
1584      } else if (!isa<UndefValue>(MV->getOperand(i))) {
1585        return false;
1586      }
1587    }
1588    return true;
1589  }
1590
1591  if (const ConstantDataSequential *CDS =
1592        dyn_cast<ConstantDataSequential>(Mask)) {
1593    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1594    for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1595      if (CDS->getElementAsInteger(i) >= V1Size*2)
1596        return false;
1597    return true;
1598  }
1599
1600  // The bitcode reader can create a place holder for a forward reference
1601  // used as the shuffle mask. When this occurs, the shuffle mask will
1602  // fall into this case and fail. To avoid this error, do this bit of
1603  // ugliness to allow such a mask pass.
1604  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1605    if (CE->getOpcode() == Instruction::UserOp1)
1606      return true;
1607
1608  return false;
1609}
1610
1611/// getMaskValue - Return the index from the shuffle mask for the specified
1612/// output result.  This is either -1 if the element is undef or a number less
1613/// than 2*numelements.
1614int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1615  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1616  if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1617    return CDS->getElementAsInteger(i);
1618  Constant *C = Mask->getAggregateElement(i);
1619  if (isa<UndefValue>(C))
1620    return -1;
1621  return cast<ConstantInt>(C)->getZExtValue();
1622}
1623
1624/// getShuffleMask - Return the full mask for this instruction, where each
1625/// element is the element number and undef's are returned as -1.
1626void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1627                                       SmallVectorImpl<int> &Result) {
1628  unsigned NumElts = Mask->getType()->getVectorNumElements();
1629
1630  if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1631    for (unsigned i = 0; i != NumElts; ++i)
1632      Result.push_back(CDS->getElementAsInteger(i));
1633    return;
1634  }
1635  for (unsigned i = 0; i != NumElts; ++i) {
1636    Constant *C = Mask->getAggregateElement(i);
1637    Result.push_back(isa<UndefValue>(C) ? -1 :
1638                     cast<ConstantInt>(C)->getZExtValue());
1639  }
1640}
1641
1642
1643//===----------------------------------------------------------------------===//
1644//                             InsertValueInst Class
1645//===----------------------------------------------------------------------===//
1646
1647void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1648                           const Twine &Name) {
1649  assert(NumOperands == 2 && "NumOperands not initialized?");
1650
1651  // There's no fundamental reason why we require at least one index
1652  // (other than weirdness with &*IdxBegin being invalid; see
1653  // getelementptr's init routine for example). But there's no
1654  // present need to support it.
1655  assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1656
1657  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1658         Val->getType() && "Inserted value must match indexed type!");
1659  Op<0>() = Agg;
1660  Op<1>() = Val;
1661
1662  Indices.append(Idxs.begin(), Idxs.end());
1663  setName(Name);
1664}
1665
1666InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1667  : Instruction(IVI.getType(), InsertValue,
1668                OperandTraits<InsertValueInst>::op_begin(this), 2),
1669    Indices(IVI.Indices) {
1670  Op<0>() = IVI.getOperand(0);
1671  Op<1>() = IVI.getOperand(1);
1672  SubclassOptionalData = IVI.SubclassOptionalData;
1673}
1674
1675//===----------------------------------------------------------------------===//
1676//                             ExtractValueInst Class
1677//===----------------------------------------------------------------------===//
1678
1679void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1680  assert(NumOperands == 1 && "NumOperands not initialized?");
1681
1682  // There's no fundamental reason why we require at least one index.
1683  // But there's no present need to support it.
1684  assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1685
1686  Indices.append(Idxs.begin(), Idxs.end());
1687  setName(Name);
1688}
1689
1690ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1691  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1692    Indices(EVI.Indices) {
1693  SubclassOptionalData = EVI.SubclassOptionalData;
1694}
1695
1696// getIndexedType - Returns the type of the element that would be extracted
1697// with an extractvalue instruction with the specified parameters.
1698//
1699// A null type is returned if the indices are invalid for the specified
1700// pointer type.
1701//
1702Type *ExtractValueInst::getIndexedType(Type *Agg,
1703                                       ArrayRef<unsigned> Idxs) {
1704  for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1705    unsigned Index = Idxs[CurIdx];
1706    // We can't use CompositeType::indexValid(Index) here.
1707    // indexValid() always returns true for arrays because getelementptr allows
1708    // out-of-bounds indices. Since we don't allow those for extractvalue and
1709    // insertvalue we need to check array indexing manually.
1710    // Since the only other types we can index into are struct types it's just
1711    // as easy to check those manually as well.
1712    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1713      if (Index >= AT->getNumElements())
1714        return 0;
1715    } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1716      if (Index >= ST->getNumElements())
1717        return 0;
1718    } else {
1719      // Not a valid type to index into.
1720      return 0;
1721    }
1722
1723    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1724  }
1725  return const_cast<Type*>(Agg);
1726}
1727
1728//===----------------------------------------------------------------------===//
1729//                             BinaryOperator Class
1730//===----------------------------------------------------------------------===//
1731
1732BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1733                               Type *Ty, const Twine &Name,
1734                               Instruction *InsertBefore)
1735  : Instruction(Ty, iType,
1736                OperandTraits<BinaryOperator>::op_begin(this),
1737                OperandTraits<BinaryOperator>::operands(this),
1738                InsertBefore) {
1739  Op<0>() = S1;
1740  Op<1>() = S2;
1741  init(iType);
1742  setName(Name);
1743}
1744
1745BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1746                               Type *Ty, const Twine &Name,
1747                               BasicBlock *InsertAtEnd)
1748  : Instruction(Ty, iType,
1749                OperandTraits<BinaryOperator>::op_begin(this),
1750                OperandTraits<BinaryOperator>::operands(this),
1751                InsertAtEnd) {
1752  Op<0>() = S1;
1753  Op<1>() = S2;
1754  init(iType);
1755  setName(Name);
1756}
1757
1758
1759void BinaryOperator::init(BinaryOps iType) {
1760  Value *LHS = getOperand(0), *RHS = getOperand(1);
1761  (void)LHS; (void)RHS; // Silence warnings.
1762  assert(LHS->getType() == RHS->getType() &&
1763         "Binary operator operand types must match!");
1764#ifndef NDEBUG
1765  switch (iType) {
1766  case Add: case Sub:
1767  case Mul:
1768    assert(getType() == LHS->getType() &&
1769           "Arithmetic operation should return same type as operands!");
1770    assert(getType()->isIntOrIntVectorTy() &&
1771           "Tried to create an integer operation on a non-integer type!");
1772    break;
1773  case FAdd: case FSub:
1774  case FMul:
1775    assert(getType() == LHS->getType() &&
1776           "Arithmetic operation should return same type as operands!");
1777    assert(getType()->isFPOrFPVectorTy() &&
1778           "Tried to create a floating-point operation on a "
1779           "non-floating-point type!");
1780    break;
1781  case UDiv:
1782  case SDiv:
1783    assert(getType() == LHS->getType() &&
1784           "Arithmetic operation should return same type as operands!");
1785    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1786            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1787           "Incorrect operand type (not integer) for S/UDIV");
1788    break;
1789  case FDiv:
1790    assert(getType() == LHS->getType() &&
1791           "Arithmetic operation should return same type as operands!");
1792    assert(getType()->isFPOrFPVectorTy() &&
1793           "Incorrect operand type (not floating point) for FDIV");
1794    break;
1795  case URem:
1796  case SRem:
1797    assert(getType() == LHS->getType() &&
1798           "Arithmetic operation should return same type as operands!");
1799    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1800            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1801           "Incorrect operand type (not integer) for S/UREM");
1802    break;
1803  case FRem:
1804    assert(getType() == LHS->getType() &&
1805           "Arithmetic operation should return same type as operands!");
1806    assert(getType()->isFPOrFPVectorTy() &&
1807           "Incorrect operand type (not floating point) for FREM");
1808    break;
1809  case Shl:
1810  case LShr:
1811  case AShr:
1812    assert(getType() == LHS->getType() &&
1813           "Shift operation should return same type as operands!");
1814    assert((getType()->isIntegerTy() ||
1815            (getType()->isVectorTy() &&
1816             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1817           "Tried to create a shift operation on a non-integral type!");
1818    break;
1819  case And: case Or:
1820  case Xor:
1821    assert(getType() == LHS->getType() &&
1822           "Logical operation should return same type as operands!");
1823    assert((getType()->isIntegerTy() ||
1824            (getType()->isVectorTy() &&
1825             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1826           "Tried to create a logical operation on a non-integral type!");
1827    break;
1828  default:
1829    break;
1830  }
1831#endif
1832}
1833
1834BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1835                                       const Twine &Name,
1836                                       Instruction *InsertBefore) {
1837  assert(S1->getType() == S2->getType() &&
1838         "Cannot create binary operator with two operands of differing type!");
1839  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1840}
1841
1842BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1843                                       const Twine &Name,
1844                                       BasicBlock *InsertAtEnd) {
1845  BinaryOperator *Res = Create(Op, S1, S2, Name);
1846  InsertAtEnd->getInstList().push_back(Res);
1847  return Res;
1848}
1849
1850BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1851                                          Instruction *InsertBefore) {
1852  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1853  return new BinaryOperator(Instruction::Sub,
1854                            zero, Op,
1855                            Op->getType(), Name, InsertBefore);
1856}
1857
1858BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1859                                          BasicBlock *InsertAtEnd) {
1860  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1861  return new BinaryOperator(Instruction::Sub,
1862                            zero, Op,
1863                            Op->getType(), Name, InsertAtEnd);
1864}
1865
1866BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1867                                             Instruction *InsertBefore) {
1868  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1869  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1870}
1871
1872BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1873                                             BasicBlock *InsertAtEnd) {
1874  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1875  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1876}
1877
1878BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1879                                             Instruction *InsertBefore) {
1880  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1881  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1882}
1883
1884BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1885                                             BasicBlock *InsertAtEnd) {
1886  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1887  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1888}
1889
1890BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1891                                           Instruction *InsertBefore) {
1892  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1893  return new BinaryOperator(Instruction::FSub, zero, Op,
1894                            Op->getType(), Name, InsertBefore);
1895}
1896
1897BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1898                                           BasicBlock *InsertAtEnd) {
1899  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1900  return new BinaryOperator(Instruction::FSub, zero, Op,
1901                            Op->getType(), Name, InsertAtEnd);
1902}
1903
1904BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1905                                          Instruction *InsertBefore) {
1906  Constant *C = Constant::getAllOnesValue(Op->getType());
1907  return new BinaryOperator(Instruction::Xor, Op, C,
1908                            Op->getType(), Name, InsertBefore);
1909}
1910
1911BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1912                                          BasicBlock *InsertAtEnd) {
1913  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1914  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1915                            Op->getType(), Name, InsertAtEnd);
1916}
1917
1918
1919// isConstantAllOnes - Helper function for several functions below
1920static inline bool isConstantAllOnes(const Value *V) {
1921  if (const Constant *C = dyn_cast<Constant>(V))
1922    return C->isAllOnesValue();
1923  return false;
1924}
1925
1926bool BinaryOperator::isNeg(const Value *V) {
1927  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1928    if (Bop->getOpcode() == Instruction::Sub)
1929      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1930        return C->isNegativeZeroValue();
1931  return false;
1932}
1933
1934bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1935  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1936    if (Bop->getOpcode() == Instruction::FSub)
1937      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1938        if (!IgnoreZeroSign)
1939          IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1940        return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1941      }
1942  return false;
1943}
1944
1945bool BinaryOperator::isNot(const Value *V) {
1946  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1947    return (Bop->getOpcode() == Instruction::Xor &&
1948            (isConstantAllOnes(Bop->getOperand(1)) ||
1949             isConstantAllOnes(Bop->getOperand(0))));
1950  return false;
1951}
1952
1953Value *BinaryOperator::getNegArgument(Value *BinOp) {
1954  return cast<BinaryOperator>(BinOp)->getOperand(1);
1955}
1956
1957const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1958  return getNegArgument(const_cast<Value*>(BinOp));
1959}
1960
1961Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1962  return cast<BinaryOperator>(BinOp)->getOperand(1);
1963}
1964
1965const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1966  return getFNegArgument(const_cast<Value*>(BinOp));
1967}
1968
1969Value *BinaryOperator::getNotArgument(Value *BinOp) {
1970  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1971  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1972  Value *Op0 = BO->getOperand(0);
1973  Value *Op1 = BO->getOperand(1);
1974  if (isConstantAllOnes(Op0)) return Op1;
1975
1976  assert(isConstantAllOnes(Op1));
1977  return Op0;
1978}
1979
1980const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1981  return getNotArgument(const_cast<Value*>(BinOp));
1982}
1983
1984
1985// swapOperands - Exchange the two operands to this instruction.  This
1986// instruction is safe to use on any binary instruction and does not
1987// modify the semantics of the instruction.  If the instruction is
1988// order dependent (SetLT f.e.) the opcode is changed.
1989//
1990bool BinaryOperator::swapOperands() {
1991  if (!isCommutative())
1992    return true; // Can't commute operands
1993  Op<0>().swap(Op<1>());
1994  return false;
1995}
1996
1997void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1998  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1999}
2000
2001void BinaryOperator::setHasNoSignedWrap(bool b) {
2002  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2003}
2004
2005void BinaryOperator::setIsExact(bool b) {
2006  cast<PossiblyExactOperator>(this)->setIsExact(b);
2007}
2008
2009bool BinaryOperator::hasNoUnsignedWrap() const {
2010  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2011}
2012
2013bool BinaryOperator::hasNoSignedWrap() const {
2014  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2015}
2016
2017bool BinaryOperator::isExact() const {
2018  return cast<PossiblyExactOperator>(this)->isExact();
2019}
2020
2021//===----------------------------------------------------------------------===//
2022//                             FPMathOperator Class
2023//===----------------------------------------------------------------------===//
2024
2025/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2026/// An accuracy of 0.0 means that the operation should be performed with the
2027/// default precision.
2028float FPMathOperator::getFPAccuracy() const {
2029  const MDNode *MD =
2030    cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2031  if (!MD)
2032    return 0.0;
2033  ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2034  return Accuracy->getValueAPF().convertToFloat();
2035}
2036
2037
2038//===----------------------------------------------------------------------===//
2039//                                CastInst Class
2040//===----------------------------------------------------------------------===//
2041
2042void CastInst::anchor() {}
2043
2044// Just determine if this cast only deals with integral->integral conversion.
2045bool CastInst::isIntegerCast() const {
2046  switch (getOpcode()) {
2047    default: return false;
2048    case Instruction::ZExt:
2049    case Instruction::SExt:
2050    case Instruction::Trunc:
2051      return true;
2052    case Instruction::BitCast:
2053      return getOperand(0)->getType()->isIntegerTy() &&
2054        getType()->isIntegerTy();
2055  }
2056}
2057
2058bool CastInst::isLosslessCast() const {
2059  // Only BitCast can be lossless, exit fast if we're not BitCast
2060  if (getOpcode() != Instruction::BitCast)
2061    return false;
2062
2063  // Identity cast is always lossless
2064  Type* SrcTy = getOperand(0)->getType();
2065  Type* DstTy = getType();
2066  if (SrcTy == DstTy)
2067    return true;
2068
2069  // Pointer to pointer is always lossless.
2070  if (SrcTy->isPointerTy())
2071    return DstTy->isPointerTy();
2072  return false;  // Other types have no identity values
2073}
2074
2075/// This function determines if the CastInst does not require any bits to be
2076/// changed in order to effect the cast. Essentially, it identifies cases where
2077/// no code gen is necessary for the cast, hence the name no-op cast.  For
2078/// example, the following are all no-op casts:
2079/// # bitcast i32* %x to i8*
2080/// # bitcast <2 x i32> %x to <4 x i16>
2081/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2082/// @brief Determine if the described cast is a no-op.
2083bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2084                          Type *SrcTy,
2085                          Type *DestTy,
2086                          Type *IntPtrTy) {
2087  switch (Opcode) {
2088    default: llvm_unreachable("Invalid CastOp");
2089    case Instruction::Trunc:
2090    case Instruction::ZExt:
2091    case Instruction::SExt:
2092    case Instruction::FPTrunc:
2093    case Instruction::FPExt:
2094    case Instruction::UIToFP:
2095    case Instruction::SIToFP:
2096    case Instruction::FPToUI:
2097    case Instruction::FPToSI:
2098    case Instruction::AddrSpaceCast:
2099      // TODO: Target informations may give a more accurate answer here.
2100      return false;
2101    case Instruction::BitCast:
2102      return true;  // BitCast never modifies bits.
2103    case Instruction::PtrToInt:
2104      return IntPtrTy->getScalarSizeInBits() ==
2105             DestTy->getScalarSizeInBits();
2106    case Instruction::IntToPtr:
2107      return IntPtrTy->getScalarSizeInBits() ==
2108             SrcTy->getScalarSizeInBits();
2109  }
2110}
2111
2112/// @brief Determine if a cast is a no-op.
2113bool CastInst::isNoopCast(Type *IntPtrTy) const {
2114  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2115}
2116
2117/// This function determines if a pair of casts can be eliminated and what
2118/// opcode should be used in the elimination. This assumes that there are two
2119/// instructions like this:
2120/// *  %F = firstOpcode SrcTy %x to MidTy
2121/// *  %S = secondOpcode MidTy %F to DstTy
2122/// The function returns a resultOpcode so these two casts can be replaced with:
2123/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2124/// If no such cast is permited, the function returns 0.
2125unsigned CastInst::isEliminableCastPair(
2126  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2127  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2128  Type *DstIntPtrTy) {
2129  // Define the 144 possibilities for these two cast instructions. The values
2130  // in this matrix determine what to do in a given situation and select the
2131  // case in the switch below.  The rows correspond to firstOp, the columns
2132  // correspond to secondOp.  In looking at the table below, keep in  mind
2133  // the following cast properties:
2134  //
2135  //          Size Compare       Source               Destination
2136  // Operator  Src ? Size   Type       Sign         Type       Sign
2137  // -------- ------------ -------------------   ---------------------
2138  // TRUNC         >       Integer      Any        Integral     Any
2139  // ZEXT          <       Integral   Unsigned     Integer      Any
2140  // SEXT          <       Integral    Signed      Integer      Any
2141  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2142  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2143  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2144  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2145  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2146  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2147  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2148  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2149  // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2150  // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2151  //
2152  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2153  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2154  // into "fptoui double to i64", but this loses information about the range
2155  // of the produced value (we no longer know the top-part is all zeros).
2156  // Further this conversion is often much more expensive for typical hardware,
2157  // and causes issues when building libgcc.  We disallow fptosi+sext for the
2158  // same reason.
2159  const unsigned numCastOps =
2160    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2161  static const uint8_t CastResults[numCastOps][numCastOps] = {
2162    // T        F  F  U  S  F  F  P  I  B  A  -+
2163    // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2164    // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2165    // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2166    // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2167    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2168    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt           |
2169    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2170    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2171    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2172    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2173    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2174    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc        |
2175    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt          |
2176    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2177    { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2178    {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2179    {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2180  };
2181
2182  // If either of the casts are a bitcast from scalar to vector, disallow the
2183  // merging. However, bitcast of A->B->A are allowed.
2184  bool isFirstBitcast  = (firstOp == Instruction::BitCast);
2185  bool isSecondBitcast = (secondOp == Instruction::BitCast);
2186  bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2187
2188  // Check if any of the bitcasts convert scalars<->vectors.
2189  if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2190      (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2191    // Unless we are bitcasing to the original type, disallow optimizations.
2192    if (!chainedBitcast) return 0;
2193
2194  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2195                            [secondOp-Instruction::CastOpsBegin];
2196  switch (ElimCase) {
2197    case 0:
2198      // Categorically disallowed.
2199      return 0;
2200    case 1:
2201      // Allowed, use first cast's opcode.
2202      return firstOp;
2203    case 2:
2204      // Allowed, use second cast's opcode.
2205      return secondOp;
2206    case 3:
2207      // No-op cast in second op implies firstOp as long as the DestTy
2208      // is integer and we are not converting between a vector and a
2209      // non vector type.
2210      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2211        return firstOp;
2212      return 0;
2213    case 4:
2214      // No-op cast in second op implies firstOp as long as the DestTy
2215      // is floating point.
2216      if (DstTy->isFloatingPointTy())
2217        return firstOp;
2218      return 0;
2219    case 5:
2220      // No-op cast in first op implies secondOp as long as the SrcTy
2221      // is an integer.
2222      if (SrcTy->isIntegerTy())
2223        return secondOp;
2224      return 0;
2225    case 6:
2226      // No-op cast in first op implies secondOp as long as the SrcTy
2227      // is a floating point.
2228      if (SrcTy->isFloatingPointTy())
2229        return secondOp;
2230      return 0;
2231    case 7: {
2232      // Cannot simplify if address spaces are different!
2233      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2234        return 0;
2235
2236      unsigned MidSize = MidTy->getScalarSizeInBits();
2237      // We can still fold this without knowing the actual sizes as long we
2238      // know that the intermediate pointer is the largest possible
2239      // pointer size.
2240      // FIXME: Is this always true?
2241      if (MidSize == 64)
2242        return Instruction::BitCast;
2243
2244      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2245      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2246        return 0;
2247      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2248      if (MidSize >= PtrSize)
2249        return Instruction::BitCast;
2250      return 0;
2251    }
2252    case 8: {
2253      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2254      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2255      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2256      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2257      unsigned DstSize = DstTy->getScalarSizeInBits();
2258      if (SrcSize == DstSize)
2259        return Instruction::BitCast;
2260      else if (SrcSize < DstSize)
2261        return firstOp;
2262      return secondOp;
2263    }
2264    case 9:
2265      // zext, sext -> zext, because sext can't sign extend after zext
2266      return Instruction::ZExt;
2267    case 10:
2268      // fpext followed by ftrunc is allowed if the bit size returned to is
2269      // the same as the original, in which case its just a bitcast
2270      if (SrcTy == DstTy)
2271        return Instruction::BitCast;
2272      return 0; // If the types are not the same we can't eliminate it.
2273    case 11: {
2274      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2275      if (!MidIntPtrTy)
2276        return 0;
2277      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2278      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2279      unsigned DstSize = DstTy->getScalarSizeInBits();
2280      if (SrcSize <= PtrSize && SrcSize == DstSize)
2281        return Instruction::BitCast;
2282      return 0;
2283    }
2284    case 12: {
2285      // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2286      // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2287      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2288        return Instruction::AddrSpaceCast;
2289      return Instruction::BitCast;
2290    }
2291    case 13:
2292      // FIXME: this state can be merged with (1), but the following assert
2293      // is useful to check the correcteness of the sequence due to semantic
2294      // change of bitcast.
2295      assert(
2296        SrcTy->isPtrOrPtrVectorTy() &&
2297        MidTy->isPtrOrPtrVectorTy() &&
2298        DstTy->isPtrOrPtrVectorTy() &&
2299        SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2300        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2301        "Illegal addrspacecast, bitcast sequence!");
2302      // Allowed, use first cast's opcode
2303      return firstOp;
2304    case 14:
2305      // FIXME: this state can be merged with (2), but the following assert
2306      // is useful to check the correcteness of the sequence due to semantic
2307      // change of bitcast.
2308      assert(
2309        SrcTy->isPtrOrPtrVectorTy() &&
2310        MidTy->isPtrOrPtrVectorTy() &&
2311        DstTy->isPtrOrPtrVectorTy() &&
2312        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2313        MidTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace() &&
2314        "Illegal bitcast, addrspacecast sequence!");
2315      // Allowed, use second cast's opcode
2316      return secondOp;
2317    case 15:
2318      // FIXME: this state can be merged with (1), but the following assert
2319      // is useful to check the correcteness of the sequence due to semantic
2320      // change of bitcast.
2321      assert(
2322        SrcTy->isIntOrIntVectorTy() &&
2323        MidTy->isPtrOrPtrVectorTy() &&
2324        DstTy->isPtrOrPtrVectorTy() &&
2325        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2326        "Illegal inttoptr, bitcast sequence!");
2327      // Allowed, use first cast's opcode
2328      return firstOp;
2329    case 16:
2330      // FIXME: this state can be merged with (2), but the following assert
2331      // is useful to check the correcteness of the sequence due to semantic
2332      // change of bitcast.
2333      assert(
2334        SrcTy->isPtrOrPtrVectorTy() &&
2335        MidTy->isPtrOrPtrVectorTy() &&
2336        DstTy->isIntOrIntVectorTy() &&
2337        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2338        "Illegal bitcast, ptrtoint sequence!");
2339      // Allowed, use second cast's opcode
2340      return secondOp;
2341    case 99:
2342      // Cast combination can't happen (error in input). This is for all cases
2343      // where the MidTy is not the same for the two cast instructions.
2344      llvm_unreachable("Invalid Cast Combination");
2345    default:
2346      llvm_unreachable("Error in CastResults table!!!");
2347  }
2348}
2349
2350CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2351  const Twine &Name, Instruction *InsertBefore) {
2352  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2353  // Construct and return the appropriate CastInst subclass
2354  switch (op) {
2355  case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2356  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2357  case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2358  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2359  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2360  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2361  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2362  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2363  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2364  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2365  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2366  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2367  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2368  default: llvm_unreachable("Invalid opcode provided");
2369  }
2370}
2371
2372CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2373  const Twine &Name, BasicBlock *InsertAtEnd) {
2374  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2375  // Construct and return the appropriate CastInst subclass
2376  switch (op) {
2377  case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2378  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2379  case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2380  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2381  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2382  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2383  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2384  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2385  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2386  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2387  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2388  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2389  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2390  default: llvm_unreachable("Invalid opcode provided");
2391  }
2392}
2393
2394CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2395                                        const Twine &Name,
2396                                        Instruction *InsertBefore) {
2397  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2398    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2399  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2400}
2401
2402CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2403                                        const Twine &Name,
2404                                        BasicBlock *InsertAtEnd) {
2405  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2406    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2407  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2408}
2409
2410CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2411                                        const Twine &Name,
2412                                        Instruction *InsertBefore) {
2413  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2414    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2415  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2416}
2417
2418CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2419                                        const Twine &Name,
2420                                        BasicBlock *InsertAtEnd) {
2421  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2422    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2423  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2424}
2425
2426CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2427                                         const Twine &Name,
2428                                         Instruction *InsertBefore) {
2429  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2430    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2431  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2432}
2433
2434CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2435                                         const Twine &Name,
2436                                         BasicBlock *InsertAtEnd) {
2437  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2438    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2439  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2440}
2441
2442CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2443                                      const Twine &Name,
2444                                      BasicBlock *InsertAtEnd) {
2445  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2446  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2447         "Invalid cast");
2448  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2449  assert((!Ty->isVectorTy() ||
2450          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2451         "Invalid cast");
2452
2453  if (Ty->isIntOrIntVectorTy())
2454    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2455
2456  Type *STy = S->getType();
2457  if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2458    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2459
2460  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2461}
2462
2463/// @brief Create a BitCast or a PtrToInt cast instruction
2464CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2465                                      const Twine &Name,
2466                                      Instruction *InsertBefore) {
2467  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2468  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2469         "Invalid cast");
2470  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2471  assert((!Ty->isVectorTy() ||
2472          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2473         "Invalid cast");
2474
2475  if (Ty->isIntOrIntVectorTy())
2476    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2477
2478  Type *STy = S->getType();
2479  if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2480    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2481
2482  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2483}
2484
2485CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2486                                      bool isSigned, const Twine &Name,
2487                                      Instruction *InsertBefore) {
2488  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2489         "Invalid integer cast");
2490  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2491  unsigned DstBits = Ty->getScalarSizeInBits();
2492  Instruction::CastOps opcode =
2493    (SrcBits == DstBits ? Instruction::BitCast :
2494     (SrcBits > DstBits ? Instruction::Trunc :
2495      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2496  return Create(opcode, C, Ty, Name, InsertBefore);
2497}
2498
2499CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2500                                      bool isSigned, const Twine &Name,
2501                                      BasicBlock *InsertAtEnd) {
2502  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2503         "Invalid cast");
2504  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2505  unsigned DstBits = Ty->getScalarSizeInBits();
2506  Instruction::CastOps opcode =
2507    (SrcBits == DstBits ? Instruction::BitCast :
2508     (SrcBits > DstBits ? Instruction::Trunc :
2509      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2510  return Create(opcode, C, Ty, Name, InsertAtEnd);
2511}
2512
2513CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2514                                 const Twine &Name,
2515                                 Instruction *InsertBefore) {
2516  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2517         "Invalid cast");
2518  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2519  unsigned DstBits = Ty->getScalarSizeInBits();
2520  Instruction::CastOps opcode =
2521    (SrcBits == DstBits ? Instruction::BitCast :
2522     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2523  return Create(opcode, C, Ty, Name, InsertBefore);
2524}
2525
2526CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2527                                 const Twine &Name,
2528                                 BasicBlock *InsertAtEnd) {
2529  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2530         "Invalid cast");
2531  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2532  unsigned DstBits = Ty->getScalarSizeInBits();
2533  Instruction::CastOps opcode =
2534    (SrcBits == DstBits ? Instruction::BitCast :
2535     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2536  return Create(opcode, C, Ty, Name, InsertAtEnd);
2537}
2538
2539// Check whether it is valid to call getCastOpcode for these types.
2540// This routine must be kept in sync with getCastOpcode.
2541bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2542  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2543    return false;
2544
2545  if (SrcTy == DestTy)
2546    return true;
2547
2548  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2549    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2550      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2551        // An element by element cast.  Valid if casting the elements is valid.
2552        SrcTy = SrcVecTy->getElementType();
2553        DestTy = DestVecTy->getElementType();
2554      }
2555
2556  // Get the bit sizes, we'll need these
2557  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2558  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2559
2560  // Run through the possibilities ...
2561  if (DestTy->isIntegerTy()) {               // Casting to integral
2562    if (SrcTy->isIntegerTy()) {                // Casting from integral
2563        return true;
2564    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2565      return true;
2566    } else if (SrcTy->isVectorTy()) {          // Casting from vector
2567      return DestBits == SrcBits;
2568    } else {                                   // Casting from something else
2569      return SrcTy->isPointerTy();
2570    }
2571  } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2572    if (SrcTy->isIntegerTy()) {                // Casting from integral
2573      return true;
2574    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2575      return true;
2576    } else if (SrcTy->isVectorTy()) {          // Casting from vector
2577      return DestBits == SrcBits;
2578    } else {                                   // Casting from something else
2579      return false;
2580    }
2581  } else if (DestTy->isVectorTy()) {         // Casting to vector
2582    return DestBits == SrcBits;
2583  } else if (DestTy->isPointerTy()) {        // Casting to pointer
2584    if (SrcTy->isPointerTy()) {                // Casting from pointer
2585      return true;
2586    } else if (SrcTy->isIntegerTy()) {         // Casting from integral
2587      return true;
2588    } else {                                   // Casting from something else
2589      return false;
2590    }
2591  } else if (DestTy->isX86_MMXTy()) {
2592    if (SrcTy->isVectorTy()) {
2593      return DestBits == SrcBits;       // 64-bit vector to MMX
2594    } else {
2595      return false;
2596    }
2597  } else {                                   // Casting to something else
2598    return false;
2599  }
2600}
2601
2602bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2603  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2604    return false;
2605
2606  if (SrcTy == DestTy)
2607    return true;
2608
2609  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2610    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2611      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2612        // An element by element cast. Valid if casting the elements is valid.
2613        SrcTy = SrcVecTy->getElementType();
2614        DestTy = DestVecTy->getElementType();
2615      }
2616    }
2617  }
2618
2619  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2620    if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2621      return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2622    }
2623  }
2624
2625  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2626  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2627
2628  // Could still have vectors of pointers if the number of elements doesn't
2629  // match
2630  if (SrcBits == 0 || DestBits == 0)
2631    return false;
2632
2633  if (SrcBits != DestBits)
2634    return false;
2635
2636  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2637    return false;
2638
2639  return true;
2640}
2641
2642// Provide a way to get a "cast" where the cast opcode is inferred from the
2643// types and size of the operand. This, basically, is a parallel of the
2644// logic in the castIsValid function below.  This axiom should hold:
2645//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2646// should not assert in castIsValid. In other words, this produces a "correct"
2647// casting opcode for the arguments passed to it.
2648// This routine must be kept in sync with isCastable.
2649Instruction::CastOps
2650CastInst::getCastOpcode(
2651  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2652  Type *SrcTy = Src->getType();
2653
2654  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2655         "Only first class types are castable!");
2656
2657  if (SrcTy == DestTy)
2658    return BitCast;
2659
2660  // FIXME: Check address space sizes here
2661  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2662    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2663      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2664        // An element by element cast.  Find the appropriate opcode based on the
2665        // element types.
2666        SrcTy = SrcVecTy->getElementType();
2667        DestTy = DestVecTy->getElementType();
2668      }
2669
2670  // Get the bit sizes, we'll need these
2671  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2672  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2673
2674  // Run through the possibilities ...
2675  if (DestTy->isIntegerTy()) {                      // Casting to integral
2676    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2677      if (DestBits < SrcBits)
2678        return Trunc;                               // int -> smaller int
2679      else if (DestBits > SrcBits) {                // its an extension
2680        if (SrcIsSigned)
2681          return SExt;                              // signed -> SEXT
2682        else
2683          return ZExt;                              // unsigned -> ZEXT
2684      } else {
2685        return BitCast;                             // Same size, No-op cast
2686      }
2687    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2688      if (DestIsSigned)
2689        return FPToSI;                              // FP -> sint
2690      else
2691        return FPToUI;                              // FP -> uint
2692    } else if (SrcTy->isVectorTy()) {
2693      assert(DestBits == SrcBits &&
2694             "Casting vector to integer of different width");
2695      return BitCast;                             // Same size, no-op cast
2696    } else {
2697      assert(SrcTy->isPointerTy() &&
2698             "Casting from a value that is not first-class type");
2699      return PtrToInt;                              // ptr -> int
2700    }
2701  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2702    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2703      if (SrcIsSigned)
2704        return SIToFP;                              // sint -> FP
2705      else
2706        return UIToFP;                              // uint -> FP
2707    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2708      if (DestBits < SrcBits) {
2709        return FPTrunc;                             // FP -> smaller FP
2710      } else if (DestBits > SrcBits) {
2711        return FPExt;                               // FP -> larger FP
2712      } else  {
2713        return BitCast;                             // same size, no-op cast
2714      }
2715    } else if (SrcTy->isVectorTy()) {
2716      assert(DestBits == SrcBits &&
2717             "Casting vector to floating point of different width");
2718      return BitCast;                             // same size, no-op cast
2719    }
2720    llvm_unreachable("Casting pointer or non-first class to float");
2721  } else if (DestTy->isVectorTy()) {
2722    assert(DestBits == SrcBits &&
2723           "Illegal cast to vector (wrong type or size)");
2724    return BitCast;
2725  } else if (DestTy->isPointerTy()) {
2726    if (SrcTy->isPointerTy()) {
2727      if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2728        return AddrSpaceCast;
2729      return BitCast;                               // ptr -> ptr
2730    } else if (SrcTy->isIntegerTy()) {
2731      return IntToPtr;                              // int -> ptr
2732    }
2733    llvm_unreachable("Casting pointer to other than pointer or int");
2734  } else if (DestTy->isX86_MMXTy()) {
2735    if (SrcTy->isVectorTy()) {
2736      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2737      return BitCast;                               // 64-bit vector to MMX
2738    }
2739    llvm_unreachable("Illegal cast to X86_MMX");
2740  }
2741  llvm_unreachable("Casting to type that is not first-class");
2742}
2743
2744//===----------------------------------------------------------------------===//
2745//                    CastInst SubClass Constructors
2746//===----------------------------------------------------------------------===//
2747
2748/// Check that the construction parameters for a CastInst are correct. This
2749/// could be broken out into the separate constructors but it is useful to have
2750/// it in one place and to eliminate the redundant code for getting the sizes
2751/// of the types involved.
2752bool
2753CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2754
2755  // Check for type sanity on the arguments
2756  Type *SrcTy = S->getType();
2757
2758  // If this is a cast to the same type then it's trivially true.
2759  if (SrcTy == DstTy)
2760    return true;
2761
2762  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2763      SrcTy->isAggregateType() || DstTy->isAggregateType())
2764    return false;
2765
2766  // Get the size of the types in bits, we'll need this later
2767  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2768  unsigned DstBitSize = DstTy->getScalarSizeInBits();
2769
2770  // If these are vector types, get the lengths of the vectors (using zero for
2771  // scalar types means that checking that vector lengths match also checks that
2772  // scalars are not being converted to vectors or vectors to scalars).
2773  unsigned SrcLength = SrcTy->isVectorTy() ?
2774    cast<VectorType>(SrcTy)->getNumElements() : 0;
2775  unsigned DstLength = DstTy->isVectorTy() ?
2776    cast<VectorType>(DstTy)->getNumElements() : 0;
2777
2778  // Switch on the opcode provided
2779  switch (op) {
2780  default: return false; // This is an input error
2781  case Instruction::Trunc:
2782    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2783      SrcLength == DstLength && SrcBitSize > DstBitSize;
2784  case Instruction::ZExt:
2785    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2786      SrcLength == DstLength && SrcBitSize < DstBitSize;
2787  case Instruction::SExt:
2788    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2789      SrcLength == DstLength && SrcBitSize < DstBitSize;
2790  case Instruction::FPTrunc:
2791    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2792      SrcLength == DstLength && SrcBitSize > DstBitSize;
2793  case Instruction::FPExt:
2794    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2795      SrcLength == DstLength && SrcBitSize < DstBitSize;
2796  case Instruction::UIToFP:
2797  case Instruction::SIToFP:
2798    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2799      SrcLength == DstLength;
2800  case Instruction::FPToUI:
2801  case Instruction::FPToSI:
2802    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2803      SrcLength == DstLength;
2804  case Instruction::PtrToInt:
2805    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2806      return false;
2807    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2808      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2809        return false;
2810    return SrcTy->getScalarType()->isPointerTy() &&
2811           DstTy->getScalarType()->isIntegerTy();
2812  case Instruction::IntToPtr:
2813    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2814      return false;
2815    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2816      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2817        return false;
2818    return SrcTy->getScalarType()->isIntegerTy() &&
2819           DstTy->getScalarType()->isPointerTy();
2820  case Instruction::BitCast:
2821    // BitCast implies a no-op cast of type only. No bits change.
2822    // However, you can't cast pointers to anything but pointers.
2823    if (SrcTy->isPtrOrPtrVectorTy() != DstTy->isPtrOrPtrVectorTy())
2824      return false;
2825
2826    // For non pointer cases, the cast is okay if the source and destination bit
2827    // widths are identical.
2828    if (!SrcTy->isPtrOrPtrVectorTy())
2829      return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2830
2831    // If both are pointers then the address spaces must match and vector of
2832    // pointers must have the same number of elements.
2833    return SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2834           SrcTy->isVectorTy() == DstTy->isVectorTy() &&
2835           (!SrcTy->isVectorTy() ||
2836            SrcTy->getVectorNumElements() == SrcTy->getVectorNumElements());
2837
2838  case Instruction::AddrSpaceCast:
2839    return SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2840           SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace() &&
2841           SrcTy->isVectorTy() == DstTy->isVectorTy() &&
2842           (!SrcTy->isVectorTy() ||
2843            SrcTy->getVectorNumElements() == SrcTy->getVectorNumElements());
2844  }
2845}
2846
2847TruncInst::TruncInst(
2848  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2849) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2850  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2851}
2852
2853TruncInst::TruncInst(
2854  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2855) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2856  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2857}
2858
2859ZExtInst::ZExtInst(
2860  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2861)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2862  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2863}
2864
2865ZExtInst::ZExtInst(
2866  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2867)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2868  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2869}
2870SExtInst::SExtInst(
2871  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2872) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2873  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2874}
2875
2876SExtInst::SExtInst(
2877  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2878)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2879  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2880}
2881
2882FPTruncInst::FPTruncInst(
2883  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2884) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2885  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2886}
2887
2888FPTruncInst::FPTruncInst(
2889  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2890) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2891  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2892}
2893
2894FPExtInst::FPExtInst(
2895  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2896) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2897  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2898}
2899
2900FPExtInst::FPExtInst(
2901  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2902) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2903  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2904}
2905
2906UIToFPInst::UIToFPInst(
2907  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2908) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2909  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2910}
2911
2912UIToFPInst::UIToFPInst(
2913  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2914) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2915  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2916}
2917
2918SIToFPInst::SIToFPInst(
2919  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2920) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2921  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2922}
2923
2924SIToFPInst::SIToFPInst(
2925  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2926) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2927  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2928}
2929
2930FPToUIInst::FPToUIInst(
2931  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2932) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2933  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2934}
2935
2936FPToUIInst::FPToUIInst(
2937  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2938) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2939  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2940}
2941
2942FPToSIInst::FPToSIInst(
2943  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2944) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2945  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2946}
2947
2948FPToSIInst::FPToSIInst(
2949  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2950) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2951  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2952}
2953
2954PtrToIntInst::PtrToIntInst(
2955  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2956) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2957  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2958}
2959
2960PtrToIntInst::PtrToIntInst(
2961  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2962) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2963  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2964}
2965
2966IntToPtrInst::IntToPtrInst(
2967  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2968) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2969  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2970}
2971
2972IntToPtrInst::IntToPtrInst(
2973  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2974) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2975  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2976}
2977
2978BitCastInst::BitCastInst(
2979  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2980) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2981  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2982}
2983
2984BitCastInst::BitCastInst(
2985  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2986) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2987  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2988}
2989
2990AddrSpaceCastInst::AddrSpaceCastInst(
2991  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2992) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
2993  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
2994}
2995
2996AddrSpaceCastInst::AddrSpaceCastInst(
2997  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2998) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
2999  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3000}
3001
3002//===----------------------------------------------------------------------===//
3003//                               CmpInst Classes
3004//===----------------------------------------------------------------------===//
3005
3006void CmpInst::anchor() {}
3007
3008CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3009                 Value *LHS, Value *RHS, const Twine &Name,
3010                 Instruction *InsertBefore)
3011  : Instruction(ty, op,
3012                OperandTraits<CmpInst>::op_begin(this),
3013                OperandTraits<CmpInst>::operands(this),
3014                InsertBefore) {
3015    Op<0>() = LHS;
3016    Op<1>() = RHS;
3017  setPredicate((Predicate)predicate);
3018  setName(Name);
3019}
3020
3021CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3022                 Value *LHS, Value *RHS, const Twine &Name,
3023                 BasicBlock *InsertAtEnd)
3024  : Instruction(ty, op,
3025                OperandTraits<CmpInst>::op_begin(this),
3026                OperandTraits<CmpInst>::operands(this),
3027                InsertAtEnd) {
3028  Op<0>() = LHS;
3029  Op<1>() = RHS;
3030  setPredicate((Predicate)predicate);
3031  setName(Name);
3032}
3033
3034CmpInst *
3035CmpInst::Create(OtherOps Op, unsigned short predicate,
3036                Value *S1, Value *S2,
3037                const Twine &Name, Instruction *InsertBefore) {
3038  if (Op == Instruction::ICmp) {
3039    if (InsertBefore)
3040      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3041                          S1, S2, Name);
3042    else
3043      return new ICmpInst(CmpInst::Predicate(predicate),
3044                          S1, S2, Name);
3045  }
3046
3047  if (InsertBefore)
3048    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3049                        S1, S2, Name);
3050  else
3051    return new FCmpInst(CmpInst::Predicate(predicate),
3052                        S1, S2, Name);
3053}
3054
3055CmpInst *
3056CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
3057                const Twine &Name, BasicBlock *InsertAtEnd) {
3058  if (Op == Instruction::ICmp) {
3059    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3060                        S1, S2, Name);
3061  }
3062  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3063                      S1, S2, Name);
3064}
3065
3066void CmpInst::swapOperands() {
3067  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3068    IC->swapOperands();
3069  else
3070    cast<FCmpInst>(this)->swapOperands();
3071}
3072
3073bool CmpInst::isCommutative() const {
3074  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3075    return IC->isCommutative();
3076  return cast<FCmpInst>(this)->isCommutative();
3077}
3078
3079bool CmpInst::isEquality() const {
3080  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3081    return IC->isEquality();
3082  return cast<FCmpInst>(this)->isEquality();
3083}
3084
3085
3086CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3087  switch (pred) {
3088    default: llvm_unreachable("Unknown cmp predicate!");
3089    case ICMP_EQ: return ICMP_NE;
3090    case ICMP_NE: return ICMP_EQ;
3091    case ICMP_UGT: return ICMP_ULE;
3092    case ICMP_ULT: return ICMP_UGE;
3093    case ICMP_UGE: return ICMP_ULT;
3094    case ICMP_ULE: return ICMP_UGT;
3095    case ICMP_SGT: return ICMP_SLE;
3096    case ICMP_SLT: return ICMP_SGE;
3097    case ICMP_SGE: return ICMP_SLT;
3098    case ICMP_SLE: return ICMP_SGT;
3099
3100    case FCMP_OEQ: return FCMP_UNE;
3101    case FCMP_ONE: return FCMP_UEQ;
3102    case FCMP_OGT: return FCMP_ULE;
3103    case FCMP_OLT: return FCMP_UGE;
3104    case FCMP_OGE: return FCMP_ULT;
3105    case FCMP_OLE: return FCMP_UGT;
3106    case FCMP_UEQ: return FCMP_ONE;
3107    case FCMP_UNE: return FCMP_OEQ;
3108    case FCMP_UGT: return FCMP_OLE;
3109    case FCMP_ULT: return FCMP_OGE;
3110    case FCMP_UGE: return FCMP_OLT;
3111    case FCMP_ULE: return FCMP_OGT;
3112    case FCMP_ORD: return FCMP_UNO;
3113    case FCMP_UNO: return FCMP_ORD;
3114    case FCMP_TRUE: return FCMP_FALSE;
3115    case FCMP_FALSE: return FCMP_TRUE;
3116  }
3117}
3118
3119ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3120  switch (pred) {
3121    default: llvm_unreachable("Unknown icmp predicate!");
3122    case ICMP_EQ: case ICMP_NE:
3123    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3124       return pred;
3125    case ICMP_UGT: return ICMP_SGT;
3126    case ICMP_ULT: return ICMP_SLT;
3127    case ICMP_UGE: return ICMP_SGE;
3128    case ICMP_ULE: return ICMP_SLE;
3129  }
3130}
3131
3132ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3133  switch (pred) {
3134    default: llvm_unreachable("Unknown icmp predicate!");
3135    case ICMP_EQ: case ICMP_NE:
3136    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3137       return pred;
3138    case ICMP_SGT: return ICMP_UGT;
3139    case ICMP_SLT: return ICMP_ULT;
3140    case ICMP_SGE: return ICMP_UGE;
3141    case ICMP_SLE: return ICMP_ULE;
3142  }
3143}
3144
3145/// Initialize a set of values that all satisfy the condition with C.
3146///
3147ConstantRange
3148ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3149  APInt Lower(C);
3150  APInt Upper(C);
3151  uint32_t BitWidth = C.getBitWidth();
3152  switch (pred) {
3153  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3154  case ICmpInst::ICMP_EQ: ++Upper; break;
3155  case ICmpInst::ICMP_NE: ++Lower; break;
3156  case ICmpInst::ICMP_ULT:
3157    Lower = APInt::getMinValue(BitWidth);
3158    // Check for an empty-set condition.
3159    if (Lower == Upper)
3160      return ConstantRange(BitWidth, /*isFullSet=*/false);
3161    break;
3162  case ICmpInst::ICMP_SLT:
3163    Lower = APInt::getSignedMinValue(BitWidth);
3164    // Check for an empty-set condition.
3165    if (Lower == Upper)
3166      return ConstantRange(BitWidth, /*isFullSet=*/false);
3167    break;
3168  case ICmpInst::ICMP_UGT:
3169    ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3170    // Check for an empty-set condition.
3171    if (Lower == Upper)
3172      return ConstantRange(BitWidth, /*isFullSet=*/false);
3173    break;
3174  case ICmpInst::ICMP_SGT:
3175    ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3176    // Check for an empty-set condition.
3177    if (Lower == Upper)
3178      return ConstantRange(BitWidth, /*isFullSet=*/false);
3179    break;
3180  case ICmpInst::ICMP_ULE:
3181    Lower = APInt::getMinValue(BitWidth); ++Upper;
3182    // Check for a full-set condition.
3183    if (Lower == Upper)
3184      return ConstantRange(BitWidth, /*isFullSet=*/true);
3185    break;
3186  case ICmpInst::ICMP_SLE:
3187    Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3188    // Check for a full-set condition.
3189    if (Lower == Upper)
3190      return ConstantRange(BitWidth, /*isFullSet=*/true);
3191    break;
3192  case ICmpInst::ICMP_UGE:
3193    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3194    // Check for a full-set condition.
3195    if (Lower == Upper)
3196      return ConstantRange(BitWidth, /*isFullSet=*/true);
3197    break;
3198  case ICmpInst::ICMP_SGE:
3199    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3200    // Check for a full-set condition.
3201    if (Lower == Upper)
3202      return ConstantRange(BitWidth, /*isFullSet=*/true);
3203    break;
3204  }
3205  return ConstantRange(Lower, Upper);
3206}
3207
3208CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3209  switch (pred) {
3210    default: llvm_unreachable("Unknown cmp predicate!");
3211    case ICMP_EQ: case ICMP_NE:
3212      return pred;
3213    case ICMP_SGT: return ICMP_SLT;
3214    case ICMP_SLT: return ICMP_SGT;
3215    case ICMP_SGE: return ICMP_SLE;
3216    case ICMP_SLE: return ICMP_SGE;
3217    case ICMP_UGT: return ICMP_ULT;
3218    case ICMP_ULT: return ICMP_UGT;
3219    case ICMP_UGE: return ICMP_ULE;
3220    case ICMP_ULE: return ICMP_UGE;
3221
3222    case FCMP_FALSE: case FCMP_TRUE:
3223    case FCMP_OEQ: case FCMP_ONE:
3224    case FCMP_UEQ: case FCMP_UNE:
3225    case FCMP_ORD: case FCMP_UNO:
3226      return pred;
3227    case FCMP_OGT: return FCMP_OLT;
3228    case FCMP_OLT: return FCMP_OGT;
3229    case FCMP_OGE: return FCMP_OLE;
3230    case FCMP_OLE: return FCMP_OGE;
3231    case FCMP_UGT: return FCMP_ULT;
3232    case FCMP_ULT: return FCMP_UGT;
3233    case FCMP_UGE: return FCMP_ULE;
3234    case FCMP_ULE: return FCMP_UGE;
3235  }
3236}
3237
3238bool CmpInst::isUnsigned(unsigned short predicate) {
3239  switch (predicate) {
3240    default: return false;
3241    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3242    case ICmpInst::ICMP_UGE: return true;
3243  }
3244}
3245
3246bool CmpInst::isSigned(unsigned short predicate) {
3247  switch (predicate) {
3248    default: return false;
3249    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3250    case ICmpInst::ICMP_SGE: return true;
3251  }
3252}
3253
3254bool CmpInst::isOrdered(unsigned short predicate) {
3255  switch (predicate) {
3256    default: return false;
3257    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3258    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3259    case FCmpInst::FCMP_ORD: return true;
3260  }
3261}
3262
3263bool CmpInst::isUnordered(unsigned short predicate) {
3264  switch (predicate) {
3265    default: return false;
3266    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3267    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3268    case FCmpInst::FCMP_UNO: return true;
3269  }
3270}
3271
3272bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3273  switch(predicate) {
3274    default: return false;
3275    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3276    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3277  }
3278}
3279
3280bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3281  switch(predicate) {
3282  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3283  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3284  default: return false;
3285  }
3286}
3287
3288
3289//===----------------------------------------------------------------------===//
3290//                        SwitchInst Implementation
3291//===----------------------------------------------------------------------===//
3292
3293void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3294  assert(Value && Default && NumReserved);
3295  ReservedSpace = NumReserved;
3296  NumOperands = 2;
3297  OperandList = allocHungoffUses(ReservedSpace);
3298
3299  OperandList[0] = Value;
3300  OperandList[1] = Default;
3301}
3302
3303/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3304/// switch on and a default destination.  The number of additional cases can
3305/// be specified here to make memory allocation more efficient.  This
3306/// constructor can also autoinsert before another instruction.
3307SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3308                       Instruction *InsertBefore)
3309  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3310                   0, 0, InsertBefore) {
3311  init(Value, Default, 2+NumCases*2);
3312}
3313
3314/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3315/// switch on and a default destination.  The number of additional cases can
3316/// be specified here to make memory allocation more efficient.  This
3317/// constructor also autoinserts at the end of the specified BasicBlock.
3318SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3319                       BasicBlock *InsertAtEnd)
3320  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3321                   0, 0, InsertAtEnd) {
3322  init(Value, Default, 2+NumCases*2);
3323}
3324
3325SwitchInst::SwitchInst(const SwitchInst &SI)
3326  : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
3327  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3328  NumOperands = SI.getNumOperands();
3329  Use *OL = OperandList, *InOL = SI.OperandList;
3330  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3331    OL[i] = InOL[i];
3332    OL[i+1] = InOL[i+1];
3333  }
3334  SubclassOptionalData = SI.SubclassOptionalData;
3335}
3336
3337SwitchInst::~SwitchInst() {
3338  dropHungoffUses();
3339}
3340
3341
3342/// addCase - Add an entry to the switch instruction...
3343///
3344void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3345  unsigned NewCaseIdx = getNumCases();
3346  unsigned OpNo = NumOperands;
3347  if (OpNo+2 > ReservedSpace)
3348    growOperands();  // Get more space!
3349  // Initialize some new operands.
3350  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3351  NumOperands = OpNo+2;
3352  CaseIt Case(this, NewCaseIdx);
3353  Case.setValue(OnVal);
3354  Case.setSuccessor(Dest);
3355}
3356
3357/// removeCase - This method removes the specified case and its successor
3358/// from the switch instruction.
3359void SwitchInst::removeCase(CaseIt i) {
3360  unsigned idx = i.getCaseIndex();
3361
3362  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3363
3364  unsigned NumOps = getNumOperands();
3365  Use *OL = OperandList;
3366
3367  // Overwrite this case with the end of the list.
3368  if (2 + (idx + 1) * 2 != NumOps) {
3369    OL[2 + idx * 2] = OL[NumOps - 2];
3370    OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3371  }
3372
3373  // Nuke the last value.
3374  OL[NumOps-2].set(0);
3375  OL[NumOps-2+1].set(0);
3376  NumOperands = NumOps-2;
3377}
3378
3379/// growOperands - grow operands - This grows the operand list in response
3380/// to a push_back style of operation.  This grows the number of ops by 3 times.
3381///
3382void SwitchInst::growOperands() {
3383  unsigned e = getNumOperands();
3384  unsigned NumOps = e*3;
3385
3386  ReservedSpace = NumOps;
3387  Use *NewOps = allocHungoffUses(NumOps);
3388  Use *OldOps = OperandList;
3389  for (unsigned i = 0; i != e; ++i) {
3390      NewOps[i] = OldOps[i];
3391  }
3392  OperandList = NewOps;
3393  Use::zap(OldOps, OldOps + e, true);
3394}
3395
3396
3397BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3398  return getSuccessor(idx);
3399}
3400unsigned SwitchInst::getNumSuccessorsV() const {
3401  return getNumSuccessors();
3402}
3403void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3404  setSuccessor(idx, B);
3405}
3406
3407//===----------------------------------------------------------------------===//
3408//                        IndirectBrInst Implementation
3409//===----------------------------------------------------------------------===//
3410
3411void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3412  assert(Address && Address->getType()->isPointerTy() &&
3413         "Address of indirectbr must be a pointer");
3414  ReservedSpace = 1+NumDests;
3415  NumOperands = 1;
3416  OperandList = allocHungoffUses(ReservedSpace);
3417
3418  OperandList[0] = Address;
3419}
3420
3421
3422/// growOperands - grow operands - This grows the operand list in response
3423/// to a push_back style of operation.  This grows the number of ops by 2 times.
3424///
3425void IndirectBrInst::growOperands() {
3426  unsigned e = getNumOperands();
3427  unsigned NumOps = e*2;
3428
3429  ReservedSpace = NumOps;
3430  Use *NewOps = allocHungoffUses(NumOps);
3431  Use *OldOps = OperandList;
3432  for (unsigned i = 0; i != e; ++i)
3433    NewOps[i] = OldOps[i];
3434  OperandList = NewOps;
3435  Use::zap(OldOps, OldOps + e, true);
3436}
3437
3438IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3439                               Instruction *InsertBefore)
3440: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3441                 0, 0, InsertBefore) {
3442  init(Address, NumCases);
3443}
3444
3445IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3446                               BasicBlock *InsertAtEnd)
3447: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3448                 0, 0, InsertAtEnd) {
3449  init(Address, NumCases);
3450}
3451
3452IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3453  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3454                   allocHungoffUses(IBI.getNumOperands()),
3455                   IBI.getNumOperands()) {
3456  Use *OL = OperandList, *InOL = IBI.OperandList;
3457  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3458    OL[i] = InOL[i];
3459  SubclassOptionalData = IBI.SubclassOptionalData;
3460}
3461
3462IndirectBrInst::~IndirectBrInst() {
3463  dropHungoffUses();
3464}
3465
3466/// addDestination - Add a destination.
3467///
3468void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3469  unsigned OpNo = NumOperands;
3470  if (OpNo+1 > ReservedSpace)
3471    growOperands();  // Get more space!
3472  // Initialize some new operands.
3473  assert(OpNo < ReservedSpace && "Growing didn't work!");
3474  NumOperands = OpNo+1;
3475  OperandList[OpNo] = DestBB;
3476}
3477
3478/// removeDestination - This method removes the specified successor from the
3479/// indirectbr instruction.
3480void IndirectBrInst::removeDestination(unsigned idx) {
3481  assert(idx < getNumOperands()-1 && "Successor index out of range!");
3482
3483  unsigned NumOps = getNumOperands();
3484  Use *OL = OperandList;
3485
3486  // Replace this value with the last one.
3487  OL[idx+1] = OL[NumOps-1];
3488
3489  // Nuke the last value.
3490  OL[NumOps-1].set(0);
3491  NumOperands = NumOps-1;
3492}
3493
3494BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3495  return getSuccessor(idx);
3496}
3497unsigned IndirectBrInst::getNumSuccessorsV() const {
3498  return getNumSuccessors();
3499}
3500void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3501  setSuccessor(idx, B);
3502}
3503
3504//===----------------------------------------------------------------------===//
3505//                           clone_impl() implementations
3506//===----------------------------------------------------------------------===//
3507
3508// Define these methods here so vtables don't get emitted into every translation
3509// unit that uses these classes.
3510
3511GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3512  return new (getNumOperands()) GetElementPtrInst(*this);
3513}
3514
3515BinaryOperator *BinaryOperator::clone_impl() const {
3516  return Create(getOpcode(), Op<0>(), Op<1>());
3517}
3518
3519FCmpInst* FCmpInst::clone_impl() const {
3520  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3521}
3522
3523ICmpInst* ICmpInst::clone_impl() const {
3524  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3525}
3526
3527ExtractValueInst *ExtractValueInst::clone_impl() const {
3528  return new ExtractValueInst(*this);
3529}
3530
3531InsertValueInst *InsertValueInst::clone_impl() const {
3532  return new InsertValueInst(*this);
3533}
3534
3535AllocaInst *AllocaInst::clone_impl() const {
3536  return new AllocaInst(getAllocatedType(),
3537                        (Value*)getOperand(0),
3538                        getAlignment());
3539}
3540
3541LoadInst *LoadInst::clone_impl() const {
3542  return new LoadInst(getOperand(0), Twine(), isVolatile(),
3543                      getAlignment(), getOrdering(), getSynchScope());
3544}
3545
3546StoreInst *StoreInst::clone_impl() const {
3547  return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3548                       getAlignment(), getOrdering(), getSynchScope());
3549
3550}
3551
3552AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3553  AtomicCmpXchgInst *Result =
3554    new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3555                          getOrdering(), getSynchScope());
3556  Result->setVolatile(isVolatile());
3557  return Result;
3558}
3559
3560AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3561  AtomicRMWInst *Result =
3562    new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3563                      getOrdering(), getSynchScope());
3564  Result->setVolatile(isVolatile());
3565  return Result;
3566}
3567
3568FenceInst *FenceInst::clone_impl() const {
3569  return new FenceInst(getContext(), getOrdering(), getSynchScope());
3570}
3571
3572TruncInst *TruncInst::clone_impl() const {
3573  return new TruncInst(getOperand(0), getType());
3574}
3575
3576ZExtInst *ZExtInst::clone_impl() const {
3577  return new ZExtInst(getOperand(0), getType());
3578}
3579
3580SExtInst *SExtInst::clone_impl() const {
3581  return new SExtInst(getOperand(0), getType());
3582}
3583
3584FPTruncInst *FPTruncInst::clone_impl() const {
3585  return new FPTruncInst(getOperand(0), getType());
3586}
3587
3588FPExtInst *FPExtInst::clone_impl() const {
3589  return new FPExtInst(getOperand(0), getType());
3590}
3591
3592UIToFPInst *UIToFPInst::clone_impl() const {
3593  return new UIToFPInst(getOperand(0), getType());
3594}
3595
3596SIToFPInst *SIToFPInst::clone_impl() const {
3597  return new SIToFPInst(getOperand(0), getType());
3598}
3599
3600FPToUIInst *FPToUIInst::clone_impl() const {
3601  return new FPToUIInst(getOperand(0), getType());
3602}
3603
3604FPToSIInst *FPToSIInst::clone_impl() const {
3605  return new FPToSIInst(getOperand(0), getType());
3606}
3607
3608PtrToIntInst *PtrToIntInst::clone_impl() const {
3609  return new PtrToIntInst(getOperand(0), getType());
3610}
3611
3612IntToPtrInst *IntToPtrInst::clone_impl() const {
3613  return new IntToPtrInst(getOperand(0), getType());
3614}
3615
3616BitCastInst *BitCastInst::clone_impl() const {
3617  return new BitCastInst(getOperand(0), getType());
3618}
3619
3620AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const {
3621  return new AddrSpaceCastInst(getOperand(0), getType());
3622}
3623
3624CallInst *CallInst::clone_impl() const {
3625  return  new(getNumOperands()) CallInst(*this);
3626}
3627
3628SelectInst *SelectInst::clone_impl() const {
3629  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3630}
3631
3632VAArgInst *VAArgInst::clone_impl() const {
3633  return new VAArgInst(getOperand(0), getType());
3634}
3635
3636ExtractElementInst *ExtractElementInst::clone_impl() const {
3637  return ExtractElementInst::Create(getOperand(0), getOperand(1));
3638}
3639
3640InsertElementInst *InsertElementInst::clone_impl() const {
3641  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3642}
3643
3644ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3645  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3646}
3647
3648PHINode *PHINode::clone_impl() const {
3649  return new PHINode(*this);
3650}
3651
3652LandingPadInst *LandingPadInst::clone_impl() const {
3653  return new LandingPadInst(*this);
3654}
3655
3656ReturnInst *ReturnInst::clone_impl() const {
3657  return new(getNumOperands()) ReturnInst(*this);
3658}
3659
3660BranchInst *BranchInst::clone_impl() const {
3661  return new(getNumOperands()) BranchInst(*this);
3662}
3663
3664SwitchInst *SwitchInst::clone_impl() const {
3665  return new SwitchInst(*this);
3666}
3667
3668IndirectBrInst *IndirectBrInst::clone_impl() const {
3669  return new IndirectBrInst(*this);
3670}
3671
3672
3673InvokeInst *InvokeInst::clone_impl() const {
3674  return new(getNumOperands()) InvokeInst(*this);
3675}
3676
3677ResumeInst *ResumeInst::clone_impl() const {
3678  return new(1) ResumeInst(*this);
3679}
3680
3681UnreachableInst *UnreachableInst::clone_impl() const {
3682  LLVMContext &Context = getContext();
3683  return new UnreachableInst(Context);
3684}
3685