1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16#include "llvm/CodeGen/ScheduleDAGInstrs.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/RegisterPressure.h"
28#include "llvm/CodeGen/ScheduleDFS.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/MC/MCInstrItineraries.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39#include <queue>
40
41using namespace llvm;
42
43static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
44    cl::ZeroOrMore, cl::init(false),
45    cl::desc("Enable use of AA during MI GAD construction"));
46
47ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
48                                     const MachineLoopInfo &mli,
49                                     const MachineDominatorTree &mdt,
50                                     bool IsPostRAFlag,
51                                     LiveIntervals *lis)
52  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
53    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
54  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
55  DbgValues.clear();
56  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
57         "Virtual registers must be removed prior to PostRA scheduling");
58
59  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
60  SchedModel.init(*ST.getSchedModel(), &ST, TII);
61}
62
63/// getUnderlyingObjectFromInt - This is the function that does the work of
64/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
65static const Value *getUnderlyingObjectFromInt(const Value *V) {
66  do {
67    if (const Operator *U = dyn_cast<Operator>(V)) {
68      // If we find a ptrtoint, we can transfer control back to the
69      // regular getUnderlyingObjectFromInt.
70      if (U->getOpcode() == Instruction::PtrToInt)
71        return U->getOperand(0);
72      // If we find an add of a constant, a multiplied value, or a phi, it's
73      // likely that the other operand will lead us to the base
74      // object. We don't have to worry about the case where the
75      // object address is somehow being computed by the multiply,
76      // because our callers only care when the result is an
77      // identifiable object.
78      if (U->getOpcode() != Instruction::Add ||
79          (!isa<ConstantInt>(U->getOperand(1)) &&
80           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
81           !isa<PHINode>(U->getOperand(1))))
82        return V;
83      V = U->getOperand(0);
84    } else {
85      return V;
86    }
87    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
88  } while (1);
89}
90
91/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
92/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
93static void getUnderlyingObjects(const Value *V,
94                                 SmallVectorImpl<Value *> &Objects) {
95  SmallPtrSet<const Value*, 16> Visited;
96  SmallVector<const Value *, 4> Working(1, V);
97  do {
98    V = Working.pop_back_val();
99
100    SmallVector<Value *, 4> Objs;
101    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
102
103    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
104         I != IE; ++I) {
105      V = *I;
106      if (!Visited.insert(V))
107        continue;
108      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
109        const Value *O =
110          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
111        if (O->getType()->isPointerTy()) {
112          Working.push_back(O);
113          continue;
114        }
115      }
116      Objects.push_back(const_cast<Value *>(V));
117    }
118  } while (!Working.empty());
119}
120
121typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4>
122UnderlyingObjectsVector;
123
124/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
125/// information and it can be tracked to a normal reference to a known
126/// object, return the Value for that object.
127static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
128                                         const MachineFrameInfo *MFI,
129                                         UnderlyingObjectsVector &Objects) {
130  if (!MI->hasOneMemOperand() ||
131      !(*MI->memoperands_begin())->getValue() ||
132      (*MI->memoperands_begin())->isVolatile())
133    return;
134
135  const Value *V = (*MI->memoperands_begin())->getValue();
136  if (!V)
137    return;
138
139  SmallVector<Value *, 4> Objs;
140  getUnderlyingObjects(V, Objs);
141
142  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
143         I != IE; ++I) {
144    bool MayAlias = true;
145    V = *I;
146
147    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
148      // For now, ignore PseudoSourceValues which may alias LLVM IR values
149      // because the code that uses this function has no way to cope with
150      // such aliases.
151
152      if (PSV->isAliased(MFI)) {
153        Objects.clear();
154        return;
155      }
156
157      MayAlias = PSV->mayAlias(MFI);
158    } else if (!isIdentifiedObject(V)) {
159      Objects.clear();
160      return;
161    }
162
163    Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias));
164  }
165}
166
167void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
168  BB = bb;
169}
170
171void ScheduleDAGInstrs::finishBlock() {
172  // Subclasses should no longer refer to the old block.
173  BB = 0;
174}
175
176/// Initialize the DAG and common scheduler state for the current scheduling
177/// region. This does not actually create the DAG, only clears it. The
178/// scheduling driver may call BuildSchedGraph multiple times per scheduling
179/// region.
180void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
181                                    MachineBasicBlock::iterator begin,
182                                    MachineBasicBlock::iterator end,
183                                    unsigned regioninstrs) {
184  assert(bb == BB && "startBlock should set BB");
185  RegionBegin = begin;
186  RegionEnd = end;
187  NumRegionInstrs = regioninstrs;
188}
189
190/// Close the current scheduling region. Don't clear any state in case the
191/// driver wants to refer to the previous scheduling region.
192void ScheduleDAGInstrs::exitRegion() {
193  // Nothing to do.
194}
195
196/// addSchedBarrierDeps - Add dependencies from instructions in the current
197/// list of instructions being scheduled to scheduling barrier by adding
198/// the exit SU to the register defs and use list. This is because we want to
199/// make sure instructions which define registers that are either used by
200/// the terminator or are live-out are properly scheduled. This is
201/// especially important when the definition latency of the return value(s)
202/// are too high to be hidden by the branch or when the liveout registers
203/// used by instructions in the fallthrough block.
204void ScheduleDAGInstrs::addSchedBarrierDeps() {
205  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
206  ExitSU.setInstr(ExitMI);
207  bool AllDepKnown = ExitMI &&
208    (ExitMI->isCall() || ExitMI->isBarrier());
209  if (ExitMI && AllDepKnown) {
210    // If it's a call or a barrier, add dependencies on the defs and uses of
211    // instruction.
212    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
213      const MachineOperand &MO = ExitMI->getOperand(i);
214      if (!MO.isReg() || MO.isDef()) continue;
215      unsigned Reg = MO.getReg();
216      if (Reg == 0) continue;
217
218      if (TRI->isPhysicalRegister(Reg))
219        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
220      else {
221        assert(!IsPostRA && "Virtual register encountered after regalloc.");
222        if (MO.readsReg()) // ignore undef operands
223          addVRegUseDeps(&ExitSU, i);
224      }
225    }
226  } else {
227    // For others, e.g. fallthrough, conditional branch, assume the exit
228    // uses all the registers that are livein to the successor blocks.
229    assert(Uses.empty() && "Uses in set before adding deps?");
230    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
231           SE = BB->succ_end(); SI != SE; ++SI)
232      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
233             E = (*SI)->livein_end(); I != E; ++I) {
234        unsigned Reg = *I;
235        if (!Uses.contains(Reg))
236          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
237      }
238  }
239}
240
241/// MO is an operand of SU's instruction that defines a physical register. Add
242/// data dependencies from SU to any uses of the physical register.
243void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
244  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
245  assert(MO.isDef() && "expect physreg def");
246
247  // Ask the target if address-backscheduling is desirable, and if so how much.
248  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
249
250  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
251       Alias.isValid(); ++Alias) {
252    if (!Uses.contains(*Alias))
253      continue;
254    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
255      SUnit *UseSU = I->SU;
256      if (UseSU == SU)
257        continue;
258
259      // Adjust the dependence latency using operand def/use information,
260      // then allow the target to perform its own adjustments.
261      int UseOp = I->OpIdx;
262      MachineInstr *RegUse = 0;
263      SDep Dep;
264      if (UseOp < 0)
265        Dep = SDep(SU, SDep::Artificial);
266      else {
267        // Set the hasPhysRegDefs only for physreg defs that have a use within
268        // the scheduling region.
269        SU->hasPhysRegDefs = true;
270        Dep = SDep(SU, SDep::Data, *Alias);
271        RegUse = UseSU->getInstr();
272      }
273      Dep.setLatency(
274        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
275                                         UseOp));
276
277      ST.adjustSchedDependency(SU, UseSU, Dep);
278      UseSU->addPred(Dep);
279    }
280  }
281}
282
283/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
284/// this SUnit to following instructions in the same scheduling region that
285/// depend the physical register referenced at OperIdx.
286void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
287  const MachineInstr *MI = SU->getInstr();
288  const MachineOperand &MO = MI->getOperand(OperIdx);
289
290  // Optionally add output and anti dependencies. For anti
291  // dependencies we use a latency of 0 because for a multi-issue
292  // target we want to allow the defining instruction to issue
293  // in the same cycle as the using instruction.
294  // TODO: Using a latency of 1 here for output dependencies assumes
295  //       there's no cost for reusing registers.
296  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
297  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
298       Alias.isValid(); ++Alias) {
299    if (!Defs.contains(*Alias))
300      continue;
301    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
302      SUnit *DefSU = I->SU;
303      if (DefSU == &ExitSU)
304        continue;
305      if (DefSU != SU &&
306          (Kind != SDep::Output || !MO.isDead() ||
307           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
308        if (Kind == SDep::Anti)
309          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
310        else {
311          SDep Dep(SU, Kind, /*Reg=*/*Alias);
312          Dep.setLatency(
313            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
314          DefSU->addPred(Dep);
315        }
316      }
317    }
318  }
319
320  if (!MO.isDef()) {
321    SU->hasPhysRegUses = true;
322    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
323    // retrieve the existing SUnits list for this register's uses.
324    // Push this SUnit on the use list.
325    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
326  }
327  else {
328    addPhysRegDataDeps(SU, OperIdx);
329    unsigned Reg = MO.getReg();
330
331    // clear this register's use list
332    if (Uses.contains(Reg))
333      Uses.eraseAll(Reg);
334
335    if (!MO.isDead()) {
336      Defs.eraseAll(Reg);
337    } else if (SU->isCall) {
338      // Calls will not be reordered because of chain dependencies (see
339      // below). Since call operands are dead, calls may continue to be added
340      // to the DefList making dependence checking quadratic in the size of
341      // the block. Instead, we leave only one call at the back of the
342      // DefList.
343      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
344      Reg2SUnitsMap::iterator B = P.first;
345      Reg2SUnitsMap::iterator I = P.second;
346      for (bool isBegin = I == B; !isBegin; /* empty */) {
347        isBegin = (--I) == B;
348        if (!I->SU->isCall)
349          break;
350        I = Defs.erase(I);
351      }
352    }
353
354    // Defs are pushed in the order they are visited and never reordered.
355    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
356  }
357}
358
359/// addVRegDefDeps - Add register output and data dependencies from this SUnit
360/// to instructions that occur later in the same scheduling region if they read
361/// from or write to the virtual register defined at OperIdx.
362///
363/// TODO: Hoist loop induction variable increments. This has to be
364/// reevaluated. Generally, IV scheduling should be done before coalescing.
365void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
366  const MachineInstr *MI = SU->getInstr();
367  unsigned Reg = MI->getOperand(OperIdx).getReg();
368
369  // Singly defined vregs do not have output/anti dependencies.
370  // The current operand is a def, so we have at least one.
371  // Check here if there are any others...
372  if (MRI.hasOneDef(Reg))
373    return;
374
375  // Add output dependence to the next nearest def of this vreg.
376  //
377  // Unless this definition is dead, the output dependence should be
378  // transitively redundant with antidependencies from this definition's
379  // uses. We're conservative for now until we have a way to guarantee the uses
380  // are not eliminated sometime during scheduling. The output dependence edge
381  // is also useful if output latency exceeds def-use latency.
382  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
383  if (DefI == VRegDefs.end())
384    VRegDefs.insert(VReg2SUnit(Reg, SU));
385  else {
386    SUnit *DefSU = DefI->SU;
387    if (DefSU != SU && DefSU != &ExitSU) {
388      SDep Dep(SU, SDep::Output, Reg);
389      Dep.setLatency(
390        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
391      DefSU->addPred(Dep);
392    }
393    DefI->SU = SU;
394  }
395}
396
397/// addVRegUseDeps - Add a register data dependency if the instruction that
398/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
399/// register antidependency from this SUnit to instructions that occur later in
400/// the same scheduling region if they write the virtual register.
401///
402/// TODO: Handle ExitSU "uses" properly.
403void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
404  MachineInstr *MI = SU->getInstr();
405  unsigned Reg = MI->getOperand(OperIdx).getReg();
406
407  // Record this local VReg use.
408  VReg2UseMap::iterator UI = VRegUses.find(Reg);
409  for (; UI != VRegUses.end(); ++UI) {
410    if (UI->SU == SU)
411      break;
412  }
413  if (UI == VRegUses.end())
414    VRegUses.insert(VReg2SUnit(Reg, SU));
415
416  // Lookup this operand's reaching definition.
417  assert(LIS && "vreg dependencies requires LiveIntervals");
418  LiveQueryResult LRQ
419    = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
420  VNInfo *VNI = LRQ.valueIn();
421
422  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
423  assert(VNI && "No value to read by operand");
424  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
425  // Phis and other noninstructions (after coalescing) have a NULL Def.
426  if (Def) {
427    SUnit *DefSU = getSUnit(Def);
428    if (DefSU) {
429      // The reaching Def lives within this scheduling region.
430      // Create a data dependence.
431      SDep dep(DefSU, SDep::Data, Reg);
432      // Adjust the dependence latency using operand def/use information, then
433      // allow the target to perform its own adjustments.
434      int DefOp = Def->findRegisterDefOperandIdx(Reg);
435      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
436
437      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
438      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
439      SU->addPred(dep);
440    }
441  }
442
443  // Add antidependence to the following def of the vreg it uses.
444  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
445  if (DefI != VRegDefs.end() && DefI->SU != SU)
446    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
447}
448
449/// Return true if MI is an instruction we are unable to reason about
450/// (like a call or something with unmodeled side effects).
451static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
452  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
453      (MI->hasOrderedMemoryRef() &&
454       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
455    return true;
456  return false;
457}
458
459// This MI might have either incomplete info, or known to be unsafe
460// to deal with (i.e. volatile object).
461static inline bool isUnsafeMemoryObject(MachineInstr *MI,
462                                        const MachineFrameInfo *MFI) {
463  if (!MI || MI->memoperands_empty())
464    return true;
465  // We purposefully do no check for hasOneMemOperand() here
466  // in hope to trigger an assert downstream in order to
467  // finish implementation.
468  if ((*MI->memoperands_begin())->isVolatile() ||
469       MI->hasUnmodeledSideEffects())
470    return true;
471  const Value *V = (*MI->memoperands_begin())->getValue();
472  if (!V)
473    return true;
474
475  SmallVector<Value *, 4> Objs;
476  getUnderlyingObjects(V, Objs);
477  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
478         IE = Objs.end(); I != IE; ++I) {
479    V = *I;
480
481    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
482      // Similarly to getUnderlyingObjectForInstr:
483      // For now, ignore PseudoSourceValues which may alias LLVM IR values
484      // because the code that uses this function has no way to cope with
485      // such aliases.
486      if (PSV->isAliased(MFI))
487        return true;
488    }
489
490    // Does this pointer refer to a distinct and identifiable object?
491    if (!isIdentifiedObject(V))
492      return true;
493  }
494
495  return false;
496}
497
498/// This returns true if the two MIs need a chain edge betwee them.
499/// If these are not even memory operations, we still may need
500/// chain deps between them. The question really is - could
501/// these two MIs be reordered during scheduling from memory dependency
502/// point of view.
503static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
504                             MachineInstr *MIa,
505                             MachineInstr *MIb) {
506  // Cover a trivial case - no edge is need to itself.
507  if (MIa == MIb)
508    return false;
509
510  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
511    return true;
512
513  // If we are dealing with two "normal" loads, we do not need an edge
514  // between them - they could be reordered.
515  if (!MIa->mayStore() && !MIb->mayStore())
516    return false;
517
518  // To this point analysis is generic. From here on we do need AA.
519  if (!AA)
520    return true;
521
522  MachineMemOperand *MMOa = *MIa->memoperands_begin();
523  MachineMemOperand *MMOb = *MIb->memoperands_begin();
524
525  // FIXME: Need to handle multiple memory operands to support all targets.
526  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
527    llvm_unreachable("Multiple memory operands.");
528
529  // The following interface to AA is fashioned after DAGCombiner::isAlias
530  // and operates with MachineMemOperand offset with some important
531  // assumptions:
532  //   - LLVM fundamentally assumes flat address spaces.
533  //   - MachineOperand offset can *only* result from legalization and
534  //     cannot affect queries other than the trivial case of overlap
535  //     checking.
536  //   - These offsets never wrap and never step outside
537  //     of allocated objects.
538  //   - There should never be any negative offsets here.
539  //
540  // FIXME: Modify API to hide this math from "user"
541  // FIXME: Even before we go to AA we can reason locally about some
542  // memory objects. It can save compile time, and possibly catch some
543  // corner cases not currently covered.
544
545  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
546  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
547
548  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
549  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
550  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
551
552  AliasAnalysis::AliasResult AAResult = AA->alias(
553  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
554                          MMOa->getTBAAInfo()),
555  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
556                          MMOb->getTBAAInfo()));
557
558  return (AAResult != AliasAnalysis::NoAlias);
559}
560
561/// This recursive function iterates over chain deps of SUb looking for
562/// "latest" node that needs a chain edge to SUa.
563static unsigned
564iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
565                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
566                 SmallPtrSet<const SUnit*, 16> &Visited) {
567  if (!SUa || !SUb || SUb == ExitSU)
568    return *Depth;
569
570  // Remember visited nodes.
571  if (!Visited.insert(SUb))
572      return *Depth;
573  // If there is _some_ dependency already in place, do not
574  // descend any further.
575  // TODO: Need to make sure that if that dependency got eliminated or ignored
576  // for any reason in the future, we would not violate DAG topology.
577  // Currently it does not happen, but makes an implicit assumption about
578  // future implementation.
579  //
580  // Independently, if we encounter node that is some sort of global
581  // object (like a call) we already have full set of dependencies to it
582  // and we can stop descending.
583  if (SUa->isSucc(SUb) ||
584      isGlobalMemoryObject(AA, SUb->getInstr()))
585    return *Depth;
586
587  // If we do need an edge, or we have exceeded depth budget,
588  // add that edge to the predecessors chain of SUb,
589  // and stop descending.
590  if (*Depth > 200 ||
591      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
592    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
593    return *Depth;
594  }
595  // Track current depth.
596  (*Depth)++;
597  // Iterate over chain dependencies only.
598  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
599       I != E; ++I)
600    if (I->isCtrl())
601      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
602  return *Depth;
603}
604
605/// This function assumes that "downward" from SU there exist
606/// tail/leaf of already constructed DAG. It iterates downward and
607/// checks whether SU can be aliasing any node dominated
608/// by it.
609static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
610                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
611                            unsigned LatencyToLoad) {
612  if (!SU)
613    return;
614
615  SmallPtrSet<const SUnit*, 16> Visited;
616  unsigned Depth = 0;
617
618  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
619       I != IE; ++I) {
620    if (SU == *I)
621      continue;
622    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
623      SDep Dep(SU, SDep::MayAliasMem);
624      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
625      (*I)->addPred(Dep);
626    }
627    // Now go through all the chain successors and iterate from them.
628    // Keep track of visited nodes.
629    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
630         JE = (*I)->Succs.end(); J != JE; ++J)
631      if (J->isCtrl())
632        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
633                          ExitSU, &Depth, Visited);
634  }
635}
636
637/// Check whether two objects need a chain edge, if so, add it
638/// otherwise remember the rejected SU.
639static inline
640void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
641                         SUnit *SUa, SUnit *SUb,
642                         std::set<SUnit *> &RejectList,
643                         unsigned TrueMemOrderLatency = 0,
644                         bool isNormalMemory = false) {
645  // If this is a false dependency,
646  // do not add the edge, but rememeber the rejected node.
647  if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
648    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
649    Dep.setLatency(TrueMemOrderLatency);
650    SUb->addPred(Dep);
651  }
652  else {
653    // Duplicate entries should be ignored.
654    RejectList.insert(SUb);
655    DEBUG(dbgs() << "\tReject chain dep between SU("
656          << SUa->NodeNum << ") and SU("
657          << SUb->NodeNum << ")\n");
658  }
659}
660
661/// Create an SUnit for each real instruction, numbered in top-down toplological
662/// order. The instruction order A < B, implies that no edge exists from B to A.
663///
664/// Map each real instruction to its SUnit.
665///
666/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
667/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
668/// instead of pointers.
669///
670/// MachineScheduler relies on initSUnits numbering the nodes by their order in
671/// the original instruction list.
672void ScheduleDAGInstrs::initSUnits() {
673  // We'll be allocating one SUnit for each real instruction in the region,
674  // which is contained within a basic block.
675  SUnits.reserve(NumRegionInstrs);
676
677  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
678    MachineInstr *MI = I;
679    if (MI->isDebugValue())
680      continue;
681
682    SUnit *SU = newSUnit(MI);
683    MISUnitMap[MI] = SU;
684
685    SU->isCall = MI->isCall();
686    SU->isCommutable = MI->isCommutable();
687
688    // Assign the Latency field of SU using target-provided information.
689    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
690  }
691}
692
693/// If RegPressure is non null, compute register pressure as a side effect. The
694/// DAG builder is an efficient place to do it because it already visits
695/// operands.
696void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
697                                        RegPressureTracker *RPTracker,
698                                        PressureDiffs *PDiffs) {
699  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
700  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
701                                                       : ST.useAA();
702  AliasAnalysis *AAForDep = UseAA ? AA : 0;
703
704  MISUnitMap.clear();
705  ScheduleDAG::clearDAG();
706
707  // Create an SUnit for each real instruction.
708  initSUnits();
709
710  if (PDiffs)
711    PDiffs->init(SUnits.size());
712
713  // We build scheduling units by walking a block's instruction list from bottom
714  // to top.
715
716  // Remember where a generic side-effecting instruction is as we procede.
717  SUnit *BarrierChain = 0, *AliasChain = 0;
718
719  // Memory references to specific known memory locations are tracked
720  // so that they can be given more precise dependencies. We track
721  // separately the known memory locations that may alias and those
722  // that are known not to alias
723  MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
724  MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
725  std::set<SUnit*> RejectMemNodes;
726
727  // Remove any stale debug info; sometimes BuildSchedGraph is called again
728  // without emitting the info from the previous call.
729  DbgValues.clear();
730  FirstDbgValue = NULL;
731
732  assert(Defs.empty() && Uses.empty() &&
733         "Only BuildGraph should update Defs/Uses");
734  Defs.setUniverse(TRI->getNumRegs());
735  Uses.setUniverse(TRI->getNumRegs());
736
737  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
738  VRegUses.clear();
739  VRegDefs.setUniverse(MRI.getNumVirtRegs());
740  VRegUses.setUniverse(MRI.getNumVirtRegs());
741
742  // Model data dependencies between instructions being scheduled and the
743  // ExitSU.
744  addSchedBarrierDeps();
745
746  // Walk the list of instructions, from bottom moving up.
747  MachineInstr *DbgMI = NULL;
748  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
749       MII != MIE; --MII) {
750    MachineInstr *MI = prior(MII);
751    if (MI && DbgMI) {
752      DbgValues.push_back(std::make_pair(DbgMI, MI));
753      DbgMI = NULL;
754    }
755
756    if (MI->isDebugValue()) {
757      DbgMI = MI;
758      continue;
759    }
760    SUnit *SU = MISUnitMap[MI];
761    assert(SU && "No SUnit mapped to this MI");
762
763    if (RPTracker) {
764      PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0;
765      RPTracker->recede(/*LiveUses=*/0, PDiff);
766      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
767    }
768
769    assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
770           "Cannot schedule terminators or labels!");
771
772    // Add register-based dependencies (data, anti, and output).
773    bool HasVRegDef = false;
774    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
775      const MachineOperand &MO = MI->getOperand(j);
776      if (!MO.isReg()) continue;
777      unsigned Reg = MO.getReg();
778      if (Reg == 0) continue;
779
780      if (TRI->isPhysicalRegister(Reg))
781        addPhysRegDeps(SU, j);
782      else {
783        assert(!IsPostRA && "Virtual register encountered!");
784        if (MO.isDef()) {
785          HasVRegDef = true;
786          addVRegDefDeps(SU, j);
787        }
788        else if (MO.readsReg()) // ignore undef operands
789          addVRegUseDeps(SU, j);
790      }
791    }
792    // If we haven't seen any uses in this scheduling region, create a
793    // dependence edge to ExitSU to model the live-out latency. This is required
794    // for vreg defs with no in-region use, and prefetches with no vreg def.
795    //
796    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
797    // check currently relies on being called before adding chain deps.
798    if (SU->NumSuccs == 0 && SU->Latency > 1
799        && (HasVRegDef || MI->mayLoad())) {
800      SDep Dep(SU, SDep::Artificial);
801      Dep.setLatency(SU->Latency - 1);
802      ExitSU.addPred(Dep);
803    }
804
805    // Add chain dependencies.
806    // Chain dependencies used to enforce memory order should have
807    // latency of 0 (except for true dependency of Store followed by
808    // aliased Load... we estimate that with a single cycle of latency
809    // assuming the hardware will bypass)
810    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
811    // after stack slots are lowered to actual addresses.
812    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
813    // produce more precise dependence information.
814    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
815    if (isGlobalMemoryObject(AA, MI)) {
816      // Be conservative with these and add dependencies on all memory
817      // references, even those that are known to not alias.
818      for (MapVector<const Value *, SUnit *>::iterator I =
819             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
820        I->second->addPred(SDep(SU, SDep::Barrier));
821      }
822      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
823             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
824        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
825          SDep Dep(SU, SDep::Barrier);
826          Dep.setLatency(TrueMemOrderLatency);
827          I->second[i]->addPred(Dep);
828        }
829      }
830      // Add SU to the barrier chain.
831      if (BarrierChain)
832        BarrierChain->addPred(SDep(SU, SDep::Barrier));
833      BarrierChain = SU;
834      // This is a barrier event that acts as a pivotal node in the DAG,
835      // so it is safe to clear list of exposed nodes.
836      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
837                      TrueMemOrderLatency);
838      RejectMemNodes.clear();
839      NonAliasMemDefs.clear();
840      NonAliasMemUses.clear();
841
842      // fall-through
843    new_alias_chain:
844      // Chain all possibly aliasing memory references though SU.
845      if (AliasChain) {
846        unsigned ChainLatency = 0;
847        if (AliasChain->getInstr()->mayLoad())
848          ChainLatency = TrueMemOrderLatency;
849        addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
850                           ChainLatency);
851      }
852      AliasChain = SU;
853      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
854        addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
855                           TrueMemOrderLatency);
856      for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
857           E = AliasMemDefs.end(); I != E; ++I)
858        addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
859      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
860           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
861        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
862          addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
863                             TrueMemOrderLatency);
864      }
865      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
866                      TrueMemOrderLatency);
867      PendingLoads.clear();
868      AliasMemDefs.clear();
869      AliasMemUses.clear();
870    } else if (MI->mayStore()) {
871      UnderlyingObjectsVector Objs;
872      getUnderlyingObjectsForInstr(MI, MFI, Objs);
873
874      if (Objs.empty()) {
875        // Treat all other stores conservatively.
876        goto new_alias_chain;
877      }
878
879      bool MayAlias = false;
880      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
881           K != KE; ++K) {
882        const Value *V = K->getPointer();
883        bool ThisMayAlias = K->getInt();
884        if (ThisMayAlias)
885          MayAlias = true;
886
887        // A store to a specific PseudoSourceValue. Add precise dependencies.
888        // Record the def in MemDefs, first adding a dep if there is
889        // an existing def.
890        MapVector<const Value *, SUnit *>::iterator I =
891          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
892        MapVector<const Value *, SUnit *>::iterator IE =
893          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
894        if (I != IE) {
895          addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
896                             0, true);
897          I->second = SU;
898        } else {
899          if (ThisMayAlias)
900            AliasMemDefs[V] = SU;
901          else
902            NonAliasMemDefs[V] = SU;
903        }
904        // Handle the uses in MemUses, if there are any.
905        MapVector<const Value *, std::vector<SUnit *> >::iterator J =
906          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
907        MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
908          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
909        if (J != JE) {
910          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
911            addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
912                               TrueMemOrderLatency, true);
913          J->second.clear();
914        }
915      }
916      if (MayAlias) {
917        // Add dependencies from all the PendingLoads, i.e. loads
918        // with no underlying object.
919        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
920          addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
921                             TrueMemOrderLatency);
922        // Add dependence on alias chain, if needed.
923        if (AliasChain)
924          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
925        // But we also should check dependent instructions for the
926        // SU in question.
927        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
928                        TrueMemOrderLatency);
929      }
930      // Add dependence on barrier chain, if needed.
931      // There is no point to check aliasing on barrier event. Even if
932      // SU and barrier _could_ be reordered, they should not. In addition,
933      // we have lost all RejectMemNodes below barrier.
934      if (BarrierChain)
935        BarrierChain->addPred(SDep(SU, SDep::Barrier));
936
937      if (!ExitSU.isPred(SU))
938        // Push store's up a bit to avoid them getting in between cmp
939        // and branches.
940        ExitSU.addPred(SDep(SU, SDep::Artificial));
941    } else if (MI->mayLoad()) {
942      bool MayAlias = true;
943      if (MI->isInvariantLoad(AA)) {
944        // Invariant load, no chain dependencies needed!
945      } else {
946        UnderlyingObjectsVector Objs;
947        getUnderlyingObjectsForInstr(MI, MFI, Objs);
948
949        if (Objs.empty()) {
950          // A load with no underlying object. Depend on all
951          // potentially aliasing stores.
952          for (MapVector<const Value *, SUnit *>::iterator I =
953                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
954            addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
955
956          PendingLoads.push_back(SU);
957          MayAlias = true;
958        } else {
959          MayAlias = false;
960        }
961
962        for (UnderlyingObjectsVector::iterator
963             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
964          const Value *V = J->getPointer();
965          bool ThisMayAlias = J->getInt();
966
967          if (ThisMayAlias)
968            MayAlias = true;
969
970          // A load from a specific PseudoSourceValue. Add precise dependencies.
971          MapVector<const Value *, SUnit *>::iterator I =
972            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
973          MapVector<const Value *, SUnit *>::iterator IE =
974            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
975          if (I != IE)
976            addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
977                               0, true);
978          if (ThisMayAlias)
979            AliasMemUses[V].push_back(SU);
980          else
981            NonAliasMemUses[V].push_back(SU);
982        }
983        if (MayAlias)
984          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
985        // Add dependencies on alias and barrier chains, if needed.
986        if (MayAlias && AliasChain)
987          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
988        if (BarrierChain)
989          BarrierChain->addPred(SDep(SU, SDep::Barrier));
990      }
991    }
992  }
993  if (DbgMI)
994    FirstDbgValue = DbgMI;
995
996  Defs.clear();
997  Uses.clear();
998  VRegDefs.clear();
999  PendingLoads.clear();
1000}
1001
1002void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1003#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1004  SU->getInstr()->dump();
1005#endif
1006}
1007
1008std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1009  std::string s;
1010  raw_string_ostream oss(s);
1011  if (SU == &EntrySU)
1012    oss << "<entry>";
1013  else if (SU == &ExitSU)
1014    oss << "<exit>";
1015  else
1016    SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
1017  return oss.str();
1018}
1019
1020/// Return the basic block label. It is not necessarilly unique because a block
1021/// contains multiple scheduling regions. But it is fine for visualization.
1022std::string ScheduleDAGInstrs::getDAGName() const {
1023  return "dag." + BB->getFullName();
1024}
1025
1026//===----------------------------------------------------------------------===//
1027// SchedDFSResult Implementation
1028//===----------------------------------------------------------------------===//
1029
1030namespace llvm {
1031/// \brief Internal state used to compute SchedDFSResult.
1032class SchedDFSImpl {
1033  SchedDFSResult &R;
1034
1035  /// Join DAG nodes into equivalence classes by their subtree.
1036  IntEqClasses SubtreeClasses;
1037  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1038  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1039
1040  struct RootData {
1041    unsigned NodeID;
1042    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1043    unsigned SubInstrCount; // Instr count in this tree only, not children.
1044
1045    RootData(unsigned id): NodeID(id),
1046                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1047                           SubInstrCount(0) {}
1048
1049    unsigned getSparseSetIndex() const { return NodeID; }
1050  };
1051
1052  SparseSet<RootData> RootSet;
1053
1054public:
1055  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1056    RootSet.setUniverse(R.DFSNodeData.size());
1057  }
1058
1059  /// Return true if this node been visited by the DFS traversal.
1060  ///
1061  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1062  /// ID. Later, SubtreeID is updated but remains valid.
1063  bool isVisited(const SUnit *SU) const {
1064    return R.DFSNodeData[SU->NodeNum].SubtreeID
1065      != SchedDFSResult::InvalidSubtreeID;
1066  }
1067
1068  /// Initialize this node's instruction count. We don't need to flag the node
1069  /// visited until visitPostorder because the DAG cannot have cycles.
1070  void visitPreorder(const SUnit *SU) {
1071    R.DFSNodeData[SU->NodeNum].InstrCount =
1072      SU->getInstr()->isTransient() ? 0 : 1;
1073  }
1074
1075  /// Called once for each node after all predecessors are visited. Revisit this
1076  /// node's predecessors and potentially join them now that we know the ILP of
1077  /// the other predecessors.
1078  void visitPostorderNode(const SUnit *SU) {
1079    // Mark this node as the root of a subtree. It may be joined with its
1080    // successors later.
1081    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1082    RootData RData(SU->NodeNum);
1083    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1084
1085    // If any predecessors are still in their own subtree, they either cannot be
1086    // joined or are large enough to remain separate. If this parent node's
1087    // total instruction count is not greater than a child subtree by at least
1088    // the subtree limit, then try to join it now since splitting subtrees is
1089    // only useful if multiple high-pressure paths are possible.
1090    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1091    for (SUnit::const_pred_iterator
1092           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1093      if (PI->getKind() != SDep::Data)
1094        continue;
1095      unsigned PredNum = PI->getSUnit()->NodeNum;
1096      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1097        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1098
1099      // Either link or merge the TreeData entry from the child to the parent.
1100      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1101        // If the predecessor's parent is invalid, this is a tree edge and the
1102        // current node is the parent.
1103        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1104          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1105      }
1106      else if (RootSet.count(PredNum)) {
1107        // The predecessor is not a root, but is still in the root set. This
1108        // must be the new parent that it was just joined to. Note that
1109        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1110        // set to the original parent.
1111        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1112        RootSet.erase(PredNum);
1113      }
1114    }
1115    RootSet[SU->NodeNum] = RData;
1116  }
1117
1118  /// Called once for each tree edge after calling visitPostOrderNode on the
1119  /// predecessor. Increment the parent node's instruction count and
1120  /// preemptively join this subtree to its parent's if it is small enough.
1121  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1122    R.DFSNodeData[Succ->NodeNum].InstrCount
1123      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1124    joinPredSubtree(PredDep, Succ);
1125  }
1126
1127  /// Add a connection for cross edges.
1128  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1129    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1130  }
1131
1132  /// Set each node's subtree ID to the representative ID and record connections
1133  /// between trees.
1134  void finalize() {
1135    SubtreeClasses.compress();
1136    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1137    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1138           && "number of roots should match trees");
1139    for (SparseSet<RootData>::const_iterator
1140           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1141      unsigned TreeID = SubtreeClasses[RI->NodeID];
1142      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1143        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1144      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1145      // Note that SubInstrCount may be greater than InstrCount if we joined
1146      // subtrees across a cross edge. InstrCount will be attributed to the
1147      // original parent, while SubInstrCount will be attributed to the joined
1148      // parent.
1149    }
1150    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1151    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1152    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1153    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1154      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1155      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1156            << R.DFSNodeData[Idx].SubtreeID << '\n');
1157    }
1158    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1159           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1160         I != E; ++I) {
1161      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1162      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1163      if (PredTree == SuccTree)
1164        continue;
1165      unsigned Depth = I->first->getDepth();
1166      addConnection(PredTree, SuccTree, Depth);
1167      addConnection(SuccTree, PredTree, Depth);
1168    }
1169  }
1170
1171protected:
1172  /// Join the predecessor subtree with the successor that is its DFS
1173  /// parent. Apply some heuristics before joining.
1174  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1175                       bool CheckLimit = true) {
1176    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1177
1178    // Check if the predecessor is already joined.
1179    const SUnit *PredSU = PredDep.getSUnit();
1180    unsigned PredNum = PredSU->NodeNum;
1181    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1182      return false;
1183
1184    // Four is the magic number of successors before a node is considered a
1185    // pinch point.
1186    unsigned NumDataSucs = 0;
1187    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1188           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1189      if (SI->getKind() == SDep::Data) {
1190        if (++NumDataSucs >= 4)
1191          return false;
1192      }
1193    }
1194    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1195      return false;
1196    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1197    SubtreeClasses.join(Succ->NodeNum, PredNum);
1198    return true;
1199  }
1200
1201  /// Called by finalize() to record a connection between trees.
1202  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1203    if (!Depth)
1204      return;
1205
1206    do {
1207      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1208        R.SubtreeConnections[FromTree];
1209      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1210             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1211        if (I->TreeID == ToTree) {
1212          I->Level = std::max(I->Level, Depth);
1213          return;
1214        }
1215      }
1216      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1217      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1218    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1219  }
1220};
1221} // namespace llvm
1222
1223namespace {
1224/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1225class SchedDAGReverseDFS {
1226  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1227public:
1228  bool isComplete() const { return DFSStack.empty(); }
1229
1230  void follow(const SUnit *SU) {
1231    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1232  }
1233  void advance() { ++DFSStack.back().second; }
1234
1235  const SDep *backtrack() {
1236    DFSStack.pop_back();
1237    return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
1238  }
1239
1240  const SUnit *getCurr() const { return DFSStack.back().first; }
1241
1242  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1243
1244  SUnit::const_pred_iterator getPredEnd() const {
1245    return getCurr()->Preds.end();
1246  }
1247};
1248} // anonymous
1249
1250static bool hasDataSucc(const SUnit *SU) {
1251  for (SUnit::const_succ_iterator
1252         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1253    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1254      return true;
1255  }
1256  return false;
1257}
1258
1259/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1260/// search from this root.
1261void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1262  if (!IsBottomUp)
1263    llvm_unreachable("Top-down ILP metric is unimplemnted");
1264
1265  SchedDFSImpl Impl(*this);
1266  for (ArrayRef<SUnit>::const_iterator
1267         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1268    const SUnit *SU = &*SI;
1269    if (Impl.isVisited(SU) || hasDataSucc(SU))
1270      continue;
1271
1272    SchedDAGReverseDFS DFS;
1273    Impl.visitPreorder(SU);
1274    DFS.follow(SU);
1275    for (;;) {
1276      // Traverse the leftmost path as far as possible.
1277      while (DFS.getPred() != DFS.getPredEnd()) {
1278        const SDep &PredDep = *DFS.getPred();
1279        DFS.advance();
1280        // Ignore non-data edges.
1281        if (PredDep.getKind() != SDep::Data
1282            || PredDep.getSUnit()->isBoundaryNode()) {
1283          continue;
1284        }
1285        // An already visited edge is a cross edge, assuming an acyclic DAG.
1286        if (Impl.isVisited(PredDep.getSUnit())) {
1287          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1288          continue;
1289        }
1290        Impl.visitPreorder(PredDep.getSUnit());
1291        DFS.follow(PredDep.getSUnit());
1292      }
1293      // Visit the top of the stack in postorder and backtrack.
1294      const SUnit *Child = DFS.getCurr();
1295      const SDep *PredDep = DFS.backtrack();
1296      Impl.visitPostorderNode(Child);
1297      if (PredDep)
1298        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1299      if (DFS.isComplete())
1300        break;
1301    }
1302  }
1303  Impl.finalize();
1304}
1305
1306/// The root of the given SubtreeID was just scheduled. For all subtrees
1307/// connected to this tree, record the depth of the connection so that the
1308/// nearest connected subtrees can be prioritized.
1309void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1310  for (SmallVectorImpl<Connection>::const_iterator
1311         I = SubtreeConnections[SubtreeID].begin(),
1312         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1313    SubtreeConnectLevels[I->TreeID] =
1314      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1315    DEBUG(dbgs() << "  Tree: " << I->TreeID
1316          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1317  }
1318}
1319
1320#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1321void ILPValue::print(raw_ostream &OS) const {
1322  OS << InstrCount << " / " << Length << " = ";
1323  if (!Length)
1324    OS << "BADILP";
1325  else
1326    OS << format("%g", ((double)InstrCount / Length));
1327}
1328
1329void ILPValue::dump() const {
1330  dbgs() << *this << '\n';
1331}
1332
1333namespace llvm {
1334
1335raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1336  Val.print(OS);
1337  return OS;
1338}
1339
1340} // namespace llvm
1341#endif // !NDEBUG || LLVM_ENABLE_DUMP
1342