MachineInstr.cpp revision 245431
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/DebugInfo.h"
17#include "llvm/Function.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Metadata.h"
21#include "llvm/Module.h"
22#include "llvm/Type.h"
23#include "llvm/Value.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/LeakDetector.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/FoldingSet.h"
43#include "llvm/ADT/Hashing.h"
44using namespace llvm;
45
46//===----------------------------------------------------------------------===//
47// MachineOperand Implementation
48//===----------------------------------------------------------------------===//
49
50void MachineOperand::setReg(unsigned Reg) {
51  if (getReg() == Reg) return; // No change.
52
53  // Otherwise, we have to change the register.  If this operand is embedded
54  // into a machine function, we need to update the old and new register's
55  // use/def lists.
56  if (MachineInstr *MI = getParent())
57    if (MachineBasicBlock *MBB = MI->getParent())
58      if (MachineFunction *MF = MBB->getParent()) {
59        MachineRegisterInfo &MRI = MF->getRegInfo();
60        MRI.removeRegOperandFromUseList(this);
61        SmallContents.RegNo = Reg;
62        MRI.addRegOperandToUseList(this);
63        return;
64      }
65
66  // Otherwise, just change the register, no problem.  :)
67  SmallContents.RegNo = Reg;
68}
69
70void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
71                                  const TargetRegisterInfo &TRI) {
72  assert(TargetRegisterInfo::isVirtualRegister(Reg));
73  if (SubIdx && getSubReg())
74    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
75  setReg(Reg);
76  if (SubIdx)
77    setSubReg(SubIdx);
78}
79
80void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
81  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
82  if (getSubReg()) {
83    Reg = TRI.getSubReg(Reg, getSubReg());
84    // Note that getSubReg() may return 0 if the sub-register doesn't exist.
85    // That won't happen in legal code.
86    setSubReg(0);
87  }
88  setReg(Reg);
89}
90
91/// Change a def to a use, or a use to a def.
92void MachineOperand::setIsDef(bool Val) {
93  assert(isReg() && "Wrong MachineOperand accessor");
94  assert((!Val || !isDebug()) && "Marking a debug operation as def");
95  if (IsDef == Val)
96    return;
97  // MRI may keep uses and defs in different list positions.
98  if (MachineInstr *MI = getParent())
99    if (MachineBasicBlock *MBB = MI->getParent())
100      if (MachineFunction *MF = MBB->getParent()) {
101        MachineRegisterInfo &MRI = MF->getRegInfo();
102        MRI.removeRegOperandFromUseList(this);
103        IsDef = Val;
104        MRI.addRegOperandToUseList(this);
105        return;
106      }
107  IsDef = Val;
108}
109
110/// ChangeToImmediate - Replace this operand with a new immediate operand of
111/// the specified value.  If an operand is known to be an immediate already,
112/// the setImm method should be used.
113void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
114  assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
115  // If this operand is currently a register operand, and if this is in a
116  // function, deregister the operand from the register's use/def list.
117  if (isReg() && isOnRegUseList())
118    if (MachineInstr *MI = getParent())
119      if (MachineBasicBlock *MBB = MI->getParent())
120        if (MachineFunction *MF = MBB->getParent())
121          MF->getRegInfo().removeRegOperandFromUseList(this);
122
123  OpKind = MO_Immediate;
124  Contents.ImmVal = ImmVal;
125}
126
127/// ChangeToRegister - Replace this operand with a new register operand of
128/// the specified value.  If an operand is known to be an register already,
129/// the setReg method should be used.
130void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
131                                      bool isKill, bool isDead, bool isUndef,
132                                      bool isDebug) {
133  MachineRegisterInfo *RegInfo = 0;
134  if (MachineInstr *MI = getParent())
135    if (MachineBasicBlock *MBB = MI->getParent())
136      if (MachineFunction *MF = MBB->getParent())
137        RegInfo = &MF->getRegInfo();
138  // If this operand is already a register operand, remove it from the
139  // register's use/def lists.
140  bool WasReg = isReg();
141  if (RegInfo && WasReg)
142    RegInfo->removeRegOperandFromUseList(this);
143
144  // Change this to a register and set the reg#.
145  OpKind = MO_Register;
146  SmallContents.RegNo = Reg;
147  SubReg = 0;
148  IsDef = isDef;
149  IsImp = isImp;
150  IsKill = isKill;
151  IsDead = isDead;
152  IsUndef = isUndef;
153  IsInternalRead = false;
154  IsEarlyClobber = false;
155  IsDebug = isDebug;
156  // Ensure isOnRegUseList() returns false.
157  Contents.Reg.Prev = 0;
158  // Preserve the tie when the operand was already a register.
159  if (!WasReg)
160    TiedTo = 0;
161
162  // If this operand is embedded in a function, add the operand to the
163  // register's use/def list.
164  if (RegInfo)
165    RegInfo->addRegOperandToUseList(this);
166}
167
168/// isIdenticalTo - Return true if this operand is identical to the specified
169/// operand. Note that this should stay in sync with the hash_value overload
170/// below.
171bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
172  if (getType() != Other.getType() ||
173      getTargetFlags() != Other.getTargetFlags())
174    return false;
175
176  switch (getType()) {
177  case MachineOperand::MO_Register:
178    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
179           getSubReg() == Other.getSubReg();
180  case MachineOperand::MO_Immediate:
181    return getImm() == Other.getImm();
182  case MachineOperand::MO_CImmediate:
183    return getCImm() == Other.getCImm();
184  case MachineOperand::MO_FPImmediate:
185    return getFPImm() == Other.getFPImm();
186  case MachineOperand::MO_MachineBasicBlock:
187    return getMBB() == Other.getMBB();
188  case MachineOperand::MO_FrameIndex:
189    return getIndex() == Other.getIndex();
190  case MachineOperand::MO_ConstantPoolIndex:
191  case MachineOperand::MO_TargetIndex:
192    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
193  case MachineOperand::MO_JumpTableIndex:
194    return getIndex() == Other.getIndex();
195  case MachineOperand::MO_GlobalAddress:
196    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
197  case MachineOperand::MO_ExternalSymbol:
198    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
199           getOffset() == Other.getOffset();
200  case MachineOperand::MO_BlockAddress:
201    return getBlockAddress() == Other.getBlockAddress() &&
202           getOffset() == Other.getOffset();
203  case MO_RegisterMask:
204    return getRegMask() == Other.getRegMask();
205  case MachineOperand::MO_MCSymbol:
206    return getMCSymbol() == Other.getMCSymbol();
207  case MachineOperand::MO_Metadata:
208    return getMetadata() == Other.getMetadata();
209  }
210  llvm_unreachable("Invalid machine operand type");
211}
212
213// Note: this must stay exactly in sync with isIdenticalTo above.
214hash_code llvm::hash_value(const MachineOperand &MO) {
215  switch (MO.getType()) {
216  case MachineOperand::MO_Register:
217    // Register operands don't have target flags.
218    return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
219  case MachineOperand::MO_Immediate:
220    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
221  case MachineOperand::MO_CImmediate:
222    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
223  case MachineOperand::MO_FPImmediate:
224    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
225  case MachineOperand::MO_MachineBasicBlock:
226    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
227  case MachineOperand::MO_FrameIndex:
228    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
229  case MachineOperand::MO_ConstantPoolIndex:
230  case MachineOperand::MO_TargetIndex:
231    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
232                        MO.getOffset());
233  case MachineOperand::MO_JumpTableIndex:
234    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
235  case MachineOperand::MO_ExternalSymbol:
236    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
237                        MO.getSymbolName());
238  case MachineOperand::MO_GlobalAddress:
239    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
240                        MO.getOffset());
241  case MachineOperand::MO_BlockAddress:
242    return hash_combine(MO.getType(), MO.getTargetFlags(),
243                        MO.getBlockAddress(), MO.getOffset());
244  case MachineOperand::MO_RegisterMask:
245    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
246  case MachineOperand::MO_Metadata:
247    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
248  case MachineOperand::MO_MCSymbol:
249    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
250  }
251  llvm_unreachable("Invalid machine operand type");
252}
253
254/// print - Print the specified machine operand.
255///
256void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
257  // If the instruction is embedded into a basic block, we can find the
258  // target info for the instruction.
259  if (!TM)
260    if (const MachineInstr *MI = getParent())
261      if (const MachineBasicBlock *MBB = MI->getParent())
262        if (const MachineFunction *MF = MBB->getParent())
263          TM = &MF->getTarget();
264  const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
265
266  switch (getType()) {
267  case MachineOperand::MO_Register:
268    OS << PrintReg(getReg(), TRI, getSubReg());
269
270    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
271        isInternalRead() || isEarlyClobber() || isTied()) {
272      OS << '<';
273      bool NeedComma = false;
274      if (isDef()) {
275        if (NeedComma) OS << ',';
276        if (isEarlyClobber())
277          OS << "earlyclobber,";
278        if (isImplicit())
279          OS << "imp-";
280        OS << "def";
281        NeedComma = true;
282        // <def,read-undef> only makes sense when getSubReg() is set.
283        // Don't clutter the output otherwise.
284        if (isUndef() && getSubReg())
285          OS << ",read-undef";
286      } else if (isImplicit()) {
287          OS << "imp-use";
288          NeedComma = true;
289      }
290
291      if (isKill()) {
292        if (NeedComma) OS << ',';
293        OS << "kill";
294        NeedComma = true;
295      }
296      if (isDead()) {
297        if (NeedComma) OS << ',';
298        OS << "dead";
299        NeedComma = true;
300      }
301      if (isUndef() && isUse()) {
302        if (NeedComma) OS << ',';
303        OS << "undef";
304        NeedComma = true;
305      }
306      if (isInternalRead()) {
307        if (NeedComma) OS << ',';
308        OS << "internal";
309        NeedComma = true;
310      }
311      if (isTied()) {
312        if (NeedComma) OS << ',';
313        OS << "tied";
314        if (TiedTo != 15)
315          OS << unsigned(TiedTo - 1);
316        NeedComma = true;
317      }
318      OS << '>';
319    }
320    break;
321  case MachineOperand::MO_Immediate:
322    OS << getImm();
323    break;
324  case MachineOperand::MO_CImmediate:
325    getCImm()->getValue().print(OS, false);
326    break;
327  case MachineOperand::MO_FPImmediate:
328    if (getFPImm()->getType()->isFloatTy())
329      OS << getFPImm()->getValueAPF().convertToFloat();
330    else
331      OS << getFPImm()->getValueAPF().convertToDouble();
332    break;
333  case MachineOperand::MO_MachineBasicBlock:
334    OS << "<BB#" << getMBB()->getNumber() << ">";
335    break;
336  case MachineOperand::MO_FrameIndex:
337    OS << "<fi#" << getIndex() << '>';
338    break;
339  case MachineOperand::MO_ConstantPoolIndex:
340    OS << "<cp#" << getIndex();
341    if (getOffset()) OS << "+" << getOffset();
342    OS << '>';
343    break;
344  case MachineOperand::MO_TargetIndex:
345    OS << "<ti#" << getIndex();
346    if (getOffset()) OS << "+" << getOffset();
347    OS << '>';
348    break;
349  case MachineOperand::MO_JumpTableIndex:
350    OS << "<jt#" << getIndex() << '>';
351    break;
352  case MachineOperand::MO_GlobalAddress:
353    OS << "<ga:";
354    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
355    if (getOffset()) OS << "+" << getOffset();
356    OS << '>';
357    break;
358  case MachineOperand::MO_ExternalSymbol:
359    OS << "<es:" << getSymbolName();
360    if (getOffset()) OS << "+" << getOffset();
361    OS << '>';
362    break;
363  case MachineOperand::MO_BlockAddress:
364    OS << '<';
365    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
366    if (getOffset()) OS << "+" << getOffset();
367    OS << '>';
368    break;
369  case MachineOperand::MO_RegisterMask:
370    OS << "<regmask>";
371    break;
372  case MachineOperand::MO_Metadata:
373    OS << '<';
374    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
375    OS << '>';
376    break;
377  case MachineOperand::MO_MCSymbol:
378    OS << "<MCSym=" << *getMCSymbol() << '>';
379    break;
380  }
381
382  if (unsigned TF = getTargetFlags())
383    OS << "[TF=" << TF << ']';
384}
385
386//===----------------------------------------------------------------------===//
387// MachineMemOperand Implementation
388//===----------------------------------------------------------------------===//
389
390/// getAddrSpace - Return the LLVM IR address space number that this pointer
391/// points into.
392unsigned MachinePointerInfo::getAddrSpace() const {
393  if (V == 0) return 0;
394  return cast<PointerType>(V->getType())->getAddressSpace();
395}
396
397/// getConstantPool - Return a MachinePointerInfo record that refers to the
398/// constant pool.
399MachinePointerInfo MachinePointerInfo::getConstantPool() {
400  return MachinePointerInfo(PseudoSourceValue::getConstantPool());
401}
402
403/// getFixedStack - Return a MachinePointerInfo record that refers to the
404/// the specified FrameIndex.
405MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
406  return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
407}
408
409MachinePointerInfo MachinePointerInfo::getJumpTable() {
410  return MachinePointerInfo(PseudoSourceValue::getJumpTable());
411}
412
413MachinePointerInfo MachinePointerInfo::getGOT() {
414  return MachinePointerInfo(PseudoSourceValue::getGOT());
415}
416
417MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
418  return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
419}
420
421MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
422                                     uint64_t s, unsigned int a,
423                                     const MDNode *TBAAInfo,
424                                     const MDNode *Ranges)
425  : PtrInfo(ptrinfo), Size(s),
426    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
427    TBAAInfo(TBAAInfo), Ranges(Ranges) {
428  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
429         "invalid pointer value");
430  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
431  assert((isLoad() || isStore()) && "Not a load/store!");
432}
433
434/// Profile - Gather unique data for the object.
435///
436void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
437  ID.AddInteger(getOffset());
438  ID.AddInteger(Size);
439  ID.AddPointer(getValue());
440  ID.AddInteger(Flags);
441}
442
443void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
444  // The Value and Offset may differ due to CSE. But the flags and size
445  // should be the same.
446  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
447  assert(MMO->getSize() == getSize() && "Size mismatch!");
448
449  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
450    // Update the alignment value.
451    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
452      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
453    // Also update the base and offset, because the new alignment may
454    // not be applicable with the old ones.
455    PtrInfo = MMO->PtrInfo;
456  }
457}
458
459/// getAlignment - Return the minimum known alignment in bytes of the
460/// actual memory reference.
461uint64_t MachineMemOperand::getAlignment() const {
462  return MinAlign(getBaseAlignment(), getOffset());
463}
464
465raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
466  assert((MMO.isLoad() || MMO.isStore()) &&
467         "SV has to be a load, store or both.");
468
469  if (MMO.isVolatile())
470    OS << "Volatile ";
471
472  if (MMO.isLoad())
473    OS << "LD";
474  if (MMO.isStore())
475    OS << "ST";
476  OS << MMO.getSize();
477
478  // Print the address information.
479  OS << "[";
480  if (!MMO.getValue())
481    OS << "<unknown>";
482  else
483    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
484
485  // If the alignment of the memory reference itself differs from the alignment
486  // of the base pointer, print the base alignment explicitly, next to the base
487  // pointer.
488  if (MMO.getBaseAlignment() != MMO.getAlignment())
489    OS << "(align=" << MMO.getBaseAlignment() << ")";
490
491  if (MMO.getOffset() != 0)
492    OS << "+" << MMO.getOffset();
493  OS << "]";
494
495  // Print the alignment of the reference.
496  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
497      MMO.getBaseAlignment() != MMO.getSize())
498    OS << "(align=" << MMO.getAlignment() << ")";
499
500  // Print TBAA info.
501  if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
502    OS << "(tbaa=";
503    if (TBAAInfo->getNumOperands() > 0)
504      WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
505    else
506      OS << "<unknown>";
507    OS << ")";
508  }
509
510  // Print nontemporal info.
511  if (MMO.isNonTemporal())
512    OS << "(nontemporal)";
513
514  return OS;
515}
516
517//===----------------------------------------------------------------------===//
518// MachineInstr Implementation
519//===----------------------------------------------------------------------===//
520
521/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
522/// MCID NULL and no operands.
523MachineInstr::MachineInstr()
524  : MCID(0), Flags(0), AsmPrinterFlags(0),
525    NumMemRefs(0), MemRefs(0),
526    Parent(0) {
527  // Make sure that we get added to a machine basicblock
528  LeakDetector::addGarbageObject(this);
529}
530
531void MachineInstr::addImplicitDefUseOperands() {
532  if (MCID->ImplicitDefs)
533    for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
534      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
535  if (MCID->ImplicitUses)
536    for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
537      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
538}
539
540/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
541/// implicit operands. It reserves space for the number of operands specified by
542/// the MCInstrDesc.
543MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
544                           bool NoImp)
545  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
546    NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
547  unsigned NumImplicitOps = 0;
548  if (!NoImp)
549    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
550  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
551  if (!NoImp)
552    addImplicitDefUseOperands();
553  // Make sure that we get added to a machine basicblock
554  LeakDetector::addGarbageObject(this);
555}
556
557/// MachineInstr ctor - Work exactly the same as the ctor two above, except
558/// that the MachineInstr is created and added to the end of the specified
559/// basic block.
560MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
561                           const MCInstrDesc &tid)
562  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
563    NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
564  assert(MBB && "Cannot use inserting ctor with null basic block!");
565  unsigned NumImplicitOps =
566    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
567  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
568  addImplicitDefUseOperands();
569  // Make sure that we get added to a machine basicblock
570  LeakDetector::addGarbageObject(this);
571  MBB->push_back(this);  // Add instruction to end of basic block!
572}
573
574/// MachineInstr ctor - Copies MachineInstr arg exactly
575///
576MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
577  : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
578    NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
579    Parent(0), debugLoc(MI.getDebugLoc()) {
580  Operands.reserve(MI.getNumOperands());
581
582  // Add operands
583  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
584    addOperand(MI.getOperand(i));
585
586  // Copy all the flags.
587  Flags = MI.Flags;
588
589  // Set parent to null.
590  Parent = 0;
591
592  LeakDetector::addGarbageObject(this);
593}
594
595MachineInstr::~MachineInstr() {
596  LeakDetector::removeGarbageObject(this);
597#ifndef NDEBUG
598  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
599    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
600    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
601           "Reg operand def/use list corrupted");
602  }
603#endif
604}
605
606/// getRegInfo - If this instruction is embedded into a MachineFunction,
607/// return the MachineRegisterInfo object for the current function, otherwise
608/// return null.
609MachineRegisterInfo *MachineInstr::getRegInfo() {
610  if (MachineBasicBlock *MBB = getParent())
611    return &MBB->getParent()->getRegInfo();
612  return 0;
613}
614
615/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
616/// this instruction from their respective use lists.  This requires that the
617/// operands already be on their use lists.
618void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
619  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
620    if (Operands[i].isReg())
621      MRI.removeRegOperandFromUseList(&Operands[i]);
622}
623
624/// AddRegOperandsToUseLists - Add all of the register operands in
625/// this instruction from their respective use lists.  This requires that the
626/// operands not be on their use lists yet.
627void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
628  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
629    if (Operands[i].isReg())
630      MRI.addRegOperandToUseList(&Operands[i]);
631}
632
633/// addOperand - Add the specified operand to the instruction.  If it is an
634/// implicit operand, it is added to the end of the operand list.  If it is
635/// an explicit operand it is added at the end of the explicit operand list
636/// (before the first implicit operand).
637void MachineInstr::addOperand(const MachineOperand &Op) {
638  assert(MCID && "Cannot add operands before providing an instr descriptor");
639  bool isImpReg = Op.isReg() && Op.isImplicit();
640  MachineRegisterInfo *RegInfo = getRegInfo();
641
642  // If the Operands backing store is reallocated, all register operands must
643  // be removed and re-added to RegInfo.  It is storing pointers to operands.
644  bool Reallocate = RegInfo &&
645    !Operands.empty() && Operands.size() == Operands.capacity();
646
647  // Find the insert location for the new operand.  Implicit registers go at
648  // the end, everything goes before the implicit regs.
649  unsigned OpNo = Operands.size();
650
651  // Remove all the implicit operands from RegInfo if they need to be shifted.
652  // FIXME: Allow mixed explicit and implicit operands on inline asm.
653  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
654  // implicit-defs, but they must not be moved around.  See the FIXME in
655  // InstrEmitter.cpp.
656  if (!isImpReg && !isInlineAsm()) {
657    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
658      --OpNo;
659      assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
660      if (RegInfo)
661        RegInfo->removeRegOperandFromUseList(&Operands[OpNo]);
662    }
663  }
664
665  // OpNo now points as the desired insertion point.  Unless this is a variadic
666  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
667  // RegMask operands go between the explicit and implicit operands.
668  assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
669          OpNo < MCID->getNumOperands()) &&
670         "Trying to add an operand to a machine instr that is already done!");
671
672  // All operands from OpNo have been removed from RegInfo.  If the Operands
673  // backing store needs to be reallocated, we also need to remove any other
674  // register operands.
675  if (Reallocate)
676    for (unsigned i = 0; i != OpNo; ++i)
677      if (Operands[i].isReg())
678        RegInfo->removeRegOperandFromUseList(&Operands[i]);
679
680  // Insert the new operand at OpNo.
681  Operands.insert(Operands.begin() + OpNo, Op);
682  Operands[OpNo].ParentMI = this;
683
684  // The Operands backing store has now been reallocated, so we can re-add the
685  // operands before OpNo.
686  if (Reallocate)
687    for (unsigned i = 0; i != OpNo; ++i)
688      if (Operands[i].isReg())
689        RegInfo->addRegOperandToUseList(&Operands[i]);
690
691  // When adding a register operand, tell RegInfo about it.
692  if (Operands[OpNo].isReg()) {
693    // Ensure isOnRegUseList() returns false, regardless of Op's status.
694    Operands[OpNo].Contents.Reg.Prev = 0;
695    // Ignore existing ties. This is not a property that can be copied.
696    Operands[OpNo].TiedTo = 0;
697    // Add the new operand to RegInfo.
698    if (RegInfo)
699      RegInfo->addRegOperandToUseList(&Operands[OpNo]);
700    // The MCID operand information isn't accurate until we start adding
701    // explicit operands. The implicit operands are added first, then the
702    // explicits are inserted before them.
703    if (!isImpReg) {
704      // Tie uses to defs as indicated in MCInstrDesc.
705      if (Operands[OpNo].isUse()) {
706        int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
707        if (DefIdx != -1)
708          tieOperands(DefIdx, OpNo);
709      }
710      // If the register operand is flagged as early, mark the operand as such.
711      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
712        Operands[OpNo].setIsEarlyClobber(true);
713    }
714  }
715
716  // Re-add all the implicit ops.
717  if (RegInfo) {
718    for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
719      assert(Operands[i].isReg() && "Should only be an implicit reg!");
720      RegInfo->addRegOperandToUseList(&Operands[i]);
721    }
722  }
723}
724
725/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
726/// fewer operand than it started with.
727///
728void MachineInstr::RemoveOperand(unsigned OpNo) {
729  assert(OpNo < Operands.size() && "Invalid operand number");
730  untieRegOperand(OpNo);
731  MachineRegisterInfo *RegInfo = getRegInfo();
732
733  // Special case removing the last one.
734  if (OpNo == Operands.size()-1) {
735    // If needed, remove from the reg def/use list.
736    if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList())
737      RegInfo->removeRegOperandFromUseList(&Operands.back());
738
739    Operands.pop_back();
740    return;
741  }
742
743  // Otherwise, we are removing an interior operand.  If we have reginfo to
744  // update, remove all operands that will be shifted down from their reg lists,
745  // move everything down, then re-add them.
746  if (RegInfo) {
747    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
748      if (Operands[i].isReg())
749        RegInfo->removeRegOperandFromUseList(&Operands[i]);
750    }
751  }
752
753#ifndef NDEBUG
754  // Moving tied operands would break the ties.
755  for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i)
756    if (Operands[i].isReg())
757      assert(!Operands[i].isTied() && "Cannot move tied operands");
758#endif
759
760  Operands.erase(Operands.begin()+OpNo);
761
762  if (RegInfo) {
763    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
764      if (Operands[i].isReg())
765        RegInfo->addRegOperandToUseList(&Operands[i]);
766    }
767  }
768}
769
770/// addMemOperand - Add a MachineMemOperand to the machine instruction.
771/// This function should be used only occasionally. The setMemRefs function
772/// is the primary method for setting up a MachineInstr's MemRefs list.
773void MachineInstr::addMemOperand(MachineFunction &MF,
774                                 MachineMemOperand *MO) {
775  mmo_iterator OldMemRefs = MemRefs;
776  uint16_t OldNumMemRefs = NumMemRefs;
777
778  uint16_t NewNum = NumMemRefs + 1;
779  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
780
781  std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
782  NewMemRefs[NewNum - 1] = MO;
783
784  MemRefs = NewMemRefs;
785  NumMemRefs = NewNum;
786}
787
788bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
789  const MachineBasicBlock *MBB = getParent();
790  MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
791  while (MII != MBB->end() && MII->isInsideBundle()) {
792    if (MII->getDesc().getFlags() & Mask) {
793      if (Type == AnyInBundle)
794        return true;
795    } else {
796      if (Type == AllInBundle)
797        return false;
798    }
799    ++MII;
800  }
801
802  return Type == AllInBundle;
803}
804
805bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
806                                 MICheckType Check) const {
807  // If opcodes or number of operands are not the same then the two
808  // instructions are obviously not identical.
809  if (Other->getOpcode() != getOpcode() ||
810      Other->getNumOperands() != getNumOperands())
811    return false;
812
813  if (isBundle()) {
814    // Both instructions are bundles, compare MIs inside the bundle.
815    MachineBasicBlock::const_instr_iterator I1 = *this;
816    MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
817    MachineBasicBlock::const_instr_iterator I2 = *Other;
818    MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
819    while (++I1 != E1 && I1->isInsideBundle()) {
820      ++I2;
821      if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
822        return false;
823    }
824  }
825
826  // Check operands to make sure they match.
827  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
828    const MachineOperand &MO = getOperand(i);
829    const MachineOperand &OMO = Other->getOperand(i);
830    if (!MO.isReg()) {
831      if (!MO.isIdenticalTo(OMO))
832        return false;
833      continue;
834    }
835
836    // Clients may or may not want to ignore defs when testing for equality.
837    // For example, machine CSE pass only cares about finding common
838    // subexpressions, so it's safe to ignore virtual register defs.
839    if (MO.isDef()) {
840      if (Check == IgnoreDefs)
841        continue;
842      else if (Check == IgnoreVRegDefs) {
843        if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
844            TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
845          if (MO.getReg() != OMO.getReg())
846            return false;
847      } else {
848        if (!MO.isIdenticalTo(OMO))
849          return false;
850        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
851          return false;
852      }
853    } else {
854      if (!MO.isIdenticalTo(OMO))
855        return false;
856      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
857        return false;
858    }
859  }
860  // If DebugLoc does not match then two dbg.values are not identical.
861  if (isDebugValue())
862    if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
863        && getDebugLoc() != Other->getDebugLoc())
864      return false;
865  return true;
866}
867
868/// removeFromParent - This method unlinks 'this' from the containing basic
869/// block, and returns it, but does not delete it.
870MachineInstr *MachineInstr::removeFromParent() {
871  assert(getParent() && "Not embedded in a basic block!");
872
873  // If it's a bundle then remove the MIs inside the bundle as well.
874  if (isBundle()) {
875    MachineBasicBlock *MBB = getParent();
876    MachineBasicBlock::instr_iterator MII = *this; ++MII;
877    MachineBasicBlock::instr_iterator E = MBB->instr_end();
878    while (MII != E && MII->isInsideBundle()) {
879      MachineInstr *MI = &*MII;
880      ++MII;
881      MBB->remove(MI);
882    }
883  }
884  getParent()->remove(this);
885  return this;
886}
887
888
889/// eraseFromParent - This method unlinks 'this' from the containing basic
890/// block, and deletes it.
891void MachineInstr::eraseFromParent() {
892  assert(getParent() && "Not embedded in a basic block!");
893  // If it's a bundle then remove the MIs inside the bundle as well.
894  if (isBundle()) {
895    MachineBasicBlock *MBB = getParent();
896    MachineBasicBlock::instr_iterator MII = *this; ++MII;
897    MachineBasicBlock::instr_iterator E = MBB->instr_end();
898    while (MII != E && MII->isInsideBundle()) {
899      MachineInstr *MI = &*MII;
900      ++MII;
901      MBB->erase(MI);
902    }
903  }
904  // Erase the individual instruction, which may itself be inside a bundle.
905  getParent()->erase_instr(this);
906}
907
908
909/// getNumExplicitOperands - Returns the number of non-implicit operands.
910///
911unsigned MachineInstr::getNumExplicitOperands() const {
912  unsigned NumOperands = MCID->getNumOperands();
913  if (!MCID->isVariadic())
914    return NumOperands;
915
916  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
917    const MachineOperand &MO = getOperand(i);
918    if (!MO.isReg() || !MO.isImplicit())
919      NumOperands++;
920  }
921  return NumOperands;
922}
923
924/// isBundled - Return true if this instruction part of a bundle. This is true
925/// if either itself or its following instruction is marked "InsideBundle".
926bool MachineInstr::isBundled() const {
927  if (isInsideBundle())
928    return true;
929  MachineBasicBlock::const_instr_iterator nextMI = this;
930  ++nextMI;
931  return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
932}
933
934bool MachineInstr::isStackAligningInlineAsm() const {
935  if (isInlineAsm()) {
936    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
937    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
938      return true;
939  }
940  return false;
941}
942
943InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
944  assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
945  unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
946  return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
947}
948
949int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
950                                       unsigned *GroupNo) const {
951  assert(isInlineAsm() && "Expected an inline asm instruction");
952  assert(OpIdx < getNumOperands() && "OpIdx out of range");
953
954  // Ignore queries about the initial operands.
955  if (OpIdx < InlineAsm::MIOp_FirstOperand)
956    return -1;
957
958  unsigned Group = 0;
959  unsigned NumOps;
960  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
961       i += NumOps) {
962    const MachineOperand &FlagMO = getOperand(i);
963    // If we reach the implicit register operands, stop looking.
964    if (!FlagMO.isImm())
965      return -1;
966    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
967    if (i + NumOps > OpIdx) {
968      if (GroupNo)
969        *GroupNo = Group;
970      return i;
971    }
972    ++Group;
973  }
974  return -1;
975}
976
977const TargetRegisterClass*
978MachineInstr::getRegClassConstraint(unsigned OpIdx,
979                                    const TargetInstrInfo *TII,
980                                    const TargetRegisterInfo *TRI) const {
981  assert(getParent() && "Can't have an MBB reference here!");
982  assert(getParent()->getParent() && "Can't have an MF reference here!");
983  const MachineFunction &MF = *getParent()->getParent();
984
985  // Most opcodes have fixed constraints in their MCInstrDesc.
986  if (!isInlineAsm())
987    return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
988
989  if (!getOperand(OpIdx).isReg())
990    return NULL;
991
992  // For tied uses on inline asm, get the constraint from the def.
993  unsigned DefIdx;
994  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
995    OpIdx = DefIdx;
996
997  // Inline asm stores register class constraints in the flag word.
998  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
999  if (FlagIdx < 0)
1000    return NULL;
1001
1002  unsigned Flag = getOperand(FlagIdx).getImm();
1003  unsigned RCID;
1004  if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1005    return TRI->getRegClass(RCID);
1006
1007  // Assume that all registers in a memory operand are pointers.
1008  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1009    return TRI->getPointerRegClass(MF);
1010
1011  return NULL;
1012}
1013
1014/// getBundleSize - Return the number of instructions inside the MI bundle.
1015unsigned MachineInstr::getBundleSize() const {
1016  assert(isBundle() && "Expecting a bundle");
1017
1018  const MachineBasicBlock *MBB = getParent();
1019  MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end();
1020  unsigned Size = 0;
1021  while ((++I != E) && I->isInsideBundle()) {
1022    ++Size;
1023  }
1024  assert(Size > 1 && "Malformed bundle");
1025
1026  return Size;
1027}
1028
1029/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1030/// the specific register or -1 if it is not found. It further tightens
1031/// the search criteria to a use that kills the register if isKill is true.
1032int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1033                                          const TargetRegisterInfo *TRI) const {
1034  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1035    const MachineOperand &MO = getOperand(i);
1036    if (!MO.isReg() || !MO.isUse())
1037      continue;
1038    unsigned MOReg = MO.getReg();
1039    if (!MOReg)
1040      continue;
1041    if (MOReg == Reg ||
1042        (TRI &&
1043         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1044         TargetRegisterInfo::isPhysicalRegister(Reg) &&
1045         TRI->isSubRegister(MOReg, Reg)))
1046      if (!isKill || MO.isKill())
1047        return i;
1048  }
1049  return -1;
1050}
1051
1052/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1053/// indicating if this instruction reads or writes Reg. This also considers
1054/// partial defines.
1055std::pair<bool,bool>
1056MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1057                                         SmallVectorImpl<unsigned> *Ops) const {
1058  bool PartDef = false; // Partial redefine.
1059  bool FullDef = false; // Full define.
1060  bool Use = false;
1061
1062  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1063    const MachineOperand &MO = getOperand(i);
1064    if (!MO.isReg() || MO.getReg() != Reg)
1065      continue;
1066    if (Ops)
1067      Ops->push_back(i);
1068    if (MO.isUse())
1069      Use |= !MO.isUndef();
1070    else if (MO.getSubReg() && !MO.isUndef())
1071      // A partial <def,undef> doesn't count as reading the register.
1072      PartDef = true;
1073    else
1074      FullDef = true;
1075  }
1076  // A partial redefine uses Reg unless there is also a full define.
1077  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1078}
1079
1080/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1081/// the specified register or -1 if it is not found. If isDead is true, defs
1082/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1083/// also checks if there is a def of a super-register.
1084int
1085MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1086                                        const TargetRegisterInfo *TRI) const {
1087  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1088  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1089    const MachineOperand &MO = getOperand(i);
1090    // Accept regmask operands when Overlap is set.
1091    // Ignore them when looking for a specific def operand (Overlap == false).
1092    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1093      return i;
1094    if (!MO.isReg() || !MO.isDef())
1095      continue;
1096    unsigned MOReg = MO.getReg();
1097    bool Found = (MOReg == Reg);
1098    if (!Found && TRI && isPhys &&
1099        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1100      if (Overlap)
1101        Found = TRI->regsOverlap(MOReg, Reg);
1102      else
1103        Found = TRI->isSubRegister(MOReg, Reg);
1104    }
1105    if (Found && (!isDead || MO.isDead()))
1106      return i;
1107  }
1108  return -1;
1109}
1110
1111/// findFirstPredOperandIdx() - Find the index of the first operand in the
1112/// operand list that is used to represent the predicate. It returns -1 if
1113/// none is found.
1114int MachineInstr::findFirstPredOperandIdx() const {
1115  // Don't call MCID.findFirstPredOperandIdx() because this variant
1116  // is sometimes called on an instruction that's not yet complete, and
1117  // so the number of operands is less than the MCID indicates. In
1118  // particular, the PTX target does this.
1119  const MCInstrDesc &MCID = getDesc();
1120  if (MCID.isPredicable()) {
1121    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1122      if (MCID.OpInfo[i].isPredicate())
1123        return i;
1124  }
1125
1126  return -1;
1127}
1128
1129// MachineOperand::TiedTo is 4 bits wide.
1130const unsigned TiedMax = 15;
1131
1132/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1133///
1134/// Use and def operands can be tied together, indicated by a non-zero TiedTo
1135/// field. TiedTo can have these values:
1136///
1137/// 0:              Operand is not tied to anything.
1138/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1139/// TiedMax:        Tied to an operand >= TiedMax-1.
1140///
1141/// The tied def must be one of the first TiedMax operands on a normal
1142/// instruction. INLINEASM instructions allow more tied defs.
1143///
1144void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1145  MachineOperand &DefMO = getOperand(DefIdx);
1146  MachineOperand &UseMO = getOperand(UseIdx);
1147  assert(DefMO.isDef() && "DefIdx must be a def operand");
1148  assert(UseMO.isUse() && "UseIdx must be a use operand");
1149  assert(!DefMO.isTied() && "Def is already tied to another use");
1150  assert(!UseMO.isTied() && "Use is already tied to another def");
1151
1152  if (DefIdx < TiedMax)
1153    UseMO.TiedTo = DefIdx + 1;
1154  else {
1155    // Inline asm can use the group descriptors to find tied operands, but on
1156    // normal instruction, the tied def must be within the first TiedMax
1157    // operands.
1158    assert(isInlineAsm() && "DefIdx out of range");
1159    UseMO.TiedTo = TiedMax;
1160  }
1161
1162  // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1163  DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1164}
1165
1166/// Given the index of a tied register operand, find the operand it is tied to.
1167/// Defs are tied to uses and vice versa. Returns the index of the tied operand
1168/// which must exist.
1169unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1170  const MachineOperand &MO = getOperand(OpIdx);
1171  assert(MO.isTied() && "Operand isn't tied");
1172
1173  // Normally TiedTo is in range.
1174  if (MO.TiedTo < TiedMax)
1175    return MO.TiedTo - 1;
1176
1177  // Uses on normal instructions can be out of range.
1178  if (!isInlineAsm()) {
1179    // Normal tied defs must be in the 0..TiedMax-1 range.
1180    if (MO.isUse())
1181      return TiedMax - 1;
1182    // MO is a def. Search for the tied use.
1183    for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1184      const MachineOperand &UseMO = getOperand(i);
1185      if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1186        return i;
1187    }
1188    llvm_unreachable("Can't find tied use");
1189  }
1190
1191  // Now deal with inline asm by parsing the operand group descriptor flags.
1192  // Find the beginning of each operand group.
1193  SmallVector<unsigned, 8> GroupIdx;
1194  unsigned OpIdxGroup = ~0u;
1195  unsigned NumOps;
1196  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1197       i += NumOps) {
1198    const MachineOperand &FlagMO = getOperand(i);
1199    assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1200    unsigned CurGroup = GroupIdx.size();
1201    GroupIdx.push_back(i);
1202    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1203    // OpIdx belongs to this operand group.
1204    if (OpIdx > i && OpIdx < i + NumOps)
1205      OpIdxGroup = CurGroup;
1206    unsigned TiedGroup;
1207    if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1208      continue;
1209    // Operands in this group are tied to operands in TiedGroup which must be
1210    // earlier. Find the number of operands between the two groups.
1211    unsigned Delta = i - GroupIdx[TiedGroup];
1212
1213    // OpIdx is a use tied to TiedGroup.
1214    if (OpIdxGroup == CurGroup)
1215      return OpIdx - Delta;
1216
1217    // OpIdx is a def tied to this use group.
1218    if (OpIdxGroup == TiedGroup)
1219      return OpIdx + Delta;
1220  }
1221  llvm_unreachable("Invalid tied operand on inline asm");
1222}
1223
1224/// clearKillInfo - Clears kill flags on all operands.
1225///
1226void MachineInstr::clearKillInfo() {
1227  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1228    MachineOperand &MO = getOperand(i);
1229    if (MO.isReg() && MO.isUse())
1230      MO.setIsKill(false);
1231  }
1232}
1233
1234/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1235///
1236void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1237  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1238    const MachineOperand &MO = MI->getOperand(i);
1239    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1240      continue;
1241    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1242      MachineOperand &MOp = getOperand(j);
1243      if (!MOp.isIdenticalTo(MO))
1244        continue;
1245      if (MO.isKill())
1246        MOp.setIsKill();
1247      else
1248        MOp.setIsDead();
1249      break;
1250    }
1251  }
1252}
1253
1254/// copyPredicates - Copies predicate operand(s) from MI.
1255void MachineInstr::copyPredicates(const MachineInstr *MI) {
1256  assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
1257
1258  const MCInstrDesc &MCID = MI->getDesc();
1259  if (!MCID.isPredicable())
1260    return;
1261  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1262    if (MCID.OpInfo[i].isPredicate()) {
1263      // Predicated operands must be last operands.
1264      addOperand(MI->getOperand(i));
1265    }
1266  }
1267}
1268
1269void MachineInstr::substituteRegister(unsigned FromReg,
1270                                      unsigned ToReg,
1271                                      unsigned SubIdx,
1272                                      const TargetRegisterInfo &RegInfo) {
1273  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1274    if (SubIdx)
1275      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1276    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1277      MachineOperand &MO = getOperand(i);
1278      if (!MO.isReg() || MO.getReg() != FromReg)
1279        continue;
1280      MO.substPhysReg(ToReg, RegInfo);
1281    }
1282  } else {
1283    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1284      MachineOperand &MO = getOperand(i);
1285      if (!MO.isReg() || MO.getReg() != FromReg)
1286        continue;
1287      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1288    }
1289  }
1290}
1291
1292/// isSafeToMove - Return true if it is safe to move this instruction. If
1293/// SawStore is set to true, it means that there is a store (or call) between
1294/// the instruction's location and its intended destination.
1295bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1296                                AliasAnalysis *AA,
1297                                bool &SawStore) const {
1298  // Ignore stuff that we obviously can't move.
1299  //
1300  // Treat volatile loads as stores. This is not strictly necessary for
1301  // volatiles, but it is required for atomic loads. It is not allowed to move
1302  // a load across an atomic load with Ordering > Monotonic.
1303  if (mayStore() || isCall() ||
1304      (mayLoad() && hasOrderedMemoryRef())) {
1305    SawStore = true;
1306    return false;
1307  }
1308
1309  if (isLabel() || isDebugValue() ||
1310      isTerminator() || hasUnmodeledSideEffects())
1311    return false;
1312
1313  // See if this instruction does a load.  If so, we have to guarantee that the
1314  // loaded value doesn't change between the load and the its intended
1315  // destination. The check for isInvariantLoad gives the targe the chance to
1316  // classify the load as always returning a constant, e.g. a constant pool
1317  // load.
1318  if (mayLoad() && !isInvariantLoad(AA))
1319    // Otherwise, this is a real load.  If there is a store between the load and
1320    // end of block, we can't move it.
1321    return !SawStore;
1322
1323  return true;
1324}
1325
1326/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1327/// instruction which defined the specified register instead of copying it.
1328bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1329                                 AliasAnalysis *AA,
1330                                 unsigned DstReg) const {
1331  bool SawStore = false;
1332  if (!TII->isTriviallyReMaterializable(this, AA) ||
1333      !isSafeToMove(TII, AA, SawStore))
1334    return false;
1335  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1336    const MachineOperand &MO = getOperand(i);
1337    if (!MO.isReg())
1338      continue;
1339    // FIXME: For now, do not remat any instruction with register operands.
1340    // Later on, we can loosen the restriction is the register operands have
1341    // not been modified between the def and use. Note, this is different from
1342    // MachineSink because the code is no longer in two-address form (at least
1343    // partially).
1344    if (MO.isUse())
1345      return false;
1346    else if (!MO.isDead() && MO.getReg() != DstReg)
1347      return false;
1348  }
1349  return true;
1350}
1351
1352/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1353/// or volatile memory reference, or if the information describing the memory
1354/// reference is not available. Return false if it is known to have no ordered
1355/// memory references.
1356bool MachineInstr::hasOrderedMemoryRef() const {
1357  // An instruction known never to access memory won't have a volatile access.
1358  if (!mayStore() &&
1359      !mayLoad() &&
1360      !isCall() &&
1361      !hasUnmodeledSideEffects())
1362    return false;
1363
1364  // Otherwise, if the instruction has no memory reference information,
1365  // conservatively assume it wasn't preserved.
1366  if (memoperands_empty())
1367    return true;
1368
1369  // Check the memory reference information for ordered references.
1370  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1371    if (!(*I)->isUnordered())
1372      return true;
1373
1374  return false;
1375}
1376
1377/// isInvariantLoad - Return true if this instruction is loading from a
1378/// location whose value is invariant across the function.  For example,
1379/// loading a value from the constant pool or from the argument area
1380/// of a function if it does not change.  This should only return true of
1381/// *all* loads the instruction does are invariant (if it does multiple loads).
1382bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1383  // If the instruction doesn't load at all, it isn't an invariant load.
1384  if (!mayLoad())
1385    return false;
1386
1387  // If the instruction has lost its memoperands, conservatively assume that
1388  // it may not be an invariant load.
1389  if (memoperands_empty())
1390    return false;
1391
1392  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1393
1394  for (mmo_iterator I = memoperands_begin(),
1395       E = memoperands_end(); I != E; ++I) {
1396    if ((*I)->isVolatile()) return false;
1397    if ((*I)->isStore()) return false;
1398    if ((*I)->isInvariant()) return true;
1399
1400    if (const Value *V = (*I)->getValue()) {
1401      // A load from a constant PseudoSourceValue is invariant.
1402      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1403        if (PSV->isConstant(MFI))
1404          continue;
1405      // If we have an AliasAnalysis, ask it whether the memory is constant.
1406      if (AA && AA->pointsToConstantMemory(
1407                      AliasAnalysis::Location(V, (*I)->getSize(),
1408                                              (*I)->getTBAAInfo())))
1409        continue;
1410    }
1411
1412    // Otherwise assume conservatively.
1413    return false;
1414  }
1415
1416  // Everything checks out.
1417  return true;
1418}
1419
1420/// isConstantValuePHI - If the specified instruction is a PHI that always
1421/// merges together the same virtual register, return the register, otherwise
1422/// return 0.
1423unsigned MachineInstr::isConstantValuePHI() const {
1424  if (!isPHI())
1425    return 0;
1426  assert(getNumOperands() >= 3 &&
1427         "It's illegal to have a PHI without source operands");
1428
1429  unsigned Reg = getOperand(1).getReg();
1430  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1431    if (getOperand(i).getReg() != Reg)
1432      return 0;
1433  return Reg;
1434}
1435
1436bool MachineInstr::hasUnmodeledSideEffects() const {
1437  if (hasProperty(MCID::UnmodeledSideEffects))
1438    return true;
1439  if (isInlineAsm()) {
1440    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1441    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1442      return true;
1443  }
1444
1445  return false;
1446}
1447
1448/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1449///
1450bool MachineInstr::allDefsAreDead() const {
1451  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1452    const MachineOperand &MO = getOperand(i);
1453    if (!MO.isReg() || MO.isUse())
1454      continue;
1455    if (!MO.isDead())
1456      return false;
1457  }
1458  return true;
1459}
1460
1461/// copyImplicitOps - Copy implicit register operands from specified
1462/// instruction to this instruction.
1463void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1464  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1465       i != e; ++i) {
1466    const MachineOperand &MO = MI->getOperand(i);
1467    if (MO.isReg() && MO.isImplicit())
1468      addOperand(MO);
1469  }
1470}
1471
1472void MachineInstr::dump() const {
1473#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1474  dbgs() << "  " << *this;
1475#endif
1476}
1477
1478static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1479                         raw_ostream &CommentOS) {
1480  const LLVMContext &Ctx = MF->getFunction()->getContext();
1481  if (!DL.isUnknown()) {          // Print source line info.
1482    DIScope Scope(DL.getScope(Ctx));
1483    // Omit the directory, because it's likely to be long and uninteresting.
1484    if (Scope.Verify())
1485      CommentOS << Scope.getFilename();
1486    else
1487      CommentOS << "<unknown>";
1488    CommentOS << ':' << DL.getLine();
1489    if (DL.getCol() != 0)
1490      CommentOS << ':' << DL.getCol();
1491    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1492    if (!InlinedAtDL.isUnknown()) {
1493      CommentOS << " @[ ";
1494      printDebugLoc(InlinedAtDL, MF, CommentOS);
1495      CommentOS << " ]";
1496    }
1497  }
1498}
1499
1500void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1501  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1502  const MachineFunction *MF = 0;
1503  const MachineRegisterInfo *MRI = 0;
1504  if (const MachineBasicBlock *MBB = getParent()) {
1505    MF = MBB->getParent();
1506    if (!TM && MF)
1507      TM = &MF->getTarget();
1508    if (MF)
1509      MRI = &MF->getRegInfo();
1510  }
1511
1512  // Save a list of virtual registers.
1513  SmallVector<unsigned, 8> VirtRegs;
1514
1515  // Print explicitly defined operands on the left of an assignment syntax.
1516  unsigned StartOp = 0, e = getNumOperands();
1517  for (; StartOp < e && getOperand(StartOp).isReg() &&
1518         getOperand(StartOp).isDef() &&
1519         !getOperand(StartOp).isImplicit();
1520       ++StartOp) {
1521    if (StartOp != 0) OS << ", ";
1522    getOperand(StartOp).print(OS, TM);
1523    unsigned Reg = getOperand(StartOp).getReg();
1524    if (TargetRegisterInfo::isVirtualRegister(Reg))
1525      VirtRegs.push_back(Reg);
1526  }
1527
1528  if (StartOp != 0)
1529    OS << " = ";
1530
1531  // Print the opcode name.
1532  if (TM && TM->getInstrInfo())
1533    OS << TM->getInstrInfo()->getName(getOpcode());
1534  else
1535    OS << "UNKNOWN";
1536
1537  // Print the rest of the operands.
1538  bool OmittedAnyCallClobbers = false;
1539  bool FirstOp = true;
1540  unsigned AsmDescOp = ~0u;
1541  unsigned AsmOpCount = 0;
1542
1543  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1544    // Print asm string.
1545    OS << " ";
1546    getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1547
1548    // Print HasSideEffects, IsAlignStack
1549    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1550    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1551      OS << " [sideeffect]";
1552    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1553      OS << " [alignstack]";
1554    if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1555      OS << " [attdialect]";
1556    if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1557      OS << " [inteldialect]";
1558
1559    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1560    FirstOp = false;
1561  }
1562
1563
1564  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1565    const MachineOperand &MO = getOperand(i);
1566
1567    if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1568      VirtRegs.push_back(MO.getReg());
1569
1570    // Omit call-clobbered registers which aren't used anywhere. This makes
1571    // call instructions much less noisy on targets where calls clobber lots
1572    // of registers. Don't rely on MO.isDead() because we may be called before
1573    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1574    if (MF && isCall() &&
1575        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1576      unsigned Reg = MO.getReg();
1577      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1578        const MachineRegisterInfo &MRI = MF->getRegInfo();
1579        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1580          bool HasAliasLive = false;
1581          for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1582               AI.isValid(); ++AI) {
1583            unsigned AliasReg = *AI;
1584            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1585              HasAliasLive = true;
1586              break;
1587            }
1588          }
1589          if (!HasAliasLive) {
1590            OmittedAnyCallClobbers = true;
1591            continue;
1592          }
1593        }
1594      }
1595    }
1596
1597    if (FirstOp) FirstOp = false; else OS << ",";
1598    OS << " ";
1599    if (i < getDesc().NumOperands) {
1600      const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1601      if (MCOI.isPredicate())
1602        OS << "pred:";
1603      if (MCOI.isOptionalDef())
1604        OS << "opt:";
1605    }
1606    if (isDebugValue() && MO.isMetadata()) {
1607      // Pretty print DBG_VALUE instructions.
1608      const MDNode *MD = MO.getMetadata();
1609      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1610        OS << "!\"" << MDS->getString() << '\"';
1611      else
1612        MO.print(OS, TM);
1613    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1614      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1615    } else if (i == AsmDescOp && MO.isImm()) {
1616      // Pretty print the inline asm operand descriptor.
1617      OS << '$' << AsmOpCount++;
1618      unsigned Flag = MO.getImm();
1619      switch (InlineAsm::getKind(Flag)) {
1620      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1621      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1622      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1623      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1624      case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1625      case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1626      default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1627      }
1628
1629      unsigned RCID = 0;
1630      if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1631        if (TM)
1632          OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1633        else
1634          OS << ":RC" << RCID;
1635      }
1636
1637      unsigned TiedTo = 0;
1638      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1639        OS << " tiedto:$" << TiedTo;
1640
1641      OS << ']';
1642
1643      // Compute the index of the next operand descriptor.
1644      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1645    } else
1646      MO.print(OS, TM);
1647  }
1648
1649  // Briefly indicate whether any call clobbers were omitted.
1650  if (OmittedAnyCallClobbers) {
1651    if (!FirstOp) OS << ",";
1652    OS << " ...";
1653  }
1654
1655  bool HaveSemi = false;
1656  if (Flags) {
1657    if (!HaveSemi) OS << ";"; HaveSemi = true;
1658    OS << " flags: ";
1659
1660    if (Flags & FrameSetup)
1661      OS << "FrameSetup";
1662  }
1663
1664  if (!memoperands_empty()) {
1665    if (!HaveSemi) OS << ";"; HaveSemi = true;
1666
1667    OS << " mem:";
1668    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1669         i != e; ++i) {
1670      OS << **i;
1671      if (llvm::next(i) != e)
1672        OS << " ";
1673    }
1674  }
1675
1676  // Print the regclass of any virtual registers encountered.
1677  if (MRI && !VirtRegs.empty()) {
1678    if (!HaveSemi) OS << ";"; HaveSemi = true;
1679    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1680      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1681      OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1682      for (unsigned j = i+1; j != VirtRegs.size();) {
1683        if (MRI->getRegClass(VirtRegs[j]) != RC) {
1684          ++j;
1685          continue;
1686        }
1687        if (VirtRegs[i] != VirtRegs[j])
1688          OS << "," << PrintReg(VirtRegs[j]);
1689        VirtRegs.erase(VirtRegs.begin()+j);
1690      }
1691    }
1692  }
1693
1694  // Print debug location information.
1695  if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1696    if (!HaveSemi) OS << ";"; HaveSemi = true;
1697    DIVariable DV(getOperand(e - 1).getMetadata());
1698    OS << " line no:" <<  DV.getLineNumber();
1699    if (MDNode *InlinedAt = DV.getInlinedAt()) {
1700      DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1701      if (!InlinedAtDL.isUnknown()) {
1702        OS << " inlined @[ ";
1703        printDebugLoc(InlinedAtDL, MF, OS);
1704        OS << " ]";
1705      }
1706    }
1707  } else if (!debugLoc.isUnknown() && MF) {
1708    if (!HaveSemi) OS << ";"; HaveSemi = true;
1709    OS << " dbg:";
1710    printDebugLoc(debugLoc, MF, OS);
1711  }
1712
1713  OS << '\n';
1714}
1715
1716bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1717                                     const TargetRegisterInfo *RegInfo,
1718                                     bool AddIfNotFound) {
1719  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1720  bool hasAliases = isPhysReg &&
1721    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1722  bool Found = false;
1723  SmallVector<unsigned,4> DeadOps;
1724  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1725    MachineOperand &MO = getOperand(i);
1726    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1727      continue;
1728    unsigned Reg = MO.getReg();
1729    if (!Reg)
1730      continue;
1731
1732    if (Reg == IncomingReg) {
1733      if (!Found) {
1734        if (MO.isKill())
1735          // The register is already marked kill.
1736          return true;
1737        if (isPhysReg && isRegTiedToDefOperand(i))
1738          // Two-address uses of physregs must not be marked kill.
1739          return true;
1740        MO.setIsKill();
1741        Found = true;
1742      }
1743    } else if (hasAliases && MO.isKill() &&
1744               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1745      // A super-register kill already exists.
1746      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1747        return true;
1748      if (RegInfo->isSubRegister(IncomingReg, Reg))
1749        DeadOps.push_back(i);
1750    }
1751  }
1752
1753  // Trim unneeded kill operands.
1754  while (!DeadOps.empty()) {
1755    unsigned OpIdx = DeadOps.back();
1756    if (getOperand(OpIdx).isImplicit())
1757      RemoveOperand(OpIdx);
1758    else
1759      getOperand(OpIdx).setIsKill(false);
1760    DeadOps.pop_back();
1761  }
1762
1763  // If not found, this means an alias of one of the operands is killed. Add a
1764  // new implicit operand if required.
1765  if (!Found && AddIfNotFound) {
1766    addOperand(MachineOperand::CreateReg(IncomingReg,
1767                                         false /*IsDef*/,
1768                                         true  /*IsImp*/,
1769                                         true  /*IsKill*/));
1770    return true;
1771  }
1772  return Found;
1773}
1774
1775void MachineInstr::clearRegisterKills(unsigned Reg,
1776                                      const TargetRegisterInfo *RegInfo) {
1777  if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1778    RegInfo = 0;
1779  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1780    MachineOperand &MO = getOperand(i);
1781    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1782      continue;
1783    unsigned OpReg = MO.getReg();
1784    if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1785      MO.setIsKill(false);
1786  }
1787}
1788
1789bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1790                                   const TargetRegisterInfo *RegInfo,
1791                                   bool AddIfNotFound) {
1792  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1793  bool hasAliases = isPhysReg &&
1794    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1795  bool Found = false;
1796  SmallVector<unsigned,4> DeadOps;
1797  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1798    MachineOperand &MO = getOperand(i);
1799    if (!MO.isReg() || !MO.isDef())
1800      continue;
1801    unsigned Reg = MO.getReg();
1802    if (!Reg)
1803      continue;
1804
1805    if (Reg == IncomingReg) {
1806      MO.setIsDead();
1807      Found = true;
1808    } else if (hasAliases && MO.isDead() &&
1809               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1810      // There exists a super-register that's marked dead.
1811      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1812        return true;
1813      if (RegInfo->isSubRegister(IncomingReg, Reg))
1814        DeadOps.push_back(i);
1815    }
1816  }
1817
1818  // Trim unneeded dead operands.
1819  while (!DeadOps.empty()) {
1820    unsigned OpIdx = DeadOps.back();
1821    if (getOperand(OpIdx).isImplicit())
1822      RemoveOperand(OpIdx);
1823    else
1824      getOperand(OpIdx).setIsDead(false);
1825    DeadOps.pop_back();
1826  }
1827
1828  // If not found, this means an alias of one of the operands is dead. Add a
1829  // new implicit operand if required.
1830  if (Found || !AddIfNotFound)
1831    return Found;
1832
1833  addOperand(MachineOperand::CreateReg(IncomingReg,
1834                                       true  /*IsDef*/,
1835                                       true  /*IsImp*/,
1836                                       false /*IsKill*/,
1837                                       true  /*IsDead*/));
1838  return true;
1839}
1840
1841void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1842                                      const TargetRegisterInfo *RegInfo) {
1843  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1844    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1845    if (MO)
1846      return;
1847  } else {
1848    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1849      const MachineOperand &MO = getOperand(i);
1850      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1851          MO.getSubReg() == 0)
1852        return;
1853    }
1854  }
1855  addOperand(MachineOperand::CreateReg(IncomingReg,
1856                                       true  /*IsDef*/,
1857                                       true  /*IsImp*/));
1858}
1859
1860void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1861                                         const TargetRegisterInfo &TRI) {
1862  bool HasRegMask = false;
1863  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1864    MachineOperand &MO = getOperand(i);
1865    if (MO.isRegMask()) {
1866      HasRegMask = true;
1867      continue;
1868    }
1869    if (!MO.isReg() || !MO.isDef()) continue;
1870    unsigned Reg = MO.getReg();
1871    if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1872    bool Dead = true;
1873    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1874         I != E; ++I)
1875      if (TRI.regsOverlap(*I, Reg)) {
1876        Dead = false;
1877        break;
1878      }
1879    // If there are no uses, including partial uses, the def is dead.
1880    if (Dead) MO.setIsDead();
1881  }
1882
1883  // This is a call with a register mask operand.
1884  // Mask clobbers are always dead, so add defs for the non-dead defines.
1885  if (HasRegMask)
1886    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1887         I != E; ++I)
1888      addRegisterDefined(*I, &TRI);
1889}
1890
1891unsigned
1892MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1893  // Build up a buffer of hash code components.
1894  SmallVector<size_t, 8> HashComponents;
1895  HashComponents.reserve(MI->getNumOperands() + 1);
1896  HashComponents.push_back(MI->getOpcode());
1897  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1898    const MachineOperand &MO = MI->getOperand(i);
1899    if (MO.isReg() && MO.isDef() &&
1900        TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1901      continue;  // Skip virtual register defs.
1902
1903    HashComponents.push_back(hash_value(MO));
1904  }
1905  return hash_combine_range(HashComponents.begin(), HashComponents.end());
1906}
1907
1908void MachineInstr::emitError(StringRef Msg) const {
1909  // Find the source location cookie.
1910  unsigned LocCookie = 0;
1911  const MDNode *LocMD = 0;
1912  for (unsigned i = getNumOperands(); i != 0; --i) {
1913    if (getOperand(i-1).isMetadata() &&
1914        (LocMD = getOperand(i-1).getMetadata()) &&
1915        LocMD->getNumOperands() != 0) {
1916      if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1917        LocCookie = CI->getZExtValue();
1918        break;
1919      }
1920    }
1921  }
1922
1923  if (const MachineBasicBlock *MBB = getParent())
1924    if (const MachineFunction *MF = MBB->getParent())
1925      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1926  report_fatal_error(Msg);
1927}
1928