MachineInstr.cpp revision 198892
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Value.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Target/TargetInstrDesc.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/Analysis/DebugInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/LeakDetector.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/FoldingSet.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38// MachineOperand Implementation
39//===----------------------------------------------------------------------===//
40
41/// AddRegOperandToRegInfo - Add this register operand to the specified
42/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
43/// explicitly nulled out.
44void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
45  assert(isReg() && "Can only add reg operand to use lists");
46
47  // If the reginfo pointer is null, just explicitly null out or next/prev
48  // pointers, to ensure they are not garbage.
49  if (RegInfo == 0) {
50    Contents.Reg.Prev = 0;
51    Contents.Reg.Next = 0;
52    return;
53  }
54
55  // Otherwise, add this operand to the head of the registers use/def list.
56  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
57
58  // For SSA values, we prefer to keep the definition at the start of the list.
59  // we do this by skipping over the definition if it is at the head of the
60  // list.
61  if (*Head && (*Head)->isDef())
62    Head = &(*Head)->Contents.Reg.Next;
63
64  Contents.Reg.Next = *Head;
65  if (Contents.Reg.Next) {
66    assert(getReg() == Contents.Reg.Next->getReg() &&
67           "Different regs on the same list!");
68    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
69  }
70
71  Contents.Reg.Prev = Head;
72  *Head = this;
73}
74
75/// RemoveRegOperandFromRegInfo - Remove this register operand from the
76/// MachineRegisterInfo it is linked with.
77void MachineOperand::RemoveRegOperandFromRegInfo() {
78  assert(isOnRegUseList() && "Reg operand is not on a use list");
79  // Unlink this from the doubly linked list of operands.
80  MachineOperand *NextOp = Contents.Reg.Next;
81  *Contents.Reg.Prev = NextOp;
82  if (NextOp) {
83    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
84    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
85  }
86  Contents.Reg.Prev = 0;
87  Contents.Reg.Next = 0;
88}
89
90void MachineOperand::setReg(unsigned Reg) {
91  if (getReg() == Reg) return; // No change.
92
93  // Otherwise, we have to change the register.  If this operand is embedded
94  // into a machine function, we need to update the old and new register's
95  // use/def lists.
96  if (MachineInstr *MI = getParent())
97    if (MachineBasicBlock *MBB = MI->getParent())
98      if (MachineFunction *MF = MBB->getParent()) {
99        RemoveRegOperandFromRegInfo();
100        Contents.Reg.RegNo = Reg;
101        AddRegOperandToRegInfo(&MF->getRegInfo());
102        return;
103      }
104
105  // Otherwise, just change the register, no problem.  :)
106  Contents.Reg.RegNo = Reg;
107}
108
109/// ChangeToImmediate - Replace this operand with a new immediate operand of
110/// the specified value.  If an operand is known to be an immediate already,
111/// the setImm method should be used.
112void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
113  // If this operand is currently a register operand, and if this is in a
114  // function, deregister the operand from the register's use/def list.
115  if (isReg() && getParent() && getParent()->getParent() &&
116      getParent()->getParent()->getParent())
117    RemoveRegOperandFromRegInfo();
118
119  OpKind = MO_Immediate;
120  Contents.ImmVal = ImmVal;
121}
122
123/// ChangeToRegister - Replace this operand with a new register operand of
124/// the specified value.  If an operand is known to be an register already,
125/// the setReg method should be used.
126void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
127                                      bool isKill, bool isDead, bool isUndef) {
128  // If this operand is already a register operand, use setReg to update the
129  // register's use/def lists.
130  if (isReg()) {
131    assert(!isEarlyClobber());
132    setReg(Reg);
133  } else {
134    // Otherwise, change this to a register and set the reg#.
135    OpKind = MO_Register;
136    Contents.Reg.RegNo = Reg;
137
138    // If this operand is embedded in a function, add the operand to the
139    // register's use/def list.
140    if (MachineInstr *MI = getParent())
141      if (MachineBasicBlock *MBB = MI->getParent())
142        if (MachineFunction *MF = MBB->getParent())
143          AddRegOperandToRegInfo(&MF->getRegInfo());
144  }
145
146  IsDef = isDef;
147  IsImp = isImp;
148  IsKill = isKill;
149  IsDead = isDead;
150  IsUndef = isUndef;
151  IsEarlyClobber = false;
152  SubReg = 0;
153}
154
155/// isIdenticalTo - Return true if this operand is identical to the specified
156/// operand.
157bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
158  if (getType() != Other.getType() ||
159      getTargetFlags() != Other.getTargetFlags())
160    return false;
161
162  switch (getType()) {
163  default: llvm_unreachable("Unrecognized operand type");
164  case MachineOperand::MO_Register:
165    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
166           getSubReg() == Other.getSubReg();
167  case MachineOperand::MO_Immediate:
168    return getImm() == Other.getImm();
169  case MachineOperand::MO_FPImmediate:
170    return getFPImm() == Other.getFPImm();
171  case MachineOperand::MO_MachineBasicBlock:
172    return getMBB() == Other.getMBB();
173  case MachineOperand::MO_FrameIndex:
174    return getIndex() == Other.getIndex();
175  case MachineOperand::MO_ConstantPoolIndex:
176    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
177  case MachineOperand::MO_JumpTableIndex:
178    return getIndex() == Other.getIndex();
179  case MachineOperand::MO_GlobalAddress:
180    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
181  case MachineOperand::MO_ExternalSymbol:
182    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
183           getOffset() == Other.getOffset();
184  case MachineOperand::MO_BlockAddress:
185    return getBlockAddress() == Other.getBlockAddress();
186  }
187}
188
189/// print - Print the specified machine operand.
190///
191void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
192  switch (getType()) {
193  case MachineOperand::MO_Register:
194    if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
195      OS << "%reg" << getReg();
196    } else {
197      // If the instruction is embedded into a basic block, we can find the
198      // target info for the instruction.
199      if (TM == 0)
200        if (const MachineInstr *MI = getParent())
201          if (const MachineBasicBlock *MBB = MI->getParent())
202            if (const MachineFunction *MF = MBB->getParent())
203              TM = &MF->getTarget();
204
205      if (TM)
206        OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
207      else
208        OS << "%physreg" << getReg();
209    }
210
211    if (getSubReg() != 0)
212      OS << ':' << getSubReg();
213
214    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
215        isEarlyClobber()) {
216      OS << '<';
217      bool NeedComma = false;
218      if (isDef()) {
219        if (NeedComma) OS << ',';
220        if (isEarlyClobber())
221          OS << "earlyclobber,";
222        if (isImplicit())
223          OS << "imp-";
224        OS << "def";
225        NeedComma = true;
226      } else if (isImplicit()) {
227          OS << "imp-use";
228          NeedComma = true;
229      }
230
231      if (isKill() || isDead() || isUndef()) {
232        if (NeedComma) OS << ',';
233        if (isKill())  OS << "kill";
234        if (isDead())  OS << "dead";
235        if (isUndef()) {
236          if (isKill() || isDead())
237            OS << ',';
238          OS << "undef";
239        }
240      }
241      OS << '>';
242    }
243    break;
244  case MachineOperand::MO_Immediate:
245    OS << getImm();
246    break;
247  case MachineOperand::MO_FPImmediate:
248    if (getFPImm()->getType()->isFloatTy())
249      OS << getFPImm()->getValueAPF().convertToFloat();
250    else
251      OS << getFPImm()->getValueAPF().convertToDouble();
252    break;
253  case MachineOperand::MO_MachineBasicBlock:
254    OS << "<BB#" << getMBB()->getNumber() << ">";
255    break;
256  case MachineOperand::MO_FrameIndex:
257    OS << "<fi#" << getIndex() << '>';
258    break;
259  case MachineOperand::MO_ConstantPoolIndex:
260    OS << "<cp#" << getIndex();
261    if (getOffset()) OS << "+" << getOffset();
262    OS << '>';
263    break;
264  case MachineOperand::MO_JumpTableIndex:
265    OS << "<jt#" << getIndex() << '>';
266    break;
267  case MachineOperand::MO_GlobalAddress:
268    OS << "<ga:" << ((Value*)getGlobal())->getName();
269    if (getOffset()) OS << "+" << getOffset();
270    OS << '>';
271    break;
272  case MachineOperand::MO_ExternalSymbol:
273    OS << "<es:" << getSymbolName();
274    if (getOffset()) OS << "+" << getOffset();
275    OS << '>';
276    break;
277  case MachineOperand::MO_BlockAddress:
278    OS << "<";
279    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
280    OS << '>';
281    break;
282  default:
283    llvm_unreachable("Unrecognized operand type");
284  }
285
286  if (unsigned TF = getTargetFlags())
287    OS << "[TF=" << TF << ']';
288}
289
290//===----------------------------------------------------------------------===//
291// MachineMemOperand Implementation
292//===----------------------------------------------------------------------===//
293
294MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
295                                     int64_t o, uint64_t s, unsigned int a)
296  : Offset(o), Size(s), V(v),
297    Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
298  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
299  assert((isLoad() || isStore()) && "Not a load/store!");
300}
301
302/// Profile - Gather unique data for the object.
303///
304void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
305  ID.AddInteger(Offset);
306  ID.AddInteger(Size);
307  ID.AddPointer(V);
308  ID.AddInteger(Flags);
309}
310
311void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
312  // The Value and Offset may differ due to CSE. But the flags and size
313  // should be the same.
314  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
315  assert(MMO->getSize() == getSize() && "Size mismatch!");
316
317  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
318    // Update the alignment value.
319    Flags = (Flags & 7) | ((Log2_32(MMO->getBaseAlignment()) + 1) << 3);
320    // Also update the base and offset, because the new alignment may
321    // not be applicable with the old ones.
322    V = MMO->getValue();
323    Offset = MMO->getOffset();
324  }
325}
326
327/// getAlignment - Return the minimum known alignment in bytes of the
328/// actual memory reference.
329uint64_t MachineMemOperand::getAlignment() const {
330  return MinAlign(getBaseAlignment(), getOffset());
331}
332
333raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
334  assert((MMO.isLoad() || MMO.isStore()) &&
335         "SV has to be a load, store or both.");
336
337  if (MMO.isVolatile())
338    OS << "Volatile ";
339
340  if (MMO.isLoad())
341    OS << "LD";
342  if (MMO.isStore())
343    OS << "ST";
344  OS << MMO.getSize();
345
346  // Print the address information.
347  OS << "[";
348  if (!MMO.getValue())
349    OS << "<unknown>";
350  else
351    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
352
353  // If the alignment of the memory reference itself differs from the alignment
354  // of the base pointer, print the base alignment explicitly, next to the base
355  // pointer.
356  if (MMO.getBaseAlignment() != MMO.getAlignment())
357    OS << "(align=" << MMO.getBaseAlignment() << ")";
358
359  if (MMO.getOffset() != 0)
360    OS << "+" << MMO.getOffset();
361  OS << "]";
362
363  // Print the alignment of the reference.
364  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
365      MMO.getBaseAlignment() != MMO.getSize())
366    OS << "(align=" << MMO.getAlignment() << ")";
367
368  return OS;
369}
370
371//===----------------------------------------------------------------------===//
372// MachineInstr Implementation
373//===----------------------------------------------------------------------===//
374
375/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
376/// TID NULL and no operands.
377MachineInstr::MachineInstr()
378  : TID(0), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
379    Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
380  // Make sure that we get added to a machine basicblock
381  LeakDetector::addGarbageObject(this);
382}
383
384void MachineInstr::addImplicitDefUseOperands() {
385  if (TID->ImplicitDefs)
386    for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
387      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
388  if (TID->ImplicitUses)
389    for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
390      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
391}
392
393/// MachineInstr ctor - This constructor create a MachineInstr and add the
394/// implicit operands. It reserves space for number of operands specified by
395/// TargetInstrDesc or the numOperands if it is not zero. (for
396/// instructions with variable number of operands).
397MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
398  : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0), Parent(0),
399    debugLoc(DebugLoc::getUnknownLoc()) {
400  if (!NoImp && TID->getImplicitDefs())
401    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
402      NumImplicitOps++;
403  if (!NoImp && TID->getImplicitUses())
404    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
405      NumImplicitOps++;
406  Operands.reserve(NumImplicitOps + TID->getNumOperands());
407  if (!NoImp)
408    addImplicitDefUseOperands();
409  // Make sure that we get added to a machine basicblock
410  LeakDetector::addGarbageObject(this);
411}
412
413/// MachineInstr ctor - As above, but with a DebugLoc.
414MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
415                           bool NoImp)
416  : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
417    Parent(0), debugLoc(dl) {
418  if (!NoImp && TID->getImplicitDefs())
419    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
420      NumImplicitOps++;
421  if (!NoImp && TID->getImplicitUses())
422    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
423      NumImplicitOps++;
424  Operands.reserve(NumImplicitOps + TID->getNumOperands());
425  if (!NoImp)
426    addImplicitDefUseOperands();
427  // Make sure that we get added to a machine basicblock
428  LeakDetector::addGarbageObject(this);
429}
430
431/// MachineInstr ctor - Work exactly the same as the ctor two above, except
432/// that the MachineInstr is created and added to the end of the specified
433/// basic block.
434///
435MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
436  : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0), Parent(0),
437    debugLoc(DebugLoc::getUnknownLoc()) {
438  assert(MBB && "Cannot use inserting ctor with null basic block!");
439  if (TID->ImplicitDefs)
440    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
441      NumImplicitOps++;
442  if (TID->ImplicitUses)
443    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
444      NumImplicitOps++;
445  Operands.reserve(NumImplicitOps + TID->getNumOperands());
446  addImplicitDefUseOperands();
447  // Make sure that we get added to a machine basicblock
448  LeakDetector::addGarbageObject(this);
449  MBB->push_back(this);  // Add instruction to end of basic block!
450}
451
452/// MachineInstr ctor - As above, but with a DebugLoc.
453///
454MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
455                           const TargetInstrDesc &tid)
456  : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
457    Parent(0), debugLoc(dl) {
458  assert(MBB && "Cannot use inserting ctor with null basic block!");
459  if (TID->ImplicitDefs)
460    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
461      NumImplicitOps++;
462  if (TID->ImplicitUses)
463    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
464      NumImplicitOps++;
465  Operands.reserve(NumImplicitOps + TID->getNumOperands());
466  addImplicitDefUseOperands();
467  // Make sure that we get added to a machine basicblock
468  LeakDetector::addGarbageObject(this);
469  MBB->push_back(this);  // Add instruction to end of basic block!
470}
471
472/// MachineInstr ctor - Copies MachineInstr arg exactly
473///
474MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
475  : TID(&MI.getDesc()), NumImplicitOps(0),
476    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
477    Parent(0), debugLoc(MI.getDebugLoc()) {
478  Operands.reserve(MI.getNumOperands());
479
480  // Add operands
481  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
482    addOperand(MI.getOperand(i));
483  NumImplicitOps = MI.NumImplicitOps;
484
485  // Set parent to null.
486  Parent = 0;
487
488  LeakDetector::addGarbageObject(this);
489}
490
491MachineInstr::~MachineInstr() {
492  LeakDetector::removeGarbageObject(this);
493#ifndef NDEBUG
494  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
495    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
496    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
497           "Reg operand def/use list corrupted");
498  }
499#endif
500}
501
502/// getRegInfo - If this instruction is embedded into a MachineFunction,
503/// return the MachineRegisterInfo object for the current function, otherwise
504/// return null.
505MachineRegisterInfo *MachineInstr::getRegInfo() {
506  if (MachineBasicBlock *MBB = getParent())
507    return &MBB->getParent()->getRegInfo();
508  return 0;
509}
510
511/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
512/// this instruction from their respective use lists.  This requires that the
513/// operands already be on their use lists.
514void MachineInstr::RemoveRegOperandsFromUseLists() {
515  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
516    if (Operands[i].isReg())
517      Operands[i].RemoveRegOperandFromRegInfo();
518  }
519}
520
521/// AddRegOperandsToUseLists - Add all of the register operands in
522/// this instruction from their respective use lists.  This requires that the
523/// operands not be on their use lists yet.
524void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
525  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
526    if (Operands[i].isReg())
527      Operands[i].AddRegOperandToRegInfo(&RegInfo);
528  }
529}
530
531
532/// addOperand - Add the specified operand to the instruction.  If it is an
533/// implicit operand, it is added to the end of the operand list.  If it is
534/// an explicit operand it is added at the end of the explicit operand list
535/// (before the first implicit operand).
536void MachineInstr::addOperand(const MachineOperand &Op) {
537  bool isImpReg = Op.isReg() && Op.isImplicit();
538  assert((isImpReg || !OperandsComplete()) &&
539         "Trying to add an operand to a machine instr that is already done!");
540
541  MachineRegisterInfo *RegInfo = getRegInfo();
542
543  // If we are adding the operand to the end of the list, our job is simpler.
544  // This is true most of the time, so this is a reasonable optimization.
545  if (isImpReg || NumImplicitOps == 0) {
546    // We can only do this optimization if we know that the operand list won't
547    // reallocate.
548    if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
549      Operands.push_back(Op);
550
551      // Set the parent of the operand.
552      Operands.back().ParentMI = this;
553
554      // If the operand is a register, update the operand's use list.
555      if (Op.isReg())
556        Operands.back().AddRegOperandToRegInfo(RegInfo);
557      return;
558    }
559  }
560
561  // Otherwise, we have to insert a real operand before any implicit ones.
562  unsigned OpNo = Operands.size()-NumImplicitOps;
563
564  // If this instruction isn't embedded into a function, then we don't need to
565  // update any operand lists.
566  if (RegInfo == 0) {
567    // Simple insertion, no reginfo update needed for other register operands.
568    Operands.insert(Operands.begin()+OpNo, Op);
569    Operands[OpNo].ParentMI = this;
570
571    // Do explicitly set the reginfo for this operand though, to ensure the
572    // next/prev fields are properly nulled out.
573    if (Operands[OpNo].isReg())
574      Operands[OpNo].AddRegOperandToRegInfo(0);
575
576  } else if (Operands.size()+1 <= Operands.capacity()) {
577    // Otherwise, we have to remove register operands from their register use
578    // list, add the operand, then add the register operands back to their use
579    // list.  This also must handle the case when the operand list reallocates
580    // to somewhere else.
581
582    // If insertion of this operand won't cause reallocation of the operand
583    // list, just remove the implicit operands, add the operand, then re-add all
584    // the rest of the operands.
585    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
586      assert(Operands[i].isReg() && "Should only be an implicit reg!");
587      Operands[i].RemoveRegOperandFromRegInfo();
588    }
589
590    // Add the operand.  If it is a register, add it to the reg list.
591    Operands.insert(Operands.begin()+OpNo, Op);
592    Operands[OpNo].ParentMI = this;
593
594    if (Operands[OpNo].isReg())
595      Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
596
597    // Re-add all the implicit ops.
598    for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
599      assert(Operands[i].isReg() && "Should only be an implicit reg!");
600      Operands[i].AddRegOperandToRegInfo(RegInfo);
601    }
602  } else {
603    // Otherwise, we will be reallocating the operand list.  Remove all reg
604    // operands from their list, then readd them after the operand list is
605    // reallocated.
606    RemoveRegOperandsFromUseLists();
607
608    Operands.insert(Operands.begin()+OpNo, Op);
609    Operands[OpNo].ParentMI = this;
610
611    // Re-add all the operands.
612    AddRegOperandsToUseLists(*RegInfo);
613  }
614}
615
616/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
617/// fewer operand than it started with.
618///
619void MachineInstr::RemoveOperand(unsigned OpNo) {
620  assert(OpNo < Operands.size() && "Invalid operand number");
621
622  // Special case removing the last one.
623  if (OpNo == Operands.size()-1) {
624    // If needed, remove from the reg def/use list.
625    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
626      Operands.back().RemoveRegOperandFromRegInfo();
627
628    Operands.pop_back();
629    return;
630  }
631
632  // Otherwise, we are removing an interior operand.  If we have reginfo to
633  // update, remove all operands that will be shifted down from their reg lists,
634  // move everything down, then re-add them.
635  MachineRegisterInfo *RegInfo = getRegInfo();
636  if (RegInfo) {
637    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
638      if (Operands[i].isReg())
639        Operands[i].RemoveRegOperandFromRegInfo();
640    }
641  }
642
643  Operands.erase(Operands.begin()+OpNo);
644
645  if (RegInfo) {
646    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
647      if (Operands[i].isReg())
648        Operands[i].AddRegOperandToRegInfo(RegInfo);
649    }
650  }
651}
652
653/// addMemOperand - Add a MachineMemOperand to the machine instruction.
654/// This function should be used only occasionally. The setMemRefs function
655/// is the primary method for setting up a MachineInstr's MemRefs list.
656void MachineInstr::addMemOperand(MachineFunction &MF,
657                                 MachineMemOperand *MO) {
658  mmo_iterator OldMemRefs = MemRefs;
659  mmo_iterator OldMemRefsEnd = MemRefsEnd;
660
661  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
662  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
663  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
664
665  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
666  NewMemRefs[NewNum - 1] = MO;
667
668  MemRefs = NewMemRefs;
669  MemRefsEnd = NewMemRefsEnd;
670}
671
672/// removeFromParent - This method unlinks 'this' from the containing basic
673/// block, and returns it, but does not delete it.
674MachineInstr *MachineInstr::removeFromParent() {
675  assert(getParent() && "Not embedded in a basic block!");
676  getParent()->remove(this);
677  return this;
678}
679
680
681/// eraseFromParent - This method unlinks 'this' from the containing basic
682/// block, and deletes it.
683void MachineInstr::eraseFromParent() {
684  assert(getParent() && "Not embedded in a basic block!");
685  getParent()->erase(this);
686}
687
688
689/// OperandComplete - Return true if it's illegal to add a new operand
690///
691bool MachineInstr::OperandsComplete() const {
692  unsigned short NumOperands = TID->getNumOperands();
693  if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
694    return true;  // Broken: we have all the operands of this instruction!
695  return false;
696}
697
698/// getNumExplicitOperands - Returns the number of non-implicit operands.
699///
700unsigned MachineInstr::getNumExplicitOperands() const {
701  unsigned NumOperands = TID->getNumOperands();
702  if (!TID->isVariadic())
703    return NumOperands;
704
705  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
706    const MachineOperand &MO = getOperand(i);
707    if (!MO.isReg() || !MO.isImplicit())
708      NumOperands++;
709  }
710  return NumOperands;
711}
712
713
714/// isLabel - Returns true if the MachineInstr represents a label.
715///
716bool MachineInstr::isLabel() const {
717  return getOpcode() == TargetInstrInfo::DBG_LABEL ||
718         getOpcode() == TargetInstrInfo::EH_LABEL ||
719         getOpcode() == TargetInstrInfo::GC_LABEL;
720}
721
722/// isDebugLabel - Returns true if the MachineInstr represents a debug label.
723///
724bool MachineInstr::isDebugLabel() const {
725  return getOpcode() == TargetInstrInfo::DBG_LABEL;
726}
727
728/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
729/// the specific register or -1 if it is not found. It further tightens
730/// the search criteria to a use that kills the register if isKill is true.
731int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
732                                          const TargetRegisterInfo *TRI) const {
733  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
734    const MachineOperand &MO = getOperand(i);
735    if (!MO.isReg() || !MO.isUse())
736      continue;
737    unsigned MOReg = MO.getReg();
738    if (!MOReg)
739      continue;
740    if (MOReg == Reg ||
741        (TRI &&
742         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
743         TargetRegisterInfo::isPhysicalRegister(Reg) &&
744         TRI->isSubRegister(MOReg, Reg)))
745      if (!isKill || MO.isKill())
746        return i;
747  }
748  return -1;
749}
750
751/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
752/// the specified register or -1 if it is not found. If isDead is true, defs
753/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
754/// also checks if there is a def of a super-register.
755int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
756                                          const TargetRegisterInfo *TRI) const {
757  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
758    const MachineOperand &MO = getOperand(i);
759    if (!MO.isReg() || !MO.isDef())
760      continue;
761    unsigned MOReg = MO.getReg();
762    if (MOReg == Reg ||
763        (TRI &&
764         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
765         TargetRegisterInfo::isPhysicalRegister(Reg) &&
766         TRI->isSubRegister(MOReg, Reg)))
767      if (!isDead || MO.isDead())
768        return i;
769  }
770  return -1;
771}
772
773/// findFirstPredOperandIdx() - Find the index of the first operand in the
774/// operand list that is used to represent the predicate. It returns -1 if
775/// none is found.
776int MachineInstr::findFirstPredOperandIdx() const {
777  const TargetInstrDesc &TID = getDesc();
778  if (TID.isPredicable()) {
779    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
780      if (TID.OpInfo[i].isPredicate())
781        return i;
782  }
783
784  return -1;
785}
786
787/// isRegTiedToUseOperand - Given the index of a register def operand,
788/// check if the register def is tied to a source operand, due to either
789/// two-address elimination or inline assembly constraints. Returns the
790/// first tied use operand index by reference is UseOpIdx is not null.
791bool MachineInstr::
792isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
793  if (getOpcode() == TargetInstrInfo::INLINEASM) {
794    assert(DefOpIdx >= 2);
795    const MachineOperand &MO = getOperand(DefOpIdx);
796    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
797      return false;
798    // Determine the actual operand index that corresponds to this index.
799    unsigned DefNo = 0;
800    unsigned DefPart = 0;
801    for (unsigned i = 1, e = getNumOperands(); i < e; ) {
802      const MachineOperand &FMO = getOperand(i);
803      // After the normal asm operands there may be additional imp-def regs.
804      if (!FMO.isImm())
805        return false;
806      // Skip over this def.
807      unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
808      unsigned PrevDef = i + 1;
809      i = PrevDef + NumOps;
810      if (i > DefOpIdx) {
811        DefPart = DefOpIdx - PrevDef;
812        break;
813      }
814      ++DefNo;
815    }
816    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
817      const MachineOperand &FMO = getOperand(i);
818      if (!FMO.isImm())
819        continue;
820      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
821        continue;
822      unsigned Idx;
823      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
824          Idx == DefNo) {
825        if (UseOpIdx)
826          *UseOpIdx = (unsigned)i + 1 + DefPart;
827        return true;
828      }
829    }
830    return false;
831  }
832
833  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
834  const TargetInstrDesc &TID = getDesc();
835  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
836    const MachineOperand &MO = getOperand(i);
837    if (MO.isReg() && MO.isUse() &&
838        TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
839      if (UseOpIdx)
840        *UseOpIdx = (unsigned)i;
841      return true;
842    }
843  }
844  return false;
845}
846
847/// isRegTiedToDefOperand - Return true if the operand of the specified index
848/// is a register use and it is tied to an def operand. It also returns the def
849/// operand index by reference.
850bool MachineInstr::
851isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
852  if (getOpcode() == TargetInstrInfo::INLINEASM) {
853    const MachineOperand &MO = getOperand(UseOpIdx);
854    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
855      return false;
856
857    // Find the flag operand corresponding to UseOpIdx
858    unsigned FlagIdx, NumOps=0;
859    for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
860      const MachineOperand &UFMO = getOperand(FlagIdx);
861      // After the normal asm operands there may be additional imp-def regs.
862      if (!UFMO.isImm())
863        return false;
864      NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
865      assert(NumOps < getNumOperands() && "Invalid inline asm flag");
866      if (UseOpIdx < FlagIdx+NumOps+1)
867        break;
868    }
869    if (FlagIdx >= UseOpIdx)
870      return false;
871    const MachineOperand &UFMO = getOperand(FlagIdx);
872    unsigned DefNo;
873    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
874      if (!DefOpIdx)
875        return true;
876
877      unsigned DefIdx = 1;
878      // Remember to adjust the index. First operand is asm string, then there
879      // is a flag for each.
880      while (DefNo) {
881        const MachineOperand &FMO = getOperand(DefIdx);
882        assert(FMO.isImm());
883        // Skip over this def.
884        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
885        --DefNo;
886      }
887      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
888      return true;
889    }
890    return false;
891  }
892
893  const TargetInstrDesc &TID = getDesc();
894  if (UseOpIdx >= TID.getNumOperands())
895    return false;
896  const MachineOperand &MO = getOperand(UseOpIdx);
897  if (!MO.isReg() || !MO.isUse())
898    return false;
899  int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
900  if (DefIdx == -1)
901    return false;
902  if (DefOpIdx)
903    *DefOpIdx = (unsigned)DefIdx;
904  return true;
905}
906
907/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
908///
909void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
910  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
911    const MachineOperand &MO = MI->getOperand(i);
912    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
913      continue;
914    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
915      MachineOperand &MOp = getOperand(j);
916      if (!MOp.isIdenticalTo(MO))
917        continue;
918      if (MO.isKill())
919        MOp.setIsKill();
920      else
921        MOp.setIsDead();
922      break;
923    }
924  }
925}
926
927/// copyPredicates - Copies predicate operand(s) from MI.
928void MachineInstr::copyPredicates(const MachineInstr *MI) {
929  const TargetInstrDesc &TID = MI->getDesc();
930  if (!TID.isPredicable())
931    return;
932  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
933    if (TID.OpInfo[i].isPredicate()) {
934      // Predicated operands must be last operands.
935      addOperand(MI->getOperand(i));
936    }
937  }
938}
939
940/// isSafeToMove - Return true if it is safe to move this instruction. If
941/// SawStore is set to true, it means that there is a store (or call) between
942/// the instruction's location and its intended destination.
943bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
944                                bool &SawStore,
945                                AliasAnalysis *AA) const {
946  // Ignore stuff that we obviously can't move.
947  if (TID->mayStore() || TID->isCall()) {
948    SawStore = true;
949    return false;
950  }
951  if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
952    return false;
953
954  // See if this instruction does a load.  If so, we have to guarantee that the
955  // loaded value doesn't change between the load and the its intended
956  // destination. The check for isInvariantLoad gives the targe the chance to
957  // classify the load as always returning a constant, e.g. a constant pool
958  // load.
959  if (TID->mayLoad() && !isInvariantLoad(AA))
960    // Otherwise, this is a real load.  If there is a store between the load and
961    // end of block, or if the load is volatile, we can't move it.
962    return !SawStore && !hasVolatileMemoryRef();
963
964  return true;
965}
966
967/// isSafeToReMat - Return true if it's safe to rematerialize the specified
968/// instruction which defined the specified register instead of copying it.
969bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
970                                 unsigned DstReg,
971                                 AliasAnalysis *AA) const {
972  bool SawStore = false;
973  if (!TII->isTriviallyReMaterializable(this, AA) ||
974      !isSafeToMove(TII, SawStore, AA))
975    return false;
976  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
977    const MachineOperand &MO = getOperand(i);
978    if (!MO.isReg())
979      continue;
980    // FIXME: For now, do not remat any instruction with register operands.
981    // Later on, we can loosen the restriction is the register operands have
982    // not been modified between the def and use. Note, this is different from
983    // MachineSink because the code is no longer in two-address form (at least
984    // partially).
985    if (MO.isUse())
986      return false;
987    else if (!MO.isDead() && MO.getReg() != DstReg)
988      return false;
989  }
990  return true;
991}
992
993/// hasVolatileMemoryRef - Return true if this instruction may have a
994/// volatile memory reference, or if the information describing the
995/// memory reference is not available. Return false if it is known to
996/// have no volatile memory references.
997bool MachineInstr::hasVolatileMemoryRef() const {
998  // An instruction known never to access memory won't have a volatile access.
999  if (!TID->mayStore() &&
1000      !TID->mayLoad() &&
1001      !TID->isCall() &&
1002      !TID->hasUnmodeledSideEffects())
1003    return false;
1004
1005  // Otherwise, if the instruction has no memory reference information,
1006  // conservatively assume it wasn't preserved.
1007  if (memoperands_empty())
1008    return true;
1009
1010  // Check the memory reference information for volatile references.
1011  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1012    if ((*I)->isVolatile())
1013      return true;
1014
1015  return false;
1016}
1017
1018/// isInvariantLoad - Return true if this instruction is loading from a
1019/// location whose value is invariant across the function.  For example,
1020/// loading a value from the constant pool or from from the argument area
1021/// of a function if it does not change.  This should only return true of
1022/// *all* loads the instruction does are invariant (if it does multiple loads).
1023bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1024  // If the instruction doesn't load at all, it isn't an invariant load.
1025  if (!TID->mayLoad())
1026    return false;
1027
1028  // If the instruction has lost its memoperands, conservatively assume that
1029  // it may not be an invariant load.
1030  if (memoperands_empty())
1031    return false;
1032
1033  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1034
1035  for (mmo_iterator I = memoperands_begin(),
1036       E = memoperands_end(); I != E; ++I) {
1037    if ((*I)->isVolatile()) return false;
1038    if ((*I)->isStore()) return false;
1039
1040    if (const Value *V = (*I)->getValue()) {
1041      // A load from a constant PseudoSourceValue is invariant.
1042      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1043        if (PSV->isConstant(MFI))
1044          continue;
1045      // If we have an AliasAnalysis, ask it whether the memory is constant.
1046      if (AA && AA->pointsToConstantMemory(V))
1047        continue;
1048    }
1049
1050    // Otherwise assume conservatively.
1051    return false;
1052  }
1053
1054  // Everything checks out.
1055  return true;
1056}
1057
1058void MachineInstr::dump() const {
1059  errs() << "  " << *this;
1060}
1061
1062void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1063  unsigned StartOp = 0, e = getNumOperands();
1064
1065  // Print explicitly defined operands on the left of an assignment syntax.
1066  for (; StartOp < e && getOperand(StartOp).isReg() &&
1067         getOperand(StartOp).isDef() &&
1068         !getOperand(StartOp).isImplicit();
1069       ++StartOp) {
1070    if (StartOp != 0) OS << ", ";
1071    getOperand(StartOp).print(OS, TM);
1072  }
1073
1074  if (StartOp != 0)
1075    OS << " = ";
1076
1077  // Print the opcode name.
1078  OS << getDesc().getName();
1079
1080  // Print the rest of the operands.
1081  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1082    if (i != StartOp)
1083      OS << ",";
1084    OS << " ";
1085    getOperand(i).print(OS, TM);
1086  }
1087
1088  bool HaveSemi = false;
1089  if (!memoperands_empty()) {
1090    if (!HaveSemi) OS << ";"; HaveSemi = true;
1091
1092    OS << " mem:";
1093    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1094         i != e; ++i) {
1095      OS << **i;
1096      if (next(i) != e)
1097        OS << " ";
1098    }
1099  }
1100
1101  if (!debugLoc.isUnknown()) {
1102    if (!HaveSemi) OS << ";"; HaveSemi = true;
1103
1104    // TODO: print InlinedAtLoc information
1105
1106    const MachineFunction *MF = getParent()->getParent();
1107    DebugLocTuple DLT = MF->getDebugLocTuple(debugLoc);
1108    DICompileUnit CU(DLT.Scope);
1109    if (!CU.isNull())
1110      OS << " dbg:" << CU.getDirectory() << '/' << CU.getFilename() << ":"
1111         << DLT.Line << ":" << DLT.Col;
1112  }
1113
1114  OS << "\n";
1115}
1116
1117bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1118                                     const TargetRegisterInfo *RegInfo,
1119                                     bool AddIfNotFound) {
1120  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1121  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1122  bool Found = false;
1123  SmallVector<unsigned,4> DeadOps;
1124  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1125    MachineOperand &MO = getOperand(i);
1126    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1127      continue;
1128    unsigned Reg = MO.getReg();
1129    if (!Reg)
1130      continue;
1131
1132    if (Reg == IncomingReg) {
1133      if (!Found) {
1134        if (MO.isKill())
1135          // The register is already marked kill.
1136          return true;
1137        if (isPhysReg && isRegTiedToDefOperand(i))
1138          // Two-address uses of physregs must not be marked kill.
1139          return true;
1140        MO.setIsKill();
1141        Found = true;
1142      }
1143    } else if (hasAliases && MO.isKill() &&
1144               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1145      // A super-register kill already exists.
1146      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1147        return true;
1148      if (RegInfo->isSubRegister(IncomingReg, Reg))
1149        DeadOps.push_back(i);
1150    }
1151  }
1152
1153  // Trim unneeded kill operands.
1154  while (!DeadOps.empty()) {
1155    unsigned OpIdx = DeadOps.back();
1156    if (getOperand(OpIdx).isImplicit())
1157      RemoveOperand(OpIdx);
1158    else
1159      getOperand(OpIdx).setIsKill(false);
1160    DeadOps.pop_back();
1161  }
1162
1163  // If not found, this means an alias of one of the operands is killed. Add a
1164  // new implicit operand if required.
1165  if (!Found && AddIfNotFound) {
1166    addOperand(MachineOperand::CreateReg(IncomingReg,
1167                                         false /*IsDef*/,
1168                                         true  /*IsImp*/,
1169                                         true  /*IsKill*/));
1170    return true;
1171  }
1172  return Found;
1173}
1174
1175bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1176                                   const TargetRegisterInfo *RegInfo,
1177                                   bool AddIfNotFound) {
1178  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1179  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1180  bool Found = false;
1181  SmallVector<unsigned,4> DeadOps;
1182  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1183    MachineOperand &MO = getOperand(i);
1184    if (!MO.isReg() || !MO.isDef())
1185      continue;
1186    unsigned Reg = MO.getReg();
1187    if (!Reg)
1188      continue;
1189
1190    if (Reg == IncomingReg) {
1191      if (!Found) {
1192        if (MO.isDead())
1193          // The register is already marked dead.
1194          return true;
1195        MO.setIsDead();
1196        Found = true;
1197      }
1198    } else if (hasAliases && MO.isDead() &&
1199               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1200      // There exists a super-register that's marked dead.
1201      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1202        return true;
1203      if (RegInfo->getSubRegisters(IncomingReg) &&
1204          RegInfo->getSuperRegisters(Reg) &&
1205          RegInfo->isSubRegister(IncomingReg, Reg))
1206        DeadOps.push_back(i);
1207    }
1208  }
1209
1210  // Trim unneeded dead operands.
1211  while (!DeadOps.empty()) {
1212    unsigned OpIdx = DeadOps.back();
1213    if (getOperand(OpIdx).isImplicit())
1214      RemoveOperand(OpIdx);
1215    else
1216      getOperand(OpIdx).setIsDead(false);
1217    DeadOps.pop_back();
1218  }
1219
1220  // If not found, this means an alias of one of the operands is dead. Add a
1221  // new implicit operand if required.
1222  if (Found || !AddIfNotFound)
1223    return Found;
1224
1225  addOperand(MachineOperand::CreateReg(IncomingReg,
1226                                       true  /*IsDef*/,
1227                                       true  /*IsImp*/,
1228                                       false /*IsKill*/,
1229                                       true  /*IsDead*/));
1230  return true;
1231}
1232