1// List implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 2, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// You should have received a copy of the GNU General Public License along
18// with this library; see the file COPYING.  If not, write to the Free
19// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20// USA.
21
22// As a special exception, you may use this file as part of a free software
23// library without restriction.  Specifically, if other files instantiate
24// templates or use macros or inline functions from this file, or you compile
25// this file and link it with other files to produce an executable, this
26// file does not by itself cause the resulting executable to be covered by
27// the GNU General Public License.  This exception does not however
28// invalidate any other reasons why the executable file might be covered by
29// the GNU General Public License.
30
31/*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation.  Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose.  It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1996,1997
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation.  Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose.  It is provided "as is" without express or implied warranty.
55 */
56
57/** @file stl_list.h
58 *  This is an internal header file, included by other library headers.
59 *  You should not attempt to use it directly.
60 */
61
62#ifndef _LIST_H
63#define _LIST_H 1
64
65#include <bits/concept_check.h>
66
67_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
68
69  // Supporting structures are split into common and templated types; the
70  // latter publicly inherits from the former in an effort to reduce code
71  // duplication.  This results in some "needless" static_cast'ing later on,
72  // but it's all safe downcasting.
73
74  /// @if maint Common part of a node in the %list.  @endif
75  struct _List_node_base
76  {
77    _List_node_base* _M_next;   ///< Self-explanatory
78    _List_node_base* _M_prev;   ///< Self-explanatory
79
80    static void
81    swap(_List_node_base& __x, _List_node_base& __y);
82
83    void
84    transfer(_List_node_base * const __first,
85	     _List_node_base * const __last);
86
87    void
88    reverse();
89
90    void
91    hook(_List_node_base * const __position);
92
93    void
94    unhook();
95  };
96
97  /// @if maint An actual node in the %list.  @endif
98  template<typename _Tp>
99    struct _List_node : public _List_node_base
100    {
101      _Tp _M_data;                ///< User's data.
102    };
103
104  /**
105   *  @brief A list::iterator.
106   *
107   *  @if maint
108   *  All the functions are op overloads.
109   *  @endif
110  */
111  template<typename _Tp>
112    struct _List_iterator
113    {
114      typedef _List_iterator<_Tp>                _Self;
115      typedef _List_node<_Tp>                    _Node;
116
117      typedef ptrdiff_t                          difference_type;
118      typedef std::bidirectional_iterator_tag    iterator_category;
119      typedef _Tp                                value_type;
120      typedef _Tp*                               pointer;
121      typedef _Tp&                               reference;
122
123      _List_iterator()
124      : _M_node() { }
125
126      explicit
127      _List_iterator(_List_node_base* __x)
128      : _M_node(__x) { }
129
130      // Must downcast from List_node_base to _List_node to get to _M_data.
131      reference
132      operator*() const
133      { return static_cast<_Node*>(_M_node)->_M_data; }
134
135      pointer
136      operator->() const
137      { return &static_cast<_Node*>(_M_node)->_M_data; }
138
139      _Self&
140      operator++()
141      {
142	_M_node = _M_node->_M_next;
143	return *this;
144      }
145
146      _Self
147      operator++(int)
148      {
149	_Self __tmp = *this;
150	_M_node = _M_node->_M_next;
151	return __tmp;
152      }
153
154      _Self&
155      operator--()
156      {
157	_M_node = _M_node->_M_prev;
158	return *this;
159      }
160
161      _Self
162      operator--(int)
163      {
164	_Self __tmp = *this;
165	_M_node = _M_node->_M_prev;
166	return __tmp;
167      }
168
169      bool
170      operator==(const _Self& __x) const
171      { return _M_node == __x._M_node; }
172
173      bool
174      operator!=(const _Self& __x) const
175      { return _M_node != __x._M_node; }
176
177      // The only member points to the %list element.
178      _List_node_base* _M_node;
179    };
180
181  /**
182   *  @brief A list::const_iterator.
183   *
184   *  @if maint
185   *  All the functions are op overloads.
186   *  @endif
187  */
188  template<typename _Tp>
189    struct _List_const_iterator
190    {
191      typedef _List_const_iterator<_Tp>          _Self;
192      typedef const _List_node<_Tp>              _Node;
193      typedef _List_iterator<_Tp>                iterator;
194
195      typedef ptrdiff_t                          difference_type;
196      typedef std::bidirectional_iterator_tag    iterator_category;
197      typedef _Tp                                value_type;
198      typedef const _Tp*                         pointer;
199      typedef const _Tp&                         reference;
200
201      _List_const_iterator()
202      : _M_node() { }
203
204      explicit
205      _List_const_iterator(const _List_node_base* __x)
206      : _M_node(__x) { }
207
208      _List_const_iterator(const iterator& __x)
209      : _M_node(__x._M_node) { }
210
211      // Must downcast from List_node_base to _List_node to get to
212      // _M_data.
213      reference
214      operator*() const
215      { return static_cast<_Node*>(_M_node)->_M_data; }
216
217      pointer
218      operator->() const
219      { return &static_cast<_Node*>(_M_node)->_M_data; }
220
221      _Self&
222      operator++()
223      {
224	_M_node = _M_node->_M_next;
225	return *this;
226      }
227
228      _Self
229      operator++(int)
230      {
231	_Self __tmp = *this;
232	_M_node = _M_node->_M_next;
233	return __tmp;
234      }
235
236      _Self&
237      operator--()
238      {
239	_M_node = _M_node->_M_prev;
240	return *this;
241      }
242
243      _Self
244      operator--(int)
245      {
246	_Self __tmp = *this;
247	_M_node = _M_node->_M_prev;
248	return __tmp;
249      }
250
251      bool
252      operator==(const _Self& __x) const
253      { return _M_node == __x._M_node; }
254
255      bool
256      operator!=(const _Self& __x) const
257      { return _M_node != __x._M_node; }
258
259      // The only member points to the %list element.
260      const _List_node_base* _M_node;
261    };
262
263  template<typename _Val>
264    inline bool
265    operator==(const _List_iterator<_Val>& __x,
266	       const _List_const_iterator<_Val>& __y)
267    { return __x._M_node == __y._M_node; }
268
269  template<typename _Val>
270    inline bool
271    operator!=(const _List_iterator<_Val>& __x,
272               const _List_const_iterator<_Val>& __y)
273    { return __x._M_node != __y._M_node; }
274
275
276  /**
277   *  @if maint
278   *  See bits/stl_deque.h's _Deque_base for an explanation.
279   *  @endif
280  */
281  template<typename _Tp, typename _Alloc>
282    class _List_base
283    {
284    protected:
285      // NOTA BENE
286      // The stored instance is not actually of "allocator_type"'s
287      // type.  Instead we rebind the type to
288      // Allocator<List_node<Tp>>, which according to [20.1.5]/4
289      // should probably be the same.  List_node<Tp> is not the same
290      // size as Tp (it's two pointers larger), and specializations on
291      // Tp may go unused because List_node<Tp> is being bound
292      // instead.
293      //
294      // We put this to the test in the constructors and in
295      // get_allocator, where we use conversions between
296      // allocator_type and _Node_alloc_type. The conversion is
297      // required by table 32 in [20.1.5].
298      typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
299        _Node_alloc_type;
300
301      typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
302
303      struct _List_impl
304      : public _Node_alloc_type
305      {
306	_List_node_base _M_node;
307
308	_List_impl()
309	: _Node_alloc_type(), _M_node()
310	{ }
311
312	_List_impl(const _Node_alloc_type& __a)
313	: _Node_alloc_type(__a), _M_node()
314	{ }
315      };
316
317      _List_impl _M_impl;
318
319      _List_node<_Tp>*
320      _M_get_node()
321      { return _M_impl._Node_alloc_type::allocate(1); }
322
323      void
324      _M_put_node(_List_node<_Tp>* __p)
325      { _M_impl._Node_alloc_type::deallocate(__p, 1); }
326
327  public:
328      typedef _Alloc allocator_type;
329
330      _Node_alloc_type&
331      _M_get_Node_allocator()
332      { return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
333
334      const _Node_alloc_type&
335      _M_get_Node_allocator() const
336      { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
337
338      _Tp_alloc_type
339      _M_get_Tp_allocator() const
340      { return _Tp_alloc_type(_M_get_Node_allocator()); }
341
342      allocator_type
343      get_allocator() const
344      { return allocator_type(_M_get_Node_allocator()); }
345
346      _List_base()
347      : _M_impl()
348      { _M_init(); }
349
350      _List_base(const allocator_type& __a)
351      : _M_impl(__a)
352      { _M_init(); }
353
354      // This is what actually destroys the list.
355      ~_List_base()
356      { _M_clear(); }
357
358      void
359      _M_clear();
360
361      void
362      _M_init()
363      {
364        this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
365        this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
366      }
367    };
368
369  /**
370   *  @brief A standard container with linear time access to elements,
371   *  and fixed time insertion/deletion at any point in the sequence.
372   *
373   *  @ingroup Containers
374   *  @ingroup Sequences
375   *
376   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
377   *  <a href="tables.html#66">reversible container</a>, and a
378   *  <a href="tables.html#67">sequence</a>, including the
379   *  <a href="tables.html#68">optional sequence requirements</a> with the
380   *  %exception of @c at and @c operator[].
381   *
382   *  This is a @e doubly @e linked %list.  Traversal up and down the
383   *  %list requires linear time, but adding and removing elements (or
384   *  @e nodes) is done in constant time, regardless of where the
385   *  change takes place.  Unlike std::vector and std::deque,
386   *  random-access iterators are not provided, so subscripting ( @c
387   *  [] ) access is not allowed.  For algorithms which only need
388   *  sequential access, this lack makes no difference.
389   *
390   *  Also unlike the other standard containers, std::list provides
391   *  specialized algorithms %unique to linked lists, such as
392   *  splicing, sorting, and in-place reversal.
393   *
394   *  @if maint
395   *  A couple points on memory allocation for list<Tp>:
396   *
397   *  First, we never actually allocate a Tp, we allocate
398   *  List_node<Tp>'s and trust [20.1.5]/4 to DTRT.  This is to ensure
399   *  that after elements from %list<X,Alloc1> are spliced into
400   *  %list<X,Alloc2>, destroying the memory of the second %list is a
401   *  valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
402   *
403   *  Second, a %list conceptually represented as
404   *  @code
405   *    A <---> B <---> C <---> D
406   *  @endcode
407   *  is actually circular; a link exists between A and D.  The %list
408   *  class holds (as its only data member) a private list::iterator
409   *  pointing to @e D, not to @e A!  To get to the head of the %list,
410   *  we start at the tail and move forward by one.  When this member
411   *  iterator's next/previous pointers refer to itself, the %list is
412   *  %empty.  @endif
413  */
414  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
415    class list : protected _List_base<_Tp, _Alloc>
416    {
417      // concept requirements
418      typedef typename _Alloc::value_type                _Alloc_value_type;
419      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
420      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
421
422      typedef _List_base<_Tp, _Alloc>                    _Base;
423      typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
424
425    public:
426      typedef _Tp                                        value_type;
427      typedef typename _Tp_alloc_type::pointer           pointer;
428      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
429      typedef typename _Tp_alloc_type::reference         reference;
430      typedef typename _Tp_alloc_type::const_reference   const_reference;
431      typedef _List_iterator<_Tp>                        iterator;
432      typedef _List_const_iterator<_Tp>                  const_iterator;
433      typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
434      typedef std::reverse_iterator<iterator>            reverse_iterator;
435      typedef size_t                                     size_type;
436      typedef ptrdiff_t                                  difference_type;
437      typedef _Alloc                                     allocator_type;
438
439    protected:
440      // Note that pointers-to-_Node's can be ctor-converted to
441      // iterator types.
442      typedef _List_node<_Tp>				 _Node;
443
444      using _Base::_M_impl;
445      using _Base::_M_put_node;
446      using _Base::_M_get_node;
447      using _Base::_M_get_Tp_allocator;
448      using _Base::_M_get_Node_allocator;
449
450      /**
451       *  @if maint
452       *  @param  x  An instance of user data.
453       *
454       *  Allocates space for a new node and constructs a copy of @a x in it.
455       *  @endif
456       */
457      _Node*
458      _M_create_node(const value_type& __x)
459      {
460	_Node* __p = this->_M_get_node();
461	try
462	  {
463	    _M_get_Tp_allocator().construct(&__p->_M_data, __x);
464	  }
465	catch(...)
466	  {
467	    _M_put_node(__p);
468	    __throw_exception_again;
469	  }
470	return __p;
471      }
472
473    public:
474      // [23.2.2.1] construct/copy/destroy
475      // (assign() and get_allocator() are also listed in this section)
476      /**
477       *  @brief  Default constructor creates no elements.
478       */
479      list()
480      : _Base() { }
481
482      explicit
483      list(const allocator_type& __a)
484      : _Base(__a) { }
485
486      /**
487       *  @brief  Create a %list with copies of an exemplar element.
488       *  @param  n  The number of elements to initially create.
489       *  @param  value  An element to copy.
490       *
491       *  This constructor fills the %list with @a n copies of @a value.
492       */
493      explicit
494      list(size_type __n, const value_type& __value = value_type(),
495	   const allocator_type& __a = allocator_type())
496      : _Base(__a)
497      { _M_fill_initialize(__n, __value); }
498
499      /**
500       *  @brief  %List copy constructor.
501       *  @param  x  A %list of identical element and allocator types.
502       *
503       *  The newly-created %list uses a copy of the allocation object used
504       *  by @a x.
505       */
506      list(const list& __x)
507      : _Base(__x._M_get_Node_allocator())
508      { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
509
510      /**
511       *  @brief  Builds a %list from a range.
512       *  @param  first  An input iterator.
513       *  @param  last  An input iterator.
514       *
515       *  Create a %list consisting of copies of the elements from
516       *  [@a first,@a last).  This is linear in N (where N is
517       *  distance(@a first,@a last)).
518       */
519      template<typename _InputIterator>
520        list(_InputIterator __first, _InputIterator __last,
521	     const allocator_type& __a = allocator_type())
522        : _Base(__a)
523        {
524	  // Check whether it's an integral type.  If so, it's not an iterator.
525	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
526	  _M_initialize_dispatch(__first, __last, _Integral());
527	}
528
529      /**
530       *  No explicit dtor needed as the _Base dtor takes care of
531       *  things.  The _Base dtor only erases the elements, and note
532       *  that if the elements themselves are pointers, the pointed-to
533       *  memory is not touched in any way.  Managing the pointer is
534       *  the user's responsibilty.
535       */
536
537      /**
538       *  @brief  %List assignment operator.
539       *  @param  x  A %list of identical element and allocator types.
540       *
541       *  All the elements of @a x are copied, but unlike the copy
542       *  constructor, the allocator object is not copied.
543       */
544      list&
545      operator=(const list& __x);
546
547      /**
548       *  @brief  Assigns a given value to a %list.
549       *  @param  n  Number of elements to be assigned.
550       *  @param  val  Value to be assigned.
551       *
552       *  This function fills a %list with @a n copies of the given
553       *  value.  Note that the assignment completely changes the %list
554       *  and that the resulting %list's size is the same as the number
555       *  of elements assigned.  Old data may be lost.
556       */
557      void
558      assign(size_type __n, const value_type& __val)
559      { _M_fill_assign(__n, __val); }
560
561      /**
562       *  @brief  Assigns a range to a %list.
563       *  @param  first  An input iterator.
564       *  @param  last   An input iterator.
565       *
566       *  This function fills a %list with copies of the elements in the
567       *  range [@a first,@a last).
568       *
569       *  Note that the assignment completely changes the %list and
570       *  that the resulting %list's size is the same as the number of
571       *  elements assigned.  Old data may be lost.
572       */
573      template<typename _InputIterator>
574        void
575        assign(_InputIterator __first, _InputIterator __last)
576        {
577	  // Check whether it's an integral type.  If so, it's not an iterator.
578	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
579	  _M_assign_dispatch(__first, __last, _Integral());
580	}
581
582      /// Get a copy of the memory allocation object.
583      allocator_type
584      get_allocator() const
585      { return _Base::get_allocator(); }
586
587      // iterators
588      /**
589       *  Returns a read/write iterator that points to the first element in the
590       *  %list.  Iteration is done in ordinary element order.
591       */
592      iterator
593      begin()
594      { return iterator(this->_M_impl._M_node._M_next); }
595
596      /**
597       *  Returns a read-only (constant) iterator that points to the
598       *  first element in the %list.  Iteration is done in ordinary
599       *  element order.
600       */
601      const_iterator
602      begin() const
603      { return const_iterator(this->_M_impl._M_node._M_next); }
604
605      /**
606       *  Returns a read/write iterator that points one past the last
607       *  element in the %list.  Iteration is done in ordinary element
608       *  order.
609       */
610      iterator
611      end()
612      { return iterator(&this->_M_impl._M_node); }
613
614      /**
615       *  Returns a read-only (constant) iterator that points one past
616       *  the last element in the %list.  Iteration is done in ordinary
617       *  element order.
618       */
619      const_iterator
620      end() const
621      { return const_iterator(&this->_M_impl._M_node); }
622
623      /**
624       *  Returns a read/write reverse iterator that points to the last
625       *  element in the %list.  Iteration is done in reverse element
626       *  order.
627       */
628      reverse_iterator
629      rbegin()
630      { return reverse_iterator(end()); }
631
632      /**
633       *  Returns a read-only (constant) reverse iterator that points to
634       *  the last element in the %list.  Iteration is done in reverse
635       *  element order.
636       */
637      const_reverse_iterator
638      rbegin() const
639      { return const_reverse_iterator(end()); }
640
641      /**
642       *  Returns a read/write reverse iterator that points to one
643       *  before the first element in the %list.  Iteration is done in
644       *  reverse element order.
645       */
646      reverse_iterator
647      rend()
648      { return reverse_iterator(begin()); }
649
650      /**
651       *  Returns a read-only (constant) reverse iterator that points to one
652       *  before the first element in the %list.  Iteration is done in reverse
653       *  element order.
654       */
655      const_reverse_iterator
656      rend() const
657      { return const_reverse_iterator(begin()); }
658
659      // [23.2.2.2] capacity
660      /**
661       *  Returns true if the %list is empty.  (Thus begin() would equal
662       *  end().)
663       */
664      bool
665      empty() const
666      { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
667
668      /**  Returns the number of elements in the %list.  */
669      size_type
670      size() const
671      { return std::distance(begin(), end()); }
672
673      /**  Returns the size() of the largest possible %list.  */
674      size_type
675      max_size() const
676      { return _M_get_Tp_allocator().max_size(); }
677
678      /**
679       *  @brief Resizes the %list to the specified number of elements.
680       *  @param new_size Number of elements the %list should contain.
681       *  @param x Data with which new elements should be populated.
682       *
683       *  This function will %resize the %list to the specified number
684       *  of elements.  If the number is smaller than the %list's
685       *  current size the %list is truncated, otherwise the %list is
686       *  extended and new elements are populated with given data.
687       */
688      void
689      resize(size_type __new_size, value_type __x = value_type());
690
691      // element access
692      /**
693       *  Returns a read/write reference to the data at the first
694       *  element of the %list.
695       */
696      reference
697      front()
698      { return *begin(); }
699
700      /**
701       *  Returns a read-only (constant) reference to the data at the first
702       *  element of the %list.
703       */
704      const_reference
705      front() const
706      { return *begin(); }
707
708      /**
709       *  Returns a read/write reference to the data at the last element
710       *  of the %list.
711       */
712      reference
713      back()
714      {
715	iterator __tmp = end();
716	--__tmp;
717	return *__tmp;
718      }
719
720      /**
721       *  Returns a read-only (constant) reference to the data at the last
722       *  element of the %list.
723       */
724      const_reference
725      back() const
726      {
727	const_iterator __tmp = end();
728	--__tmp;
729	return *__tmp;
730      }
731
732      // [23.2.2.3] modifiers
733      /**
734       *  @brief  Add data to the front of the %list.
735       *  @param  x  Data to be added.
736       *
737       *  This is a typical stack operation.  The function creates an
738       *  element at the front of the %list and assigns the given data
739       *  to it.  Due to the nature of a %list this operation can be
740       *  done in constant time, and does not invalidate iterators and
741       *  references.
742       */
743      void
744      push_front(const value_type& __x)
745      { this->_M_insert(begin(), __x); }
746
747      /**
748       *  @brief  Removes first element.
749       *
750       *  This is a typical stack operation.  It shrinks the %list by
751       *  one.  Due to the nature of a %list this operation can be done
752       *  in constant time, and only invalidates iterators/references to
753       *  the element being removed.
754       *
755       *  Note that no data is returned, and if the first element's data
756       *  is needed, it should be retrieved before pop_front() is
757       *  called.
758       */
759      void
760      pop_front()
761      { this->_M_erase(begin()); }
762
763      /**
764       *  @brief  Add data to the end of the %list.
765       *  @param  x  Data to be added.
766       *
767       *  This is a typical stack operation.  The function creates an
768       *  element at the end of the %list and assigns the given data to
769       *  it.  Due to the nature of a %list this operation can be done
770       *  in constant time, and does not invalidate iterators and
771       *  references.
772       */
773      void
774      push_back(const value_type& __x)
775      { this->_M_insert(end(), __x); }
776
777      /**
778       *  @brief  Removes last element.
779       *
780       *  This is a typical stack operation.  It shrinks the %list by
781       *  one.  Due to the nature of a %list this operation can be done
782       *  in constant time, and only invalidates iterators/references to
783       *  the element being removed.
784       *
785       *  Note that no data is returned, and if the last element's data
786       *  is needed, it should be retrieved before pop_back() is called.
787       */
788      void
789      pop_back()
790      { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
791
792      /**
793       *  @brief  Inserts given value into %list before specified iterator.
794       *  @param  position  An iterator into the %list.
795       *  @param  x  Data to be inserted.
796       *  @return  An iterator that points to the inserted data.
797       *
798       *  This function will insert a copy of the given value before
799       *  the specified location.  Due to the nature of a %list this
800       *  operation can be done in constant time, and does not
801       *  invalidate iterators and references.
802       */
803      iterator
804      insert(iterator __position, const value_type& __x);
805
806      /**
807       *  @brief  Inserts a number of copies of given data into the %list.
808       *  @param  position  An iterator into the %list.
809       *  @param  n  Number of elements to be inserted.
810       *  @param  x  Data to be inserted.
811       *
812       *  This function will insert a specified number of copies of the
813       *  given data before the location specified by @a position.
814       *
815       *  This operation is linear in the number of elements inserted and
816       *  does not invalidate iterators and references.
817       */
818      void
819      insert(iterator __position, size_type __n, const value_type& __x)
820      {
821	list __tmp(__n, __x, _M_get_Node_allocator());
822	splice(__position, __tmp);
823      }
824
825      /**
826       *  @brief  Inserts a range into the %list.
827       *  @param  position  An iterator into the %list.
828       *  @param  first  An input iterator.
829       *  @param  last   An input iterator.
830       *
831       *  This function will insert copies of the data in the range [@a
832       *  first,@a last) into the %list before the location specified by
833       *  @a position.
834       *
835       *  This operation is linear in the number of elements inserted and
836       *  does not invalidate iterators and references.
837       */
838      template<typename _InputIterator>
839        void
840        insert(iterator __position, _InputIterator __first,
841	       _InputIterator __last)
842        {
843	  list __tmp(__first, __last, _M_get_Node_allocator());
844	  splice(__position, __tmp);
845	}
846
847      /**
848       *  @brief  Remove element at given position.
849       *  @param  position  Iterator pointing to element to be erased.
850       *  @return  An iterator pointing to the next element (or end()).
851       *
852       *  This function will erase the element at the given position and thus
853       *  shorten the %list by one.
854       *
855       *  Due to the nature of a %list this operation can be done in
856       *  constant time, and only invalidates iterators/references to
857       *  the element being removed.  The user is also cautioned that
858       *  this function only erases the element, and that if the element
859       *  is itself a pointer, the pointed-to memory is not touched in
860       *  any way.  Managing the pointer is the user's responsibilty.
861       */
862      iterator
863      erase(iterator __position);
864
865      /**
866       *  @brief  Remove a range of elements.
867       *  @param  first  Iterator pointing to the first element to be erased.
868       *  @param  last  Iterator pointing to one past the last element to be
869       *                erased.
870       *  @return  An iterator pointing to the element pointed to by @a last
871       *           prior to erasing (or end()).
872       *
873       *  This function will erase the elements in the range @a
874       *  [first,last) and shorten the %list accordingly.
875       *
876       *  This operation is linear time in the size of the range and only
877       *  invalidates iterators/references to the element being removed.
878       *  The user is also cautioned that this function only erases the
879       *  elements, and that if the elements themselves are pointers, the
880       *  pointed-to memory is not touched in any way.  Managing the pointer
881       *  is the user's responsibilty.
882       */
883      iterator
884      erase(iterator __first, iterator __last)
885      {
886	while (__first != __last)
887	  __first = erase(__first);
888	return __last;
889      }
890
891      /**
892       *  @brief  Swaps data with another %list.
893       *  @param  x  A %list of the same element and allocator types.
894       *
895       *  This exchanges the elements between two lists in constant
896       *  time.  Note that the global std::swap() function is
897       *  specialized such that std::swap(l1,l2) will feed to this
898       *  function.
899       */
900      void
901      swap(list& __x)
902      {
903	_List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
904
905	// _GLIBCXX_RESOLVE_LIB_DEFECTS
906	// 431. Swapping containers with unequal allocators.
907	std::__alloc_swap<typename _Base::_Node_alloc_type>::
908	  _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
909      }
910
911      /**
912       *  Erases all the elements.  Note that this function only erases
913       *  the elements, and that if the elements themselves are
914       *  pointers, the pointed-to memory is not touched in any way.
915       *  Managing the pointer is the user's responsibilty.
916       */
917      void
918      clear()
919      {
920        _Base::_M_clear();
921        _Base::_M_init();
922      }
923
924      // [23.2.2.4] list operations
925      /**
926       *  @brief  Insert contents of another %list.
927       *  @param  position  Iterator referencing the element to insert before.
928       *  @param  x  Source list.
929       *
930       *  The elements of @a x are inserted in constant time in front of
931       *  the element referenced by @a position.  @a x becomes an empty
932       *  list.
933       *
934       *  Requires this != @a x.
935       */
936      void
937      splice(iterator __position, list& __x)
938      {
939	if (!__x.empty())
940	  {
941	    _M_check_equal_allocators(__x);
942
943	    this->_M_transfer(__position, __x.begin(), __x.end());
944	  }
945      }
946
947      /**
948       *  @brief  Insert element from another %list.
949       *  @param  position  Iterator referencing the element to insert before.
950       *  @param  x  Source list.
951       *  @param  i  Iterator referencing the element to move.
952       *
953       *  Removes the element in list @a x referenced by @a i and
954       *  inserts it into the current list before @a position.
955       */
956      void
957      splice(iterator __position, list& __x, iterator __i)
958      {
959	iterator __j = __i;
960	++__j;
961	if (__position == __i || __position == __j)
962	  return;
963
964	if (this != &__x)
965	  _M_check_equal_allocators(__x);
966
967	this->_M_transfer(__position, __i, __j);
968      }
969
970      /**
971       *  @brief  Insert range from another %list.
972       *  @param  position  Iterator referencing the element to insert before.
973       *  @param  x  Source list.
974       *  @param  first  Iterator referencing the start of range in x.
975       *  @param  last  Iterator referencing the end of range in x.
976       *
977       *  Removes elements in the range [first,last) and inserts them
978       *  before @a position in constant time.
979       *
980       *  Undefined if @a position is in [first,last).
981       */
982      void
983      splice(iterator __position, list& __x, iterator __first, iterator __last)
984      {
985	if (__first != __last)
986	  {
987	    if (this != &__x)
988	      _M_check_equal_allocators(__x);
989
990	    this->_M_transfer(__position, __first, __last);
991	  }
992      }
993
994      /**
995       *  @brief  Remove all elements equal to value.
996       *  @param  value  The value to remove.
997       *
998       *  Removes every element in the list equal to @a value.
999       *  Remaining elements stay in list order.  Note that this
1000       *  function only erases the elements, and that if the elements
1001       *  themselves are pointers, the pointed-to memory is not
1002       *  touched in any way.  Managing the pointer is the user's
1003       *  responsibilty.
1004       */
1005      void
1006      remove(const _Tp& __value);
1007
1008      /**
1009       *  @brief  Remove all elements satisfying a predicate.
1010       *  @param  Predicate  Unary predicate function or object.
1011       *
1012       *  Removes every element in the list for which the predicate
1013       *  returns true.  Remaining elements stay in list order.  Note
1014       *  that this function only erases the elements, and that if the
1015       *  elements themselves are pointers, the pointed-to memory is
1016       *  not touched in any way.  Managing the pointer is the user's
1017       *  responsibilty.
1018       */
1019      template<typename _Predicate>
1020        void
1021        remove_if(_Predicate);
1022
1023      /**
1024       *  @brief  Remove consecutive duplicate elements.
1025       *
1026       *  For each consecutive set of elements with the same value,
1027       *  remove all but the first one.  Remaining elements stay in
1028       *  list order.  Note that this function only erases the
1029       *  elements, and that if the elements themselves are pointers,
1030       *  the pointed-to memory is not touched in any way.  Managing
1031       *  the pointer is the user's responsibilty.
1032       */
1033      void
1034      unique();
1035
1036      /**
1037       *  @brief  Remove consecutive elements satisfying a predicate.
1038       *  @param  BinaryPredicate  Binary predicate function or object.
1039       *
1040       *  For each consecutive set of elements [first,last) that
1041       *  satisfy predicate(first,i) where i is an iterator in
1042       *  [first,last), remove all but the first one.  Remaining
1043       *  elements stay in list order.  Note that this function only
1044       *  erases the elements, and that if the elements themselves are
1045       *  pointers, the pointed-to memory is not touched in any way.
1046       *  Managing the pointer is the user's responsibilty.
1047       */
1048      template<typename _BinaryPredicate>
1049        void
1050        unique(_BinaryPredicate);
1051
1052      /**
1053       *  @brief  Merge sorted lists.
1054       *  @param  x  Sorted list to merge.
1055       *
1056       *  Assumes that both @a x and this list are sorted according to
1057       *  operator<().  Merges elements of @a x into this list in
1058       *  sorted order, leaving @a x empty when complete.  Elements in
1059       *  this list precede elements in @a x that are equal.
1060       */
1061      void
1062      merge(list& __x);
1063
1064      /**
1065       *  @brief  Merge sorted lists according to comparison function.
1066       *  @param  x  Sorted list to merge.
1067       *  @param StrictWeakOrdering Comparison function definining
1068       *  sort order.
1069       *
1070       *  Assumes that both @a x and this list are sorted according to
1071       *  StrictWeakOrdering.  Merges elements of @a x into this list
1072       *  in sorted order, leaving @a x empty when complete.  Elements
1073       *  in this list precede elements in @a x that are equivalent
1074       *  according to StrictWeakOrdering().
1075       */
1076      template<typename _StrictWeakOrdering>
1077        void
1078        merge(list&, _StrictWeakOrdering);
1079
1080      /**
1081       *  @brief  Reverse the elements in list.
1082       *
1083       *  Reverse the order of elements in the list in linear time.
1084       */
1085      void
1086      reverse()
1087      { this->_M_impl._M_node.reverse(); }
1088
1089      /**
1090       *  @brief  Sort the elements.
1091       *
1092       *  Sorts the elements of this list in NlogN time.  Equivalent
1093       *  elements remain in list order.
1094       */
1095      void
1096      sort();
1097
1098      /**
1099       *  @brief  Sort the elements according to comparison function.
1100       *
1101       *  Sorts the elements of this list in NlogN time.  Equivalent
1102       *  elements remain in list order.
1103       */
1104      template<typename _StrictWeakOrdering>
1105        void
1106        sort(_StrictWeakOrdering);
1107
1108    protected:
1109      // Internal constructor functions follow.
1110
1111      // Called by the range constructor to implement [23.1.1]/9
1112      template<typename _Integer>
1113        void
1114        _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1115        {
1116	  _M_fill_initialize(static_cast<size_type>(__n),
1117			     static_cast<value_type>(__x));
1118	}
1119
1120      // Called by the range constructor to implement [23.1.1]/9
1121      template<typename _InputIterator>
1122        void
1123        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1124			       __false_type)
1125        {
1126	  for (; __first != __last; ++__first)
1127	    push_back(*__first);
1128	}
1129
1130      // Called by list(n,v,a), and the range constructor when it turns out
1131      // to be the same thing.
1132      void
1133      _M_fill_initialize(size_type __n, const value_type& __x)
1134      {
1135	for (; __n > 0; --__n)
1136	  push_back(__x);
1137      }
1138
1139
1140      // Internal assign functions follow.
1141
1142      // Called by the range assign to implement [23.1.1]/9
1143      template<typename _Integer>
1144        void
1145        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1146        {
1147	  _M_fill_assign(static_cast<size_type>(__n),
1148			 static_cast<value_type>(__val));
1149	}
1150
1151      // Called by the range assign to implement [23.1.1]/9
1152      template<typename _InputIterator>
1153        void
1154        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1155			   __false_type);
1156
1157      // Called by assign(n,t), and the range assign when it turns out
1158      // to be the same thing.
1159      void
1160      _M_fill_assign(size_type __n, const value_type& __val);
1161
1162
1163      // Moves the elements from [first,last) before position.
1164      void
1165      _M_transfer(iterator __position, iterator __first, iterator __last)
1166      { __position._M_node->transfer(__first._M_node, __last._M_node); }
1167
1168      // Inserts new element at position given and with value given.
1169      void
1170      _M_insert(iterator __position, const value_type& __x)
1171      {
1172        _Node* __tmp = _M_create_node(__x);
1173        __tmp->hook(__position._M_node);
1174      }
1175
1176      // Erases element at position given.
1177      void
1178      _M_erase(iterator __position)
1179      {
1180        __position._M_node->unhook();
1181        _Node* __n = static_cast<_Node*>(__position._M_node);
1182        _M_get_Tp_allocator().destroy(&__n->_M_data);
1183        _M_put_node(__n);
1184      }
1185
1186      // To implement the splice (and merge) bits of N1599.
1187      void
1188      _M_check_equal_allocators(list& __x)
1189      {
1190	if (_M_get_Node_allocator() != __x._M_get_Node_allocator())
1191	  __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1192      }
1193    };
1194
1195  /**
1196   *  @brief  List equality comparison.
1197   *  @param  x  A %list.
1198   *  @param  y  A %list of the same type as @a x.
1199   *  @return  True iff the size and elements of the lists are equal.
1200   *
1201   *  This is an equivalence relation.  It is linear in the size of
1202   *  the lists.  Lists are considered equivalent if their sizes are
1203   *  equal, and if corresponding elements compare equal.
1204  */
1205  template<typename _Tp, typename _Alloc>
1206    inline bool
1207    operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1208    {
1209      typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1210      const_iterator __end1 = __x.end();
1211      const_iterator __end2 = __y.end();
1212
1213      const_iterator __i1 = __x.begin();
1214      const_iterator __i2 = __y.begin();
1215      while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1216	{
1217	  ++__i1;
1218	  ++__i2;
1219	}
1220      return __i1 == __end1 && __i2 == __end2;
1221    }
1222
1223  /**
1224   *  @brief  List ordering relation.
1225   *  @param  x  A %list.
1226   *  @param  y  A %list of the same type as @a x.
1227   *  @return  True iff @a x is lexicographically less than @a y.
1228   *
1229   *  This is a total ordering relation.  It is linear in the size of the
1230   *  lists.  The elements must be comparable with @c <.
1231   *
1232   *  See std::lexicographical_compare() for how the determination is made.
1233  */
1234  template<typename _Tp, typename _Alloc>
1235    inline bool
1236    operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1237    { return std::lexicographical_compare(__x.begin(), __x.end(),
1238					  __y.begin(), __y.end()); }
1239
1240  /// Based on operator==
1241  template<typename _Tp, typename _Alloc>
1242    inline bool
1243    operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1244    { return !(__x == __y); }
1245
1246  /// Based on operator<
1247  template<typename _Tp, typename _Alloc>
1248    inline bool
1249    operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1250    { return __y < __x; }
1251
1252  /// Based on operator<
1253  template<typename _Tp, typename _Alloc>
1254    inline bool
1255    operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1256    { return !(__y < __x); }
1257
1258  /// Based on operator<
1259  template<typename _Tp, typename _Alloc>
1260    inline bool
1261    operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1262    { return !(__x < __y); }
1263
1264  /// See std::list::swap().
1265  template<typename _Tp, typename _Alloc>
1266    inline void
1267    swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1268    { __x.swap(__y); }
1269
1270_GLIBCXX_END_NESTED_NAMESPACE
1271
1272#endif /* _LIST_H */
1273
1274