1/* Frame unwinder for frames with DWARF Call Frame Information.
2
3   Copyright 2003, 2004 Free Software Foundation, Inc.
4
5   Contributed by Mark Kettenis.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place - Suite 330,
22   Boston, MA 02111-1307, USA.  */
23
24#include "defs.h"
25#include "dwarf2expr.h"
26#include "elf/dwarf2.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
32#include "symtab.h"
33#include "objfiles.h"
34#include "regcache.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
39#include "complaints.h"
40#include "dwarf2-frame.h"
41
42/* Call Frame Information (CFI).  */
43
44/* Common Information Entry (CIE).  */
45
46struct dwarf2_cie
47{
48  /* Offset into the .debug_frame section where this CIE was found.
49     Used to identify this CIE.  */
50  ULONGEST cie_pointer;
51
52  /* Constant that is factored out of all advance location
53     instructions.  */
54  ULONGEST code_alignment_factor;
55
56  /* Constants that is factored out of all offset instructions.  */
57  LONGEST data_alignment_factor;
58
59  /* Return address column.  */
60  ULONGEST return_address_register;
61
62  /* Instruction sequence to initialize a register set.  */
63  unsigned char *initial_instructions;
64  unsigned char *end;
65
66  /* Encoding of addresses.  */
67  unsigned char encoding;
68
69  /* True if a 'z' augmentation existed.  */
70  unsigned char saw_z_augmentation;
71
72  struct dwarf2_cie *next;
73};
74
75/* Frame Description Entry (FDE).  */
76
77struct dwarf2_fde
78{
79  /* CIE for this FDE.  */
80  struct dwarf2_cie *cie;
81
82  /* First location associated with this FDE.  */
83  CORE_ADDR initial_location;
84
85  /* Number of bytes of program instructions described by this FDE.  */
86  CORE_ADDR address_range;
87
88  /* Instruction sequence.  */
89  unsigned char *instructions;
90  unsigned char *end;
91
92  struct dwarf2_fde *next;
93};
94
95static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96
97
98/* Structure describing a frame state.  */
99
100struct dwarf2_frame_state
101{
102  /* Each register save state can be described in terms of a CFA slot,
103     another register, or a location expression.  */
104  struct dwarf2_frame_state_reg_info
105  {
106    struct dwarf2_frame_state_reg *reg;
107    int num_regs;
108
109    /* Used to implement DW_CFA_remember_state.  */
110    struct dwarf2_frame_state_reg_info *prev;
111  } regs;
112
113  LONGEST cfa_offset;
114  ULONGEST cfa_reg;
115  unsigned char *cfa_exp;
116  enum {
117    CFA_UNSET,
118    CFA_REG_OFFSET,
119    CFA_EXP
120  } cfa_how;
121
122  /* The PC described by the current frame state.  */
123  CORE_ADDR pc;
124
125  /* Initial register set from the CIE.
126     Used to implement DW_CFA_restore.  */
127  struct dwarf2_frame_state_reg_info initial;
128
129  /* The information we care about from the CIE.  */
130  LONGEST data_align;
131  ULONGEST code_align;
132  ULONGEST retaddr_column;
133};
134
135/* Store the length the expression for the CFA in the `cfa_reg' field,
136   which is unused in that case.  */
137#define cfa_exp_len cfa_reg
138
139/* Assert that the register set RS is large enough to store NUM_REGS
140   columns.  If necessary, enlarge the register set.  */
141
142static void
143dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144			       int num_regs)
145{
146  size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148  if (num_regs <= rs->num_regs)
149    return;
150
151  rs->reg = (struct dwarf2_frame_state_reg *)
152    xrealloc (rs->reg, num_regs * size);
153
154  /* Initialize newly allocated registers.  */
155  memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156  rs->num_regs = num_regs;
157}
158
159/* Copy the register columns in register set RS into newly allocated
160   memory and return a pointer to this newly created copy.  */
161
162static struct dwarf2_frame_state_reg *
163dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164{
165  size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166  struct dwarf2_frame_state_reg *reg;
167
168  reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169  memcpy (reg, rs->reg, size);
170
171  return reg;
172}
173
174/* Release the memory allocated to register set RS.  */
175
176static void
177dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178{
179  if (rs)
180    {
181      dwarf2_frame_state_free_regs (rs->prev);
182
183      xfree (rs->reg);
184      xfree (rs);
185    }
186}
187
188/* Release the memory allocated to the frame state FS.  */
189
190static void
191dwarf2_frame_state_free (void *p)
192{
193  struct dwarf2_frame_state *fs = p;
194
195  dwarf2_frame_state_free_regs (fs->initial.prev);
196  dwarf2_frame_state_free_regs (fs->regs.prev);
197  xfree (fs->initial.reg);
198  xfree (fs->regs.reg);
199  xfree (fs);
200}
201
202
203/* Helper functions for execute_stack_op.  */
204
205static CORE_ADDR
206read_reg (void *baton, int reg)
207{
208  struct frame_info *next_frame = (struct frame_info *) baton;
209  struct gdbarch *gdbarch = get_frame_arch (next_frame);
210  int regnum;
211  char *buf;
212
213  regnum = DWARF2_REG_TO_REGNUM (reg);
214
215  buf = (char *) alloca (register_size (gdbarch, regnum));
216  frame_unwind_register (next_frame, regnum, buf);
217  return extract_typed_address (buf, builtin_type_void_data_ptr);
218}
219
220static void
221read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222{
223  read_memory (addr, buf, len);
224}
225
226static void
227no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228{
229  internal_error (__FILE__, __LINE__,
230		  "Support for DW_OP_fbreg is unimplemented");
231}
232
233static CORE_ADDR
234no_get_tls_address (void *baton, CORE_ADDR offset)
235{
236  internal_error (__FILE__, __LINE__,
237		  "Support for DW_OP_GNU_push_tls_address is unimplemented");
238}
239
240static CORE_ADDR
241execute_stack_op (unsigned char *exp, ULONGEST len,
242		  struct frame_info *next_frame, CORE_ADDR initial)
243{
244  struct dwarf_expr_context *ctx;
245  CORE_ADDR result;
246
247  ctx = new_dwarf_expr_context ();
248  ctx->baton = next_frame;
249  ctx->read_reg = read_reg;
250  ctx->read_mem = read_mem;
251  ctx->get_frame_base = no_get_frame_base;
252  ctx->get_tls_address = no_get_tls_address;
253
254  dwarf_expr_push (ctx, initial);
255  dwarf_expr_eval (ctx, exp, len);
256  result = dwarf_expr_fetch (ctx, 0);
257
258  if (ctx->in_reg)
259    result = read_reg (next_frame, result);
260
261  free_dwarf_expr_context (ctx);
262
263  return result;
264}
265
266
267static void
268execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269		     struct frame_info *next_frame,
270		     struct dwarf2_frame_state *fs)
271{
272  CORE_ADDR pc = frame_pc_unwind (next_frame);
273  int bytes_read;
274
275  while (insn_ptr < insn_end && fs->pc <= pc)
276    {
277      unsigned char insn = *insn_ptr++;
278      ULONGEST utmp, reg;
279      LONGEST offset;
280
281      if ((insn & 0xc0) == DW_CFA_advance_loc)
282	fs->pc += (insn & 0x3f) * fs->code_align;
283      else if ((insn & 0xc0) == DW_CFA_offset)
284	{
285	  reg = insn & 0x3f;
286	  insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287	  offset = utmp * fs->data_align;
288	  dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289	  fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290	  fs->regs.reg[reg].loc.offset = offset;
291	}
292      else if ((insn & 0xc0) == DW_CFA_restore)
293	{
294	  gdb_assert (fs->initial.reg);
295	  reg = insn & 0x3f;
296	  dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297	  fs->regs.reg[reg] = fs->initial.reg[reg];
298	}
299      else
300	{
301	  switch (insn)
302	    {
303	    case DW_CFA_set_loc:
304	      fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305	      insn_ptr += bytes_read;
306	      break;
307
308	    case DW_CFA_advance_loc1:
309	      utmp = extract_unsigned_integer (insn_ptr, 1);
310	      fs->pc += utmp * fs->code_align;
311	      insn_ptr++;
312	      break;
313	    case DW_CFA_advance_loc2:
314	      utmp = extract_unsigned_integer (insn_ptr, 2);
315	      fs->pc += utmp * fs->code_align;
316	      insn_ptr += 2;
317	      break;
318	    case DW_CFA_advance_loc4:
319	      utmp = extract_unsigned_integer (insn_ptr, 4);
320	      fs->pc += utmp * fs->code_align;
321	      insn_ptr += 4;
322	      break;
323
324	    case DW_CFA_offset_extended:
325	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327	      offset = utmp * fs->data_align;
328	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330	      fs->regs.reg[reg].loc.offset = offset;
331	      break;
332
333	    case DW_CFA_restore_extended:
334	      gdb_assert (fs->initial.reg);
335	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337	      fs->regs.reg[reg] = fs->initial.reg[reg];
338	      break;
339
340	    case DW_CFA_undefined:
341	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344	      break;
345
346	    case DW_CFA_same_value:
347	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350	      break;
351
352	    case DW_CFA_register:
353	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357	      fs->regs.reg[reg].loc.reg = utmp;
358	      break;
359
360	    case DW_CFA_remember_state:
361	      {
362		struct dwarf2_frame_state_reg_info *new_rs;
363
364		new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365		*new_rs = fs->regs;
366		fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367		fs->regs.prev = new_rs;
368	      }
369	      break;
370
371	    case DW_CFA_restore_state:
372	      {
373		struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375		gdb_assert (old_rs);
376
377		xfree (fs->regs.reg);
378		fs->regs = *old_rs;
379		xfree (old_rs);
380	      }
381	      break;
382
383	    case DW_CFA_def_cfa:
384	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
385	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
386	      fs->cfa_offset = utmp;
387	      fs->cfa_how = CFA_REG_OFFSET;
388	      break;
389
390	    case DW_CFA_def_cfa_register:
391	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
392	      fs->cfa_how = CFA_REG_OFFSET;
393	      break;
394
395	    case DW_CFA_def_cfa_offset:
396	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
397	      /* cfa_how deliberately not set.  */
398	      break;
399
400	    case DW_CFA_nop:
401	      break;
402
403	    case DW_CFA_def_cfa_expression:
404	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
405	      fs->cfa_exp = insn_ptr;
406	      fs->cfa_how = CFA_EXP;
407	      insn_ptr += fs->cfa_exp_len;
408	      break;
409
410	    case DW_CFA_expression:
411	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
412	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
413	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
414	      fs->regs.reg[reg].loc.exp = insn_ptr;
415	      fs->regs.reg[reg].exp_len = utmp;
416	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
417	      insn_ptr += utmp;
418	      break;
419
420	    case DW_CFA_offset_extended_sf:
421	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
422	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
423	      offset += fs->data_align;
424	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
425	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
426	      fs->regs.reg[reg].loc.offset = offset;
427	      break;
428
429	    case DW_CFA_def_cfa_sf:
430	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
431	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
432	      fs->cfa_offset = offset * fs->data_align;
433	      fs->cfa_how = CFA_REG_OFFSET;
434	      break;
435
436	    case DW_CFA_def_cfa_offset_sf:
437	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438	      fs->cfa_offset = offset * fs->data_align;
439	      /* cfa_how deliberately not set.  */
440	      break;
441
442	    case DW_CFA_GNU_args_size:
443	      /* Ignored.  */
444	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
445	      break;
446
447	    default:
448	      internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
449	    }
450	}
451    }
452
453  /* Don't allow remember/restore between CIE and FDE programs.  */
454  dwarf2_frame_state_free_regs (fs->regs.prev);
455  fs->regs.prev = NULL;
456}
457
458
459/* Architecture-specific operations.  */
460
461/* Per-architecture data key.  */
462static struct gdbarch_data *dwarf2_frame_data;
463
464struct dwarf2_frame_ops
465{
466  /* Pre-initialize the register state REG for register REGNUM.  */
467  void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
468};
469
470/* Default architecture-specific register state initialization
471   function.  */
472
473static void
474dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
475			       struct dwarf2_frame_state_reg *reg)
476{
477  /* If we have a register that acts as a program counter, mark it as
478     a destination for the return address.  If we have a register that
479     serves as the stack pointer, arrange for it to be filled with the
480     call frame address (CFA).  The other registers are marked as
481     unspecified.
482
483     We copy the return address to the program counter, since many
484     parts in GDB assume that it is possible to get the return address
485     by unwinding the program counter register.  However, on ISA's
486     with a dedicated return address register, the CFI usually only
487     contains information to unwind that return address register.
488
489     The reason we're treating the stack pointer special here is
490     because in many cases GCC doesn't emit CFI for the stack pointer
491     and implicitly assumes that it is equal to the CFA.  This makes
492     some sense since the DWARF specification (version 3, draft 8,
493     p. 102) says that:
494
495     "Typically, the CFA is defined to be the value of the stack
496     pointer at the call site in the previous frame (which may be
497     different from its value on entry to the current frame)."
498
499     However, this isn't true for all platforms supported by GCC
500     (e.g. IBM S/390 and zSeries).  Those architectures should provide
501     their own architecture-specific initialization function.  */
502
503  if (regnum == PC_REGNUM)
504    reg->how = DWARF2_FRAME_REG_RA;
505  else if (regnum == SP_REGNUM)
506    reg->how = DWARF2_FRAME_REG_CFA;
507}
508
509/* Return a default for the architecture-specific operations.  */
510
511static void *
512dwarf2_frame_init (struct gdbarch *gdbarch)
513{
514  struct dwarf2_frame_ops *ops;
515
516  ops = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct dwarf2_frame_ops);
517  ops->init_reg = dwarf2_frame_default_init_reg;
518  return ops;
519}
520
521static struct dwarf2_frame_ops *
522dwarf2_frame_ops (struct gdbarch *gdbarch)
523{
524  struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
525  if (ops == NULL)
526    {
527      /* ULGH, called during architecture initialization.  Patch
528         things up.  */
529      ops = dwarf2_frame_init (gdbarch);
530      set_gdbarch_data (gdbarch, dwarf2_frame_data, ops);
531    }
532  return ops;
533}
534
535/* Set the architecture-specific register state initialization
536   function for GDBARCH to INIT_REG.  */
537
538void
539dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
540			   void (*init_reg) (struct gdbarch *, int,
541					     struct dwarf2_frame_state_reg *))
542{
543  struct dwarf2_frame_ops *ops;
544
545  ops = dwarf2_frame_ops (gdbarch);
546  ops->init_reg = init_reg;
547}
548
549/* Pre-initialize the register state REG for register REGNUM.  */
550
551static void
552dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
553		       struct dwarf2_frame_state_reg *reg)
554{
555  struct dwarf2_frame_ops *ops;
556
557  ops = dwarf2_frame_ops (gdbarch);
558  ops->init_reg (gdbarch, regnum, reg);
559}
560
561
562struct dwarf2_frame_cache
563{
564  /* DWARF Call Frame Address.  */
565  CORE_ADDR cfa;
566
567  /* Saved registers, indexed by GDB register number, not by DWARF
568     register number.  */
569  struct dwarf2_frame_state_reg *reg;
570};
571
572static struct dwarf2_frame_cache *
573dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
574{
575  struct cleanup *old_chain;
576  struct gdbarch *gdbarch = get_frame_arch (next_frame);
577  const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
578  struct dwarf2_frame_cache *cache;
579  struct dwarf2_frame_state *fs;
580  struct dwarf2_fde *fde;
581
582  if (*this_cache)
583    return *this_cache;
584
585  /* Allocate a new cache.  */
586  cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
587  cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
588
589  /* Allocate and initialize the frame state.  */
590  fs = XMALLOC (struct dwarf2_frame_state);
591  memset (fs, 0, sizeof (struct dwarf2_frame_state));
592  old_chain = make_cleanup (dwarf2_frame_state_free, fs);
593
594  /* Unwind the PC.
595
596     Note that if NEXT_FRAME is never supposed to return (i.e. a call
597     to abort), the compiler might optimize away the instruction at
598     NEXT_FRAME's return address.  As a result the return address will
599     point at some random instruction, and the CFI for that
600     instruction is probably worthless to us.  GCC's unwinder solves
601     this problem by substracting 1 from the return address to get an
602     address in the middle of a presumed call instruction (or the
603     instruction in the associated delay slot).  This should only be
604     done for "normal" frames and not for resume-type frames (signal
605     handlers, sentinel frames, dummy frames).  The function
606     frame_unwind_address_in_block does just this.  It's not clear how
607     reliable the method is though; there is the potential for the
608     register state pre-call being different to that on return.  */
609  fs->pc = frame_unwind_address_in_block (next_frame);
610
611  /* Find the correct FDE.  */
612  fde = dwarf2_frame_find_fde (&fs->pc);
613  gdb_assert (fde != NULL);
614
615  /* Extract any interesting information from the CIE.  */
616  fs->data_align = fde->cie->data_alignment_factor;
617  fs->code_align = fde->cie->code_alignment_factor;
618  fs->retaddr_column = fde->cie->return_address_register;
619
620  /* First decode all the insns in the CIE.  */
621  execute_cfa_program (fde->cie->initial_instructions,
622		       fde->cie->end, next_frame, fs);
623
624  /* Save the initialized register set.  */
625  fs->initial = fs->regs;
626  fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
627
628  /* Then decode the insns in the FDE up to our target PC.  */
629  execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
630
631  /* Caclulate the CFA.  */
632  switch (fs->cfa_how)
633    {
634    case CFA_REG_OFFSET:
635      cache->cfa = read_reg (next_frame, fs->cfa_reg);
636      cache->cfa += fs->cfa_offset;
637      break;
638
639    case CFA_EXP:
640      cache->cfa =
641	execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
642      break;
643
644    default:
645      internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
646    }
647
648  /* Initialize the register state.  */
649  {
650    int regnum;
651
652    for (regnum = 0; regnum < num_regs; regnum++)
653      dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
654  }
655
656  /* Go through the DWARF2 CFI generated table and save its register
657     location information in the cache.  Note that we don't skip the
658     return address column; it's perfectly all right for it to
659     correspond to a real register.  If it doesn't correspond to a
660     real register, or if we shouldn't treat it as such,
661     DWARF2_REG_TO_REGNUM should be defined to return a number outside
662     the range [0, NUM_REGS).  */
663  {
664    int column;		/* CFI speak for "register number".  */
665
666    for (column = 0; column < fs->regs.num_regs; column++)
667      {
668	/* Use the GDB register number as the destination index.  */
669	int regnum = DWARF2_REG_TO_REGNUM (column);
670
671	/* If there's no corresponding GDB register, ignore it.  */
672	if (regnum < 0 || regnum >= num_regs)
673	  continue;
674
675	/* NOTE: cagney/2003-09-05: CFI should specify the disposition
676	   of all debug info registers.  If it doesn't, complain (but
677	   not too loudly).  It turns out that GCC assumes that an
678	   unspecified register implies "same value" when CFI (draft
679	   7) specifies nothing at all.  Such a register could equally
680	   be interpreted as "undefined".  Also note that this check
681	   isn't sufficient; it only checks that all registers in the
682	   range [0 .. max column] are specified, and won't detect
683	   problems when a debug info register falls outside of the
684	   table.  We need a way of iterating through all the valid
685	   DWARF2 register numbers.  */
686	if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
687	  complaint (&symfile_complaints,
688		     "Incomplete CFI data; unspecified registers at 0x%s",
689		     paddr (fs->pc));
690	else
691	  cache->reg[regnum] = fs->regs.reg[column];
692      }
693  }
694
695  /* Eliminate any DWARF2_FRAME_REG_RA rules.  */
696  {
697    int regnum;
698
699    for (regnum = 0; regnum < num_regs; regnum++)
700      {
701	if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
702	  {
703	    struct dwarf2_frame_state_reg *retaddr_reg =
704	      &fs->regs.reg[fs->retaddr_column];
705
706	    /* It seems rather bizarre to specify an "empty" column as
707               the return adress column.  However, this is exactly
708               what GCC does on some targets.  It turns out that GCC
709               assumes that the return address can be found in the
710               register corresponding to the return address column.
711               Incidentally, that's how should treat a return address
712               column specifying "same value" too.  */
713	    if (fs->retaddr_column < fs->regs.num_regs
714		&& retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
715		&& retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
716	      cache->reg[regnum] = *retaddr_reg;
717	    else
718	      {
719		cache->reg[regnum].loc.reg = fs->retaddr_column;
720		cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
721	      }
722	  }
723      }
724  }
725
726  do_cleanups (old_chain);
727
728  *this_cache = cache;
729  return cache;
730}
731
732static void
733dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
734		      struct frame_id *this_id)
735{
736  struct dwarf2_frame_cache *cache =
737    dwarf2_frame_cache (next_frame, this_cache);
738
739  (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
740}
741
742static void
743dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
744			    int regnum, int *optimizedp,
745			    enum lval_type *lvalp, CORE_ADDR *addrp,
746			    int *realnump, void *valuep)
747{
748  struct gdbarch *gdbarch = get_frame_arch (next_frame);
749  struct dwarf2_frame_cache *cache =
750    dwarf2_frame_cache (next_frame, this_cache);
751
752  switch (cache->reg[regnum].how)
753    {
754    case DWARF2_FRAME_REG_UNDEFINED:
755      /* If CFI explicitly specified that the value isn't defined,
756	 mark it as optimized away; the value isn't available.  */
757      *optimizedp = 1;
758      *lvalp = not_lval;
759      *addrp = 0;
760      *realnump = -1;
761      if (valuep)
762	{
763	  /* In some cases, for example %eflags on the i386, we have
764	     to provide a sane value, even though this register wasn't
765	     saved.  Assume we can get it from NEXT_FRAME.  */
766	  frame_unwind_register (next_frame, regnum, valuep);
767	}
768      break;
769
770    case DWARF2_FRAME_REG_SAVED_OFFSET:
771      *optimizedp = 0;
772      *lvalp = lval_memory;
773      *addrp = cache->cfa + cache->reg[regnum].loc.offset;
774      *realnump = -1;
775      if (valuep)
776	{
777	  /* Read the value in from memory.  */
778	  read_memory (*addrp, valuep, register_size (gdbarch, regnum));
779	}
780      break;
781
782    case DWARF2_FRAME_REG_SAVED_REG:
783      regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
784      frame_register_unwind (next_frame, regnum,
785			     optimizedp, lvalp, addrp, realnump, valuep);
786      break;
787
788    case DWARF2_FRAME_REG_SAVED_EXP:
789      *optimizedp = 0;
790      *lvalp = lval_memory;
791      *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
792				 cache->reg[regnum].exp_len,
793				 next_frame, cache->cfa);
794      *realnump = -1;
795      if (valuep)
796	{
797	  /* Read the value in from memory.  */
798	  read_memory (*addrp, valuep, register_size (gdbarch, regnum));
799	}
800      break;
801
802    case DWARF2_FRAME_REG_UNSPECIFIED:
803      /* GCC, in its infinite wisdom decided to not provide unwind
804	 information for registers that are "same value".  Since
805	 DWARF2 (3 draft 7) doesn't define such behavior, said
806	 registers are actually undefined (which is different to CFI
807	 "undefined").  Code above issues a complaint about this.
808	 Here just fudge the books, assume GCC, and that the value is
809	 more inner on the stack.  */
810      frame_register_unwind (next_frame, regnum,
811			     optimizedp, lvalp, addrp, realnump, valuep);
812      break;
813
814    case DWARF2_FRAME_REG_SAME_VALUE:
815      frame_register_unwind (next_frame, regnum,
816			     optimizedp, lvalp, addrp, realnump, valuep);
817      break;
818
819    case DWARF2_FRAME_REG_CFA:
820      *optimizedp = 0;
821      *lvalp = not_lval;
822      *addrp = 0;
823      *realnump = -1;
824      if (valuep)
825	{
826	  /* Store the value.  */
827	  store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
828	}
829      break;
830
831    default:
832      internal_error (__FILE__, __LINE__, "Unknown register rule.");
833    }
834}
835
836static const struct frame_unwind dwarf2_frame_unwind =
837{
838  NORMAL_FRAME,
839  dwarf2_frame_this_id,
840  dwarf2_frame_prev_register
841};
842
843const struct frame_unwind *
844dwarf2_frame_sniffer (struct frame_info *next_frame)
845{
846  /* Grab an address that is guarenteed to reside somewhere within the
847     function.  frame_pc_unwind(), for a no-return next function, can
848     end up returning something past the end of this function's body.  */
849  CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
850  if (dwarf2_frame_find_fde (&block_addr))
851    return &dwarf2_frame_unwind;
852
853  return NULL;
854}
855
856
857/* There is no explicitly defined relationship between the CFA and the
858   location of frame's local variables and arguments/parameters.
859   Therefore, frame base methods on this page should probably only be
860   used as a last resort, just to avoid printing total garbage as a
861   response to the "info frame" command.  */
862
863static CORE_ADDR
864dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
865{
866  struct dwarf2_frame_cache *cache =
867    dwarf2_frame_cache (next_frame, this_cache);
868
869  return cache->cfa;
870}
871
872static const struct frame_base dwarf2_frame_base =
873{
874  &dwarf2_frame_unwind,
875  dwarf2_frame_base_address,
876  dwarf2_frame_base_address,
877  dwarf2_frame_base_address
878};
879
880const struct frame_base *
881dwarf2_frame_base_sniffer (struct frame_info *next_frame)
882{
883  CORE_ADDR pc = frame_pc_unwind (next_frame);
884  if (dwarf2_frame_find_fde (&pc))
885    return &dwarf2_frame_base;
886
887  return NULL;
888}
889
890/* A minimal decoding of DWARF2 compilation units.  We only decode
891   what's needed to get to the call frame information.  */
892
893struct comp_unit
894{
895  /* Keep the bfd convenient.  */
896  bfd *abfd;
897
898  struct objfile *objfile;
899
900  /* Linked list of CIEs for this object.  */
901  struct dwarf2_cie *cie;
902
903  /* Address size for this unit - from unit header.  */
904  unsigned char addr_size;
905
906  /* Pointer to the .debug_frame section loaded into memory.  */
907  char *dwarf_frame_buffer;
908
909  /* Length of the loaded .debug_frame section.  */
910  unsigned long dwarf_frame_size;
911
912  /* Pointer to the .debug_frame section.  */
913  asection *dwarf_frame_section;
914
915  /* Base for DW_EH_PE_datarel encodings.  */
916  bfd_vma dbase;
917
918  /* Base for DW_EH_PE_textrel encodings.  */
919  bfd_vma tbase;
920};
921
922const struct objfile_data *dwarf2_frame_objfile_data;
923
924static unsigned int
925read_1_byte (bfd *bfd, char *buf)
926{
927  return bfd_get_8 (abfd, (bfd_byte *) buf);
928}
929
930static unsigned int
931read_4_bytes (bfd *abfd, char *buf)
932{
933  return bfd_get_32 (abfd, (bfd_byte *) buf);
934}
935
936static ULONGEST
937read_8_bytes (bfd *abfd, char *buf)
938{
939  return bfd_get_64 (abfd, (bfd_byte *) buf);
940}
941
942static ULONGEST
943read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
944{
945  ULONGEST result;
946  unsigned int num_read;
947  int shift;
948  unsigned char byte;
949
950  result = 0;
951  shift = 0;
952  num_read = 0;
953
954  do
955    {
956      byte = bfd_get_8 (abfd, (bfd_byte *) buf);
957      buf++;
958      num_read++;
959      result |= ((byte & 0x7f) << shift);
960      shift += 7;
961    }
962  while (byte & 0x80);
963
964  *bytes_read_ptr = num_read;
965
966  return result;
967}
968
969static LONGEST
970read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
971{
972  LONGEST result;
973  int shift;
974  unsigned int num_read;
975  unsigned char byte;
976
977  result = 0;
978  shift = 0;
979  num_read = 0;
980
981  do
982    {
983      byte = bfd_get_8 (abfd, (bfd_byte *) buf);
984      buf++;
985      num_read++;
986      result |= ((byte & 0x7f) << shift);
987      shift += 7;
988    }
989  while (byte & 0x80);
990
991  if ((shift < 32) && (byte & 0x40))
992    result |= -(1 << shift);
993
994  *bytes_read_ptr = num_read;
995
996  return result;
997}
998
999static ULONGEST
1000read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1001{
1002  LONGEST result;
1003
1004  result = bfd_get_32 (abfd, (bfd_byte *) buf);
1005  if (result == 0xffffffff)
1006    {
1007      result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1008      *bytes_read_ptr = 12;
1009    }
1010  else
1011    *bytes_read_ptr = 4;
1012
1013  return result;
1014}
1015
1016
1017/* Pointer encoding helper functions.  */
1018
1019/* GCC supports exception handling based on DWARF2 CFI.  However, for
1020   technical reasons, it encodes addresses in its FDE's in a different
1021   way.  Several "pointer encodings" are supported.  The encoding
1022   that's used for a particular FDE is determined by the 'R'
1023   augmentation in the associated CIE.  The argument of this
1024   augmentation is a single byte.
1025
1026   The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1027   LEB128.  This is encoded in bits 0, 1 and 2.  Bit 3 encodes whether
1028   the address is signed or unsigned.  Bits 4, 5 and 6 encode how the
1029   address should be interpreted (absolute, relative to the current
1030   position in the FDE, ...).  Bit 7, indicates that the address
1031   should be dereferenced.  */
1032
1033static unsigned char
1034encoding_for_size (unsigned int size)
1035{
1036  switch (size)
1037    {
1038    case 2:
1039      return DW_EH_PE_udata2;
1040    case 4:
1041      return DW_EH_PE_udata4;
1042    case 8:
1043      return DW_EH_PE_udata8;
1044    default:
1045      internal_error (__FILE__, __LINE__, "Unsupported address size");
1046    }
1047}
1048
1049static unsigned int
1050size_of_encoded_value (unsigned char encoding)
1051{
1052  if (encoding == DW_EH_PE_omit)
1053    return 0;
1054
1055  switch (encoding & 0x07)
1056    {
1057    case DW_EH_PE_absptr:
1058      return TYPE_LENGTH (builtin_type_void_data_ptr);
1059    case DW_EH_PE_udata2:
1060      return 2;
1061    case DW_EH_PE_udata4:
1062      return 4;
1063    case DW_EH_PE_udata8:
1064      return 8;
1065    default:
1066      internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1067    }
1068}
1069
1070static CORE_ADDR
1071read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1072		    char *buf, unsigned int *bytes_read_ptr)
1073{
1074  int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1075  ptrdiff_t offset;
1076  CORE_ADDR base;
1077
1078  /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1079     FDE's.  */
1080  if (encoding & DW_EH_PE_indirect)
1081    internal_error (__FILE__, __LINE__,
1082		    "Unsupported encoding: DW_EH_PE_indirect");
1083
1084  *bytes_read_ptr = 0;
1085
1086  switch (encoding & 0x70)
1087    {
1088    case DW_EH_PE_absptr:
1089      base = 0;
1090      break;
1091    case DW_EH_PE_pcrel:
1092      base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1093      base += (buf - unit->dwarf_frame_buffer);
1094      break;
1095    case DW_EH_PE_datarel:
1096      base = unit->dbase;
1097      break;
1098    case DW_EH_PE_textrel:
1099      base = unit->tbase;
1100      break;
1101    case DW_EH_PE_funcrel:
1102      /* FIXME: kettenis/20040501: For now just pretend
1103         DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr.  For
1104         reading the initial location of an FDE it should be treated
1105         as such, and currently that's the only place where this code
1106         is used.  */
1107      base = 0;
1108      break;
1109    case DW_EH_PE_aligned:
1110      base = 0;
1111      offset = buf - unit->dwarf_frame_buffer;
1112      if ((offset % ptr_len) != 0)
1113	{
1114	  *bytes_read_ptr = ptr_len - (offset % ptr_len);
1115	  buf += *bytes_read_ptr;
1116	}
1117      break;
1118    default:
1119      internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1120    }
1121
1122  if ((encoding & 0x0f) == 0x00)
1123    encoding |= encoding_for_size (ptr_len);
1124
1125  switch (encoding & 0x0f)
1126    {
1127    case DW_EH_PE_udata2:
1128      *bytes_read_ptr += 2;
1129      return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1130    case DW_EH_PE_udata4:
1131      *bytes_read_ptr += 4;
1132      return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1133    case DW_EH_PE_udata8:
1134      *bytes_read_ptr += 8;
1135      return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1136    case DW_EH_PE_sdata2:
1137      *bytes_read_ptr += 2;
1138      return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1139    case DW_EH_PE_sdata4:
1140      *bytes_read_ptr += 4;
1141      return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1142    case DW_EH_PE_sdata8:
1143      *bytes_read_ptr += 8;
1144      return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1145    default:
1146      internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1147    }
1148}
1149
1150
1151/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1152   That's why we use a simple linked list here.  */
1153
1154static struct dwarf2_cie *
1155find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1156{
1157  struct dwarf2_cie *cie = unit->cie;
1158
1159  while (cie)
1160    {
1161      if (cie->cie_pointer == cie_pointer)
1162	return cie;
1163
1164      cie = cie->next;
1165    }
1166
1167  return NULL;
1168}
1169
1170static void
1171add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1172{
1173  cie->next = unit->cie;
1174  unit->cie = cie;
1175}
1176
1177/* Find the FDE for *PC.  Return a pointer to the FDE, and store the
1178   inital location associated with it into *PC.  */
1179
1180static struct dwarf2_fde *
1181dwarf2_frame_find_fde (CORE_ADDR *pc)
1182{
1183  struct objfile *objfile;
1184
1185  ALL_OBJFILES (objfile)
1186    {
1187      struct dwarf2_fde *fde;
1188      CORE_ADDR offset;
1189
1190      fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1191      if (fde == NULL)
1192	continue;
1193
1194      gdb_assert (objfile->section_offsets);
1195      offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1196
1197      while (fde)
1198	{
1199	  if (*pc >= fde->initial_location + offset
1200	      && *pc < fde->initial_location + offset + fde->address_range)
1201	    {
1202	      *pc = fde->initial_location + offset;
1203	      return fde;
1204	    }
1205
1206	  fde = fde->next;
1207	}
1208    }
1209
1210  return NULL;
1211}
1212
1213static void
1214add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1215{
1216  fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1217  set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1218}
1219
1220#ifdef CC_HAS_LONG_LONG
1221#define DW64_CIE_ID 0xffffffffffffffffULL
1222#else
1223#define DW64_CIE_ID ~0
1224#endif
1225
1226static char *decode_frame_entry (struct comp_unit *unit, char *start,
1227				 int eh_frame_p);
1228
1229/* Decode the next CIE or FDE.  Return NULL if invalid input, otherwise
1230   the next byte to be processed.  */
1231static char *
1232decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
1233{
1234  char *buf;
1235  LONGEST length;
1236  unsigned int bytes_read;
1237  int dwarf64_p;
1238  ULONGEST cie_id;
1239  ULONGEST cie_pointer;
1240  char *end;
1241
1242  buf = start;
1243  length = read_initial_length (unit->abfd, buf, &bytes_read);
1244  buf += bytes_read;
1245  end = buf + length;
1246
1247  /* Are we still within the section? */
1248  if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1249    return NULL;
1250
1251  if (length == 0)
1252    return end;
1253
1254  /* Distinguish between 32 and 64-bit encoded frame info.  */
1255  dwarf64_p = (bytes_read == 12);
1256
1257  /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs.  */
1258  if (eh_frame_p)
1259    cie_id = 0;
1260  else if (dwarf64_p)
1261    cie_id = DW64_CIE_ID;
1262  else
1263    cie_id = DW_CIE_ID;
1264
1265  if (dwarf64_p)
1266    {
1267      cie_pointer = read_8_bytes (unit->abfd, buf);
1268      buf += 8;
1269    }
1270  else
1271    {
1272      cie_pointer = read_4_bytes (unit->abfd, buf);
1273      buf += 4;
1274    }
1275
1276  if (cie_pointer == cie_id)
1277    {
1278      /* This is a CIE.  */
1279      struct dwarf2_cie *cie;
1280      char *augmentation;
1281
1282      /* Record the offset into the .debug_frame section of this CIE.  */
1283      cie_pointer = start - unit->dwarf_frame_buffer;
1284
1285      /* Check whether we've already read it.  */
1286      if (find_cie (unit, cie_pointer))
1287	return end;
1288
1289      cie = (struct dwarf2_cie *)
1290	obstack_alloc (&unit->objfile->objfile_obstack,
1291		       sizeof (struct dwarf2_cie));
1292      cie->initial_instructions = NULL;
1293      cie->cie_pointer = cie_pointer;
1294
1295      /* The encoding for FDE's in a normal .debug_frame section
1296         depends on the target address size as specified in the
1297         Compilation Unit Header.  */
1298      cie->encoding = encoding_for_size (unit->addr_size);
1299
1300      /* Check version number.  */
1301      if (read_1_byte (unit->abfd, buf) != DW_CIE_VERSION)
1302	return NULL;
1303      buf += 1;
1304
1305      /* Interpret the interesting bits of the augmentation.  */
1306      augmentation = buf;
1307      buf = augmentation + strlen (augmentation) + 1;
1308
1309      /* The GCC 2.x "eh" augmentation has a pointer immediately
1310         following the augmentation string, so it must be handled
1311         first.  */
1312      if (augmentation[0] == 'e' && augmentation[1] == 'h')
1313	{
1314	  /* Skip.  */
1315	  buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1316	  augmentation += 2;
1317	}
1318
1319      cie->code_alignment_factor =
1320	read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1321      buf += bytes_read;
1322
1323      cie->data_alignment_factor =
1324	read_signed_leb128 (unit->abfd, buf, &bytes_read);
1325      buf += bytes_read;
1326
1327      cie->return_address_register = read_1_byte (unit->abfd, buf);
1328      buf += 1;
1329
1330      cie->saw_z_augmentation = (*augmentation == 'z');
1331      if (cie->saw_z_augmentation)
1332	{
1333	  ULONGEST length;
1334
1335	  length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1336	  buf += bytes_read;
1337	  if (buf > end)
1338	    return NULL;
1339	  cie->initial_instructions = buf + length;
1340	  augmentation++;
1341	}
1342
1343      while (*augmentation)
1344	{
1345	  /* "L" indicates a byte showing how the LSDA pointer is encoded.  */
1346	  if (*augmentation == 'L')
1347	    {
1348	      /* Skip.  */
1349	      buf++;
1350	      augmentation++;
1351	    }
1352
1353	  /* "R" indicates a byte indicating how FDE addresses are encoded.  */
1354	  else if (*augmentation == 'R')
1355	    {
1356	      cie->encoding = *buf++;
1357	      augmentation++;
1358	    }
1359
1360	  /* "P" indicates a personality routine in the CIE augmentation.  */
1361	  else if (*augmentation == 'P')
1362	    {
1363	      /* Skip.  */
1364	      buf += size_of_encoded_value (*buf++);
1365	      augmentation++;
1366	    }
1367
1368	  /* Otherwise we have an unknown augmentation.
1369	     Bail out unless we saw a 'z' prefix.  */
1370	  else
1371	    {
1372	      if (cie->initial_instructions == NULL)
1373		return end;
1374
1375	      /* Skip unknown augmentations.  */
1376	      buf = cie->initial_instructions;
1377	      break;
1378	    }
1379	}
1380
1381      cie->initial_instructions = buf;
1382      cie->end = end;
1383
1384      add_cie (unit, cie);
1385    }
1386  else
1387    {
1388      /* This is a FDE.  */
1389      struct dwarf2_fde *fde;
1390
1391      /* In an .eh_frame section, the CIE pointer is the delta between the
1392	 address within the FDE where the CIE pointer is stored and the
1393	 address of the CIE.  Convert it to an offset into the .eh_frame
1394	 section.  */
1395      if (eh_frame_p)
1396	{
1397	  cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1398	  cie_pointer -= (dwarf64_p ? 8 : 4);
1399	}
1400
1401      /* In either case, validate the result is still within the section.  */
1402      if (cie_pointer >= unit->dwarf_frame_size)
1403	return NULL;
1404
1405      fde = (struct dwarf2_fde *)
1406	obstack_alloc (&unit->objfile->objfile_obstack,
1407		       sizeof (struct dwarf2_fde));
1408      fde->cie = find_cie (unit, cie_pointer);
1409      if (fde->cie == NULL)
1410	{
1411	  decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1412			      eh_frame_p);
1413	  fde->cie = find_cie (unit, cie_pointer);
1414	}
1415
1416      gdb_assert (fde->cie != NULL);
1417
1418      fde->initial_location =
1419	read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1420      buf += bytes_read;
1421
1422      fde->address_range =
1423	read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1424      buf += bytes_read;
1425
1426      /* A 'z' augmentation in the CIE implies the presence of an
1427	 augmentation field in the FDE as well.  The only thing known
1428	 to be in here at present is the LSDA entry for EH.  So we
1429	 can skip the whole thing.  */
1430      if (fde->cie->saw_z_augmentation)
1431	{
1432	  ULONGEST length;
1433
1434	  length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1435	  buf += bytes_read + length;
1436	  if (buf > end)
1437	    return NULL;
1438	}
1439
1440      fde->instructions = buf;
1441      fde->end = end;
1442
1443      add_fde (unit, fde);
1444    }
1445
1446  return end;
1447}
1448
1449/* Read a CIE or FDE in BUF and decode it.  */
1450static char *
1451decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1452{
1453  enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1454  char *ret;
1455  const char *msg;
1456  ptrdiff_t start_offset;
1457
1458  while (1)
1459    {
1460      ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1461      if (ret != NULL)
1462	break;
1463
1464      /* We have corrupt input data of some form.  */
1465
1466      /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1467	 and mismatches wrt padding and alignment of debug sections.  */
1468      /* Note that there is no requirement in the standard for any
1469	 alignment at all in the frame unwind sections.  Testing for
1470	 alignment before trying to interpret data would be incorrect.
1471
1472	 However, GCC traditionally arranged for frame sections to be
1473	 sized such that the FDE length and CIE fields happen to be
1474	 aligned (in theory, for performance).  This, unfortunately,
1475	 was done with .align directives, which had the side effect of
1476	 forcing the section to be aligned by the linker.
1477
1478	 This becomes a problem when you have some other producer that
1479	 creates frame sections that are not as strictly aligned.  That
1480	 produces a hole in the frame info that gets filled by the
1481	 linker with zeros.
1482
1483	 The GCC behaviour is arguably a bug, but it's effectively now
1484	 part of the ABI, so we're now stuck with it, at least at the
1485	 object file level.  A smart linker may decide, in the process
1486	 of compressing duplicate CIE information, that it can rewrite
1487	 the entire output section without this extra padding.  */
1488
1489      start_offset = start - unit->dwarf_frame_buffer;
1490      if (workaround < ALIGN4 && (start_offset & 3) != 0)
1491	{
1492	  start += 4 - (start_offset & 3);
1493	  workaround = ALIGN4;
1494	  continue;
1495	}
1496      if (workaround < ALIGN8 && (start_offset & 7) != 0)
1497	{
1498	  start += 8 - (start_offset & 7);
1499	  workaround = ALIGN8;
1500	  continue;
1501	}
1502
1503      /* Nothing left to try.  Arrange to return as if we've consumed
1504	 the entire input section.  Hopefully we'll get valid info from
1505	 the other of .debug_frame/.eh_frame.  */
1506      workaround = FAIL;
1507      ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1508      break;
1509    }
1510
1511  switch (workaround)
1512    {
1513    case NONE:
1514      break;
1515
1516    case ALIGN4:
1517      complaint (&symfile_complaints,
1518		 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1519		 unit->dwarf_frame_section->owner->filename,
1520		 unit->dwarf_frame_section->name);
1521      break;
1522
1523    case ALIGN8:
1524      complaint (&symfile_complaints,
1525		 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1526		 unit->dwarf_frame_section->owner->filename,
1527		 unit->dwarf_frame_section->name);
1528      break;
1529
1530    default:
1531      complaint (&symfile_complaints,
1532		 "Corrupt data in %s:%s",
1533		 unit->dwarf_frame_section->owner->filename,
1534		 unit->dwarf_frame_section->name);
1535      break;
1536    }
1537
1538  return ret;
1539}
1540
1541
1542/* FIXME: kettenis/20030504: This still needs to be integrated with
1543   dwarf2read.c in a better way.  */
1544
1545/* Imported from dwarf2read.c.  */
1546extern asection *dwarf_frame_section;
1547extern asection *dwarf_eh_frame_section;
1548
1549/* Imported from dwarf2read.c.  */
1550extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1551
1552void
1553dwarf2_build_frame_info (struct objfile *objfile)
1554{
1555  struct comp_unit unit;
1556  char *frame_ptr;
1557
1558  /* Build a minimal decoding of the DWARF2 compilation unit.  */
1559  unit.abfd = objfile->obfd;
1560  unit.objfile = objfile;
1561  unit.addr_size = objfile->obfd->arch_info->bits_per_address / 8;
1562  unit.dbase = 0;
1563  unit.tbase = 0;
1564
1565  /* First add the information from the .eh_frame section.  That way,
1566     the FDEs from that section are searched last.  */
1567  if (dwarf_eh_frame_section)
1568    {
1569      asection *got, *txt;
1570
1571      unit.cie = NULL;
1572      unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1573						     dwarf_eh_frame_section);
1574
1575      unit.dwarf_frame_size
1576	= bfd_get_section_size (dwarf_eh_frame_section);
1577      unit.dwarf_frame_section = dwarf_eh_frame_section;
1578
1579      /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1580	 that is used for the i386/amd64 target, which currently is
1581	 the only target in GCC that supports/uses the
1582	 DW_EH_PE_datarel encoding.  */
1583      got = bfd_get_section_by_name (unit.abfd, ".got");
1584      if (got)
1585	unit.dbase = got->vma;
1586
1587      /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1588         so far.  */
1589      txt = bfd_get_section_by_name (unit.abfd, ".text");
1590      if (txt)
1591	unit.tbase = txt->vma;
1592
1593      frame_ptr = unit.dwarf_frame_buffer;
1594      while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1595	frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1596    }
1597
1598  if (dwarf_frame_section)
1599    {
1600      unit.cie = NULL;
1601      unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1602						     dwarf_frame_section);
1603      unit.dwarf_frame_size
1604	= bfd_get_section_size (dwarf_frame_section);
1605      unit.dwarf_frame_section = dwarf_frame_section;
1606
1607      frame_ptr = unit.dwarf_frame_buffer;
1608      while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1609	frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1610    }
1611}
1612
1613/* Provide a prototype to silence -Wmissing-prototypes.  */
1614void _initialize_dwarf2_frame (void);
1615
1616void
1617_initialize_dwarf2_frame (void)
1618{
1619  dwarf2_frame_data = register_gdbarch_data (dwarf2_frame_init);
1620  dwarf2_frame_objfile_data = register_objfile_data ();
1621}
1622