1/* Support routines for Value Range Propagation (VRP).
2   Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3   Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "ggc.h"
27#include "flags.h"
28#include "tree.h"
29#include "basic-block.h"
30#include "tree-flow.h"
31#include "tree-pass.h"
32#include "tree-dump.h"
33#include "timevar.h"
34#include "diagnostic.h"
35#include "toplev.h"
36#include "intl.h"
37#include "cfgloop.h"
38#include "tree-scalar-evolution.h"
39#include "tree-ssa-propagate.h"
40#include "tree-chrec.h"
41
42/* Set of SSA names found during the dominator traversal of a
43   sub-graph in find_assert_locations.  */
44static sbitmap found_in_subgraph;
45
46/* Local functions.  */
47static int compare_values (tree val1, tree val2);
48static int compare_values_warnv (tree val1, tree val2, bool *);
49static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
50
51/* Location information for ASSERT_EXPRs.  Each instance of this
52   structure describes an ASSERT_EXPR for an SSA name.  Since a single
53   SSA name may have more than one assertion associated with it, these
54   locations are kept in a linked list attached to the corresponding
55   SSA name.  */
56struct assert_locus_d
57{
58  /* Basic block where the assertion would be inserted.  */
59  basic_block bb;
60
61  /* Some assertions need to be inserted on an edge (e.g., assertions
62     generated by COND_EXPRs).  In those cases, BB will be NULL.  */
63  edge e;
64
65  /* Pointer to the statement that generated this assertion.  */
66  block_stmt_iterator si;
67
68  /* Predicate code for the ASSERT_EXPR.  Must be COMPARISON_CLASS_P.  */
69  enum tree_code comp_code;
70
71  /* Value being compared against.  */
72  tree val;
73
74  /* Next node in the linked list.  */
75  struct assert_locus_d *next;
76};
77
78typedef struct assert_locus_d *assert_locus_t;
79
80/* If bit I is present, it means that SSA name N_i has a list of
81   assertions that should be inserted in the IL.  */
82static bitmap need_assert_for;
83
84/* Array of locations lists where to insert assertions.  ASSERTS_FOR[I]
85   holds a list of ASSERT_LOCUS_T nodes that describe where
86   ASSERT_EXPRs for SSA name N_I should be inserted.  */
87static assert_locus_t *asserts_for;
88
89/* Set of blocks visited in find_assert_locations.  Used to avoid
90   visiting the same block more than once.  */
91static sbitmap blocks_visited;
92
93/* Value range array.  After propagation, VR_VALUE[I] holds the range
94   of values that SSA name N_I may take.  */
95static value_range_t **vr_value;
96
97
98/* Return whether TYPE should use an overflow infinity distinct from
99   TYPE_{MIN,MAX}_VALUE.  We use an overflow infinity value to
100   represent a signed overflow during VRP computations.  An infinity
101   is distinct from a half-range, which will go from some number to
102   TYPE_{MIN,MAX}_VALUE.  */
103
104static inline bool
105needs_overflow_infinity (tree type)
106{
107  return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
108}
109
110/* Return whether TYPE can support our overflow infinity
111   representation: we use the TREE_OVERFLOW flag, which only exists
112   for constants.  If TYPE doesn't support this, we don't optimize
113   cases which would require signed overflow--we drop them to
114   VARYING.  */
115
116static inline bool
117supports_overflow_infinity (tree type)
118{
119#ifdef ENABLE_CHECKING
120  gcc_assert (needs_overflow_infinity (type));
121#endif
122  return (TYPE_MIN_VALUE (type) != NULL_TREE
123	  && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
124	  && TYPE_MAX_VALUE (type) != NULL_TREE
125	  && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
126}
127
128/* VAL is the maximum or minimum value of a type.  Return a
129   corresponding overflow infinity.  */
130
131static inline tree
132make_overflow_infinity (tree val)
133{
134#ifdef ENABLE_CHECKING
135  gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
136#endif
137  val = copy_node (val);
138  TREE_OVERFLOW (val) = 1;
139  return val;
140}
141
142/* Return a negative overflow infinity for TYPE.  */
143
144static inline tree
145negative_overflow_infinity (tree type)
146{
147#ifdef ENABLE_CHECKING
148  gcc_assert (supports_overflow_infinity (type));
149#endif
150  return make_overflow_infinity (TYPE_MIN_VALUE (type));
151}
152
153/* Return a positive overflow infinity for TYPE.  */
154
155static inline tree
156positive_overflow_infinity (tree type)
157{
158#ifdef ENABLE_CHECKING
159  gcc_assert (supports_overflow_infinity (type));
160#endif
161  return make_overflow_infinity (TYPE_MAX_VALUE (type));
162}
163
164/* Return whether VAL is a negative overflow infinity.  */
165
166static inline bool
167is_negative_overflow_infinity (tree val)
168{
169  return (needs_overflow_infinity (TREE_TYPE (val))
170	  && CONSTANT_CLASS_P (val)
171	  && TREE_OVERFLOW (val)
172	  && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
173}
174
175/* Return whether VAL is a positive overflow infinity.  */
176
177static inline bool
178is_positive_overflow_infinity (tree val)
179{
180  return (needs_overflow_infinity (TREE_TYPE (val))
181	  && CONSTANT_CLASS_P (val)
182	  && TREE_OVERFLOW (val)
183	  && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
184}
185
186/* Return whether VAL is a positive or negative overflow infinity.  */
187
188static inline bool
189is_overflow_infinity (tree val)
190{
191  return (needs_overflow_infinity (TREE_TYPE (val))
192	  && CONSTANT_CLASS_P (val)
193	  && TREE_OVERFLOW (val)
194	  && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
195	      || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
196}
197
198/* If VAL is now an overflow infinity, return VAL.  Otherwise, return
199   the same value with TREE_OVERFLOW clear.  This can be used to avoid
200   confusing a regular value with an overflow value.  */
201
202static inline tree
203avoid_overflow_infinity (tree val)
204{
205  if (!is_overflow_infinity (val))
206    return val;
207
208  if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
209    return TYPE_MAX_VALUE (TREE_TYPE (val));
210  else
211    {
212#ifdef ENABLE_CHECKING
213      gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
214#endif
215      return TYPE_MIN_VALUE (TREE_TYPE (val));
216    }
217}
218
219
220/* Return whether VAL is equal to the maximum value of its type.  This
221   will be true for a positive overflow infinity.  We can't do a
222   simple equality comparison with TYPE_MAX_VALUE because C typedefs
223   and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
224   to the integer constant with the same value in the type.  */
225
226static inline bool
227vrp_val_is_max (tree val)
228{
229  tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
230
231  return (val == type_max
232	  || (type_max != NULL_TREE
233	      && operand_equal_p (val, type_max, 0)));
234}
235
236/* Return whether VAL is equal to the minimum value of its type.  This
237   will be true for a negative overflow infinity.  */
238
239static inline bool
240vrp_val_is_min (tree val)
241{
242  tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
243
244  return (val == type_min
245	  || (type_min != NULL_TREE
246	      && operand_equal_p (val, type_min, 0)));
247}
248
249
250/* Return true if ARG is marked with the nonnull attribute in the
251   current function signature.  */
252
253static bool
254nonnull_arg_p (tree arg)
255{
256  tree t, attrs, fntype;
257  unsigned HOST_WIDE_INT arg_num;
258
259  gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
260
261  /* The static chain decl is always non null.  */
262  if (arg == cfun->static_chain_decl)
263    return true;
264
265  fntype = TREE_TYPE (current_function_decl);
266  attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
267
268  /* If "nonnull" wasn't specified, we know nothing about the argument.  */
269  if (attrs == NULL_TREE)
270    return false;
271
272  /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
273  if (TREE_VALUE (attrs) == NULL_TREE)
274    return true;
275
276  /* Get the position number for ARG in the function signature.  */
277  for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
278       t;
279       t = TREE_CHAIN (t), arg_num++)
280    {
281      if (t == arg)
282	break;
283    }
284
285  gcc_assert (t == arg);
286
287  /* Now see if ARG_NUM is mentioned in the nonnull list.  */
288  for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
289    {
290      if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
291	return true;
292    }
293
294  return false;
295}
296
297
298/* Set value range VR to {T, MIN, MAX, EQUIV}.  */
299
300static void
301set_value_range (value_range_t *vr, enum value_range_type t, tree min,
302		 tree max, bitmap equiv)
303{
304#if defined ENABLE_CHECKING
305  /* Check the validity of the range.  */
306  if (t == VR_RANGE || t == VR_ANTI_RANGE)
307    {
308      int cmp;
309
310      gcc_assert (min && max);
311
312      if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
313	gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
314
315      cmp = compare_values (min, max);
316      gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
317
318      if (needs_overflow_infinity (TREE_TYPE (min)))
319	gcc_assert (!is_overflow_infinity (min)
320		    || !is_overflow_infinity (max));
321    }
322
323  if (t == VR_UNDEFINED || t == VR_VARYING)
324    gcc_assert (min == NULL_TREE && max == NULL_TREE);
325
326  if (t == VR_UNDEFINED || t == VR_VARYING)
327    gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
328#endif
329
330  vr->type = t;
331  vr->min = min;
332  vr->max = max;
333
334  /* Since updating the equivalence set involves deep copying the
335     bitmaps, only do it if absolutely necessary.  */
336  if (vr->equiv == NULL)
337    vr->equiv = BITMAP_ALLOC (NULL);
338
339  if (equiv != vr->equiv)
340    {
341      if (equiv && !bitmap_empty_p (equiv))
342	bitmap_copy (vr->equiv, equiv);
343      else
344	bitmap_clear (vr->equiv);
345    }
346}
347
348
349/* Copy value range FROM into value range TO.  */
350
351static inline void
352copy_value_range (value_range_t *to, value_range_t *from)
353{
354  set_value_range (to, from->type, from->min, from->max, from->equiv);
355}
356
357
358/* Set value range VR to VR_VARYING.  */
359
360static inline void
361set_value_range_to_varying (value_range_t *vr)
362{
363  vr->type = VR_VARYING;
364  vr->min = vr->max = NULL_TREE;
365  if (vr->equiv)
366    bitmap_clear (vr->equiv);
367}
368
369/* Set value range VR to a single value.  This function is only called
370   with values we get from statements, and exists to clear the
371   TREE_OVERFLOW flag so that we don't think we have an overflow
372   infinity when we shouldn't.  */
373
374static inline void
375set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
376{
377  gcc_assert (is_gimple_min_invariant (val));
378  val = avoid_overflow_infinity (val);
379  set_value_range (vr, VR_RANGE, val, val, equiv);
380}
381
382/* Set value range VR to a non-negative range of type TYPE.
383   OVERFLOW_INFINITY indicates whether to use a overflow infinity
384   rather than TYPE_MAX_VALUE; this should be true if we determine
385   that the range is nonnegative based on the assumption that signed
386   overflow does not occur.  */
387
388static inline void
389set_value_range_to_nonnegative (value_range_t *vr, tree type,
390				bool overflow_infinity)
391{
392  tree zero;
393
394  if (overflow_infinity && !supports_overflow_infinity (type))
395    {
396      set_value_range_to_varying (vr);
397      return;
398    }
399
400  zero = build_int_cst (type, 0);
401  set_value_range (vr, VR_RANGE, zero,
402		   (overflow_infinity
403		    ? positive_overflow_infinity (type)
404		    : TYPE_MAX_VALUE (type)),
405		   vr->equiv);
406}
407
408/* Set value range VR to a non-NULL range of type TYPE.  */
409
410static inline void
411set_value_range_to_nonnull (value_range_t *vr, tree type)
412{
413  tree zero = build_int_cst (type, 0);
414  set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
415}
416
417
418/* Set value range VR to a NULL range of type TYPE.  */
419
420static inline void
421set_value_range_to_null (value_range_t *vr, tree type)
422{
423  set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
424}
425
426
427/* Set value range VR to VR_UNDEFINED.  */
428
429static inline void
430set_value_range_to_undefined (value_range_t *vr)
431{
432  vr->type = VR_UNDEFINED;
433  vr->min = vr->max = NULL_TREE;
434  if (vr->equiv)
435    bitmap_clear (vr->equiv);
436}
437
438
439/* Return value range information for VAR.
440
441   If we have no values ranges recorded (ie, VRP is not running), then
442   return NULL.  Otherwise create an empty range if none existed for VAR.  */
443
444static value_range_t *
445get_value_range (tree var)
446{
447  value_range_t *vr;
448  tree sym;
449  unsigned ver = SSA_NAME_VERSION (var);
450
451  /* If we have no recorded ranges, then return NULL.  */
452  if (! vr_value)
453    return NULL;
454
455  vr = vr_value[ver];
456  if (vr)
457    return vr;
458
459  /* Create a default value range.  */
460  vr_value[ver] = vr = XNEW (value_range_t);
461  memset (vr, 0, sizeof (*vr));
462
463  /* Allocate an equivalence set.  */
464  vr->equiv = BITMAP_ALLOC (NULL);
465
466  /* If VAR is a default definition, the variable can take any value
467     in VAR's type.  */
468  sym = SSA_NAME_VAR (var);
469  if (var == default_def (sym))
470    {
471      /* Try to use the "nonnull" attribute to create ~[0, 0]
472	 anti-ranges for pointers.  Note that this is only valid with
473	 default definitions of PARM_DECLs.  */
474      if (TREE_CODE (sym) == PARM_DECL
475	  && POINTER_TYPE_P (TREE_TYPE (sym))
476	  && nonnull_arg_p (sym))
477	set_value_range_to_nonnull (vr, TREE_TYPE (sym));
478      else
479	set_value_range_to_varying (vr);
480    }
481
482  return vr;
483}
484
485/* Return true, if VAL1 and VAL2 are equal values for VRP purposes.  */
486
487static inline bool
488vrp_operand_equal_p (tree val1, tree val2)
489{
490  if (val1 == val2)
491    return true;
492  if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
493    return false;
494  if (is_overflow_infinity (val1))
495    return is_overflow_infinity (val2);
496  return true;
497}
498
499/* Return true, if the bitmaps B1 and B2 are equal.  */
500
501static inline bool
502vrp_bitmap_equal_p (bitmap b1, bitmap b2)
503{
504  return (b1 == b2
505	  || (b1 && b2
506	      && bitmap_equal_p (b1, b2)));
507}
508
509/* Update the value range and equivalence set for variable VAR to
510   NEW_VR.  Return true if NEW_VR is different from VAR's previous
511   value.
512
513   NOTE: This function assumes that NEW_VR is a temporary value range
514   object created for the sole purpose of updating VAR's range.  The
515   storage used by the equivalence set from NEW_VR will be freed by
516   this function.  Do not call update_value_range when NEW_VR
517   is the range object associated with another SSA name.  */
518
519static inline bool
520update_value_range (tree var, value_range_t *new_vr)
521{
522  value_range_t *old_vr;
523  bool is_new;
524
525  /* Update the value range, if necessary.  */
526  old_vr = get_value_range (var);
527  is_new = old_vr->type != new_vr->type
528	   || !vrp_operand_equal_p (old_vr->min, new_vr->min)
529	   || !vrp_operand_equal_p (old_vr->max, new_vr->max)
530	   || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
531
532  if (is_new)
533    set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
534	             new_vr->equiv);
535
536  BITMAP_FREE (new_vr->equiv);
537  new_vr->equiv = NULL;
538
539  return is_new;
540}
541
542
543/* Add VAR and VAR's equivalence set to EQUIV.  */
544
545static void
546add_equivalence (bitmap equiv, tree var)
547{
548  unsigned ver = SSA_NAME_VERSION (var);
549  value_range_t *vr = vr_value[ver];
550
551  bitmap_set_bit (equiv, ver);
552  if (vr && vr->equiv)
553    bitmap_ior_into (equiv, vr->equiv);
554}
555
556
557/* Return true if VR is ~[0, 0].  */
558
559static inline bool
560range_is_nonnull (value_range_t *vr)
561{
562  return vr->type == VR_ANTI_RANGE
563	 && integer_zerop (vr->min)
564	 && integer_zerop (vr->max);
565}
566
567
568/* Return true if VR is [0, 0].  */
569
570static inline bool
571range_is_null (value_range_t *vr)
572{
573  return vr->type == VR_RANGE
574	 && integer_zerop (vr->min)
575	 && integer_zerop (vr->max);
576}
577
578
579/* Return true if value range VR involves at least one symbol.  */
580
581static inline bool
582symbolic_range_p (value_range_t *vr)
583{
584  return (!is_gimple_min_invariant (vr->min)
585          || !is_gimple_min_invariant (vr->max));
586}
587
588/* Return true if value range VR uses a overflow infinity.  */
589
590static inline bool
591overflow_infinity_range_p (value_range_t *vr)
592{
593  return (vr->type == VR_RANGE
594	  && (is_overflow_infinity (vr->min)
595	      || is_overflow_infinity (vr->max)));
596}
597
598/* Return false if we can not make a valid comparison based on VR;
599   this will be the case if it uses an overflow infinity and overflow
600   is not undefined (i.e., -fno-strict-overflow is in effect).
601   Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
602   uses an overflow infinity.  */
603
604static bool
605usable_range_p (value_range_t *vr, bool *strict_overflow_p)
606{
607  gcc_assert (vr->type == VR_RANGE);
608  if (is_overflow_infinity (vr->min))
609    {
610      *strict_overflow_p = true;
611      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
612	return false;
613    }
614  if (is_overflow_infinity (vr->max))
615    {
616      *strict_overflow_p = true;
617      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
618	return false;
619    }
620  return true;
621}
622
623
624/* Like tree_expr_nonnegative_warnv_p, but this function uses value
625   ranges obtained so far.  */
626
627static bool
628vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
629{
630  return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
631}
632
633/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
634   obtained so far.  */
635
636static bool
637vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
638{
639  if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
640    return true;
641
642  /* If we have an expression of the form &X->a, then the expression
643     is nonnull if X is nonnull.  */
644  if (TREE_CODE (expr) == ADDR_EXPR)
645    {
646      tree base = get_base_address (TREE_OPERAND (expr, 0));
647
648      if (base != NULL_TREE
649	  && TREE_CODE (base) == INDIRECT_REF
650	  && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
651	{
652	  value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
653	  if (range_is_nonnull (vr))
654	    return true;
655	}
656    }
657
658  return false;
659}
660
661/* Returns true if EXPR is a valid value (as expected by compare_values) --
662   a gimple invariant, or SSA_NAME +- CST.  */
663
664static bool
665valid_value_p (tree expr)
666{
667  if (TREE_CODE (expr) == SSA_NAME)
668    return true;
669
670  if (TREE_CODE (expr) == PLUS_EXPR
671      || TREE_CODE (expr) == MINUS_EXPR)
672    return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
673	    && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
674
675  return is_gimple_min_invariant (expr);
676}
677
678/* Compare two values VAL1 and VAL2.  Return
679
680   	-2 if VAL1 and VAL2 cannot be compared at compile-time,
681   	-1 if VAL1 < VAL2,
682   	 0 if VAL1 == VAL2,
683	+1 if VAL1 > VAL2, and
684	+2 if VAL1 != VAL2
685
686   This is similar to tree_int_cst_compare but supports pointer values
687   and values that cannot be compared at compile time.
688
689   If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
690   true if the return value is only valid if we assume that signed
691   overflow is undefined.  */
692
693static int
694compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
695{
696  if (val1 == val2)
697    return 0;
698
699  /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
700     both integers.  */
701  gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
702	      == POINTER_TYPE_P (TREE_TYPE (val2)));
703
704  if ((TREE_CODE (val1) == SSA_NAME
705       || TREE_CODE (val1) == PLUS_EXPR
706       || TREE_CODE (val1) == MINUS_EXPR)
707      && (TREE_CODE (val2) == SSA_NAME
708	  || TREE_CODE (val2) == PLUS_EXPR
709	  || TREE_CODE (val2) == MINUS_EXPR))
710    {
711      tree n1, c1, n2, c2;
712      enum tree_code code1, code2;
713
714      /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
715	 return -1 or +1 accordingly.  If VAL1 and VAL2 don't use the
716	 same name, return -2.  */
717      if (TREE_CODE (val1) == SSA_NAME)
718	{
719	  code1 = SSA_NAME;
720	  n1 = val1;
721	  c1 = NULL_TREE;
722	}
723      else
724	{
725	  code1 = TREE_CODE (val1);
726	  n1 = TREE_OPERAND (val1, 0);
727	  c1 = TREE_OPERAND (val1, 1);
728	  if (tree_int_cst_sgn (c1) == -1)
729	    {
730	      if (is_negative_overflow_infinity (c1))
731		return -2;
732	      c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
733	      if (!c1)
734		return -2;
735	      code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
736	    }
737	}
738
739      if (TREE_CODE (val2) == SSA_NAME)
740	{
741	  code2 = SSA_NAME;
742	  n2 = val2;
743	  c2 = NULL_TREE;
744	}
745      else
746	{
747	  code2 = TREE_CODE (val2);
748	  n2 = TREE_OPERAND (val2, 0);
749	  c2 = TREE_OPERAND (val2, 1);
750	  if (tree_int_cst_sgn (c2) == -1)
751	    {
752	      if (is_negative_overflow_infinity (c2))
753		return -2;
754	      c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
755	      if (!c2)
756		return -2;
757	      code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
758	    }
759	}
760
761      /* Both values must use the same name.  */
762      if (n1 != n2)
763	return -2;
764
765      if (code1 == SSA_NAME
766	  && code2 == SSA_NAME)
767	/* NAME == NAME  */
768	return 0;
769
770      /* If overflow is defined we cannot simplify more.  */
771      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
772	return -2;
773
774      if (strict_overflow_p != NULL
775	  && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
776	  && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
777	*strict_overflow_p = true;
778
779      if (code1 == SSA_NAME)
780	{
781	  if (code2 == PLUS_EXPR)
782	    /* NAME < NAME + CST  */
783	    return -1;
784	  else if (code2 == MINUS_EXPR)
785	    /* NAME > NAME - CST  */
786	    return 1;
787	}
788      else if (code1 == PLUS_EXPR)
789	{
790	  if (code2 == SSA_NAME)
791	    /* NAME + CST > NAME  */
792	    return 1;
793	  else if (code2 == PLUS_EXPR)
794	    /* NAME + CST1 > NAME + CST2, if CST1 > CST2  */
795	    return compare_values_warnv (c1, c2, strict_overflow_p);
796	  else if (code2 == MINUS_EXPR)
797	    /* NAME + CST1 > NAME - CST2  */
798	    return 1;
799	}
800      else if (code1 == MINUS_EXPR)
801	{
802	  if (code2 == SSA_NAME)
803	    /* NAME - CST < NAME  */
804	    return -1;
805	  else if (code2 == PLUS_EXPR)
806	    /* NAME - CST1 < NAME + CST2  */
807	    return -1;
808	  else if (code2 == MINUS_EXPR)
809	    /* NAME - CST1 > NAME - CST2, if CST1 < CST2.  Notice that
810	       C1 and C2 are swapped in the call to compare_values.  */
811	    return compare_values_warnv (c2, c1, strict_overflow_p);
812	}
813
814      gcc_unreachable ();
815    }
816
817  /* We cannot compare non-constants.  */
818  if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
819    return -2;
820
821  if (!POINTER_TYPE_P (TREE_TYPE (val1)))
822    {
823      /* We cannot compare overflowed values, except for overflow
824	 infinities.  */
825      if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
826	{
827	  if (strict_overflow_p != NULL)
828	    *strict_overflow_p = true;
829	  if (is_negative_overflow_infinity (val1))
830	    return is_negative_overflow_infinity (val2) ? 0 : -1;
831	  else if (is_negative_overflow_infinity (val2))
832	    return 1;
833	  else if (is_positive_overflow_infinity (val1))
834	    return is_positive_overflow_infinity (val2) ? 0 : 1;
835	  else if (is_positive_overflow_infinity (val2))
836	    return -1;
837	  return -2;
838	}
839
840      return tree_int_cst_compare (val1, val2);
841    }
842  else
843    {
844      tree t;
845
846      /* First see if VAL1 and VAL2 are not the same.  */
847      if (val1 == val2 || operand_equal_p (val1, val2, 0))
848	return 0;
849
850      /* If VAL1 is a lower address than VAL2, return -1.  */
851      t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
852      if (t == boolean_true_node)
853	return -1;
854
855      /* If VAL1 is a higher address than VAL2, return +1.  */
856      t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
857      if (t == boolean_true_node)
858	return 1;
859
860      /* If VAL1 is different than VAL2, return +2.  */
861      t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
862      if (t == boolean_true_node)
863	return 2;
864
865      return -2;
866    }
867}
868
869/* Compare values like compare_values_warnv, but treat comparisons of
870   nonconstants which rely on undefined overflow as incomparable.  */
871
872static int
873compare_values (tree val1, tree val2)
874{
875  bool sop;
876  int ret;
877
878  sop = false;
879  ret = compare_values_warnv (val1, val2, &sop);
880  if (sop
881      && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
882    ret = -2;
883  return ret;
884}
885
886
887/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
888          0 if VAL is not inside VR,
889	 -2 if we cannot tell either way.
890
891   FIXME, the current semantics of this functions are a bit quirky
892	  when taken in the context of VRP.  In here we do not care
893	  about VR's type.  If VR is the anti-range ~[3, 5] the call
894	  value_inside_range (4, VR) will return 1.
895
896	  This is counter-intuitive in a strict sense, but the callers
897	  currently expect this.  They are calling the function
898	  merely to determine whether VR->MIN <= VAL <= VR->MAX.  The
899	  callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
900	  themselves.
901
902	  This also applies to value_ranges_intersect_p and
903	  range_includes_zero_p.  The semantics of VR_RANGE and
904	  VR_ANTI_RANGE should be encoded here, but that also means
905	  adapting the users of these functions to the new semantics.  */
906
907static inline int
908value_inside_range (tree val, value_range_t *vr)
909{
910  tree cmp1, cmp2;
911
912  fold_defer_overflow_warnings ();
913
914  cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
915  if (!cmp1)
916  {
917    fold_undefer_and_ignore_overflow_warnings ();
918    return -2;
919  }
920
921  cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
922
923  fold_undefer_and_ignore_overflow_warnings ();
924
925  if (!cmp2)
926    return -2;
927
928  return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
929}
930
931
932/* Return true if value ranges VR0 and VR1 have a non-empty
933   intersection.  */
934
935static inline bool
936value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
937{
938  return (value_inside_range (vr1->min, vr0) == 1
939	  || value_inside_range (vr1->max, vr0) == 1
940	  || value_inside_range (vr0->min, vr1) == 1
941	  || value_inside_range (vr0->max, vr1) == 1);
942}
943
944
945/* Return true if VR includes the value zero, false otherwise.  FIXME,
946   currently this will return false for an anti-range like ~[-4, 3].
947   This will be wrong when the semantics of value_inside_range are
948   modified (currently the users of this function expect these
949   semantics).  */
950
951static inline bool
952range_includes_zero_p (value_range_t *vr)
953{
954  tree zero;
955
956  gcc_assert (vr->type != VR_UNDEFINED
957              && vr->type != VR_VARYING
958	      && !symbolic_range_p (vr));
959
960  zero = build_int_cst (TREE_TYPE (vr->min), 0);
961  return (value_inside_range (zero, vr) == 1);
962}
963
964/* Return true if T, an SSA_NAME, is known to be nonnegative.  Return
965   false otherwise or if no value range information is available.  */
966
967bool
968ssa_name_nonnegative_p (tree t)
969{
970  value_range_t *vr = get_value_range (t);
971
972  if (!vr)
973    return false;
974
975  /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
976     which would return a useful value should be encoded as a VR_RANGE.  */
977  if (vr->type == VR_RANGE)
978    {
979      int result = compare_values (vr->min, integer_zero_node);
980
981      return (result == 0 || result == 1);
982    }
983  return false;
984}
985
986/* Return true if T, an SSA_NAME, is known to be nonzero.  Return
987   false otherwise or if no value range information is available.  */
988
989bool
990ssa_name_nonzero_p (tree t)
991{
992  value_range_t *vr = get_value_range (t);
993
994  if (!vr)
995    return false;
996
997  /* A VR_RANGE which does not include zero is a nonzero value.  */
998  if (vr->type == VR_RANGE && !symbolic_range_p (vr))
999    return ! range_includes_zero_p (vr);
1000
1001  /* A VR_ANTI_RANGE which does include zero is a nonzero value.  */
1002  if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1003    return range_includes_zero_p (vr);
1004
1005  return false;
1006}
1007
1008
1009/* Extract value range information from an ASSERT_EXPR EXPR and store
1010   it in *VR_P.  */
1011
1012static void
1013extract_range_from_assert (value_range_t *vr_p, tree expr)
1014{
1015  tree var, cond, limit, min, max, type;
1016  value_range_t *var_vr, *limit_vr;
1017  enum tree_code cond_code;
1018
1019  var = ASSERT_EXPR_VAR (expr);
1020  cond = ASSERT_EXPR_COND (expr);
1021
1022  gcc_assert (COMPARISON_CLASS_P (cond));
1023
1024  /* Find VAR in the ASSERT_EXPR conditional.  */
1025  if (var == TREE_OPERAND (cond, 0))
1026    {
1027      /* If the predicate is of the form VAR COMP LIMIT, then we just
1028	 take LIMIT from the RHS and use the same comparison code.  */
1029      limit = TREE_OPERAND (cond, 1);
1030      cond_code = TREE_CODE (cond);
1031    }
1032  else
1033    {
1034      /* If the predicate is of the form LIMIT COMP VAR, then we need
1035	 to flip around the comparison code to create the proper range
1036	 for VAR.  */
1037      limit = TREE_OPERAND (cond, 0);
1038      cond_code = swap_tree_comparison (TREE_CODE (cond));
1039    }
1040
1041  limit = avoid_overflow_infinity (limit);
1042
1043  type = TREE_TYPE (limit);
1044  gcc_assert (limit != var);
1045
1046  /* For pointer arithmetic, we only keep track of pointer equality
1047     and inequality.  */
1048  if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1049    {
1050      set_value_range_to_varying (vr_p);
1051      return;
1052    }
1053
1054  /* If LIMIT is another SSA name and LIMIT has a range of its own,
1055     try to use LIMIT's range to avoid creating symbolic ranges
1056     unnecessarily. */
1057  limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1058
1059  /* LIMIT's range is only interesting if it has any useful information.  */
1060  if (limit_vr
1061      && (limit_vr->type == VR_UNDEFINED
1062	  || limit_vr->type == VR_VARYING
1063	  || symbolic_range_p (limit_vr)))
1064    limit_vr = NULL;
1065
1066  /* Initially, the new range has the same set of equivalences of
1067     VAR's range.  This will be revised before returning the final
1068     value.  Since assertions may be chained via mutually exclusive
1069     predicates, we will need to trim the set of equivalences before
1070     we are done.  */
1071  gcc_assert (vr_p->equiv == NULL);
1072  vr_p->equiv = BITMAP_ALLOC (NULL);
1073  add_equivalence (vr_p->equiv, var);
1074
1075  /* Extract a new range based on the asserted comparison for VAR and
1076     LIMIT's value range.  Notice that if LIMIT has an anti-range, we
1077     will only use it for equality comparisons (EQ_EXPR).  For any
1078     other kind of assertion, we cannot derive a range from LIMIT's
1079     anti-range that can be used to describe the new range.  For
1080     instance, ASSERT_EXPR <x_2, x_2 <= b_4>.  If b_4 is ~[2, 10],
1081     then b_4 takes on the ranges [-INF, 1] and [11, +INF].  There is
1082     no single range for x_2 that could describe LE_EXPR, so we might
1083     as well build the range [b_4, +INF] for it.  */
1084  if (cond_code == EQ_EXPR)
1085    {
1086      enum value_range_type range_type;
1087
1088      if (limit_vr)
1089	{
1090	  range_type = limit_vr->type;
1091	  min = limit_vr->min;
1092	  max = limit_vr->max;
1093	}
1094      else
1095	{
1096	  range_type = VR_RANGE;
1097	  min = limit;
1098	  max = limit;
1099	}
1100
1101      set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1102
1103      /* When asserting the equality VAR == LIMIT and LIMIT is another
1104	 SSA name, the new range will also inherit the equivalence set
1105	 from LIMIT.  */
1106      if (TREE_CODE (limit) == SSA_NAME)
1107	add_equivalence (vr_p->equiv, limit);
1108    }
1109  else if (cond_code == NE_EXPR)
1110    {
1111      /* As described above, when LIMIT's range is an anti-range and
1112	 this assertion is an inequality (NE_EXPR), then we cannot
1113	 derive anything from the anti-range.  For instance, if
1114	 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1115	 not imply that VAR's range is [0, 0].  So, in the case of
1116	 anti-ranges, we just assert the inequality using LIMIT and
1117	 not its anti-range.
1118
1119	 If LIMIT_VR is a range, we can only use it to build a new
1120	 anti-range if LIMIT_VR is a single-valued range.  For
1121	 instance, if LIMIT_VR is [0, 1], the predicate
1122	 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1123	 Rather, it means that for value 0 VAR should be ~[0, 0]
1124	 and for value 1, VAR should be ~[1, 1].  We cannot
1125	 represent these ranges.
1126
1127	 The only situation in which we can build a valid
1128	 anti-range is when LIMIT_VR is a single-valued range
1129	 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case,
1130	 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
1131      if (limit_vr
1132	  && limit_vr->type == VR_RANGE
1133	  && compare_values (limit_vr->min, limit_vr->max) == 0)
1134	{
1135	  min = limit_vr->min;
1136	  max = limit_vr->max;
1137	}
1138      else
1139	{
1140	  /* In any other case, we cannot use LIMIT's range to build a
1141	     valid anti-range.  */
1142	  min = max = limit;
1143	}
1144
1145      /* If MIN and MAX cover the whole range for their type, then
1146	 just use the original LIMIT.  */
1147      if (INTEGRAL_TYPE_P (type)
1148	  && vrp_val_is_min (min)
1149	  && vrp_val_is_max (max))
1150	min = max = limit;
1151
1152      set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1153    }
1154  else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1155    {
1156      min = TYPE_MIN_VALUE (type);
1157
1158      if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1159	max = limit;
1160      else
1161	{
1162	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1163	     range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1164	     LT_EXPR.  */
1165	  max = limit_vr->max;
1166	}
1167
1168      /* If the maximum value forces us to be out of bounds, simply punt.
1169	 It would be pointless to try and do anything more since this
1170	 all should be optimized away above us.  */
1171      if ((cond_code == LT_EXPR
1172	   && compare_values (max, min) == 0)
1173	  || is_overflow_infinity (max))
1174	set_value_range_to_varying (vr_p);
1175      else
1176	{
1177	  /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
1178	  if (cond_code == LT_EXPR)
1179	    {
1180	      tree one = build_int_cst (type, 1);
1181	      max = fold_build2 (MINUS_EXPR, type, max, one);
1182	      if (EXPR_P (max))
1183		TREE_NO_WARNING (max) = 1;
1184	    }
1185
1186	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1187	}
1188    }
1189  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1190    {
1191      max = TYPE_MAX_VALUE (type);
1192
1193      if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1194	min = limit;
1195      else
1196	{
1197	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1198	     range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1199	     GT_EXPR.  */
1200	  min = limit_vr->min;
1201	}
1202
1203      /* If the minimum value forces us to be out of bounds, simply punt.
1204	 It would be pointless to try and do anything more since this
1205	 all should be optimized away above us.  */
1206      if ((cond_code == GT_EXPR
1207	   && compare_values (min, max) == 0)
1208	  || is_overflow_infinity (min))
1209	set_value_range_to_varying (vr_p);
1210      else
1211	{
1212	  /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
1213	  if (cond_code == GT_EXPR)
1214	    {
1215	      tree one = build_int_cst (type, 1);
1216	      min = fold_build2 (PLUS_EXPR, type, min, one);
1217	      if (EXPR_P (min))
1218		TREE_NO_WARNING (min) = 1;
1219	    }
1220
1221	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1222	}
1223    }
1224  else
1225    gcc_unreachable ();
1226
1227  /* If VAR already had a known range, it may happen that the new
1228     range we have computed and VAR's range are not compatible.  For
1229     instance,
1230
1231	if (p_5 == NULL)
1232	  p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1233	  x_7 = p_6->fld;
1234	  p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1235
1236     While the above comes from a faulty program, it will cause an ICE
1237     later because p_8 and p_6 will have incompatible ranges and at
1238     the same time will be considered equivalent.  A similar situation
1239     would arise from
1240
1241     	if (i_5 > 10)
1242	  i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1243	  if (i_5 < 5)
1244	    i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1245
1246     Again i_6 and i_7 will have incompatible ranges.  It would be
1247     pointless to try and do anything with i_7's range because
1248     anything dominated by 'if (i_5 < 5)' will be optimized away.
1249     Note, due to the wa in which simulation proceeds, the statement
1250     i_7 = ASSERT_EXPR <...> we would never be visited because the
1251     conditional 'if (i_5 < 5)' always evaluates to false.  However,
1252     this extra check does not hurt and may protect against future
1253     changes to VRP that may get into a situation similar to the
1254     NULL pointer dereference example.
1255
1256     Note that these compatibility tests are only needed when dealing
1257     with ranges or a mix of range and anti-range.  If VAR_VR and VR_P
1258     are both anti-ranges, they will always be compatible, because two
1259     anti-ranges will always have a non-empty intersection.  */
1260
1261  var_vr = get_value_range (var);
1262
1263  /* We may need to make adjustments when VR_P and VAR_VR are numeric
1264     ranges or anti-ranges.  */
1265  if (vr_p->type == VR_VARYING
1266      || vr_p->type == VR_UNDEFINED
1267      || var_vr->type == VR_VARYING
1268      || var_vr->type == VR_UNDEFINED
1269      || symbolic_range_p (vr_p)
1270      || symbolic_range_p (var_vr))
1271    return;
1272
1273  if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1274    {
1275      /* If the two ranges have a non-empty intersection, we can
1276	 refine the resulting range.  Since the assert expression
1277	 creates an equivalency and at the same time it asserts a
1278	 predicate, we can take the intersection of the two ranges to
1279	 get better precision.  */
1280      if (value_ranges_intersect_p (var_vr, vr_p))
1281	{
1282	  /* Use the larger of the two minimums.  */
1283	  if (compare_values (vr_p->min, var_vr->min) == -1)
1284	    min = var_vr->min;
1285	  else
1286	    min = vr_p->min;
1287
1288	  /* Use the smaller of the two maximums.  */
1289	  if (compare_values (vr_p->max, var_vr->max) == 1)
1290	    max = var_vr->max;
1291	  else
1292	    max = vr_p->max;
1293
1294	  set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1295	}
1296      else
1297	{
1298	  /* The two ranges do not intersect, set the new range to
1299	     VARYING, because we will not be able to do anything
1300	     meaningful with it.  */
1301	  set_value_range_to_varying (vr_p);
1302	}
1303    }
1304  else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1305           || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1306    {
1307      /* A range and an anti-range will cancel each other only if
1308	 their ends are the same.  For instance, in the example above,
1309	 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1310	 so VR_P should be set to VR_VARYING.  */
1311      if (compare_values (var_vr->min, vr_p->min) == 0
1312	  && compare_values (var_vr->max, vr_p->max) == 0)
1313	set_value_range_to_varying (vr_p);
1314      else
1315	{
1316	  tree min, max, anti_min, anti_max, real_min, real_max;
1317
1318	  /* We want to compute the logical AND of the two ranges;
1319	     there are three cases to consider.
1320
1321
1322	     1. The VR_ANTI_RANGE range is completely within the
1323		VR_RANGE and the endpoints of the ranges are
1324		different.  In that case the resulting range
1325		should be whichever range is more precise.
1326		Typically that will be the VR_RANGE.
1327
1328	     2. The VR_ANTI_RANGE is completely disjoint from
1329		the VR_RANGE.  In this case the resulting range
1330		should be the VR_RANGE.
1331
1332	     3. There is some overlap between the VR_ANTI_RANGE
1333		and the VR_RANGE.
1334
1335		3a. If the high limit of the VR_ANTI_RANGE resides
1336		    within the VR_RANGE, then the result is a new
1337		    VR_RANGE starting at the high limit of the
1338		    the VR_ANTI_RANGE + 1 and extending to the
1339		    high limit of the original VR_RANGE.
1340
1341		3b. If the low limit of the VR_ANTI_RANGE resides
1342		    within the VR_RANGE, then the result is a new
1343		    VR_RANGE starting at the low limit of the original
1344		    VR_RANGE and extending to the low limit of the
1345		    VR_ANTI_RANGE - 1.  */
1346	  if (vr_p->type == VR_ANTI_RANGE)
1347	    {
1348	      anti_min = vr_p->min;
1349	      anti_max = vr_p->max;
1350	      real_min = var_vr->min;
1351	      real_max = var_vr->max;
1352	    }
1353	  else
1354	    {
1355	      anti_min = var_vr->min;
1356	      anti_max = var_vr->max;
1357	      real_min = vr_p->min;
1358	      real_max = vr_p->max;
1359	    }
1360
1361
1362	  /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1363	     not including any endpoints.  */
1364	  if (compare_values (anti_max, real_max) == -1
1365	      && compare_values (anti_min, real_min) == 1)
1366	    {
1367	      set_value_range (vr_p, VR_RANGE, real_min,
1368			       real_max, vr_p->equiv);
1369	    }
1370	  /* Case 2, VR_ANTI_RANGE completely disjoint from
1371	     VR_RANGE.  */
1372	  else if (compare_values (anti_min, real_max) == 1
1373		   || compare_values (anti_max, real_min) == -1)
1374	    {
1375	      set_value_range (vr_p, VR_RANGE, real_min,
1376			       real_max, vr_p->equiv);
1377	    }
1378	  /* Case 3a, the anti-range extends into the low
1379	     part of the real range.  Thus creating a new
1380	     low for the real range.  */
1381	  else if ((compare_values (anti_max, real_min) == 1
1382		    || compare_values (anti_max, real_min) == 0)
1383		   && compare_values (anti_max, real_max) == -1)
1384	    {
1385	      gcc_assert (!is_positive_overflow_infinity (anti_max));
1386	      if (needs_overflow_infinity (TREE_TYPE (anti_max))
1387		  && vrp_val_is_max (anti_max))
1388		{
1389		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1390		    {
1391		      set_value_range_to_varying (vr_p);
1392		      return;
1393		    }
1394		  min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1395		}
1396	      else
1397		min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1398				   anti_max,
1399				   build_int_cst (TREE_TYPE (var_vr->min), 1));
1400	      max = real_max;
1401	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1402	    }
1403	  /* Case 3b, the anti-range extends into the high
1404	     part of the real range.  Thus creating a new
1405	     higher for the real range.  */
1406	  else if (compare_values (anti_min, real_min) == 1
1407		   && (compare_values (anti_min, real_max) == -1
1408		       || compare_values (anti_min, real_max) == 0))
1409	    {
1410	      gcc_assert (!is_negative_overflow_infinity (anti_min));
1411	      if (needs_overflow_infinity (TREE_TYPE (anti_min))
1412		  && vrp_val_is_min (anti_min))
1413		{
1414		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1415		    {
1416		      set_value_range_to_varying (vr_p);
1417		      return;
1418		    }
1419		  max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1420		}
1421	      else
1422		max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1423				   anti_min,
1424				   build_int_cst (TREE_TYPE (var_vr->min), 1));
1425	      min = real_min;
1426	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1427	    }
1428	}
1429    }
1430}
1431
1432
1433/* Extract range information from SSA name VAR and store it in VR.  If
1434   VAR has an interesting range, use it.  Otherwise, create the
1435   range [VAR, VAR] and return it.  This is useful in situations where
1436   we may have conditionals testing values of VARYING names.  For
1437   instance,
1438
1439   	x_3 = y_5;
1440	if (x_3 > y_5)
1441	  ...
1442
1443    Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1444    always false.  */
1445
1446static void
1447extract_range_from_ssa_name (value_range_t *vr, tree var)
1448{
1449  value_range_t *var_vr = get_value_range (var);
1450
1451  if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1452    copy_value_range (vr, var_vr);
1453  else
1454    set_value_range (vr, VR_RANGE, var, var, NULL);
1455
1456  add_equivalence (vr->equiv, var);
1457}
1458
1459
1460/* Wrapper around int_const_binop.  If the operation overflows and we
1461   are not using wrapping arithmetic, then adjust the result to be
1462   -INF or +INF depending on CODE, VAL1 and VAL2.  This can return
1463   NULL_TREE if we need to use an overflow infinity representation but
1464   the type does not support it.  */
1465
1466static tree
1467vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1468{
1469  tree res;
1470
1471  res = int_const_binop (code, val1, val2, 0);
1472
1473  /* If we are not using wrapping arithmetic, operate symbolically
1474     on -INF and +INF.  */
1475  if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1476    {
1477      int checkz = compare_values (res, val1);
1478      bool overflow = false;
1479
1480      /* Ensure that res = val1 [+*] val2 >= val1
1481         or that res = val1 - val2 <= val1.  */
1482      if ((code == PLUS_EXPR
1483	   && !(checkz == 1 || checkz == 0))
1484          || (code == MINUS_EXPR
1485	      && !(checkz == 0 || checkz == -1)))
1486	{
1487	  overflow = true;
1488	}
1489      /* Checking for multiplication overflow is done by dividing the
1490	 output of the multiplication by the first input of the
1491	 multiplication.  If the result of that division operation is
1492	 not equal to the second input of the multiplication, then the
1493	 multiplication overflowed.  */
1494      else if (code == MULT_EXPR && !integer_zerop (val1))
1495	{
1496	  tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1497				      res,
1498				      val1, 0);
1499	  int check = compare_values (tmp, val2);
1500
1501	  if (check != 0)
1502	    overflow = true;
1503	}
1504
1505      if (overflow)
1506	{
1507	  res = copy_node (res);
1508	  TREE_OVERFLOW (res) = 1;
1509	}
1510
1511    }
1512  else if ((TREE_OVERFLOW (res)
1513	    && !TREE_OVERFLOW (val1)
1514	    && !TREE_OVERFLOW (val2))
1515	   || is_overflow_infinity (val1)
1516	   || is_overflow_infinity (val2))
1517    {
1518      /* If the operation overflowed but neither VAL1 nor VAL2 are
1519	 overflown, return -INF or +INF depending on the operation
1520	 and the combination of signs of the operands.  */
1521      int sgn1 = tree_int_cst_sgn (val1);
1522      int sgn2 = tree_int_cst_sgn (val2);
1523
1524      if (needs_overflow_infinity (TREE_TYPE (res))
1525	  && !supports_overflow_infinity (TREE_TYPE (res)))
1526	return NULL_TREE;
1527
1528      /* We have to punt on adding infinities of different signs,
1529	 since we can't tell what the sign of the result should be.
1530	 Likewise for subtracting infinities of the same sign.  */
1531      if (((code == PLUS_EXPR && sgn1 != sgn2)
1532	   || (code == MINUS_EXPR && sgn1 == sgn2))
1533	  && is_overflow_infinity (val1)
1534	  && is_overflow_infinity (val2))
1535	return NULL_TREE;
1536
1537      /* Don't try to handle division or shifting of infinities.  */
1538      if ((code == TRUNC_DIV_EXPR
1539	   || code == FLOOR_DIV_EXPR
1540	   || code == CEIL_DIV_EXPR
1541	   || code == EXACT_DIV_EXPR
1542	   || code == ROUND_DIV_EXPR
1543	   || code == RSHIFT_EXPR)
1544	  && (is_overflow_infinity (val1)
1545	      || is_overflow_infinity (val2)))
1546	return NULL_TREE;
1547
1548      /* Notice that we only need to handle the restricted set of
1549	 operations handled by extract_range_from_binary_expr.
1550	 Among them, only multiplication, addition and subtraction
1551	 can yield overflow without overflown operands because we
1552	 are working with integral types only... except in the
1553	 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1554	 for division too.  */
1555
1556      /* For multiplication, the sign of the overflow is given
1557	 by the comparison of the signs of the operands.  */
1558      if ((code == MULT_EXPR && sgn1 == sgn2)
1559          /* For addition, the operands must be of the same sign
1560	     to yield an overflow.  Its sign is therefore that
1561	     of one of the operands, for example the first.  For
1562	     infinite operands X + -INF is negative, not positive.  */
1563	  || (code == PLUS_EXPR
1564	      && (sgn1 >= 0
1565		  ? !is_negative_overflow_infinity (val2)
1566		  : is_positive_overflow_infinity (val2)))
1567	  /* For subtraction, non-infinite operands must be of
1568	     different signs to yield an overflow.  Its sign is
1569	     therefore that of the first operand or the opposite of
1570	     that of the second operand.  A first operand of 0 counts
1571	     as positive here, for the corner case 0 - (-INF), which
1572	     overflows, but must yield +INF.  For infinite operands 0
1573	     - INF is negative, not positive.  */
1574	  || (code == MINUS_EXPR
1575	      && (sgn1 >= 0
1576		  ? !is_positive_overflow_infinity (val2)
1577		  : is_negative_overflow_infinity (val2)))
1578	  /* For division, the only case is -INF / -1 = +INF.  */
1579	  || code == TRUNC_DIV_EXPR
1580	  || code == FLOOR_DIV_EXPR
1581	  || code == CEIL_DIV_EXPR
1582	  || code == EXACT_DIV_EXPR
1583	  || code == ROUND_DIV_EXPR)
1584	return (needs_overflow_infinity (TREE_TYPE (res))
1585		? positive_overflow_infinity (TREE_TYPE (res))
1586		: TYPE_MAX_VALUE (TREE_TYPE (res)));
1587      else
1588	return (needs_overflow_infinity (TREE_TYPE (res))
1589		? negative_overflow_infinity (TREE_TYPE (res))
1590		: TYPE_MIN_VALUE (TREE_TYPE (res)));
1591    }
1592
1593  return res;
1594}
1595
1596
1597/* Extract range information from a binary expression EXPR based on
1598   the ranges of each of its operands and the expression code.  */
1599
1600static void
1601extract_range_from_binary_expr (value_range_t *vr, tree expr)
1602{
1603  enum tree_code code = TREE_CODE (expr);
1604  enum value_range_type type;
1605  tree op0, op1, min, max;
1606  int cmp;
1607  value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1608  value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1609
1610  /* Not all binary expressions can be applied to ranges in a
1611     meaningful way.  Handle only arithmetic operations.  */
1612  if (code != PLUS_EXPR
1613      && code != MINUS_EXPR
1614      && code != MULT_EXPR
1615      && code != TRUNC_DIV_EXPR
1616      && code != FLOOR_DIV_EXPR
1617      && code != CEIL_DIV_EXPR
1618      && code != EXACT_DIV_EXPR
1619      && code != ROUND_DIV_EXPR
1620      && code != MIN_EXPR
1621      && code != MAX_EXPR
1622      && code != BIT_AND_EXPR
1623      && code != TRUTH_ANDIF_EXPR
1624      && code != TRUTH_ORIF_EXPR
1625      && code != TRUTH_AND_EXPR
1626      && code != TRUTH_OR_EXPR)
1627    {
1628      set_value_range_to_varying (vr);
1629      return;
1630    }
1631
1632  /* Get value ranges for each operand.  For constant operands, create
1633     a new value range with the operand to simplify processing.  */
1634  op0 = TREE_OPERAND (expr, 0);
1635  if (TREE_CODE (op0) == SSA_NAME)
1636    vr0 = *(get_value_range (op0));
1637  else if (is_gimple_min_invariant (op0))
1638    set_value_range_to_value (&vr0, op0, NULL);
1639  else
1640    set_value_range_to_varying (&vr0);
1641
1642  op1 = TREE_OPERAND (expr, 1);
1643  if (TREE_CODE (op1) == SSA_NAME)
1644    vr1 = *(get_value_range (op1));
1645  else if (is_gimple_min_invariant (op1))
1646    set_value_range_to_value (&vr1, op1, NULL);
1647  else
1648    set_value_range_to_varying (&vr1);
1649
1650  /* If either range is UNDEFINED, so is the result.  */
1651  if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1652    {
1653      set_value_range_to_undefined (vr);
1654      return;
1655    }
1656
1657  /* The type of the resulting value range defaults to VR0.TYPE.  */
1658  type = vr0.type;
1659
1660  /* Refuse to operate on VARYING ranges, ranges of different kinds
1661     and symbolic ranges.  As an exception, we allow BIT_AND_EXPR
1662     because we may be able to derive a useful range even if one of
1663     the operands is VR_VARYING or symbolic range.  TODO, we may be
1664     able to derive anti-ranges in some cases.  */
1665  if (code != BIT_AND_EXPR
1666      && code != TRUTH_AND_EXPR
1667      && code != TRUTH_OR_EXPR
1668      && (vr0.type == VR_VARYING
1669	  || vr1.type == VR_VARYING
1670	  || vr0.type != vr1.type
1671	  || symbolic_range_p (&vr0)
1672	  || symbolic_range_p (&vr1)))
1673    {
1674      set_value_range_to_varying (vr);
1675      return;
1676    }
1677
1678  /* Now evaluate the expression to determine the new range.  */
1679  if (POINTER_TYPE_P (TREE_TYPE (expr))
1680      || POINTER_TYPE_P (TREE_TYPE (op0))
1681      || POINTER_TYPE_P (TREE_TYPE (op1)))
1682    {
1683      /* For pointer types, we are really only interested in asserting
1684	 whether the expression evaluates to non-NULL.  FIXME, we used
1685	 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1686	 ivopts is generating expressions with pointer multiplication
1687	 in them.  */
1688      if (code == PLUS_EXPR)
1689	{
1690	  if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1691	    set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1692	  else if (range_is_null (&vr0) && range_is_null (&vr1))
1693	    set_value_range_to_null (vr, TREE_TYPE (expr));
1694	  else
1695	    set_value_range_to_varying (vr);
1696	}
1697      else
1698	{
1699	  /* Subtracting from a pointer, may yield 0, so just drop the
1700	     resulting range to varying.  */
1701	  set_value_range_to_varying (vr);
1702	}
1703
1704      return;
1705    }
1706
1707  /* For integer ranges, apply the operation to each end of the
1708     range and see what we end up with.  */
1709  if (code == TRUTH_ANDIF_EXPR
1710      || code == TRUTH_ORIF_EXPR
1711      || code == TRUTH_AND_EXPR
1712      || code == TRUTH_OR_EXPR)
1713    {
1714      /* If one of the operands is zero, we know that the whole
1715	 expression evaluates zero.  */
1716      if (code == TRUTH_AND_EXPR
1717	  && ((vr0.type == VR_RANGE
1718	       && integer_zerop (vr0.min)
1719	       && integer_zerop (vr0.max))
1720	      || (vr1.type == VR_RANGE
1721		  && integer_zerop (vr1.min)
1722		  && integer_zerop (vr1.max))))
1723	{
1724	  type = VR_RANGE;
1725	  min = max = build_int_cst (TREE_TYPE (expr), 0);
1726	}
1727      /* If one of the operands is one, we know that the whole
1728	 expression evaluates one.  */
1729      else if (code == TRUTH_OR_EXPR
1730	       && ((vr0.type == VR_RANGE
1731		    && integer_onep (vr0.min)
1732		    && integer_onep (vr0.max))
1733		   || (vr1.type == VR_RANGE
1734		       && integer_onep (vr1.min)
1735		       && integer_onep (vr1.max))))
1736	{
1737	  type = VR_RANGE;
1738	  min = max = build_int_cst (TREE_TYPE (expr), 1);
1739	}
1740      else if (vr0.type != VR_VARYING
1741	       && vr1.type != VR_VARYING
1742	       && vr0.type == vr1.type
1743	       && !symbolic_range_p (&vr0)
1744	       && !overflow_infinity_range_p (&vr0)
1745	       && !symbolic_range_p (&vr1)
1746	       && !overflow_infinity_range_p (&vr1))
1747	{
1748	  /* Boolean expressions cannot be folded with int_const_binop.  */
1749	  min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1750	  max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1751	}
1752      else
1753	{
1754	  set_value_range_to_varying (vr);
1755	  return;
1756	}
1757    }
1758  else if (code == PLUS_EXPR
1759	   || code == MIN_EXPR
1760	   || code == MAX_EXPR)
1761    {
1762      /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1763	 VR_VARYING.  It would take more effort to compute a precise
1764	 range for such a case.  For example, if we have op0 == 1 and
1765	 op1 == -1 with their ranges both being ~[0,0], we would have
1766	 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1767	 Note that we are guaranteed to have vr0.type == vr1.type at
1768	 this point.  */
1769      if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1770	{
1771	  set_value_range_to_varying (vr);
1772	  return;
1773	}
1774
1775      /* For operations that make the resulting range directly
1776	 proportional to the original ranges, apply the operation to
1777	 the same end of each range.  */
1778      min = vrp_int_const_binop (code, vr0.min, vr1.min);
1779      max = vrp_int_const_binop (code, vr0.max, vr1.max);
1780    }
1781  else if (code == MULT_EXPR
1782	   || code == TRUNC_DIV_EXPR
1783	   || code == FLOOR_DIV_EXPR
1784	   || code == CEIL_DIV_EXPR
1785	   || code == EXACT_DIV_EXPR
1786	   || code == ROUND_DIV_EXPR)
1787    {
1788      tree val[4];
1789      size_t i;
1790      bool sop;
1791
1792      /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1793	 drop to VR_VARYING.  It would take more effort to compute a
1794	 precise range for such a case.  For example, if we have
1795	 op0 == 65536 and op1 == 65536 with their ranges both being
1796	 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1797	 we cannot claim that the product is in ~[0,0].  Note that we
1798	 are guaranteed to have vr0.type == vr1.type at this
1799	 point.  */
1800      if (code == MULT_EXPR
1801	  && vr0.type == VR_ANTI_RANGE
1802	  && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1803	{
1804	  set_value_range_to_varying (vr);
1805	  return;
1806	}
1807
1808      /* Multiplications and divisions are a bit tricky to handle,
1809	 depending on the mix of signs we have in the two ranges, we
1810	 need to operate on different values to get the minimum and
1811	 maximum values for the new range.  One approach is to figure
1812	 out all the variations of range combinations and do the
1813	 operations.
1814
1815	 However, this involves several calls to compare_values and it
1816	 is pretty convoluted.  It's simpler to do the 4 operations
1817	 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1818	 MAX1) and then figure the smallest and largest values to form
1819	 the new range.  */
1820
1821      /* Divisions by zero result in a VARYING value.  */
1822      if (code != MULT_EXPR
1823	  && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1824	{
1825	  set_value_range_to_varying (vr);
1826	  return;
1827	}
1828
1829      /* Compute the 4 cross operations.  */
1830      sop = false;
1831      val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1832      if (val[0] == NULL_TREE)
1833	sop = true;
1834
1835      if (vr1.max == vr1.min)
1836	val[1] = NULL_TREE;
1837      else
1838	{
1839	  val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1840	  if (val[1] == NULL_TREE)
1841	    sop = true;
1842	}
1843
1844      if (vr0.max == vr0.min)
1845	val[2] = NULL_TREE;
1846      else
1847	{
1848	  val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1849	  if (val[2] == NULL_TREE)
1850	    sop = true;
1851	}
1852
1853      if (vr0.min == vr0.max || vr1.min == vr1.max)
1854	val[3] = NULL_TREE;
1855      else
1856	{
1857	  val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1858	  if (val[3] == NULL_TREE)
1859	    sop = true;
1860	}
1861
1862      if (sop)
1863	{
1864	  set_value_range_to_varying (vr);
1865	  return;
1866	}
1867
1868      /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1869	 of VAL[i].  */
1870      min = val[0];
1871      max = val[0];
1872      for (i = 1; i < 4; i++)
1873	{
1874	  if (!is_gimple_min_invariant (min)
1875	      || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1876	      || !is_gimple_min_invariant (max)
1877	      || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1878	    break;
1879
1880	  if (val[i])
1881	    {
1882	      if (!is_gimple_min_invariant (val[i])
1883		  || (TREE_OVERFLOW (val[i])
1884		      && !is_overflow_infinity (val[i])))
1885		{
1886		  /* If we found an overflowed value, set MIN and MAX
1887		     to it so that we set the resulting range to
1888		     VARYING.  */
1889		  min = max = val[i];
1890		  break;
1891		}
1892
1893	      if (compare_values (val[i], min) == -1)
1894		min = val[i];
1895
1896	      if (compare_values (val[i], max) == 1)
1897		max = val[i];
1898	    }
1899	}
1900    }
1901  else if (code == MINUS_EXPR)
1902    {
1903      /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1904	 VR_VARYING.  It would take more effort to compute a precise
1905	 range for such a case.  For example, if we have op0 == 1 and
1906	 op1 == 1 with their ranges both being ~[0,0], we would have
1907	 op0 - op1 == 0, so we cannot claim that the difference is in
1908	 ~[0,0].  Note that we are guaranteed to have
1909	 vr0.type == vr1.type at this point.  */
1910      if (vr0.type == VR_ANTI_RANGE)
1911	{
1912	  set_value_range_to_varying (vr);
1913	  return;
1914	}
1915
1916      /* For MINUS_EXPR, apply the operation to the opposite ends of
1917	 each range.  */
1918      min = vrp_int_const_binop (code, vr0.min, vr1.max);
1919      max = vrp_int_const_binop (code, vr0.max, vr1.min);
1920    }
1921  else if (code == BIT_AND_EXPR)
1922    {
1923      if (vr0.type == VR_RANGE
1924	  && vr0.min == vr0.max
1925	  && TREE_CODE (vr0.max) == INTEGER_CST
1926	  && !TREE_OVERFLOW (vr0.max)
1927	  && tree_int_cst_sgn (vr0.max) >= 0)
1928	{
1929	  min = build_int_cst (TREE_TYPE (expr), 0);
1930	  max = vr0.max;
1931	}
1932      else if (vr1.type == VR_RANGE
1933	       && vr1.min == vr1.max
1934	       && TREE_CODE (vr1.max) == INTEGER_CST
1935	       && !TREE_OVERFLOW (vr1.max)
1936	       && tree_int_cst_sgn (vr1.max) >= 0)
1937	{
1938	  type = VR_RANGE;
1939	  min = build_int_cst (TREE_TYPE (expr), 0);
1940	  max = vr1.max;
1941	}
1942      else
1943	{
1944	  set_value_range_to_varying (vr);
1945	  return;
1946	}
1947    }
1948  else
1949    gcc_unreachable ();
1950
1951  /* If either MIN or MAX overflowed, then set the resulting range to
1952     VARYING.  But we do accept an overflow infinity
1953     representation.  */
1954  if (min == NULL_TREE
1955      || !is_gimple_min_invariant (min)
1956      || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1957      || max == NULL_TREE
1958      || !is_gimple_min_invariant (max)
1959      || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1960    {
1961      set_value_range_to_varying (vr);
1962      return;
1963    }
1964
1965  /* We punt if:
1966     1) [-INF, +INF]
1967     2) [-INF, +-INF(OVF)]
1968     3) [+-INF(OVF), +INF]
1969     4) [+-INF(OVF), +-INF(OVF)]
1970     We learn nothing when we have INF and INF(OVF) on both sides.
1971     Note that we do accept [-INF, -INF] and [+INF, +INF] without
1972     overflow.  */
1973  if ((vrp_val_is_min (min) || is_overflow_infinity (min))
1974      && (vrp_val_is_max (max) || is_overflow_infinity (max)))
1975    {
1976      set_value_range_to_varying (vr);
1977      return;
1978    }
1979
1980  cmp = compare_values (min, max);
1981  if (cmp == -2 || cmp == 1)
1982    {
1983      /* If the new range has its limits swapped around (MIN > MAX),
1984	 then the operation caused one of them to wrap around, mark
1985	 the new range VARYING.  */
1986      set_value_range_to_varying (vr);
1987    }
1988  else
1989    set_value_range (vr, type, min, max, NULL);
1990}
1991
1992
1993/* Extract range information from a unary expression EXPR based on
1994   the range of its operand and the expression code.  */
1995
1996static void
1997extract_range_from_unary_expr (value_range_t *vr, tree expr)
1998{
1999  enum tree_code code = TREE_CODE (expr);
2000  tree min, max, op0;
2001  int cmp;
2002  value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2003
2004  /* Refuse to operate on certain unary expressions for which we
2005     cannot easily determine a resulting range.  */
2006  if (code == FIX_TRUNC_EXPR
2007      || code == FIX_CEIL_EXPR
2008      || code == FIX_FLOOR_EXPR
2009      || code == FIX_ROUND_EXPR
2010      || code == FLOAT_EXPR
2011      || code == BIT_NOT_EXPR
2012      || code == NON_LVALUE_EXPR
2013      || code == CONJ_EXPR)
2014    {
2015      set_value_range_to_varying (vr);
2016      return;
2017    }
2018
2019  /* Get value ranges for the operand.  For constant operands, create
2020     a new value range with the operand to simplify processing.  */
2021  op0 = TREE_OPERAND (expr, 0);
2022  if (TREE_CODE (op0) == SSA_NAME)
2023    vr0 = *(get_value_range (op0));
2024  else if (is_gimple_min_invariant (op0))
2025    set_value_range_to_value (&vr0, op0, NULL);
2026  else
2027    set_value_range_to_varying (&vr0);
2028
2029  /* If VR0 is UNDEFINED, so is the result.  */
2030  if (vr0.type == VR_UNDEFINED)
2031    {
2032      set_value_range_to_undefined (vr);
2033      return;
2034    }
2035
2036  /* Refuse to operate on symbolic ranges, or if neither operand is
2037     a pointer or integral type.  */
2038  if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2039       && !POINTER_TYPE_P (TREE_TYPE (op0)))
2040      || (vr0.type != VR_VARYING
2041	  && symbolic_range_p (&vr0)))
2042    {
2043      set_value_range_to_varying (vr);
2044      return;
2045    }
2046
2047  /* If the expression involves pointers, we are only interested in
2048     determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
2049  if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2050    {
2051      bool sop;
2052
2053      sop = false;
2054      if (range_is_nonnull (&vr0)
2055	  || (tree_expr_nonzero_warnv_p (expr, &sop)
2056	      && !sop))
2057	set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2058      else if (range_is_null (&vr0))
2059	set_value_range_to_null (vr, TREE_TYPE (expr));
2060      else
2061	set_value_range_to_varying (vr);
2062
2063      return;
2064    }
2065
2066  /* Handle unary expressions on integer ranges.  */
2067  if (code == NOP_EXPR || code == CONVERT_EXPR)
2068    {
2069      tree inner_type = TREE_TYPE (op0);
2070      tree outer_type = TREE_TYPE (expr);
2071
2072      /* If VR0 represents a simple range, then try to convert
2073	 the min and max values for the range to the same type
2074	 as OUTER_TYPE.  If the results compare equal to VR0's
2075	 min and max values and the new min is still less than
2076	 or equal to the new max, then we can safely use the newly
2077	 computed range for EXPR.  This allows us to compute
2078	 accurate ranges through many casts.  */
2079      if ((vr0.type == VR_RANGE
2080	   && !overflow_infinity_range_p (&vr0))
2081	  || (vr0.type == VR_VARYING
2082	      && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2083	{
2084	  tree new_min, new_max, orig_min, orig_max;
2085
2086	  /* Convert the input operand min/max to OUTER_TYPE.   If
2087	     the input has no range information, then use the min/max
2088	     for the input's type.  */
2089	  if (vr0.type == VR_RANGE)
2090	    {
2091	      orig_min = vr0.min;
2092	      orig_max = vr0.max;
2093	    }
2094	  else
2095	    {
2096	      orig_min = TYPE_MIN_VALUE (inner_type);
2097	      orig_max = TYPE_MAX_VALUE (inner_type);
2098	    }
2099
2100	  new_min = fold_convert (outer_type, orig_min);
2101	  new_max = fold_convert (outer_type, orig_max);
2102
2103	  /* Verify the new min/max values are gimple values and
2104	     that they compare equal to the original input's
2105	     min/max values.  */
2106	  if (is_gimple_val (new_min)
2107	      && is_gimple_val (new_max)
2108	      && tree_int_cst_equal (new_min, orig_min)
2109	      && tree_int_cst_equal (new_max, orig_max)
2110	      && (!is_overflow_infinity (new_min)
2111		  || !is_overflow_infinity (new_max))
2112	      && compare_values (new_min, new_max) <= 0
2113	      && compare_values (new_min, new_max) >= -1)
2114	    {
2115	      set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2116	      return;
2117	    }
2118	}
2119
2120      /* When converting types of different sizes, set the result to
2121	 VARYING.  Things like sign extensions and precision loss may
2122	 change the range.  For instance, if x_3 is of type 'long long
2123	 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2124	 is impossible to know at compile time whether y_5 will be
2125	 ~[0, 0].  */
2126      if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2127	  || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2128	{
2129	  set_value_range_to_varying (vr);
2130	  return;
2131	}
2132    }
2133
2134  /* Conversion of a VR_VARYING value to a wider type can result
2135     in a usable range.  So wait until after we've handled conversions
2136     before dropping the result to VR_VARYING if we had a source
2137     operand that is VR_VARYING.  */
2138  if (vr0.type == VR_VARYING)
2139    {
2140      set_value_range_to_varying (vr);
2141      return;
2142    }
2143
2144  /* Apply the operation to each end of the range and see what we end
2145     up with.  */
2146  if (code == NEGATE_EXPR
2147      && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2148    {
2149      /* NEGATE_EXPR flips the range around.  We need to treat
2150	 TYPE_MIN_VALUE specially.  */
2151      if (is_positive_overflow_infinity (vr0.max))
2152	min = negative_overflow_infinity (TREE_TYPE (expr));
2153      else if (is_negative_overflow_infinity (vr0.max))
2154	min = positive_overflow_infinity (TREE_TYPE (expr));
2155      else if (!vrp_val_is_min (vr0.max))
2156	min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2157      else if (needs_overflow_infinity (TREE_TYPE (expr)))
2158	{
2159	  if (supports_overflow_infinity (TREE_TYPE (expr))
2160	      && !is_overflow_infinity (vr0.min)
2161	      && !vrp_val_is_min (vr0.min))
2162	    min = positive_overflow_infinity (TREE_TYPE (expr));
2163	  else
2164	    {
2165	      set_value_range_to_varying (vr);
2166	      return;
2167	    }
2168	}
2169      else
2170	min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2171
2172      if (is_positive_overflow_infinity (vr0.min))
2173	max = negative_overflow_infinity (TREE_TYPE (expr));
2174      else if (is_negative_overflow_infinity (vr0.min))
2175	max = positive_overflow_infinity (TREE_TYPE (expr));
2176      else if (!vrp_val_is_min (vr0.min))
2177	max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2178      else if (needs_overflow_infinity (TREE_TYPE (expr)))
2179	{
2180	  if (supports_overflow_infinity (TREE_TYPE (expr)))
2181	    max = positive_overflow_infinity (TREE_TYPE (expr));
2182	  else
2183	    {
2184	      set_value_range_to_varying (vr);
2185	      return;
2186	    }
2187	}
2188      else
2189	max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2190    }
2191  else if (code == NEGATE_EXPR
2192	   && TYPE_UNSIGNED (TREE_TYPE (expr)))
2193    {
2194      if (!range_includes_zero_p (&vr0))
2195	{
2196	  max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2197	  min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2198	}
2199      else
2200	{
2201	  if (range_is_null (&vr0))
2202	    set_value_range_to_null (vr, TREE_TYPE (expr));
2203	  else
2204	    set_value_range_to_varying (vr);
2205	  return;
2206	}
2207    }
2208  else if (code == ABS_EXPR
2209           && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2210    {
2211      /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2212         useful range.  */
2213      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2214	  && ((vr0.type == VR_RANGE
2215	       && vrp_val_is_min (vr0.min))
2216	      || (vr0.type == VR_ANTI_RANGE
2217		  && !vrp_val_is_min (vr0.min)
2218		  && !range_includes_zero_p (&vr0))))
2219	{
2220	  set_value_range_to_varying (vr);
2221	  return;
2222	}
2223
2224      /* ABS_EXPR may flip the range around, if the original range
2225	 included negative values.  */
2226      if (is_overflow_infinity (vr0.min))
2227	min = positive_overflow_infinity (TREE_TYPE (expr));
2228      else if (!vrp_val_is_min (vr0.min))
2229	min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2230      else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2231	min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2232      else if (supports_overflow_infinity (TREE_TYPE (expr)))
2233	min = positive_overflow_infinity (TREE_TYPE (expr));
2234      else
2235	{
2236	  set_value_range_to_varying (vr);
2237	  return;
2238	}
2239
2240      if (is_overflow_infinity (vr0.max))
2241	max = positive_overflow_infinity (TREE_TYPE (expr));
2242      else if (!vrp_val_is_min (vr0.max))
2243	max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2244      else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2245	max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2246      else if (supports_overflow_infinity (TREE_TYPE (expr)))
2247	max = positive_overflow_infinity (TREE_TYPE (expr));
2248      else
2249	{
2250	  set_value_range_to_varying (vr);
2251	  return;
2252	}
2253
2254      cmp = compare_values (min, max);
2255
2256      /* If a VR_ANTI_RANGEs contains zero, then we have
2257	 ~[-INF, min(MIN, MAX)].  */
2258      if (vr0.type == VR_ANTI_RANGE)
2259	{
2260	  if (range_includes_zero_p (&vr0))
2261	    {
2262	      /* Take the lower of the two values.  */
2263	      if (cmp != 1)
2264		max = min;
2265
2266	      /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2267	         or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2268		 flag_wrapv is set and the original anti-range doesn't include
2269	         TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
2270	      if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2271		{
2272		  tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2273
2274		  min = (vr0.min != type_min_value
2275			 ? int_const_binop (PLUS_EXPR, type_min_value,
2276					    integer_one_node, 0)
2277			 : type_min_value);
2278		}
2279	      else
2280		{
2281		  if (overflow_infinity_range_p (&vr0))
2282		    min = negative_overflow_infinity (TREE_TYPE (expr));
2283		  else
2284		    min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2285		}
2286	    }
2287	  else
2288	    {
2289	      /* All else has failed, so create the range [0, INF], even for
2290	         flag_wrapv since TYPE_MIN_VALUE is in the original
2291	         anti-range.  */
2292	      vr0.type = VR_RANGE;
2293	      min = build_int_cst (TREE_TYPE (expr), 0);
2294	      if (needs_overflow_infinity (TREE_TYPE (expr)))
2295		{
2296		  if (supports_overflow_infinity (TREE_TYPE (expr)))
2297		    max = positive_overflow_infinity (TREE_TYPE (expr));
2298		  else
2299		    {
2300		      set_value_range_to_varying (vr);
2301		      return;
2302		    }
2303		}
2304	      else
2305		max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2306	    }
2307	}
2308
2309      /* If the range contains zero then we know that the minimum value in the
2310         range will be zero.  */
2311      else if (range_includes_zero_p (&vr0))
2312	{
2313	  if (cmp == 1)
2314	    max = min;
2315	  min = build_int_cst (TREE_TYPE (expr), 0);
2316	}
2317      else
2318	{
2319          /* If the range was reversed, swap MIN and MAX.  */
2320	  if (cmp == 1)
2321	    {
2322	      tree t = min;
2323	      min = max;
2324	      max = t;
2325	    }
2326	}
2327    }
2328  else
2329    {
2330      /* Otherwise, operate on each end of the range.  */
2331      min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2332      max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2333
2334      if (needs_overflow_infinity (TREE_TYPE (expr)))
2335	{
2336	  gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2337
2338	  /* If both sides have overflowed, we don't know
2339	     anything.  */
2340	  if ((is_overflow_infinity (vr0.min)
2341	       || TREE_OVERFLOW (min))
2342	      && (is_overflow_infinity (vr0.max)
2343		  || TREE_OVERFLOW (max)))
2344	    {
2345	      set_value_range_to_varying (vr);
2346	      return;
2347	    }
2348
2349	  if (is_overflow_infinity (vr0.min))
2350	    min = vr0.min;
2351	  else if (TREE_OVERFLOW (min))
2352	    {
2353	      if (supports_overflow_infinity (TREE_TYPE (expr)))
2354		min = (tree_int_cst_sgn (min) >= 0
2355		       ? positive_overflow_infinity (TREE_TYPE (min))
2356		       : negative_overflow_infinity (TREE_TYPE (min)));
2357	      else
2358		{
2359		  set_value_range_to_varying (vr);
2360		  return;
2361		}
2362	    }
2363
2364	  if (is_overflow_infinity (vr0.max))
2365	    max = vr0.max;
2366	  else if (TREE_OVERFLOW (max))
2367	    {
2368	      if (supports_overflow_infinity (TREE_TYPE (expr)))
2369		max = (tree_int_cst_sgn (max) >= 0
2370		       ? positive_overflow_infinity (TREE_TYPE (max))
2371		       : negative_overflow_infinity (TREE_TYPE (max)));
2372	      else
2373		{
2374		  set_value_range_to_varying (vr);
2375		  return;
2376		}
2377	    }
2378	}
2379    }
2380
2381  cmp = compare_values (min, max);
2382  if (cmp == -2 || cmp == 1)
2383    {
2384      /* If the new range has its limits swapped around (MIN > MAX),
2385	 then the operation caused one of them to wrap around, mark
2386	 the new range VARYING.  */
2387      set_value_range_to_varying (vr);
2388    }
2389  else
2390    set_value_range (vr, vr0.type, min, max, NULL);
2391}
2392
2393
2394/* Extract range information from a comparison expression EXPR based
2395   on the range of its operand and the expression code.  */
2396
2397static void
2398extract_range_from_comparison (value_range_t *vr, tree expr)
2399{
2400  bool sop = false;
2401  tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2402
2403  /* A disadvantage of using a special infinity as an overflow
2404     representation is that we lose the ability to record overflow
2405     when we don't have an infinity.  So we have to ignore a result
2406     which relies on overflow.  */
2407
2408  if (val && !is_overflow_infinity (val) && !sop)
2409    {
2410      /* Since this expression was found on the RHS of an assignment,
2411	 its type may be different from _Bool.  Convert VAL to EXPR's
2412	 type.  */
2413      val = fold_convert (TREE_TYPE (expr), val);
2414      if (is_gimple_min_invariant (val))
2415	set_value_range_to_value (vr, val, vr->equiv);
2416      else
2417	set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2418    }
2419  else
2420    set_value_range_to_varying (vr);
2421}
2422
2423
2424/* Try to compute a useful range out of expression EXPR and store it
2425   in *VR.  */
2426
2427static void
2428extract_range_from_expr (value_range_t *vr, tree expr)
2429{
2430  enum tree_code code = TREE_CODE (expr);
2431
2432  if (code == ASSERT_EXPR)
2433    extract_range_from_assert (vr, expr);
2434  else if (code == SSA_NAME)
2435    extract_range_from_ssa_name (vr, expr);
2436  else if (TREE_CODE_CLASS (code) == tcc_binary
2437	   || code == TRUTH_ANDIF_EXPR
2438	   || code == TRUTH_ORIF_EXPR
2439	   || code == TRUTH_AND_EXPR
2440	   || code == TRUTH_OR_EXPR
2441	   || code == TRUTH_XOR_EXPR)
2442    extract_range_from_binary_expr (vr, expr);
2443  else if (TREE_CODE_CLASS (code) == tcc_unary)
2444    extract_range_from_unary_expr (vr, expr);
2445  else if (TREE_CODE_CLASS (code) == tcc_comparison)
2446    extract_range_from_comparison (vr, expr);
2447  else if (is_gimple_min_invariant (expr))
2448    set_value_range_to_value (vr, expr, NULL);
2449  else
2450    set_value_range_to_varying (vr);
2451
2452  /* If we got a varying range from the tests above, try a final
2453     time to derive a nonnegative or nonzero range.  This time
2454     relying primarily on generic routines in fold in conjunction
2455     with range data.  */
2456  if (vr->type == VR_VARYING)
2457    {
2458      bool sop = false;
2459
2460      if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2461	  && vrp_expr_computes_nonnegative (expr, &sop))
2462	set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2463					sop || is_overflow_infinity (expr));
2464      else if (vrp_expr_computes_nonzero (expr, &sop)
2465	       && !sop)
2466        set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2467    }
2468}
2469
2470/* Given a range VR, a LOOP and a variable VAR, determine whether it
2471   would be profitable to adjust VR using scalar evolution information
2472   for VAR.  If so, update VR with the new limits.  */
2473
2474static void
2475adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2476			tree var)
2477{
2478  tree init, step, chrec, tmin, tmax, min, max, type;
2479  enum ev_direction dir;
2480
2481  /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
2482     better opportunities than a regular range, but I'm not sure.  */
2483  if (vr->type == VR_ANTI_RANGE)
2484    return;
2485
2486  chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2487  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2488    return;
2489
2490  init = initial_condition_in_loop_num (chrec, loop->num);
2491  step = evolution_part_in_loop_num (chrec, loop->num);
2492
2493  /* If STEP is symbolic, we can't know whether INIT will be the
2494     minimum or maximum value in the range.  Also, unless INIT is
2495     a simple expression, compare_values and possibly other functions
2496     in tree-vrp won't be able to handle it.  */
2497  if (step == NULL_TREE
2498      || !is_gimple_min_invariant (step)
2499      || !valid_value_p (init))
2500    return;
2501
2502  dir = scev_direction (chrec);
2503  if (/* Do not adjust ranges if we do not know whether the iv increases
2504	 or decreases,  ... */
2505      dir == EV_DIR_UNKNOWN
2506      /* ... or if it may wrap.  */
2507      || scev_probably_wraps_p (init, step, stmt,
2508				current_loops->parray[CHREC_VARIABLE (chrec)],
2509				true))
2510    return;
2511
2512  type = TREE_TYPE (var);
2513
2514  /* If we see a pointer type starting at a constant, then we have an
2515     unusual ivopt.  It may legitimately wrap.  */
2516  if (POINTER_TYPE_P (type) && is_gimple_min_invariant (init))
2517    return;
2518
2519  /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2520     negative_overflow_infinity and positive_overflow_infinity,
2521     because we have concluded that the loop probably does not
2522     wrap.  */
2523
2524  if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2525    tmin = lower_bound_in_type (type, type);
2526  else
2527    tmin = TYPE_MIN_VALUE (type);
2528  if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2529    tmax = upper_bound_in_type (type, type);
2530  else
2531    tmax = TYPE_MAX_VALUE (type);
2532
2533  if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2534    {
2535      min = tmin;
2536      max = tmax;
2537
2538      /* For VARYING or UNDEFINED ranges, just about anything we get
2539	 from scalar evolutions should be better.  */
2540
2541      if (dir == EV_DIR_DECREASES)
2542	max = init;
2543      else
2544	min = init;
2545
2546      /* If we would create an invalid range, then just assume we
2547	 know absolutely nothing.  This may be over-conservative,
2548	 but it's clearly safe, and should happen only in unreachable
2549         parts of code, or for invalid programs.  */
2550      if (compare_values (min, max) == 1)
2551	return;
2552
2553      set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2554    }
2555  else if (vr->type == VR_RANGE)
2556    {
2557      min = vr->min;
2558      max = vr->max;
2559
2560      if (dir == EV_DIR_DECREASES)
2561	{
2562	  /* INIT is the maximum value.  If INIT is lower than VR->MAX
2563	     but no smaller than VR->MIN, set VR->MAX to INIT.  */
2564	  if (compare_values (init, max) == -1)
2565	    {
2566	      max = init;
2567
2568	      /* If we just created an invalid range with the minimum
2569		 greater than the maximum, we fail conservatively.
2570		 This should happen only in unreachable
2571		 parts of code, or for invalid programs.  */
2572	      if (compare_values (min, max) == 1)
2573		return;
2574	    }
2575
2576	  /* According to the loop information, the variable does not
2577	     overflow.  If we think it does, probably because of an
2578	     overflow due to arithmetic on a different INF value,
2579	     reset now.  */
2580	  if (is_negative_overflow_infinity (min))
2581	    min = tmin;
2582	}
2583      else
2584	{
2585	  /* If INIT is bigger than VR->MIN, set VR->MIN to INIT.  */
2586	  if (compare_values (init, min) == 1)
2587	    {
2588	      min = init;
2589
2590	      /* Again, avoid creating invalid range by failing.  */
2591	      if (compare_values (min, max) == 1)
2592		return;
2593	    }
2594
2595	  if (is_positive_overflow_infinity (max))
2596	    max = tmax;
2597	}
2598
2599      set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2600    }
2601}
2602
2603/* Return true if VAR may overflow at STMT.  This checks any available
2604   loop information to see if we can determine that VAR does not
2605   overflow.  */
2606
2607static bool
2608vrp_var_may_overflow (tree var, tree stmt)
2609{
2610  struct loop *l;
2611  tree chrec, init, step;
2612
2613  if (current_loops == NULL)
2614    return true;
2615
2616  l = loop_containing_stmt (stmt);
2617  if (l == NULL)
2618    return true;
2619
2620  chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2621  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2622    return true;
2623
2624  init = initial_condition_in_loop_num (chrec, l->num);
2625  step = evolution_part_in_loop_num (chrec, l->num);
2626
2627  if (step == NULL_TREE
2628      || !is_gimple_min_invariant (step)
2629      || !valid_value_p (init))
2630    return true;
2631
2632  /* If we get here, we know something useful about VAR based on the
2633     loop information.  If it wraps, it may overflow.  */
2634
2635  if (scev_probably_wraps_p (init, step, stmt,
2636			     current_loops->parray[CHREC_VARIABLE (chrec)],
2637			     true))
2638    return true;
2639
2640  if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2641    {
2642      print_generic_expr (dump_file, var, 0);
2643      fprintf (dump_file, ": loop information indicates does not overflow\n");
2644    }
2645
2646  return false;
2647}
2648
2649
2650/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2651
2652   - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2653     all the values in the ranges.
2654
2655   - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2656
2657   - Return NULL_TREE if it is not always possible to determine the
2658     value of the comparison.
2659
2660   Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2661   overflow infinity was used in the test.  */
2662
2663
2664static tree
2665compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2666		bool *strict_overflow_p)
2667{
2668  /* VARYING or UNDEFINED ranges cannot be compared.  */
2669  if (vr0->type == VR_VARYING
2670      || vr0->type == VR_UNDEFINED
2671      || vr1->type == VR_VARYING
2672      || vr1->type == VR_UNDEFINED)
2673    return NULL_TREE;
2674
2675  /* Anti-ranges need to be handled separately.  */
2676  if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2677    {
2678      /* If both are anti-ranges, then we cannot compute any
2679	 comparison.  */
2680      if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2681	return NULL_TREE;
2682
2683      /* These comparisons are never statically computable.  */
2684      if (comp == GT_EXPR
2685	  || comp == GE_EXPR
2686	  || comp == LT_EXPR
2687	  || comp == LE_EXPR)
2688	return NULL_TREE;
2689
2690      /* Equality can be computed only between a range and an
2691	 anti-range.  ~[VAL1, VAL2] == [VAL1, VAL2] is always false.  */
2692      if (vr0->type == VR_RANGE)
2693	{
2694	  /* To simplify processing, make VR0 the anti-range.  */
2695	  value_range_t *tmp = vr0;
2696	  vr0 = vr1;
2697	  vr1 = tmp;
2698	}
2699
2700      gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2701
2702      if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2703	  && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2704	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2705
2706      return NULL_TREE;
2707    }
2708
2709  if (!usable_range_p (vr0, strict_overflow_p)
2710      || !usable_range_p (vr1, strict_overflow_p))
2711    return NULL_TREE;
2712
2713  /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
2714     operands around and change the comparison code.  */
2715  if (comp == GT_EXPR || comp == GE_EXPR)
2716    {
2717      value_range_t *tmp;
2718      comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2719      tmp = vr0;
2720      vr0 = vr1;
2721      vr1 = tmp;
2722    }
2723
2724  if (comp == EQ_EXPR)
2725    {
2726      /* Equality may only be computed if both ranges represent
2727	 exactly one value.  */
2728      if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2729	  && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2730	{
2731	  int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2732					      strict_overflow_p);
2733	  int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2734					      strict_overflow_p);
2735	  if (cmp_min == 0 && cmp_max == 0)
2736	    return boolean_true_node;
2737	  else if (cmp_min != -2 && cmp_max != -2)
2738	    return boolean_false_node;
2739	}
2740      /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
2741      else if (compare_values_warnv (vr0->min, vr1->max,
2742				     strict_overflow_p) == 1
2743	       || compare_values_warnv (vr1->min, vr0->max,
2744					strict_overflow_p) == 1)
2745	return boolean_false_node;
2746
2747      return NULL_TREE;
2748    }
2749  else if (comp == NE_EXPR)
2750    {
2751      int cmp1, cmp2;
2752
2753      /* If VR0 is completely to the left or completely to the right
2754	 of VR1, they are always different.  Notice that we need to
2755	 make sure that both comparisons yield similar results to
2756	 avoid comparing values that cannot be compared at
2757	 compile-time.  */
2758      cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2759      cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2760      if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2761	return boolean_true_node;
2762
2763      /* If VR0 and VR1 represent a single value and are identical,
2764	 return false.  */
2765      else if (compare_values_warnv (vr0->min, vr0->max,
2766				     strict_overflow_p) == 0
2767	       && compare_values_warnv (vr1->min, vr1->max,
2768					strict_overflow_p) == 0
2769	       && compare_values_warnv (vr0->min, vr1->min,
2770					strict_overflow_p) == 0
2771	       && compare_values_warnv (vr0->max, vr1->max,
2772					strict_overflow_p) == 0)
2773	return boolean_false_node;
2774
2775      /* Otherwise, they may or may not be different.  */
2776      else
2777	return NULL_TREE;
2778    }
2779  else if (comp == LT_EXPR || comp == LE_EXPR)
2780    {
2781      int tst;
2782
2783      /* If VR0 is to the left of VR1, return true.  */
2784      tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2785      if ((comp == LT_EXPR && tst == -1)
2786	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2787	{
2788	  if (overflow_infinity_range_p (vr0)
2789	      || overflow_infinity_range_p (vr1))
2790	    *strict_overflow_p = true;
2791	  return boolean_true_node;
2792	}
2793
2794      /* If VR0 is to the right of VR1, return false.  */
2795      tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2796      if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2797	  || (comp == LE_EXPR && tst == 1))
2798	{
2799	  if (overflow_infinity_range_p (vr0)
2800	      || overflow_infinity_range_p (vr1))
2801	    *strict_overflow_p = true;
2802	  return boolean_false_node;
2803	}
2804
2805      /* Otherwise, we don't know.  */
2806      return NULL_TREE;
2807    }
2808
2809  gcc_unreachable ();
2810}
2811
2812
2813/* Given a value range VR, a value VAL and a comparison code COMP, return
2814   BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2815   values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
2816   always returns false.  Return NULL_TREE if it is not always
2817   possible to determine the value of the comparison.  Also set
2818   *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2819   infinity was used in the test.  */
2820
2821static tree
2822compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2823			  bool *strict_overflow_p)
2824{
2825  if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2826    return NULL_TREE;
2827
2828  /* Anti-ranges need to be handled separately.  */
2829  if (vr->type == VR_ANTI_RANGE)
2830    {
2831      /* For anti-ranges, the only predicates that we can compute at
2832	 compile time are equality and inequality.  */
2833      if (comp == GT_EXPR
2834	  || comp == GE_EXPR
2835	  || comp == LT_EXPR
2836	  || comp == LE_EXPR)
2837	return NULL_TREE;
2838
2839      /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
2840      if (value_inside_range (val, vr) == 1)
2841	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2842
2843      return NULL_TREE;
2844    }
2845
2846  if (!usable_range_p (vr, strict_overflow_p))
2847    return NULL_TREE;
2848
2849  if (comp == EQ_EXPR)
2850    {
2851      /* EQ_EXPR may only be computed if VR represents exactly
2852	 one value.  */
2853      if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2854	{
2855	  int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2856	  if (cmp == 0)
2857	    return boolean_true_node;
2858	  else if (cmp == -1 || cmp == 1 || cmp == 2)
2859	    return boolean_false_node;
2860	}
2861      else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
2862	       || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
2863	return boolean_false_node;
2864
2865      return NULL_TREE;
2866    }
2867  else if (comp == NE_EXPR)
2868    {
2869      /* If VAL is not inside VR, then they are always different.  */
2870      if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
2871	  || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
2872	return boolean_true_node;
2873
2874      /* If VR represents exactly one value equal to VAL, then return
2875	 false.  */
2876      if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
2877	  && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
2878	return boolean_false_node;
2879
2880      /* Otherwise, they may or may not be different.  */
2881      return NULL_TREE;
2882    }
2883  else if (comp == LT_EXPR || comp == LE_EXPR)
2884    {
2885      int tst;
2886
2887      /* If VR is to the left of VAL, return true.  */
2888      tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2889      if ((comp == LT_EXPR && tst == -1)
2890	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2891	{
2892	  if (overflow_infinity_range_p (vr))
2893	    *strict_overflow_p = true;
2894	  return boolean_true_node;
2895	}
2896
2897      /* If VR is to the right of VAL, return false.  */
2898      tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2899      if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2900	  || (comp == LE_EXPR && tst == 1))
2901	{
2902	  if (overflow_infinity_range_p (vr))
2903	    *strict_overflow_p = true;
2904	  return boolean_false_node;
2905	}
2906
2907      /* Otherwise, we don't know.  */
2908      return NULL_TREE;
2909    }
2910  else if (comp == GT_EXPR || comp == GE_EXPR)
2911    {
2912      int tst;
2913
2914      /* If VR is to the right of VAL, return true.  */
2915      tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2916      if ((comp == GT_EXPR && tst == 1)
2917	  || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2918	{
2919	  if (overflow_infinity_range_p (vr))
2920	    *strict_overflow_p = true;
2921	  return boolean_true_node;
2922	}
2923
2924      /* If VR is to the left of VAL, return false.  */
2925      tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2926      if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2927	  || (comp == GE_EXPR && tst == -1))
2928	{
2929	  if (overflow_infinity_range_p (vr))
2930	    *strict_overflow_p = true;
2931	  return boolean_false_node;
2932	}
2933
2934      /* Otherwise, we don't know.  */
2935      return NULL_TREE;
2936    }
2937
2938  gcc_unreachable ();
2939}
2940
2941
2942/* Debugging dumps.  */
2943
2944void dump_value_range (FILE *, value_range_t *);
2945void debug_value_range (value_range_t *);
2946void dump_all_value_ranges (FILE *);
2947void debug_all_value_ranges (void);
2948void dump_vr_equiv (FILE *, bitmap);
2949void debug_vr_equiv (bitmap);
2950
2951
2952/* Dump value range VR to FILE.  */
2953
2954void
2955dump_value_range (FILE *file, value_range_t *vr)
2956{
2957  if (vr == NULL)
2958    fprintf (file, "[]");
2959  else if (vr->type == VR_UNDEFINED)
2960    fprintf (file, "UNDEFINED");
2961  else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2962    {
2963      tree type = TREE_TYPE (vr->min);
2964
2965      fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2966
2967      if (is_negative_overflow_infinity (vr->min))
2968	fprintf (file, "-INF(OVF)");
2969      else if (INTEGRAL_TYPE_P (type)
2970	       && !TYPE_UNSIGNED (type)
2971	       && vrp_val_is_min (vr->min))
2972	fprintf (file, "-INF");
2973      else
2974	print_generic_expr (file, vr->min, 0);
2975
2976      fprintf (file, ", ");
2977
2978      if (is_positive_overflow_infinity (vr->max))
2979	fprintf (file, "+INF(OVF)");
2980      else if (INTEGRAL_TYPE_P (type)
2981	       && vrp_val_is_max (vr->max))
2982	fprintf (file, "+INF");
2983      else
2984	print_generic_expr (file, vr->max, 0);
2985
2986      fprintf (file, "]");
2987
2988      if (vr->equiv)
2989	{
2990	  bitmap_iterator bi;
2991	  unsigned i, c = 0;
2992
2993	  fprintf (file, "  EQUIVALENCES: { ");
2994
2995	  EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2996	    {
2997	      print_generic_expr (file, ssa_name (i), 0);
2998	      fprintf (file, " ");
2999	      c++;
3000	    }
3001
3002	  fprintf (file, "} (%u elements)", c);
3003	}
3004    }
3005  else if (vr->type == VR_VARYING)
3006    fprintf (file, "VARYING");
3007  else
3008    fprintf (file, "INVALID RANGE");
3009}
3010
3011
3012/* Dump value range VR to stderr.  */
3013
3014void
3015debug_value_range (value_range_t *vr)
3016{
3017  dump_value_range (stderr, vr);
3018  fprintf (stderr, "\n");
3019}
3020
3021
3022/* Dump value ranges of all SSA_NAMEs to FILE.  */
3023
3024void
3025dump_all_value_ranges (FILE *file)
3026{
3027  size_t i;
3028
3029  for (i = 0; i < num_ssa_names; i++)
3030    {
3031      if (vr_value[i])
3032	{
3033	  print_generic_expr (file, ssa_name (i), 0);
3034	  fprintf (file, ": ");
3035	  dump_value_range (file, vr_value[i]);
3036	  fprintf (file, "\n");
3037	}
3038    }
3039
3040  fprintf (file, "\n");
3041}
3042
3043
3044/* Dump all value ranges to stderr.  */
3045
3046void
3047debug_all_value_ranges (void)
3048{
3049  dump_all_value_ranges (stderr);
3050}
3051
3052
3053/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3054   create a new SSA name N and return the assertion assignment
3055   'V = ASSERT_EXPR <V, V OP W>'.  */
3056
3057static tree
3058build_assert_expr_for (tree cond, tree v)
3059{
3060  tree n, assertion;
3061
3062  gcc_assert (TREE_CODE (v) == SSA_NAME);
3063  n = duplicate_ssa_name (v, NULL_TREE);
3064
3065  if (COMPARISON_CLASS_P (cond))
3066    {
3067      tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3068      assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
3069    }
3070  else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3071    {
3072      /* Given !V, build the assignment N = false.  */
3073      tree op0 = TREE_OPERAND (cond, 0);
3074      gcc_assert (op0 == v);
3075      assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
3076    }
3077  else if (TREE_CODE (cond) == SSA_NAME)
3078    {
3079      /* Given V, build the assignment N = true.  */
3080      gcc_assert (v == cond);
3081      assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
3082    }
3083  else
3084    gcc_unreachable ();
3085
3086  SSA_NAME_DEF_STMT (n) = assertion;
3087
3088  /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3089     operand of the ASSERT_EXPR. Register the new name and the old one
3090     in the replacement table so that we can fix the SSA web after
3091     adding all the ASSERT_EXPRs.  */
3092  register_new_name_mapping (n, v);
3093
3094  return assertion;
3095}
3096
3097
3098/* Return false if EXPR is a predicate expression involving floating
3099   point values.  */
3100
3101static inline bool
3102fp_predicate (tree expr)
3103{
3104  return (COMPARISON_CLASS_P (expr)
3105	  && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3106}
3107
3108
3109/* If the range of values taken by OP can be inferred after STMT executes,
3110   return the comparison code (COMP_CODE_P) and value (VAL_P) that
3111   describes the inferred range.  Return true if a range could be
3112   inferred.  */
3113
3114static bool
3115infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3116{
3117  *val_p = NULL_TREE;
3118  *comp_code_p = ERROR_MARK;
3119
3120  /* Do not attempt to infer anything in names that flow through
3121     abnormal edges.  */
3122  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3123    return false;
3124
3125  /* Similarly, don't infer anything from statements that may throw
3126     exceptions.  */
3127  if (tree_could_throw_p (stmt))
3128    return false;
3129
3130  /* If STMT is the last statement of a basic block with no
3131     successors, there is no point inferring anything about any of its
3132     operands.  We would not be able to find a proper insertion point
3133     for the assertion, anyway.  */
3134  if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3135    return false;
3136
3137  /* We can only assume that a pointer dereference will yield
3138     non-NULL if -fdelete-null-pointer-checks is enabled.  */
3139  if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3140    {
3141      bool is_store;
3142      unsigned num_uses, num_derefs;
3143
3144      count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3145      if (num_derefs > 0)
3146	{
3147	  *val_p = build_int_cst (TREE_TYPE (op), 0);
3148	  *comp_code_p = NE_EXPR;
3149	  return true;
3150	}
3151    }
3152
3153  return false;
3154}
3155
3156
3157void dump_asserts_for (FILE *, tree);
3158void debug_asserts_for (tree);
3159void dump_all_asserts (FILE *);
3160void debug_all_asserts (void);
3161
3162/* Dump all the registered assertions for NAME to FILE.  */
3163
3164void
3165dump_asserts_for (FILE *file, tree name)
3166{
3167  assert_locus_t loc;
3168
3169  fprintf (file, "Assertions to be inserted for ");
3170  print_generic_expr (file, name, 0);
3171  fprintf (file, "\n");
3172
3173  loc = asserts_for[SSA_NAME_VERSION (name)];
3174  while (loc)
3175    {
3176      fprintf (file, "\t");
3177      print_generic_expr (file, bsi_stmt (loc->si), 0);
3178      fprintf (file, "\n\tBB #%d", loc->bb->index);
3179      if (loc->e)
3180	{
3181	  fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3182	           loc->e->dest->index);
3183	  dump_edge_info (file, loc->e, 0);
3184	}
3185      fprintf (file, "\n\tPREDICATE: ");
3186      print_generic_expr (file, name, 0);
3187      fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3188      print_generic_expr (file, loc->val, 0);
3189      fprintf (file, "\n\n");
3190      loc = loc->next;
3191    }
3192
3193  fprintf (file, "\n");
3194}
3195
3196
3197/* Dump all the registered assertions for NAME to stderr.  */
3198
3199void
3200debug_asserts_for (tree name)
3201{
3202  dump_asserts_for (stderr, name);
3203}
3204
3205
3206/* Dump all the registered assertions for all the names to FILE.  */
3207
3208void
3209dump_all_asserts (FILE *file)
3210{
3211  unsigned i;
3212  bitmap_iterator bi;
3213
3214  fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3215  EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3216    dump_asserts_for (file, ssa_name (i));
3217  fprintf (file, "\n");
3218}
3219
3220
3221/* Dump all the registered assertions for all the names to stderr.  */
3222
3223void
3224debug_all_asserts (void)
3225{
3226  dump_all_asserts (stderr);
3227}
3228
3229
3230/* If NAME doesn't have an ASSERT_EXPR registered for asserting
3231   'NAME COMP_CODE VAL' at a location that dominates block BB or
3232   E->DEST, then register this location as a possible insertion point
3233   for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3234
3235   BB, E and SI provide the exact insertion point for the new
3236   ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
3237   on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3238   BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3239   must not be NULL.  */
3240
3241static void
3242register_new_assert_for (tree name,
3243			 enum tree_code comp_code,
3244			 tree val,
3245			 basic_block bb,
3246			 edge e,
3247			 block_stmt_iterator si)
3248{
3249  assert_locus_t n, loc, last_loc;
3250  bool found;
3251  basic_block dest_bb;
3252
3253#if defined ENABLE_CHECKING
3254  gcc_assert (bb == NULL || e == NULL);
3255
3256  if (e == NULL)
3257    gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3258		&& TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3259#endif
3260
3261  /* The new assertion A will be inserted at BB or E.  We need to
3262     determine if the new location is dominated by a previously
3263     registered location for A.  If we are doing an edge insertion,
3264     assume that A will be inserted at E->DEST.  Note that this is not
3265     necessarily true.
3266
3267     If E is a critical edge, it will be split.  But even if E is
3268     split, the new block will dominate the same set of blocks that
3269     E->DEST dominates.
3270
3271     The reverse, however, is not true, blocks dominated by E->DEST
3272     will not be dominated by the new block created to split E.  So,
3273     if the insertion location is on a critical edge, we will not use
3274     the new location to move another assertion previously registered
3275     at a block dominated by E->DEST.  */
3276  dest_bb = (bb) ? bb : e->dest;
3277
3278  /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3279     VAL at a block dominating DEST_BB, then we don't need to insert a new
3280     one.  Similarly, if the same assertion already exists at a block
3281     dominated by DEST_BB and the new location is not on a critical
3282     edge, then update the existing location for the assertion (i.e.,
3283     move the assertion up in the dominance tree).
3284
3285     Note, this is implemented as a simple linked list because there
3286     should not be more than a handful of assertions registered per
3287     name.  If this becomes a performance problem, a table hashed by
3288     COMP_CODE and VAL could be implemented.  */
3289  loc = asserts_for[SSA_NAME_VERSION (name)];
3290  last_loc = loc;
3291  found = false;
3292  while (loc)
3293    {
3294      if (loc->comp_code == comp_code
3295	  && (loc->val == val
3296	      || operand_equal_p (loc->val, val, 0)))
3297	{
3298	  /* If the assertion NAME COMP_CODE VAL has already been
3299	     registered at a basic block that dominates DEST_BB, then
3300	     we don't need to insert the same assertion again.  Note
3301	     that we don't check strict dominance here to avoid
3302	     replicating the same assertion inside the same basic
3303	     block more than once (e.g., when a pointer is
3304	     dereferenced several times inside a block).
3305
3306	     An exception to this rule are edge insertions.  If the
3307	     new assertion is to be inserted on edge E, then it will
3308	     dominate all the other insertions that we may want to
3309	     insert in DEST_BB.  So, if we are doing an edge
3310	     insertion, don't do this dominance check.  */
3311          if (e == NULL
3312	      && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3313	    return;
3314
3315	  /* Otherwise, if E is not a critical edge and DEST_BB
3316	     dominates the existing location for the assertion, move
3317	     the assertion up in the dominance tree by updating its
3318	     location information.  */
3319	  if ((e == NULL || !EDGE_CRITICAL_P (e))
3320	      && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3321	    {
3322	      loc->bb = dest_bb;
3323	      loc->e = e;
3324	      loc->si = si;
3325	      return;
3326	    }
3327	}
3328
3329      /* Update the last node of the list and move to the next one.  */
3330      last_loc = loc;
3331      loc = loc->next;
3332    }
3333
3334  /* If we didn't find an assertion already registered for
3335     NAME COMP_CODE VAL, add a new one at the end of the list of
3336     assertions associated with NAME.  */
3337  n = XNEW (struct assert_locus_d);
3338  n->bb = dest_bb;
3339  n->e = e;
3340  n->si = si;
3341  n->comp_code = comp_code;
3342  n->val = val;
3343  n->next = NULL;
3344
3345  if (last_loc)
3346    last_loc->next = n;
3347  else
3348    asserts_for[SSA_NAME_VERSION (name)] = n;
3349
3350  bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3351}
3352
3353
3354/* Try to register an edge assertion for SSA name NAME on edge E for
3355   the conditional jump pointed to by SI.  Return true if an assertion
3356   for NAME could be registered.  */
3357
3358static bool
3359register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
3360{
3361  tree val, stmt;
3362  enum tree_code comp_code;
3363
3364  stmt = bsi_stmt (si);
3365
3366  /* Do not attempt to infer anything in names that flow through
3367     abnormal edges.  */
3368  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3369    return false;
3370
3371  /* If NAME was not found in the sub-graph reachable from E, then
3372     there's nothing to do.  */
3373  if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3374    return false;
3375
3376  /* We found a use of NAME in the sub-graph rooted at E->DEST.
3377     Register an assertion for NAME according to the value that NAME
3378     takes on edge E.  */
3379  if (TREE_CODE (stmt) == COND_EXPR)
3380    {
3381      /* If BB ends in a COND_EXPR then NAME then we should insert
3382	 the original predicate on EDGE_TRUE_VALUE and the
3383	 opposite predicate on EDGE_FALSE_VALUE.  */
3384      tree cond = COND_EXPR_COND (stmt);
3385      bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3386
3387      /* Predicates may be a single SSA name or NAME OP VAL.  */
3388      if (cond == name)
3389	{
3390	  /* If the predicate is a name, it must be NAME, in which
3391	     case we create the predicate NAME == true or
3392	     NAME == false accordingly.  */
3393	  comp_code = EQ_EXPR;
3394	  val = (is_else_edge) ? boolean_false_node : boolean_true_node;
3395	}
3396      else
3397	{
3398	  /* Otherwise, we have a comparison of the form NAME COMP VAL
3399	     or VAL COMP NAME.  */
3400	  if (name == TREE_OPERAND (cond, 1))
3401	    {
3402	      /* If the predicate is of the form VAL COMP NAME, flip
3403		 COMP around because we need to register NAME as the
3404		 first operand in the predicate.  */
3405	      comp_code = swap_tree_comparison (TREE_CODE (cond));
3406	      val = TREE_OPERAND (cond, 0);
3407	    }
3408	  else
3409	    {
3410	      /* The comparison is of the form NAME COMP VAL, so the
3411		 comparison code remains unchanged.  */
3412	      comp_code = TREE_CODE (cond);
3413	      val = TREE_OPERAND (cond, 1);
3414	    }
3415
3416	  /* If we are inserting the assertion on the ELSE edge, we
3417	     need to invert the sign comparison.  */
3418	  if (is_else_edge)
3419	    comp_code = invert_tree_comparison (comp_code, 0);
3420
3421	  /* Do not register always-false predicates.  FIXME, this
3422	     works around a limitation in fold() when dealing with
3423	     enumerations.  Given 'enum { N1, N2 } x;', fold will not
3424	     fold 'if (x > N2)' to 'if (0)'.  */
3425	  if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3426	      && (INTEGRAL_TYPE_P (TREE_TYPE (val))
3427		  || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
3428	    {
3429	      tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3430	      tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3431
3432	      if (comp_code == GT_EXPR && compare_values (val, max) == 0)
3433		return false;
3434
3435	      if (comp_code == LT_EXPR && compare_values (val, min) == 0)
3436		return false;
3437	    }
3438	}
3439    }
3440  else
3441    {
3442      /* FIXME.  Handle SWITCH_EXPR.  */
3443      gcc_unreachable ();
3444    }
3445
3446  register_new_assert_for (name, comp_code, val, NULL, e, si);
3447  return true;
3448}
3449
3450
3451static bool find_assert_locations (basic_block bb);
3452
3453/* Determine whether the outgoing edges of BB should receive an
3454   ASSERT_EXPR for each of the operands of BB's last statement.  The
3455   last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
3456
3457   If any of the sub-graphs rooted at BB have an interesting use of
3458   the predicate operands, an assert location node is added to the
3459   list of assertions for the corresponding operands.  */
3460
3461static bool
3462find_conditional_asserts (basic_block bb)
3463{
3464  bool need_assert;
3465  block_stmt_iterator last_si;
3466  tree op, last;
3467  edge_iterator ei;
3468  edge e;
3469  ssa_op_iter iter;
3470
3471  need_assert = false;
3472  last_si = bsi_last (bb);
3473  last = bsi_stmt (last_si);
3474
3475  /* Look for uses of the operands in each of the sub-graphs
3476     rooted at BB.  We need to check each of the outgoing edges
3477     separately, so that we know what kind of ASSERT_EXPR to
3478     insert.  */
3479  FOR_EACH_EDGE (e, ei, bb->succs)
3480    {
3481      if (e->dest == bb)
3482	continue;
3483
3484      /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3485	 Otherwise, when we finish traversing each of the sub-graphs, we
3486	 won't know whether the variables were found in the sub-graphs or
3487	 if they had been found in a block upstream from BB.
3488
3489	 This is actually a bad idea is some cases, particularly jump
3490	 threading.  Consider a CFG like the following:
3491
3492                    0
3493                   /|
3494                  1 |
3495                   \|
3496                    2
3497                   / \
3498                  3   4
3499
3500	 Assume that one or more operands in the conditional at the
3501	 end of block 0 are used in a conditional in block 2, but not
3502	 anywhere in block 1.  In this case we will not insert any
3503	 assert statements in block 1, which may cause us to miss
3504	 opportunities to optimize, particularly for jump threading.  */
3505      FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3506	RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3507
3508      /* Traverse the strictly dominated sub-graph rooted at E->DEST
3509	 to determine if any of the operands in the conditional
3510	 predicate are used.  */
3511      if (e->dest != bb)
3512	need_assert |= find_assert_locations (e->dest);
3513
3514      /* Register the necessary assertions for each operand in the
3515	 conditional predicate.  */
3516      FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3517	need_assert |= register_edge_assert_for (op, e, last_si);
3518    }
3519
3520  /* Finally, indicate that we have found the operands in the
3521     conditional.  */
3522  FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3523    SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3524
3525  return need_assert;
3526}
3527
3528
3529/* Traverse all the statements in block BB looking for statements that
3530   may generate useful assertions for the SSA names in their operand.
3531   If a statement produces a useful assertion A for name N_i, then the
3532   list of assertions already generated for N_i is scanned to
3533   determine if A is actually needed.
3534
3535   If N_i already had the assertion A at a location dominating the
3536   current location, then nothing needs to be done.  Otherwise, the
3537   new location for A is recorded instead.
3538
3539   1- For every statement S in BB, all the variables used by S are
3540      added to bitmap FOUND_IN_SUBGRAPH.
3541
3542   2- If statement S uses an operand N in a way that exposes a known
3543      value range for N, then if N was not already generated by an
3544      ASSERT_EXPR, create a new assert location for N.  For instance,
3545      if N is a pointer and the statement dereferences it, we can
3546      assume that N is not NULL.
3547
3548   3- COND_EXPRs are a special case of #2.  We can derive range
3549      information from the predicate but need to insert different
3550      ASSERT_EXPRs for each of the sub-graphs rooted at the
3551      conditional block.  If the last statement of BB is a conditional
3552      expression of the form 'X op Y', then
3553
3554      a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3555
3556      b) If the conditional is the only entry point to the sub-graph
3557	 corresponding to the THEN_CLAUSE, recurse into it.  On
3558	 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3559	 an ASSERT_EXPR is added for the corresponding variable.
3560
3561      c) Repeat step (b) on the ELSE_CLAUSE.
3562
3563      d) Mark X and Y in FOUND_IN_SUBGRAPH.
3564
3565      For instance,
3566
3567	    if (a == 9)
3568	      b = a;
3569	    else
3570	      b = c + 1;
3571
3572      In this case, an assertion on the THEN clause is useful to
3573      determine that 'a' is always 9 on that edge.  However, an assertion
3574      on the ELSE clause would be unnecessary.
3575
3576   4- If BB does not end in a conditional expression, then we recurse
3577      into BB's dominator children.
3578
3579   At the end of the recursive traversal, every SSA name will have a
3580   list of locations where ASSERT_EXPRs should be added.  When a new
3581   location for name N is found, it is registered by calling
3582   register_new_assert_for.  That function keeps track of all the
3583   registered assertions to prevent adding unnecessary assertions.
3584   For instance, if a pointer P_4 is dereferenced more than once in a
3585   dominator tree, only the location dominating all the dereference of
3586   P_4 will receive an ASSERT_EXPR.
3587
3588   If this function returns true, then it means that there are names
3589   for which we need to generate ASSERT_EXPRs.  Those assertions are
3590   inserted by process_assert_insertions.
3591
3592   TODO.  Handle SWITCH_EXPR.  */
3593
3594static bool
3595find_assert_locations (basic_block bb)
3596{
3597  block_stmt_iterator si;
3598  tree last, phi;
3599  bool need_assert;
3600  basic_block son;
3601
3602  if (TEST_BIT (blocks_visited, bb->index))
3603    return false;
3604
3605  SET_BIT (blocks_visited, bb->index);
3606
3607  need_assert = false;
3608
3609  /* Traverse all PHI nodes in BB marking used operands.  */
3610  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3611    {
3612      use_operand_p arg_p;
3613      ssa_op_iter i;
3614
3615      FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3616	{
3617	  tree arg = USE_FROM_PTR (arg_p);
3618	  if (TREE_CODE (arg) == SSA_NAME)
3619	    {
3620	      gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3621	      SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3622	    }
3623	}
3624    }
3625
3626  /* Traverse all the statements in BB marking used names and looking
3627     for statements that may infer assertions for their used operands.  */
3628  last = NULL_TREE;
3629  for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3630    {
3631      tree stmt, op;
3632      ssa_op_iter i;
3633
3634      stmt = bsi_stmt (si);
3635
3636      /* See if we can derive an assertion for any of STMT's operands.  */
3637      FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3638	{
3639	  tree value;
3640	  enum tree_code comp_code;
3641
3642	  /* Mark OP in bitmap FOUND_IN_SUBGRAPH.  If STMT is inside
3643	     the sub-graph of a conditional block, when we return from
3644	     this recursive walk, our parent will use the
3645	     FOUND_IN_SUBGRAPH bitset to determine if one of the
3646	     operands it was looking for was present in the sub-graph.  */
3647	  SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3648
3649	  /* If OP is used in such a way that we can infer a value
3650	     range for it, and we don't find a previous assertion for
3651	     it, create a new assertion location node for OP.  */
3652	  if (infer_value_range (stmt, op, &comp_code, &value))
3653	    {
3654	      /* If we are able to infer a nonzero value range for OP,
3655		 then walk backwards through the use-def chain to see if OP
3656		 was set via a typecast.
3657
3658		 If so, then we can also infer a nonzero value range
3659		 for the operand of the NOP_EXPR.  */
3660	      if (comp_code == NE_EXPR && integer_zerop (value))
3661		{
3662		  tree t = op;
3663		  tree def_stmt = SSA_NAME_DEF_STMT (t);
3664
3665		  while (TREE_CODE (def_stmt) == MODIFY_EXPR
3666			 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3667			 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3668			 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3669		    {
3670		      t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3671		      def_stmt = SSA_NAME_DEF_STMT (t);
3672
3673		      /* Note we want to register the assert for the
3674			 operand of the NOP_EXPR after SI, not after the
3675			 conversion.  */
3676		      if (! has_single_use (t))
3677			{
3678			  register_new_assert_for (t, comp_code, value,
3679						   bb, NULL, si);
3680			  need_assert = true;
3681			}
3682		    }
3683		}
3684
3685	      /* If OP is used only once, namely in this STMT, don't
3686		 bother creating an ASSERT_EXPR for it.  Such an
3687		 ASSERT_EXPR would do nothing but increase compile time.  */
3688	      if (!has_single_use (op))
3689		{
3690		  register_new_assert_for (op, comp_code, value, bb, NULL, si);
3691		  need_assert = true;
3692		}
3693	    }
3694	}
3695
3696      /* Remember the last statement of the block.  */
3697      last = stmt;
3698    }
3699
3700  /* If BB's last statement is a conditional expression
3701     involving integer operands, recurse into each of the sub-graphs
3702     rooted at BB to determine if we need to add ASSERT_EXPRs.  */
3703  if (last
3704      && TREE_CODE (last) == COND_EXPR
3705      && !fp_predicate (COND_EXPR_COND (last))
3706      && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3707    need_assert |= find_conditional_asserts (bb);
3708
3709  /* Recurse into the dominator children of BB.  */
3710  for (son = first_dom_son (CDI_DOMINATORS, bb);
3711       son;
3712       son = next_dom_son (CDI_DOMINATORS, son))
3713    need_assert |= find_assert_locations (son);
3714
3715  return need_assert;
3716}
3717
3718
3719/* Create an ASSERT_EXPR for NAME and insert it in the location
3720   indicated by LOC.  Return true if we made any edge insertions.  */
3721
3722static bool
3723process_assert_insertions_for (tree name, assert_locus_t loc)
3724{
3725  /* Build the comparison expression NAME_i COMP_CODE VAL.  */
3726  tree stmt, cond, assert_expr;
3727  edge_iterator ei;
3728  edge e;
3729
3730  cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3731  assert_expr = build_assert_expr_for (cond, name);
3732
3733  if (loc->e)
3734    {
3735      /* We have been asked to insert the assertion on an edge.  This
3736	 is used only by COND_EXPR and SWITCH_EXPR assertions.  */
3737#if defined ENABLE_CHECKING
3738      gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3739	  || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3740#endif
3741
3742      bsi_insert_on_edge (loc->e, assert_expr);
3743      return true;
3744    }
3745
3746  /* Otherwise, we can insert right after LOC->SI iff the
3747     statement must not be the last statement in the block.  */
3748  stmt = bsi_stmt (loc->si);
3749  if (!stmt_ends_bb_p (stmt))
3750    {
3751      bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3752      return false;
3753    }
3754
3755  /* If STMT must be the last statement in BB, we can only insert new
3756     assertions on the non-abnormal edge out of BB.  Note that since
3757     STMT is not control flow, there may only be one non-abnormal edge
3758     out of BB.  */
3759  FOR_EACH_EDGE (e, ei, loc->bb->succs)
3760    if (!(e->flags & EDGE_ABNORMAL))
3761      {
3762	bsi_insert_on_edge (e, assert_expr);
3763	return true;
3764      }
3765
3766  gcc_unreachable ();
3767}
3768
3769
3770/* Process all the insertions registered for every name N_i registered
3771   in NEED_ASSERT_FOR.  The list of assertions to be inserted are
3772   found in ASSERTS_FOR[i].  */
3773
3774static void
3775process_assert_insertions (void)
3776{
3777  unsigned i;
3778  bitmap_iterator bi;
3779  bool update_edges_p = false;
3780  int num_asserts = 0;
3781
3782  if (dump_file && (dump_flags & TDF_DETAILS))
3783    dump_all_asserts (dump_file);
3784
3785  EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3786    {
3787      assert_locus_t loc = asserts_for[i];
3788      gcc_assert (loc);
3789
3790      while (loc)
3791	{
3792	  assert_locus_t next = loc->next;
3793	  update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3794	  free (loc);
3795	  loc = next;
3796	  num_asserts++;
3797	}
3798    }
3799
3800  if (update_edges_p)
3801    bsi_commit_edge_inserts ();
3802
3803  if (dump_file && (dump_flags & TDF_STATS))
3804    fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3805	     num_asserts);
3806}
3807
3808
3809/* Traverse the flowgraph looking for conditional jumps to insert range
3810   expressions.  These range expressions are meant to provide information
3811   to optimizations that need to reason in terms of value ranges.  They
3812   will not be expanded into RTL.  For instance, given:
3813
3814   x = ...
3815   y = ...
3816   if (x < y)
3817     y = x - 2;
3818   else
3819     x = y + 3;
3820
3821   this pass will transform the code into:
3822
3823   x = ...
3824   y = ...
3825   if (x < y)
3826    {
3827      x = ASSERT_EXPR <x, x < y>
3828      y = x - 2
3829    }
3830   else
3831    {
3832      y = ASSERT_EXPR <y, x <= y>
3833      x = y + 3
3834    }
3835
3836   The idea is that once copy and constant propagation have run, other
3837   optimizations will be able to determine what ranges of values can 'x'
3838   take in different paths of the code, simply by checking the reaching
3839   definition of 'x'.  */
3840
3841static void
3842insert_range_assertions (void)
3843{
3844  edge e;
3845  edge_iterator ei;
3846  bool update_ssa_p;
3847
3848  found_in_subgraph = sbitmap_alloc (num_ssa_names);
3849  sbitmap_zero (found_in_subgraph);
3850
3851  blocks_visited = sbitmap_alloc (last_basic_block);
3852  sbitmap_zero (blocks_visited);
3853
3854  need_assert_for = BITMAP_ALLOC (NULL);
3855  asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3856  memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3857
3858  calculate_dominance_info (CDI_DOMINATORS);
3859
3860  update_ssa_p = false;
3861  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3862    if (find_assert_locations (e->dest))
3863      update_ssa_p = true;
3864
3865  if (update_ssa_p)
3866    {
3867      process_assert_insertions ();
3868      update_ssa (TODO_update_ssa_no_phi);
3869    }
3870
3871  if (dump_file && (dump_flags & TDF_DETAILS))
3872    {
3873      fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3874      dump_function_to_file (current_function_decl, dump_file, dump_flags);
3875    }
3876
3877  sbitmap_free (found_in_subgraph);
3878  free (asserts_for);
3879  BITMAP_FREE (need_assert_for);
3880}
3881
3882
3883/* Convert range assertion expressions into the implied copies and
3884   copy propagate away the copies.  Doing the trivial copy propagation
3885   here avoids the need to run the full copy propagation pass after
3886   VRP.
3887
3888   FIXME, this will eventually lead to copy propagation removing the
3889   names that had useful range information attached to them.  For
3890   instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3891   then N_i will have the range [3, +INF].
3892
3893   However, by converting the assertion into the implied copy
3894   operation N_i = N_j, we will then copy-propagate N_j into the uses
3895   of N_i and lose the range information.  We may want to hold on to
3896   ASSERT_EXPRs a little while longer as the ranges could be used in
3897   things like jump threading.
3898
3899   The problem with keeping ASSERT_EXPRs around is that passes after
3900   VRP need to handle them appropriately.
3901
3902   Another approach would be to make the range information a first
3903   class property of the SSA_NAME so that it can be queried from
3904   any pass.  This is made somewhat more complex by the need for
3905   multiple ranges to be associated with one SSA_NAME.  */
3906
3907static void
3908remove_range_assertions (void)
3909{
3910  basic_block bb;
3911  block_stmt_iterator si;
3912
3913  /* Note that the BSI iterator bump happens at the bottom of the
3914     loop and no bump is necessary if we're removing the statement
3915     referenced by the current BSI.  */
3916  FOR_EACH_BB (bb)
3917    for (si = bsi_start (bb); !bsi_end_p (si);)
3918      {
3919	tree stmt = bsi_stmt (si);
3920	tree use_stmt;
3921
3922	if (TREE_CODE (stmt) == MODIFY_EXPR
3923	    && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3924	  {
3925	    tree rhs = TREE_OPERAND (stmt, 1), var;
3926	    tree cond = fold (ASSERT_EXPR_COND (rhs));
3927	    use_operand_p use_p;
3928	    imm_use_iterator iter;
3929
3930	    gcc_assert (cond != boolean_false_node);
3931
3932	    /* Propagate the RHS into every use of the LHS.  */
3933	    var = ASSERT_EXPR_VAR (rhs);
3934	    FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3935	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3936		{
3937		  SET_USE (use_p, var);
3938		  gcc_assert (TREE_CODE (var) == SSA_NAME);
3939		}
3940
3941	    /* And finally, remove the copy, it is not needed.  */
3942	    bsi_remove (&si, true);
3943	  }
3944	else
3945	  bsi_next (&si);
3946      }
3947
3948  sbitmap_free (blocks_visited);
3949}
3950
3951
3952/* Return true if STMT is interesting for VRP.  */
3953
3954static bool
3955stmt_interesting_for_vrp (tree stmt)
3956{
3957  if (TREE_CODE (stmt) == PHI_NODE
3958      && is_gimple_reg (PHI_RESULT (stmt))
3959      && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3960	  || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3961    return true;
3962  else if (TREE_CODE (stmt) == MODIFY_EXPR)
3963    {
3964      tree lhs = TREE_OPERAND (stmt, 0);
3965      tree rhs = TREE_OPERAND (stmt, 1);
3966
3967      /* In general, assignments with virtual operands are not useful
3968	 for deriving ranges, with the obvious exception of calls to
3969	 builtin functions.  */
3970      if (TREE_CODE (lhs) == SSA_NAME
3971	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3972	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
3973	  && ((TREE_CODE (rhs) == CALL_EXPR
3974	       && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3975	       && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3976	       && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3977	      || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3978	return true;
3979    }
3980  else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3981    return true;
3982
3983  return false;
3984}
3985
3986
3987/* Initialize local data structures for VRP.  */
3988
3989static void
3990vrp_initialize (void)
3991{
3992  basic_block bb;
3993
3994  vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3995  memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3996
3997  FOR_EACH_BB (bb)
3998    {
3999      block_stmt_iterator si;
4000      tree phi;
4001
4002      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4003	{
4004	  if (!stmt_interesting_for_vrp (phi))
4005	    {
4006	      tree lhs = PHI_RESULT (phi);
4007	      set_value_range_to_varying (get_value_range (lhs));
4008	      DONT_SIMULATE_AGAIN (phi) = true;
4009	    }
4010	  else
4011	    DONT_SIMULATE_AGAIN (phi) = false;
4012	}
4013
4014      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4015        {
4016	  tree stmt = bsi_stmt (si);
4017
4018	  if (!stmt_interesting_for_vrp (stmt))
4019	    {
4020	      ssa_op_iter i;
4021	      tree def;
4022	      FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4023		set_value_range_to_varying (get_value_range (def));
4024	      DONT_SIMULATE_AGAIN (stmt) = true;
4025	    }
4026	  else
4027	    {
4028	      DONT_SIMULATE_AGAIN (stmt) = false;
4029	    }
4030	}
4031    }
4032}
4033
4034
4035/* Visit assignment STMT.  If it produces an interesting range, record
4036   the SSA name in *OUTPUT_P.  */
4037
4038static enum ssa_prop_result
4039vrp_visit_assignment (tree stmt, tree *output_p)
4040{
4041  tree lhs, rhs, def;
4042  ssa_op_iter iter;
4043
4044  lhs = TREE_OPERAND (stmt, 0);
4045  rhs = TREE_OPERAND (stmt, 1);
4046
4047  /* We only keep track of ranges in integral and pointer types.  */
4048  if (TREE_CODE (lhs) == SSA_NAME
4049      && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4050	   /* It is valid to have NULL MIN/MAX values on a type.  See
4051	      build_range_type.  */
4052	   && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4053	   && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4054	  || POINTER_TYPE_P (TREE_TYPE (lhs))))
4055    {
4056      struct loop *l;
4057      value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4058
4059      extract_range_from_expr (&new_vr, rhs);
4060
4061      /* If STMT is inside a loop, we may be able to know something
4062	 else about the range of LHS by examining scalar evolution
4063	 information.  */
4064      if (current_loops && (l = loop_containing_stmt (stmt)))
4065	adjust_range_with_scev (&new_vr, l, stmt, lhs);
4066
4067      if (update_value_range (lhs, &new_vr))
4068	{
4069	  *output_p = lhs;
4070
4071	  if (dump_file && (dump_flags & TDF_DETAILS))
4072	    {
4073	      fprintf (dump_file, "Found new range for ");
4074	      print_generic_expr (dump_file, lhs, 0);
4075	      fprintf (dump_file, ": ");
4076	      dump_value_range (dump_file, &new_vr);
4077	      fprintf (dump_file, "\n\n");
4078	    }
4079
4080	  if (new_vr.type == VR_VARYING)
4081	    return SSA_PROP_VARYING;
4082
4083	  return SSA_PROP_INTERESTING;
4084	}
4085
4086      return SSA_PROP_NOT_INTERESTING;
4087    }
4088
4089  /* Every other statement produces no useful ranges.  */
4090  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4091    set_value_range_to_varying (get_value_range (def));
4092
4093  return SSA_PROP_VARYING;
4094}
4095
4096
4097/* Compare all the value ranges for names equivalent to VAR with VAL
4098   using comparison code COMP.  Return the same value returned by
4099   compare_range_with_value, including the setting of
4100   *STRICT_OVERFLOW_P.  */
4101
4102static tree
4103compare_name_with_value (enum tree_code comp, tree var, tree val,
4104			 bool *strict_overflow_p)
4105{
4106  bitmap_iterator bi;
4107  unsigned i;
4108  bitmap e;
4109  tree retval, t;
4110  int used_strict_overflow;
4111
4112  t = retval = NULL_TREE;
4113
4114  /* Get the set of equivalences for VAR.  */
4115  e = get_value_range (var)->equiv;
4116
4117  /* Add VAR to its own set of equivalences so that VAR's value range
4118     is processed by this loop (otherwise, we would have to replicate
4119     the body of the loop just to check VAR's value range).  */
4120  bitmap_set_bit (e, SSA_NAME_VERSION (var));
4121
4122  /* Start at -1.  Set it to 0 if we do a comparison without relying
4123     on overflow, or 1 if all comparisons rely on overflow.  */
4124  used_strict_overflow = -1;
4125
4126  EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4127    {
4128      bool sop;
4129
4130      value_range_t equiv_vr = *(vr_value[i]);
4131
4132      /* If name N_i does not have a valid range, use N_i as its own
4133	 range.  This allows us to compare against names that may
4134	 have N_i in their ranges.  */
4135      if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
4136	{
4137	  equiv_vr.type = VR_RANGE;
4138	  equiv_vr.min = ssa_name (i);
4139	  equiv_vr.max = ssa_name (i);
4140	}
4141
4142      sop = false;
4143      t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4144      if (t)
4145	{
4146	  /* If we get different answers from different members
4147	     of the equivalence set this check must be in a dead
4148	     code region.  Folding it to a trap representation
4149	     would be correct here.  For now just return don't-know.  */
4150	  if (retval != NULL
4151	      && t != retval)
4152	    {
4153	      retval = NULL_TREE;
4154	      break;
4155	    }
4156	  retval = t;
4157
4158	  if (!sop)
4159	    used_strict_overflow = 0;
4160	  else if (used_strict_overflow < 0)
4161	    used_strict_overflow = 1;
4162	}
4163    }
4164
4165  /* Remove VAR from its own equivalence set.  */
4166  bitmap_clear_bit (e, SSA_NAME_VERSION (var));
4167
4168  if (retval)
4169    {
4170      if (used_strict_overflow > 0)
4171	*strict_overflow_p = true;
4172      return retval;
4173    }
4174
4175  /* We couldn't find a non-NULL value for the predicate.  */
4176  return NULL_TREE;
4177}
4178
4179
4180/* Given a comparison code COMP and names N1 and N2, compare all the
4181   ranges equivalent to N1 against all the ranges equivalent to N2
4182   to determine the value of N1 COMP N2.  Return the same value
4183   returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
4184   whether we relied on an overflow infinity in the comparison.  */
4185
4186
4187static tree
4188compare_names (enum tree_code comp, tree n1, tree n2,
4189	       bool *strict_overflow_p)
4190{
4191  tree t, retval;
4192  bitmap e1, e2;
4193  bitmap_iterator bi1, bi2;
4194  unsigned i1, i2;
4195  int used_strict_overflow;
4196
4197  /* Compare the ranges of every name equivalent to N1 against the
4198     ranges of every name equivalent to N2.  */
4199  e1 = get_value_range (n1)->equiv;
4200  e2 = get_value_range (n2)->equiv;
4201
4202  /* Add N1 and N2 to their own set of equivalences to avoid
4203     duplicating the body of the loop just to check N1 and N2
4204     ranges.  */
4205  bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4206  bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4207
4208  /* If the equivalence sets have a common intersection, then the two
4209     names can be compared without checking their ranges.  */
4210  if (bitmap_intersect_p (e1, e2))
4211    {
4212      bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4213      bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4214
4215      return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4216	     ? boolean_true_node
4217	     : boolean_false_node;
4218    }
4219
4220  /* Start at -1.  Set it to 0 if we do a comparison without relying
4221     on overflow, or 1 if all comparisons rely on overflow.  */
4222  used_strict_overflow = -1;
4223
4224  /* Otherwise, compare all the equivalent ranges.  First, add N1 and
4225     N2 to their own set of equivalences to avoid duplicating the body
4226     of the loop just to check N1 and N2 ranges.  */
4227  EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4228    {
4229      value_range_t vr1 = *(vr_value[i1]);
4230
4231      /* If the range is VARYING or UNDEFINED, use the name itself.  */
4232      if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
4233	{
4234	  vr1.type = VR_RANGE;
4235	  vr1.min = ssa_name (i1);
4236	  vr1.max = ssa_name (i1);
4237	}
4238
4239      t = retval = NULL_TREE;
4240      EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4241	{
4242	  bool sop = false;
4243
4244	  value_range_t vr2 = *(vr_value[i2]);
4245
4246	  if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
4247	    {
4248	      vr2.type = VR_RANGE;
4249	      vr2.min = ssa_name (i2);
4250	      vr2.max = ssa_name (i2);
4251	    }
4252
4253	  t = compare_ranges (comp, &vr1, &vr2, &sop);
4254	  if (t)
4255	    {
4256	      /* If we get different answers from different members
4257		 of the equivalence set this check must be in a dead
4258		 code region.  Folding it to a trap representation
4259		 would be correct here.  For now just return don't-know.  */
4260	      if (retval != NULL
4261		  && t != retval)
4262		{
4263		  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4264		  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4265		  return NULL_TREE;
4266		}
4267	      retval = t;
4268
4269	      if (!sop)
4270		used_strict_overflow = 0;
4271	      else if (used_strict_overflow < 0)
4272		used_strict_overflow = 1;
4273	    }
4274	}
4275
4276      if (retval)
4277	{
4278	  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4279	  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4280	  if (used_strict_overflow > 0)
4281	    *strict_overflow_p = true;
4282	  return retval;
4283	}
4284    }
4285
4286  /* None of the equivalent ranges are useful in computing this
4287     comparison.  */
4288  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4289  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4290  return NULL_TREE;
4291}
4292
4293
4294/* Given a conditional predicate COND, try to determine if COND yields
4295   true or false based on the value ranges of its operands.  Return
4296   BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4297   BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4298   NULL if the conditional cannot be evaluated at compile time.
4299
4300   If USE_EQUIV_P is true, the ranges of all the names equivalent with
4301   the operands in COND are used when trying to compute its value.
4302   This is only used during final substitution.  During propagation,
4303   we only check the range of each variable and not its equivalents.
4304
4305   Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4306   infinity to produce the result.  */
4307
4308static tree
4309vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4310				bool *strict_overflow_p)
4311{
4312  gcc_assert (TREE_CODE (cond) == SSA_NAME
4313              || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4314
4315  if (TREE_CODE (cond) == SSA_NAME)
4316    {
4317      value_range_t *vr;
4318      tree retval;
4319
4320      if (use_equiv_p)
4321	retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4322					  strict_overflow_p);
4323      else
4324	{
4325	  value_range_t *vr = get_value_range (cond);
4326	  retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4327					     strict_overflow_p);
4328	}
4329
4330      /* If COND has a known boolean range, return it.  */
4331      if (retval)
4332	return retval;
4333
4334      /* Otherwise, if COND has a symbolic range of exactly one value,
4335	 return it.  */
4336      vr = get_value_range (cond);
4337      if (vr->type == VR_RANGE && vr->min == vr->max)
4338	return vr->min;
4339    }
4340  else
4341    {
4342      tree op0 = TREE_OPERAND (cond, 0);
4343      tree op1 = TREE_OPERAND (cond, 1);
4344
4345      /* We only deal with integral and pointer types.  */
4346      if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4347	  && !POINTER_TYPE_P (TREE_TYPE (op0)))
4348	return NULL_TREE;
4349
4350      if (use_equiv_p)
4351	{
4352	  if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4353	    return compare_names (TREE_CODE (cond), op0, op1,
4354				  strict_overflow_p);
4355	  else if (TREE_CODE (op0) == SSA_NAME)
4356	    return compare_name_with_value (TREE_CODE (cond), op0, op1,
4357					    strict_overflow_p);
4358	  else if (TREE_CODE (op1) == SSA_NAME)
4359	    return (compare_name_with_value
4360		    (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4361		     strict_overflow_p));
4362	}
4363      else
4364	{
4365	  value_range_t *vr0, *vr1;
4366
4367	  vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4368	  vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4369
4370	  if (vr0 && vr1)
4371	    return compare_ranges (TREE_CODE (cond), vr0, vr1,
4372				   strict_overflow_p);
4373	  else if (vr0 && vr1 == NULL)
4374	    return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4375					     strict_overflow_p);
4376	  else if (vr0 == NULL && vr1)
4377	    return (compare_range_with_value
4378		    (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
4379		     strict_overflow_p));
4380	}
4381    }
4382
4383  /* Anything else cannot be computed statically.  */
4384  return NULL_TREE;
4385}
4386
4387/* Given COND within STMT, try to simplify it based on value range
4388   information.  Return NULL if the conditional can not be evaluated.
4389   The ranges of all the names equivalent with the operands in COND
4390   will be used when trying to compute the value.  If the result is
4391   based on undefined signed overflow, issue a warning if
4392   appropriate.  */
4393
4394tree
4395vrp_evaluate_conditional (tree cond, tree stmt)
4396{
4397  bool sop;
4398  tree ret;
4399
4400  sop = false;
4401  ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
4402
4403  if (ret && sop)
4404    {
4405      enum warn_strict_overflow_code wc;
4406      const char* warnmsg;
4407
4408      if (is_gimple_min_invariant (ret))
4409	{
4410	  wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
4411	  warnmsg = G_("assuming signed overflow does not occur when "
4412		       "simplifying conditional to constant");
4413	}
4414      else
4415	{
4416	  wc = WARN_STRICT_OVERFLOW_COMPARISON;
4417	  warnmsg = G_("assuming signed overflow does not occur when "
4418		       "simplifying conditional");
4419	}
4420
4421      if (issue_strict_overflow_warning (wc))
4422	{
4423	  location_t locus;
4424
4425	  if (!EXPR_HAS_LOCATION (stmt))
4426	    locus = input_location;
4427	  else
4428	    locus = EXPR_LOCATION (stmt);
4429	  warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
4430	}
4431    }
4432
4433  return ret;
4434}
4435
4436
4437/* Visit conditional statement STMT.  If we can determine which edge
4438   will be taken out of STMT's basic block, record it in
4439   *TAKEN_EDGE_P and return SSA_PROP_INTERESTING.  Otherwise, return
4440   SSA_PROP_VARYING.  */
4441
4442static enum ssa_prop_result
4443vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4444{
4445  tree cond, val;
4446  bool sop;
4447
4448  *taken_edge_p = NULL;
4449
4450  /* FIXME.  Handle SWITCH_EXPRs.  But first, the assert pass needs to
4451     add ASSERT_EXPRs for them.  */
4452  if (TREE_CODE (stmt) == SWITCH_EXPR)
4453    return SSA_PROP_VARYING;
4454
4455  cond = COND_EXPR_COND (stmt);
4456
4457  if (dump_file && (dump_flags & TDF_DETAILS))
4458    {
4459      tree use;
4460      ssa_op_iter i;
4461
4462      fprintf (dump_file, "\nVisiting conditional with predicate: ");
4463      print_generic_expr (dump_file, cond, 0);
4464      fprintf (dump_file, "\nWith known ranges\n");
4465
4466      FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4467	{
4468	  fprintf (dump_file, "\t");
4469	  print_generic_expr (dump_file, use, 0);
4470	  fprintf (dump_file, ": ");
4471	  dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4472	}
4473
4474      fprintf (dump_file, "\n");
4475    }
4476
4477  /* Compute the value of the predicate COND by checking the known
4478     ranges of each of its operands.
4479
4480     Note that we cannot evaluate all the equivalent ranges here
4481     because those ranges may not yet be final and with the current
4482     propagation strategy, we cannot determine when the value ranges
4483     of the names in the equivalence set have changed.
4484
4485     For instance, given the following code fragment
4486
4487        i_5 = PHI <8, i_13>
4488	...
4489     	i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4490	if (i_14 == 1)
4491	  ...
4492
4493     Assume that on the first visit to i_14, i_5 has the temporary
4494     range [8, 8] because the second argument to the PHI function is
4495     not yet executable.  We derive the range ~[0, 0] for i_14 and the
4496     equivalence set { i_5 }.  So, when we visit 'if (i_14 == 1)' for
4497     the first time, since i_14 is equivalent to the range [8, 8], we
4498     determine that the predicate is always false.
4499
4500     On the next round of propagation, i_13 is determined to be
4501     VARYING, which causes i_5 to drop down to VARYING.  So, another
4502     visit to i_14 is scheduled.  In this second visit, we compute the
4503     exact same range and equivalence set for i_14, namely ~[0, 0] and
4504     { i_5 }.  But we did not have the previous range for i_5
4505     registered, so vrp_visit_assignment thinks that the range for
4506     i_14 has not changed.  Therefore, the predicate 'if (i_14 == 1)'
4507     is not visited again, which stops propagation from visiting
4508     statements in the THEN clause of that if().
4509
4510     To properly fix this we would need to keep the previous range
4511     value for the names in the equivalence set.  This way we would've
4512     discovered that from one visit to the other i_5 changed from
4513     range [8, 8] to VR_VARYING.
4514
4515     However, fixing this apparent limitation may not be worth the
4516     additional checking.  Testing on several code bases (GCC, DLV,
4517     MICO, TRAMP3D and SPEC2000) showed that doing this results in
4518     4 more predicates folded in SPEC.  */
4519  sop = false;
4520  val = vrp_evaluate_conditional_warnv (cond, false, &sop);
4521  if (val)
4522    {
4523      if (!sop)
4524	*taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4525      else
4526	{
4527	  if (dump_file && (dump_flags & TDF_DETAILS))
4528	    fprintf (dump_file,
4529		     "\nIgnoring predicate evaluation because "
4530		     "it assumes that signed overflow is undefined");
4531	  val = NULL_TREE;
4532	}
4533    }
4534
4535  if (dump_file && (dump_flags & TDF_DETAILS))
4536    {
4537      fprintf (dump_file, "\nPredicate evaluates to: ");
4538      if (val == NULL_TREE)
4539	fprintf (dump_file, "DON'T KNOW\n");
4540      else
4541	print_generic_stmt (dump_file, val, 0);
4542    }
4543
4544  return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4545}
4546
4547
4548/* Evaluate statement STMT.  If the statement produces a useful range,
4549   return SSA_PROP_INTERESTING and record the SSA name with the
4550   interesting range into *OUTPUT_P.
4551
4552   If STMT is a conditional branch and we can determine its truth
4553   value, the taken edge is recorded in *TAKEN_EDGE_P.
4554
4555   If STMT produces a varying value, return SSA_PROP_VARYING.  */
4556
4557static enum ssa_prop_result
4558vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
4559{
4560  tree def;
4561  ssa_op_iter iter;
4562  stmt_ann_t ann;
4563
4564  if (dump_file && (dump_flags & TDF_DETAILS))
4565    {
4566      fprintf (dump_file, "\nVisiting statement:\n");
4567      print_generic_stmt (dump_file, stmt, dump_flags);
4568      fprintf (dump_file, "\n");
4569    }
4570
4571  ann = stmt_ann (stmt);
4572  if (TREE_CODE (stmt) == MODIFY_EXPR)
4573    {
4574      tree rhs = TREE_OPERAND (stmt, 1);
4575
4576      /* In general, assignments with virtual operands are not useful
4577	 for deriving ranges, with the obvious exception of calls to
4578	 builtin functions.  */
4579      if ((TREE_CODE (rhs) == CALL_EXPR
4580	   && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
4581	   && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
4582	   && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
4583	  || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4584	return vrp_visit_assignment (stmt, output_p);
4585    }
4586  else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4587    return vrp_visit_cond_stmt (stmt, taken_edge_p);
4588
4589  /* All other statements produce nothing of interest for VRP, so mark
4590     their outputs varying and prevent further simulation.  */
4591  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4592    set_value_range_to_varying (get_value_range (def));
4593
4594  return SSA_PROP_VARYING;
4595}
4596
4597
4598/* Meet operation for value ranges.  Given two value ranges VR0 and
4599   VR1, store in VR0 the result of meeting VR0 and VR1.
4600
4601   The meeting rules are as follows:
4602
4603   1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
4604
4605   2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
4606      union of VR0 and VR1.  */
4607
4608static void
4609vrp_meet (value_range_t *vr0, value_range_t *vr1)
4610{
4611  if (vr0->type == VR_UNDEFINED)
4612    {
4613      copy_value_range (vr0, vr1);
4614      return;
4615    }
4616
4617  if (vr1->type == VR_UNDEFINED)
4618    {
4619      /* Nothing to do.  VR0 already has the resulting range.  */
4620      return;
4621    }
4622
4623  if (vr0->type == VR_VARYING)
4624    {
4625      /* Nothing to do.  VR0 already has the resulting range.  */
4626      return;
4627    }
4628
4629  if (vr1->type == VR_VARYING)
4630    {
4631      set_value_range_to_varying (vr0);
4632      return;
4633    }
4634
4635  if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4636    {
4637      /* If VR0 and VR1 have a non-empty intersection, compute the
4638	 union of both ranges.  */
4639      if (value_ranges_intersect_p (vr0, vr1))
4640	{
4641	  int cmp;
4642	  tree min, max;
4643
4644	  /* The lower limit of the new range is the minimum of the
4645	     two ranges.  If they cannot be compared, the result is
4646	     VARYING.  */
4647	  cmp = compare_values (vr0->min, vr1->min);
4648	  if (cmp == 0 || cmp == 1)
4649	    min = vr1->min;
4650	  else if (cmp == -1)
4651	    min = vr0->min;
4652	  else
4653	    {
4654	      set_value_range_to_varying (vr0);
4655	      return;
4656	    }
4657
4658	  /* Similarly, the upper limit of the new range is the
4659	     maximum of the two ranges.  If they cannot be compared,
4660	     the result is VARYING.  */
4661	  cmp = compare_values (vr0->max, vr1->max);
4662	  if (cmp == 0 || cmp == -1)
4663	    max = vr1->max;
4664	  else if (cmp == 1)
4665	    max = vr0->max;
4666	  else
4667	    {
4668	      set_value_range_to_varying (vr0);
4669	      return;
4670	    }
4671
4672	  /* Check for useless ranges.  */
4673	  if (INTEGRAL_TYPE_P (TREE_TYPE (min))
4674	      && ((vrp_val_is_min (min) || is_overflow_infinity (min))
4675		  && (vrp_val_is_max (max) || is_overflow_infinity (max))))
4676	    {
4677	      set_value_range_to_varying (vr0);
4678	      return;
4679	    }
4680
4681	  /* The resulting set of equivalences is the intersection of
4682	     the two sets.  */
4683	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4684	    bitmap_and_into (vr0->equiv, vr1->equiv);
4685	  else if (vr0->equiv && !vr1->equiv)
4686	    bitmap_clear (vr0->equiv);
4687
4688	  set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4689	}
4690      else
4691	goto no_meet;
4692    }
4693  else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4694    {
4695      /* Two anti-ranges meet only if they are both identical.  */
4696      if (compare_values (vr0->min, vr1->min) == 0
4697	  && compare_values (vr0->max, vr1->max) == 0
4698	  && compare_values (vr0->min, vr0->max) == 0)
4699	{
4700	  /* The resulting set of equivalences is the intersection of
4701	     the two sets.  */
4702	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4703	    bitmap_and_into (vr0->equiv, vr1->equiv);
4704	  else if (vr0->equiv && !vr1->equiv)
4705	    bitmap_clear (vr0->equiv);
4706	}
4707      else
4708	goto no_meet;
4709    }
4710  else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4711    {
4712      /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
4713	 meet only if the ranges have an empty intersection.  The
4714	 result of the meet operation is the anti-range.  */
4715      if (!symbolic_range_p (vr0)
4716	  && !symbolic_range_p (vr1)
4717	  && !value_ranges_intersect_p (vr0, vr1))
4718	{
4719	  /* Copy most of VR1 into VR0.  Don't copy VR1's equivalence
4720	     set.  We need to compute the intersection of the two
4721	     equivalence sets.  */
4722	  if (vr1->type == VR_ANTI_RANGE)
4723	    set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4724
4725	  /* The resulting set of equivalences is the intersection of
4726	     the two sets.  */
4727	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4728	    bitmap_and_into (vr0->equiv, vr1->equiv);
4729	  else if (vr0->equiv && !vr1->equiv)
4730	    bitmap_clear (vr0->equiv);
4731	}
4732      else
4733	goto no_meet;
4734    }
4735  else
4736    gcc_unreachable ();
4737
4738  return;
4739
4740no_meet:
4741  /* The two range VR0 and VR1 do not meet.  Before giving up and
4742     setting the result to VARYING, see if we can at least derive a
4743     useful anti-range.  FIXME, all this nonsense about distinguishing
4744     anti-ranges from ranges is necessary because of the odd
4745     semantics of range_includes_zero_p and friends.  */
4746  if (!symbolic_range_p (vr0)
4747      && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4748	  || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4749      && !symbolic_range_p (vr1)
4750      && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4751	  || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4752    {
4753      set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4754
4755      /* Since this meet operation did not result from the meeting of
4756	 two equivalent names, VR0 cannot have any equivalences.  */
4757      if (vr0->equiv)
4758	bitmap_clear (vr0->equiv);
4759    }
4760  else
4761    set_value_range_to_varying (vr0);
4762}
4763
4764
4765/* Visit all arguments for PHI node PHI that flow through executable
4766   edges.  If a valid value range can be derived from all the incoming
4767   value ranges, set a new range for the LHS of PHI.  */
4768
4769static enum ssa_prop_result
4770vrp_visit_phi_node (tree phi)
4771{
4772  int i;
4773  tree lhs = PHI_RESULT (phi);
4774  value_range_t *lhs_vr = get_value_range (lhs);
4775  value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4776
4777  copy_value_range (&vr_result, lhs_vr);
4778
4779  if (dump_file && (dump_flags & TDF_DETAILS))
4780    {
4781      fprintf (dump_file, "\nVisiting PHI node: ");
4782      print_generic_expr (dump_file, phi, dump_flags);
4783    }
4784
4785  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4786    {
4787      edge e = PHI_ARG_EDGE (phi, i);
4788
4789      if (dump_file && (dump_flags & TDF_DETAILS))
4790	{
4791	  fprintf (dump_file,
4792	      "\n    Argument #%d (%d -> %d %sexecutable)\n",
4793	      i, e->src->index, e->dest->index,
4794	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4795	}
4796
4797      if (e->flags & EDGE_EXECUTABLE)
4798	{
4799	  tree arg = PHI_ARG_DEF (phi, i);
4800	  value_range_t vr_arg;
4801
4802	  if (TREE_CODE (arg) == SSA_NAME)
4803	    vr_arg = *(get_value_range (arg));
4804	  else
4805	    {
4806	      if (is_overflow_infinity (arg))
4807		{
4808		  arg = copy_node (arg);
4809		  TREE_OVERFLOW (arg) = 0;
4810		}
4811
4812	      vr_arg.type = VR_RANGE;
4813	      vr_arg.min = arg;
4814	      vr_arg.max = arg;
4815	      vr_arg.equiv = NULL;
4816	    }
4817
4818	  if (dump_file && (dump_flags & TDF_DETAILS))
4819	    {
4820	      fprintf (dump_file, "\t");
4821	      print_generic_expr (dump_file, arg, dump_flags);
4822	      fprintf (dump_file, "\n\tValue: ");
4823	      dump_value_range (dump_file, &vr_arg);
4824	      fprintf (dump_file, "\n");
4825	    }
4826
4827	  vrp_meet (&vr_result, &vr_arg);
4828
4829	  if (vr_result.type == VR_VARYING)
4830	    break;
4831	}
4832    }
4833
4834  if (vr_result.type == VR_VARYING)
4835    goto varying;
4836
4837  /* To prevent infinite iterations in the algorithm, derive ranges
4838     when the new value is slightly bigger or smaller than the
4839     previous one.  */
4840  if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4841    {
4842      if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4843	{
4844	  int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4845	  int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4846
4847	  /* If the new minimum is smaller or larger than the previous
4848	     one, go all the way to -INF.  In the first case, to avoid
4849	     iterating millions of times to reach -INF, and in the
4850	     other case to avoid infinite bouncing between different
4851	     minimums.  */
4852	  if (cmp_min > 0 || cmp_min < 0)
4853	    {
4854	      /* If we will end up with a (-INF, +INF) range, set it
4855		 to VARYING.  */
4856	      if (vrp_val_is_max (vr_result.max))
4857		goto varying;
4858
4859	      if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
4860		  || !vrp_var_may_overflow (lhs, phi))
4861		vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4862	      else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
4863		vr_result.min =
4864		  negative_overflow_infinity (TREE_TYPE (vr_result.min));
4865	      else
4866		goto varying;
4867	    }
4868
4869	  /* Similarly, if the new maximum is smaller or larger than
4870	     the previous one, go all the way to +INF.  */
4871	  if (cmp_max < 0 || cmp_max > 0)
4872	    {
4873	      /* If we will end up with a (-INF, +INF) range, set it
4874		 to VARYING.  */
4875	      if (vrp_val_is_min (vr_result.min))
4876		goto varying;
4877
4878	      if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
4879		  || !vrp_var_may_overflow (lhs, phi))
4880		vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4881	      else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
4882		vr_result.max =
4883		  positive_overflow_infinity (TREE_TYPE (vr_result.max));
4884	      else
4885		goto varying;
4886	    }
4887	}
4888    }
4889
4890  /* If the new range is different than the previous value, keep
4891     iterating.  */
4892  if (update_value_range (lhs, &vr_result))
4893    return SSA_PROP_INTERESTING;
4894
4895  /* Nothing changed, don't add outgoing edges.  */
4896  return SSA_PROP_NOT_INTERESTING;
4897
4898  /* No match found.  Set the LHS to VARYING.  */
4899varying:
4900  set_value_range_to_varying (lhs_vr);
4901  return SSA_PROP_VARYING;
4902}
4903
4904/* Simplify a division or modulo operator to a right shift or
4905   bitwise and if the first operand is unsigned or is greater
4906   than zero and the second operand is an exact power of two.  */
4907
4908static void
4909simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4910{
4911  tree val = NULL;
4912  tree op = TREE_OPERAND (rhs, 0);
4913  value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4914
4915  if (TYPE_UNSIGNED (TREE_TYPE (op)))
4916    {
4917      val = integer_one_node;
4918    }
4919  else
4920    {
4921      bool sop = false;
4922
4923      val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
4924
4925      if (val
4926	  && sop
4927	  && integer_onep (val)
4928	  && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
4929	{
4930	  location_t locus;
4931
4932	  if (!EXPR_HAS_LOCATION (stmt))
4933	    locus = input_location;
4934	  else
4935	    locus = EXPR_LOCATION (stmt);
4936	  warning (OPT_Wstrict_overflow,
4937		   ("%Hassuming signed overflow does not occur when "
4938		    "simplifying / or %% to >> or &"),
4939		   &locus);
4940	}
4941    }
4942
4943  if (val && integer_onep (val))
4944    {
4945      tree t;
4946      tree op0 = TREE_OPERAND (rhs, 0);
4947      tree op1 = TREE_OPERAND (rhs, 1);
4948
4949      if (rhs_code == TRUNC_DIV_EXPR)
4950	{
4951	  t = build_int_cst (NULL_TREE, tree_log2 (op1));
4952	  t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4953	}
4954      else
4955	{
4956	  t = build_int_cst (TREE_TYPE (op1), 1);
4957	  t = int_const_binop (MINUS_EXPR, op1, t, 0);
4958	  t = fold_convert (TREE_TYPE (op0), t);
4959	  t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4960	}
4961
4962      TREE_OPERAND (stmt, 1) = t;
4963      update_stmt (stmt);
4964    }
4965}
4966
4967/* If the operand to an ABS_EXPR is >= 0, then eliminate the
4968   ABS_EXPR.  If the operand is <= 0, then simplify the
4969   ABS_EXPR into a NEGATE_EXPR.  */
4970
4971static void
4972simplify_abs_using_ranges (tree stmt, tree rhs)
4973{
4974  tree val = NULL;
4975  tree op = TREE_OPERAND (rhs, 0);
4976  tree type = TREE_TYPE (op);
4977  value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4978
4979  if (TYPE_UNSIGNED (type))
4980    {
4981      val = integer_zero_node;
4982    }
4983  else if (vr)
4984    {
4985      bool sop = false;
4986
4987      val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
4988      if (!val)
4989	{
4990	  sop = false;
4991	  val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
4992					  &sop);
4993
4994	  if (val)
4995	    {
4996	      if (integer_zerop (val))
4997		val = integer_one_node;
4998	      else if (integer_onep (val))
4999		val = integer_zero_node;
5000	    }
5001	}
5002
5003      if (val
5004	  && (integer_onep (val) || integer_zerop (val)))
5005	{
5006	  tree t;
5007
5008	  if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5009	    {
5010	      location_t locus;
5011
5012	      if (!EXPR_HAS_LOCATION (stmt))
5013		locus = input_location;
5014	      else
5015		locus = EXPR_LOCATION (stmt);
5016	      warning (OPT_Wstrict_overflow,
5017		       ("%Hassuming signed overflow does not occur when "
5018			"simplifying abs (X) to X or -X"),
5019		       &locus);
5020	    }
5021
5022	  if (integer_onep (val))
5023	    t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5024	  else
5025	    t = op;
5026
5027	  TREE_OPERAND (stmt, 1) = t;
5028	  update_stmt (stmt);
5029	}
5030    }
5031}
5032
5033/* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
5034   a known value range VR.
5035
5036   If there is one and only one value which will satisfy the
5037   conditional, then return that value.  Else return NULL.  */
5038
5039static tree
5040test_for_singularity (enum tree_code cond_code, tree op0,
5041		      tree op1, value_range_t *vr)
5042{
5043  tree min = NULL;
5044  tree max = NULL;
5045
5046  /* Extract minimum/maximum values which satisfy the
5047     the conditional as it was written.  */
5048  if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5049    {
5050      /* This should not be negative infinity; there is no overflow
5051	 here.  */
5052      min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5053
5054      max = op1;
5055      if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5056	{
5057	  tree one = build_int_cst (TREE_TYPE (op0), 1);
5058	  max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5059	  if (EXPR_P (max))
5060	    TREE_NO_WARNING (max) = 1;
5061	}
5062    }
5063  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5064    {
5065      /* This should not be positive infinity; there is no overflow
5066	 here.  */
5067      max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5068
5069      min = op1;
5070      if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5071	{
5072	  tree one = build_int_cst (TREE_TYPE (op0), 1);
5073	  min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5074	  if (EXPR_P (min))
5075	    TREE_NO_WARNING (min) = 1;
5076	}
5077    }
5078
5079  /* Now refine the minimum and maximum values using any
5080     value range information we have for op0.  */
5081  if (min && max)
5082    {
5083      if (compare_values (vr->min, min) == -1)
5084	min = min;
5085      else
5086	min = vr->min;
5087      if (compare_values (vr->max, max) == 1)
5088	max = max;
5089      else
5090	max = vr->max;
5091
5092      /* If the new min/max values have converged to a single value,
5093	 then there is only one value which can satisfy the condition,
5094	 return that value.  */
5095      if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5096	return min;
5097    }
5098  return NULL;
5099}
5100
5101/* Simplify a conditional using a relational operator to an equality
5102   test if the range information indicates only one value can satisfy
5103   the original conditional.  */
5104
5105static void
5106simplify_cond_using_ranges (tree stmt)
5107{
5108  tree cond = COND_EXPR_COND (stmt);
5109  tree op0 = TREE_OPERAND (cond, 0);
5110  tree op1 = TREE_OPERAND (cond, 1);
5111  enum tree_code cond_code = TREE_CODE (cond);
5112
5113  if (cond_code != NE_EXPR
5114      && cond_code != EQ_EXPR
5115      && TREE_CODE (op0) == SSA_NAME
5116      && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5117      && is_gimple_min_invariant (op1))
5118    {
5119      value_range_t *vr = get_value_range (op0);
5120
5121      /* If we have range information for OP0, then we might be
5122	 able to simplify this conditional. */
5123      if (vr->type == VR_RANGE)
5124	{
5125	  tree new = test_for_singularity (cond_code, op0, op1, vr);
5126
5127	  if (new)
5128	    {
5129	      if (dump_file)
5130		{
5131		  fprintf (dump_file, "Simplified relational ");
5132		  print_generic_expr (dump_file, cond, 0);
5133		  fprintf (dump_file, " into ");
5134		}
5135
5136	      COND_EXPR_COND (stmt)
5137		= build2 (EQ_EXPR, boolean_type_node, op0, new);
5138	      update_stmt (stmt);
5139
5140	      if (dump_file)
5141		{
5142		  print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5143		  fprintf (dump_file, "\n");
5144		}
5145	      return;
5146
5147	    }
5148
5149	  /* Try again after inverting the condition.  We only deal
5150	     with integral types here, so no need to worry about
5151	     issues with inverting FP comparisons.  */
5152	  cond_code = invert_tree_comparison (cond_code, false);
5153	  new = test_for_singularity (cond_code, op0, op1, vr);
5154
5155	  if (new)
5156	    {
5157	      if (dump_file)
5158		{
5159		  fprintf (dump_file, "Simplified relational ");
5160		  print_generic_expr (dump_file, cond, 0);
5161		  fprintf (dump_file, " into ");
5162		}
5163
5164	      COND_EXPR_COND (stmt)
5165		= build2 (NE_EXPR, boolean_type_node, op0, new);
5166	      update_stmt (stmt);
5167
5168	      if (dump_file)
5169		{
5170		  print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5171		  fprintf (dump_file, "\n");
5172		}
5173	      return;
5174
5175	    }
5176	}
5177    }
5178}
5179
5180/* Simplify STMT using ranges if possible.  */
5181
5182void
5183simplify_stmt_using_ranges (tree stmt)
5184{
5185  if (TREE_CODE (stmt) == MODIFY_EXPR)
5186    {
5187      tree rhs = TREE_OPERAND (stmt, 1);
5188      enum tree_code rhs_code = TREE_CODE (rhs);
5189
5190      /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5191	 and BIT_AND_EXPR respectively if the first operand is greater
5192	 than zero and the second operand is an exact power of two.  */
5193      if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5194	  && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5195	  && integer_pow2p (TREE_OPERAND (rhs, 1)))
5196	simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5197
5198      /* Transform ABS (X) into X or -X as appropriate.  */
5199      if (rhs_code == ABS_EXPR
5200	  && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5201	  && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5202	simplify_abs_using_ranges (stmt, rhs);
5203    }
5204  else if (TREE_CODE (stmt) == COND_EXPR
5205	   && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5206    {
5207      simplify_cond_using_ranges (stmt);
5208    }
5209}
5210
5211/* Stack of dest,src equivalency pairs that need to be restored after
5212   each attempt to thread a block's incoming edge to an outgoing edge.
5213
5214   A NULL entry is used to mark the end of pairs which need to be
5215   restored.  */
5216static VEC(tree,heap) *stack;
5217
5218/* A trivial wrapper so that we can present the generic jump threading
5219   code with a simple API for simplifying statements.  STMT is the
5220   statement we want to simplify, WITHIN_STMT provides the location
5221   for any overflow warnings.  */
5222
5223static tree
5224simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5225{
5226  /* We only use VRP information to simplify conditionals.  This is
5227     overly conservative, but it's unclear if doing more would be
5228     worth the compile time cost.  */
5229  if (TREE_CODE (stmt) != COND_EXPR)
5230    return NULL;
5231
5232  return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5233}
5234
5235/* Blocks which have more than one predecessor and more than
5236   one successor present jump threading opportunities.  ie,
5237   when the block is reached from a specific predecessor, we
5238   may be able to determine which of the outgoing edges will
5239   be traversed.  When this optimization applies, we are able
5240   to avoid conditionals at runtime and we may expose secondary
5241   optimization opportunities.
5242
5243   This routine is effectively a driver for the generic jump
5244   threading code.  It basically just presents the generic code
5245   with edges that may be suitable for jump threading.
5246
5247   Unlike DOM, we do not iterate VRP if jump threading was successful.
5248   While iterating may expose new opportunities for VRP, it is expected
5249   those opportunities would be very limited and the compile time cost
5250   to expose those opportunities would be significant.
5251
5252   As jump threading opportunities are discovered, they are registered
5253   for later realization.  */
5254
5255static void
5256identify_jump_threads (void)
5257{
5258  basic_block bb;
5259  tree dummy;
5260
5261  /* Ugh.  When substituting values earlier in this pass we can
5262     wipe the dominance information.  So rebuild the dominator
5263     information as we need it within the jump threading code.  */
5264  calculate_dominance_info (CDI_DOMINATORS);
5265
5266  /* We do not allow VRP information to be used for jump threading
5267     across a back edge in the CFG.  Otherwise it becomes too
5268     difficult to avoid eliminating loop exit tests.  Of course
5269     EDGE_DFS_BACK is not accurate at this time so we have to
5270     recompute it.  */
5271  mark_dfs_back_edges ();
5272
5273  /* Allocate our unwinder stack to unwind any temporary equivalences
5274     that might be recorded.  */
5275  stack = VEC_alloc (tree, heap, 20);
5276
5277  /* To avoid lots of silly node creation, we create a single
5278     conditional and just modify it in-place when attempting to
5279     thread jumps.  */
5280  dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5281  dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5282
5283  /* Walk through all the blocks finding those which present a
5284     potential jump threading opportunity.  We could set this up
5285     as a dominator walker and record data during the walk, but
5286     I doubt it's worth the effort for the classes of jump
5287     threading opportunities we are trying to identify at this
5288     point in compilation.  */
5289  FOR_EACH_BB (bb)
5290    {
5291      tree last, cond;
5292
5293      /* If the generic jump threading code does not find this block
5294	 interesting, then there is nothing to do.  */
5295      if (! potentially_threadable_block (bb))
5296	continue;
5297
5298      /* We only care about blocks ending in a COND_EXPR.  While there
5299	 may be some value in handling SWITCH_EXPR here, I doubt it's
5300	 terribly important.  */
5301      last = bsi_stmt (bsi_last (bb));
5302      if (TREE_CODE (last) != COND_EXPR)
5303	continue;
5304
5305      /* We're basically looking for any kind of conditional with
5306	 integral type arguments.  */
5307      cond = COND_EXPR_COND (last);
5308      if ((TREE_CODE (cond) == SSA_NAME
5309	   && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5310	  || (COMPARISON_CLASS_P (cond)
5311	      && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5312	      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5313	      && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5314		  || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5315	      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5316	{
5317	  edge_iterator ei;
5318	  edge e;
5319
5320	  /* We've got a block with multiple predecessors and multiple
5321	     successors which also ends in a suitable conditional.  For
5322	     each predecessor, see if we can thread it to a specific
5323	     successor.  */
5324	  FOR_EACH_EDGE (e, ei, bb->preds)
5325	    {
5326	      /* Do not thread across back edges or abnormal edges
5327		 in the CFG.  */
5328	      if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5329		continue;
5330
5331	      thread_across_edge (dummy, e, true,
5332				  &stack,
5333				  simplify_stmt_for_jump_threading);
5334	    }
5335	}
5336    }
5337
5338  /* We do not actually update the CFG or SSA graphs at this point as
5339     ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5340     handle ASSERT_EXPRs gracefully.  */
5341}
5342
5343/* We identified all the jump threading opportunities earlier, but could
5344   not transform the CFG at that time.  This routine transforms the
5345   CFG and arranges for the dominator tree to be rebuilt if necessary.
5346
5347   Note the SSA graph update will occur during the normal TODO
5348   processing by the pass manager.  */
5349static void
5350finalize_jump_threads (void)
5351{
5352  bool cfg_altered = false;
5353  cfg_altered = thread_through_all_blocks ();
5354
5355  /* If we threaded jumps, then we need to recompute the dominance
5356     information, to safely do that we must clean up the CFG first.  */
5357  if (cfg_altered)
5358    {
5359      free_dominance_info (CDI_DOMINATORS);
5360      cleanup_tree_cfg ();
5361      calculate_dominance_info (CDI_DOMINATORS);
5362    }
5363  VEC_free (tree, heap, stack);
5364}
5365
5366
5367/* Traverse all the blocks folding conditionals with known ranges.  */
5368
5369static void
5370vrp_finalize (void)
5371{
5372  size_t i;
5373  prop_value_t *single_val_range;
5374  bool do_value_subst_p;
5375
5376  if (dump_file)
5377    {
5378      fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5379      dump_all_value_ranges (dump_file);
5380      fprintf (dump_file, "\n");
5381    }
5382
5383  /* We may have ended with ranges that have exactly one value.  Those
5384     values can be substituted as any other copy/const propagated
5385     value using substitute_and_fold.  */
5386  single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
5387  memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
5388
5389  do_value_subst_p = false;
5390  for (i = 0; i < num_ssa_names; i++)
5391    if (vr_value[i]
5392	&& vr_value[i]->type == VR_RANGE
5393	&& vr_value[i]->min == vr_value[i]->max)
5394      {
5395	single_val_range[i].value = vr_value[i]->min;
5396	do_value_subst_p = true;
5397      }
5398
5399  if (!do_value_subst_p)
5400    {
5401      /* We found no single-valued ranges, don't waste time trying to
5402	 do single value substitution in substitute_and_fold.  */
5403      free (single_val_range);
5404      single_val_range = NULL;
5405    }
5406
5407  substitute_and_fold (single_val_range, true);
5408
5409  /* We must identify jump threading opportunities before we release
5410     the datastructures built by VRP.  */
5411  identify_jump_threads ();
5412
5413  /* Free allocated memory.  */
5414  for (i = 0; i < num_ssa_names; i++)
5415    if (vr_value[i])
5416      {
5417	BITMAP_FREE (vr_value[i]->equiv);
5418	free (vr_value[i]);
5419      }
5420
5421  free (single_val_range);
5422  free (vr_value);
5423
5424  /* So that we can distinguish between VRP data being available
5425     and not available.  */
5426  vr_value = NULL;
5427}
5428
5429
5430/* Main entry point to VRP (Value Range Propagation).  This pass is
5431   loosely based on J. R. C. Patterson, ``Accurate Static Branch
5432   Prediction by Value Range Propagation,'' in SIGPLAN Conference on
5433   Programming Language Design and Implementation, pp. 67-78, 1995.
5434   Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
5435
5436   This is essentially an SSA-CCP pass modified to deal with ranges
5437   instead of constants.
5438
5439   While propagating ranges, we may find that two or more SSA name
5440   have equivalent, though distinct ranges.  For instance,
5441
5442     1	x_9 = p_3->a;
5443     2	p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5444     3	if (p_4 == q_2)
5445     4	  p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5446     5	endif
5447     6	if (q_2)
5448
5449   In the code above, pointer p_5 has range [q_2, q_2], but from the
5450   code we can also determine that p_5 cannot be NULL and, if q_2 had
5451   a non-varying range, p_5's range should also be compatible with it.
5452
5453   These equivalences are created by two expressions: ASSERT_EXPR and
5454   copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
5455   result of another assertion, then we can use the fact that p_5 and
5456   p_4 are equivalent when evaluating p_5's range.
5457
5458   Together with value ranges, we also propagate these equivalences
5459   between names so that we can take advantage of information from
5460   multiple ranges when doing final replacement.  Note that this
5461   equivalency relation is transitive but not symmetric.
5462
5463   In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5464   cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5465   in contexts where that assertion does not hold (e.g., in line 6).
5466
5467   TODO, the main difference between this pass and Patterson's is that
5468   we do not propagate edge probabilities.  We only compute whether
5469   edges can be taken or not.  That is, instead of having a spectrum
5470   of jump probabilities between 0 and 1, we only deal with 0, 1 and
5471   DON'T KNOW.  In the future, it may be worthwhile to propagate
5472   probabilities to aid branch prediction.  */
5473
5474static unsigned int
5475execute_vrp (void)
5476{
5477  insert_range_assertions ();
5478
5479  current_loops = loop_optimizer_init (LOOPS_NORMAL);
5480  if (current_loops)
5481    scev_initialize (current_loops);
5482
5483  vrp_initialize ();
5484  ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5485  vrp_finalize ();
5486
5487  if (current_loops)
5488    {
5489      scev_finalize ();
5490      loop_optimizer_finalize (current_loops);
5491      current_loops = NULL;
5492    }
5493
5494  /* ASSERT_EXPRs must be removed before finalizing jump threads
5495     as finalizing jump threads calls the CFG cleanup code which
5496     does not properly handle ASSERT_EXPRs.  */
5497  remove_range_assertions ();
5498
5499  /* If we exposed any new variables, go ahead and put them into
5500     SSA form now, before we handle jump threading.  This simplifies
5501     interactions between rewriting of _DECL nodes into SSA form
5502     and rewriting SSA_NAME nodes into SSA form after block
5503     duplication and CFG manipulation.  */
5504  update_ssa (TODO_update_ssa);
5505
5506  finalize_jump_threads ();
5507  return 0;
5508}
5509
5510static bool
5511gate_vrp (void)
5512{
5513  return flag_tree_vrp != 0;
5514}
5515
5516struct tree_opt_pass pass_vrp =
5517{
5518  "vrp",				/* name */
5519  gate_vrp,				/* gate */
5520  execute_vrp,				/* execute */
5521  NULL,					/* sub */
5522  NULL,					/* next */
5523  0,					/* static_pass_number */
5524  TV_TREE_VRP,				/* tv_id */
5525  PROP_ssa | PROP_alias,		/* properties_required */
5526  0,					/* properties_provided */
5527  PROP_smt_usage,			/* properties_destroyed */
5528  0,					/* todo_flags_start */
5529  TODO_cleanup_cfg
5530    | TODO_ggc_collect
5531    | TODO_verify_ssa
5532    | TODO_dump_func
5533    | TODO_update_ssa
5534    | TODO_update_smt_usage,			/* todo_flags_finish */
5535  0					/* letter */
5536};
5537