1/* Reload pseudo regs into hard regs for insns that require hard regs.
2   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27
28#include "machmode.h"
29#include "hard-reg-set.h"
30#include "rtl.h"
31#include "tm_p.h"
32#include "obstack.h"
33#include "insn-config.h"
34#include "flags.h"
35#include "function.h"
36#include "expr.h"
37#include "optabs.h"
38#include "regs.h"
39#include "addresses.h"
40#include "basic-block.h"
41#include "reload.h"
42#include "recog.h"
43#include "output.h"
44#include "real.h"
45#include "toplev.h"
46#include "except.h"
47#include "tree.h"
48#include "target.h"
49
50/* This file contains the reload pass of the compiler, which is
51   run after register allocation has been done.  It checks that
52   each insn is valid (operands required to be in registers really
53   are in registers of the proper class) and fixes up invalid ones
54   by copying values temporarily into registers for the insns
55   that need them.
56
57   The results of register allocation are described by the vector
58   reg_renumber; the insns still contain pseudo regs, but reg_renumber
59   can be used to find which hard reg, if any, a pseudo reg is in.
60
61   The technique we always use is to free up a few hard regs that are
62   called ``reload regs'', and for each place where a pseudo reg
63   must be in a hard reg, copy it temporarily into one of the reload regs.
64
65   Reload regs are allocated locally for every instruction that needs
66   reloads.  When there are pseudos which are allocated to a register that
67   has been chosen as a reload reg, such pseudos must be ``spilled''.
68   This means that they go to other hard regs, or to stack slots if no other
69   available hard regs can be found.  Spilling can invalidate more
70   insns, requiring additional need for reloads, so we must keep checking
71   until the process stabilizes.
72
73   For machines with different classes of registers, we must keep track
74   of the register class needed for each reload, and make sure that
75   we allocate enough reload registers of each class.
76
77   The file reload.c contains the code that checks one insn for
78   validity and reports the reloads that it needs.  This file
79   is in charge of scanning the entire rtl code, accumulating the
80   reload needs, spilling, assigning reload registers to use for
81   fixing up each insn, and generating the new insns to copy values
82   into the reload registers.  */
83
84/* During reload_as_needed, element N contains a REG rtx for the hard reg
85   into which reg N has been reloaded (perhaps for a previous insn).  */
86static rtx *reg_last_reload_reg;
87
88/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
89   for an output reload that stores into reg N.  */
90static regset_head reg_has_output_reload;
91
92/* Indicates which hard regs are reload-registers for an output reload
93   in the current insn.  */
94static HARD_REG_SET reg_is_output_reload;
95
96/* Element N is the constant value to which pseudo reg N is equivalent,
97   or zero if pseudo reg N is not equivalent to a constant.
98   find_reloads looks at this in order to replace pseudo reg N
99   with the constant it stands for.  */
100rtx *reg_equiv_constant;
101
102/* Element N is an invariant value to which pseudo reg N is equivalent.
103   eliminate_regs_in_insn uses this to replace pseudos in particular
104   contexts.  */
105rtx *reg_equiv_invariant;
106
107/* Element N is a memory location to which pseudo reg N is equivalent,
108   prior to any register elimination (such as frame pointer to stack
109   pointer).  Depending on whether or not it is a valid address, this value
110   is transferred to either reg_equiv_address or reg_equiv_mem.  */
111rtx *reg_equiv_memory_loc;
112
113/* We allocate reg_equiv_memory_loc inside a varray so that the garbage
114   collector can keep track of what is inside.  */
115VEC(rtx,gc) *reg_equiv_memory_loc_vec;
116
117/* Element N is the address of stack slot to which pseudo reg N is equivalent.
118   This is used when the address is not valid as a memory address
119   (because its displacement is too big for the machine.)  */
120rtx *reg_equiv_address;
121
122/* Element N is the memory slot to which pseudo reg N is equivalent,
123   or zero if pseudo reg N is not equivalent to a memory slot.  */
124rtx *reg_equiv_mem;
125
126/* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
127   alternate representations of the location of pseudo reg N.  */
128rtx *reg_equiv_alt_mem_list;
129
130/* Widest width in which each pseudo reg is referred to (via subreg).  */
131static unsigned int *reg_max_ref_width;
132
133/* Element N is the list of insns that initialized reg N from its equivalent
134   constant or memory slot.  */
135rtx *reg_equiv_init;
136int reg_equiv_init_size;
137
138/* Vector to remember old contents of reg_renumber before spilling.  */
139static short *reg_old_renumber;
140
141/* During reload_as_needed, element N contains the last pseudo regno reloaded
142   into hard register N.  If that pseudo reg occupied more than one register,
143   reg_reloaded_contents points to that pseudo for each spill register in
144   use; all of these must remain set for an inheritance to occur.  */
145static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
146
147/* During reload_as_needed, element N contains the insn for which
148   hard register N was last used.   Its contents are significant only
149   when reg_reloaded_valid is set for this register.  */
150static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
151
152/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid.  */
153static HARD_REG_SET reg_reloaded_valid;
154/* Indicate if the register was dead at the end of the reload.
155   This is only valid if reg_reloaded_contents is set and valid.  */
156static HARD_REG_SET reg_reloaded_dead;
157
158/* Indicate whether the register's current value is one that is not
159   safe to retain across a call, even for registers that are normally
160   call-saved.  */
161static HARD_REG_SET reg_reloaded_call_part_clobbered;
162
163/* Number of spill-regs so far; number of valid elements of spill_regs.  */
164static int n_spills;
165
166/* In parallel with spill_regs, contains REG rtx's for those regs.
167   Holds the last rtx used for any given reg, or 0 if it has never
168   been used for spilling yet.  This rtx is reused, provided it has
169   the proper mode.  */
170static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
171
172/* In parallel with spill_regs, contains nonzero for a spill reg
173   that was stored after the last time it was used.
174   The precise value is the insn generated to do the store.  */
175static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
176
177/* This is the register that was stored with spill_reg_store.  This is a
178   copy of reload_out / reload_out_reg when the value was stored; if
179   reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg.  */
180static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
181
182/* This table is the inverse mapping of spill_regs:
183   indexed by hard reg number,
184   it contains the position of that reg in spill_regs,
185   or -1 for something that is not in spill_regs.
186
187   ?!?  This is no longer accurate.  */
188static short spill_reg_order[FIRST_PSEUDO_REGISTER];
189
190/* This reg set indicates registers that can't be used as spill registers for
191   the currently processed insn.  These are the hard registers which are live
192   during the insn, but not allocated to pseudos, as well as fixed
193   registers.  */
194static HARD_REG_SET bad_spill_regs;
195
196/* These are the hard registers that can't be used as spill register for any
197   insn.  This includes registers used for user variables and registers that
198   we can't eliminate.  A register that appears in this set also can't be used
199   to retry register allocation.  */
200static HARD_REG_SET bad_spill_regs_global;
201
202/* Describes order of use of registers for reloading
203   of spilled pseudo-registers.  `n_spills' is the number of
204   elements that are actually valid; new ones are added at the end.
205
206   Both spill_regs and spill_reg_order are used on two occasions:
207   once during find_reload_regs, where they keep track of the spill registers
208   for a single insn, but also during reload_as_needed where they show all
209   the registers ever used by reload.  For the latter case, the information
210   is calculated during finish_spills.  */
211static short spill_regs[FIRST_PSEUDO_REGISTER];
212
213/* This vector of reg sets indicates, for each pseudo, which hard registers
214   may not be used for retrying global allocation because the register was
215   formerly spilled from one of them.  If we allowed reallocating a pseudo to
216   a register that it was already allocated to, reload might not
217   terminate.  */
218static HARD_REG_SET *pseudo_previous_regs;
219
220/* This vector of reg sets indicates, for each pseudo, which hard
221   registers may not be used for retrying global allocation because they
222   are used as spill registers during one of the insns in which the
223   pseudo is live.  */
224static HARD_REG_SET *pseudo_forbidden_regs;
225
226/* All hard regs that have been used as spill registers for any insn are
227   marked in this set.  */
228static HARD_REG_SET used_spill_regs;
229
230/* Index of last register assigned as a spill register.  We allocate in
231   a round-robin fashion.  */
232static int last_spill_reg;
233
234/* Nonzero if indirect addressing is supported on the machine; this means
235   that spilling (REG n) does not require reloading it into a register in
236   order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))).  The
237   value indicates the level of indirect addressing supported, e.g., two
238   means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
239   a hard register.  */
240static char spill_indirect_levels;
241
242/* Nonzero if indirect addressing is supported when the innermost MEM is
243   of the form (MEM (SYMBOL_REF sym)).  It is assumed that the level to
244   which these are valid is the same as spill_indirect_levels, above.  */
245char indirect_symref_ok;
246
247/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid.  */
248char double_reg_address_ok;
249
250/* Record the stack slot for each spilled hard register.  */
251static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
252
253/* Width allocated so far for that stack slot.  */
254static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
255
256/* Record which pseudos needed to be spilled.  */
257static regset_head spilled_pseudos;
258
259/* Used for communication between order_regs_for_reload and count_pseudo.
260   Used to avoid counting one pseudo twice.  */
261static regset_head pseudos_counted;
262
263/* First uid used by insns created by reload in this function.
264   Used in find_equiv_reg.  */
265int reload_first_uid;
266
267/* Flag set by local-alloc or global-alloc if anything is live in
268   a call-clobbered reg across calls.  */
269int caller_save_needed;
270
271/* Set to 1 while reload_as_needed is operating.
272   Required by some machines to handle any generated moves differently.  */
273int reload_in_progress = 0;
274
275/* These arrays record the insn_code of insns that may be needed to
276   perform input and output reloads of special objects.  They provide a
277   place to pass a scratch register.  */
278enum insn_code reload_in_optab[NUM_MACHINE_MODES];
279enum insn_code reload_out_optab[NUM_MACHINE_MODES];
280
281/* This obstack is used for allocation of rtl during register elimination.
282   The allocated storage can be freed once find_reloads has processed the
283   insn.  */
284static struct obstack reload_obstack;
285
286/* Points to the beginning of the reload_obstack.  All insn_chain structures
287   are allocated first.  */
288static char *reload_startobj;
289
290/* The point after all insn_chain structures.  Used to quickly deallocate
291   memory allocated in copy_reloads during calculate_needs_all_insns.  */
292static char *reload_firstobj;
293
294/* This points before all local rtl generated by register elimination.
295   Used to quickly free all memory after processing one insn.  */
296static char *reload_insn_firstobj;
297
298/* List of insn_chain instructions, one for every insn that reload needs to
299   examine.  */
300struct insn_chain *reload_insn_chain;
301
302/* List of all insns needing reloads.  */
303static struct insn_chain *insns_need_reload;
304
305/* This structure is used to record information about register eliminations.
306   Each array entry describes one possible way of eliminating a register
307   in favor of another.   If there is more than one way of eliminating a
308   particular register, the most preferred should be specified first.  */
309
310struct elim_table
311{
312  int from;			/* Register number to be eliminated.  */
313  int to;			/* Register number used as replacement.  */
314  HOST_WIDE_INT initial_offset;	/* Initial difference between values.  */
315  int can_eliminate;		/* Nonzero if this elimination can be done.  */
316  int can_eliminate_previous;	/* Value of CAN_ELIMINATE in previous scan over
317				   insns made by reload.  */
318  HOST_WIDE_INT offset;		/* Current offset between the two regs.  */
319  HOST_WIDE_INT previous_offset;/* Offset at end of previous insn.  */
320  int ref_outside_mem;		/* "to" has been referenced outside a MEM.  */
321  rtx from_rtx;			/* REG rtx for the register to be eliminated.
322				   We cannot simply compare the number since
323				   we might then spuriously replace a hard
324				   register corresponding to a pseudo
325				   assigned to the reg to be eliminated.  */
326  rtx to_rtx;			/* REG rtx for the replacement.  */
327};
328
329static struct elim_table *reg_eliminate = 0;
330
331/* This is an intermediate structure to initialize the table.  It has
332   exactly the members provided by ELIMINABLE_REGS.  */
333static const struct elim_table_1
334{
335  const int from;
336  const int to;
337} reg_eliminate_1[] =
338
339/* If a set of eliminable registers was specified, define the table from it.
340   Otherwise, default to the normal case of the frame pointer being
341   replaced by the stack pointer.  */
342
343#ifdef ELIMINABLE_REGS
344  ELIMINABLE_REGS;
345#else
346  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
347#endif
348
349#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
350
351/* Record the number of pending eliminations that have an offset not equal
352   to their initial offset.  If nonzero, we use a new copy of each
353   replacement result in any insns encountered.  */
354int num_not_at_initial_offset;
355
356/* Count the number of registers that we may be able to eliminate.  */
357static int num_eliminable;
358/* And the number of registers that are equivalent to a constant that
359   can be eliminated to frame_pointer / arg_pointer + constant.  */
360static int num_eliminable_invariants;
361
362/* For each label, we record the offset of each elimination.  If we reach
363   a label by more than one path and an offset differs, we cannot do the
364   elimination.  This information is indexed by the difference of the
365   number of the label and the first label number.  We can't offset the
366   pointer itself as this can cause problems on machines with segmented
367   memory.  The first table is an array of flags that records whether we
368   have yet encountered a label and the second table is an array of arrays,
369   one entry in the latter array for each elimination.  */
370
371static int first_label_num;
372static char *offsets_known_at;
373static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
374
375/* Number of labels in the current function.  */
376
377static int num_labels;
378
379static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
380static void maybe_fix_stack_asms (void);
381static void copy_reloads (struct insn_chain *);
382static void calculate_needs_all_insns (int);
383static int find_reg (struct insn_chain *, int);
384static void find_reload_regs (struct insn_chain *);
385static void select_reload_regs (void);
386static void delete_caller_save_insns (void);
387
388static void spill_failure (rtx, enum reg_class);
389static void count_spilled_pseudo (int, int, int);
390static void delete_dead_insn (rtx);
391static void alter_reg (int, int);
392static void set_label_offsets (rtx, rtx, int);
393static void check_eliminable_occurrences (rtx);
394static void elimination_effects (rtx, enum machine_mode);
395static int eliminate_regs_in_insn (rtx, int);
396static void update_eliminable_offsets (void);
397static void mark_not_eliminable (rtx, rtx, void *);
398static void set_initial_elim_offsets (void);
399static bool verify_initial_elim_offsets (void);
400static void set_initial_label_offsets (void);
401static void set_offsets_for_label (rtx);
402static void init_elim_table (void);
403static void update_eliminables (HARD_REG_SET *);
404static void spill_hard_reg (unsigned int, int);
405static int finish_spills (int);
406static void scan_paradoxical_subregs (rtx);
407static void count_pseudo (int);
408static void order_regs_for_reload (struct insn_chain *);
409static void reload_as_needed (int);
410static void forget_old_reloads_1 (rtx, rtx, void *);
411static void forget_marked_reloads (regset);
412static int reload_reg_class_lower (const void *, const void *);
413static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
414				    enum machine_mode);
415static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
416				     enum machine_mode);
417static int reload_reg_free_p (unsigned int, int, enum reload_type);
418static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
419					rtx, rtx, int, int);
420static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
421			     rtx, rtx, int, int);
422static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
423static int allocate_reload_reg (struct insn_chain *, int, int);
424static int conflicts_with_override (rtx);
425static void failed_reload (rtx, int);
426static int set_reload_reg (int, int);
427static void choose_reload_regs_init (struct insn_chain *, rtx *);
428static void choose_reload_regs (struct insn_chain *);
429static void merge_assigned_reloads (rtx);
430static void emit_input_reload_insns (struct insn_chain *, struct reload *,
431				     rtx, int);
432static void emit_output_reload_insns (struct insn_chain *, struct reload *,
433				      int);
434static void do_input_reload (struct insn_chain *, struct reload *, int);
435static void do_output_reload (struct insn_chain *, struct reload *, int);
436static bool inherit_piecemeal_p (int, int);
437static void emit_reload_insns (struct insn_chain *);
438static void delete_output_reload (rtx, int, int);
439static void delete_address_reloads (rtx, rtx);
440static void delete_address_reloads_1 (rtx, rtx, rtx);
441static rtx inc_for_reload (rtx, rtx, rtx, int);
442#ifdef AUTO_INC_DEC
443static void add_auto_inc_notes (rtx, rtx);
444#endif
445static void copy_eh_notes (rtx, rtx);
446static int reloads_conflict (int, int);
447static rtx gen_reload (rtx, rtx, int, enum reload_type);
448static rtx emit_insn_if_valid_for_reload (rtx);
449
450/* Initialize the reload pass once per compilation.  */
451
452void
453init_reload (void)
454{
455  int i;
456
457  /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
458     Set spill_indirect_levels to the number of levels such addressing is
459     permitted, zero if it is not permitted at all.  */
460
461  rtx tem
462    = gen_rtx_MEM (Pmode,
463		   gen_rtx_PLUS (Pmode,
464				 gen_rtx_REG (Pmode,
465					      LAST_VIRTUAL_REGISTER + 1),
466				 GEN_INT (4)));
467  spill_indirect_levels = 0;
468
469  while (memory_address_p (QImode, tem))
470    {
471      spill_indirect_levels++;
472      tem = gen_rtx_MEM (Pmode, tem);
473    }
474
475  /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)).  */
476
477  tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
478  indirect_symref_ok = memory_address_p (QImode, tem);
479
480  /* See if reg+reg is a valid (and offsettable) address.  */
481
482  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483    {
484      tem = gen_rtx_PLUS (Pmode,
485			  gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
486			  gen_rtx_REG (Pmode, i));
487
488      /* This way, we make sure that reg+reg is an offsettable address.  */
489      tem = plus_constant (tem, 4);
490
491      if (memory_address_p (QImode, tem))
492	{
493	  double_reg_address_ok = 1;
494	  break;
495	}
496    }
497
498  /* Initialize obstack for our rtl allocation.  */
499  gcc_obstack_init (&reload_obstack);
500  reload_startobj = obstack_alloc (&reload_obstack, 0);
501
502  INIT_REG_SET (&spilled_pseudos);
503  INIT_REG_SET (&pseudos_counted);
504}
505
506/* List of insn chains that are currently unused.  */
507static struct insn_chain *unused_insn_chains = 0;
508
509/* Allocate an empty insn_chain structure.  */
510struct insn_chain *
511new_insn_chain (void)
512{
513  struct insn_chain *c;
514
515  if (unused_insn_chains == 0)
516    {
517      c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
518      INIT_REG_SET (&c->live_throughout);
519      INIT_REG_SET (&c->dead_or_set);
520    }
521  else
522    {
523      c = unused_insn_chains;
524      unused_insn_chains = c->next;
525    }
526  c->is_caller_save_insn = 0;
527  c->need_operand_change = 0;
528  c->need_reload = 0;
529  c->need_elim = 0;
530  return c;
531}
532
533/* Small utility function to set all regs in hard reg set TO which are
534   allocated to pseudos in regset FROM.  */
535
536void
537compute_use_by_pseudos (HARD_REG_SET *to, regset from)
538{
539  unsigned int regno;
540  reg_set_iterator rsi;
541
542  EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
543    {
544      int r = reg_renumber[regno];
545      int nregs;
546
547      if (r < 0)
548	{
549	  /* reload_combine uses the information from
550	     BASIC_BLOCK->global_live_at_start, which might still
551	     contain registers that have not actually been allocated
552	     since they have an equivalence.  */
553	  gcc_assert (reload_completed);
554	}
555      else
556	{
557	  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
558	  while (nregs-- > 0)
559	    SET_HARD_REG_BIT (*to, r + nregs);
560	}
561    }
562}
563
564/* Replace all pseudos found in LOC with their corresponding
565   equivalences.  */
566
567static void
568replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
569{
570  rtx x = *loc;
571  enum rtx_code code;
572  const char *fmt;
573  int i, j;
574
575  if (! x)
576    return;
577
578  code = GET_CODE (x);
579  if (code == REG)
580    {
581      unsigned int regno = REGNO (x);
582
583      if (regno < FIRST_PSEUDO_REGISTER)
584	return;
585
586      x = eliminate_regs (x, mem_mode, usage);
587      if (x != *loc)
588	{
589	  *loc = x;
590	  replace_pseudos_in (loc, mem_mode, usage);
591	  return;
592	}
593
594      if (reg_equiv_constant[regno])
595	*loc = reg_equiv_constant[regno];
596      else if (reg_equiv_mem[regno])
597	*loc = reg_equiv_mem[regno];
598      else if (reg_equiv_address[regno])
599	*loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
600      else
601	{
602	  gcc_assert (!REG_P (regno_reg_rtx[regno])
603		      || REGNO (regno_reg_rtx[regno]) != regno);
604	  *loc = regno_reg_rtx[regno];
605	}
606
607      return;
608    }
609  else if (code == MEM)
610    {
611      replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
612      return;
613    }
614
615  /* Process each of our operands recursively.  */
616  fmt = GET_RTX_FORMAT (code);
617  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
618    if (*fmt == 'e')
619      replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
620    else if (*fmt == 'E')
621      for (j = 0; j < XVECLEN (x, i); j++)
622	replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
623}
624
625
626/* Global variables used by reload and its subroutines.  */
627
628/* Set during calculate_needs if an insn needs register elimination.  */
629static int something_needs_elimination;
630/* Set during calculate_needs if an insn needs an operand changed.  */
631static int something_needs_operands_changed;
632
633/* Nonzero means we couldn't get enough spill regs.  */
634static int failure;
635
636/* Main entry point for the reload pass.
637
638   FIRST is the first insn of the function being compiled.
639
640   GLOBAL nonzero means we were called from global_alloc
641   and should attempt to reallocate any pseudoregs that we
642   displace from hard regs we will use for reloads.
643   If GLOBAL is zero, we do not have enough information to do that,
644   so any pseudo reg that is spilled must go to the stack.
645
646   Return value is nonzero if reload failed
647   and we must not do any more for this function.  */
648
649int
650reload (rtx first, int global)
651{
652  int i;
653  rtx insn;
654  struct elim_table *ep;
655  basic_block bb;
656
657  /* Make sure even insns with volatile mem refs are recognizable.  */
658  init_recog ();
659
660  failure = 0;
661
662  reload_firstobj = obstack_alloc (&reload_obstack, 0);
663
664  /* Make sure that the last insn in the chain
665     is not something that needs reloading.  */
666  emit_note (NOTE_INSN_DELETED);
667
668  /* Enable find_equiv_reg to distinguish insns made by reload.  */
669  reload_first_uid = get_max_uid ();
670
671#ifdef SECONDARY_MEMORY_NEEDED
672  /* Initialize the secondary memory table.  */
673  clear_secondary_mem ();
674#endif
675
676  /* We don't have a stack slot for any spill reg yet.  */
677  memset (spill_stack_slot, 0, sizeof spill_stack_slot);
678  memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
679
680  /* Initialize the save area information for caller-save, in case some
681     are needed.  */
682  init_save_areas ();
683
684  /* Compute which hard registers are now in use
685     as homes for pseudo registers.
686     This is done here rather than (eg) in global_alloc
687     because this point is reached even if not optimizing.  */
688  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
689    mark_home_live (i);
690
691  /* A function that receives a nonlocal goto must save all call-saved
692     registers.  */
693  if (current_function_has_nonlocal_label)
694    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
695      if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
696	regs_ever_live[i] = 1;
697
698  /* Find all the pseudo registers that didn't get hard regs
699     but do have known equivalent constants or memory slots.
700     These include parameters (known equivalent to parameter slots)
701     and cse'd or loop-moved constant memory addresses.
702
703     Record constant equivalents in reg_equiv_constant
704     so they will be substituted by find_reloads.
705     Record memory equivalents in reg_mem_equiv so they can
706     be substituted eventually by altering the REG-rtx's.  */
707
708  reg_equiv_constant = XCNEWVEC (rtx, max_regno);
709  reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
710  reg_equiv_mem = XCNEWVEC (rtx, max_regno);
711  reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
712  reg_equiv_address = XCNEWVEC (rtx, max_regno);
713  reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
714  reg_old_renumber = XCNEWVEC (short, max_regno);
715  memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
716  pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
717  pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
718
719  CLEAR_HARD_REG_SET (bad_spill_regs_global);
720
721  /* Look for REG_EQUIV notes; record what each pseudo is equivalent
722     to.  Also find all paradoxical subregs and find largest such for
723     each pseudo.  */
724
725  num_eliminable_invariants = 0;
726  for (insn = first; insn; insn = NEXT_INSN (insn))
727    {
728      rtx set = single_set (insn);
729
730      /* We may introduce USEs that we want to remove at the end, so
731	 we'll mark them with QImode.  Make sure there are no
732	 previously-marked insns left by say regmove.  */
733      if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
734	  && GET_MODE (insn) != VOIDmode)
735	PUT_MODE (insn, VOIDmode);
736
737      if (INSN_P (insn))
738	scan_paradoxical_subregs (PATTERN (insn));
739
740      if (set != 0 && REG_P (SET_DEST (set)))
741	{
742	  rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
743	  rtx x;
744
745	  if (! note)
746	    continue;
747
748	  i = REGNO (SET_DEST (set));
749	  x = XEXP (note, 0);
750
751	  if (i <= LAST_VIRTUAL_REGISTER)
752	    continue;
753
754	  if (! function_invariant_p (x)
755	      || ! flag_pic
756	      /* A function invariant is often CONSTANT_P but may
757		 include a register.  We promise to only pass
758		 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
759	      || (CONSTANT_P (x)
760		  && LEGITIMATE_PIC_OPERAND_P (x)))
761	    {
762	      /* It can happen that a REG_EQUIV note contains a MEM
763		 that is not a legitimate memory operand.  As later
764		 stages of reload assume that all addresses found
765		 in the reg_equiv_* arrays were originally legitimate,
766		 we ignore such REG_EQUIV notes.  */
767	      if (memory_operand (x, VOIDmode))
768		{
769		  /* Always unshare the equivalence, so we can
770		     substitute into this insn without touching the
771		       equivalence.  */
772		  reg_equiv_memory_loc[i] = copy_rtx (x);
773		}
774	      else if (function_invariant_p (x))
775		{
776		  if (GET_CODE (x) == PLUS)
777		    {
778		      /* This is PLUS of frame pointer and a constant,
779			 and might be shared.  Unshare it.  */
780		      reg_equiv_invariant[i] = copy_rtx (x);
781		      num_eliminable_invariants++;
782		    }
783		  else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
784		    {
785		      reg_equiv_invariant[i] = x;
786		      num_eliminable_invariants++;
787		    }
788		  else if (LEGITIMATE_CONSTANT_P (x))
789		    reg_equiv_constant[i] = x;
790		  else
791		    {
792		      reg_equiv_memory_loc[i]
793			= force_const_mem (GET_MODE (SET_DEST (set)), x);
794		      if (! reg_equiv_memory_loc[i])
795			reg_equiv_init[i] = NULL_RTX;
796		    }
797		}
798	      else
799		{
800		  reg_equiv_init[i] = NULL_RTX;
801		  continue;
802		}
803	    }
804	  else
805	    reg_equiv_init[i] = NULL_RTX;
806	}
807    }
808
809  if (dump_file)
810    for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
811      if (reg_equiv_init[i])
812	{
813	  fprintf (dump_file, "init_insns for %u: ", i);
814	  print_inline_rtx (dump_file, reg_equiv_init[i], 20);
815	  fprintf (dump_file, "\n");
816	}
817
818  init_elim_table ();
819
820  first_label_num = get_first_label_num ();
821  num_labels = max_label_num () - first_label_num;
822
823  /* Allocate the tables used to store offset information at labels.  */
824  /* We used to use alloca here, but the size of what it would try to
825     allocate would occasionally cause it to exceed the stack limit and
826     cause a core dump.  */
827  offsets_known_at = XNEWVEC (char, num_labels);
828  offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
829
830  /* Alter each pseudo-reg rtx to contain its hard reg number.
831     Assign stack slots to the pseudos that lack hard regs or equivalents.
832     Do not touch virtual registers.  */
833
834  for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
835    alter_reg (i, -1);
836
837  /* If we have some registers we think can be eliminated, scan all insns to
838     see if there is an insn that sets one of these registers to something
839     other than itself plus a constant.  If so, the register cannot be
840     eliminated.  Doing this scan here eliminates an extra pass through the
841     main reload loop in the most common case where register elimination
842     cannot be done.  */
843  for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
844    if (INSN_P (insn))
845      note_stores (PATTERN (insn), mark_not_eliminable, NULL);
846
847  maybe_fix_stack_asms ();
848
849  insns_need_reload = 0;
850  something_needs_elimination = 0;
851
852  /* Initialize to -1, which means take the first spill register.  */
853  last_spill_reg = -1;
854
855  /* Spill any hard regs that we know we can't eliminate.  */
856  CLEAR_HARD_REG_SET (used_spill_regs);
857  /* There can be multiple ways to eliminate a register;
858     they should be listed adjacently.
859     Elimination for any register fails only if all possible ways fail.  */
860  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
861    {
862      int from = ep->from;
863      int can_eliminate = 0;
864      do
865	{
866          can_eliminate |= ep->can_eliminate;
867          ep++;
868	}
869      while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
870      if (! can_eliminate)
871	spill_hard_reg (from, 1);
872    }
873
874#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
875  if (frame_pointer_needed)
876    spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877#endif
878  finish_spills (global);
879
880  /* From now on, we may need to generate moves differently.  We may also
881     allow modifications of insns which cause them to not be recognized.
882     Any such modifications will be cleaned up during reload itself.  */
883  reload_in_progress = 1;
884
885  /* This loop scans the entire function each go-round
886     and repeats until one repetition spills no additional hard regs.  */
887  for (;;)
888    {
889      int something_changed;
890      int did_spill;
891
892      HOST_WIDE_INT starting_frame_size;
893
894      /* Round size of stack frame to stack_alignment_needed.  This must be done
895	 here because the stack size may be a part of the offset computation
896	 for register elimination, and there might have been new stack slots
897	 created in the last iteration of this loop.  */
898      if (cfun->stack_alignment_needed)
899        assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
900
901      starting_frame_size = get_frame_size ();
902
903      set_initial_elim_offsets ();
904      set_initial_label_offsets ();
905
906      /* For each pseudo register that has an equivalent location defined,
907	 try to eliminate any eliminable registers (such as the frame pointer)
908	 assuming initial offsets for the replacement register, which
909	 is the normal case.
910
911	 If the resulting location is directly addressable, substitute
912	 the MEM we just got directly for the old REG.
913
914	 If it is not addressable but is a constant or the sum of a hard reg
915	 and constant, it is probably not addressable because the constant is
916	 out of range, in that case record the address; we will generate
917	 hairy code to compute the address in a register each time it is
918	 needed.  Similarly if it is a hard register, but one that is not
919	 valid as an address register.
920
921	 If the location is not addressable, but does not have one of the
922	 above forms, assign a stack slot.  We have to do this to avoid the
923	 potential of producing lots of reloads if, e.g., a location involves
924	 a pseudo that didn't get a hard register and has an equivalent memory
925	 location that also involves a pseudo that didn't get a hard register.
926
927	 Perhaps at some point we will improve reload_when_needed handling
928	 so this problem goes away.  But that's very hairy.  */
929
930      for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
931	if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
932	  {
933	    rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
934
935	    if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
936					 XEXP (x, 0)))
937	      reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
938	    else if (CONSTANT_P (XEXP (x, 0))
939		     || (REG_P (XEXP (x, 0))
940			 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
941		     || (GET_CODE (XEXP (x, 0)) == PLUS
942			 && REG_P (XEXP (XEXP (x, 0), 0))
943			 && (REGNO (XEXP (XEXP (x, 0), 0))
944			     < FIRST_PSEUDO_REGISTER)
945			 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
946	      reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
947	    else
948	      {
949		/* Make a new stack slot.  Then indicate that something
950		   changed so we go back and recompute offsets for
951		   eliminable registers because the allocation of memory
952		   below might change some offset.  reg_equiv_{mem,address}
953		   will be set up for this pseudo on the next pass around
954		   the loop.  */
955		reg_equiv_memory_loc[i] = 0;
956		reg_equiv_init[i] = 0;
957		alter_reg (i, -1);
958	      }
959	  }
960
961      if (caller_save_needed)
962	setup_save_areas ();
963
964      /* If we allocated another stack slot, redo elimination bookkeeping.  */
965      if (starting_frame_size != get_frame_size ())
966	continue;
967
968      if (caller_save_needed)
969	{
970	  save_call_clobbered_regs ();
971	  /* That might have allocated new insn_chain structures.  */
972	  reload_firstobj = obstack_alloc (&reload_obstack, 0);
973	}
974
975      calculate_needs_all_insns (global);
976
977      CLEAR_REG_SET (&spilled_pseudos);
978      did_spill = 0;
979
980      something_changed = 0;
981
982      /* If we allocated any new memory locations, make another pass
983	 since it might have changed elimination offsets.  */
984      if (starting_frame_size != get_frame_size ())
985	something_changed = 1;
986
987      /* Even if the frame size remained the same, we might still have
988	 changed elimination offsets, e.g. if find_reloads called
989	 force_const_mem requiring the back end to allocate a constant
990	 pool base register that needs to be saved on the stack.  */
991      else if (!verify_initial_elim_offsets ())
992	something_changed = 1;
993
994      {
995	HARD_REG_SET to_spill;
996	CLEAR_HARD_REG_SET (to_spill);
997	update_eliminables (&to_spill);
998	AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
999
1000	for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1001	  if (TEST_HARD_REG_BIT (to_spill, i))
1002	    {
1003	      spill_hard_reg (i, 1);
1004	      did_spill = 1;
1005
1006	      /* Regardless of the state of spills, if we previously had
1007		 a register that we thought we could eliminate, but now can
1008		 not eliminate, we must run another pass.
1009
1010		 Consider pseudos which have an entry in reg_equiv_* which
1011		 reference an eliminable register.  We must make another pass
1012		 to update reg_equiv_* so that we do not substitute in the
1013		 old value from when we thought the elimination could be
1014		 performed.  */
1015	      something_changed = 1;
1016	    }
1017      }
1018
1019      select_reload_regs ();
1020      if (failure)
1021	goto failed;
1022
1023      if (insns_need_reload != 0 || did_spill)
1024	something_changed |= finish_spills (global);
1025
1026      if (! something_changed)
1027	break;
1028
1029      if (caller_save_needed)
1030	delete_caller_save_insns ();
1031
1032      obstack_free (&reload_obstack, reload_firstobj);
1033    }
1034
1035  /* If global-alloc was run, notify it of any register eliminations we have
1036     done.  */
1037  if (global)
1038    for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1039      if (ep->can_eliminate)
1040	mark_elimination (ep->from, ep->to);
1041
1042  /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1043     If that insn didn't set the register (i.e., it copied the register to
1044     memory), just delete that insn instead of the equivalencing insn plus
1045     anything now dead.  If we call delete_dead_insn on that insn, we may
1046     delete the insn that actually sets the register if the register dies
1047     there and that is incorrect.  */
1048
1049  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1050    {
1051      if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1052	{
1053	  rtx list;
1054	  for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1055	    {
1056	      rtx equiv_insn = XEXP (list, 0);
1057
1058	      /* If we already deleted the insn or if it may trap, we can't
1059		 delete it.  The latter case shouldn't happen, but can
1060		 if an insn has a variable address, gets a REG_EH_REGION
1061		 note added to it, and then gets converted into a load
1062		 from a constant address.  */
1063	      if (NOTE_P (equiv_insn)
1064		  || can_throw_internal (equiv_insn))
1065		;
1066	      else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1067		delete_dead_insn (equiv_insn);
1068	      else
1069		SET_INSN_DELETED (equiv_insn);
1070	    }
1071	}
1072    }
1073
1074  /* Use the reload registers where necessary
1075     by generating move instructions to move the must-be-register
1076     values into or out of the reload registers.  */
1077
1078  if (insns_need_reload != 0 || something_needs_elimination
1079      || something_needs_operands_changed)
1080    {
1081      HOST_WIDE_INT old_frame_size = get_frame_size ();
1082
1083      reload_as_needed (global);
1084
1085      gcc_assert (old_frame_size == get_frame_size ());
1086
1087      gcc_assert (verify_initial_elim_offsets ());
1088    }
1089
1090  /* If we were able to eliminate the frame pointer, show that it is no
1091     longer live at the start of any basic block.  If it ls live by
1092     virtue of being in a pseudo, that pseudo will be marked live
1093     and hence the frame pointer will be known to be live via that
1094     pseudo.  */
1095
1096  if (! frame_pointer_needed)
1097    FOR_EACH_BB (bb)
1098      CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1099			   HARD_FRAME_POINTER_REGNUM);
1100
1101  /* Come here (with failure set nonzero) if we can't get enough spill
1102     regs.  */
1103 failed:
1104
1105  CLEAR_REG_SET (&spilled_pseudos);
1106  reload_in_progress = 0;
1107
1108  /* Now eliminate all pseudo regs by modifying them into
1109     their equivalent memory references.
1110     The REG-rtx's for the pseudos are modified in place,
1111     so all insns that used to refer to them now refer to memory.
1112
1113     For a reg that has a reg_equiv_address, all those insns
1114     were changed by reloading so that no insns refer to it any longer;
1115     but the DECL_RTL of a variable decl may refer to it,
1116     and if so this causes the debugging info to mention the variable.  */
1117
1118  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1119    {
1120      rtx addr = 0;
1121
1122      if (reg_equiv_mem[i])
1123	addr = XEXP (reg_equiv_mem[i], 0);
1124
1125      if (reg_equiv_address[i])
1126	addr = reg_equiv_address[i];
1127
1128      if (addr)
1129	{
1130	  if (reg_renumber[i] < 0)
1131	    {
1132	      rtx reg = regno_reg_rtx[i];
1133
1134	      REG_USERVAR_P (reg) = 0;
1135	      PUT_CODE (reg, MEM);
1136	      XEXP (reg, 0) = addr;
1137	      if (reg_equiv_memory_loc[i])
1138		MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1139	      else
1140		{
1141		  MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1142		  MEM_ATTRS (reg) = 0;
1143		}
1144	      MEM_NOTRAP_P (reg) = 1;
1145	    }
1146	  else if (reg_equiv_mem[i])
1147	    XEXP (reg_equiv_mem[i], 0) = addr;
1148	}
1149    }
1150
1151  /* We must set reload_completed now since the cleanup_subreg_operands call
1152     below will re-recognize each insn and reload may have generated insns
1153     which are only valid during and after reload.  */
1154  reload_completed = 1;
1155
1156  /* Make a pass over all the insns and delete all USEs which we inserted
1157     only to tag a REG_EQUAL note on them.  Remove all REG_DEAD and REG_UNUSED
1158     notes.  Delete all CLOBBER insns, except those that refer to the return
1159     value and the special mem:BLK CLOBBERs added to prevent the scheduler
1160     from misarranging variable-array code, and simplify (subreg (reg))
1161     operands.  Also remove all REG_RETVAL and REG_LIBCALL notes since they
1162     are no longer useful or accurate.  Strip and regenerate REG_INC notes
1163     that may have been moved around.  */
1164
1165  for (insn = first; insn; insn = NEXT_INSN (insn))
1166    if (INSN_P (insn))
1167      {
1168	rtx *pnote;
1169
1170	if (CALL_P (insn))
1171	  replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1172			      VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1173
1174	if ((GET_CODE (PATTERN (insn)) == USE
1175	     /* We mark with QImode USEs introduced by reload itself.  */
1176	     && (GET_MODE (insn) == QImode
1177		 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1178	    || (GET_CODE (PATTERN (insn)) == CLOBBER
1179		&& (!MEM_P (XEXP (PATTERN (insn), 0))
1180		    || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1181		    || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1182			&& XEXP (XEXP (PATTERN (insn), 0), 0)
1183				!= stack_pointer_rtx))
1184		&& (!REG_P (XEXP (PATTERN (insn), 0))
1185		    || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1186	  {
1187	    delete_insn (insn);
1188	    continue;
1189	  }
1190
1191	/* Some CLOBBERs may survive until here and still reference unassigned
1192	   pseudos with const equivalent, which may in turn cause ICE in later
1193	   passes if the reference remains in place.  */
1194	if (GET_CODE (PATTERN (insn)) == CLOBBER)
1195	  replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1196			      VOIDmode, PATTERN (insn));
1197
1198	/* Discard obvious no-ops, even without -O.  This optimization
1199	   is fast and doesn't interfere with debugging.  */
1200	if (NONJUMP_INSN_P (insn)
1201	    && GET_CODE (PATTERN (insn)) == SET
1202	    && REG_P (SET_SRC (PATTERN (insn)))
1203	    && REG_P (SET_DEST (PATTERN (insn)))
1204	    && (REGNO (SET_SRC (PATTERN (insn)))
1205		== REGNO (SET_DEST (PATTERN (insn)))))
1206	  {
1207	    delete_insn (insn);
1208	    continue;
1209	  }
1210
1211	pnote = &REG_NOTES (insn);
1212	while (*pnote != 0)
1213	  {
1214	    if (REG_NOTE_KIND (*pnote) == REG_DEAD
1215		|| REG_NOTE_KIND (*pnote) == REG_UNUSED
1216		|| REG_NOTE_KIND (*pnote) == REG_INC
1217		|| REG_NOTE_KIND (*pnote) == REG_RETVAL
1218		|| REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1219	      *pnote = XEXP (*pnote, 1);
1220	    else
1221	      pnote = &XEXP (*pnote, 1);
1222	  }
1223
1224#ifdef AUTO_INC_DEC
1225	add_auto_inc_notes (insn, PATTERN (insn));
1226#endif
1227
1228	/* Simplify (subreg (reg)) if it appears as an operand.  */
1229	cleanup_subreg_operands (insn);
1230
1231	/* Clean up invalid ASMs so that they don't confuse later passes.
1232	   See PR 21299.  */
1233	if (asm_noperands (PATTERN (insn)) >= 0)
1234	  {
1235	    extract_insn (insn);
1236	    if (!constrain_operands (1))
1237	      {
1238		error_for_asm (insn,
1239			       "%<asm%> operand has impossible constraints");
1240		delete_insn (insn);
1241		continue;
1242	      }
1243	  }
1244      }
1245
1246  /* If we are doing stack checking, give a warning if this function's
1247     frame size is larger than we expect.  */
1248  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1249    {
1250      HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1251      static int verbose_warned = 0;
1252
1253      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1254	if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1255	  size += UNITS_PER_WORD;
1256
1257      if (size > STACK_CHECK_MAX_FRAME_SIZE)
1258	{
1259	  warning (0, "frame size too large for reliable stack checking");
1260	  if (! verbose_warned)
1261	    {
1262	      warning (0, "try reducing the number of local variables");
1263	      verbose_warned = 1;
1264	    }
1265	}
1266    }
1267
1268  /* Indicate that we no longer have known memory locations or constants.  */
1269  if (reg_equiv_constant)
1270    free (reg_equiv_constant);
1271  if (reg_equiv_invariant)
1272    free (reg_equiv_invariant);
1273  reg_equiv_constant = 0;
1274  reg_equiv_invariant = 0;
1275  VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1276  reg_equiv_memory_loc = 0;
1277
1278  if (offsets_known_at)
1279    free (offsets_known_at);
1280  if (offsets_at)
1281    free (offsets_at);
1282
1283  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1284    if (reg_equiv_alt_mem_list[i])
1285      free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1286  free (reg_equiv_alt_mem_list);
1287
1288  free (reg_equiv_mem);
1289  reg_equiv_init = 0;
1290  free (reg_equiv_address);
1291  free (reg_max_ref_width);
1292  free (reg_old_renumber);
1293  free (pseudo_previous_regs);
1294  free (pseudo_forbidden_regs);
1295
1296  CLEAR_HARD_REG_SET (used_spill_regs);
1297  for (i = 0; i < n_spills; i++)
1298    SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1299
1300  /* Free all the insn_chain structures at once.  */
1301  obstack_free (&reload_obstack, reload_startobj);
1302  unused_insn_chains = 0;
1303  fixup_abnormal_edges ();
1304
1305  /* Replacing pseudos with their memory equivalents might have
1306     created shared rtx.  Subsequent passes would get confused
1307     by this, so unshare everything here.  */
1308  unshare_all_rtl_again (first);
1309
1310#ifdef STACK_BOUNDARY
1311  /* init_emit has set the alignment of the hard frame pointer
1312     to STACK_BOUNDARY.  It is very likely no longer valid if
1313     the hard frame pointer was used for register allocation.  */
1314  if (!frame_pointer_needed)
1315    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1316#endif
1317
1318  return failure;
1319}
1320
1321/* Yet another special case.  Unfortunately, reg-stack forces people to
1322   write incorrect clobbers in asm statements.  These clobbers must not
1323   cause the register to appear in bad_spill_regs, otherwise we'll call
1324   fatal_insn later.  We clear the corresponding regnos in the live
1325   register sets to avoid this.
1326   The whole thing is rather sick, I'm afraid.  */
1327
1328static void
1329maybe_fix_stack_asms (void)
1330{
1331#ifdef STACK_REGS
1332  const char *constraints[MAX_RECOG_OPERANDS];
1333  enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1334  struct insn_chain *chain;
1335
1336  for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1337    {
1338      int i, noperands;
1339      HARD_REG_SET clobbered, allowed;
1340      rtx pat;
1341
1342      if (! INSN_P (chain->insn)
1343	  || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1344	continue;
1345      pat = PATTERN (chain->insn);
1346      if (GET_CODE (pat) != PARALLEL)
1347	continue;
1348
1349      CLEAR_HARD_REG_SET (clobbered);
1350      CLEAR_HARD_REG_SET (allowed);
1351
1352      /* First, make a mask of all stack regs that are clobbered.  */
1353      for (i = 0; i < XVECLEN (pat, 0); i++)
1354	{
1355	  rtx t = XVECEXP (pat, 0, i);
1356	  if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1357	    SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1358	}
1359
1360      /* Get the operand values and constraints out of the insn.  */
1361      decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1362			   constraints, operand_mode);
1363
1364      /* For every operand, see what registers are allowed.  */
1365      for (i = 0; i < noperands; i++)
1366	{
1367	  const char *p = constraints[i];
1368	  /* For every alternative, we compute the class of registers allowed
1369	     for reloading in CLS, and merge its contents into the reg set
1370	     ALLOWED.  */
1371	  int cls = (int) NO_REGS;
1372
1373	  for (;;)
1374	    {
1375	      char c = *p;
1376
1377	      if (c == '\0' || c == ',' || c == '#')
1378		{
1379		  /* End of one alternative - mark the regs in the current
1380		     class, and reset the class.  */
1381		  IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1382		  cls = NO_REGS;
1383		  p++;
1384		  if (c == '#')
1385		    do {
1386		      c = *p++;
1387		    } while (c != '\0' && c != ',');
1388		  if (c == '\0')
1389		    break;
1390		  continue;
1391		}
1392
1393	      switch (c)
1394		{
1395		case '=': case '+': case '*': case '%': case '?': case '!':
1396		case '0': case '1': case '2': case '3': case '4': case 'm':
1397		case '<': case '>': case 'V': case 'o': case '&': case 'E':
1398		case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1399		case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1400		case 'P':
1401		  break;
1402
1403		case 'p':
1404		  cls = (int) reg_class_subunion[cls]
1405		      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1406		  break;
1407
1408		case 'g':
1409		case 'r':
1410		  cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1411		  break;
1412
1413		default:
1414		  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1415		    cls = (int) reg_class_subunion[cls]
1416		      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1417		  else
1418		    cls = (int) reg_class_subunion[cls]
1419		      [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1420		}
1421	      p += CONSTRAINT_LEN (c, p);
1422	    }
1423	}
1424      /* Those of the registers which are clobbered, but allowed by the
1425	 constraints, must be usable as reload registers.  So clear them
1426	 out of the life information.  */
1427      AND_HARD_REG_SET (allowed, clobbered);
1428      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1429	if (TEST_HARD_REG_BIT (allowed, i))
1430	  {
1431	    CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1432	    CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1433	  }
1434    }
1435
1436#endif
1437}
1438
1439/* Copy the global variables n_reloads and rld into the corresponding elts
1440   of CHAIN.  */
1441static void
1442copy_reloads (struct insn_chain *chain)
1443{
1444  chain->n_reloads = n_reloads;
1445  chain->rld = obstack_alloc (&reload_obstack,
1446			      n_reloads * sizeof (struct reload));
1447  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1448  reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1449}
1450
1451/* Walk the chain of insns, and determine for each whether it needs reloads
1452   and/or eliminations.  Build the corresponding insns_need_reload list, and
1453   set something_needs_elimination as appropriate.  */
1454static void
1455calculate_needs_all_insns (int global)
1456{
1457  struct insn_chain **pprev_reload = &insns_need_reload;
1458  struct insn_chain *chain, *next = 0;
1459
1460  something_needs_elimination = 0;
1461
1462  reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1463  for (chain = reload_insn_chain; chain != 0; chain = next)
1464    {
1465      rtx insn = chain->insn;
1466
1467      next = chain->next;
1468
1469      /* Clear out the shortcuts.  */
1470      chain->n_reloads = 0;
1471      chain->need_elim = 0;
1472      chain->need_reload = 0;
1473      chain->need_operand_change = 0;
1474
1475      /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1476	 include REG_LABEL), we need to see what effects this has on the
1477	 known offsets at labels.  */
1478
1479      if (LABEL_P (insn) || JUMP_P (insn)
1480	  || (INSN_P (insn) && REG_NOTES (insn) != 0))
1481	set_label_offsets (insn, insn, 0);
1482
1483      if (INSN_P (insn))
1484	{
1485	  rtx old_body = PATTERN (insn);
1486	  int old_code = INSN_CODE (insn);
1487	  rtx old_notes = REG_NOTES (insn);
1488	  int did_elimination = 0;
1489	  int operands_changed = 0;
1490	  rtx set = single_set (insn);
1491
1492	  /* Skip insns that only set an equivalence.  */
1493	  if (set && REG_P (SET_DEST (set))
1494	      && reg_renumber[REGNO (SET_DEST (set))] < 0
1495	      && (reg_equiv_constant[REGNO (SET_DEST (set))]
1496		  || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1497		      && reg_equiv_init[REGNO (SET_DEST (set))])
1498	    continue;
1499
1500	  /* If needed, eliminate any eliminable registers.  */
1501	  if (num_eliminable || num_eliminable_invariants)
1502	    did_elimination = eliminate_regs_in_insn (insn, 0);
1503
1504	  /* Analyze the instruction.  */
1505	  operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1506					   global, spill_reg_order);
1507
1508	  /* If a no-op set needs more than one reload, this is likely
1509	     to be something that needs input address reloads.  We
1510	     can't get rid of this cleanly later, and it is of no use
1511	     anyway, so discard it now.
1512	     We only do this when expensive_optimizations is enabled,
1513	     since this complements reload inheritance / output
1514	     reload deletion, and it can make debugging harder.  */
1515	  if (flag_expensive_optimizations && n_reloads > 1)
1516	    {
1517	      rtx set = single_set (insn);
1518	      if (set
1519		  && SET_SRC (set) == SET_DEST (set)
1520		  && REG_P (SET_SRC (set))
1521		  && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1522		{
1523		  delete_insn (insn);
1524		  /* Delete it from the reload chain.  */
1525		  if (chain->prev)
1526		    chain->prev->next = next;
1527		  else
1528		    reload_insn_chain = next;
1529		  if (next)
1530		    next->prev = chain->prev;
1531		  chain->next = unused_insn_chains;
1532		  unused_insn_chains = chain;
1533		  continue;
1534		}
1535	    }
1536	  if (num_eliminable)
1537	    update_eliminable_offsets ();
1538
1539	  /* Remember for later shortcuts which insns had any reloads or
1540	     register eliminations.  */
1541	  chain->need_elim = did_elimination;
1542	  chain->need_reload = n_reloads > 0;
1543	  chain->need_operand_change = operands_changed;
1544
1545	  /* Discard any register replacements done.  */
1546	  if (did_elimination)
1547	    {
1548	      obstack_free (&reload_obstack, reload_insn_firstobj);
1549	      PATTERN (insn) = old_body;
1550	      INSN_CODE (insn) = old_code;
1551	      REG_NOTES (insn) = old_notes;
1552	      something_needs_elimination = 1;
1553	    }
1554
1555	  something_needs_operands_changed |= operands_changed;
1556
1557	  if (n_reloads != 0)
1558	    {
1559	      copy_reloads (chain);
1560	      *pprev_reload = chain;
1561	      pprev_reload = &chain->next_need_reload;
1562	    }
1563	}
1564    }
1565  *pprev_reload = 0;
1566}
1567
1568/* Comparison function for qsort to decide which of two reloads
1569   should be handled first.  *P1 and *P2 are the reload numbers.  */
1570
1571static int
1572reload_reg_class_lower (const void *r1p, const void *r2p)
1573{
1574  int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1575  int t;
1576
1577  /* Consider required reloads before optional ones.  */
1578  t = rld[r1].optional - rld[r2].optional;
1579  if (t != 0)
1580    return t;
1581
1582  /* Count all solitary classes before non-solitary ones.  */
1583  t = ((reg_class_size[(int) rld[r2].class] == 1)
1584       - (reg_class_size[(int) rld[r1].class] == 1));
1585  if (t != 0)
1586    return t;
1587
1588  /* Aside from solitaires, consider all multi-reg groups first.  */
1589  t = rld[r2].nregs - rld[r1].nregs;
1590  if (t != 0)
1591    return t;
1592
1593  /* Consider reloads in order of increasing reg-class number.  */
1594  t = (int) rld[r1].class - (int) rld[r2].class;
1595  if (t != 0)
1596    return t;
1597
1598  /* If reloads are equally urgent, sort by reload number,
1599     so that the results of qsort leave nothing to chance.  */
1600  return r1 - r2;
1601}
1602
1603/* The cost of spilling each hard reg.  */
1604static int spill_cost[FIRST_PSEUDO_REGISTER];
1605
1606/* When spilling multiple hard registers, we use SPILL_COST for the first
1607   spilled hard reg and SPILL_ADD_COST for subsequent regs.  SPILL_ADD_COST
1608   only the first hard reg for a multi-reg pseudo.  */
1609static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1610
1611/* Update the spill cost arrays, considering that pseudo REG is live.  */
1612
1613static void
1614count_pseudo (int reg)
1615{
1616  int freq = REG_FREQ (reg);
1617  int r = reg_renumber[reg];
1618  int nregs;
1619
1620  if (REGNO_REG_SET_P (&pseudos_counted, reg)
1621      || REGNO_REG_SET_P (&spilled_pseudos, reg))
1622    return;
1623
1624  SET_REGNO_REG_SET (&pseudos_counted, reg);
1625
1626  gcc_assert (r >= 0);
1627
1628  spill_add_cost[r] += freq;
1629
1630  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1631  while (nregs-- > 0)
1632    spill_cost[r + nregs] += freq;
1633}
1634
1635/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1636   contents of BAD_SPILL_REGS for the insn described by CHAIN.  */
1637
1638static void
1639order_regs_for_reload (struct insn_chain *chain)
1640{
1641  unsigned i;
1642  HARD_REG_SET used_by_pseudos;
1643  HARD_REG_SET used_by_pseudos2;
1644  reg_set_iterator rsi;
1645
1646  COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1647
1648  memset (spill_cost, 0, sizeof spill_cost);
1649  memset (spill_add_cost, 0, sizeof spill_add_cost);
1650
1651  /* Count number of uses of each hard reg by pseudo regs allocated to it
1652     and then order them by decreasing use.  First exclude hard registers
1653     that are live in or across this insn.  */
1654
1655  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1656  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1657  IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1658  IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1659
1660  /* Now find out which pseudos are allocated to it, and update
1661     hard_reg_n_uses.  */
1662  CLEAR_REG_SET (&pseudos_counted);
1663
1664  EXECUTE_IF_SET_IN_REG_SET
1665    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1666    {
1667      count_pseudo (i);
1668    }
1669  EXECUTE_IF_SET_IN_REG_SET
1670    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1671    {
1672      count_pseudo (i);
1673    }
1674  CLEAR_REG_SET (&pseudos_counted);
1675}
1676
1677/* Vector of reload-numbers showing the order in which the reloads should
1678   be processed.  */
1679static short reload_order[MAX_RELOADS];
1680
1681/* This is used to keep track of the spill regs used in one insn.  */
1682static HARD_REG_SET used_spill_regs_local;
1683
1684/* We decided to spill hard register SPILLED, which has a size of
1685   SPILLED_NREGS.  Determine how pseudo REG, which is live during the insn,
1686   is affected.  We will add it to SPILLED_PSEUDOS if necessary, and we will
1687   update SPILL_COST/SPILL_ADD_COST.  */
1688
1689static void
1690count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1691{
1692  int r = reg_renumber[reg];
1693  int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1694
1695  if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1696      || spilled + spilled_nregs <= r || r + nregs <= spilled)
1697    return;
1698
1699  SET_REGNO_REG_SET (&spilled_pseudos, reg);
1700
1701  spill_add_cost[r] -= REG_FREQ (reg);
1702  while (nregs-- > 0)
1703    spill_cost[r + nregs] -= REG_FREQ (reg);
1704}
1705
1706/* Find reload register to use for reload number ORDER.  */
1707
1708static int
1709find_reg (struct insn_chain *chain, int order)
1710{
1711  int rnum = reload_order[order];
1712  struct reload *rl = rld + rnum;
1713  int best_cost = INT_MAX;
1714  int best_reg = -1;
1715  unsigned int i, j;
1716  int k;
1717  HARD_REG_SET not_usable;
1718  HARD_REG_SET used_by_other_reload;
1719  reg_set_iterator rsi;
1720
1721  COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1722  IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1723  IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1724
1725  CLEAR_HARD_REG_SET (used_by_other_reload);
1726  for (k = 0; k < order; k++)
1727    {
1728      int other = reload_order[k];
1729
1730      if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1731	for (j = 0; j < rld[other].nregs; j++)
1732	  SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1733    }
1734
1735  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736    {
1737      unsigned int regno = i;
1738
1739      if (! TEST_HARD_REG_BIT (not_usable, regno)
1740	  && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1741	  && HARD_REGNO_MODE_OK (regno, rl->mode))
1742	{
1743	  int this_cost = spill_cost[regno];
1744	  int ok = 1;
1745	  unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1746
1747	  for (j = 1; j < this_nregs; j++)
1748	    {
1749	      this_cost += spill_add_cost[regno + j];
1750	      if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1751		  || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1752		ok = 0;
1753	    }
1754	  if (! ok)
1755	    continue;
1756	  if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1757	    this_cost--;
1758	  if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1759	    this_cost--;
1760	  if (this_cost < best_cost
1761	      /* Among registers with equal cost, prefer caller-saved ones, or
1762		 use REG_ALLOC_ORDER if it is defined.  */
1763	      || (this_cost == best_cost
1764#ifdef REG_ALLOC_ORDER
1765		  && (inv_reg_alloc_order[regno]
1766		      < inv_reg_alloc_order[best_reg])
1767#else
1768		  && call_used_regs[regno]
1769		  && ! call_used_regs[best_reg]
1770#endif
1771		  ))
1772	    {
1773	      best_reg = regno;
1774	      best_cost = this_cost;
1775	    }
1776	}
1777    }
1778  if (best_reg == -1)
1779    return 0;
1780
1781  if (dump_file)
1782    fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1783
1784  rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1785  rl->regno = best_reg;
1786
1787  EXECUTE_IF_SET_IN_REG_SET
1788    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1789    {
1790      count_spilled_pseudo (best_reg, rl->nregs, j);
1791    }
1792
1793  EXECUTE_IF_SET_IN_REG_SET
1794    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1795    {
1796      count_spilled_pseudo (best_reg, rl->nregs, j);
1797    }
1798
1799  for (i = 0; i < rl->nregs; i++)
1800    {
1801      gcc_assert (spill_cost[best_reg + i] == 0);
1802      gcc_assert (spill_add_cost[best_reg + i] == 0);
1803      SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1804    }
1805  return 1;
1806}
1807
1808/* Find more reload regs to satisfy the remaining need of an insn, which
1809   is given by CHAIN.
1810   Do it by ascending class number, since otherwise a reg
1811   might be spilled for a big class and might fail to count
1812   for a smaller class even though it belongs to that class.  */
1813
1814static void
1815find_reload_regs (struct insn_chain *chain)
1816{
1817  int i;
1818
1819  /* In order to be certain of getting the registers we need,
1820     we must sort the reloads into order of increasing register class.
1821     Then our grabbing of reload registers will parallel the process
1822     that provided the reload registers.  */
1823  for (i = 0; i < chain->n_reloads; i++)
1824    {
1825      /* Show whether this reload already has a hard reg.  */
1826      if (chain->rld[i].reg_rtx)
1827	{
1828	  int regno = REGNO (chain->rld[i].reg_rtx);
1829	  chain->rld[i].regno = regno;
1830	  chain->rld[i].nregs
1831	    = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1832	}
1833      else
1834	chain->rld[i].regno = -1;
1835      reload_order[i] = i;
1836    }
1837
1838  n_reloads = chain->n_reloads;
1839  memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1840
1841  CLEAR_HARD_REG_SET (used_spill_regs_local);
1842
1843  if (dump_file)
1844    fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1845
1846  qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1847
1848  /* Compute the order of preference for hard registers to spill.  */
1849
1850  order_regs_for_reload (chain);
1851
1852  for (i = 0; i < n_reloads; i++)
1853    {
1854      int r = reload_order[i];
1855
1856      /* Ignore reloads that got marked inoperative.  */
1857      if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1858	  && ! rld[r].optional
1859	  && rld[r].regno == -1)
1860	if (! find_reg (chain, i))
1861	  {
1862	    if (dump_file)
1863	      fprintf(dump_file, "reload failure for reload %d\n", r);
1864	    spill_failure (chain->insn, rld[r].class);
1865	    failure = 1;
1866	    return;
1867	  }
1868    }
1869
1870  COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1871  IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1872
1873  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1874}
1875
1876static void
1877select_reload_regs (void)
1878{
1879  struct insn_chain *chain;
1880
1881  /* Try to satisfy the needs for each insn.  */
1882  for (chain = insns_need_reload; chain != 0;
1883       chain = chain->next_need_reload)
1884    find_reload_regs (chain);
1885}
1886
1887/* Delete all insns that were inserted by emit_caller_save_insns during
1888   this iteration.  */
1889static void
1890delete_caller_save_insns (void)
1891{
1892  struct insn_chain *c = reload_insn_chain;
1893
1894  while (c != 0)
1895    {
1896      while (c != 0 && c->is_caller_save_insn)
1897	{
1898	  struct insn_chain *next = c->next;
1899	  rtx insn = c->insn;
1900
1901	  if (c == reload_insn_chain)
1902	    reload_insn_chain = next;
1903	  delete_insn (insn);
1904
1905	  if (next)
1906	    next->prev = c->prev;
1907	  if (c->prev)
1908	    c->prev->next = next;
1909	  c->next = unused_insn_chains;
1910	  unused_insn_chains = c;
1911	  c = next;
1912	}
1913      if (c != 0)
1914	c = c->next;
1915    }
1916}
1917
1918/* Handle the failure to find a register to spill.
1919   INSN should be one of the insns which needed this particular spill reg.  */
1920
1921static void
1922spill_failure (rtx insn, enum reg_class class)
1923{
1924  if (asm_noperands (PATTERN (insn)) >= 0)
1925    error_for_asm (insn, "can't find a register in class %qs while "
1926		   "reloading %<asm%>",
1927		   reg_class_names[class]);
1928  else
1929    {
1930      error ("unable to find a register to spill in class %qs",
1931	     reg_class_names[class]);
1932
1933      if (dump_file)
1934	{
1935	  fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1936	  debug_reload_to_stream (dump_file);
1937	}
1938      fatal_insn ("this is the insn:", insn);
1939    }
1940}
1941
1942/* Delete an unneeded INSN and any previous insns who sole purpose is loading
1943   data that is dead in INSN.  */
1944
1945static void
1946delete_dead_insn (rtx insn)
1947{
1948  rtx prev = prev_real_insn (insn);
1949  rtx prev_dest;
1950
1951  /* If the previous insn sets a register that dies in our insn, delete it
1952     too.  */
1953  if (prev && GET_CODE (PATTERN (prev)) == SET
1954      && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1955      && reg_mentioned_p (prev_dest, PATTERN (insn))
1956      && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1957      && ! side_effects_p (SET_SRC (PATTERN (prev))))
1958    delete_dead_insn (prev);
1959
1960  SET_INSN_DELETED (insn);
1961}
1962
1963/* Modify the home of pseudo-reg I.
1964   The new home is present in reg_renumber[I].
1965
1966   FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1967   or it may be -1, meaning there is none or it is not relevant.
1968   This is used so that all pseudos spilled from a given hard reg
1969   can share one stack slot.  */
1970
1971static void
1972alter_reg (int i, int from_reg)
1973{
1974  /* When outputting an inline function, this can happen
1975     for a reg that isn't actually used.  */
1976  if (regno_reg_rtx[i] == 0)
1977    return;
1978
1979  /* If the reg got changed to a MEM at rtl-generation time,
1980     ignore it.  */
1981  if (!REG_P (regno_reg_rtx[i]))
1982    return;
1983
1984  /* Modify the reg-rtx to contain the new hard reg
1985     number or else to contain its pseudo reg number.  */
1986  REGNO (regno_reg_rtx[i])
1987    = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1988
1989  /* If we have a pseudo that is needed but has no hard reg or equivalent,
1990     allocate a stack slot for it.  */
1991
1992  if (reg_renumber[i] < 0
1993      && REG_N_REFS (i) > 0
1994      && reg_equiv_constant[i] == 0
1995      && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1996      && reg_equiv_memory_loc[i] == 0)
1997    {
1998      rtx x;
1999      enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2000      unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2001      unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2002      unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2003      unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2004      int adjust = 0;
2005
2006      /* Each pseudo reg has an inherent size which comes from its own mode,
2007	 and a total size which provides room for paradoxical subregs
2008	 which refer to the pseudo reg in wider modes.
2009
2010	 We can use a slot already allocated if it provides both
2011	 enough inherent space and enough total space.
2012	 Otherwise, we allocate a new slot, making sure that it has no less
2013	 inherent space, and no less total space, then the previous slot.  */
2014      if (from_reg == -1)
2015	{
2016	  /* No known place to spill from => no slot to reuse.  */
2017	  x = assign_stack_local (mode, total_size,
2018				  min_align > inherent_align
2019				  || total_size > inherent_size ? -1 : 0);
2020	  if (BYTES_BIG_ENDIAN)
2021	    /* Cancel the  big-endian correction done in assign_stack_local.
2022	       Get the address of the beginning of the slot.
2023	       This is so we can do a big-endian correction unconditionally
2024	       below.  */
2025	    adjust = inherent_size - total_size;
2026
2027	  /* Nothing can alias this slot except this pseudo.  */
2028	  set_mem_alias_set (x, new_alias_set ());
2029	}
2030
2031      /* Reuse a stack slot if possible.  */
2032      else if (spill_stack_slot[from_reg] != 0
2033	       && spill_stack_slot_width[from_reg] >= total_size
2034	       && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2035		   >= inherent_size)
2036	       && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2037	x = spill_stack_slot[from_reg];
2038
2039      /* Allocate a bigger slot.  */
2040      else
2041	{
2042	  /* Compute maximum size needed, both for inherent size
2043	     and for total size.  */
2044	  rtx stack_slot;
2045
2046	  if (spill_stack_slot[from_reg])
2047	    {
2048	      if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2049		  > inherent_size)
2050		mode = GET_MODE (spill_stack_slot[from_reg]);
2051	      if (spill_stack_slot_width[from_reg] > total_size)
2052		total_size = spill_stack_slot_width[from_reg];
2053	      if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2054		min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2055	    }
2056
2057	  /* Make a slot with that size.  */
2058	  x = assign_stack_local (mode, total_size,
2059				  min_align > inherent_align
2060				  || total_size > inherent_size ? -1 : 0);
2061	  stack_slot = x;
2062
2063	  /* All pseudos mapped to this slot can alias each other.  */
2064	  if (spill_stack_slot[from_reg])
2065	    set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2066	  else
2067	    set_mem_alias_set (x, new_alias_set ());
2068
2069	  if (BYTES_BIG_ENDIAN)
2070	    {
2071	      /* Cancel the  big-endian correction done in assign_stack_local.
2072		 Get the address of the beginning of the slot.
2073		 This is so we can do a big-endian correction unconditionally
2074		 below.  */
2075	      adjust = GET_MODE_SIZE (mode) - total_size;
2076	      if (adjust)
2077		stack_slot
2078		  = adjust_address_nv (x, mode_for_size (total_size
2079							 * BITS_PER_UNIT,
2080							 MODE_INT, 1),
2081				       adjust);
2082	    }
2083
2084	  spill_stack_slot[from_reg] = stack_slot;
2085	  spill_stack_slot_width[from_reg] = total_size;
2086	}
2087
2088      /* On a big endian machine, the "address" of the slot
2089	 is the address of the low part that fits its inherent mode.  */
2090      if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2091	adjust += (total_size - inherent_size);
2092
2093      /* If we have any adjustment to make, or if the stack slot is the
2094	 wrong mode, make a new stack slot.  */
2095      x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2096
2097      /* If we have a decl for the original register, set it for the
2098	 memory.  If this is a shared MEM, make a copy.  */
2099      if (REG_EXPR (regno_reg_rtx[i])
2100	  && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2101	{
2102	  rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2103
2104	  /* We can do this only for the DECLs home pseudo, not for
2105	     any copies of it, since otherwise when the stack slot
2106	     is reused, nonoverlapping_memrefs_p might think they
2107	     cannot overlap.  */
2108	  if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2109	    {
2110	      if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2111		x = copy_rtx (x);
2112
2113	      set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2114	    }
2115	}
2116
2117      /* Save the stack slot for later.  */
2118      reg_equiv_memory_loc[i] = x;
2119    }
2120}
2121
2122/* Mark the slots in regs_ever_live for the hard regs
2123   used by pseudo-reg number REGNO.  */
2124
2125void
2126mark_home_live (int regno)
2127{
2128  int i, lim;
2129
2130  i = reg_renumber[regno];
2131  if (i < 0)
2132    return;
2133  lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2134  while (i < lim)
2135    regs_ever_live[i++] = 1;
2136}
2137
2138/* This function handles the tracking of elimination offsets around branches.
2139
2140   X is a piece of RTL being scanned.
2141
2142   INSN is the insn that it came from, if any.
2143
2144   INITIAL_P is nonzero if we are to set the offset to be the initial
2145   offset and zero if we are setting the offset of the label to be the
2146   current offset.  */
2147
2148static void
2149set_label_offsets (rtx x, rtx insn, int initial_p)
2150{
2151  enum rtx_code code = GET_CODE (x);
2152  rtx tem;
2153  unsigned int i;
2154  struct elim_table *p;
2155
2156  switch (code)
2157    {
2158    case LABEL_REF:
2159      if (LABEL_REF_NONLOCAL_P (x))
2160	return;
2161
2162      x = XEXP (x, 0);
2163
2164      /* ... fall through ...  */
2165
2166    case CODE_LABEL:
2167      /* If we know nothing about this label, set the desired offsets.  Note
2168	 that this sets the offset at a label to be the offset before a label
2169	 if we don't know anything about the label.  This is not correct for
2170	 the label after a BARRIER, but is the best guess we can make.  If
2171	 we guessed wrong, we will suppress an elimination that might have
2172	 been possible had we been able to guess correctly.  */
2173
2174      if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2175	{
2176	  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2177	    offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2178	      = (initial_p ? reg_eliminate[i].initial_offset
2179		 : reg_eliminate[i].offset);
2180	  offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2181	}
2182
2183      /* Otherwise, if this is the definition of a label and it is
2184	 preceded by a BARRIER, set our offsets to the known offset of
2185	 that label.  */
2186
2187      else if (x == insn
2188	       && (tem = prev_nonnote_insn (insn)) != 0
2189	       && BARRIER_P (tem))
2190	set_offsets_for_label (insn);
2191      else
2192	/* If neither of the above cases is true, compare each offset
2193	   with those previously recorded and suppress any eliminations
2194	   where the offsets disagree.  */
2195
2196	for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2197	  if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2198	      != (initial_p ? reg_eliminate[i].initial_offset
2199		  : reg_eliminate[i].offset))
2200	    reg_eliminate[i].can_eliminate = 0;
2201
2202      return;
2203
2204    case JUMP_INSN:
2205      set_label_offsets (PATTERN (insn), insn, initial_p);
2206
2207      /* ... fall through ...  */
2208
2209    case INSN:
2210    case CALL_INSN:
2211      /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2212	 and hence must have all eliminations at their initial offsets.  */
2213      for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2214	if (REG_NOTE_KIND (tem) == REG_LABEL)
2215	  set_label_offsets (XEXP (tem, 0), insn, 1);
2216      return;
2217
2218    case PARALLEL:
2219    case ADDR_VEC:
2220    case ADDR_DIFF_VEC:
2221      /* Each of the labels in the parallel or address vector must be
2222	 at their initial offsets.  We want the first field for PARALLEL
2223	 and ADDR_VEC and the second field for ADDR_DIFF_VEC.  */
2224
2225      for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2226	set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2227			   insn, initial_p);
2228      return;
2229
2230    case SET:
2231      /* We only care about setting PC.  If the source is not RETURN,
2232	 IF_THEN_ELSE, or a label, disable any eliminations not at
2233	 their initial offsets.  Similarly if any arm of the IF_THEN_ELSE
2234	 isn't one of those possibilities.  For branches to a label,
2235	 call ourselves recursively.
2236
2237	 Note that this can disable elimination unnecessarily when we have
2238	 a non-local goto since it will look like a non-constant jump to
2239	 someplace in the current function.  This isn't a significant
2240	 problem since such jumps will normally be when all elimination
2241	 pairs are back to their initial offsets.  */
2242
2243      if (SET_DEST (x) != pc_rtx)
2244	return;
2245
2246      switch (GET_CODE (SET_SRC (x)))
2247	{
2248	case PC:
2249	case RETURN:
2250	  return;
2251
2252	case LABEL_REF:
2253	  set_label_offsets (SET_SRC (x), insn, initial_p);
2254	  return;
2255
2256	case IF_THEN_ELSE:
2257	  tem = XEXP (SET_SRC (x), 1);
2258	  if (GET_CODE (tem) == LABEL_REF)
2259	    set_label_offsets (XEXP (tem, 0), insn, initial_p);
2260	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2261	    break;
2262
2263	  tem = XEXP (SET_SRC (x), 2);
2264	  if (GET_CODE (tem) == LABEL_REF)
2265	    set_label_offsets (XEXP (tem, 0), insn, initial_p);
2266	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2267	    break;
2268	  return;
2269
2270	default:
2271	  break;
2272	}
2273
2274      /* If we reach here, all eliminations must be at their initial
2275	 offset because we are doing a jump to a variable address.  */
2276      for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2277	if (p->offset != p->initial_offset)
2278	  p->can_eliminate = 0;
2279      break;
2280
2281    default:
2282      break;
2283    }
2284}
2285
2286/* Scan X and replace any eliminable registers (such as fp) with a
2287   replacement (such as sp), plus an offset.
2288
2289   MEM_MODE is the mode of an enclosing MEM.  We need this to know how
2290   much to adjust a register for, e.g., PRE_DEC.  Also, if we are inside a
2291   MEM, we are allowed to replace a sum of a register and the constant zero
2292   with the register, which we cannot do outside a MEM.  In addition, we need
2293   to record the fact that a register is referenced outside a MEM.
2294
2295   If INSN is an insn, it is the insn containing X.  If we replace a REG
2296   in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2297   CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2298   the REG is being modified.
2299
2300   Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2301   That's used when we eliminate in expressions stored in notes.
2302   This means, do not set ref_outside_mem even if the reference
2303   is outside of MEMs.
2304
2305   REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2306   replacements done assuming all offsets are at their initial values.  If
2307   they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2308   encounter, return the actual location so that find_reloads will do
2309   the proper thing.  */
2310
2311static rtx
2312eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2313		  bool may_use_invariant)
2314{
2315  enum rtx_code code = GET_CODE (x);
2316  struct elim_table *ep;
2317  int regno;
2318  rtx new;
2319  int i, j;
2320  const char *fmt;
2321  int copied = 0;
2322
2323  if (! current_function_decl)
2324    return x;
2325
2326  switch (code)
2327    {
2328    case CONST_INT:
2329    case CONST_DOUBLE:
2330    case CONST_VECTOR:
2331    case CONST:
2332    case SYMBOL_REF:
2333    case CODE_LABEL:
2334    case PC:
2335    case CC0:
2336    case ASM_INPUT:
2337    case ADDR_VEC:
2338    case ADDR_DIFF_VEC:
2339    case RETURN:
2340      return x;
2341
2342    case REG:
2343      regno = REGNO (x);
2344
2345      /* First handle the case where we encounter a bare register that
2346	 is eliminable.  Replace it with a PLUS.  */
2347      if (regno < FIRST_PSEUDO_REGISTER)
2348	{
2349	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2350	       ep++)
2351	    if (ep->from_rtx == x && ep->can_eliminate)
2352	      return plus_constant (ep->to_rtx, ep->previous_offset);
2353
2354	}
2355      else if (reg_renumber && reg_renumber[regno] < 0
2356	       && reg_equiv_invariant && reg_equiv_invariant[regno])
2357	{
2358	  if (may_use_invariant)
2359	    return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2360			             mem_mode, insn, true);
2361	  /* There exists at least one use of REGNO that cannot be
2362	     eliminated.  Prevent the defining insn from being deleted.  */
2363	  reg_equiv_init[regno] = NULL_RTX;
2364	  alter_reg (regno, -1);
2365	}
2366      return x;
2367
2368    /* You might think handling MINUS in a manner similar to PLUS is a
2369       good idea.  It is not.  It has been tried multiple times and every
2370       time the change has had to have been reverted.
2371
2372       Other parts of reload know a PLUS is special (gen_reload for example)
2373       and require special code to handle code a reloaded PLUS operand.
2374
2375       Also consider backends where the flags register is clobbered by a
2376       MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2377       lea instruction comes to mind).  If we try to reload a MINUS, we
2378       may kill the flags register that was holding a useful value.
2379
2380       So, please before trying to handle MINUS, consider reload as a
2381       whole instead of this little section as well as the backend issues.  */
2382    case PLUS:
2383      /* If this is the sum of an eliminable register and a constant, rework
2384	 the sum.  */
2385      if (REG_P (XEXP (x, 0))
2386	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2387	  && CONSTANT_P (XEXP (x, 1)))
2388	{
2389	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2390	       ep++)
2391	    if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2392	      {
2393		/* The only time we want to replace a PLUS with a REG (this
2394		   occurs when the constant operand of the PLUS is the negative
2395		   of the offset) is when we are inside a MEM.  We won't want
2396		   to do so at other times because that would change the
2397		   structure of the insn in a way that reload can't handle.
2398		   We special-case the commonest situation in
2399		   eliminate_regs_in_insn, so just replace a PLUS with a
2400		   PLUS here, unless inside a MEM.  */
2401		if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2402		    && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2403		  return ep->to_rtx;
2404		else
2405		  return gen_rtx_PLUS (Pmode, ep->to_rtx,
2406				       plus_constant (XEXP (x, 1),
2407						      ep->previous_offset));
2408	      }
2409
2410	  /* If the register is not eliminable, we are done since the other
2411	     operand is a constant.  */
2412	  return x;
2413	}
2414
2415      /* If this is part of an address, we want to bring any constant to the
2416	 outermost PLUS.  We will do this by doing register replacement in
2417	 our operands and seeing if a constant shows up in one of them.
2418
2419	 Note that there is no risk of modifying the structure of the insn,
2420	 since we only get called for its operands, thus we are either
2421	 modifying the address inside a MEM, or something like an address
2422	 operand of a load-address insn.  */
2423
2424      {
2425	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2426	rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2427
2428	if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2429	  {
2430	    /* If one side is a PLUS and the other side is a pseudo that
2431	       didn't get a hard register but has a reg_equiv_constant,
2432	       we must replace the constant here since it may no longer
2433	       be in the position of any operand.  */
2434	    if (GET_CODE (new0) == PLUS && REG_P (new1)
2435		&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
2436		&& reg_renumber[REGNO (new1)] < 0
2437		&& reg_equiv_constant != 0
2438		&& reg_equiv_constant[REGNO (new1)] != 0)
2439	      new1 = reg_equiv_constant[REGNO (new1)];
2440	    else if (GET_CODE (new1) == PLUS && REG_P (new0)
2441		     && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2442		     && reg_renumber[REGNO (new0)] < 0
2443		     && reg_equiv_constant[REGNO (new0)] != 0)
2444	      new0 = reg_equiv_constant[REGNO (new0)];
2445
2446	    new = form_sum (new0, new1);
2447
2448	    /* As above, if we are not inside a MEM we do not want to
2449	       turn a PLUS into something else.  We might try to do so here
2450	       for an addition of 0 if we aren't optimizing.  */
2451	    if (! mem_mode && GET_CODE (new) != PLUS)
2452	      return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2453	    else
2454	      return new;
2455	  }
2456      }
2457      return x;
2458
2459    case MULT:
2460      /* If this is the product of an eliminable register and a
2461	 constant, apply the distribute law and move the constant out
2462	 so that we have (plus (mult ..) ..).  This is needed in order
2463	 to keep load-address insns valid.   This case is pathological.
2464	 We ignore the possibility of overflow here.  */
2465      if (REG_P (XEXP (x, 0))
2466	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2467	  && GET_CODE (XEXP (x, 1)) == CONST_INT)
2468	for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2469	     ep++)
2470	  if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2471	    {
2472	      if (! mem_mode
2473		  /* Refs inside notes don't count for this purpose.  */
2474		  && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2475				      || GET_CODE (insn) == INSN_LIST)))
2476		ep->ref_outside_mem = 1;
2477
2478	      return
2479		plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2480			       ep->previous_offset * INTVAL (XEXP (x, 1)));
2481	    }
2482
2483      /* ... fall through ...  */
2484
2485    case CALL:
2486    case COMPARE:
2487    /* See comments before PLUS about handling MINUS.  */
2488    case MINUS:
2489    case DIV:      case UDIV:
2490    case MOD:      case UMOD:
2491    case AND:      case IOR:      case XOR:
2492    case ROTATERT: case ROTATE:
2493    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2494    case NE:       case EQ:
2495    case GE:       case GT:       case GEU:    case GTU:
2496    case LE:       case LT:       case LEU:    case LTU:
2497      {
2498	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2499	rtx new1 = XEXP (x, 1)
2500		   ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2501
2502	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2503	  return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2504      }
2505      return x;
2506
2507    case EXPR_LIST:
2508      /* If we have something in XEXP (x, 0), the usual case, eliminate it.  */
2509      if (XEXP (x, 0))
2510	{
2511	  new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2512	  if (new != XEXP (x, 0))
2513	    {
2514	      /* If this is a REG_DEAD note, it is not valid anymore.
2515		 Using the eliminated version could result in creating a
2516		 REG_DEAD note for the stack or frame pointer.  */
2517	      if (GET_MODE (x) == REG_DEAD)
2518		return (XEXP (x, 1)
2519			? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2520			: NULL_RTX);
2521
2522	      x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2523	    }
2524	}
2525
2526      /* ... fall through ...  */
2527
2528    case INSN_LIST:
2529      /* Now do eliminations in the rest of the chain.  If this was
2530	 an EXPR_LIST, this might result in allocating more memory than is
2531	 strictly needed, but it simplifies the code.  */
2532      if (XEXP (x, 1))
2533	{
2534	  new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2535	  if (new != XEXP (x, 1))
2536	    return
2537	      gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2538	}
2539      return x;
2540
2541    case PRE_INC:
2542    case POST_INC:
2543    case PRE_DEC:
2544    case POST_DEC:
2545    case STRICT_LOW_PART:
2546    case NEG:          case NOT:
2547    case SIGN_EXTEND:  case ZERO_EXTEND:
2548    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2549    case FLOAT:        case FIX:
2550    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2551    case ABS:
2552    case SQRT:
2553    case FFS:
2554    case CLZ:
2555    case CTZ:
2556    case POPCOUNT:
2557    case PARITY:
2558      new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2559      if (new != XEXP (x, 0))
2560	return gen_rtx_fmt_e (code, GET_MODE (x), new);
2561      return x;
2562
2563    case SUBREG:
2564      /* Similar to above processing, but preserve SUBREG_BYTE.
2565	 Convert (subreg (mem)) to (mem) if not paradoxical.
2566	 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2567	 pseudo didn't get a hard reg, we must replace this with the
2568	 eliminated version of the memory location because push_reload
2569	 may do the replacement in certain circumstances.  */
2570      if (REG_P (SUBREG_REG (x))
2571	  && (GET_MODE_SIZE (GET_MODE (x))
2572	      <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2573	  && reg_equiv_memory_loc != 0
2574	  && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2575	{
2576	  new = SUBREG_REG (x);
2577	}
2578      else
2579	new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2580
2581      if (new != SUBREG_REG (x))
2582	{
2583	  int x_size = GET_MODE_SIZE (GET_MODE (x));
2584	  int new_size = GET_MODE_SIZE (GET_MODE (new));
2585
2586	  if (MEM_P (new)
2587	      && ((x_size < new_size
2588#ifdef WORD_REGISTER_OPERATIONS
2589		   /* On these machines, combine can create rtl of the form
2590		      (set (subreg:m1 (reg:m2 R) 0) ...)
2591		      where m1 < m2, and expects something interesting to
2592		      happen to the entire word.  Moreover, it will use the
2593		      (reg:m2 R) later, expecting all bits to be preserved.
2594		      So if the number of words is the same, preserve the
2595		      subreg so that push_reload can see it.  */
2596		   && ! ((x_size - 1) / UNITS_PER_WORD
2597			 == (new_size -1 ) / UNITS_PER_WORD)
2598#endif
2599		   )
2600		  || x_size == new_size)
2601	      )
2602	    return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2603	  else
2604	    return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2605	}
2606
2607      return x;
2608
2609    case MEM:
2610      /* Our only special processing is to pass the mode of the MEM to our
2611	 recursive call and copy the flags.  While we are here, handle this
2612	 case more efficiently.  */
2613      return
2614	replace_equiv_address_nv (x,
2615				  eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2616						    insn, true));
2617
2618    case USE:
2619      /* Handle insn_list USE that a call to a pure function may generate.  */
2620      new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2621      if (new != XEXP (x, 0))
2622	return gen_rtx_USE (GET_MODE (x), new);
2623      return x;
2624
2625    case CLOBBER:
2626    case ASM_OPERANDS:
2627    case SET:
2628      gcc_unreachable ();
2629
2630    default:
2631      break;
2632    }
2633
2634  /* Process each of our operands recursively.  If any have changed, make a
2635     copy of the rtx.  */
2636  fmt = GET_RTX_FORMAT (code);
2637  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2638    {
2639      if (*fmt == 'e')
2640	{
2641	  new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2642	  if (new != XEXP (x, i) && ! copied)
2643	    {
2644	      x = shallow_copy_rtx (x);
2645	      copied = 1;
2646	    }
2647	  XEXP (x, i) = new;
2648	}
2649      else if (*fmt == 'E')
2650	{
2651	  int copied_vec = 0;
2652	  for (j = 0; j < XVECLEN (x, i); j++)
2653	    {
2654	      new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2655	      if (new != XVECEXP (x, i, j) && ! copied_vec)
2656		{
2657		  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2658					     XVEC (x, i)->elem);
2659		  if (! copied)
2660		    {
2661		      x = shallow_copy_rtx (x);
2662		      copied = 1;
2663		    }
2664		  XVEC (x, i) = new_v;
2665		  copied_vec = 1;
2666		}
2667	      XVECEXP (x, i, j) = new;
2668	    }
2669	}
2670    }
2671
2672  return x;
2673}
2674
2675rtx
2676eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2677{
2678  return eliminate_regs_1 (x, mem_mode, insn, false);
2679}
2680
2681/* Scan rtx X for modifications of elimination target registers.  Update
2682   the table of eliminables to reflect the changed state.  MEM_MODE is
2683   the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM.  */
2684
2685static void
2686elimination_effects (rtx x, enum machine_mode mem_mode)
2687{
2688  enum rtx_code code = GET_CODE (x);
2689  struct elim_table *ep;
2690  int regno;
2691  int i, j;
2692  const char *fmt;
2693
2694  switch (code)
2695    {
2696    case CONST_INT:
2697    case CONST_DOUBLE:
2698    case CONST_VECTOR:
2699    case CONST:
2700    case SYMBOL_REF:
2701    case CODE_LABEL:
2702    case PC:
2703    case CC0:
2704    case ASM_INPUT:
2705    case ADDR_VEC:
2706    case ADDR_DIFF_VEC:
2707    case RETURN:
2708      return;
2709
2710    case REG:
2711      regno = REGNO (x);
2712
2713      /* First handle the case where we encounter a bare register that
2714	 is eliminable.  Replace it with a PLUS.  */
2715      if (regno < FIRST_PSEUDO_REGISTER)
2716	{
2717	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2718	       ep++)
2719	    if (ep->from_rtx == x && ep->can_eliminate)
2720	      {
2721		if (! mem_mode)
2722		  ep->ref_outside_mem = 1;
2723		return;
2724	      }
2725
2726	}
2727      else if (reg_renumber[regno] < 0 && reg_equiv_constant
2728	       && reg_equiv_constant[regno]
2729	       && ! function_invariant_p (reg_equiv_constant[regno]))
2730	elimination_effects (reg_equiv_constant[regno], mem_mode);
2731      return;
2732
2733    case PRE_INC:
2734    case POST_INC:
2735    case PRE_DEC:
2736    case POST_DEC:
2737    case POST_MODIFY:
2738    case PRE_MODIFY:
2739      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2740	if (ep->to_rtx == XEXP (x, 0))
2741	  {
2742	    int size = GET_MODE_SIZE (mem_mode);
2743
2744	    /* If more bytes than MEM_MODE are pushed, account for them.  */
2745#ifdef PUSH_ROUNDING
2746	    if (ep->to_rtx == stack_pointer_rtx)
2747	      size = PUSH_ROUNDING (size);
2748#endif
2749	    if (code == PRE_DEC || code == POST_DEC)
2750	      ep->offset += size;
2751	    else if (code == PRE_INC || code == POST_INC)
2752	      ep->offset -= size;
2753	    else if ((code == PRE_MODIFY || code == POST_MODIFY)
2754		     && GET_CODE (XEXP (x, 1)) == PLUS
2755		     && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2756		     && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2757	      ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2758	  }
2759
2760      /* These two aren't unary operators.  */
2761      if (code == POST_MODIFY || code == PRE_MODIFY)
2762	break;
2763
2764      /* Fall through to generic unary operation case.  */
2765    case STRICT_LOW_PART:
2766    case NEG:          case NOT:
2767    case SIGN_EXTEND:  case ZERO_EXTEND:
2768    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2769    case FLOAT:        case FIX:
2770    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2771    case ABS:
2772    case SQRT:
2773    case FFS:
2774    case CLZ:
2775    case CTZ:
2776    case POPCOUNT:
2777    case PARITY:
2778      elimination_effects (XEXP (x, 0), mem_mode);
2779      return;
2780
2781    case SUBREG:
2782      if (REG_P (SUBREG_REG (x))
2783	  && (GET_MODE_SIZE (GET_MODE (x))
2784	      <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2785	  && reg_equiv_memory_loc != 0
2786	  && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2787	return;
2788
2789      elimination_effects (SUBREG_REG (x), mem_mode);
2790      return;
2791
2792    case USE:
2793      /* If using a register that is the source of an eliminate we still
2794	 think can be performed, note it cannot be performed since we don't
2795	 know how this register is used.  */
2796      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2797	if (ep->from_rtx == XEXP (x, 0))
2798	  ep->can_eliminate = 0;
2799
2800      elimination_effects (XEXP (x, 0), mem_mode);
2801      return;
2802
2803    case CLOBBER:
2804      /* If clobbering a register that is the replacement register for an
2805	 elimination we still think can be performed, note that it cannot
2806	 be performed.  Otherwise, we need not be concerned about it.  */
2807      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2808	if (ep->to_rtx == XEXP (x, 0))
2809	  ep->can_eliminate = 0;
2810
2811      elimination_effects (XEXP (x, 0), mem_mode);
2812      return;
2813
2814    case SET:
2815      /* Check for setting a register that we know about.  */
2816      if (REG_P (SET_DEST (x)))
2817	{
2818	  /* See if this is setting the replacement register for an
2819	     elimination.
2820
2821	     If DEST is the hard frame pointer, we do nothing because we
2822	     assume that all assignments to the frame pointer are for
2823	     non-local gotos and are being done at a time when they are valid
2824	     and do not disturb anything else.  Some machines want to
2825	     eliminate a fake argument pointer (or even a fake frame pointer)
2826	     with either the real frame or the stack pointer.  Assignments to
2827	     the hard frame pointer must not prevent this elimination.  */
2828
2829	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2830	       ep++)
2831	    if (ep->to_rtx == SET_DEST (x)
2832		&& SET_DEST (x) != hard_frame_pointer_rtx)
2833	      {
2834		/* If it is being incremented, adjust the offset.  Otherwise,
2835		   this elimination can't be done.  */
2836		rtx src = SET_SRC (x);
2837
2838		if (GET_CODE (src) == PLUS
2839		    && XEXP (src, 0) == SET_DEST (x)
2840		    && GET_CODE (XEXP (src, 1)) == CONST_INT)
2841		  ep->offset -= INTVAL (XEXP (src, 1));
2842		else
2843		  ep->can_eliminate = 0;
2844	      }
2845	}
2846
2847      elimination_effects (SET_DEST (x), 0);
2848      elimination_effects (SET_SRC (x), 0);
2849      return;
2850
2851    case MEM:
2852      /* Our only special processing is to pass the mode of the MEM to our
2853	 recursive call.  */
2854      elimination_effects (XEXP (x, 0), GET_MODE (x));
2855      return;
2856
2857    default:
2858      break;
2859    }
2860
2861  fmt = GET_RTX_FORMAT (code);
2862  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2863    {
2864      if (*fmt == 'e')
2865	elimination_effects (XEXP (x, i), mem_mode);
2866      else if (*fmt == 'E')
2867	for (j = 0; j < XVECLEN (x, i); j++)
2868	  elimination_effects (XVECEXP (x, i, j), mem_mode);
2869    }
2870}
2871
2872/* Descend through rtx X and verify that no references to eliminable registers
2873   remain.  If any do remain, mark the involved register as not
2874   eliminable.  */
2875
2876static void
2877check_eliminable_occurrences (rtx x)
2878{
2879  const char *fmt;
2880  int i;
2881  enum rtx_code code;
2882
2883  if (x == 0)
2884    return;
2885
2886  code = GET_CODE (x);
2887
2888  if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2889    {
2890      struct elim_table *ep;
2891
2892      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2893	if (ep->from_rtx == x)
2894	  ep->can_eliminate = 0;
2895      return;
2896    }
2897
2898  fmt = GET_RTX_FORMAT (code);
2899  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2900    {
2901      if (*fmt == 'e')
2902	check_eliminable_occurrences (XEXP (x, i));
2903      else if (*fmt == 'E')
2904	{
2905	  int j;
2906	  for (j = 0; j < XVECLEN (x, i); j++)
2907	    check_eliminable_occurrences (XVECEXP (x, i, j));
2908	}
2909    }
2910}
2911
2912/* Scan INSN and eliminate all eliminable registers in it.
2913
2914   If REPLACE is nonzero, do the replacement destructively.  Also
2915   delete the insn as dead it if it is setting an eliminable register.
2916
2917   If REPLACE is zero, do all our allocations in reload_obstack.
2918
2919   If no eliminations were done and this insn doesn't require any elimination
2920   processing (these are not identical conditions: it might be updating sp,
2921   but not referencing fp; this needs to be seen during reload_as_needed so
2922   that the offset between fp and sp can be taken into consideration), zero
2923   is returned.  Otherwise, 1 is returned.  */
2924
2925static int
2926eliminate_regs_in_insn (rtx insn, int replace)
2927{
2928  int icode = recog_memoized (insn);
2929  rtx old_body = PATTERN (insn);
2930  int insn_is_asm = asm_noperands (old_body) >= 0;
2931  rtx old_set = single_set (insn);
2932  rtx new_body;
2933  int val = 0;
2934  int i;
2935  rtx substed_operand[MAX_RECOG_OPERANDS];
2936  rtx orig_operand[MAX_RECOG_OPERANDS];
2937  struct elim_table *ep;
2938  rtx plus_src, plus_cst_src;
2939
2940  if (! insn_is_asm && icode < 0)
2941    {
2942      gcc_assert (GET_CODE (PATTERN (insn)) == USE
2943		  || GET_CODE (PATTERN (insn)) == CLOBBER
2944		  || GET_CODE (PATTERN (insn)) == ADDR_VEC
2945		  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2946		  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2947      return 0;
2948    }
2949
2950  if (old_set != 0 && REG_P (SET_DEST (old_set))
2951      && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2952    {
2953      /* Check for setting an eliminable register.  */
2954      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2955	if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2956	  {
2957#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2958	    /* If this is setting the frame pointer register to the
2959	       hardware frame pointer register and this is an elimination
2960	       that will be done (tested above), this insn is really
2961	       adjusting the frame pointer downward to compensate for
2962	       the adjustment done before a nonlocal goto.  */
2963	    if (ep->from == FRAME_POINTER_REGNUM
2964		&& ep->to == HARD_FRAME_POINTER_REGNUM)
2965	      {
2966		rtx base = SET_SRC (old_set);
2967		rtx base_insn = insn;
2968		HOST_WIDE_INT offset = 0;
2969
2970		while (base != ep->to_rtx)
2971		  {
2972		    rtx prev_insn, prev_set;
2973
2974		    if (GET_CODE (base) == PLUS
2975		        && GET_CODE (XEXP (base, 1)) == CONST_INT)
2976		      {
2977		        offset += INTVAL (XEXP (base, 1));
2978		        base = XEXP (base, 0);
2979		      }
2980		    else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2981			     && (prev_set = single_set (prev_insn)) != 0
2982			     && rtx_equal_p (SET_DEST (prev_set), base))
2983		      {
2984		        base = SET_SRC (prev_set);
2985		        base_insn = prev_insn;
2986		      }
2987		    else
2988		      break;
2989		  }
2990
2991		if (base == ep->to_rtx)
2992		  {
2993		    rtx src
2994		      = plus_constant (ep->to_rtx, offset - ep->offset);
2995
2996		    new_body = old_body;
2997		    if (! replace)
2998		      {
2999			new_body = copy_insn (old_body);
3000			if (REG_NOTES (insn))
3001			  REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3002		      }
3003		    PATTERN (insn) = new_body;
3004		    old_set = single_set (insn);
3005
3006		    /* First see if this insn remains valid when we
3007		       make the change.  If not, keep the INSN_CODE
3008		       the same and let reload fit it up.  */
3009		    validate_change (insn, &SET_SRC (old_set), src, 1);
3010		    validate_change (insn, &SET_DEST (old_set),
3011				     ep->to_rtx, 1);
3012		    if (! apply_change_group ())
3013		      {
3014			SET_SRC (old_set) = src;
3015			SET_DEST (old_set) = ep->to_rtx;
3016		      }
3017
3018		    val = 1;
3019		    goto done;
3020		  }
3021	      }
3022#endif
3023
3024	    /* In this case this insn isn't serving a useful purpose.  We
3025	       will delete it in reload_as_needed once we know that this
3026	       elimination is, in fact, being done.
3027
3028	       If REPLACE isn't set, we can't delete this insn, but needn't
3029	       process it since it won't be used unless something changes.  */
3030	    if (replace)
3031	      {
3032		delete_dead_insn (insn);
3033		return 1;
3034	      }
3035	    val = 1;
3036	    goto done;
3037	  }
3038    }
3039
3040  /* We allow one special case which happens to work on all machines we
3041     currently support: a single set with the source or a REG_EQUAL
3042     note being a PLUS of an eliminable register and a constant.  */
3043  plus_src = plus_cst_src = 0;
3044  if (old_set && REG_P (SET_DEST (old_set)))
3045    {
3046      if (GET_CODE (SET_SRC (old_set)) == PLUS)
3047	plus_src = SET_SRC (old_set);
3048      /* First see if the source is of the form (plus (...) CST).  */
3049      if (plus_src
3050	  && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3051	plus_cst_src = plus_src;
3052      else if (REG_P (SET_SRC (old_set))
3053	       || plus_src)
3054	{
3055	  /* Otherwise, see if we have a REG_EQUAL note of the form
3056	     (plus (...) CST).  */
3057	  rtx links;
3058	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3059	    {
3060	      if (REG_NOTE_KIND (links) == REG_EQUAL
3061		  && GET_CODE (XEXP (links, 0)) == PLUS
3062		  && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3063		{
3064		  plus_cst_src = XEXP (links, 0);
3065		  break;
3066		}
3067	    }
3068	}
3069
3070      /* Check that the first operand of the PLUS is a hard reg or
3071	 the lowpart subreg of one.  */
3072      if (plus_cst_src)
3073	{
3074	  rtx reg = XEXP (plus_cst_src, 0);
3075	  if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3076	    reg = SUBREG_REG (reg);
3077
3078	  if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3079	    plus_cst_src = 0;
3080	}
3081    }
3082  if (plus_cst_src)
3083    {
3084      rtx reg = XEXP (plus_cst_src, 0);
3085      HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3086
3087      if (GET_CODE (reg) == SUBREG)
3088	reg = SUBREG_REG (reg);
3089
3090      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3091	if (ep->from_rtx == reg && ep->can_eliminate)
3092	  {
3093	    rtx to_rtx = ep->to_rtx;
3094	    offset += ep->offset;
3095	    offset = trunc_int_for_mode (offset, GET_MODE (reg));
3096
3097	    if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3098	      to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3099				    to_rtx);
3100	    /* If we have a nonzero offset, and the source is already
3101	       a simple REG, the following transformation would
3102	       increase the cost of the insn by replacing a simple REG
3103	       with (plus (reg sp) CST).  So try only when we already
3104	       had a PLUS before.  */
3105	    if (offset == 0 || plus_src)
3106	      {
3107		rtx new_src = plus_constant (to_rtx, offset);
3108
3109		new_body = old_body;
3110		if (! replace)
3111		  {
3112		    new_body = copy_insn (old_body);
3113		    if (REG_NOTES (insn))
3114		      REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3115		  }
3116		PATTERN (insn) = new_body;
3117		old_set = single_set (insn);
3118
3119		/* First see if this insn remains valid when we make the
3120		   change.  If not, try to replace the whole pattern with
3121		   a simple set (this may help if the original insn was a
3122		   PARALLEL that was only recognized as single_set due to
3123		   REG_UNUSED notes).  If this isn't valid either, keep
3124		   the INSN_CODE the same and let reload fix it up.  */
3125		if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3126		  {
3127		    rtx new_pat = gen_rtx_SET (VOIDmode,
3128					       SET_DEST (old_set), new_src);
3129
3130		    if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3131		      SET_SRC (old_set) = new_src;
3132		  }
3133	      }
3134	    else
3135	      break;
3136
3137	    val = 1;
3138	    /* This can't have an effect on elimination offsets, so skip right
3139	       to the end.  */
3140	    goto done;
3141	  }
3142    }
3143
3144  /* Determine the effects of this insn on elimination offsets.  */
3145  elimination_effects (old_body, 0);
3146
3147  /* Eliminate all eliminable registers occurring in operands that
3148     can be handled by reload.  */
3149  extract_insn (insn);
3150  for (i = 0; i < recog_data.n_operands; i++)
3151    {
3152      orig_operand[i] = recog_data.operand[i];
3153      substed_operand[i] = recog_data.operand[i];
3154
3155      /* For an asm statement, every operand is eliminable.  */
3156      if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3157	{
3158	  bool is_set_src, in_plus;
3159
3160	  /* Check for setting a register that we know about.  */
3161	  if (recog_data.operand_type[i] != OP_IN
3162	      && REG_P (orig_operand[i]))
3163	    {
3164	      /* If we are assigning to a register that can be eliminated, it
3165		 must be as part of a PARALLEL, since the code above handles
3166		 single SETs.  We must indicate that we can no longer
3167		 eliminate this reg.  */
3168	      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3169		   ep++)
3170		if (ep->from_rtx == orig_operand[i])
3171		  ep->can_eliminate = 0;
3172	    }
3173
3174	  /* Companion to the above plus substitution, we can allow
3175	     invariants as the source of a plain move.  */
3176	  is_set_src = false;
3177	  if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3178	    is_set_src = true;
3179	  in_plus = false;
3180	  if (plus_src
3181	      && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3182		  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3183	    in_plus = true;
3184
3185	  substed_operand[i]
3186	    = eliminate_regs_1 (recog_data.operand[i], 0,
3187			        replace ? insn : NULL_RTX,
3188				is_set_src || in_plus);
3189	  if (substed_operand[i] != orig_operand[i])
3190	    val = 1;
3191	  /* Terminate the search in check_eliminable_occurrences at
3192	     this point.  */
3193	  *recog_data.operand_loc[i] = 0;
3194
3195	/* If an output operand changed from a REG to a MEM and INSN is an
3196	   insn, write a CLOBBER insn.  */
3197	  if (recog_data.operand_type[i] != OP_IN
3198	      && REG_P (orig_operand[i])
3199	      && MEM_P (substed_operand[i])
3200	      && replace)
3201	    emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3202			     insn);
3203	}
3204    }
3205
3206  for (i = 0; i < recog_data.n_dups; i++)
3207    *recog_data.dup_loc[i]
3208      = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3209
3210  /* If any eliminable remain, they aren't eliminable anymore.  */
3211  check_eliminable_occurrences (old_body);
3212
3213  /* Substitute the operands; the new values are in the substed_operand
3214     array.  */
3215  for (i = 0; i < recog_data.n_operands; i++)
3216    *recog_data.operand_loc[i] = substed_operand[i];
3217  for (i = 0; i < recog_data.n_dups; i++)
3218    *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3219
3220  /* If we are replacing a body that was a (set X (plus Y Z)), try to
3221     re-recognize the insn.  We do this in case we had a simple addition
3222     but now can do this as a load-address.  This saves an insn in this
3223     common case.
3224     If re-recognition fails, the old insn code number will still be used,
3225     and some register operands may have changed into PLUS expressions.
3226     These will be handled by find_reloads by loading them into a register
3227     again.  */
3228
3229  if (val)
3230    {
3231      /* If we aren't replacing things permanently and we changed something,
3232	 make another copy to ensure that all the RTL is new.  Otherwise
3233	 things can go wrong if find_reload swaps commutative operands
3234	 and one is inside RTL that has been copied while the other is not.  */
3235      new_body = old_body;
3236      if (! replace)
3237	{
3238	  new_body = copy_insn (old_body);
3239	  if (REG_NOTES (insn))
3240	    REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3241	}
3242      PATTERN (insn) = new_body;
3243
3244      /* If we had a move insn but now we don't, rerecognize it.  This will
3245	 cause spurious re-recognition if the old move had a PARALLEL since
3246	 the new one still will, but we can't call single_set without
3247	 having put NEW_BODY into the insn and the re-recognition won't
3248	 hurt in this rare case.  */
3249      /* ??? Why this huge if statement - why don't we just rerecognize the
3250	 thing always?  */
3251      if (! insn_is_asm
3252	  && old_set != 0
3253	  && ((REG_P (SET_SRC (old_set))
3254	       && (GET_CODE (new_body) != SET
3255		   || !REG_P (SET_SRC (new_body))))
3256	      /* If this was a load from or store to memory, compare
3257		 the MEM in recog_data.operand to the one in the insn.
3258		 If they are not equal, then rerecognize the insn.  */
3259	      || (old_set != 0
3260		  && ((MEM_P (SET_SRC (old_set))
3261		       && SET_SRC (old_set) != recog_data.operand[1])
3262		      || (MEM_P (SET_DEST (old_set))
3263			  && SET_DEST (old_set) != recog_data.operand[0])))
3264	      /* If this was an add insn before, rerecognize.  */
3265	      || GET_CODE (SET_SRC (old_set)) == PLUS))
3266	{
3267	  int new_icode = recog (PATTERN (insn), insn, 0);
3268	  if (new_icode >= 0)
3269	    INSN_CODE (insn) = new_icode;
3270	}
3271    }
3272
3273  /* Restore the old body.  If there were any changes to it, we made a copy
3274     of it while the changes were still in place, so we'll correctly return
3275     a modified insn below.  */
3276  if (! replace)
3277    {
3278      /* Restore the old body.  */
3279      for (i = 0; i < recog_data.n_operands; i++)
3280	*recog_data.operand_loc[i] = orig_operand[i];
3281      for (i = 0; i < recog_data.n_dups; i++)
3282	*recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3283    }
3284
3285  /* Update all elimination pairs to reflect the status after the current
3286     insn.  The changes we make were determined by the earlier call to
3287     elimination_effects.
3288
3289     We also detect cases where register elimination cannot be done,
3290     namely, if a register would be both changed and referenced outside a MEM
3291     in the resulting insn since such an insn is often undefined and, even if
3292     not, we cannot know what meaning will be given to it.  Note that it is
3293     valid to have a register used in an address in an insn that changes it
3294     (presumably with a pre- or post-increment or decrement).
3295
3296     If anything changes, return nonzero.  */
3297
3298  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3299    {
3300      if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3301	ep->can_eliminate = 0;
3302
3303      ep->ref_outside_mem = 0;
3304
3305      if (ep->previous_offset != ep->offset)
3306	val = 1;
3307    }
3308
3309 done:
3310  /* If we changed something, perform elimination in REG_NOTES.  This is
3311     needed even when REPLACE is zero because a REG_DEAD note might refer
3312     to a register that we eliminate and could cause a different number
3313     of spill registers to be needed in the final reload pass than in
3314     the pre-passes.  */
3315  if (val && REG_NOTES (insn) != 0)
3316    REG_NOTES (insn)
3317      = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3318
3319  return val;
3320}
3321
3322/* Loop through all elimination pairs.
3323   Recalculate the number not at initial offset.
3324
3325   Compute the maximum offset (minimum offset if the stack does not
3326   grow downward) for each elimination pair.  */
3327
3328static void
3329update_eliminable_offsets (void)
3330{
3331  struct elim_table *ep;
3332
3333  num_not_at_initial_offset = 0;
3334  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3335    {
3336      ep->previous_offset = ep->offset;
3337      if (ep->can_eliminate && ep->offset != ep->initial_offset)
3338	num_not_at_initial_offset++;
3339    }
3340}
3341
3342/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3343   replacement we currently believe is valid, mark it as not eliminable if X
3344   modifies DEST in any way other than by adding a constant integer to it.
3345
3346   If DEST is the frame pointer, we do nothing because we assume that
3347   all assignments to the hard frame pointer are nonlocal gotos and are being
3348   done at a time when they are valid and do not disturb anything else.
3349   Some machines want to eliminate a fake argument pointer with either the
3350   frame or stack pointer.  Assignments to the hard frame pointer must not
3351   prevent this elimination.
3352
3353   Called via note_stores from reload before starting its passes to scan
3354   the insns of the function.  */
3355
3356static void
3357mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3358{
3359  unsigned int i;
3360
3361  /* A SUBREG of a hard register here is just changing its mode.  We should
3362     not see a SUBREG of an eliminable hard register, but check just in
3363     case.  */
3364  if (GET_CODE (dest) == SUBREG)
3365    dest = SUBREG_REG (dest);
3366
3367  if (dest == hard_frame_pointer_rtx)
3368    return;
3369
3370  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3371    if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3372	&& (GET_CODE (x) != SET
3373	    || GET_CODE (SET_SRC (x)) != PLUS
3374	    || XEXP (SET_SRC (x), 0) != dest
3375	    || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3376      {
3377	reg_eliminate[i].can_eliminate_previous
3378	  = reg_eliminate[i].can_eliminate = 0;
3379	num_eliminable--;
3380      }
3381}
3382
3383/* Verify that the initial elimination offsets did not change since the
3384   last call to set_initial_elim_offsets.  This is used to catch cases
3385   where something illegal happened during reload_as_needed that could
3386   cause incorrect code to be generated if we did not check for it.  */
3387
3388static bool
3389verify_initial_elim_offsets (void)
3390{
3391  HOST_WIDE_INT t;
3392
3393  if (!num_eliminable)
3394    return true;
3395
3396#ifdef ELIMINABLE_REGS
3397  {
3398   struct elim_table *ep;
3399
3400   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3401     {
3402       INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3403       if (t != ep->initial_offset)
3404	 return false;
3405     }
3406  }
3407#else
3408  INITIAL_FRAME_POINTER_OFFSET (t);
3409  if (t != reg_eliminate[0].initial_offset)
3410    return false;
3411#endif
3412
3413  return true;
3414}
3415
3416/* Reset all offsets on eliminable registers to their initial values.  */
3417
3418static void
3419set_initial_elim_offsets (void)
3420{
3421  struct elim_table *ep = reg_eliminate;
3422
3423#ifdef ELIMINABLE_REGS
3424  for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3425    {
3426      INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3427      ep->previous_offset = ep->offset = ep->initial_offset;
3428    }
3429#else
3430  INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3431  ep->previous_offset = ep->offset = ep->initial_offset;
3432#endif
3433
3434  num_not_at_initial_offset = 0;
3435}
3436
3437/* Subroutine of set_initial_label_offsets called via for_each_eh_label.  */
3438
3439static void
3440set_initial_eh_label_offset (rtx label)
3441{
3442  set_label_offsets (label, NULL_RTX, 1);
3443}
3444
3445/* Initialize the known label offsets.
3446   Set a known offset for each forced label to be at the initial offset
3447   of each elimination.  We do this because we assume that all
3448   computed jumps occur from a location where each elimination is
3449   at its initial offset.
3450   For all other labels, show that we don't know the offsets.  */
3451
3452static void
3453set_initial_label_offsets (void)
3454{
3455  rtx x;
3456  memset (offsets_known_at, 0, num_labels);
3457
3458  for (x = forced_labels; x; x = XEXP (x, 1))
3459    if (XEXP (x, 0))
3460      set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3461
3462  for_each_eh_label (set_initial_eh_label_offset);
3463}
3464
3465/* Set all elimination offsets to the known values for the code label given
3466   by INSN.  */
3467
3468static void
3469set_offsets_for_label (rtx insn)
3470{
3471  unsigned int i;
3472  int label_nr = CODE_LABEL_NUMBER (insn);
3473  struct elim_table *ep;
3474
3475  num_not_at_initial_offset = 0;
3476  for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3477    {
3478      ep->offset = ep->previous_offset
3479		 = offsets_at[label_nr - first_label_num][i];
3480      if (ep->can_eliminate && ep->offset != ep->initial_offset)
3481	num_not_at_initial_offset++;
3482    }
3483}
3484
3485/* See if anything that happened changes which eliminations are valid.
3486   For example, on the SPARC, whether or not the frame pointer can
3487   be eliminated can depend on what registers have been used.  We need
3488   not check some conditions again (such as flag_omit_frame_pointer)
3489   since they can't have changed.  */
3490
3491static void
3492update_eliminables (HARD_REG_SET *pset)
3493{
3494  int previous_frame_pointer_needed = frame_pointer_needed;
3495  struct elim_table *ep;
3496
3497  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3498    if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3499#ifdef ELIMINABLE_REGS
3500	|| ! CAN_ELIMINATE (ep->from, ep->to)
3501#endif
3502	)
3503      ep->can_eliminate = 0;
3504
3505  /* Look for the case where we have discovered that we can't replace
3506     register A with register B and that means that we will now be
3507     trying to replace register A with register C.  This means we can
3508     no longer replace register C with register B and we need to disable
3509     such an elimination, if it exists.  This occurs often with A == ap,
3510     B == sp, and C == fp.  */
3511
3512  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3513    {
3514      struct elim_table *op;
3515      int new_to = -1;
3516
3517      if (! ep->can_eliminate && ep->can_eliminate_previous)
3518	{
3519	  /* Find the current elimination for ep->from, if there is a
3520	     new one.  */
3521	  for (op = reg_eliminate;
3522	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3523	    if (op->from == ep->from && op->can_eliminate)
3524	      {
3525		new_to = op->to;
3526		break;
3527	      }
3528
3529	  /* See if there is an elimination of NEW_TO -> EP->TO.  If so,
3530	     disable it.  */
3531	  for (op = reg_eliminate;
3532	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3533	    if (op->from == new_to && op->to == ep->to)
3534	      op->can_eliminate = 0;
3535	}
3536    }
3537
3538  /* See if any registers that we thought we could eliminate the previous
3539     time are no longer eliminable.  If so, something has changed and we
3540     must spill the register.  Also, recompute the number of eliminable
3541     registers and see if the frame pointer is needed; it is if there is
3542     no elimination of the frame pointer that we can perform.  */
3543
3544  frame_pointer_needed = 1;
3545  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3546    {
3547      if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3548	  && ep->to != HARD_FRAME_POINTER_REGNUM)
3549	frame_pointer_needed = 0;
3550
3551      if (! ep->can_eliminate && ep->can_eliminate_previous)
3552	{
3553	  ep->can_eliminate_previous = 0;
3554	  SET_HARD_REG_BIT (*pset, ep->from);
3555	  num_eliminable--;
3556	}
3557    }
3558
3559  /* If we didn't need a frame pointer last time, but we do now, spill
3560     the hard frame pointer.  */
3561  if (frame_pointer_needed && ! previous_frame_pointer_needed)
3562    SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3563}
3564
3565/* Initialize the table of registers to eliminate.  */
3566
3567static void
3568init_elim_table (void)
3569{
3570  struct elim_table *ep;
3571#ifdef ELIMINABLE_REGS
3572  const struct elim_table_1 *ep1;
3573#endif
3574
3575  if (!reg_eliminate)
3576    reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3577
3578  /* Does this function require a frame pointer?  */
3579
3580  frame_pointer_needed = (! flag_omit_frame_pointer
3581			  /* ?? If EXIT_IGNORE_STACK is set, we will not save
3582			     and restore sp for alloca.  So we can't eliminate
3583			     the frame pointer in that case.  At some point,
3584			     we should improve this by emitting the
3585			     sp-adjusting insns for this case.  */
3586			  || (current_function_calls_alloca
3587			      && EXIT_IGNORE_STACK)
3588			  || current_function_accesses_prior_frames
3589			  || FRAME_POINTER_REQUIRED);
3590
3591  num_eliminable = 0;
3592
3593#ifdef ELIMINABLE_REGS
3594  for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3595       ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3596    {
3597      ep->from = ep1->from;
3598      ep->to = ep1->to;
3599      ep->can_eliminate = ep->can_eliminate_previous
3600	= (CAN_ELIMINATE (ep->from, ep->to)
3601	   && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3602    }
3603#else
3604  reg_eliminate[0].from = reg_eliminate_1[0].from;
3605  reg_eliminate[0].to = reg_eliminate_1[0].to;
3606  reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3607    = ! frame_pointer_needed;
3608#endif
3609
3610  /* Count the number of eliminable registers and build the FROM and TO
3611     REG rtx's.  Note that code in gen_rtx_REG will cause, e.g.,
3612     gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3613     We depend on this.  */
3614  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3615    {
3616      num_eliminable += ep->can_eliminate;
3617      ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3618      ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3619    }
3620}
3621
3622/* Kick all pseudos out of hard register REGNO.
3623
3624   If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3625   because we found we can't eliminate some register.  In the case, no pseudos
3626   are allowed to be in the register, even if they are only in a block that
3627   doesn't require spill registers, unlike the case when we are spilling this
3628   hard reg to produce another spill register.
3629
3630   Return nonzero if any pseudos needed to be kicked out.  */
3631
3632static void
3633spill_hard_reg (unsigned int regno, int cant_eliminate)
3634{
3635  int i;
3636
3637  if (cant_eliminate)
3638    {
3639      SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3640      regs_ever_live[regno] = 1;
3641    }
3642
3643  /* Spill every pseudo reg that was allocated to this reg
3644     or to something that overlaps this reg.  */
3645
3646  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3647    if (reg_renumber[i] >= 0
3648	&& (unsigned int) reg_renumber[i] <= regno
3649	&& ((unsigned int) reg_renumber[i]
3650	    + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3651			      [PSEUDO_REGNO_MODE (i)]
3652	    > regno))
3653      SET_REGNO_REG_SET (&spilled_pseudos, i);
3654}
3655
3656/* After find_reload_regs has been run for all insn that need reloads,
3657   and/or spill_hard_regs was called, this function is used to actually
3658   spill pseudo registers and try to reallocate them.  It also sets up the
3659   spill_regs array for use by choose_reload_regs.  */
3660
3661static int
3662finish_spills (int global)
3663{
3664  struct insn_chain *chain;
3665  int something_changed = 0;
3666  unsigned i;
3667  reg_set_iterator rsi;
3668
3669  /* Build the spill_regs array for the function.  */
3670  /* If there are some registers still to eliminate and one of the spill regs
3671     wasn't ever used before, additional stack space may have to be
3672     allocated to store this register.  Thus, we may have changed the offset
3673     between the stack and frame pointers, so mark that something has changed.
3674
3675     One might think that we need only set VAL to 1 if this is a call-used
3676     register.  However, the set of registers that must be saved by the
3677     prologue is not identical to the call-used set.  For example, the
3678     register used by the call insn for the return PC is a call-used register,
3679     but must be saved by the prologue.  */
3680
3681  n_spills = 0;
3682  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3683    if (TEST_HARD_REG_BIT (used_spill_regs, i))
3684      {
3685	spill_reg_order[i] = n_spills;
3686	spill_regs[n_spills++] = i;
3687	if (num_eliminable && ! regs_ever_live[i])
3688	  something_changed = 1;
3689	regs_ever_live[i] = 1;
3690      }
3691    else
3692      spill_reg_order[i] = -1;
3693
3694  EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3695    {
3696      /* Record the current hard register the pseudo is allocated to in
3697	 pseudo_previous_regs so we avoid reallocating it to the same
3698	 hard reg in a later pass.  */
3699      gcc_assert (reg_renumber[i] >= 0);
3700
3701      SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3702      /* Mark it as no longer having a hard register home.  */
3703      reg_renumber[i] = -1;
3704      /* We will need to scan everything again.  */
3705      something_changed = 1;
3706    }
3707
3708  /* Retry global register allocation if possible.  */
3709  if (global)
3710    {
3711      memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3712      /* For every insn that needs reloads, set the registers used as spill
3713	 regs in pseudo_forbidden_regs for every pseudo live across the
3714	 insn.  */
3715      for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3716	{
3717	  EXECUTE_IF_SET_IN_REG_SET
3718	    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3719	    {
3720	      IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3721				chain->used_spill_regs);
3722	    }
3723	  EXECUTE_IF_SET_IN_REG_SET
3724	    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3725	    {
3726	      IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3727				chain->used_spill_regs);
3728	    }
3729	}
3730
3731      /* Retry allocating the spilled pseudos.  For each reg, merge the
3732	 various reg sets that indicate which hard regs can't be used,
3733	 and call retry_global_alloc.
3734	 We change spill_pseudos here to only contain pseudos that did not
3735	 get a new hard register.  */
3736      for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3737	if (reg_old_renumber[i] != reg_renumber[i])
3738	  {
3739	    HARD_REG_SET forbidden;
3740	    COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3741	    IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3742	    IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3743	    retry_global_alloc (i, forbidden);
3744	    if (reg_renumber[i] >= 0)
3745	      CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3746	  }
3747    }
3748
3749  /* Fix up the register information in the insn chain.
3750     This involves deleting those of the spilled pseudos which did not get
3751     a new hard register home from the live_{before,after} sets.  */
3752  for (chain = reload_insn_chain; chain; chain = chain->next)
3753    {
3754      HARD_REG_SET used_by_pseudos;
3755      HARD_REG_SET used_by_pseudos2;
3756
3757      AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3758      AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3759
3760      /* Mark any unallocated hard regs as available for spills.  That
3761	 makes inheritance work somewhat better.  */
3762      if (chain->need_reload)
3763	{
3764	  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3765	  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3766	  IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3767
3768	  /* Save the old value for the sanity test below.  */
3769	  COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3770
3771	  compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3772	  compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3773	  COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3774	  AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3775
3776	  /* Make sure we only enlarge the set.  */
3777	  GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3778	  gcc_unreachable ();
3779	ok:;
3780	}
3781    }
3782
3783  /* Let alter_reg modify the reg rtx's for the modified pseudos.  */
3784  for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3785    {
3786      int regno = reg_renumber[i];
3787      if (reg_old_renumber[i] == regno)
3788	continue;
3789
3790      alter_reg (i, reg_old_renumber[i]);
3791      reg_old_renumber[i] = regno;
3792      if (dump_file)
3793	{
3794	  if (regno == -1)
3795	    fprintf (dump_file, " Register %d now on stack.\n\n", i);
3796	  else
3797	    fprintf (dump_file, " Register %d now in %d.\n\n",
3798		     i, reg_renumber[i]);
3799	}
3800    }
3801
3802  return something_changed;
3803}
3804
3805/* Find all paradoxical subregs within X and update reg_max_ref_width.  */
3806
3807static void
3808scan_paradoxical_subregs (rtx x)
3809{
3810  int i;
3811  const char *fmt;
3812  enum rtx_code code = GET_CODE (x);
3813
3814  switch (code)
3815    {
3816    case REG:
3817    case CONST_INT:
3818    case CONST:
3819    case SYMBOL_REF:
3820    case LABEL_REF:
3821    case CONST_DOUBLE:
3822    case CONST_VECTOR: /* shouldn't happen, but just in case.  */
3823    case CC0:
3824    case PC:
3825    case USE:
3826    case CLOBBER:
3827      return;
3828
3829    case SUBREG:
3830      if (REG_P (SUBREG_REG (x))
3831	  && (GET_MODE_SIZE (GET_MODE (x))
3832	      > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3833	reg_max_ref_width[REGNO (SUBREG_REG (x))]
3834	  = GET_MODE_SIZE (GET_MODE (x));
3835      return;
3836
3837    default:
3838      break;
3839    }
3840
3841  fmt = GET_RTX_FORMAT (code);
3842  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3843    {
3844      if (fmt[i] == 'e')
3845	scan_paradoxical_subregs (XEXP (x, i));
3846      else if (fmt[i] == 'E')
3847	{
3848	  int j;
3849	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3850	    scan_paradoxical_subregs (XVECEXP (x, i, j));
3851	}
3852    }
3853}
3854
3855/* A subroutine of reload_as_needed.  If INSN has a REG_EH_REGION note,
3856   examine all of the reload insns between PREV and NEXT exclusive, and
3857   annotate all that may trap.  */
3858
3859static void
3860fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3861{
3862  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3863  unsigned int trap_count;
3864  rtx i;
3865
3866  if (note == NULL)
3867    return;
3868
3869  if (may_trap_p (PATTERN (insn)))
3870    trap_count = 1;
3871  else
3872    {
3873      remove_note (insn, note);
3874      trap_count = 0;
3875    }
3876
3877  for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3878    if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3879      {
3880	trap_count++;
3881	REG_NOTES (i)
3882	  = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3883      }
3884}
3885
3886/* Reload pseudo-registers into hard regs around each insn as needed.
3887   Additional register load insns are output before the insn that needs it
3888   and perhaps store insns after insns that modify the reloaded pseudo reg.
3889
3890   reg_last_reload_reg and reg_reloaded_contents keep track of
3891   which registers are already available in reload registers.
3892   We update these for the reloads that we perform,
3893   as the insns are scanned.  */
3894
3895static void
3896reload_as_needed (int live_known)
3897{
3898  struct insn_chain *chain;
3899#if defined (AUTO_INC_DEC)
3900  int i;
3901#endif
3902  rtx x;
3903
3904  memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3905  memset (spill_reg_store, 0, sizeof spill_reg_store);
3906  reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
3907  INIT_REG_SET (&reg_has_output_reload);
3908  CLEAR_HARD_REG_SET (reg_reloaded_valid);
3909  CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3910
3911  set_initial_elim_offsets ();
3912
3913  for (chain = reload_insn_chain; chain; chain = chain->next)
3914    {
3915      rtx prev = 0;
3916      rtx insn = chain->insn;
3917      rtx old_next = NEXT_INSN (insn);
3918
3919      /* If we pass a label, copy the offsets from the label information
3920	 into the current offsets of each elimination.  */
3921      if (LABEL_P (insn))
3922	set_offsets_for_label (insn);
3923
3924      else if (INSN_P (insn))
3925	{
3926	  regset_head regs_to_forget;
3927	  INIT_REG_SET (&regs_to_forget);
3928	  note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
3929
3930	  /* If this is a USE and CLOBBER of a MEM, ensure that any
3931	     references to eliminable registers have been removed.  */
3932
3933	  if ((GET_CODE (PATTERN (insn)) == USE
3934	       || GET_CODE (PATTERN (insn)) == CLOBBER)
3935	      && MEM_P (XEXP (PATTERN (insn), 0)))
3936	    XEXP (XEXP (PATTERN (insn), 0), 0)
3937	      = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3938				GET_MODE (XEXP (PATTERN (insn), 0)),
3939				NULL_RTX);
3940
3941	  /* If we need to do register elimination processing, do so.
3942	     This might delete the insn, in which case we are done.  */
3943	  if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3944	    {
3945	      eliminate_regs_in_insn (insn, 1);
3946	      if (NOTE_P (insn))
3947		{
3948		  update_eliminable_offsets ();
3949		  CLEAR_REG_SET (&regs_to_forget);
3950		  continue;
3951		}
3952	    }
3953
3954	  /* If need_elim is nonzero but need_reload is zero, one might think
3955	     that we could simply set n_reloads to 0.  However, find_reloads
3956	     could have done some manipulation of the insn (such as swapping
3957	     commutative operands), and these manipulations are lost during
3958	     the first pass for every insn that needs register elimination.
3959	     So the actions of find_reloads must be redone here.  */
3960
3961	  if (! chain->need_elim && ! chain->need_reload
3962	      && ! chain->need_operand_change)
3963	    n_reloads = 0;
3964	  /* First find the pseudo regs that must be reloaded for this insn.
3965	     This info is returned in the tables reload_... (see reload.h).
3966	     Also modify the body of INSN by substituting RELOAD
3967	     rtx's for those pseudo regs.  */
3968	  else
3969	    {
3970	      CLEAR_REG_SET (&reg_has_output_reload);
3971	      CLEAR_HARD_REG_SET (reg_is_output_reload);
3972
3973	      find_reloads (insn, 1, spill_indirect_levels, live_known,
3974			    spill_reg_order);
3975	    }
3976
3977	  if (n_reloads > 0)
3978	    {
3979	      rtx next = NEXT_INSN (insn);
3980	      rtx p;
3981
3982	      prev = PREV_INSN (insn);
3983
3984	      /* Now compute which reload regs to reload them into.  Perhaps
3985		 reusing reload regs from previous insns, or else output
3986		 load insns to reload them.  Maybe output store insns too.
3987		 Record the choices of reload reg in reload_reg_rtx.  */
3988	      choose_reload_regs (chain);
3989
3990	      /* Merge any reloads that we didn't combine for fear of
3991		 increasing the number of spill registers needed but now
3992		 discover can be safely merged.  */
3993	      if (SMALL_REGISTER_CLASSES)
3994		merge_assigned_reloads (insn);
3995
3996	      /* Generate the insns to reload operands into or out of
3997		 their reload regs.  */
3998	      emit_reload_insns (chain);
3999
4000	      /* Substitute the chosen reload regs from reload_reg_rtx
4001		 into the insn's body (or perhaps into the bodies of other
4002		 load and store insn that we just made for reloading
4003		 and that we moved the structure into).  */
4004	      subst_reloads (insn);
4005
4006	      /* Adjust the exception region notes for loads and stores.  */
4007	      if (flag_non_call_exceptions && !CALL_P (insn))
4008		fixup_eh_region_note (insn, prev, next);
4009
4010	      /* If this was an ASM, make sure that all the reload insns
4011		 we have generated are valid.  If not, give an error
4012		 and delete them.  */
4013	      if (asm_noperands (PATTERN (insn)) >= 0)
4014		for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4015		  if (p != insn && INSN_P (p)
4016		      && GET_CODE (PATTERN (p)) != USE
4017		      && (recog_memoized (p) < 0
4018			  || (extract_insn (p), ! constrain_operands (1))))
4019		    {
4020		      error_for_asm (insn,
4021				     "%<asm%> operand requires "
4022				     "impossible reload");
4023		      delete_insn (p);
4024		    }
4025	    }
4026
4027	  if (num_eliminable && chain->need_elim)
4028	    update_eliminable_offsets ();
4029
4030	  /* Any previously reloaded spilled pseudo reg, stored in this insn,
4031	     is no longer validly lying around to save a future reload.
4032	     Note that this does not detect pseudos that were reloaded
4033	     for this insn in order to be stored in
4034	     (obeying register constraints).  That is correct; such reload
4035	     registers ARE still valid.  */
4036	  forget_marked_reloads (&regs_to_forget);
4037	  CLEAR_REG_SET (&regs_to_forget);
4038
4039	  /* There may have been CLOBBER insns placed after INSN.  So scan
4040	     between INSN and NEXT and use them to forget old reloads.  */
4041	  for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4042	    if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4043	      note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4044
4045#ifdef AUTO_INC_DEC
4046	  /* Likewise for regs altered by auto-increment in this insn.
4047	     REG_INC notes have been changed by reloading:
4048	     find_reloads_address_1 records substitutions for them,
4049	     which have been performed by subst_reloads above.  */
4050	  for (i = n_reloads - 1; i >= 0; i--)
4051	    {
4052	      rtx in_reg = rld[i].in_reg;
4053	      if (in_reg)
4054		{
4055		  enum rtx_code code = GET_CODE (in_reg);
4056		  /* PRE_INC / PRE_DEC will have the reload register ending up
4057		     with the same value as the stack slot, but that doesn't
4058		     hold true for POST_INC / POST_DEC.  Either we have to
4059		     convert the memory access to a true POST_INC / POST_DEC,
4060		     or we can't use the reload register for inheritance.  */
4061		  if ((code == POST_INC || code == POST_DEC)
4062		      && TEST_HARD_REG_BIT (reg_reloaded_valid,
4063					    REGNO (rld[i].reg_rtx))
4064		      /* Make sure it is the inc/dec pseudo, and not
4065			 some other (e.g. output operand) pseudo.  */
4066		      && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4067			  == REGNO (XEXP (in_reg, 0))))
4068
4069		    {
4070		      rtx reload_reg = rld[i].reg_rtx;
4071		      enum machine_mode mode = GET_MODE (reload_reg);
4072		      int n = 0;
4073		      rtx p;
4074
4075		      for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4076			{
4077			  /* We really want to ignore REG_INC notes here, so
4078			     use PATTERN (p) as argument to reg_set_p .  */
4079			  if (reg_set_p (reload_reg, PATTERN (p)))
4080			    break;
4081			  n = count_occurrences (PATTERN (p), reload_reg, 0);
4082			  if (! n)
4083			    continue;
4084			  if (n == 1)
4085			    {
4086			      n = validate_replace_rtx (reload_reg,
4087							gen_rtx_fmt_e (code,
4088								       mode,
4089								       reload_reg),
4090							p);
4091
4092			      /* We must also verify that the constraints
4093				 are met after the replacement.  */
4094			      extract_insn (p);
4095			      if (n)
4096				n = constrain_operands (1);
4097			      else
4098				break;
4099
4100			      /* If the constraints were not met, then
4101				 undo the replacement.  */
4102			      if (!n)
4103				{
4104				  validate_replace_rtx (gen_rtx_fmt_e (code,
4105								       mode,
4106								       reload_reg),
4107							reload_reg, p);
4108				  break;
4109				}
4110
4111			    }
4112			  break;
4113			}
4114		      if (n == 1)
4115			{
4116			  REG_NOTES (p)
4117			    = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4118						 REG_NOTES (p));
4119			  /* Mark this as having an output reload so that the
4120			     REG_INC processing code below won't invalidate
4121			     the reload for inheritance.  */
4122			  SET_HARD_REG_BIT (reg_is_output_reload,
4123					    REGNO (reload_reg));
4124			  SET_REGNO_REG_SET (&reg_has_output_reload,
4125					     REGNO (XEXP (in_reg, 0)));
4126			}
4127		      else
4128			forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4129					      NULL);
4130		    }
4131		  else if ((code == PRE_INC || code == PRE_DEC)
4132			   && TEST_HARD_REG_BIT (reg_reloaded_valid,
4133						 REGNO (rld[i].reg_rtx))
4134			   /* Make sure it is the inc/dec pseudo, and not
4135			      some other (e.g. output operand) pseudo.  */
4136			   && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4137			       == REGNO (XEXP (in_reg, 0))))
4138		    {
4139		      SET_HARD_REG_BIT (reg_is_output_reload,
4140					REGNO (rld[i].reg_rtx));
4141		      SET_REGNO_REG_SET (&reg_has_output_reload,
4142					 REGNO (XEXP (in_reg, 0)));
4143		    }
4144		}
4145	    }
4146	  /* If a pseudo that got a hard register is auto-incremented,
4147	     we must purge records of copying it into pseudos without
4148	     hard registers.  */
4149	  for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4150	    if (REG_NOTE_KIND (x) == REG_INC)
4151	      {
4152		/* See if this pseudo reg was reloaded in this insn.
4153		   If so, its last-reload info is still valid
4154		   because it is based on this insn's reload.  */
4155		for (i = 0; i < n_reloads; i++)
4156		  if (rld[i].out == XEXP (x, 0))
4157		    break;
4158
4159		if (i == n_reloads)
4160		  forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4161	      }
4162#endif
4163	}
4164      /* A reload reg's contents are unknown after a label.  */
4165      if (LABEL_P (insn))
4166	CLEAR_HARD_REG_SET (reg_reloaded_valid);
4167
4168      /* Don't assume a reload reg is still good after a call insn
4169	 if it is a call-used reg, or if it contains a value that will
4170         be partially clobbered by the call.  */
4171      else if (CALL_P (insn))
4172	{
4173	AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4174	AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4175	}
4176    }
4177
4178  /* Clean up.  */
4179  free (reg_last_reload_reg);
4180  CLEAR_REG_SET (&reg_has_output_reload);
4181}
4182
4183/* Discard all record of any value reloaded from X,
4184   or reloaded in X from someplace else;
4185   unless X is an output reload reg of the current insn.
4186
4187   X may be a hard reg (the reload reg)
4188   or it may be a pseudo reg that was reloaded from.
4189
4190   When DATA is non-NULL just mark the registers in regset
4191   to be forgotten later.  */
4192
4193static void
4194forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4195		      void *data)
4196{
4197  unsigned int regno;
4198  unsigned int nr;
4199  regset regs = (regset) data;
4200
4201  /* note_stores does give us subregs of hard regs,
4202     subreg_regno_offset requires a hard reg.  */
4203  while (GET_CODE (x) == SUBREG)
4204    {
4205      /* We ignore the subreg offset when calculating the regno,
4206	 because we are using the entire underlying hard register
4207	 below.  */
4208      x = SUBREG_REG (x);
4209    }
4210
4211  if (!REG_P (x))
4212    return;
4213
4214  regno = REGNO (x);
4215
4216  if (regno >= FIRST_PSEUDO_REGISTER)
4217    nr = 1;
4218  else
4219    {
4220      unsigned int i;
4221
4222      nr = hard_regno_nregs[regno][GET_MODE (x)];
4223      /* Storing into a spilled-reg invalidates its contents.
4224	 This can happen if a block-local pseudo is allocated to that reg
4225	 and it wasn't spilled because this block's total need is 0.
4226	 Then some insn might have an optional reload and use this reg.  */
4227      if (!regs)
4228	for (i = 0; i < nr; i++)
4229	  /* But don't do this if the reg actually serves as an output
4230	     reload reg in the current instruction.  */
4231	  if (n_reloads == 0
4232	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4233	    {
4234	      CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4235	      CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4236	      spill_reg_store[regno + i] = 0;
4237	    }
4238    }
4239
4240  if (regs)
4241    while (nr-- > 0)
4242      SET_REGNO_REG_SET (regs, regno + nr);
4243  else
4244    {
4245      /* Since value of X has changed,
4246	 forget any value previously copied from it.  */
4247
4248      while (nr-- > 0)
4249	/* But don't forget a copy if this is the output reload
4250	   that establishes the copy's validity.  */
4251	if (n_reloads == 0
4252	    || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4253	  reg_last_reload_reg[regno + nr] = 0;
4254     }
4255}
4256
4257/* Forget the reloads marked in regset by previous function.  */
4258static void
4259forget_marked_reloads (regset regs)
4260{
4261  unsigned int reg;
4262  reg_set_iterator rsi;
4263  EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4264    {
4265      if (reg < FIRST_PSEUDO_REGISTER
4266	  /* But don't do this if the reg actually serves as an output
4267	     reload reg in the current instruction.  */
4268	  && (n_reloads == 0
4269	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4270	  {
4271	    CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4272	    CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
4273	    spill_reg_store[reg] = 0;
4274	  }
4275      if (n_reloads == 0
4276	  || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4277	reg_last_reload_reg[reg] = 0;
4278    }
4279}
4280
4281/* The following HARD_REG_SETs indicate when each hard register is
4282   used for a reload of various parts of the current insn.  */
4283
4284/* If reg is unavailable for all reloads.  */
4285static HARD_REG_SET reload_reg_unavailable;
4286/* If reg is in use as a reload reg for a RELOAD_OTHER reload.  */
4287static HARD_REG_SET reload_reg_used;
4288/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I.  */
4289static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4290/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I.  */
4291static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4292/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I.  */
4293static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4294/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I.  */
4295static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4296/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I.  */
4297static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4298/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I.  */
4299static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4300/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload.  */
4301static HARD_REG_SET reload_reg_used_in_op_addr;
4302/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload.  */
4303static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4304/* If reg is in use for a RELOAD_FOR_INSN reload.  */
4305static HARD_REG_SET reload_reg_used_in_insn;
4306/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload.  */
4307static HARD_REG_SET reload_reg_used_in_other_addr;
4308
4309/* If reg is in use as a reload reg for any sort of reload.  */
4310static HARD_REG_SET reload_reg_used_at_all;
4311
4312/* If reg is use as an inherited reload.  We just mark the first register
4313   in the group.  */
4314static HARD_REG_SET reload_reg_used_for_inherit;
4315
4316/* Records which hard regs are used in any way, either as explicit use or
4317   by being allocated to a pseudo during any point of the current insn.  */
4318static HARD_REG_SET reg_used_in_insn;
4319
4320/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4321   TYPE. MODE is used to indicate how many consecutive regs are
4322   actually used.  */
4323
4324static void
4325mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4326			enum machine_mode mode)
4327{
4328  unsigned int nregs = hard_regno_nregs[regno][mode];
4329  unsigned int i;
4330
4331  for (i = regno; i < nregs + regno; i++)
4332    {
4333      switch (type)
4334	{
4335	case RELOAD_OTHER:
4336	  SET_HARD_REG_BIT (reload_reg_used, i);
4337	  break;
4338
4339	case RELOAD_FOR_INPUT_ADDRESS:
4340	  SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4341	  break;
4342
4343	case RELOAD_FOR_INPADDR_ADDRESS:
4344	  SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4345	  break;
4346
4347	case RELOAD_FOR_OUTPUT_ADDRESS:
4348	  SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4349	  break;
4350
4351	case RELOAD_FOR_OUTADDR_ADDRESS:
4352	  SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4353	  break;
4354
4355	case RELOAD_FOR_OPERAND_ADDRESS:
4356	  SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4357	  break;
4358
4359	case RELOAD_FOR_OPADDR_ADDR:
4360	  SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4361	  break;
4362
4363	case RELOAD_FOR_OTHER_ADDRESS:
4364	  SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4365	  break;
4366
4367	case RELOAD_FOR_INPUT:
4368	  SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4369	  break;
4370
4371	case RELOAD_FOR_OUTPUT:
4372	  SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4373	  break;
4374
4375	case RELOAD_FOR_INSN:
4376	  SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4377	  break;
4378	}
4379
4380      SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4381    }
4382}
4383
4384/* Similarly, but show REGNO is no longer in use for a reload.  */
4385
4386static void
4387clear_reload_reg_in_use (unsigned int regno, int opnum,
4388			 enum reload_type type, enum machine_mode mode)
4389{
4390  unsigned int nregs = hard_regno_nregs[regno][mode];
4391  unsigned int start_regno, end_regno, r;
4392  int i;
4393  /* A complication is that for some reload types, inheritance might
4394     allow multiple reloads of the same types to share a reload register.
4395     We set check_opnum if we have to check only reloads with the same
4396     operand number, and check_any if we have to check all reloads.  */
4397  int check_opnum = 0;
4398  int check_any = 0;
4399  HARD_REG_SET *used_in_set;
4400
4401  switch (type)
4402    {
4403    case RELOAD_OTHER:
4404      used_in_set = &reload_reg_used;
4405      break;
4406
4407    case RELOAD_FOR_INPUT_ADDRESS:
4408      used_in_set = &reload_reg_used_in_input_addr[opnum];
4409      break;
4410
4411    case RELOAD_FOR_INPADDR_ADDRESS:
4412      check_opnum = 1;
4413      used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4414      break;
4415
4416    case RELOAD_FOR_OUTPUT_ADDRESS:
4417      used_in_set = &reload_reg_used_in_output_addr[opnum];
4418      break;
4419
4420    case RELOAD_FOR_OUTADDR_ADDRESS:
4421      check_opnum = 1;
4422      used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4423      break;
4424
4425    case RELOAD_FOR_OPERAND_ADDRESS:
4426      used_in_set = &reload_reg_used_in_op_addr;
4427      break;
4428
4429    case RELOAD_FOR_OPADDR_ADDR:
4430      check_any = 1;
4431      used_in_set = &reload_reg_used_in_op_addr_reload;
4432      break;
4433
4434    case RELOAD_FOR_OTHER_ADDRESS:
4435      used_in_set = &reload_reg_used_in_other_addr;
4436      check_any = 1;
4437      break;
4438
4439    case RELOAD_FOR_INPUT:
4440      used_in_set = &reload_reg_used_in_input[opnum];
4441      break;
4442
4443    case RELOAD_FOR_OUTPUT:
4444      used_in_set = &reload_reg_used_in_output[opnum];
4445      break;
4446
4447    case RELOAD_FOR_INSN:
4448      used_in_set = &reload_reg_used_in_insn;
4449      break;
4450    default:
4451      gcc_unreachable ();
4452    }
4453  /* We resolve conflicts with remaining reloads of the same type by
4454     excluding the intervals of reload registers by them from the
4455     interval of freed reload registers.  Since we only keep track of
4456     one set of interval bounds, we might have to exclude somewhat
4457     more than what would be necessary if we used a HARD_REG_SET here.
4458     But this should only happen very infrequently, so there should
4459     be no reason to worry about it.  */
4460
4461  start_regno = regno;
4462  end_regno = regno + nregs;
4463  if (check_opnum || check_any)
4464    {
4465      for (i = n_reloads - 1; i >= 0; i--)
4466	{
4467	  if (rld[i].when_needed == type
4468	      && (check_any || rld[i].opnum == opnum)
4469	      && rld[i].reg_rtx)
4470	    {
4471	      unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4472	      unsigned int conflict_end
4473		= (conflict_start
4474		   + hard_regno_nregs[conflict_start][rld[i].mode]);
4475
4476	      /* If there is an overlap with the first to-be-freed register,
4477		 adjust the interval start.  */
4478	      if (conflict_start <= start_regno && conflict_end > start_regno)
4479		start_regno = conflict_end;
4480	      /* Otherwise, if there is a conflict with one of the other
4481		 to-be-freed registers, adjust the interval end.  */
4482	      if (conflict_start > start_regno && conflict_start < end_regno)
4483		end_regno = conflict_start;
4484	    }
4485	}
4486    }
4487
4488  for (r = start_regno; r < end_regno; r++)
4489    CLEAR_HARD_REG_BIT (*used_in_set, r);
4490}
4491
4492/* 1 if reg REGNO is free as a reload reg for a reload of the sort
4493   specified by OPNUM and TYPE.  */
4494
4495static int
4496reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4497{
4498  int i;
4499
4500  /* In use for a RELOAD_OTHER means it's not available for anything.  */
4501  if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4502      || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4503    return 0;
4504
4505  switch (type)
4506    {
4507    case RELOAD_OTHER:
4508      /* In use for anything means we can't use it for RELOAD_OTHER.  */
4509      if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4510	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4511	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4512	  || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4513	return 0;
4514
4515      for (i = 0; i < reload_n_operands; i++)
4516	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4517	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4518	    || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4519	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4520	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4521	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4522	  return 0;
4523
4524      return 1;
4525
4526    case RELOAD_FOR_INPUT:
4527      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4528	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4529	return 0;
4530
4531      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4532	return 0;
4533
4534      /* If it is used for some other input, can't use it.  */
4535      for (i = 0; i < reload_n_operands; i++)
4536	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4537	  return 0;
4538
4539      /* If it is used in a later operand's address, can't use it.  */
4540      for (i = opnum + 1; i < reload_n_operands; i++)
4541	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4542	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4543	  return 0;
4544
4545      return 1;
4546
4547    case RELOAD_FOR_INPUT_ADDRESS:
4548      /* Can't use a register if it is used for an input address for this
4549	 operand or used as an input in an earlier one.  */
4550      if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4551	  || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4552	return 0;
4553
4554      for (i = 0; i < opnum; i++)
4555	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4556	  return 0;
4557
4558      return 1;
4559
4560    case RELOAD_FOR_INPADDR_ADDRESS:
4561      /* Can't use a register if it is used for an input address
4562	 for this operand or used as an input in an earlier
4563	 one.  */
4564      if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4565	return 0;
4566
4567      for (i = 0; i < opnum; i++)
4568	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4569	  return 0;
4570
4571      return 1;
4572
4573    case RELOAD_FOR_OUTPUT_ADDRESS:
4574      /* Can't use a register if it is used for an output address for this
4575	 operand or used as an output in this or a later operand.  Note
4576	 that multiple output operands are emitted in reverse order, so
4577	 the conflicting ones are those with lower indices.  */
4578      if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4579	return 0;
4580
4581      for (i = 0; i <= opnum; i++)
4582	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4583	  return 0;
4584
4585      return 1;
4586
4587    case RELOAD_FOR_OUTADDR_ADDRESS:
4588      /* Can't use a register if it is used for an output address
4589	 for this operand or used as an output in this or a
4590	 later operand.  Note that multiple output operands are
4591	 emitted in reverse order, so the conflicting ones are
4592	 those with lower indices.  */
4593      if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4594	return 0;
4595
4596      for (i = 0; i <= opnum; i++)
4597	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4598	  return 0;
4599
4600      return 1;
4601
4602    case RELOAD_FOR_OPERAND_ADDRESS:
4603      for (i = 0; i < reload_n_operands; i++)
4604	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4605	  return 0;
4606
4607      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4608	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4609
4610    case RELOAD_FOR_OPADDR_ADDR:
4611      for (i = 0; i < reload_n_operands; i++)
4612	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4613	  return 0;
4614
4615      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4616
4617    case RELOAD_FOR_OUTPUT:
4618      /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4619	 outputs, or an operand address for this or an earlier output.
4620	 Note that multiple output operands are emitted in reverse order,
4621	 so the conflicting ones are those with higher indices.  */
4622      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4623	return 0;
4624
4625      for (i = 0; i < reload_n_operands; i++)
4626	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4627	  return 0;
4628
4629      for (i = opnum; i < reload_n_operands; i++)
4630	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4631	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4632	  return 0;
4633
4634      return 1;
4635
4636    case RELOAD_FOR_INSN:
4637      for (i = 0; i < reload_n_operands; i++)
4638	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4639	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4640	  return 0;
4641
4642      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4643	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4644
4645    case RELOAD_FOR_OTHER_ADDRESS:
4646      return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4647
4648    default:
4649      gcc_unreachable ();
4650    }
4651}
4652
4653/* Return 1 if the value in reload reg REGNO, as used by a reload
4654   needed for the part of the insn specified by OPNUM and TYPE,
4655   is still available in REGNO at the end of the insn.
4656
4657   We can assume that the reload reg was already tested for availability
4658   at the time it is needed, and we should not check this again,
4659   in case the reg has already been marked in use.  */
4660
4661static int
4662reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4663{
4664  int i;
4665
4666  switch (type)
4667    {
4668    case RELOAD_OTHER:
4669      /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4670	 its value must reach the end.  */
4671      return 1;
4672
4673      /* If this use is for part of the insn,
4674	 its value reaches if no subsequent part uses the same register.
4675	 Just like the above function, don't try to do this with lots
4676	 of fallthroughs.  */
4677
4678    case RELOAD_FOR_OTHER_ADDRESS:
4679      /* Here we check for everything else, since these don't conflict
4680	 with anything else and everything comes later.  */
4681
4682      for (i = 0; i < reload_n_operands; i++)
4683	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4684	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4685	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4686	    || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4687	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4688	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4689	  return 0;
4690
4691      return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4692	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4693	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4694	      && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4695
4696    case RELOAD_FOR_INPUT_ADDRESS:
4697    case RELOAD_FOR_INPADDR_ADDRESS:
4698      /* Similar, except that we check only for this and subsequent inputs
4699	 and the address of only subsequent inputs and we do not need
4700	 to check for RELOAD_OTHER objects since they are known not to
4701	 conflict.  */
4702
4703      for (i = opnum; i < reload_n_operands; i++)
4704	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4705	  return 0;
4706
4707      for (i = opnum + 1; i < reload_n_operands; i++)
4708	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4709	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4710	  return 0;
4711
4712      for (i = 0; i < reload_n_operands; i++)
4713	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4714	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4715	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4716	  return 0;
4717
4718      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4719	return 0;
4720
4721      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4722	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4723	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4724
4725    case RELOAD_FOR_INPUT:
4726      /* Similar to input address, except we start at the next operand for
4727	 both input and input address and we do not check for
4728	 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4729	 would conflict.  */
4730
4731      for (i = opnum + 1; i < reload_n_operands; i++)
4732	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4733	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4734	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4735	  return 0;
4736
4737      /* ... fall through ...  */
4738
4739    case RELOAD_FOR_OPERAND_ADDRESS:
4740      /* Check outputs and their addresses.  */
4741
4742      for (i = 0; i < reload_n_operands; i++)
4743	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4744	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4745	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4746	  return 0;
4747
4748      return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4749
4750    case RELOAD_FOR_OPADDR_ADDR:
4751      for (i = 0; i < reload_n_operands; i++)
4752	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4753	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4754	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4755	  return 0;
4756
4757      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4758	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4759	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4760
4761    case RELOAD_FOR_INSN:
4762      /* These conflict with other outputs with RELOAD_OTHER.  So
4763	 we need only check for output addresses.  */
4764
4765      opnum = reload_n_operands;
4766
4767      /* ... fall through ...  */
4768
4769    case RELOAD_FOR_OUTPUT:
4770    case RELOAD_FOR_OUTPUT_ADDRESS:
4771    case RELOAD_FOR_OUTADDR_ADDRESS:
4772      /* We already know these can't conflict with a later output.  So the
4773	 only thing to check are later output addresses.
4774	 Note that multiple output operands are emitted in reverse order,
4775	 so the conflicting ones are those with lower indices.  */
4776      for (i = 0; i < opnum; i++)
4777	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4778	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4779	  return 0;
4780
4781      return 1;
4782
4783    default:
4784      gcc_unreachable ();
4785    }
4786}
4787
4788/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4789   Return 0 otherwise.
4790
4791   This function uses the same algorithm as reload_reg_free_p above.  */
4792
4793static int
4794reloads_conflict (int r1, int r2)
4795{
4796  enum reload_type r1_type = rld[r1].when_needed;
4797  enum reload_type r2_type = rld[r2].when_needed;
4798  int r1_opnum = rld[r1].opnum;
4799  int r2_opnum = rld[r2].opnum;
4800
4801  /* RELOAD_OTHER conflicts with everything.  */
4802  if (r2_type == RELOAD_OTHER)
4803    return 1;
4804
4805  /* Otherwise, check conflicts differently for each type.  */
4806
4807  switch (r1_type)
4808    {
4809    case RELOAD_FOR_INPUT:
4810      return (r2_type == RELOAD_FOR_INSN
4811	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4812	      || r2_type == RELOAD_FOR_OPADDR_ADDR
4813	      || r2_type == RELOAD_FOR_INPUT
4814	      || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4815		   || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4816		  && r2_opnum > r1_opnum));
4817
4818    case RELOAD_FOR_INPUT_ADDRESS:
4819      return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4820	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4821
4822    case RELOAD_FOR_INPADDR_ADDRESS:
4823      return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4824	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4825
4826    case RELOAD_FOR_OUTPUT_ADDRESS:
4827      return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4828	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4829
4830    case RELOAD_FOR_OUTADDR_ADDRESS:
4831      return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4832	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4833
4834    case RELOAD_FOR_OPERAND_ADDRESS:
4835      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4836	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4837
4838    case RELOAD_FOR_OPADDR_ADDR:
4839      return (r2_type == RELOAD_FOR_INPUT
4840	      || r2_type == RELOAD_FOR_OPADDR_ADDR);
4841
4842    case RELOAD_FOR_OUTPUT:
4843      return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4844	      || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4845		   || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4846		  && r2_opnum >= r1_opnum));
4847
4848    case RELOAD_FOR_INSN:
4849      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4850	      || r2_type == RELOAD_FOR_INSN
4851	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4852
4853    case RELOAD_FOR_OTHER_ADDRESS:
4854      return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4855
4856    case RELOAD_OTHER:
4857      return 1;
4858
4859    default:
4860      gcc_unreachable ();
4861    }
4862}
4863
4864/* Indexed by reload number, 1 if incoming value
4865   inherited from previous insns.  */
4866static char reload_inherited[MAX_RELOADS];
4867
4868/* For an inherited reload, this is the insn the reload was inherited from,
4869   if we know it.  Otherwise, this is 0.  */
4870static rtx reload_inheritance_insn[MAX_RELOADS];
4871
4872/* If nonzero, this is a place to get the value of the reload,
4873   rather than using reload_in.  */
4874static rtx reload_override_in[MAX_RELOADS];
4875
4876/* For each reload, the hard register number of the register used,
4877   or -1 if we did not need a register for this reload.  */
4878static int reload_spill_index[MAX_RELOADS];
4879
4880/* Subroutine of free_for_value_p, used to check a single register.
4881   START_REGNO is the starting regno of the full reload register
4882   (possibly comprising multiple hard registers) that we are considering.  */
4883
4884static int
4885reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4886			     enum reload_type type, rtx value, rtx out,
4887			     int reloadnum, int ignore_address_reloads)
4888{
4889  int time1;
4890  /* Set if we see an input reload that must not share its reload register
4891     with any new earlyclobber, but might otherwise share the reload
4892     register with an output or input-output reload.  */
4893  int check_earlyclobber = 0;
4894  int i;
4895  int copy = 0;
4896
4897  if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4898    return 0;
4899
4900  if (out == const0_rtx)
4901    {
4902      copy = 1;
4903      out = NULL_RTX;
4904    }
4905
4906  /* We use some pseudo 'time' value to check if the lifetimes of the
4907     new register use would overlap with the one of a previous reload
4908     that is not read-only or uses a different value.
4909     The 'time' used doesn't have to be linear in any shape or form, just
4910     monotonic.
4911     Some reload types use different 'buckets' for each operand.
4912     So there are MAX_RECOG_OPERANDS different time values for each
4913     such reload type.
4914     We compute TIME1 as the time when the register for the prospective
4915     new reload ceases to be live, and TIME2 for each existing
4916     reload as the time when that the reload register of that reload
4917     becomes live.
4918     Where there is little to be gained by exact lifetime calculations,
4919     we just make conservative assumptions, i.e. a longer lifetime;
4920     this is done in the 'default:' cases.  */
4921  switch (type)
4922    {
4923    case RELOAD_FOR_OTHER_ADDRESS:
4924      /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads.  */
4925      time1 = copy ? 0 : 1;
4926      break;
4927    case RELOAD_OTHER:
4928      time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4929      break;
4930      /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4931	 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
4932	 respectively, to the time values for these, we get distinct time
4933	 values.  To get distinct time values for each operand, we have to
4934	 multiply opnum by at least three.  We round that up to four because
4935	 multiply by four is often cheaper.  */
4936    case RELOAD_FOR_INPADDR_ADDRESS:
4937      time1 = opnum * 4 + 2;
4938      break;
4939    case RELOAD_FOR_INPUT_ADDRESS:
4940      time1 = opnum * 4 + 3;
4941      break;
4942    case RELOAD_FOR_INPUT:
4943      /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4944	 executes (inclusive).  */
4945      time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4946      break;
4947    case RELOAD_FOR_OPADDR_ADDR:
4948      /* opnum * 4 + 4
4949	 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4950      time1 = MAX_RECOG_OPERANDS * 4 + 1;
4951      break;
4952    case RELOAD_FOR_OPERAND_ADDRESS:
4953      /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4954	 is executed.  */
4955      time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4956      break;
4957    case RELOAD_FOR_OUTADDR_ADDRESS:
4958      time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4959      break;
4960    case RELOAD_FOR_OUTPUT_ADDRESS:
4961      time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4962      break;
4963    default:
4964      time1 = MAX_RECOG_OPERANDS * 5 + 5;
4965    }
4966
4967  for (i = 0; i < n_reloads; i++)
4968    {
4969      rtx reg = rld[i].reg_rtx;
4970      if (reg && REG_P (reg)
4971	  && ((unsigned) regno - true_regnum (reg)
4972	      <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4973	  && i != reloadnum)
4974	{
4975	  rtx other_input = rld[i].in;
4976
4977	  /* If the other reload loads the same input value, that
4978	     will not cause a conflict only if it's loading it into
4979	     the same register.  */
4980	  if (true_regnum (reg) != start_regno)
4981	    other_input = NULL_RTX;
4982	  if (! other_input || ! rtx_equal_p (other_input, value)
4983	      || rld[i].out || out)
4984	    {
4985	      int time2;
4986	      switch (rld[i].when_needed)
4987		{
4988		case RELOAD_FOR_OTHER_ADDRESS:
4989		  time2 = 0;
4990		  break;
4991		case RELOAD_FOR_INPADDR_ADDRESS:
4992		  /* find_reloads makes sure that a
4993		     RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4994		     by at most one - the first -
4995		     RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS .  If the
4996		     address reload is inherited, the address address reload
4997		     goes away, so we can ignore this conflict.  */
4998		  if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4999		      && ignore_address_reloads
5000		      /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5001			 Then the address address is still needed to store
5002			 back the new address.  */
5003		      && ! rld[reloadnum].out)
5004		    continue;
5005		  /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5006		     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5007		     reloads go away.  */
5008		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5009		      && ignore_address_reloads
5010		      /* Unless we are reloading an auto_inc expression.  */
5011		      && ! rld[reloadnum].out)
5012		    continue;
5013		  time2 = rld[i].opnum * 4 + 2;
5014		  break;
5015		case RELOAD_FOR_INPUT_ADDRESS:
5016		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5017		      && ignore_address_reloads
5018		      && ! rld[reloadnum].out)
5019		    continue;
5020		  time2 = rld[i].opnum * 4 + 3;
5021		  break;
5022		case RELOAD_FOR_INPUT:
5023		  time2 = rld[i].opnum * 4 + 4;
5024		  check_earlyclobber = 1;
5025		  break;
5026		  /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5027		     == MAX_RECOG_OPERAND * 4  */
5028		case RELOAD_FOR_OPADDR_ADDR:
5029		  if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5030		      && ignore_address_reloads
5031		      && ! rld[reloadnum].out)
5032		    continue;
5033		  time2 = MAX_RECOG_OPERANDS * 4 + 1;
5034		  break;
5035		case RELOAD_FOR_OPERAND_ADDRESS:
5036		  time2 = MAX_RECOG_OPERANDS * 4 + 2;
5037		  check_earlyclobber = 1;
5038		  break;
5039		case RELOAD_FOR_INSN:
5040		  time2 = MAX_RECOG_OPERANDS * 4 + 3;
5041		  break;
5042		case RELOAD_FOR_OUTPUT:
5043		  /* All RELOAD_FOR_OUTPUT reloads become live just after the
5044		     instruction is executed.  */
5045		  time2 = MAX_RECOG_OPERANDS * 4 + 4;
5046		  break;
5047		  /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5048		     the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5049		     value.  */
5050		case RELOAD_FOR_OUTADDR_ADDRESS:
5051		  if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5052		      && ignore_address_reloads
5053		      && ! rld[reloadnum].out)
5054		    continue;
5055		  time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5056		  break;
5057		case RELOAD_FOR_OUTPUT_ADDRESS:
5058		  time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5059		  break;
5060		case RELOAD_OTHER:
5061		  /* If there is no conflict in the input part, handle this
5062		     like an output reload.  */
5063		  if (! rld[i].in || rtx_equal_p (other_input, value))
5064		    {
5065		      time2 = MAX_RECOG_OPERANDS * 4 + 4;
5066		      /* Earlyclobbered outputs must conflict with inputs.  */
5067		      if (earlyclobber_operand_p (rld[i].out))
5068			time2 = MAX_RECOG_OPERANDS * 4 + 3;
5069
5070		      break;
5071		    }
5072		  time2 = 1;
5073		  /* RELOAD_OTHER might be live beyond instruction execution,
5074		     but this is not obvious when we set time2 = 1.  So check
5075		     here if there might be a problem with the new reload
5076		     clobbering the register used by the RELOAD_OTHER.  */
5077		  if (out)
5078		    return 0;
5079		  break;
5080		default:
5081		  return 0;
5082		}
5083	      if ((time1 >= time2
5084		   && (! rld[i].in || rld[i].out
5085		       || ! rtx_equal_p (other_input, value)))
5086		  || (out && rld[reloadnum].out_reg
5087		      && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5088		return 0;
5089	    }
5090	}
5091    }
5092
5093  /* Earlyclobbered outputs must conflict with inputs.  */
5094  if (check_earlyclobber && out && earlyclobber_operand_p (out))
5095    return 0;
5096
5097  return 1;
5098}
5099
5100/* Return 1 if the value in reload reg REGNO, as used by a reload
5101   needed for the part of the insn specified by OPNUM and TYPE,
5102   may be used to load VALUE into it.
5103
5104   MODE is the mode in which the register is used, this is needed to
5105   determine how many hard regs to test.
5106
5107   Other read-only reloads with the same value do not conflict
5108   unless OUT is nonzero and these other reloads have to live while
5109   output reloads live.
5110   If OUT is CONST0_RTX, this is a special case: it means that the
5111   test should not be for using register REGNO as reload register, but
5112   for copying from register REGNO into the reload register.
5113
5114   RELOADNUM is the number of the reload we want to load this value for;
5115   a reload does not conflict with itself.
5116
5117   When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5118   reloads that load an address for the very reload we are considering.
5119
5120   The caller has to make sure that there is no conflict with the return
5121   register.  */
5122
5123static int
5124free_for_value_p (int regno, enum machine_mode mode, int opnum,
5125		  enum reload_type type, rtx value, rtx out, int reloadnum,
5126		  int ignore_address_reloads)
5127{
5128  int nregs = hard_regno_nregs[regno][mode];
5129  while (nregs-- > 0)
5130    if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5131				       value, out, reloadnum,
5132				       ignore_address_reloads))
5133      return 0;
5134  return 1;
5135}
5136
5137/* Return nonzero if the rtx X is invariant over the current function.  */
5138/* ??? Actually, the places where we use this expect exactly what is
5139   tested here, and not everything that is function invariant.  In
5140   particular, the frame pointer and arg pointer are special cased;
5141   pic_offset_table_rtx is not, and we must not spill these things to
5142   memory.  */
5143
5144int
5145function_invariant_p (rtx x)
5146{
5147  if (CONSTANT_P (x))
5148    return 1;
5149  if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5150    return 1;
5151  if (GET_CODE (x) == PLUS
5152      && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5153      && CONSTANT_P (XEXP (x, 1)))
5154    return 1;
5155  return 0;
5156}
5157
5158/* Determine whether the reload reg X overlaps any rtx'es used for
5159   overriding inheritance.  Return nonzero if so.  */
5160
5161static int
5162conflicts_with_override (rtx x)
5163{
5164  int i;
5165  for (i = 0; i < n_reloads; i++)
5166    if (reload_override_in[i]
5167	&& reg_overlap_mentioned_p (x, reload_override_in[i]))
5168      return 1;
5169  return 0;
5170}
5171
5172/* Give an error message saying we failed to find a reload for INSN,
5173   and clear out reload R.  */
5174static void
5175failed_reload (rtx insn, int r)
5176{
5177  if (asm_noperands (PATTERN (insn)) < 0)
5178    /* It's the compiler's fault.  */
5179    fatal_insn ("could not find a spill register", insn);
5180
5181  /* It's the user's fault; the operand's mode and constraint
5182     don't match.  Disable this reload so we don't crash in final.  */
5183  error_for_asm (insn,
5184		 "%<asm%> operand constraint incompatible with operand size");
5185  rld[r].in = 0;
5186  rld[r].out = 0;
5187  rld[r].reg_rtx = 0;
5188  rld[r].optional = 1;
5189  rld[r].secondary_p = 1;
5190}
5191
5192/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5193   for reload R.  If it's valid, get an rtx for it.  Return nonzero if
5194   successful.  */
5195static int
5196set_reload_reg (int i, int r)
5197{
5198  int regno;
5199  rtx reg = spill_reg_rtx[i];
5200
5201  if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5202    spill_reg_rtx[i] = reg
5203      = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5204
5205  regno = true_regnum (reg);
5206
5207  /* Detect when the reload reg can't hold the reload mode.
5208     This used to be one `if', but Sequent compiler can't handle that.  */
5209  if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5210    {
5211      enum machine_mode test_mode = VOIDmode;
5212      if (rld[r].in)
5213	test_mode = GET_MODE (rld[r].in);
5214      /* If rld[r].in has VOIDmode, it means we will load it
5215	 in whatever mode the reload reg has: to wit, rld[r].mode.
5216	 We have already tested that for validity.  */
5217      /* Aside from that, we need to test that the expressions
5218	 to reload from or into have modes which are valid for this
5219	 reload register.  Otherwise the reload insns would be invalid.  */
5220      if (! (rld[r].in != 0 && test_mode != VOIDmode
5221	     && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5222	if (! (rld[r].out != 0
5223	       && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5224	  {
5225	    /* The reg is OK.  */
5226	    last_spill_reg = i;
5227
5228	    /* Mark as in use for this insn the reload regs we use
5229	       for this.  */
5230	    mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5231				    rld[r].when_needed, rld[r].mode);
5232
5233	    rld[r].reg_rtx = reg;
5234	    reload_spill_index[r] = spill_regs[i];
5235	    return 1;
5236	  }
5237    }
5238  return 0;
5239}
5240
5241/* Find a spill register to use as a reload register for reload R.
5242   LAST_RELOAD is nonzero if this is the last reload for the insn being
5243   processed.
5244
5245   Set rld[R].reg_rtx to the register allocated.
5246
5247   We return 1 if successful, or 0 if we couldn't find a spill reg and
5248   we didn't change anything.  */
5249
5250static int
5251allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5252		     int last_reload)
5253{
5254  int i, pass, count;
5255
5256  /* If we put this reload ahead, thinking it is a group,
5257     then insist on finding a group.  Otherwise we can grab a
5258     reg that some other reload needs.
5259     (That can happen when we have a 68000 DATA_OR_FP_REG
5260     which is a group of data regs or one fp reg.)
5261     We need not be so restrictive if there are no more reloads
5262     for this insn.
5263
5264     ??? Really it would be nicer to have smarter handling
5265     for that kind of reg class, where a problem like this is normal.
5266     Perhaps those classes should be avoided for reloading
5267     by use of more alternatives.  */
5268
5269  int force_group = rld[r].nregs > 1 && ! last_reload;
5270
5271  /* If we want a single register and haven't yet found one,
5272     take any reg in the right class and not in use.
5273     If we want a consecutive group, here is where we look for it.
5274
5275     We use two passes so we can first look for reload regs to
5276     reuse, which are already in use for other reloads in this insn,
5277     and only then use additional registers.
5278     I think that maximizing reuse is needed to make sure we don't
5279     run out of reload regs.  Suppose we have three reloads, and
5280     reloads A and B can share regs.  These need two regs.
5281     Suppose A and B are given different regs.
5282     That leaves none for C.  */
5283  for (pass = 0; pass < 2; pass++)
5284    {
5285      /* I is the index in spill_regs.
5286	 We advance it round-robin between insns to use all spill regs
5287	 equally, so that inherited reloads have a chance
5288	 of leapfrogging each other.  */
5289
5290      i = last_spill_reg;
5291
5292      for (count = 0; count < n_spills; count++)
5293	{
5294	  int class = (int) rld[r].class;
5295	  int regnum;
5296
5297	  i++;
5298	  if (i >= n_spills)
5299	    i -= n_spills;
5300	  regnum = spill_regs[i];
5301
5302	  if ((reload_reg_free_p (regnum, rld[r].opnum,
5303				  rld[r].when_needed)
5304	       || (rld[r].in
5305		   /* We check reload_reg_used to make sure we
5306		      don't clobber the return register.  */
5307		   && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5308		   && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5309					rld[r].when_needed, rld[r].in,
5310					rld[r].out, r, 1)))
5311	      && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5312	      && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5313	      /* Look first for regs to share, then for unshared.  But
5314		 don't share regs used for inherited reloads; they are
5315		 the ones we want to preserve.  */
5316	      && (pass
5317		  || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5318					 regnum)
5319		      && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5320					      regnum))))
5321	    {
5322	      int nr = hard_regno_nregs[regnum][rld[r].mode];
5323	      /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5324		 (on 68000) got us two FP regs.  If NR is 1,
5325		 we would reject both of them.  */
5326	      if (force_group)
5327		nr = rld[r].nregs;
5328	      /* If we need only one reg, we have already won.  */
5329	      if (nr == 1)
5330		{
5331		  /* But reject a single reg if we demand a group.  */
5332		  if (force_group)
5333		    continue;
5334		  break;
5335		}
5336	      /* Otherwise check that as many consecutive regs as we need
5337		 are available here.  */
5338	      while (nr > 1)
5339		{
5340		  int regno = regnum + nr - 1;
5341		  if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5342			&& spill_reg_order[regno] >= 0
5343			&& reload_reg_free_p (regno, rld[r].opnum,
5344					      rld[r].when_needed)))
5345		    break;
5346		  nr--;
5347		}
5348	      if (nr == 1)
5349		break;
5350	    }
5351	}
5352
5353      /* If we found something on pass 1, omit pass 2.  */
5354      if (count < n_spills)
5355	break;
5356    }
5357
5358  /* We should have found a spill register by now.  */
5359  if (count >= n_spills)
5360    return 0;
5361
5362  /* I is the index in SPILL_REG_RTX of the reload register we are to
5363     allocate.  Get an rtx for it and find its register number.  */
5364
5365  return set_reload_reg (i, r);
5366}
5367
5368/* Initialize all the tables needed to allocate reload registers.
5369   CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5370   is the array we use to restore the reg_rtx field for every reload.  */
5371
5372static void
5373choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5374{
5375  int i;
5376
5377  for (i = 0; i < n_reloads; i++)
5378    rld[i].reg_rtx = save_reload_reg_rtx[i];
5379
5380  memset (reload_inherited, 0, MAX_RELOADS);
5381  memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5382  memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5383
5384  CLEAR_HARD_REG_SET (reload_reg_used);
5385  CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5386  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5387  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5388  CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5389  CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5390
5391  CLEAR_HARD_REG_SET (reg_used_in_insn);
5392  {
5393    HARD_REG_SET tmp;
5394    REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5395    IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5396    REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5397    IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5398    compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5399    compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5400  }
5401
5402  for (i = 0; i < reload_n_operands; i++)
5403    {
5404      CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5405      CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5406      CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5407      CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5408      CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5409      CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5410    }
5411
5412  COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5413
5414  CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5415
5416  for (i = 0; i < n_reloads; i++)
5417    /* If we have already decided to use a certain register,
5418       don't use it in another way.  */
5419    if (rld[i].reg_rtx)
5420      mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5421			      rld[i].when_needed, rld[i].mode);
5422}
5423
5424/* Assign hard reg targets for the pseudo-registers we must reload
5425   into hard regs for this insn.
5426   Also output the instructions to copy them in and out of the hard regs.
5427
5428   For machines with register classes, we are responsible for
5429   finding a reload reg in the proper class.  */
5430
5431static void
5432choose_reload_regs (struct insn_chain *chain)
5433{
5434  rtx insn = chain->insn;
5435  int i, j;
5436  unsigned int max_group_size = 1;
5437  enum reg_class group_class = NO_REGS;
5438  int pass, win, inheritance;
5439
5440  rtx save_reload_reg_rtx[MAX_RELOADS];
5441
5442  /* In order to be certain of getting the registers we need,
5443     we must sort the reloads into order of increasing register class.
5444     Then our grabbing of reload registers will parallel the process
5445     that provided the reload registers.
5446
5447     Also note whether any of the reloads wants a consecutive group of regs.
5448     If so, record the maximum size of the group desired and what
5449     register class contains all the groups needed by this insn.  */
5450
5451  for (j = 0; j < n_reloads; j++)
5452    {
5453      reload_order[j] = j;
5454      if (rld[j].reg_rtx != NULL_RTX)
5455	{
5456	  gcc_assert (REG_P (rld[j].reg_rtx)
5457		      && HARD_REGISTER_P (rld[j].reg_rtx));
5458	  reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5459	}
5460      else
5461	reload_spill_index[j] = -1;
5462
5463      if (rld[j].nregs > 1)
5464	{
5465	  max_group_size = MAX (rld[j].nregs, max_group_size);
5466	  group_class
5467	    = reg_class_superunion[(int) rld[j].class][(int) group_class];
5468	}
5469
5470      save_reload_reg_rtx[j] = rld[j].reg_rtx;
5471    }
5472
5473  if (n_reloads > 1)
5474    qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5475
5476  /* If -O, try first with inheritance, then turning it off.
5477     If not -O, don't do inheritance.
5478     Using inheritance when not optimizing leads to paradoxes
5479     with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5480     because one side of the comparison might be inherited.  */
5481  win = 0;
5482  for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5483    {
5484      choose_reload_regs_init (chain, save_reload_reg_rtx);
5485
5486      /* Process the reloads in order of preference just found.
5487	 Beyond this point, subregs can be found in reload_reg_rtx.
5488
5489	 This used to look for an existing reloaded home for all of the
5490	 reloads, and only then perform any new reloads.  But that could lose
5491	 if the reloads were done out of reg-class order because a later
5492	 reload with a looser constraint might have an old home in a register
5493	 needed by an earlier reload with a tighter constraint.
5494
5495	 To solve this, we make two passes over the reloads, in the order
5496	 described above.  In the first pass we try to inherit a reload
5497	 from a previous insn.  If there is a later reload that needs a
5498	 class that is a proper subset of the class being processed, we must
5499	 also allocate a spill register during the first pass.
5500
5501	 Then make a second pass over the reloads to allocate any reloads
5502	 that haven't been given registers yet.  */
5503
5504      for (j = 0; j < n_reloads; j++)
5505	{
5506	  int r = reload_order[j];
5507	  rtx search_equiv = NULL_RTX;
5508
5509	  /* Ignore reloads that got marked inoperative.  */
5510	  if (rld[r].out == 0 && rld[r].in == 0
5511	      && ! rld[r].secondary_p)
5512	    continue;
5513
5514	  /* If find_reloads chose to use reload_in or reload_out as a reload
5515	     register, we don't need to chose one.  Otherwise, try even if it
5516	     found one since we might save an insn if we find the value lying
5517	     around.
5518	     Try also when reload_in is a pseudo without a hard reg.  */
5519	  if (rld[r].in != 0 && rld[r].reg_rtx != 0
5520	      && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5521		  || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5522		      && !MEM_P (rld[r].in)
5523		      && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5524	    continue;
5525
5526#if 0 /* No longer needed for correct operation.
5527	 It might give better code, or might not; worth an experiment?  */
5528	  /* If this is an optional reload, we can't inherit from earlier insns
5529	     until we are sure that any non-optional reloads have been allocated.
5530	     The following code takes advantage of the fact that optional reloads
5531	     are at the end of reload_order.  */
5532	  if (rld[r].optional != 0)
5533	    for (i = 0; i < j; i++)
5534	      if ((rld[reload_order[i]].out != 0
5535		   || rld[reload_order[i]].in != 0
5536		   || rld[reload_order[i]].secondary_p)
5537		  && ! rld[reload_order[i]].optional
5538		  && rld[reload_order[i]].reg_rtx == 0)
5539		allocate_reload_reg (chain, reload_order[i], 0);
5540#endif
5541
5542	  /* First see if this pseudo is already available as reloaded
5543	     for a previous insn.  We cannot try to inherit for reloads
5544	     that are smaller than the maximum number of registers needed
5545	     for groups unless the register we would allocate cannot be used
5546	     for the groups.
5547
5548	     We could check here to see if this is a secondary reload for
5549	     an object that is already in a register of the desired class.
5550	     This would avoid the need for the secondary reload register.
5551	     But this is complex because we can't easily determine what
5552	     objects might want to be loaded via this reload.  So let a
5553	     register be allocated here.  In `emit_reload_insns' we suppress
5554	     one of the loads in the case described above.  */
5555
5556	  if (inheritance)
5557	    {
5558	      int byte = 0;
5559	      int regno = -1;
5560	      enum machine_mode mode = VOIDmode;
5561
5562	      if (rld[r].in == 0)
5563		;
5564	      else if (REG_P (rld[r].in))
5565		{
5566		  regno = REGNO (rld[r].in);
5567		  mode = GET_MODE (rld[r].in);
5568		}
5569	      else if (REG_P (rld[r].in_reg))
5570		{
5571		  regno = REGNO (rld[r].in_reg);
5572		  mode = GET_MODE (rld[r].in_reg);
5573		}
5574	      else if (GET_CODE (rld[r].in_reg) == SUBREG
5575		       && REG_P (SUBREG_REG (rld[r].in_reg)))
5576		{
5577		  byte = SUBREG_BYTE (rld[r].in_reg);
5578		  regno = REGNO (SUBREG_REG (rld[r].in_reg));
5579		  if (regno < FIRST_PSEUDO_REGISTER)
5580		    regno = subreg_regno (rld[r].in_reg);
5581		  mode = GET_MODE (rld[r].in_reg);
5582		}
5583#ifdef AUTO_INC_DEC
5584	      else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5585		       && REG_P (XEXP (rld[r].in_reg, 0)))
5586		{
5587		  regno = REGNO (XEXP (rld[r].in_reg, 0));
5588		  mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5589		  rld[r].out = rld[r].in;
5590		}
5591#endif
5592#if 0
5593	      /* This won't work, since REGNO can be a pseudo reg number.
5594		 Also, it takes much more hair to keep track of all the things
5595		 that can invalidate an inherited reload of part of a pseudoreg.  */
5596	      else if (GET_CODE (rld[r].in) == SUBREG
5597		       && REG_P (SUBREG_REG (rld[r].in)))
5598		regno = subreg_regno (rld[r].in);
5599#endif
5600
5601	      if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5602		{
5603		  enum reg_class class = rld[r].class, last_class;
5604		  rtx last_reg = reg_last_reload_reg[regno];
5605		  enum machine_mode need_mode;
5606
5607		  i = REGNO (last_reg);
5608		  i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5609		  last_class = REGNO_REG_CLASS (i);
5610
5611		  if (byte == 0)
5612		    need_mode = mode;
5613		  else
5614		    need_mode
5615		      = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5616						+ byte * BITS_PER_UNIT,
5617						GET_MODE_CLASS (mode));
5618
5619		  if ((GET_MODE_SIZE (GET_MODE (last_reg))
5620		       >= GET_MODE_SIZE (need_mode))
5621#ifdef CANNOT_CHANGE_MODE_CLASS
5622		      /* Verify that the register in "i" can be obtained
5623			 from LAST_REG.  */
5624		      && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5625						    GET_MODE (last_reg),
5626						    mode)
5627#endif
5628		      && reg_reloaded_contents[i] == regno
5629		      && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5630		      && HARD_REGNO_MODE_OK (i, rld[r].mode)
5631		      && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5632			  /* Even if we can't use this register as a reload
5633			     register, we might use it for reload_override_in,
5634			     if copying it to the desired class is cheap
5635			     enough.  */
5636			  || ((REGISTER_MOVE_COST (mode, last_class, class)
5637			       < MEMORY_MOVE_COST (mode, class, 1))
5638			      && (secondary_reload_class (1, class, mode,
5639							  last_reg)
5640				  == NO_REGS)
5641#ifdef SECONDARY_MEMORY_NEEDED
5642			      && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5643							    mode)
5644#endif
5645			      ))
5646
5647		      && (rld[r].nregs == max_group_size
5648			  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5649						  i))
5650		      && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5651					   rld[r].when_needed, rld[r].in,
5652					   const0_rtx, r, 1))
5653		    {
5654		      /* If a group is needed, verify that all the subsequent
5655			 registers still have their values intact.  */
5656		      int nr = hard_regno_nregs[i][rld[r].mode];
5657		      int k;
5658
5659		      for (k = 1; k < nr; k++)
5660			if (reg_reloaded_contents[i + k] != regno
5661			    || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5662			  break;
5663
5664		      if (k == nr)
5665			{
5666			  int i1;
5667			  int bad_for_class;
5668
5669			  last_reg = (GET_MODE (last_reg) == mode
5670				      ? last_reg : gen_rtx_REG (mode, i));
5671
5672			  bad_for_class = 0;
5673			  for (k = 0; k < nr; k++)
5674			    bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5675								  i+k);
5676
5677			  /* We found a register that contains the
5678			     value we need.  If this register is the
5679			     same as an `earlyclobber' operand of the
5680			     current insn, just mark it as a place to
5681			     reload from since we can't use it as the
5682			     reload register itself.  */
5683
5684			  for (i1 = 0; i1 < n_earlyclobbers; i1++)
5685			    if (reg_overlap_mentioned_for_reload_p
5686				(reg_last_reload_reg[regno],
5687				 reload_earlyclobbers[i1]))
5688			      break;
5689
5690			  if (i1 != n_earlyclobbers
5691			      || ! (free_for_value_p (i, rld[r].mode,
5692						      rld[r].opnum,
5693						      rld[r].when_needed, rld[r].in,
5694						      rld[r].out, r, 1))
5695			      /* Don't use it if we'd clobber a pseudo reg.  */
5696			      || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5697				  && rld[r].out
5698				  && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5699			      /* Don't clobber the frame pointer.  */
5700			      || (i == HARD_FRAME_POINTER_REGNUM
5701				  && frame_pointer_needed
5702				  && rld[r].out)
5703			      /* Don't really use the inherited spill reg
5704				 if we need it wider than we've got it.  */
5705			      || (GET_MODE_SIZE (rld[r].mode)
5706				  > GET_MODE_SIZE (mode))
5707			      || bad_for_class
5708
5709			      /* If find_reloads chose reload_out as reload
5710				 register, stay with it - that leaves the
5711				 inherited register for subsequent reloads.  */
5712			      || (rld[r].out && rld[r].reg_rtx
5713				  && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5714			    {
5715			      if (! rld[r].optional)
5716				{
5717				  reload_override_in[r] = last_reg;
5718				  reload_inheritance_insn[r]
5719				    = reg_reloaded_insn[i];
5720				}
5721			    }
5722			  else
5723			    {
5724			      int k;
5725			      /* We can use this as a reload reg.  */
5726			      /* Mark the register as in use for this part of
5727				 the insn.  */
5728			      mark_reload_reg_in_use (i,
5729						      rld[r].opnum,
5730						      rld[r].when_needed,
5731						      rld[r].mode);
5732			      rld[r].reg_rtx = last_reg;
5733			      reload_inherited[r] = 1;
5734			      reload_inheritance_insn[r]
5735				= reg_reloaded_insn[i];
5736			      reload_spill_index[r] = i;
5737			      for (k = 0; k < nr; k++)
5738				SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5739						  i + k);
5740			    }
5741			}
5742		    }
5743		}
5744	    }
5745
5746	  /* Here's another way to see if the value is already lying around.  */
5747	  if (inheritance
5748	      && rld[r].in != 0
5749	      && ! reload_inherited[r]
5750	      && rld[r].out == 0
5751	      && (CONSTANT_P (rld[r].in)
5752		  || GET_CODE (rld[r].in) == PLUS
5753		  || REG_P (rld[r].in)
5754		  || MEM_P (rld[r].in))
5755	      && (rld[r].nregs == max_group_size
5756		  || ! reg_classes_intersect_p (rld[r].class, group_class)))
5757	    search_equiv = rld[r].in;
5758	  /* If this is an output reload from a simple move insn, look
5759	     if an equivalence for the input is available.  */
5760	  else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5761	    {
5762	      rtx set = single_set (insn);
5763
5764	      if (set
5765		  && rtx_equal_p (rld[r].out, SET_DEST (set))
5766		  && CONSTANT_P (SET_SRC (set)))
5767		search_equiv = SET_SRC (set);
5768	    }
5769
5770	  if (search_equiv)
5771	    {
5772	      rtx equiv
5773		= find_equiv_reg (search_equiv, insn, rld[r].class,
5774				  -1, NULL, 0, rld[r].mode);
5775	      int regno = 0;
5776
5777	      if (equiv != 0)
5778		{
5779		  if (REG_P (equiv))
5780		    regno = REGNO (equiv);
5781		  else
5782		    {
5783		      /* This must be a SUBREG of a hard register.
5784			 Make a new REG since this might be used in an
5785			 address and not all machines support SUBREGs
5786			 there.  */
5787		      gcc_assert (GET_CODE (equiv) == SUBREG);
5788		      regno = subreg_regno (equiv);
5789		      equiv = gen_rtx_REG (rld[r].mode, regno);
5790		      /* If we choose EQUIV as the reload register, but the
5791			 loop below decides to cancel the inheritance, we'll
5792			 end up reloading EQUIV in rld[r].mode, not the mode
5793			 it had originally.  That isn't safe when EQUIV isn't
5794			 available as a spill register since its value might
5795			 still be live at this point.  */
5796		      for (i = regno; i < regno + (int) rld[r].nregs; i++)
5797			if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5798			  equiv = 0;
5799		    }
5800		}
5801
5802	      /* If we found a spill reg, reject it unless it is free
5803		 and of the desired class.  */
5804	      if (equiv != 0)
5805		{
5806		  int regs_used = 0;
5807		  int bad_for_class = 0;
5808		  int max_regno = regno + rld[r].nregs;
5809
5810		  for (i = regno; i < max_regno; i++)
5811		    {
5812		      regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5813						      i);
5814		      bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5815							   i);
5816		    }
5817
5818		  if ((regs_used
5819		       && ! free_for_value_p (regno, rld[r].mode,
5820					      rld[r].opnum, rld[r].when_needed,
5821					      rld[r].in, rld[r].out, r, 1))
5822		      || bad_for_class)
5823		    equiv = 0;
5824		}
5825
5826	      if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5827		equiv = 0;
5828
5829	      /* We found a register that contains the value we need.
5830		 If this register is the same as an `earlyclobber' operand
5831		 of the current insn, just mark it as a place to reload from
5832		 since we can't use it as the reload register itself.  */
5833
5834	      if (equiv != 0)
5835		for (i = 0; i < n_earlyclobbers; i++)
5836		  if (reg_overlap_mentioned_for_reload_p (equiv,
5837							  reload_earlyclobbers[i]))
5838		    {
5839		      if (! rld[r].optional)
5840			reload_override_in[r] = equiv;
5841		      equiv = 0;
5842		      break;
5843		    }
5844
5845	      /* If the equiv register we have found is explicitly clobbered
5846		 in the current insn, it depends on the reload type if we
5847		 can use it, use it for reload_override_in, or not at all.
5848		 In particular, we then can't use EQUIV for a
5849		 RELOAD_FOR_OUTPUT_ADDRESS reload.  */
5850
5851	      if (equiv != 0)
5852		{
5853		  if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5854		    switch (rld[r].when_needed)
5855		      {
5856		      case RELOAD_FOR_OTHER_ADDRESS:
5857		      case RELOAD_FOR_INPADDR_ADDRESS:
5858		      case RELOAD_FOR_INPUT_ADDRESS:
5859		      case RELOAD_FOR_OPADDR_ADDR:
5860			break;
5861		      case RELOAD_OTHER:
5862		      case RELOAD_FOR_INPUT:
5863		      case RELOAD_FOR_OPERAND_ADDRESS:
5864			if (! rld[r].optional)
5865			  reload_override_in[r] = equiv;
5866			/* Fall through.  */
5867		      default:
5868			equiv = 0;
5869			break;
5870		      }
5871		  else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5872		    switch (rld[r].when_needed)
5873		      {
5874		      case RELOAD_FOR_OTHER_ADDRESS:
5875		      case RELOAD_FOR_INPADDR_ADDRESS:
5876		      case RELOAD_FOR_INPUT_ADDRESS:
5877		      case RELOAD_FOR_OPADDR_ADDR:
5878		      case RELOAD_FOR_OPERAND_ADDRESS:
5879		      case RELOAD_FOR_INPUT:
5880			break;
5881		      case RELOAD_OTHER:
5882			if (! rld[r].optional)
5883			  reload_override_in[r] = equiv;
5884			/* Fall through.  */
5885		      default:
5886			equiv = 0;
5887			break;
5888		      }
5889		}
5890
5891	      /* If we found an equivalent reg, say no code need be generated
5892		 to load it, and use it as our reload reg.  */
5893	      if (equiv != 0
5894		  && (regno != HARD_FRAME_POINTER_REGNUM
5895		      || !frame_pointer_needed))
5896		{
5897		  int nr = hard_regno_nregs[regno][rld[r].mode];
5898		  int k;
5899		  rld[r].reg_rtx = equiv;
5900		  reload_inherited[r] = 1;
5901
5902		  /* If reg_reloaded_valid is not set for this register,
5903		     there might be a stale spill_reg_store lying around.
5904		     We must clear it, since otherwise emit_reload_insns
5905		     might delete the store.  */
5906		  if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5907		    spill_reg_store[regno] = NULL_RTX;
5908		  /* If any of the hard registers in EQUIV are spill
5909		     registers, mark them as in use for this insn.  */
5910		  for (k = 0; k < nr; k++)
5911		    {
5912		      i = spill_reg_order[regno + k];
5913		      if (i >= 0)
5914			{
5915			  mark_reload_reg_in_use (regno, rld[r].opnum,
5916						  rld[r].when_needed,
5917						  rld[r].mode);
5918			  SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5919					    regno + k);
5920			}
5921		    }
5922		}
5923	    }
5924
5925	  /* If we found a register to use already, or if this is an optional
5926	     reload, we are done.  */
5927	  if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5928	    continue;
5929
5930#if 0
5931	  /* No longer needed for correct operation.  Might or might
5932	     not give better code on the average.  Want to experiment?  */
5933
5934	  /* See if there is a later reload that has a class different from our
5935	     class that intersects our class or that requires less register
5936	     than our reload.  If so, we must allocate a register to this
5937	     reload now, since that reload might inherit a previous reload
5938	     and take the only available register in our class.  Don't do this
5939	     for optional reloads since they will force all previous reloads
5940	     to be allocated.  Also don't do this for reloads that have been
5941	     turned off.  */
5942
5943	  for (i = j + 1; i < n_reloads; i++)
5944	    {
5945	      int s = reload_order[i];
5946
5947	      if ((rld[s].in == 0 && rld[s].out == 0
5948		   && ! rld[s].secondary_p)
5949		  || rld[s].optional)
5950		continue;
5951
5952	      if ((rld[s].class != rld[r].class
5953		   && reg_classes_intersect_p (rld[r].class,
5954					       rld[s].class))
5955		  || rld[s].nregs < rld[r].nregs)
5956		break;
5957	    }
5958
5959	  if (i == n_reloads)
5960	    continue;
5961
5962	  allocate_reload_reg (chain, r, j == n_reloads - 1);
5963#endif
5964	}
5965
5966      /* Now allocate reload registers for anything non-optional that
5967	 didn't get one yet.  */
5968      for (j = 0; j < n_reloads; j++)
5969	{
5970	  int r = reload_order[j];
5971
5972	  /* Ignore reloads that got marked inoperative.  */
5973	  if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5974	    continue;
5975
5976	  /* Skip reloads that already have a register allocated or are
5977	     optional.  */
5978	  if (rld[r].reg_rtx != 0 || rld[r].optional)
5979	    continue;
5980
5981	  if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5982	    break;
5983	}
5984
5985      /* If that loop got all the way, we have won.  */
5986      if (j == n_reloads)
5987	{
5988	  win = 1;
5989	  break;
5990	}
5991
5992      /* Loop around and try without any inheritance.  */
5993    }
5994
5995  if (! win)
5996    {
5997      /* First undo everything done by the failed attempt
5998	 to allocate with inheritance.  */
5999      choose_reload_regs_init (chain, save_reload_reg_rtx);
6000
6001      /* Some sanity tests to verify that the reloads found in the first
6002	 pass are identical to the ones we have now.  */
6003      gcc_assert (chain->n_reloads == n_reloads);
6004
6005      for (i = 0; i < n_reloads; i++)
6006	{
6007	  if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6008	    continue;
6009	  gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6010	  for (j = 0; j < n_spills; j++)
6011	    if (spill_regs[j] == chain->rld[i].regno)
6012	      if (! set_reload_reg (j, i))
6013		failed_reload (chain->insn, i);
6014	}
6015    }
6016
6017  /* If we thought we could inherit a reload, because it seemed that
6018     nothing else wanted the same reload register earlier in the insn,
6019     verify that assumption, now that all reloads have been assigned.
6020     Likewise for reloads where reload_override_in has been set.  */
6021
6022  /* If doing expensive optimizations, do one preliminary pass that doesn't
6023     cancel any inheritance, but removes reloads that have been needed only
6024     for reloads that we know can be inherited.  */
6025  for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6026    {
6027      for (j = 0; j < n_reloads; j++)
6028	{
6029	  int r = reload_order[j];
6030	  rtx check_reg;
6031	  if (reload_inherited[r] && rld[r].reg_rtx)
6032	    check_reg = rld[r].reg_rtx;
6033	  else if (reload_override_in[r]
6034		   && (REG_P (reload_override_in[r])
6035		       || GET_CODE (reload_override_in[r]) == SUBREG))
6036	    check_reg = reload_override_in[r];
6037	  else
6038	    continue;
6039	  if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6040				  rld[r].opnum, rld[r].when_needed, rld[r].in,
6041				  (reload_inherited[r]
6042				   ? rld[r].out : const0_rtx),
6043				  r, 1))
6044	    {
6045	      if (pass)
6046		continue;
6047	      reload_inherited[r] = 0;
6048	      reload_override_in[r] = 0;
6049	    }
6050	  /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6051	     reload_override_in, then we do not need its related
6052	     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6053	     likewise for other reload types.
6054	     We handle this by removing a reload when its only replacement
6055	     is mentioned in reload_in of the reload we are going to inherit.
6056	     A special case are auto_inc expressions; even if the input is
6057	     inherited, we still need the address for the output.  We can
6058	     recognize them because they have RELOAD_OUT set to RELOAD_IN.
6059	     If we succeeded removing some reload and we are doing a preliminary
6060	     pass just to remove such reloads, make another pass, since the
6061	     removal of one reload might allow us to inherit another one.  */
6062	  else if (rld[r].in
6063		   && rld[r].out != rld[r].in
6064		   && remove_address_replacements (rld[r].in) && pass)
6065	    pass = 2;
6066	}
6067    }
6068
6069  /* Now that reload_override_in is known valid,
6070     actually override reload_in.  */
6071  for (j = 0; j < n_reloads; j++)
6072    if (reload_override_in[j])
6073      rld[j].in = reload_override_in[j];
6074
6075  /* If this reload won't be done because it has been canceled or is
6076     optional and not inherited, clear reload_reg_rtx so other
6077     routines (such as subst_reloads) don't get confused.  */
6078  for (j = 0; j < n_reloads; j++)
6079    if (rld[j].reg_rtx != 0
6080	&& ((rld[j].optional && ! reload_inherited[j])
6081	    || (rld[j].in == 0 && rld[j].out == 0
6082		&& ! rld[j].secondary_p)))
6083      {
6084	int regno = true_regnum (rld[j].reg_rtx);
6085
6086	if (spill_reg_order[regno] >= 0)
6087	  clear_reload_reg_in_use (regno, rld[j].opnum,
6088				   rld[j].when_needed, rld[j].mode);
6089	rld[j].reg_rtx = 0;
6090	reload_spill_index[j] = -1;
6091      }
6092
6093  /* Record which pseudos and which spill regs have output reloads.  */
6094  for (j = 0; j < n_reloads; j++)
6095    {
6096      int r = reload_order[j];
6097
6098      i = reload_spill_index[r];
6099
6100      /* I is nonneg if this reload uses a register.
6101	 If rld[r].reg_rtx is 0, this is an optional reload
6102	 that we opted to ignore.  */
6103      if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6104	  && rld[r].reg_rtx != 0)
6105	{
6106	  int nregno = REGNO (rld[r].out_reg);
6107	  int nr = 1;
6108
6109	  if (nregno < FIRST_PSEUDO_REGISTER)
6110	    nr = hard_regno_nregs[nregno][rld[r].mode];
6111
6112	  while (--nr >= 0)
6113	    SET_REGNO_REG_SET (&reg_has_output_reload,
6114			       nregno + nr);
6115
6116	  if (i >= 0)
6117	    {
6118	      nr = hard_regno_nregs[i][rld[r].mode];
6119	      while (--nr >= 0)
6120		SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6121	    }
6122
6123	  gcc_assert (rld[r].when_needed == RELOAD_OTHER
6124		      || rld[r].when_needed == RELOAD_FOR_OUTPUT
6125		      || rld[r].when_needed == RELOAD_FOR_INSN);
6126	}
6127    }
6128}
6129
6130/* Deallocate the reload register for reload R.  This is called from
6131   remove_address_replacements.  */
6132
6133void
6134deallocate_reload_reg (int r)
6135{
6136  int regno;
6137
6138  if (! rld[r].reg_rtx)
6139    return;
6140  regno = true_regnum (rld[r].reg_rtx);
6141  rld[r].reg_rtx = 0;
6142  if (spill_reg_order[regno] >= 0)
6143    clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6144			     rld[r].mode);
6145  reload_spill_index[r] = -1;
6146}
6147
6148/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6149   reloads of the same item for fear that we might not have enough reload
6150   registers. However, normally they will get the same reload register
6151   and hence actually need not be loaded twice.
6152
6153   Here we check for the most common case of this phenomenon: when we have
6154   a number of reloads for the same object, each of which were allocated
6155   the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6156   reload, and is not modified in the insn itself.  If we find such,
6157   merge all the reloads and set the resulting reload to RELOAD_OTHER.
6158   This will not increase the number of spill registers needed and will
6159   prevent redundant code.  */
6160
6161static void
6162merge_assigned_reloads (rtx insn)
6163{
6164  int i, j;
6165
6166  /* Scan all the reloads looking for ones that only load values and
6167     are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6168     assigned and not modified by INSN.  */
6169
6170  for (i = 0; i < n_reloads; i++)
6171    {
6172      int conflicting_input = 0;
6173      int max_input_address_opnum = -1;
6174      int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6175
6176      if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6177	  || rld[i].out != 0 || rld[i].reg_rtx == 0
6178	  || reg_set_p (rld[i].reg_rtx, insn))
6179	continue;
6180
6181      /* Look at all other reloads.  Ensure that the only use of this
6182	 reload_reg_rtx is in a reload that just loads the same value
6183	 as we do.  Note that any secondary reloads must be of the identical
6184	 class since the values, modes, and result registers are the
6185	 same, so we need not do anything with any secondary reloads.  */
6186
6187      for (j = 0; j < n_reloads; j++)
6188	{
6189	  if (i == j || rld[j].reg_rtx == 0
6190	      || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6191					    rld[i].reg_rtx))
6192	    continue;
6193
6194	  if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6195	      && rld[j].opnum > max_input_address_opnum)
6196	    max_input_address_opnum = rld[j].opnum;
6197
6198	  /* If the reload regs aren't exactly the same (e.g, different modes)
6199	     or if the values are different, we can't merge this reload.
6200	     But if it is an input reload, we might still merge
6201	     RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads.  */
6202
6203	  if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6204	      || rld[j].out != 0 || rld[j].in == 0
6205	      || ! rtx_equal_p (rld[i].in, rld[j].in))
6206	    {
6207	      if (rld[j].when_needed != RELOAD_FOR_INPUT
6208		  || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6209		       || rld[i].opnum > rld[j].opnum)
6210		      && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6211		break;
6212	      conflicting_input = 1;
6213	      if (min_conflicting_input_opnum > rld[j].opnum)
6214		min_conflicting_input_opnum = rld[j].opnum;
6215	    }
6216	}
6217
6218      /* If all is OK, merge the reloads.  Only set this to RELOAD_OTHER if
6219	 we, in fact, found any matching reloads.  */
6220
6221      if (j == n_reloads
6222	  && max_input_address_opnum <= min_conflicting_input_opnum)
6223	{
6224	  gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6225
6226	  for (j = 0; j < n_reloads; j++)
6227	    if (i != j && rld[j].reg_rtx != 0
6228		&& rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6229		&& (! conflicting_input
6230		    || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6231		    || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6232	      {
6233		rld[i].when_needed = RELOAD_OTHER;
6234		rld[j].in = 0;
6235		reload_spill_index[j] = -1;
6236		transfer_replacements (i, j);
6237	      }
6238
6239	  /* If this is now RELOAD_OTHER, look for any reloads that
6240	     load parts of this operand and set them to
6241	     RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6242	     RELOAD_OTHER for outputs.  Note that this test is
6243	     equivalent to looking for reloads for this operand
6244	     number.
6245
6246	     We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6247	     it may share registers with a RELOAD_FOR_INPUT, so we can
6248	     not change it to RELOAD_FOR_OTHER_ADDRESS.  We should
6249	     never need to, since we do not modify RELOAD_FOR_OUTPUT.
6250
6251	     It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6252	     instruction is assigned the same register as the earlier
6253	     RELOAD_FOR_OTHER_ADDRESS instruction.  Merging these two
6254	     instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6255	     instruction to be deleted later on.  */
6256
6257	  if (rld[i].when_needed == RELOAD_OTHER)
6258	    for (j = 0; j < n_reloads; j++)
6259	      if (rld[j].in != 0
6260		  && rld[j].when_needed != RELOAD_OTHER
6261		  && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6262		  && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6263		  && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6264		  && (! conflicting_input
6265		      || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6266		      || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6267		  && reg_overlap_mentioned_for_reload_p (rld[j].in,
6268							 rld[i].in))
6269		{
6270		  int k;
6271
6272		  rld[j].when_needed
6273		    = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6274			|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6275		       ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6276
6277		  /* Check to see if we accidentally converted two
6278		     reloads that use the same reload register with
6279		     different inputs to the same type.  If so, the
6280		     resulting code won't work.  */
6281		  if (rld[j].reg_rtx)
6282		    for (k = 0; k < j; k++)
6283		      gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6284				  || rld[k].when_needed != rld[j].when_needed
6285				  || !rtx_equal_p (rld[k].reg_rtx,
6286						   rld[j].reg_rtx)
6287				  || rtx_equal_p (rld[k].in,
6288						  rld[j].in));
6289		}
6290	}
6291    }
6292}
6293
6294/* These arrays are filled by emit_reload_insns and its subroutines.  */
6295static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6296static rtx other_input_address_reload_insns = 0;
6297static rtx other_input_reload_insns = 0;
6298static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6299static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6300static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6301static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6302static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6303static rtx operand_reload_insns = 0;
6304static rtx other_operand_reload_insns = 0;
6305static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6306
6307/* Values to be put in spill_reg_store are put here first.  */
6308static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6309static HARD_REG_SET reg_reloaded_died;
6310
6311/* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6312   of class NEW_CLASS with mode NEW_MODE.  Or alternatively, if alt_reload_reg
6313   is nonzero, if that is suitable.  On success, change *RELOAD_REG to the
6314   adjusted register, and return true.  Otherwise, return false.  */
6315static bool
6316reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6317			    enum reg_class new_class,
6318			    enum machine_mode new_mode)
6319
6320{
6321  rtx reg;
6322
6323  for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6324    {
6325      unsigned regno = REGNO (reg);
6326
6327      if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6328	continue;
6329      if (GET_MODE (reg) != new_mode)
6330	{
6331	  if (!HARD_REGNO_MODE_OK (regno, new_mode))
6332	    continue;
6333	  if (hard_regno_nregs[regno][new_mode]
6334	      > hard_regno_nregs[regno][GET_MODE (reg)])
6335	    continue;
6336	  reg = reload_adjust_reg_for_mode (reg, new_mode);
6337	}
6338      *reload_reg = reg;
6339      return true;
6340    }
6341  return false;
6342}
6343
6344/* Check if *RELOAD_REG is suitable as a scratch register for the reload
6345   pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6346   nonzero, if that is suitable.  On success, change *RELOAD_REG to the
6347   adjusted register, and return true.  Otherwise, return false.  */
6348static bool
6349reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6350			     enum insn_code icode)
6351
6352{
6353  enum reg_class new_class = scratch_reload_class (icode);
6354  enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6355
6356  return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6357				     new_class, new_mode);
6358}
6359
6360/* Generate insns to perform reload RL, which is for the insn in CHAIN and
6361   has the number J.  OLD contains the value to be used as input.  */
6362
6363static void
6364emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6365			 rtx old, int j)
6366{
6367  rtx insn = chain->insn;
6368  rtx reloadreg = rl->reg_rtx;
6369  rtx oldequiv_reg = 0;
6370  rtx oldequiv = 0;
6371  int special = 0;
6372  enum machine_mode mode;
6373  rtx *where;
6374
6375  /* Determine the mode to reload in.
6376     This is very tricky because we have three to choose from.
6377     There is the mode the insn operand wants (rl->inmode).
6378     There is the mode of the reload register RELOADREG.
6379     There is the intrinsic mode of the operand, which we could find
6380     by stripping some SUBREGs.
6381     It turns out that RELOADREG's mode is irrelevant:
6382     we can change that arbitrarily.
6383
6384     Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6385     then the reload reg may not support QImode moves, so use SImode.
6386     If foo is in memory due to spilling a pseudo reg, this is safe,
6387     because the QImode value is in the least significant part of a
6388     slot big enough for a SImode.  If foo is some other sort of
6389     memory reference, then it is impossible to reload this case,
6390     so previous passes had better make sure this never happens.
6391
6392     Then consider a one-word union which has SImode and one of its
6393     members is a float, being fetched as (SUBREG:SF union:SI).
6394     We must fetch that as SFmode because we could be loading into
6395     a float-only register.  In this case OLD's mode is correct.
6396
6397     Consider an immediate integer: it has VOIDmode.  Here we need
6398     to get a mode from something else.
6399
6400     In some cases, there is a fourth mode, the operand's
6401     containing mode.  If the insn specifies a containing mode for
6402     this operand, it overrides all others.
6403
6404     I am not sure whether the algorithm here is always right,
6405     but it does the right things in those cases.  */
6406
6407  mode = GET_MODE (old);
6408  if (mode == VOIDmode)
6409    mode = rl->inmode;
6410
6411  /* delete_output_reload is only invoked properly if old contains
6412     the original pseudo register.  Since this is replaced with a
6413     hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6414     find the pseudo in RELOAD_IN_REG.  */
6415  if (reload_override_in[j]
6416      && REG_P (rl->in_reg))
6417    {
6418      oldequiv = old;
6419      old = rl->in_reg;
6420    }
6421  if (oldequiv == 0)
6422    oldequiv = old;
6423  else if (REG_P (oldequiv))
6424    oldequiv_reg = oldequiv;
6425  else if (GET_CODE (oldequiv) == SUBREG)
6426    oldequiv_reg = SUBREG_REG (oldequiv);
6427
6428  /* If we are reloading from a register that was recently stored in
6429     with an output-reload, see if we can prove there was
6430     actually no need to store the old value in it.  */
6431
6432  if (optimize && REG_P (oldequiv)
6433      && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6434      && spill_reg_store[REGNO (oldequiv)]
6435      && REG_P (old)
6436      && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6437	  || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6438			  rl->out_reg)))
6439    delete_output_reload (insn, j, REGNO (oldequiv));
6440
6441  /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6442     then load RELOADREG from OLDEQUIV.  Note that we cannot use
6443     gen_lowpart_common since it can do the wrong thing when
6444     RELOADREG has a multi-word mode.  Note that RELOADREG
6445     must always be a REG here.  */
6446
6447  if (GET_MODE (reloadreg) != mode)
6448    reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6449  while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6450    oldequiv = SUBREG_REG (oldequiv);
6451  if (GET_MODE (oldequiv) != VOIDmode
6452      && mode != GET_MODE (oldequiv))
6453    oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6454
6455  /* Switch to the right place to emit the reload insns.  */
6456  switch (rl->when_needed)
6457    {
6458    case RELOAD_OTHER:
6459      where = &other_input_reload_insns;
6460      break;
6461    case RELOAD_FOR_INPUT:
6462      where = &input_reload_insns[rl->opnum];
6463      break;
6464    case RELOAD_FOR_INPUT_ADDRESS:
6465      where = &input_address_reload_insns[rl->opnum];
6466      break;
6467    case RELOAD_FOR_INPADDR_ADDRESS:
6468      where = &inpaddr_address_reload_insns[rl->opnum];
6469      break;
6470    case RELOAD_FOR_OUTPUT_ADDRESS:
6471      where = &output_address_reload_insns[rl->opnum];
6472      break;
6473    case RELOAD_FOR_OUTADDR_ADDRESS:
6474      where = &outaddr_address_reload_insns[rl->opnum];
6475      break;
6476    case RELOAD_FOR_OPERAND_ADDRESS:
6477      where = &operand_reload_insns;
6478      break;
6479    case RELOAD_FOR_OPADDR_ADDR:
6480      where = &other_operand_reload_insns;
6481      break;
6482    case RELOAD_FOR_OTHER_ADDRESS:
6483      where = &other_input_address_reload_insns;
6484      break;
6485    default:
6486      gcc_unreachable ();
6487    }
6488
6489  push_to_sequence (*where);
6490
6491  /* Auto-increment addresses must be reloaded in a special way.  */
6492  if (rl->out && ! rl->out_reg)
6493    {
6494      /* We are not going to bother supporting the case where a
6495	 incremented register can't be copied directly from
6496	 OLDEQUIV since this seems highly unlikely.  */
6497      gcc_assert (rl->secondary_in_reload < 0);
6498
6499      if (reload_inherited[j])
6500	oldequiv = reloadreg;
6501
6502      old = XEXP (rl->in_reg, 0);
6503
6504      if (optimize && REG_P (oldequiv)
6505	  && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6506	  && spill_reg_store[REGNO (oldequiv)]
6507	  && REG_P (old)
6508	  && (dead_or_set_p (insn,
6509			     spill_reg_stored_to[REGNO (oldequiv)])
6510	      || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6511			      old)))
6512	delete_output_reload (insn, j, REGNO (oldequiv));
6513
6514      /* Prevent normal processing of this reload.  */
6515      special = 1;
6516      /* Output a special code sequence for this case.  */
6517      new_spill_reg_store[REGNO (reloadreg)]
6518	= inc_for_reload (reloadreg, oldequiv, rl->out,
6519			  rl->inc);
6520    }
6521
6522  /* If we are reloading a pseudo-register that was set by the previous
6523     insn, see if we can get rid of that pseudo-register entirely
6524     by redirecting the previous insn into our reload register.  */
6525
6526  else if (optimize && REG_P (old)
6527	   && REGNO (old) >= FIRST_PSEUDO_REGISTER
6528	   && dead_or_set_p (insn, old)
6529	   /* This is unsafe if some other reload
6530	      uses the same reg first.  */
6531	   && ! conflicts_with_override (reloadreg)
6532	   && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6533				rl->when_needed, old, rl->out, j, 0))
6534    {
6535      rtx temp = PREV_INSN (insn);
6536      while (temp && NOTE_P (temp))
6537	temp = PREV_INSN (temp);
6538      if (temp
6539	  && NONJUMP_INSN_P (temp)
6540	  && GET_CODE (PATTERN (temp)) == SET
6541	  && SET_DEST (PATTERN (temp)) == old
6542	  /* Make sure we can access insn_operand_constraint.  */
6543	  && asm_noperands (PATTERN (temp)) < 0
6544	  /* This is unsafe if operand occurs more than once in current
6545	     insn.  Perhaps some occurrences aren't reloaded.  */
6546	  && count_occurrences (PATTERN (insn), old, 0) == 1)
6547	{
6548	  rtx old = SET_DEST (PATTERN (temp));
6549	  /* Store into the reload register instead of the pseudo.  */
6550	  SET_DEST (PATTERN (temp)) = reloadreg;
6551
6552	  /* Verify that resulting insn is valid.  */
6553	  extract_insn (temp);
6554	  if (constrain_operands (1))
6555	    {
6556	      /* If the previous insn is an output reload, the source is
6557		 a reload register, and its spill_reg_store entry will
6558		 contain the previous destination.  This is now
6559		 invalid.  */
6560	      if (REG_P (SET_SRC (PATTERN (temp)))
6561		  && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6562		{
6563		  spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6564		  spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6565		}
6566
6567	      /* If these are the only uses of the pseudo reg,
6568		 pretend for GDB it lives in the reload reg we used.  */
6569	      if (REG_N_DEATHS (REGNO (old)) == 1
6570		  && REG_N_SETS (REGNO (old)) == 1)
6571		{
6572		  reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6573		  alter_reg (REGNO (old), -1);
6574		}
6575	      special = 1;
6576	    }
6577	  else
6578	    {
6579	      SET_DEST (PATTERN (temp)) = old;
6580	    }
6581	}
6582    }
6583
6584  /* We can't do that, so output an insn to load RELOADREG.  */
6585
6586  /* If we have a secondary reload, pick up the secondary register
6587     and icode, if any.  If OLDEQUIV and OLD are different or
6588     if this is an in-out reload, recompute whether or not we
6589     still need a secondary register and what the icode should
6590     be.  If we still need a secondary register and the class or
6591     icode is different, go back to reloading from OLD if using
6592     OLDEQUIV means that we got the wrong type of register.  We
6593     cannot have different class or icode due to an in-out reload
6594     because we don't make such reloads when both the input and
6595     output need secondary reload registers.  */
6596
6597  if (! special && rl->secondary_in_reload >= 0)
6598    {
6599      rtx second_reload_reg = 0;
6600      rtx third_reload_reg = 0;
6601      int secondary_reload = rl->secondary_in_reload;
6602      rtx real_oldequiv = oldequiv;
6603      rtx real_old = old;
6604      rtx tmp;
6605      enum insn_code icode;
6606      enum insn_code tertiary_icode = CODE_FOR_nothing;
6607
6608      /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6609	 and similarly for OLD.
6610	 See comments in get_secondary_reload in reload.c.  */
6611      /* If it is a pseudo that cannot be replaced with its
6612	 equivalent MEM, we must fall back to reload_in, which
6613	 will have all the necessary substitutions registered.
6614	 Likewise for a pseudo that can't be replaced with its
6615	 equivalent constant.
6616
6617	 Take extra care for subregs of such pseudos.  Note that
6618	 we cannot use reg_equiv_mem in this case because it is
6619	 not in the right mode.  */
6620
6621      tmp = oldequiv;
6622      if (GET_CODE (tmp) == SUBREG)
6623	tmp = SUBREG_REG (tmp);
6624      if (REG_P (tmp)
6625	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6626	  && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6627	      || reg_equiv_constant[REGNO (tmp)] != 0))
6628	{
6629	  if (! reg_equiv_mem[REGNO (tmp)]
6630	      || num_not_at_initial_offset
6631	      || GET_CODE (oldequiv) == SUBREG)
6632	    real_oldequiv = rl->in;
6633	  else
6634	    real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6635	}
6636
6637      tmp = old;
6638      if (GET_CODE (tmp) == SUBREG)
6639	tmp = SUBREG_REG (tmp);
6640      if (REG_P (tmp)
6641	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6642	  && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6643	      || reg_equiv_constant[REGNO (tmp)] != 0))
6644	{
6645	  if (! reg_equiv_mem[REGNO (tmp)]
6646	      || num_not_at_initial_offset
6647	      || GET_CODE (old) == SUBREG)
6648	    real_old = rl->in;
6649	  else
6650	    real_old = reg_equiv_mem[REGNO (tmp)];
6651	}
6652
6653      second_reload_reg = rld[secondary_reload].reg_rtx;
6654      if (rld[secondary_reload].secondary_in_reload >= 0)
6655	{
6656	  int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6657
6658	  third_reload_reg = rld[tertiary_reload].reg_rtx;
6659	  tertiary_icode = rld[secondary_reload].secondary_in_icode;
6660	  /* We'd have to add more code for quartary reloads.  */
6661	  gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6662	}
6663      icode = rl->secondary_in_icode;
6664
6665      if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6666	  || (rl->in != 0 && rl->out != 0))
6667	{
6668	  secondary_reload_info sri, sri2;
6669	  enum reg_class new_class, new_t_class;
6670
6671	  sri.icode = CODE_FOR_nothing;
6672	  sri.prev_sri = NULL;
6673	  new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6674						mode, &sri);
6675
6676	  if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6677	    second_reload_reg = 0;
6678	  else if (new_class == NO_REGS)
6679	    {
6680	      if (reload_adjust_reg_for_icode (&second_reload_reg,
6681					       third_reload_reg, sri.icode))
6682		icode = sri.icode, third_reload_reg = 0;
6683	      else
6684		oldequiv = old, real_oldequiv = real_old;
6685	    }
6686	  else if (sri.icode != CODE_FOR_nothing)
6687	    /* We currently lack a way to express this in reloads.  */
6688	    gcc_unreachable ();
6689	  else
6690	    {
6691	      sri2.icode = CODE_FOR_nothing;
6692	      sri2.prev_sri = &sri;
6693	      new_t_class = targetm.secondary_reload (1, real_oldequiv,
6694						      new_class, mode, &sri);
6695	      if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6696		{
6697		  if (reload_adjust_reg_for_temp (&second_reload_reg,
6698						  third_reload_reg,
6699						  new_class, mode))
6700		    third_reload_reg = 0, tertiary_icode = sri2.icode;
6701		  else
6702		    oldequiv = old, real_oldequiv = real_old;
6703		}
6704	      else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6705		{
6706		  rtx intermediate = second_reload_reg;
6707
6708		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
6709						  new_class, mode)
6710		      && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6711						      sri2.icode))
6712		    {
6713		      second_reload_reg = intermediate;
6714		      tertiary_icode = sri2.icode;
6715		    }
6716		  else
6717		    oldequiv = old, real_oldequiv = real_old;
6718		}
6719	      else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6720		{
6721		  rtx intermediate = second_reload_reg;
6722
6723		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
6724						  new_class, mode)
6725		      && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6726						      new_t_class, mode))
6727		    {
6728		      second_reload_reg = intermediate;
6729		      tertiary_icode = sri2.icode;
6730		    }
6731		  else
6732		    oldequiv = old, real_oldequiv = real_old;
6733		}
6734	      else
6735		/* This could be handled more intelligently too.  */
6736		oldequiv = old, real_oldequiv = real_old;
6737	    }
6738	}
6739
6740      /* If we still need a secondary reload register, check
6741	 to see if it is being used as a scratch or intermediate
6742	 register and generate code appropriately.  If we need
6743	 a scratch register, use REAL_OLDEQUIV since the form of
6744	 the insn may depend on the actual address if it is
6745	 a MEM.  */
6746
6747      if (second_reload_reg)
6748	{
6749	  if (icode != CODE_FOR_nothing)
6750	    {
6751	      /* We'd have to add extra code to handle this case.  */
6752	      gcc_assert (!third_reload_reg);
6753
6754	      emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6755					  second_reload_reg));
6756	      special = 1;
6757	    }
6758	  else
6759	    {
6760	      /* See if we need a scratch register to load the
6761		 intermediate register (a tertiary reload).  */
6762	      if (tertiary_icode != CODE_FOR_nothing)
6763		{
6764		  emit_insn ((GEN_FCN (tertiary_icode)
6765			      (second_reload_reg, real_oldequiv,
6766			       third_reload_reg)));
6767		}
6768	      else if (third_reload_reg)
6769		{
6770		  gen_reload (third_reload_reg, real_oldequiv,
6771			      rl->opnum,
6772			      rl->when_needed);
6773		  gen_reload (second_reload_reg, third_reload_reg,
6774			      rl->opnum,
6775			      rl->when_needed);
6776		}
6777	      else
6778		gen_reload (second_reload_reg, real_oldequiv,
6779			    rl->opnum,
6780			    rl->when_needed);
6781
6782	      oldequiv = second_reload_reg;
6783	    }
6784	}
6785    }
6786
6787  if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6788    {
6789      rtx real_oldequiv = oldequiv;
6790
6791      if ((REG_P (oldequiv)
6792	   && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6793	   && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6794	       || reg_equiv_constant[REGNO (oldequiv)] != 0))
6795	  || (GET_CODE (oldequiv) == SUBREG
6796	      && REG_P (SUBREG_REG (oldequiv))
6797	      && (REGNO (SUBREG_REG (oldequiv))
6798		  >= FIRST_PSEUDO_REGISTER)
6799	      && ((reg_equiv_memory_loc
6800		   [REGNO (SUBREG_REG (oldequiv))] != 0)
6801		  || (reg_equiv_constant
6802		      [REGNO (SUBREG_REG (oldequiv))] != 0)))
6803	  || (CONSTANT_P (oldequiv)
6804	      && (PREFERRED_RELOAD_CLASS (oldequiv,
6805					  REGNO_REG_CLASS (REGNO (reloadreg)))
6806		  == NO_REGS)))
6807	real_oldequiv = rl->in;
6808      gen_reload (reloadreg, real_oldequiv, rl->opnum,
6809		  rl->when_needed);
6810    }
6811
6812  if (flag_non_call_exceptions)
6813    copy_eh_notes (insn, get_insns ());
6814
6815  /* End this sequence.  */
6816  *where = get_insns ();
6817  end_sequence ();
6818
6819  /* Update reload_override_in so that delete_address_reloads_1
6820     can see the actual register usage.  */
6821  if (oldequiv_reg)
6822    reload_override_in[j] = oldequiv;
6823}
6824
6825/* Generate insns to for the output reload RL, which is for the insn described
6826   by CHAIN and has the number J.  */
6827static void
6828emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6829			  int j)
6830{
6831  rtx reloadreg = rl->reg_rtx;
6832  rtx insn = chain->insn;
6833  int special = 0;
6834  rtx old = rl->out;
6835  enum machine_mode mode = GET_MODE (old);
6836  rtx p;
6837
6838  if (rl->when_needed == RELOAD_OTHER)
6839    start_sequence ();
6840  else
6841    push_to_sequence (output_reload_insns[rl->opnum]);
6842
6843  /* Determine the mode to reload in.
6844     See comments above (for input reloading).  */
6845
6846  if (mode == VOIDmode)
6847    {
6848      /* VOIDmode should never happen for an output.  */
6849      if (asm_noperands (PATTERN (insn)) < 0)
6850	/* It's the compiler's fault.  */
6851	fatal_insn ("VOIDmode on an output", insn);
6852      error_for_asm (insn, "output operand is constant in %<asm%>");
6853      /* Prevent crash--use something we know is valid.  */
6854      mode = word_mode;
6855      old = gen_rtx_REG (mode, REGNO (reloadreg));
6856    }
6857
6858  if (GET_MODE (reloadreg) != mode)
6859    reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6860
6861  /* If we need two reload regs, set RELOADREG to the intermediate
6862     one, since it will be stored into OLD.  We might need a secondary
6863     register only for an input reload, so check again here.  */
6864
6865  if (rl->secondary_out_reload >= 0)
6866    {
6867      rtx real_old = old;
6868      int secondary_reload = rl->secondary_out_reload;
6869      int tertiary_reload = rld[secondary_reload].secondary_out_reload;
6870
6871      if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6872	  && reg_equiv_mem[REGNO (old)] != 0)
6873	real_old = reg_equiv_mem[REGNO (old)];
6874
6875      if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
6876	{
6877	  rtx second_reloadreg = reloadreg;
6878	  reloadreg = rld[secondary_reload].reg_rtx;
6879
6880	  /* See if RELOADREG is to be used as a scratch register
6881	     or as an intermediate register.  */
6882	  if (rl->secondary_out_icode != CODE_FOR_nothing)
6883	    {
6884	      /* We'd have to add extra code to handle this case.  */
6885	      gcc_assert (tertiary_reload < 0);
6886
6887	      emit_insn ((GEN_FCN (rl->secondary_out_icode)
6888			  (real_old, second_reloadreg, reloadreg)));
6889	      special = 1;
6890	    }
6891	  else
6892	    {
6893	      /* See if we need both a scratch and intermediate reload
6894		 register.  */
6895
6896	      enum insn_code tertiary_icode
6897		= rld[secondary_reload].secondary_out_icode;
6898
6899	      /* We'd have to add more code for quartary reloads.  */
6900	      gcc_assert (tertiary_reload < 0
6901			  || rld[tertiary_reload].secondary_out_reload < 0);
6902
6903	      if (GET_MODE (reloadreg) != mode)
6904		reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6905
6906	      if (tertiary_icode != CODE_FOR_nothing)
6907		{
6908		  rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6909		  rtx tem;
6910
6911		  /* Copy primary reload reg to secondary reload reg.
6912		     (Note that these have been swapped above, then
6913		     secondary reload reg to OLD using our insn.)  */
6914
6915		  /* If REAL_OLD is a paradoxical SUBREG, remove it
6916		     and try to put the opposite SUBREG on
6917		     RELOADREG.  */
6918		  if (GET_CODE (real_old) == SUBREG
6919		      && (GET_MODE_SIZE (GET_MODE (real_old))
6920			  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6921		      && 0 != (tem = gen_lowpart_common
6922			       (GET_MODE (SUBREG_REG (real_old)),
6923				reloadreg)))
6924		    real_old = SUBREG_REG (real_old), reloadreg = tem;
6925
6926		  gen_reload (reloadreg, second_reloadreg,
6927			      rl->opnum, rl->when_needed);
6928		  emit_insn ((GEN_FCN (tertiary_icode)
6929			      (real_old, reloadreg, third_reloadreg)));
6930		  special = 1;
6931		}
6932
6933	      else
6934		{
6935		  /* Copy between the reload regs here and then to
6936		     OUT later.  */
6937
6938		  gen_reload (reloadreg, second_reloadreg,
6939			      rl->opnum, rl->when_needed);
6940		  if (tertiary_reload >= 0)
6941		    {
6942		      rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6943
6944		      gen_reload (third_reloadreg, reloadreg,
6945				  rl->opnum, rl->when_needed);
6946		      reloadreg = third_reloadreg;
6947		    }
6948		}
6949	    }
6950	}
6951    }
6952
6953  /* Output the last reload insn.  */
6954  if (! special)
6955    {
6956      rtx set;
6957
6958      /* Don't output the last reload if OLD is not the dest of
6959	 INSN and is in the src and is clobbered by INSN.  */
6960      if (! flag_expensive_optimizations
6961	  || !REG_P (old)
6962	  || !(set = single_set (insn))
6963	  || rtx_equal_p (old, SET_DEST (set))
6964	  || !reg_mentioned_p (old, SET_SRC (set))
6965	  || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6966	       && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6967	gen_reload (old, reloadreg, rl->opnum,
6968		    rl->when_needed);
6969    }
6970
6971  /* Look at all insns we emitted, just to be safe.  */
6972  for (p = get_insns (); p; p = NEXT_INSN (p))
6973    if (INSN_P (p))
6974      {
6975	rtx pat = PATTERN (p);
6976
6977	/* If this output reload doesn't come from a spill reg,
6978	   clear any memory of reloaded copies of the pseudo reg.
6979	   If this output reload comes from a spill reg,
6980	   reg_has_output_reload will make this do nothing.  */
6981	note_stores (pat, forget_old_reloads_1, NULL);
6982
6983	if (reg_mentioned_p (rl->reg_rtx, pat))
6984	  {
6985	    rtx set = single_set (insn);
6986	    if (reload_spill_index[j] < 0
6987		&& set
6988		&& SET_SRC (set) == rl->reg_rtx)
6989	      {
6990		int src = REGNO (SET_SRC (set));
6991
6992		reload_spill_index[j] = src;
6993		SET_HARD_REG_BIT (reg_is_output_reload, src);
6994		if (find_regno_note (insn, REG_DEAD, src))
6995		  SET_HARD_REG_BIT (reg_reloaded_died, src);
6996	      }
6997	    if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6998	      {
6999		int s = rl->secondary_out_reload;
7000		set = single_set (p);
7001		/* If this reload copies only to the secondary reload
7002		   register, the secondary reload does the actual
7003		   store.  */
7004		if (s >= 0 && set == NULL_RTX)
7005		  /* We can't tell what function the secondary reload
7006		     has and where the actual store to the pseudo is
7007		     made; leave new_spill_reg_store alone.  */
7008		  ;
7009		else if (s >= 0
7010			 && SET_SRC (set) == rl->reg_rtx
7011			 && SET_DEST (set) == rld[s].reg_rtx)
7012		  {
7013		    /* Usually the next instruction will be the
7014		       secondary reload insn;  if we can confirm
7015		       that it is, setting new_spill_reg_store to
7016		       that insn will allow an extra optimization.  */
7017		    rtx s_reg = rld[s].reg_rtx;
7018		    rtx next = NEXT_INSN (p);
7019		    rld[s].out = rl->out;
7020		    rld[s].out_reg = rl->out_reg;
7021		    set = single_set (next);
7022		    if (set && SET_SRC (set) == s_reg
7023			&& ! new_spill_reg_store[REGNO (s_reg)])
7024		      {
7025			SET_HARD_REG_BIT (reg_is_output_reload,
7026					  REGNO (s_reg));
7027			new_spill_reg_store[REGNO (s_reg)] = next;
7028		      }
7029		  }
7030		else
7031		  new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
7032	      }
7033	  }
7034      }
7035
7036  if (rl->when_needed == RELOAD_OTHER)
7037    {
7038      emit_insn (other_output_reload_insns[rl->opnum]);
7039      other_output_reload_insns[rl->opnum] = get_insns ();
7040    }
7041  else
7042    output_reload_insns[rl->opnum] = get_insns ();
7043
7044  if (flag_non_call_exceptions)
7045    copy_eh_notes (insn, get_insns ());
7046
7047  end_sequence ();
7048}
7049
7050/* Do input reloading for reload RL, which is for the insn described by CHAIN
7051   and has the number J.  */
7052static void
7053do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7054{
7055  rtx insn = chain->insn;
7056  rtx old = (rl->in && MEM_P (rl->in)
7057	     ? rl->in_reg : rl->in);
7058
7059  if (old != 0
7060      /* AUTO_INC reloads need to be handled even if inherited.  We got an
7061	 AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
7062      && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7063      && ! rtx_equal_p (rl->reg_rtx, old)
7064      && rl->reg_rtx != 0)
7065    emit_input_reload_insns (chain, rld + j, old, j);
7066
7067  /* When inheriting a wider reload, we have a MEM in rl->in,
7068     e.g. inheriting a SImode output reload for
7069     (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
7070  if (optimize && reload_inherited[j] && rl->in
7071      && MEM_P (rl->in)
7072      && MEM_P (rl->in_reg)
7073      && reload_spill_index[j] >= 0
7074      && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7075    rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7076
7077  /* If we are reloading a register that was recently stored in with an
7078     output-reload, see if we can prove there was
7079     actually no need to store the old value in it.  */
7080
7081  if (optimize
7082      /* Only attempt this for input reloads; for RELOAD_OTHER we miss
7083	 that there may be multiple uses of the previous output reload.
7084	 Restricting to RELOAD_FOR_INPUT is mostly paranoia.  */
7085      && rl->when_needed == RELOAD_FOR_INPUT
7086      && (reload_inherited[j] || reload_override_in[j])
7087      && rl->reg_rtx
7088      && REG_P (rl->reg_rtx)
7089      && spill_reg_store[REGNO (rl->reg_rtx)] != 0
7090#if 0
7091      /* There doesn't seem to be any reason to restrict this to pseudos
7092	 and doing so loses in the case where we are copying from a
7093	 register of the wrong class.  */
7094      && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
7095	  >= FIRST_PSEUDO_REGISTER)
7096#endif
7097      /* The insn might have already some references to stackslots
7098	 replaced by MEMs, while reload_out_reg still names the
7099	 original pseudo.  */
7100      && (dead_or_set_p (insn,
7101			 spill_reg_stored_to[REGNO (rl->reg_rtx)])
7102	  || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
7103			  rl->out_reg)))
7104    delete_output_reload (insn, j, REGNO (rl->reg_rtx));
7105}
7106
7107/* Do output reloading for reload RL, which is for the insn described by
7108   CHAIN and has the number J.
7109   ??? At some point we need to support handling output reloads of
7110   JUMP_INSNs or insns that set cc0.  */
7111static void
7112do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7113{
7114  rtx note, old;
7115  rtx insn = chain->insn;
7116  /* If this is an output reload that stores something that is
7117     not loaded in this same reload, see if we can eliminate a previous
7118     store.  */
7119  rtx pseudo = rl->out_reg;
7120
7121  if (pseudo
7122      && optimize
7123      && REG_P (pseudo)
7124      && ! rtx_equal_p (rl->in_reg, pseudo)
7125      && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7126      && reg_last_reload_reg[REGNO (pseudo)])
7127    {
7128      int pseudo_no = REGNO (pseudo);
7129      int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7130
7131      /* We don't need to test full validity of last_regno for
7132	 inherit here; we only want to know if the store actually
7133	 matches the pseudo.  */
7134      if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7135	  && reg_reloaded_contents[last_regno] == pseudo_no
7136	  && spill_reg_store[last_regno]
7137	  && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7138	delete_output_reload (insn, j, last_regno);
7139    }
7140
7141  old = rl->out_reg;
7142  if (old == 0
7143      || rl->reg_rtx == old
7144      || rl->reg_rtx == 0)
7145    return;
7146
7147  /* An output operand that dies right away does need a reload,
7148     but need not be copied from it.  Show the new location in the
7149     REG_UNUSED note.  */
7150  if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7151      && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7152    {
7153      XEXP (note, 0) = rl->reg_rtx;
7154      return;
7155    }
7156  /* Likewise for a SUBREG of an operand that dies.  */
7157  else if (GET_CODE (old) == SUBREG
7158	   && REG_P (SUBREG_REG (old))
7159	   && 0 != (note = find_reg_note (insn, REG_UNUSED,
7160					  SUBREG_REG (old))))
7161    {
7162      XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7163					   rl->reg_rtx);
7164      return;
7165    }
7166  else if (GET_CODE (old) == SCRATCH)
7167    /* If we aren't optimizing, there won't be a REG_UNUSED note,
7168       but we don't want to make an output reload.  */
7169    return;
7170
7171  /* If is a JUMP_INSN, we can't support output reloads yet.  */
7172  gcc_assert (NONJUMP_INSN_P (insn));
7173
7174  emit_output_reload_insns (chain, rld + j, j);
7175}
7176
7177/* Reload number R reloads from or to a group of hard registers starting at
7178   register REGNO.  Return true if it can be treated for inheritance purposes
7179   like a group of reloads, each one reloading a single hard register.
7180   The caller has already checked that the spill register and REGNO use
7181   the same number of registers to store the reload value.  */
7182
7183static bool
7184inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7185{
7186#ifdef CANNOT_CHANGE_MODE_CLASS
7187  return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7188				     GET_MODE (rld[r].reg_rtx),
7189				     reg_raw_mode[reload_spill_index[r]])
7190	  && !REG_CANNOT_CHANGE_MODE_P (regno,
7191					GET_MODE (rld[r].reg_rtx),
7192					reg_raw_mode[regno]));
7193#else
7194  return true;
7195#endif
7196}
7197
7198/* Output insns to reload values in and out of the chosen reload regs.  */
7199
7200static void
7201emit_reload_insns (struct insn_chain *chain)
7202{
7203  rtx insn = chain->insn;
7204
7205  int j;
7206
7207  CLEAR_HARD_REG_SET (reg_reloaded_died);
7208
7209  for (j = 0; j < reload_n_operands; j++)
7210    input_reload_insns[j] = input_address_reload_insns[j]
7211      = inpaddr_address_reload_insns[j]
7212      = output_reload_insns[j] = output_address_reload_insns[j]
7213      = outaddr_address_reload_insns[j]
7214      = other_output_reload_insns[j] = 0;
7215  other_input_address_reload_insns = 0;
7216  other_input_reload_insns = 0;
7217  operand_reload_insns = 0;
7218  other_operand_reload_insns = 0;
7219
7220  /* Dump reloads into the dump file.  */
7221  if (dump_file)
7222    {
7223      fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7224      debug_reload_to_stream (dump_file);
7225    }
7226
7227  /* Now output the instructions to copy the data into and out of the
7228     reload registers.  Do these in the order that the reloads were reported,
7229     since reloads of base and index registers precede reloads of operands
7230     and the operands may need the base and index registers reloaded.  */
7231
7232  for (j = 0; j < n_reloads; j++)
7233    {
7234      if (rld[j].reg_rtx
7235	  && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7236	new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7237
7238      do_input_reload (chain, rld + j, j);
7239      do_output_reload (chain, rld + j, j);
7240    }
7241
7242  /* Now write all the insns we made for reloads in the order expected by
7243     the allocation functions.  Prior to the insn being reloaded, we write
7244     the following reloads:
7245
7246     RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7247
7248     RELOAD_OTHER reloads.
7249
7250     For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7251     by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7252     RELOAD_FOR_INPUT reload for the operand.
7253
7254     RELOAD_FOR_OPADDR_ADDRS reloads.
7255
7256     RELOAD_FOR_OPERAND_ADDRESS reloads.
7257
7258     After the insn being reloaded, we write the following:
7259
7260     For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7261     by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7262     RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7263     reloads for the operand.  The RELOAD_OTHER output reloads are
7264     output in descending order by reload number.  */
7265
7266  emit_insn_before (other_input_address_reload_insns, insn);
7267  emit_insn_before (other_input_reload_insns, insn);
7268
7269  for (j = 0; j < reload_n_operands; j++)
7270    {
7271      emit_insn_before (inpaddr_address_reload_insns[j], insn);
7272      emit_insn_before (input_address_reload_insns[j], insn);
7273      emit_insn_before (input_reload_insns[j], insn);
7274    }
7275
7276  emit_insn_before (other_operand_reload_insns, insn);
7277  emit_insn_before (operand_reload_insns, insn);
7278
7279  for (j = 0; j < reload_n_operands; j++)
7280    {
7281      rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7282      x = emit_insn_after (output_address_reload_insns[j], x);
7283      x = emit_insn_after (output_reload_insns[j], x);
7284      emit_insn_after (other_output_reload_insns[j], x);
7285    }
7286
7287  /* For all the spill regs newly reloaded in this instruction,
7288     record what they were reloaded from, so subsequent instructions
7289     can inherit the reloads.
7290
7291     Update spill_reg_store for the reloads of this insn.
7292     Copy the elements that were updated in the loop above.  */
7293
7294  for (j = 0; j < n_reloads; j++)
7295    {
7296      int r = reload_order[j];
7297      int i = reload_spill_index[r];
7298
7299      /* If this is a non-inherited input reload from a pseudo, we must
7300	 clear any memory of a previous store to the same pseudo.  Only do
7301	 something if there will not be an output reload for the pseudo
7302	 being reloaded.  */
7303      if (rld[r].in_reg != 0
7304	  && ! (reload_inherited[r] || reload_override_in[r]))
7305	{
7306	  rtx reg = rld[r].in_reg;
7307
7308	  if (GET_CODE (reg) == SUBREG)
7309	    reg = SUBREG_REG (reg);
7310
7311	  if (REG_P (reg)
7312	      && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7313	      && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7314	    {
7315	      int nregno = REGNO (reg);
7316
7317	      if (reg_last_reload_reg[nregno])
7318		{
7319		  int last_regno = REGNO (reg_last_reload_reg[nregno]);
7320
7321		  if (reg_reloaded_contents[last_regno] == nregno)
7322		    spill_reg_store[last_regno] = 0;
7323		}
7324	    }
7325	}
7326
7327      /* I is nonneg if this reload used a register.
7328	 If rld[r].reg_rtx is 0, this is an optional reload
7329	 that we opted to ignore.  */
7330
7331      if (i >= 0 && rld[r].reg_rtx != 0)
7332	{
7333	  int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7334	  int k;
7335	  int part_reaches_end = 0;
7336	  int all_reaches_end = 1;
7337
7338	  /* For a multi register reload, we need to check if all or part
7339	     of the value lives to the end.  */
7340	  for (k = 0; k < nr; k++)
7341	    {
7342	      if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7343					    rld[r].when_needed))
7344		part_reaches_end = 1;
7345	      else
7346		all_reaches_end = 0;
7347	    }
7348
7349	  /* Ignore reloads that don't reach the end of the insn in
7350	     entirety.  */
7351	  if (all_reaches_end)
7352	    {
7353	      /* First, clear out memory of what used to be in this spill reg.
7354		 If consecutive registers are used, clear them all.  */
7355
7356	      for (k = 0; k < nr; k++)
7357  	        {
7358		CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7359  		  CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7360  		}
7361
7362	      /* Maybe the spill reg contains a copy of reload_out.  */
7363	      if (rld[r].out != 0
7364		  && (REG_P (rld[r].out)
7365#ifdef AUTO_INC_DEC
7366		      || ! rld[r].out_reg
7367#endif
7368		      || REG_P (rld[r].out_reg)))
7369		{
7370		  rtx out = (REG_P (rld[r].out)
7371			     ? rld[r].out
7372			     : rld[r].out_reg
7373			     ? rld[r].out_reg
7374/* AUTO_INC */		     : XEXP (rld[r].in_reg, 0));
7375		  int nregno = REGNO (out);
7376		  int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7377			     : hard_regno_nregs[nregno]
7378					       [GET_MODE (rld[r].reg_rtx)]);
7379		  bool piecemeal;
7380
7381		  spill_reg_store[i] = new_spill_reg_store[i];
7382		  spill_reg_stored_to[i] = out;
7383		  reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7384
7385		  piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7386			       && nr == nnr
7387			       && inherit_piecemeal_p (r, nregno));
7388
7389		  /* If NREGNO is a hard register, it may occupy more than
7390		     one register.  If it does, say what is in the
7391		     rest of the registers assuming that both registers
7392		     agree on how many words the object takes.  If not,
7393		     invalidate the subsequent registers.  */
7394
7395		  if (nregno < FIRST_PSEUDO_REGISTER)
7396		    for (k = 1; k < nnr; k++)
7397		      reg_last_reload_reg[nregno + k]
7398			= (piecemeal
7399			   ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7400			   : 0);
7401
7402		  /* Now do the inverse operation.  */
7403		  for (k = 0; k < nr; k++)
7404		    {
7405		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7406		      reg_reloaded_contents[i + k]
7407			= (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7408			   ? nregno
7409			   : nregno + k);
7410		      reg_reloaded_insn[i + k] = insn;
7411		      SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7412		      if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7413			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7414		    }
7415		}
7416
7417	      /* Maybe the spill reg contains a copy of reload_in.  Only do
7418		 something if there will not be an output reload for
7419		 the register being reloaded.  */
7420	      else if (rld[r].out_reg == 0
7421		       && rld[r].in != 0
7422		       && ((REG_P (rld[r].in)
7423			    && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7424	                    && !REGNO_REG_SET_P (&reg_has_output_reload,
7425			      			 REGNO (rld[r].in)))
7426			   || (REG_P (rld[r].in_reg)
7427			       && !REGNO_REG_SET_P (&reg_has_output_reload,
7428						    REGNO (rld[r].in_reg))))
7429		       && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7430		{
7431		  int nregno;
7432		  int nnr;
7433		  rtx in;
7434		  bool piecemeal;
7435
7436		  if (REG_P (rld[r].in)
7437		      && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7438		    in = rld[r].in;
7439		  else if (REG_P (rld[r].in_reg))
7440		    in = rld[r].in_reg;
7441		  else
7442		    in = XEXP (rld[r].in_reg, 0);
7443		  nregno = REGNO (in);
7444
7445		  nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7446			 : hard_regno_nregs[nregno]
7447					   [GET_MODE (rld[r].reg_rtx)]);
7448
7449		  reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7450
7451		  piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7452			       && nr == nnr
7453			       && inherit_piecemeal_p (r, nregno));
7454
7455		  if (nregno < FIRST_PSEUDO_REGISTER)
7456		    for (k = 1; k < nnr; k++)
7457		      reg_last_reload_reg[nregno + k]
7458			= (piecemeal
7459			   ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7460			   : 0);
7461
7462		  /* Unless we inherited this reload, show we haven't
7463		     recently done a store.
7464		     Previous stores of inherited auto_inc expressions
7465		     also have to be discarded.  */
7466		  if (! reload_inherited[r]
7467		      || (rld[r].out && ! rld[r].out_reg))
7468		    spill_reg_store[i] = 0;
7469
7470		  for (k = 0; k < nr; k++)
7471		    {
7472		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7473		      reg_reloaded_contents[i + k]
7474			= (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7475			   ? nregno
7476			   : nregno + k);
7477		      reg_reloaded_insn[i + k] = insn;
7478		      SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7479		      if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7480			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7481		    }
7482		}
7483	    }
7484
7485	  /* However, if part of the reload reaches the end, then we must
7486	     invalidate the old info for the part that survives to the end.  */
7487	  else if (part_reaches_end)
7488	    {
7489	      for (k = 0; k < nr; k++)
7490		if (reload_reg_reaches_end_p (i + k,
7491					      rld[r].opnum,
7492					      rld[r].when_needed))
7493		  CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7494	    }
7495	}
7496
7497      /* The following if-statement was #if 0'd in 1.34 (or before...).
7498	 It's reenabled in 1.35 because supposedly nothing else
7499	 deals with this problem.  */
7500
7501      /* If a register gets output-reloaded from a non-spill register,
7502	 that invalidates any previous reloaded copy of it.
7503	 But forget_old_reloads_1 won't get to see it, because
7504	 it thinks only about the original insn.  So invalidate it here.
7505	 Also do the same thing for RELOAD_OTHER constraints where the
7506	 output is discarded.  */
7507      if (i < 0
7508	  && ((rld[r].out != 0
7509	       && (REG_P (rld[r].out)
7510		   || (MEM_P (rld[r].out)
7511		       && REG_P (rld[r].out_reg))))
7512	      || (rld[r].out == 0 && rld[r].out_reg
7513		  && REG_P (rld[r].out_reg))))
7514	{
7515	  rtx out = ((rld[r].out && REG_P (rld[r].out))
7516		     ? rld[r].out : rld[r].out_reg);
7517	  int nregno = REGNO (out);
7518	  if (nregno >= FIRST_PSEUDO_REGISTER)
7519	    {
7520	      rtx src_reg, store_insn = NULL_RTX;
7521
7522	      reg_last_reload_reg[nregno] = 0;
7523
7524	      /* If we can find a hard register that is stored, record
7525		 the storing insn so that we may delete this insn with
7526		 delete_output_reload.  */
7527	      src_reg = rld[r].reg_rtx;
7528
7529	      /* If this is an optional reload, try to find the source reg
7530		 from an input reload.  */
7531	      if (! src_reg)
7532		{
7533		  rtx set = single_set (insn);
7534		  if (set && SET_DEST (set) == rld[r].out)
7535		    {
7536		      int k;
7537
7538		      src_reg = SET_SRC (set);
7539		      store_insn = insn;
7540		      for (k = 0; k < n_reloads; k++)
7541			{
7542			  if (rld[k].in == src_reg)
7543			    {
7544			      src_reg = rld[k].reg_rtx;
7545			      break;
7546			    }
7547			}
7548		    }
7549		}
7550	      else
7551		store_insn = new_spill_reg_store[REGNO (src_reg)];
7552	      if (src_reg && REG_P (src_reg)
7553		  && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7554		{
7555		  int src_regno = REGNO (src_reg);
7556		  int nr = hard_regno_nregs[src_regno][rld[r].mode];
7557		  /* The place where to find a death note varies with
7558		     PRESERVE_DEATH_INFO_REGNO_P .  The condition is not
7559		     necessarily checked exactly in the code that moves
7560		     notes, so just check both locations.  */
7561		  rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7562		  if (! note && store_insn)
7563		    note = find_regno_note (store_insn, REG_DEAD, src_regno);
7564		  while (nr-- > 0)
7565		    {
7566		      spill_reg_store[src_regno + nr] = store_insn;
7567		      spill_reg_stored_to[src_regno + nr] = out;
7568		      reg_reloaded_contents[src_regno + nr] = nregno;
7569		      reg_reloaded_insn[src_regno + nr] = store_insn;
7570		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7571		      SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7572		      if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7573							  GET_MODE (src_reg)))
7574			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7575					  src_regno + nr);
7576		      SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7577		      if (note)
7578			SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7579		      else
7580			CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7581		    }
7582		  reg_last_reload_reg[nregno] = src_reg;
7583		  /* We have to set reg_has_output_reload here, or else
7584		     forget_old_reloads_1 will clear reg_last_reload_reg
7585		     right away.  */
7586		  SET_REGNO_REG_SET (&reg_has_output_reload,
7587				     nregno);
7588		}
7589	    }
7590	  else
7591	    {
7592	      int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
7593
7594	      while (num_regs-- > 0)
7595		reg_last_reload_reg[nregno + num_regs] = 0;
7596	    }
7597	}
7598    }
7599  IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7600}
7601
7602/* Go through the motions to emit INSN and test if it is strictly valid.
7603   Return the emitted insn if valid, else return NULL.  */
7604
7605static rtx
7606emit_insn_if_valid_for_reload (rtx insn)
7607{
7608  rtx last = get_last_insn ();
7609  int code;
7610
7611  insn = emit_insn (insn);
7612  code = recog_memoized (insn);
7613
7614  if (code >= 0)
7615    {
7616      extract_insn (insn);
7617      /* We want constrain operands to treat this insn strictly in its
7618	 validity determination, i.e., the way it would after reload has
7619	 completed.  */
7620      if (constrain_operands (1))
7621	return insn;
7622    }
7623
7624  delete_insns_since (last);
7625  return NULL;
7626}
7627
7628/* Emit code to perform a reload from IN (which may be a reload register) to
7629   OUT (which may also be a reload register).  IN or OUT is from operand
7630   OPNUM with reload type TYPE.
7631
7632   Returns first insn emitted.  */
7633
7634static rtx
7635gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7636{
7637  rtx last = get_last_insn ();
7638  rtx tem;
7639
7640  /* If IN is a paradoxical SUBREG, remove it and try to put the
7641     opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
7642  if (GET_CODE (in) == SUBREG
7643      && (GET_MODE_SIZE (GET_MODE (in))
7644	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7645      && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7646    in = SUBREG_REG (in), out = tem;
7647  else if (GET_CODE (out) == SUBREG
7648	   && (GET_MODE_SIZE (GET_MODE (out))
7649	       > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7650	   && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7651    out = SUBREG_REG (out), in = tem;
7652
7653  /* How to do this reload can get quite tricky.  Normally, we are being
7654     asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7655     register that didn't get a hard register.  In that case we can just
7656     call emit_move_insn.
7657
7658     We can also be asked to reload a PLUS that adds a register or a MEM to
7659     another register, constant or MEM.  This can occur during frame pointer
7660     elimination and while reloading addresses.  This case is handled by
7661     trying to emit a single insn to perform the add.  If it is not valid,
7662     we use a two insn sequence.
7663
7664     Or we can be asked to reload an unary operand that was a fragment of
7665     an addressing mode, into a register.  If it isn't recognized as-is,
7666     we try making the unop operand and the reload-register the same:
7667     (set reg:X (unop:X expr:Y))
7668     -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7669
7670     Finally, we could be called to handle an 'o' constraint by putting
7671     an address into a register.  In that case, we first try to do this
7672     with a named pattern of "reload_load_address".  If no such pattern
7673     exists, we just emit a SET insn and hope for the best (it will normally
7674     be valid on machines that use 'o').
7675
7676     This entire process is made complex because reload will never
7677     process the insns we generate here and so we must ensure that
7678     they will fit their constraints and also by the fact that parts of
7679     IN might be being reloaded separately and replaced with spill registers.
7680     Because of this, we are, in some sense, just guessing the right approach
7681     here.  The one listed above seems to work.
7682
7683     ??? At some point, this whole thing needs to be rethought.  */
7684
7685  if (GET_CODE (in) == PLUS
7686      && (REG_P (XEXP (in, 0))
7687	  || GET_CODE (XEXP (in, 0)) == SUBREG
7688	  || MEM_P (XEXP (in, 0)))
7689      && (REG_P (XEXP (in, 1))
7690	  || GET_CODE (XEXP (in, 1)) == SUBREG
7691	  || CONSTANT_P (XEXP (in, 1))
7692	  || MEM_P (XEXP (in, 1))))
7693    {
7694      /* We need to compute the sum of a register or a MEM and another
7695	 register, constant, or MEM, and put it into the reload
7696	 register.  The best possible way of doing this is if the machine
7697	 has a three-operand ADD insn that accepts the required operands.
7698
7699	 The simplest approach is to try to generate such an insn and see if it
7700	 is recognized and matches its constraints.  If so, it can be used.
7701
7702	 It might be better not to actually emit the insn unless it is valid,
7703	 but we need to pass the insn as an operand to `recog' and
7704	 `extract_insn' and it is simpler to emit and then delete the insn if
7705	 not valid than to dummy things up.  */
7706
7707      rtx op0, op1, tem, insn;
7708      int code;
7709
7710      op0 = find_replacement (&XEXP (in, 0));
7711      op1 = find_replacement (&XEXP (in, 1));
7712
7713      /* Since constraint checking is strict, commutativity won't be
7714	 checked, so we need to do that here to avoid spurious failure
7715	 if the add instruction is two-address and the second operand
7716	 of the add is the same as the reload reg, which is frequently
7717	 the case.  If the insn would be A = B + A, rearrange it so
7718	 it will be A = A + B as constrain_operands expects.  */
7719
7720      if (REG_P (XEXP (in, 1))
7721	  && REGNO (out) == REGNO (XEXP (in, 1)))
7722	tem = op0, op0 = op1, op1 = tem;
7723
7724      if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7725	in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7726
7727      insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7728      if (insn)
7729	return insn;
7730
7731      /* If that failed, we must use a conservative two-insn sequence.
7732
7733	 Use a move to copy one operand into the reload register.  Prefer
7734	 to reload a constant, MEM or pseudo since the move patterns can
7735	 handle an arbitrary operand.  If OP1 is not a constant, MEM or
7736	 pseudo and OP1 is not a valid operand for an add instruction, then
7737	 reload OP1.
7738
7739	 After reloading one of the operands into the reload register, add
7740	 the reload register to the output register.
7741
7742	 If there is another way to do this for a specific machine, a
7743	 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7744	 we emit below.  */
7745
7746      code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7747
7748      if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7749	  || (REG_P (op1)
7750	      && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7751	  || (code != CODE_FOR_nothing
7752	      && ! ((*insn_data[code].operand[2].predicate)
7753		    (op1, insn_data[code].operand[2].mode))))
7754	tem = op0, op0 = op1, op1 = tem;
7755
7756      gen_reload (out, op0, opnum, type);
7757
7758      /* If OP0 and OP1 are the same, we can use OUT for OP1.
7759	 This fixes a problem on the 32K where the stack pointer cannot
7760	 be used as an operand of an add insn.  */
7761
7762      if (rtx_equal_p (op0, op1))
7763	op1 = out;
7764
7765      insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7766      if (insn)
7767	{
7768	  /* Add a REG_EQUIV note so that find_equiv_reg can find it.  */
7769	  REG_NOTES (insn)
7770	    = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7771	  return insn;
7772	}
7773
7774      /* If that failed, copy the address register to the reload register.
7775	 Then add the constant to the reload register.  */
7776
7777      gen_reload (out, op1, opnum, type);
7778      insn = emit_insn (gen_add2_insn (out, op0));
7779      REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7780    }
7781
7782#ifdef SECONDARY_MEMORY_NEEDED
7783  /* If we need a memory location to do the move, do it that way.  */
7784  else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7785	   && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7786	   && (REG_P (out) || GET_CODE (out) == SUBREG)
7787	   && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7788	   && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7789				       REGNO_REG_CLASS (reg_or_subregno (out)),
7790				       GET_MODE (out)))
7791    {
7792      /* Get the memory to use and rewrite both registers to its mode.  */
7793      rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7794
7795      if (GET_MODE (loc) != GET_MODE (out))
7796	out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7797
7798      if (GET_MODE (loc) != GET_MODE (in))
7799	in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7800
7801      gen_reload (loc, in, opnum, type);
7802      gen_reload (out, loc, opnum, type);
7803    }
7804#endif
7805  else if (REG_P (out) && UNARY_P (in))
7806    {
7807      rtx insn;
7808      rtx op1;
7809      rtx out_moded;
7810      rtx set;
7811
7812      op1 = find_replacement (&XEXP (in, 0));
7813      if (op1 != XEXP (in, 0))
7814	in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7815
7816      /* First, try a plain SET.  */
7817      set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7818      if (set)
7819	return set;
7820
7821      /* If that failed, move the inner operand to the reload
7822	 register, and try the same unop with the inner expression
7823	 replaced with the reload register.  */
7824
7825      if (GET_MODE (op1) != GET_MODE (out))
7826	out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7827      else
7828	out_moded = out;
7829
7830      gen_reload (out_moded, op1, opnum, type);
7831
7832      insn
7833	= gen_rtx_SET (VOIDmode, out,
7834		       gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7835				      out_moded));
7836      insn = emit_insn_if_valid_for_reload (insn);
7837      if (insn)
7838	{
7839	  REG_NOTES (insn)
7840	    = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7841	  return insn;
7842	}
7843
7844      fatal_insn ("Failure trying to reload:", set);
7845    }
7846  /* If IN is a simple operand, use gen_move_insn.  */
7847  else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7848    {
7849      tem = emit_insn (gen_move_insn (out, in));
7850      /* IN may contain a LABEL_REF, if so add a REG_LABEL note.  */
7851      mark_jump_label (in, tem, 0);
7852    }
7853
7854#ifdef HAVE_reload_load_address
7855  else if (HAVE_reload_load_address)
7856    emit_insn (gen_reload_load_address (out, in));
7857#endif
7858
7859  /* Otherwise, just write (set OUT IN) and hope for the best.  */
7860  else
7861    emit_insn (gen_rtx_SET (VOIDmode, out, in));
7862
7863  /* Return the first insn emitted.
7864     We can not just return get_last_insn, because there may have
7865     been multiple instructions emitted.  Also note that gen_move_insn may
7866     emit more than one insn itself, so we can not assume that there is one
7867     insn emitted per emit_insn_before call.  */
7868
7869  return last ? NEXT_INSN (last) : get_insns ();
7870}
7871
7872/* Delete a previously made output-reload whose result we now believe
7873   is not needed.  First we double-check.
7874
7875   INSN is the insn now being processed.
7876   LAST_RELOAD_REG is the hard register number for which we want to delete
7877   the last output reload.
7878   J is the reload-number that originally used REG.  The caller has made
7879   certain that reload J doesn't use REG any longer for input.  */
7880
7881static void
7882delete_output_reload (rtx insn, int j, int last_reload_reg)
7883{
7884  rtx output_reload_insn = spill_reg_store[last_reload_reg];
7885  rtx reg = spill_reg_stored_to[last_reload_reg];
7886  int k;
7887  int n_occurrences;
7888  int n_inherited = 0;
7889  rtx i1;
7890  rtx substed;
7891
7892  /* It is possible that this reload has been only used to set another reload
7893     we eliminated earlier and thus deleted this instruction too.  */
7894  if (INSN_DELETED_P (output_reload_insn))
7895    return;
7896
7897  /* Get the raw pseudo-register referred to.  */
7898
7899  while (GET_CODE (reg) == SUBREG)
7900    reg = SUBREG_REG (reg);
7901  substed = reg_equiv_memory_loc[REGNO (reg)];
7902
7903  /* This is unsafe if the operand occurs more often in the current
7904     insn than it is inherited.  */
7905  for (k = n_reloads - 1; k >= 0; k--)
7906    {
7907      rtx reg2 = rld[k].in;
7908      if (! reg2)
7909	continue;
7910      if (MEM_P (reg2) || reload_override_in[k])
7911	reg2 = rld[k].in_reg;
7912#ifdef AUTO_INC_DEC
7913      if (rld[k].out && ! rld[k].out_reg)
7914	reg2 = XEXP (rld[k].in_reg, 0);
7915#endif
7916      while (GET_CODE (reg2) == SUBREG)
7917	reg2 = SUBREG_REG (reg2);
7918      if (rtx_equal_p (reg2, reg))
7919	{
7920	  if (reload_inherited[k] || reload_override_in[k] || k == j)
7921	    {
7922	      n_inherited++;
7923	      reg2 = rld[k].out_reg;
7924	      if (! reg2)
7925		continue;
7926	      while (GET_CODE (reg2) == SUBREG)
7927		reg2 = XEXP (reg2, 0);
7928	      if (rtx_equal_p (reg2, reg))
7929		n_inherited++;
7930	    }
7931	  else
7932	    return;
7933	}
7934    }
7935  n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7936  if (substed)
7937    n_occurrences += count_occurrences (PATTERN (insn),
7938					eliminate_regs (substed, 0,
7939							NULL_RTX), 0);
7940  for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
7941    {
7942      gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
7943      n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
7944    }
7945  if (n_occurrences > n_inherited)
7946    return;
7947
7948  /* If the pseudo-reg we are reloading is no longer referenced
7949     anywhere between the store into it and here,
7950     and we're within the same basic block, then the value can only
7951     pass through the reload reg and end up here.
7952     Otherwise, give up--return.  */
7953  for (i1 = NEXT_INSN (output_reload_insn);
7954       i1 != insn; i1 = NEXT_INSN (i1))
7955    {
7956      if (NOTE_INSN_BASIC_BLOCK_P (i1))
7957	return;
7958      if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7959	  && reg_mentioned_p (reg, PATTERN (i1)))
7960	{
7961	  /* If this is USE in front of INSN, we only have to check that
7962	     there are no more references than accounted for by inheritance.  */
7963	  while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7964	    {
7965	      n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7966	      i1 = NEXT_INSN (i1);
7967	    }
7968	  if (n_occurrences <= n_inherited && i1 == insn)
7969	    break;
7970	  return;
7971	}
7972    }
7973
7974  /* We will be deleting the insn.  Remove the spill reg information.  */
7975  for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7976    {
7977      spill_reg_store[last_reload_reg + k] = 0;
7978      spill_reg_stored_to[last_reload_reg + k] = 0;
7979    }
7980
7981  /* The caller has already checked that REG dies or is set in INSN.
7982     It has also checked that we are optimizing, and thus some
7983     inaccuracies in the debugging information are acceptable.
7984     So we could just delete output_reload_insn.  But in some cases
7985     we can improve the debugging information without sacrificing
7986     optimization - maybe even improving the code: See if the pseudo
7987     reg has been completely replaced with reload regs.  If so, delete
7988     the store insn and forget we had a stack slot for the pseudo.  */
7989  if (rld[j].out != rld[j].in
7990      && REG_N_DEATHS (REGNO (reg)) == 1
7991      && REG_N_SETS (REGNO (reg)) == 1
7992      && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7993      && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7994    {
7995      rtx i2;
7996
7997      /* We know that it was used only between here and the beginning of
7998	 the current basic block.  (We also know that the last use before
7999	 INSN was the output reload we are thinking of deleting, but never
8000	 mind that.)  Search that range; see if any ref remains.  */
8001      for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8002	{
8003	  rtx set = single_set (i2);
8004
8005	  /* Uses which just store in the pseudo don't count,
8006	     since if they are the only uses, they are dead.  */
8007	  if (set != 0 && SET_DEST (set) == reg)
8008	    continue;
8009	  if (LABEL_P (i2)
8010	      || JUMP_P (i2))
8011	    break;
8012	  if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8013	      && reg_mentioned_p (reg, PATTERN (i2)))
8014	    {
8015	      /* Some other ref remains; just delete the output reload we
8016		 know to be dead.  */
8017	      delete_address_reloads (output_reload_insn, insn);
8018	      delete_insn (output_reload_insn);
8019	      return;
8020	    }
8021	}
8022
8023      /* Delete the now-dead stores into this pseudo.  Note that this
8024	 loop also takes care of deleting output_reload_insn.  */
8025      for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8026	{
8027	  rtx set = single_set (i2);
8028
8029	  if (set != 0 && SET_DEST (set) == reg)
8030	    {
8031	      delete_address_reloads (i2, insn);
8032	      delete_insn (i2);
8033	    }
8034	  if (LABEL_P (i2)
8035	      || JUMP_P (i2))
8036	    break;
8037	}
8038
8039      /* For the debugging info, say the pseudo lives in this reload reg.  */
8040      reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
8041      alter_reg (REGNO (reg), -1);
8042    }
8043  else
8044    {
8045      delete_address_reloads (output_reload_insn, insn);
8046      delete_insn (output_reload_insn);
8047    }
8048}
8049
8050/* We are going to delete DEAD_INSN.  Recursively delete loads of
8051   reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8052   CURRENT_INSN is being reloaded, so we have to check its reloads too.  */
8053static void
8054delete_address_reloads (rtx dead_insn, rtx current_insn)
8055{
8056  rtx set = single_set (dead_insn);
8057  rtx set2, dst, prev, next;
8058  if (set)
8059    {
8060      rtx dst = SET_DEST (set);
8061      if (MEM_P (dst))
8062	delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8063    }
8064  /* If we deleted the store from a reloaded post_{in,de}c expression,
8065     we can delete the matching adds.  */
8066  prev = PREV_INSN (dead_insn);
8067  next = NEXT_INSN (dead_insn);
8068  if (! prev || ! next)
8069    return;
8070  set = single_set (next);
8071  set2 = single_set (prev);
8072  if (! set || ! set2
8073      || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8074      || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8075      || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8076    return;
8077  dst = SET_DEST (set);
8078  if (! rtx_equal_p (dst, SET_DEST (set2))
8079      || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8080      || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8081      || (INTVAL (XEXP (SET_SRC (set), 1))
8082	  != -INTVAL (XEXP (SET_SRC (set2), 1))))
8083    return;
8084  delete_related_insns (prev);
8085  delete_related_insns (next);
8086}
8087
8088/* Subfunction of delete_address_reloads: process registers found in X.  */
8089static void
8090delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8091{
8092  rtx prev, set, dst, i2;
8093  int i, j;
8094  enum rtx_code code = GET_CODE (x);
8095
8096  if (code != REG)
8097    {
8098      const char *fmt = GET_RTX_FORMAT (code);
8099      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8100	{
8101	  if (fmt[i] == 'e')
8102	    delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8103	  else if (fmt[i] == 'E')
8104	    {
8105	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8106		delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8107					  current_insn);
8108	    }
8109	}
8110      return;
8111    }
8112
8113  if (spill_reg_order[REGNO (x)] < 0)
8114    return;
8115
8116  /* Scan backwards for the insn that sets x.  This might be a way back due
8117     to inheritance.  */
8118  for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8119    {
8120      code = GET_CODE (prev);
8121      if (code == CODE_LABEL || code == JUMP_INSN)
8122	return;
8123      if (!INSN_P (prev))
8124	continue;
8125      if (reg_set_p (x, PATTERN (prev)))
8126	break;
8127      if (reg_referenced_p (x, PATTERN (prev)))
8128	return;
8129    }
8130  if (! prev || INSN_UID (prev) < reload_first_uid)
8131    return;
8132  /* Check that PREV only sets the reload register.  */
8133  set = single_set (prev);
8134  if (! set)
8135    return;
8136  dst = SET_DEST (set);
8137  if (!REG_P (dst)
8138      || ! rtx_equal_p (dst, x))
8139    return;
8140  if (! reg_set_p (dst, PATTERN (dead_insn)))
8141    {
8142      /* Check if DST was used in a later insn -
8143	 it might have been inherited.  */
8144      for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8145	{
8146	  if (LABEL_P (i2))
8147	    break;
8148	  if (! INSN_P (i2))
8149	    continue;
8150	  if (reg_referenced_p (dst, PATTERN (i2)))
8151	    {
8152	      /* If there is a reference to the register in the current insn,
8153		 it might be loaded in a non-inherited reload.  If no other
8154		 reload uses it, that means the register is set before
8155		 referenced.  */
8156	      if (i2 == current_insn)
8157		{
8158		  for (j = n_reloads - 1; j >= 0; j--)
8159		    if ((rld[j].reg_rtx == dst && reload_inherited[j])
8160			|| reload_override_in[j] == dst)
8161		      return;
8162		  for (j = n_reloads - 1; j >= 0; j--)
8163		    if (rld[j].in && rld[j].reg_rtx == dst)
8164		      break;
8165		  if (j >= 0)
8166		    break;
8167		}
8168	      return;
8169	    }
8170	  if (JUMP_P (i2))
8171	    break;
8172	  /* If DST is still live at CURRENT_INSN, check if it is used for
8173	     any reload.  Note that even if CURRENT_INSN sets DST, we still
8174	     have to check the reloads.  */
8175	  if (i2 == current_insn)
8176	    {
8177	      for (j = n_reloads - 1; j >= 0; j--)
8178		if ((rld[j].reg_rtx == dst && reload_inherited[j])
8179		    || reload_override_in[j] == dst)
8180		  return;
8181	      /* ??? We can't finish the loop here, because dst might be
8182		 allocated to a pseudo in this block if no reload in this
8183		 block needs any of the classes containing DST - see
8184		 spill_hard_reg.  There is no easy way to tell this, so we
8185		 have to scan till the end of the basic block.  */
8186	    }
8187	  if (reg_set_p (dst, PATTERN (i2)))
8188	    break;
8189	}
8190    }
8191  delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8192  reg_reloaded_contents[REGNO (dst)] = -1;
8193  delete_insn (prev);
8194}
8195
8196/* Output reload-insns to reload VALUE into RELOADREG.
8197   VALUE is an autoincrement or autodecrement RTX whose operand
8198   is a register or memory location;
8199   so reloading involves incrementing that location.
8200   IN is either identical to VALUE, or some cheaper place to reload from.
8201
8202   INC_AMOUNT is the number to increment or decrement by (always positive).
8203   This cannot be deduced from VALUE.
8204
8205   Return the instruction that stores into RELOADREG.  */
8206
8207static rtx
8208inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8209{
8210  /* REG or MEM to be copied and incremented.  */
8211  rtx incloc = find_replacement (&XEXP (value, 0));
8212  /* Nonzero if increment after copying.  */
8213  int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8214	      || GET_CODE (value) == POST_MODIFY);
8215  rtx last;
8216  rtx inc;
8217  rtx add_insn;
8218  int code;
8219  rtx store;
8220  rtx real_in = in == value ? incloc : in;
8221
8222  /* No hard register is equivalent to this register after
8223     inc/dec operation.  If REG_LAST_RELOAD_REG were nonzero,
8224     we could inc/dec that register as well (maybe even using it for
8225     the source), but I'm not sure it's worth worrying about.  */
8226  if (REG_P (incloc))
8227    reg_last_reload_reg[REGNO (incloc)] = 0;
8228
8229  if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8230    {
8231      gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8232      inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8233    }
8234  else
8235    {
8236      if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8237	inc_amount = -inc_amount;
8238
8239      inc = GEN_INT (inc_amount);
8240    }
8241
8242  /* If this is post-increment, first copy the location to the reload reg.  */
8243  if (post && real_in != reloadreg)
8244    emit_insn (gen_move_insn (reloadreg, real_in));
8245
8246  if (in == value)
8247    {
8248      /* See if we can directly increment INCLOC.  Use a method similar to
8249	 that in gen_reload.  */
8250
8251      last = get_last_insn ();
8252      add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8253					 gen_rtx_PLUS (GET_MODE (incloc),
8254						       incloc, inc)));
8255
8256      code = recog_memoized (add_insn);
8257      if (code >= 0)
8258	{
8259	  extract_insn (add_insn);
8260	  if (constrain_operands (1))
8261	    {
8262	      /* If this is a pre-increment and we have incremented the value
8263		 where it lives, copy the incremented value to RELOADREG to
8264		 be used as an address.  */
8265
8266	      if (! post)
8267		emit_insn (gen_move_insn (reloadreg, incloc));
8268
8269	      return add_insn;
8270	    }
8271	}
8272      delete_insns_since (last);
8273    }
8274
8275  /* If couldn't do the increment directly, must increment in RELOADREG.
8276     The way we do this depends on whether this is pre- or post-increment.
8277     For pre-increment, copy INCLOC to the reload register, increment it
8278     there, then save back.  */
8279
8280  if (! post)
8281    {
8282      if (in != reloadreg)
8283	emit_insn (gen_move_insn (reloadreg, real_in));
8284      emit_insn (gen_add2_insn (reloadreg, inc));
8285      store = emit_insn (gen_move_insn (incloc, reloadreg));
8286    }
8287  else
8288    {
8289      /* Postincrement.
8290	 Because this might be a jump insn or a compare, and because RELOADREG
8291	 may not be available after the insn in an input reload, we must do
8292	 the incrementation before the insn being reloaded for.
8293
8294	 We have already copied IN to RELOADREG.  Increment the copy in
8295	 RELOADREG, save that back, then decrement RELOADREG so it has
8296	 the original value.  */
8297
8298      emit_insn (gen_add2_insn (reloadreg, inc));
8299      store = emit_insn (gen_move_insn (incloc, reloadreg));
8300      if (GET_CODE (inc) == CONST_INT)
8301	emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
8302      else
8303	emit_insn (gen_sub2_insn (reloadreg, inc));
8304    }
8305
8306  return store;
8307}
8308
8309#ifdef AUTO_INC_DEC
8310static void
8311add_auto_inc_notes (rtx insn, rtx x)
8312{
8313  enum rtx_code code = GET_CODE (x);
8314  const char *fmt;
8315  int i, j;
8316
8317  if (code == MEM && auto_inc_p (XEXP (x, 0)))
8318    {
8319      REG_NOTES (insn)
8320	= gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8321      return;
8322    }
8323
8324  /* Scan all the operand sub-expressions.  */
8325  fmt = GET_RTX_FORMAT (code);
8326  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8327    {
8328      if (fmt[i] == 'e')
8329	add_auto_inc_notes (insn, XEXP (x, i));
8330      else if (fmt[i] == 'E')
8331	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8332	  add_auto_inc_notes (insn, XVECEXP (x, i, j));
8333    }
8334}
8335#endif
8336
8337/* Copy EH notes from an insn to its reloads.  */
8338static void
8339copy_eh_notes (rtx insn, rtx x)
8340{
8341  rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8342  if (eh_note)
8343    {
8344      for (; x != 0; x = NEXT_INSN (x))
8345	{
8346	  if (may_trap_p (PATTERN (x)))
8347	    REG_NOTES (x)
8348	      = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8349				   REG_NOTES (x));
8350	}
8351    }
8352}
8353
8354/* This is used by reload pass, that does emit some instructions after
8355   abnormal calls moving basic block end, but in fact it wants to emit
8356   them on the edge.  Looks for abnormal call edges, find backward the
8357   proper call and fix the damage.
8358
8359   Similar handle instructions throwing exceptions internally.  */
8360void
8361fixup_abnormal_edges (void)
8362{
8363  bool inserted = false;
8364  basic_block bb;
8365
8366  FOR_EACH_BB (bb)
8367    {
8368      edge e;
8369      edge_iterator ei;
8370
8371      /* Look for cases we are interested in - calls or instructions causing
8372         exceptions.  */
8373      FOR_EACH_EDGE (e, ei, bb->succs)
8374	{
8375	  if (e->flags & EDGE_ABNORMAL_CALL)
8376	    break;
8377	  if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8378	      == (EDGE_ABNORMAL | EDGE_EH))
8379	    break;
8380	}
8381      if (e && !CALL_P (BB_END (bb))
8382	  && !can_throw_internal (BB_END (bb)))
8383	{
8384	  rtx insn;
8385
8386	  /* Get past the new insns generated.  Allow notes, as the insns
8387	     may be already deleted.  */
8388	  insn = BB_END (bb);
8389	  while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8390		 && !can_throw_internal (insn)
8391		 && insn != BB_HEAD (bb))
8392	    insn = PREV_INSN (insn);
8393
8394	  if (CALL_P (insn) || can_throw_internal (insn))
8395	    {
8396	      rtx stop, next;
8397
8398	      stop = NEXT_INSN (BB_END (bb));
8399	      BB_END (bb) = insn;
8400	      insn = NEXT_INSN (insn);
8401
8402	      FOR_EACH_EDGE (e, ei, bb->succs)
8403		if (e->flags & EDGE_FALLTHRU)
8404		  break;
8405
8406	      while (insn && insn != stop)
8407		{
8408		  next = NEXT_INSN (insn);
8409		  if (INSN_P (insn))
8410		    {
8411	              delete_insn (insn);
8412
8413		      /* Sometimes there's still the return value USE.
8414			 If it's placed after a trapping call (i.e. that
8415			 call is the last insn anyway), we have no fallthru
8416			 edge.  Simply delete this use and don't try to insert
8417			 on the non-existent edge.  */
8418		      if (GET_CODE (PATTERN (insn)) != USE)
8419			{
8420			  /* We're not deleting it, we're moving it.  */
8421			  INSN_DELETED_P (insn) = 0;
8422			  PREV_INSN (insn) = NULL_RTX;
8423			  NEXT_INSN (insn) = NULL_RTX;
8424
8425			  insert_insn_on_edge (insn, e);
8426			  inserted = true;
8427			}
8428		    }
8429		  insn = next;
8430		}
8431	    }
8432
8433	  /* It may be that we don't find any such trapping insn.  In this
8434	     case we discovered quite late that the insn that had been
8435	     marked as can_throw_internal in fact couldn't trap at all.
8436	     So we should in fact delete the EH edges out of the block.  */
8437	  else
8438	    purge_dead_edges (bb);
8439	}
8440    }
8441
8442  /* We've possibly turned single trapping insn into multiple ones.  */
8443  if (flag_non_call_exceptions)
8444    {
8445      sbitmap blocks;
8446      blocks = sbitmap_alloc (last_basic_block);
8447      sbitmap_ones (blocks);
8448      find_many_sub_basic_blocks (blocks);
8449    }
8450
8451  if (inserted)
8452    commit_edge_insertions ();
8453
8454#ifdef ENABLE_CHECKING
8455  /* Verify that we didn't turn one trapping insn into many, and that
8456     we found and corrected all of the problems wrt fixups on the
8457     fallthru edge.  */
8458  verify_flow_info ();
8459#endif
8460}
8461