regclass.c revision 96263
1/* Compute register class preferences for pseudo-registers.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3   1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA.  */
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24   It also defines some tables of information about the hardware registers
25   and a function init_reg_sets to initialize the tables.  */
26
27#include "config.h"
28#include "system.h"
29#include "rtl.h"
30#include "expr.h"
31#include "tm_p.h"
32#include "hard-reg-set.h"
33#include "flags.h"
34#include "basic-block.h"
35#include "regs.h"
36#include "function.h"
37#include "insn-config.h"
38#include "recog.h"
39#include "reload.h"
40#include "real.h"
41#include "toplev.h"
42#include "output.h"
43#include "ggc.h"
44
45#ifndef REGISTER_MOVE_COST
46#define REGISTER_MOVE_COST(m, x, y) 2
47#endif
48
49static void init_reg_sets_1	PARAMS ((void));
50static void init_reg_modes	PARAMS ((void));
51
52/* If we have auto-increment or auto-decrement and we can have secondary
53   reloads, we are not allowed to use classes requiring secondary
54   reloads for pseudos auto-incremented since reload can't handle it.  */
55
56#ifdef AUTO_INC_DEC
57#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58#define FORBIDDEN_INC_DEC_CLASSES
59#endif
60#endif
61
62/* Register tables used by many passes.  */
63
64/* Indexed by hard register number, contains 1 for registers
65   that are fixed use (stack pointer, pc, frame pointer, etc.).
66   These are the registers that cannot be used to allocate
67   a pseudo reg for general use.  */
68
69char fixed_regs[FIRST_PSEUDO_REGISTER];
70
71/* Same info as a HARD_REG_SET.  */
72
73HARD_REG_SET fixed_reg_set;
74
75/* Data for initializing the above.  */
76
77static const char initial_fixed_regs[] = FIXED_REGISTERS;
78
79/* Indexed by hard register number, contains 1 for registers
80   that are fixed use or are clobbered by function calls.
81   These are the registers that cannot be used to allocate
82   a pseudo reg whose life crosses calls unless we are able
83   to save/restore them across the calls.  */
84
85char call_used_regs[FIRST_PSEUDO_REGISTER];
86
87/* Same info as a HARD_REG_SET.  */
88
89HARD_REG_SET call_used_reg_set;
90
91/* HARD_REG_SET of registers we want to avoid caller saving.  */
92HARD_REG_SET losing_caller_save_reg_set;
93
94/* Data for initializing the above.  */
95
96static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
97
98/* This is much like call_used_regs, except it doesn't have to
99   be a superset of FIXED_REGISTERS. This vector indicates
100   what is really call clobbered, and is used when defining
101   regs_invalidated_by_call.  */
102
103#ifdef CALL_REALLY_USED_REGISTERS
104char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105#endif
106
107/* Indexed by hard register number, contains 1 for registers that are
108   fixed use or call used registers that cannot hold quantities across
109   calls even if we are willing to save and restore them.  call fixed
110   registers are a subset of call used registers.  */
111
112char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113
114/* The same info as a HARD_REG_SET.  */
115
116HARD_REG_SET call_fixed_reg_set;
117
118/* Number of non-fixed registers.  */
119
120int n_non_fixed_regs;
121
122/* Indexed by hard register number, contains 1 for registers
123   that are being used for global register decls.
124   These must be exempt from ordinary flow analysis
125   and are also considered fixed.  */
126
127char global_regs[FIRST_PSEUDO_REGISTER];
128
129/* Contains 1 for registers that are set or clobbered by calls.  */
130/* ??? Ideally, this would be just call_used_regs plus global_regs, but
131   for someone's bright idea to have call_used_regs strictly include
132   fixed_regs.  Which leaves us guessing as to the set of fixed_regs
133   that are actually preserved.  We know for sure that those associated
134   with the local stack frame are safe, but scant others.  */
135
136HARD_REG_SET regs_invalidated_by_call;
137
138/* Table of register numbers in the order in which to try to use them.  */
139#ifdef REG_ALLOC_ORDER
140int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
141
142/* The inverse of reg_alloc_order.  */
143int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144#endif
145
146/* For each reg class, a HARD_REG_SET saying which registers are in it.  */
147
148HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149
150/* The same information, but as an array of unsigned ints.  We copy from
151   these unsigned ints to the table above.  We do this so the tm.h files
152   do not have to be aware of the wordsize for machines with <= 64 regs.
153   Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
154
155#define N_REG_INTS  \
156  ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
157
158static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159  = REG_CLASS_CONTENTS;
160
161/* For each reg class, number of regs it contains.  */
162
163unsigned int reg_class_size[N_REG_CLASSES];
164
165/* For each reg class, table listing all the containing classes.  */
166
167enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168
169/* For each reg class, table listing all the classes contained in it.  */
170
171enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172
173/* For each pair of reg classes,
174   a largest reg class contained in their union.  */
175
176enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177
178/* For each pair of reg classes,
179   the smallest reg class containing their union.  */
180
181enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182
183/* Array containing all of the register names.  Unless
184   DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c.  */
185
186#ifdef DEBUG_REGISTER_NAMES
187const char * reg_names[] = REGISTER_NAMES;
188#endif
189
190/* For each hard register, the widest mode object that it can contain.
191   This will be a MODE_INT mode if the register can hold integers.  Otherwise
192   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193   register.  */
194
195enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
196
197/* 1 if class does contain register of given mode.  */
198
199static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
200
201/* Maximum cost of moving from a register in one class to a register in
202   another class.  Based on REGISTER_MOVE_COST.  */
203
204static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
205
206/* Similar, but here we don't have to move if the first index is a subset
207   of the second so in that case the cost is zero.  */
208
209static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
210
211/* Similar, but here we don't have to move if the first index is a superset
212   of the second so in that case the cost is zero.  */
213
214static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
215
216#ifdef FORBIDDEN_INC_DEC_CLASSES
217
218/* These are the classes that regs which are auto-incremented or decremented
219   cannot be put in.  */
220
221static int forbidden_inc_dec_class[N_REG_CLASSES];
222
223/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224   context.  */
225
226static char *in_inc_dec;
227
228#endif /* FORBIDDEN_INC_DEC_CLASSES */
229
230#ifdef CLASS_CANNOT_CHANGE_MODE
231
232/* These are the classes containing only registers that can be used in
233   a SUBREG expression that changes the mode of the register in some
234   way that is illegal.  */
235
236static int class_can_change_mode[N_REG_CLASSES];
237
238/* Registers, including pseudos, which change modes in some way that
239   is illegal.  */
240
241static regset reg_changes_mode;
242
243#endif /* CLASS_CANNOT_CHANGE_MODE */
244
245#ifdef HAVE_SECONDARY_RELOADS
246
247/* Sample MEM values for use by memory_move_secondary_cost.  */
248
249static rtx top_of_stack[MAX_MACHINE_MODE];
250
251#endif /* HAVE_SECONDARY_RELOADS */
252
253/* Linked list of reg_info structures allocated for reg_n_info array.
254   Grouping all of the allocated structures together in one lump
255   means only one call to bzero to clear them, rather than n smaller
256   calls.  */
257struct reg_info_data {
258  struct reg_info_data *next;	/* next set of reg_info structures */
259  size_t min_index;		/* minimum index # */
260  size_t max_index;		/* maximum index # */
261  char used_p;			/* non-zero if this has been used previously */
262  reg_info data[1];		/* beginning of the reg_info data */
263};
264
265static struct reg_info_data *reg_info_head;
266
267/* No more global register variables may be declared; true once
268   regclass has been initialized.  */
269
270static int no_global_reg_vars = 0;
271
272
273/* Function called only once to initialize the above data on reg usage.
274   Once this is done, various switches may override.  */
275
276void
277init_reg_sets ()
278{
279  int i, j;
280
281  /* First copy the register information from the initial int form into
282     the regsets.  */
283
284  for (i = 0; i < N_REG_CLASSES; i++)
285    {
286      CLEAR_HARD_REG_SET (reg_class_contents[i]);
287
288      /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
289      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
290	if (int_reg_class_contents[i][j / 32]
291	    & ((unsigned) 1 << (j % 32)))
292	  SET_HARD_REG_BIT (reg_class_contents[i], j);
293    }
294
295  memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
296  memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
297  memset (global_regs, 0, sizeof global_regs);
298
299  /* Do any additional initialization regsets may need */
300  INIT_ONCE_REG_SET ();
301
302#ifdef REG_ALLOC_ORDER
303  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
304    inv_reg_alloc_order[reg_alloc_order[i]] = i;
305#endif
306}
307
308/* After switches have been processed, which perhaps alter
309   `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
310
311static void
312init_reg_sets_1 ()
313{
314  unsigned int i, j;
315  unsigned int /* enum machine_mode */ m;
316  char allocatable_regs_of_mode [MAX_MACHINE_MODE];
317
318  /* This macro allows the fixed or call-used registers
319     and the register classes to depend on target flags.  */
320
321#ifdef CONDITIONAL_REGISTER_USAGE
322  CONDITIONAL_REGISTER_USAGE;
323#endif
324
325  /* Compute number of hard regs in each class.  */
326
327  memset ((char *) reg_class_size, 0, sizeof reg_class_size);
328  for (i = 0; i < N_REG_CLASSES; i++)
329    for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
330      if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
331	reg_class_size[i]++;
332
333  /* Initialize the table of subunions.
334     reg_class_subunion[I][J] gets the largest-numbered reg-class
335     that is contained in the union of classes I and J.  */
336
337  for (i = 0; i < N_REG_CLASSES; i++)
338    {
339      for (j = 0; j < N_REG_CLASSES; j++)
340	{
341#ifdef HARD_REG_SET
342	  register		/* Declare it register if it's a scalar.  */
343#endif
344	    HARD_REG_SET c;
345	  int k;
346
347	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
348	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
349	  for (k = 0; k < N_REG_CLASSES; k++)
350	    {
351	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
352				     subclass1);
353	      continue;
354
355	    subclass1:
356	      /* keep the largest subclass */		/* SPEE 900308 */
357	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
358				     reg_class_contents[(int) reg_class_subunion[i][j]],
359				     subclass2);
360	      reg_class_subunion[i][j] = (enum reg_class) k;
361	    subclass2:
362	      ;
363	    }
364	}
365    }
366
367  /* Initialize the table of superunions.
368     reg_class_superunion[I][J] gets the smallest-numbered reg-class
369     containing the union of classes I and J.  */
370
371  for (i = 0; i < N_REG_CLASSES; i++)
372    {
373      for (j = 0; j < N_REG_CLASSES; j++)
374	{
375#ifdef HARD_REG_SET
376	  register		/* Declare it register if it's a scalar.  */
377#endif
378	    HARD_REG_SET c;
379	  int k;
380
381	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
382	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
383	  for (k = 0; k < N_REG_CLASSES; k++)
384	    GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
385
386	superclass:
387	  reg_class_superunion[i][j] = (enum reg_class) k;
388	}
389    }
390
391  /* Initialize the tables of subclasses and superclasses of each reg class.
392     First clear the whole table, then add the elements as they are found.  */
393
394  for (i = 0; i < N_REG_CLASSES; i++)
395    {
396      for (j = 0; j < N_REG_CLASSES; j++)
397	{
398	  reg_class_superclasses[i][j] = LIM_REG_CLASSES;
399	  reg_class_subclasses[i][j] = LIM_REG_CLASSES;
400	}
401    }
402
403  for (i = 0; i < N_REG_CLASSES; i++)
404    {
405      if (i == (int) NO_REGS)
406	continue;
407
408      for (j = i + 1; j < N_REG_CLASSES; j++)
409	{
410	  enum reg_class *p;
411
412	  GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
413				 subclass);
414	  continue;
415	subclass:
416	  /* Reg class I is a subclass of J.
417	     Add J to the table of superclasses of I.  */
418	  p = &reg_class_superclasses[i][0];
419	  while (*p != LIM_REG_CLASSES) p++;
420	  *p = (enum reg_class) j;
421	  /* Add I to the table of superclasses of J.  */
422	  p = &reg_class_subclasses[j][0];
423	  while (*p != LIM_REG_CLASSES) p++;
424	  *p = (enum reg_class) i;
425	}
426    }
427
428  /* Initialize "constant" tables.  */
429
430  CLEAR_HARD_REG_SET (fixed_reg_set);
431  CLEAR_HARD_REG_SET (call_used_reg_set);
432  CLEAR_HARD_REG_SET (call_fixed_reg_set);
433  CLEAR_HARD_REG_SET (regs_invalidated_by_call);
434
435  memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
436
437  n_non_fixed_regs = 0;
438
439  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
440    {
441      if (fixed_regs[i])
442	SET_HARD_REG_BIT (fixed_reg_set, i);
443      else
444	n_non_fixed_regs++;
445
446      if (call_used_regs[i])
447	SET_HARD_REG_BIT (call_used_reg_set, i);
448      if (call_fixed_regs[i])
449	SET_HARD_REG_BIT (call_fixed_reg_set, i);
450      if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
451	SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
452
453      /* There are a couple of fixed registers that we know are safe to
454	 exclude from being clobbered by calls:
455
456	 The frame pointer is always preserved across calls.  The arg pointer
457	 is if it is fixed.  The stack pointer usually is, unless
458	 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
459	 If we are generating PIC code, the PIC offset table register is
460	 preserved across calls, though the target can override that.  */
461
462      if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
463	;
464#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465      else if (i == HARD_FRAME_POINTER_REGNUM)
466	;
467#endif
468#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
469      else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
470	;
471#endif
472#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
473      else if (i == PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
474	;
475#endif
476      else if (0
477#ifdef CALL_REALLY_USED_REGISTERS
478	       || call_really_used_regs[i]
479#else
480	       || call_used_regs[i]
481#endif
482	       || global_regs[i])
483	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
484    }
485
486  memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
487  memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
488  for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
489    for (i = 0; i < N_REG_CLASSES; i++)
490      if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
491	for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
492	  if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
493	      && HARD_REGNO_MODE_OK (j, m))
494	     {
495	       contains_reg_of_mode [i][m] = 1;
496	       allocatable_regs_of_mode [m] = 1;
497	       break;
498	     }
499
500  /* Initialize the move cost table.  Find every subset of each class
501     and take the maximum cost of moving any subset to any other.  */
502
503  for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
504    if (allocatable_regs_of_mode [m])
505      {
506	for (i = 0; i < N_REG_CLASSES; i++)
507	  if (contains_reg_of_mode [i][m])
508	    for (j = 0; j < N_REG_CLASSES; j++)
509	      {
510		int cost;
511		enum reg_class *p1, *p2;
512
513		if (!contains_reg_of_mode [j][m])
514		  {
515		    move_cost[m][i][j] = 65536;
516		    may_move_in_cost[m][i][j] = 65536;
517		    may_move_out_cost[m][i][j] = 65536;
518		  }
519		else
520		  {
521		    cost = REGISTER_MOVE_COST (m, i, j);
522
523		    for (p2 = &reg_class_subclasses[j][0];
524			 *p2 != LIM_REG_CLASSES;
525			 p2++)
526		      if (*p2 != i && contains_reg_of_mode [*p2][m])
527			cost = MAX (cost, move_cost [m][i][*p2]);
528
529		    for (p1 = &reg_class_subclasses[i][0];
530			 *p1 != LIM_REG_CLASSES;
531			 p1++)
532		      if (*p1 != j && contains_reg_of_mode [*p1][m])
533			cost = MAX (cost, move_cost [m][*p1][j]);
534
535		    move_cost[m][i][j] = cost;
536
537		    if (reg_class_subset_p (i, j))
538		      may_move_in_cost[m][i][j] = 0;
539		    else
540		      may_move_in_cost[m][i][j] = cost;
541
542		    if (reg_class_subset_p (j, i))
543		      may_move_out_cost[m][i][j] = 0;
544		    else
545		      may_move_out_cost[m][i][j] = cost;
546		  }
547	      }
548	  else
549	    for (j = 0; j < N_REG_CLASSES; j++)
550	      {
551		move_cost[m][i][j] = 65536;
552		may_move_in_cost[m][i][j] = 65536;
553		may_move_out_cost[m][i][j] = 65536;
554	      }
555      }
556
557#ifdef CLASS_CANNOT_CHANGE_MODE
558  {
559    HARD_REG_SET c;
560    COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
561
562    for (i = 0; i < N_REG_CLASSES; i++)
563      {
564	GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
565	class_can_change_mode [i] = 0;
566	continue;
567      ok_class:
568	class_can_change_mode [i] = 1;
569      }
570    }
571#endif /* CLASS_CANNOT_CHANGE_MODE */
572}
573
574/* Compute the table of register modes.
575   These values are used to record death information for individual registers
576   (as opposed to a multi-register mode).  */
577
578static void
579init_reg_modes ()
580{
581  int i;
582
583  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
584    {
585      reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
586
587      /* If we couldn't find a valid mode, just use the previous mode.
588         ??? One situation in which we need to do this is on the mips where
589	 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2.  Ideally we'd like
590	 to use DF mode for the even registers and VOIDmode for the odd
591	 (for the cpu models where the odd ones are inaccessible).  */
592      if (reg_raw_mode[i] == VOIDmode)
593	reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
594    }
595}
596
597/* Finish initializing the register sets and
598   initialize the register modes.  */
599
600void
601init_regs ()
602{
603  /* This finishes what was started by init_reg_sets, but couldn't be done
604     until after register usage was specified.  */
605  init_reg_sets_1 ();
606
607  init_reg_modes ();
608
609#ifdef HAVE_SECONDARY_RELOADS
610  {
611    /* Make some fake stack-frame MEM references for use in
612       memory_move_secondary_cost.  */
613    int i;
614
615    for (i = 0; i < MAX_MACHINE_MODE; i++)
616      top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
617    ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
618  }
619#endif
620}
621
622#ifdef HAVE_SECONDARY_RELOADS
623
624/* Compute extra cost of moving registers to/from memory due to reloads.
625   Only needed if secondary reloads are required for memory moves.  */
626
627int
628memory_move_secondary_cost (mode, class, in)
629     enum machine_mode mode;
630     enum reg_class class;
631     int in;
632{
633  enum reg_class altclass;
634  int partial_cost = 0;
635  /* We need a memory reference to feed to SECONDARY... macros.  */
636  /* mem may be unused even if the SECONDARY_ macros are defined.  */
637  rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
638
639
640  if (in)
641    {
642#ifdef SECONDARY_INPUT_RELOAD_CLASS
643      altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
644#else
645      altclass = NO_REGS;
646#endif
647    }
648  else
649    {
650#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
651      altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
652#else
653      altclass = NO_REGS;
654#endif
655    }
656
657  if (altclass == NO_REGS)
658    return 0;
659
660  if (in)
661    partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
662  else
663    partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
664
665  if (class == altclass)
666    /* This isn't simply a copy-to-temporary situation.  Can't guess
667       what it is, so MEMORY_MOVE_COST really ought not to be calling
668       here in that case.
669
670       I'm tempted to put in an abort here, but returning this will
671       probably only give poor estimates, which is what we would've
672       had before this code anyways.  */
673    return partial_cost;
674
675  /* Check if the secondary reload register will also need a
676     secondary reload.  */
677  return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
678}
679#endif
680
681/* Return a machine mode that is legitimate for hard reg REGNO and large
682   enough to save nregs.  If we can't find one, return VOIDmode.  */
683
684enum machine_mode
685choose_hard_reg_mode (regno, nregs)
686     unsigned int regno ATTRIBUTE_UNUSED;
687     unsigned int nregs;
688{
689  unsigned int /* enum machine_mode */ m;
690  enum machine_mode found_mode = VOIDmode, mode;
691
692  /* We first look for the largest integer mode that can be validly
693     held in REGNO.  If none, we look for the largest floating-point mode.
694     If we still didn't find a valid mode, try CCmode.  */
695
696  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
697       mode != VOIDmode;
698       mode = GET_MODE_WIDER_MODE (mode))
699    if (HARD_REGNO_NREGS (regno, mode) == nregs
700	&& HARD_REGNO_MODE_OK (regno, mode))
701      found_mode = mode;
702
703  if (found_mode != VOIDmode)
704    return found_mode;
705
706  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
707       mode != VOIDmode;
708       mode = GET_MODE_WIDER_MODE (mode))
709    if (HARD_REGNO_NREGS (regno, mode) == nregs
710	&& HARD_REGNO_MODE_OK (regno, mode))
711      found_mode = mode;
712
713  if (found_mode != VOIDmode)
714    return found_mode;
715
716  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
717       mode != VOIDmode;
718       mode = GET_MODE_WIDER_MODE (mode))
719    if (HARD_REGNO_NREGS (regno, mode) == nregs
720	&& HARD_REGNO_MODE_OK (regno, mode))
721      found_mode = mode;
722
723  if (found_mode != VOIDmode)
724    return found_mode;
725
726  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
727       mode != VOIDmode;
728       mode = GET_MODE_WIDER_MODE (mode))
729    if (HARD_REGNO_NREGS (regno, mode) == nregs
730	&& HARD_REGNO_MODE_OK (regno, mode))
731      found_mode = mode;
732
733  if (found_mode != VOIDmode)
734    return found_mode;
735
736  /* Iterate over all of the CCmodes.  */
737  for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
738    {
739      mode = (enum machine_mode) m;
740      if (HARD_REGNO_NREGS (regno, mode) == nregs
741	  && HARD_REGNO_MODE_OK (regno, mode))
742	return mode;
743    }
744
745  /* We can't find a mode valid for this register.  */
746  return VOIDmode;
747}
748
749/* Specify the usage characteristics of the register named NAME.
750   It should be a fixed register if FIXED and a
751   call-used register if CALL_USED.  */
752
753void
754fix_register (name, fixed, call_used)
755     const char *name;
756     int fixed, call_used;
757{
758  int i;
759
760  /* Decode the name and update the primary form of
761     the register info.  */
762
763  if ((i = decode_reg_name (name)) >= 0)
764    {
765      if ((i == STACK_POINTER_REGNUM
766#ifdef HARD_FRAME_POINTER_REGNUM
767	   || i == HARD_FRAME_POINTER_REGNUM
768#else
769	   || i == FRAME_POINTER_REGNUM
770#endif
771	   )
772	  && (fixed == 0 || call_used == 0))
773	{
774	  static const char * const what_option[2][2] = {
775	    { "call-saved", "call-used" },
776	    { "no-such-option", "fixed" }};
777
778	  error ("can't use '%s' as a %s register", name,
779		 what_option[fixed][call_used]);
780	}
781      else
782	{
783	  fixed_regs[i] = fixed;
784	  call_used_regs[i] = call_used;
785#ifdef CALL_REALLY_USED_REGISTERS
786	  if (fixed == 0)
787	    call_really_used_regs[i] = call_used;
788#endif
789	}
790    }
791  else
792    {
793      warning ("unknown register name: %s", name);
794    }
795}
796
797/* Mark register number I as global.  */
798
799void
800globalize_reg (i)
801     int i;
802{
803  if (fixed_regs[i] == 0 && no_global_reg_vars)
804    error ("global register variable follows a function definition");
805
806  if (global_regs[i])
807    {
808      warning ("register used for two global register variables");
809      return;
810    }
811
812  if (call_used_regs[i] && ! fixed_regs[i])
813    warning ("call-clobbered register used for global register variable");
814
815  global_regs[i] = 1;
816
817  /* If already fixed, nothing else to do.  */
818  if (fixed_regs[i])
819    return;
820
821  fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
822  n_non_fixed_regs--;
823
824  SET_HARD_REG_BIT (fixed_reg_set, i);
825  SET_HARD_REG_BIT (call_used_reg_set, i);
826  SET_HARD_REG_BIT (call_fixed_reg_set, i);
827}
828
829/* Now the data and code for the `regclass' pass, which happens
830   just before local-alloc.  */
831
832/* The `costs' struct records the cost of using a hard register of each class
833   and of using memory for each pseudo.  We use this data to set up
834   register class preferences.  */
835
836struct costs
837{
838  int cost[N_REG_CLASSES];
839  int mem_cost;
840};
841
842/* Structure used to record preferrences of given pseudo.  */
843struct reg_pref
844{
845  /* (enum reg_class) prefclass is the preferred class.  */
846  char prefclass;
847
848  /* altclass is a register class that we should use for allocating
849     pseudo if no register in the preferred class is available.
850     If no register in this class is available, memory is preferred.
851
852     It might appear to be more general to have a bitmask of classes here,
853     but since it is recommended that there be a class corresponding to the
854     union of most major pair of classes, that generality is not required.  */
855  char altclass;
856};
857
858/* Record the cost of each class for each pseudo.  */
859
860static struct costs *costs;
861
862/* Initialized once, and used to initialize cost values for each insn.  */
863
864static struct costs init_cost;
865
866/* Record preferrences of each pseudo.
867   This is available after `regclass' is run.  */
868
869static struct reg_pref *reg_pref;
870
871/* Allocated buffers for reg_pref.  */
872
873static struct reg_pref *reg_pref_buffer;
874
875/* Frequency of executions of current insn.  */
876
877static int frequency;
878
879static rtx scan_one_insn	PARAMS ((rtx, int));
880static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
881static void dump_regclass	PARAMS ((FILE *));
882static void record_reg_classes	PARAMS ((int, int, rtx *, enum machine_mode *,
883				       const char **, rtx,
884				       struct costs *, struct reg_pref *));
885static int copy_cost		PARAMS ((rtx, enum machine_mode,
886				       enum reg_class, int));
887static void record_address_regs	PARAMS ((rtx, enum reg_class, int));
888#ifdef FORBIDDEN_INC_DEC_CLASSES
889static int auto_inc_dec_reg_p	PARAMS ((rtx, enum machine_mode));
890#endif
891static void reg_scan_mark_refs	PARAMS ((rtx, rtx, int, unsigned int));
892
893/* Return the reg_class in which pseudo reg number REGNO is best allocated.
894   This function is sometimes called before the info has been computed.
895   When that happens, just return GENERAL_REGS, which is innocuous.  */
896
897enum reg_class
898reg_preferred_class (regno)
899     int regno;
900{
901  if (reg_pref == 0)
902    return GENERAL_REGS;
903  return (enum reg_class) reg_pref[regno].prefclass;
904}
905
906enum reg_class
907reg_alternate_class (regno)
908     int regno;
909{
910  if (reg_pref == 0)
911    return ALL_REGS;
912
913  return (enum reg_class) reg_pref[regno].altclass;
914}
915
916/* Initialize some global data for this pass.  */
917
918void
919regclass_init ()
920{
921  int i;
922
923  init_cost.mem_cost = 10000;
924  for (i = 0; i < N_REG_CLASSES; i++)
925    init_cost.cost[i] = 10000;
926
927  /* This prevents dump_flow_info from losing if called
928     before regclass is run.  */
929  reg_pref = NULL;
930
931  /* No more global register variables may be declared.  */
932  no_global_reg_vars = 1;
933}
934
935/* Dump register costs.  */
936static void
937dump_regclass (dump)
938     FILE *dump;
939{
940  static const char *const reg_class_names[] = REG_CLASS_NAMES;
941  int i;
942  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
943    {
944      int /* enum reg_class */ class;
945      if (REG_N_REFS (i))
946	{
947	  fprintf (dump, "  Register %i costs:", i);
948	  for (class = 0; class < (int) N_REG_CLASSES; class++)
949	    if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
950#ifdef FORBIDDEN_INC_DEC_CLASSES
951		&& (!in_inc_dec[i]
952		    || !forbidden_inc_dec_class[(enum reg_class) class])
953#endif
954#ifdef CLASS_CANNOT_CHANGE_MODE
955		&& (!REGNO_REG_SET_P (reg_changes_mode, i)
956		     || class_can_change_mode [(enum reg_class) class])
957#endif
958		)
959	    fprintf (dump, " %s:%i", reg_class_names[class],
960		     costs[i].cost[(enum reg_class) class]);
961	  fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
962	}
963    }
964}
965
966
967/* Calculate the costs of insn operands.  */
968
969static void
970record_operand_costs (insn, op_costs, reg_pref)
971     rtx insn;
972     struct costs *op_costs;
973     struct reg_pref *reg_pref;
974{
975  const char *constraints[MAX_RECOG_OPERANDS];
976  enum machine_mode modes[MAX_RECOG_OPERANDS];
977  int i;
978
979  for (i = 0; i < recog_data.n_operands; i++)
980    {
981      constraints[i] = recog_data.constraints[i];
982      modes[i] = recog_data.operand_mode[i];
983    }
984
985  /* If we get here, we are set up to record the costs of all the
986     operands for this insn.  Start by initializing the costs.
987     Then handle any address registers.  Finally record the desired
988     classes for any pseudos, doing it twice if some pair of
989     operands are commutative.  */
990
991  for (i = 0; i < recog_data.n_operands; i++)
992    {
993      op_costs[i] = init_cost;
994
995      if (GET_CODE (recog_data.operand[i]) == SUBREG)
996	{
997	  rtx inner = SUBREG_REG (recog_data.operand[i]);
998#ifdef CLASS_CANNOT_CHANGE_MODE
999	  if (GET_CODE (inner) == REG
1000	      && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
1001	    SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
1002#endif
1003	  recog_data.operand[i] = inner;
1004	}
1005
1006      if (GET_CODE (recog_data.operand[i]) == MEM)
1007	record_address_regs (XEXP (recog_data.operand[i], 0),
1008			     MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1009      else if (constraints[i][0] == 'p')
1010	record_address_regs (recog_data.operand[i],
1011			     MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1012    }
1013
1014  /* Check for commutative in a separate loop so everything will
1015     have been initialized.  We must do this even if one operand
1016     is a constant--see addsi3 in m68k.md.  */
1017
1018  for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1019    if (constraints[i][0] == '%')
1020      {
1021	const char *xconstraints[MAX_RECOG_OPERANDS];
1022	int j;
1023
1024	/* Handle commutative operands by swapping the constraints.
1025	   We assume the modes are the same.  */
1026
1027	for (j = 0; j < recog_data.n_operands; j++)
1028	  xconstraints[j] = constraints[j];
1029
1030	xconstraints[i] = constraints[i+1];
1031	xconstraints[i+1] = constraints[i];
1032	record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1033			    recog_data.operand, modes,
1034			    xconstraints, insn, op_costs, reg_pref);
1035      }
1036
1037  record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1038		      recog_data.operand, modes,
1039		      constraints, insn, op_costs, reg_pref);
1040}
1041
1042/* Subroutine of regclass, processes one insn INSN.  Scan it and record each
1043   time it would save code to put a certain register in a certain class.
1044   PASS, when nonzero, inhibits some optimizations which need only be done
1045   once.
1046   Return the last insn processed, so that the scan can be continued from
1047   there.  */
1048
1049static rtx
1050scan_one_insn (insn, pass)
1051     rtx insn;
1052     int pass;
1053{
1054  enum rtx_code code = GET_CODE (insn);
1055  enum rtx_code pat_code;
1056  rtx set, note;
1057  int i, j;
1058  struct costs op_costs[MAX_RECOG_OPERANDS];
1059
1060  if (GET_RTX_CLASS (code) != 'i')
1061    return insn;
1062
1063  pat_code = GET_CODE (PATTERN (insn));
1064  if (pat_code == USE
1065      || pat_code == CLOBBER
1066      || pat_code == ASM_INPUT
1067      || pat_code == ADDR_VEC
1068      || pat_code == ADDR_DIFF_VEC)
1069    return insn;
1070
1071  set = single_set (insn);
1072  extract_insn (insn);
1073
1074  /* If this insn loads a parameter from its stack slot, then
1075     it represents a savings, rather than a cost, if the
1076     parameter is stored in memory.  Record this fact.  */
1077
1078  if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1079      && GET_CODE (SET_SRC (set)) == MEM
1080      && (note = find_reg_note (insn, REG_EQUIV,
1081				NULL_RTX)) != 0
1082      && GET_CODE (XEXP (note, 0)) == MEM)
1083    {
1084      costs[REGNO (SET_DEST (set))].mem_cost
1085	-= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1086			      GENERAL_REGS, 1)
1087	    * frequency);
1088      record_address_regs (XEXP (SET_SRC (set), 0),
1089			   MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1090      return insn;
1091    }
1092
1093  /* Improve handling of two-address insns such as
1094     (set X (ashift CONST Y)) where CONST must be made to
1095     match X. Change it into two insns: (set X CONST)
1096     (set X (ashift X Y)).  If we left this for reloading, it
1097     would probably get three insns because X and Y might go
1098     in the same place. This prevents X and Y from receiving
1099     the same hard reg.
1100
1101     We can only do this if the modes of operands 0 and 1
1102     (which might not be the same) are tieable and we only need
1103     do this during our first pass.  */
1104
1105  if (pass == 0 && optimize
1106      && recog_data.n_operands >= 3
1107      && recog_data.constraints[1][0] == '0'
1108      && recog_data.constraints[1][1] == 0
1109      && CONSTANT_P (recog_data.operand[1])
1110      && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1111      && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1112      && GET_CODE (recog_data.operand[0]) == REG
1113      && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1114			  recog_data.operand_mode[1]))
1115    {
1116      rtx previnsn = prev_real_insn (insn);
1117      rtx dest
1118	= gen_lowpart (recog_data.operand_mode[1],
1119		       recog_data.operand[0]);
1120      rtx newinsn
1121	= emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1122
1123      /* If this insn was the start of a basic block,
1124	 include the new insn in that block.
1125	 We need not check for code_label here;
1126	 while a basic block can start with a code_label,
1127	 INSN could not be at the beginning of that block.  */
1128      if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1129	{
1130	  int b;
1131	  for (b = 0; b < n_basic_blocks; b++)
1132	    if (insn == BLOCK_HEAD (b))
1133	      BLOCK_HEAD (b) = newinsn;
1134	}
1135
1136      /* This makes one more setting of new insns's dest.  */
1137      REG_N_SETS (REGNO (recog_data.operand[0]))++;
1138      REG_N_REFS (REGNO (recog_data.operand[0]))++;
1139      REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1140
1141      *recog_data.operand_loc[1] = recog_data.operand[0];
1142      REG_N_REFS (REGNO (recog_data.operand[0]))++;
1143      REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1144      for (i = recog_data.n_dups - 1; i >= 0; i--)
1145	if (recog_data.dup_num[i] == 1)
1146	  {
1147	    *recog_data.dup_loc[i] = recog_data.operand[0];
1148	    REG_N_REFS (REGNO (recog_data.operand[0]))++;
1149	    REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1150	  }
1151
1152      return PREV_INSN (newinsn);
1153    }
1154
1155  record_operand_costs (insn, op_costs, reg_pref);
1156
1157  /* Now add the cost for each operand to the total costs for
1158     its register.  */
1159
1160  for (i = 0; i < recog_data.n_operands; i++)
1161    if (GET_CODE (recog_data.operand[i]) == REG
1162	&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1163      {
1164	int regno = REGNO (recog_data.operand[i]);
1165	struct costs *p = &costs[regno], *q = &op_costs[i];
1166
1167	p->mem_cost += q->mem_cost * frequency;
1168	for (j = 0; j < N_REG_CLASSES; j++)
1169	  p->cost[j] += q->cost[j] * frequency;
1170      }
1171
1172  return insn;
1173}
1174
1175/* This is a pass of the compiler that scans all instructions
1176   and calculates the preferred class for each pseudo-register.
1177   This information can be accessed later by calling `reg_preferred_class'.
1178   This pass comes just before local register allocation.  */
1179
1180void
1181regclass (f, nregs, dump)
1182     rtx f;
1183     int nregs;
1184     FILE *dump;
1185{
1186  rtx insn;
1187  int i;
1188  int pass;
1189
1190  init_recog ();
1191
1192  costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1193
1194#ifdef CLASS_CANNOT_CHANGE_MODE
1195  reg_changes_mode = BITMAP_XMALLOC ();
1196#endif
1197
1198#ifdef FORBIDDEN_INC_DEC_CLASSES
1199
1200  in_inc_dec = (char *) xmalloc (nregs);
1201
1202  /* Initialize information about which register classes can be used for
1203     pseudos that are auto-incremented or auto-decremented.  It would
1204     seem better to put this in init_reg_sets, but we need to be able
1205     to allocate rtx, which we can't do that early.  */
1206
1207  for (i = 0; i < N_REG_CLASSES; i++)
1208    {
1209      rtx r = gen_rtx_REG (VOIDmode, 0);
1210      enum machine_mode m;
1211      int j;
1212
1213      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1214	if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1215	  {
1216	    REGNO (r) = j;
1217
1218	    for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1219		 m = (enum machine_mode) ((int) m + 1))
1220	      if (HARD_REGNO_MODE_OK (j, m))
1221		{
1222		  PUT_MODE (r, m);
1223
1224		  /* If a register is not directly suitable for an
1225		     auto-increment or decrement addressing mode and
1226		     requires secondary reloads, disallow its class from
1227		     being used in such addresses.  */
1228
1229		  if ((0
1230#ifdef SECONDARY_RELOAD_CLASS
1231		       || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1232			   != NO_REGS)
1233#else
1234#ifdef SECONDARY_INPUT_RELOAD_CLASS
1235		       || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1236			   != NO_REGS)
1237#endif
1238#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1239		       || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1240			   != NO_REGS)
1241#endif
1242#endif
1243		       )
1244		      && ! auto_inc_dec_reg_p (r, m))
1245		    forbidden_inc_dec_class[i] = 1;
1246		}
1247	  }
1248    }
1249#endif /* FORBIDDEN_INC_DEC_CLASSES */
1250
1251  /* Normally we scan the insns once and determine the best class to use for
1252     each register.  However, if -fexpensive_optimizations are on, we do so
1253     twice, the second time using the tentative best classes to guide the
1254     selection.  */
1255
1256  for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1257    {
1258      int index;
1259
1260      if (dump)
1261        fprintf (dump, "\n\nPass %i\n\n",pass);
1262      /* Zero out our accumulation of the cost of each class for each reg.  */
1263
1264      memset ((char *) costs, 0, nregs * sizeof (struct costs));
1265
1266#ifdef FORBIDDEN_INC_DEC_CLASSES
1267      memset (in_inc_dec, 0, nregs);
1268#endif
1269
1270      /* Scan the instructions and record each time it would
1271	 save code to put a certain register in a certain class.  */
1272
1273      if (!optimize)
1274	{
1275	  frequency = REG_FREQ_MAX;
1276	  for (insn = f; insn; insn = NEXT_INSN (insn))
1277	    insn = scan_one_insn (insn, pass);
1278	}
1279      else
1280	for (index = 0; index < n_basic_blocks; index++)
1281	  {
1282	    basic_block bb = BASIC_BLOCK (index);
1283
1284	    /* Show that an insn inside a loop is likely to be executed three
1285	       times more than insns outside a loop.  This is much more
1286	       aggressive than the assumptions made elsewhere and is being
1287	       tried as an experiment.  */
1288	    frequency = REG_FREQ_FROM_BB (bb);
1289	    for (insn = bb->head; ; insn = NEXT_INSN (insn))
1290	      {
1291		insn = scan_one_insn (insn, pass);
1292		if (insn == bb->end)
1293		  break;
1294	      }
1295	  }
1296
1297      /* Now for each register look at how desirable each class is
1298	 and find which class is preferred.  Store that in
1299	 `prefclass'.  Record in `altclass' the largest register
1300	 class any of whose registers is better than memory.  */
1301
1302      if (pass == 0)
1303	reg_pref = reg_pref_buffer;
1304
1305      if (dump)
1306        {
1307	  dump_regclass (dump);
1308	  fprintf (dump,"\n");
1309	}
1310      for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1311	{
1312	  int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1313	  enum reg_class best = ALL_REGS, alt = NO_REGS;
1314	  /* This is an enum reg_class, but we call it an int
1315	     to save lots of casts.  */
1316	  int class;
1317	  struct costs *p = &costs[i];
1318
1319	  /* In non-optimizing compilation REG_N_REFS is not initialized
1320	     yet.  */
1321	  if (optimize && !REG_N_REFS (i))
1322	    continue;
1323
1324	  for (class = (int) ALL_REGS - 1; class > 0; class--)
1325	    {
1326	      /* Ignore classes that are too small for this operand or
1327		 invalid for an operand that was auto-incremented.  */
1328	      if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1329#ifdef FORBIDDEN_INC_DEC_CLASSES
1330		  || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1331#endif
1332#ifdef CLASS_CANNOT_CHANGE_MODE
1333		  || (REGNO_REG_SET_P (reg_changes_mode, i)
1334		      && ! class_can_change_mode [class])
1335#endif
1336		  )
1337		;
1338	      else if (p->cost[class] < best_cost)
1339		{
1340		  best_cost = p->cost[class];
1341		  best = (enum reg_class) class;
1342		}
1343	      else if (p->cost[class] == best_cost)
1344		best = reg_class_subunion[(int) best][class];
1345	    }
1346
1347	  /* Record the alternate register class; i.e., a class for which
1348	     every register in it is better than using memory.  If adding a
1349	     class would make a smaller class (i.e., no union of just those
1350	     classes exists), skip that class.  The major unions of classes
1351	     should be provided as a register class.  Don't do this if we
1352	     will be doing it again later.  */
1353
1354	  if ((pass == 1  || dump) || ! flag_expensive_optimizations)
1355	    for (class = 0; class < N_REG_CLASSES; class++)
1356	      if (p->cost[class] < p->mem_cost
1357		  && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1358		      > reg_class_size[(int) alt])
1359#ifdef FORBIDDEN_INC_DEC_CLASSES
1360		  && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1361#endif
1362#ifdef CLASS_CANNOT_CHANGE_MODE
1363		  && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1364			&& ! class_can_change_mode [class])
1365#endif
1366		  )
1367		alt = reg_class_subunion[(int) alt][class];
1368
1369	  /* If we don't add any classes, nothing to try.  */
1370	  if (alt == best)
1371	    alt = NO_REGS;
1372
1373	  if (dump
1374	      && (reg_pref[i].prefclass != (int) best
1375		  || reg_pref[i].altclass != (int) alt))
1376	    {
1377	      static const char *const reg_class_names[] = REG_CLASS_NAMES;
1378	      fprintf (dump, "  Register %i", i);
1379	      if (alt == ALL_REGS || best == ALL_REGS)
1380		fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1381	      else if (alt == NO_REGS)
1382		fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1383	      else
1384		fprintf (dump, " pref %s, else %s\n",
1385			 reg_class_names[(int) best],
1386			 reg_class_names[(int) alt]);
1387	    }
1388
1389	  /* We cast to (int) because (char) hits bugs in some compilers.  */
1390	  reg_pref[i].prefclass = (int) best;
1391	  reg_pref[i].altclass = (int) alt;
1392	}
1393    }
1394
1395#ifdef FORBIDDEN_INC_DEC_CLASSES
1396  free (in_inc_dec);
1397#endif
1398#ifdef CLASS_CANNOT_CHANGE_MODE
1399  BITMAP_XFREE (reg_changes_mode);
1400#endif
1401  free (costs);
1402}
1403
1404/* Record the cost of using memory or registers of various classes for
1405   the operands in INSN.
1406
1407   N_ALTS is the number of alternatives.
1408
1409   N_OPS is the number of operands.
1410
1411   OPS is an array of the operands.
1412
1413   MODES are the modes of the operands, in case any are VOIDmode.
1414
1415   CONSTRAINTS are the constraints to use for the operands.  This array
1416   is modified by this procedure.
1417
1418   This procedure works alternative by alternative.  For each alternative
1419   we assume that we will be able to allocate all pseudos to their ideal
1420   register class and calculate the cost of using that alternative.  Then
1421   we compute for each operand that is a pseudo-register, the cost of
1422   having the pseudo allocated to each register class and using it in that
1423   alternative.  To this cost is added the cost of the alternative.
1424
1425   The cost of each class for this insn is its lowest cost among all the
1426   alternatives.  */
1427
1428static void
1429record_reg_classes (n_alts, n_ops, ops, modes,
1430		    constraints, insn, op_costs, reg_pref)
1431     int n_alts;
1432     int n_ops;
1433     rtx *ops;
1434     enum machine_mode *modes;
1435     const char **constraints;
1436     rtx insn;
1437     struct costs *op_costs;
1438     struct reg_pref *reg_pref;
1439{
1440  int alt;
1441  int i, j;
1442  rtx set;
1443
1444  /* Process each alternative, each time minimizing an operand's cost with
1445     the cost for each operand in that alternative.  */
1446
1447  for (alt = 0; alt < n_alts; alt++)
1448    {
1449      struct costs this_op_costs[MAX_RECOG_OPERANDS];
1450      int alt_fail = 0;
1451      int alt_cost = 0;
1452      enum reg_class classes[MAX_RECOG_OPERANDS];
1453      int allows_mem[MAX_RECOG_OPERANDS];
1454      int class;
1455
1456      for (i = 0; i < n_ops; i++)
1457	{
1458	  const char *p = constraints[i];
1459	  rtx op = ops[i];
1460	  enum machine_mode mode = modes[i];
1461	  int allows_addr = 0;
1462	  int win = 0;
1463	  unsigned char c;
1464
1465	  /* Initially show we know nothing about the register class.  */
1466	  classes[i] = NO_REGS;
1467	  allows_mem[i] = 0;
1468
1469	  /* If this operand has no constraints at all, we can conclude
1470	     nothing about it since anything is valid.  */
1471
1472	  if (*p == 0)
1473	    {
1474	      if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1475		memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1476
1477	      continue;
1478	    }
1479
1480	  /* If this alternative is only relevant when this operand
1481	     matches a previous operand, we do different things depending
1482	     on whether this operand is a pseudo-reg or not.  We must process
1483	     any modifiers for the operand before we can make this test.  */
1484
1485	  while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1486	    p++;
1487
1488	  if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1489	    {
1490	      /* Copy class and whether memory is allowed from the matching
1491		 alternative.  Then perform any needed cost computations
1492		 and/or adjustments.  */
1493	      j = p[0] - '0';
1494	      classes[i] = classes[j];
1495	      allows_mem[i] = allows_mem[j];
1496
1497	      if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1498		{
1499		  /* If this matches the other operand, we have no added
1500		     cost and we win.  */
1501		  if (rtx_equal_p (ops[j], op))
1502		    win = 1;
1503
1504		  /* If we can put the other operand into a register, add to
1505		     the cost of this alternative the cost to copy this
1506		     operand to the register used for the other operand.  */
1507
1508		  else if (classes[j] != NO_REGS)
1509		    alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1510		}
1511	      else if (GET_CODE (ops[j]) != REG
1512		       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1513		{
1514		  /* This op is a pseudo but the one it matches is not.  */
1515
1516		  /* If we can't put the other operand into a register, this
1517		     alternative can't be used.  */
1518
1519		  if (classes[j] == NO_REGS)
1520		    alt_fail = 1;
1521
1522		  /* Otherwise, add to the cost of this alternative the cost
1523		     to copy the other operand to the register used for this
1524		     operand.  */
1525
1526		  else
1527		    alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1528		}
1529	      else
1530		{
1531		  /* The costs of this operand are not the same as the other
1532		     operand since move costs are not symmetric.  Moreover,
1533		     if we cannot tie them, this alternative needs to do a
1534		     copy, which is one instruction.  */
1535
1536		  struct costs *pp = &this_op_costs[i];
1537
1538		  for (class = 0; class < N_REG_CLASSES; class++)
1539		    pp->cost[class]
1540		      = ((recog_data.operand_type[i] != OP_OUT
1541			  ? may_move_in_cost[mode][class][(int) classes[i]]
1542			  : 0)
1543			 + (recog_data.operand_type[i] != OP_IN
1544			    ? may_move_out_cost[mode][(int) classes[i]][class]
1545			    : 0));
1546
1547		  /* If the alternative actually allows memory, make things
1548		     a bit cheaper since we won't need an extra insn to
1549		     load it.  */
1550
1551		  pp->mem_cost
1552		    = ((recog_data.operand_type[i] != OP_IN
1553		        ? MEMORY_MOVE_COST (mode, classes[i], 0)
1554			: 0)
1555		       + (recog_data.operand_type[i] != OP_OUT
1556			  ? MEMORY_MOVE_COST (mode, classes[i], 1)
1557			  : 0) - allows_mem[i]);
1558
1559		  /* If we have assigned a class to this register in our
1560		     first pass, add a cost to this alternative corresponding
1561		     to what we would add if this register were not in the
1562		     appropriate class.  */
1563
1564		  if (reg_pref)
1565		    alt_cost
1566		      += (may_move_in_cost[mode]
1567			  [(unsigned char) reg_pref[REGNO (op)].prefclass]
1568			  [(int) classes[i]]);
1569
1570		  if (REGNO (ops[i]) != REGNO (ops[j])
1571		      && ! find_reg_note (insn, REG_DEAD, op))
1572		    alt_cost += 2;
1573
1574		  /* This is in place of ordinary cost computation
1575		     for this operand, so skip to the end of the
1576		     alternative (should be just one character).  */
1577		  while (*p && *p++ != ',')
1578		    ;
1579
1580		  constraints[i] = p;
1581		  continue;
1582		}
1583	    }
1584
1585	  /* Scan all the constraint letters.  See if the operand matches
1586	     any of the constraints.  Collect the valid register classes
1587	     and see if this operand accepts memory.  */
1588
1589	  while (*p && (c = *p++) != ',')
1590	    switch (c)
1591	      {
1592	      case '*':
1593		/* Ignore the next letter for this pass.  */
1594		p++;
1595		break;
1596
1597	      case '?':
1598		alt_cost += 2;
1599	      case '!':  case '#':  case '&':
1600	      case '0':  case '1':  case '2':  case '3':  case '4':
1601	      case '5':  case '6':  case '7':  case '8':  case '9':
1602		break;
1603
1604	      case 'p':
1605		allows_addr = 1;
1606		win = address_operand (op, GET_MODE (op));
1607		/* We know this operand is an address, so we want it to be
1608		   allocated to a register that can be the base of an
1609		   address, ie BASE_REG_CLASS.  */
1610		classes[i]
1611		  = reg_class_subunion[(int) classes[i]]
1612		    [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1613		break;
1614
1615	      case 'm':  case 'o':  case 'V':
1616		/* It doesn't seem worth distinguishing between offsettable
1617		   and non-offsettable addresses here.  */
1618		allows_mem[i] = 1;
1619		if (GET_CODE (op) == MEM)
1620		  win = 1;
1621		break;
1622
1623	      case '<':
1624		if (GET_CODE (op) == MEM
1625		    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1626			|| GET_CODE (XEXP (op, 0)) == POST_DEC))
1627		  win = 1;
1628		break;
1629
1630	      case '>':
1631		if (GET_CODE (op) == MEM
1632		    && (GET_CODE (XEXP (op, 0)) == PRE_INC
1633			|| GET_CODE (XEXP (op, 0)) == POST_INC))
1634		  win = 1;
1635		break;
1636
1637	      case 'E':
1638#ifndef REAL_ARITHMETIC
1639		/* Match any floating double constant, but only if
1640		   we can examine the bits of it reliably.  */
1641		if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1642		     || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1643		    && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1644		  break;
1645#endif
1646		if (GET_CODE (op) == CONST_DOUBLE)
1647		  win = 1;
1648		break;
1649
1650	      case 'F':
1651		if (GET_CODE (op) == CONST_DOUBLE)
1652		  win = 1;
1653		break;
1654
1655	      case 'G':
1656	      case 'H':
1657		if (GET_CODE (op) == CONST_DOUBLE
1658		    && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1659		  win = 1;
1660		break;
1661
1662	      case 's':
1663		if (GET_CODE (op) == CONST_INT
1664		    || (GET_CODE (op) == CONST_DOUBLE
1665			&& GET_MODE (op) == VOIDmode))
1666		  break;
1667	      case 'i':
1668		if (CONSTANT_P (op)
1669#ifdef LEGITIMATE_PIC_OPERAND_P
1670		    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1671#endif
1672		    )
1673		  win = 1;
1674		break;
1675
1676	      case 'n':
1677		if (GET_CODE (op) == CONST_INT
1678		    || (GET_CODE (op) == CONST_DOUBLE
1679			&& GET_MODE (op) == VOIDmode))
1680		  win = 1;
1681		break;
1682
1683	      case 'I':
1684	      case 'J':
1685	      case 'K':
1686	      case 'L':
1687	      case 'M':
1688	      case 'N':
1689	      case 'O':
1690	      case 'P':
1691		if (GET_CODE (op) == CONST_INT
1692		    && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1693		  win = 1;
1694		break;
1695
1696	      case 'X':
1697		win = 1;
1698		break;
1699
1700	      case 'g':
1701		if (GET_CODE (op) == MEM
1702		    || (CONSTANT_P (op)
1703#ifdef LEGITIMATE_PIC_OPERAND_P
1704			&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1705#endif
1706			))
1707		  win = 1;
1708		allows_mem[i] = 1;
1709	      case 'r':
1710		classes[i]
1711		  = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1712		break;
1713
1714	      default:
1715		if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1716		  classes[i]
1717		    = reg_class_subunion[(int) classes[i]]
1718		      [(int) REG_CLASS_FROM_LETTER (c)];
1719#ifdef EXTRA_CONSTRAINT
1720		else if (EXTRA_CONSTRAINT (op, c))
1721		  win = 1;
1722#endif
1723		break;
1724	      }
1725
1726	  constraints[i] = p;
1727
1728	  /* How we account for this operand now depends on whether it is  a
1729	     pseudo register or not.  If it is, we first check if any
1730	     register classes are valid.  If not, we ignore this alternative,
1731	     since we want to assume that all pseudos get allocated for
1732	     register preferencing.  If some register class is valid, compute
1733	     the costs of moving the pseudo into that class.  */
1734
1735	  if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1736	    {
1737	      if (classes[i] == NO_REGS)
1738		{
1739		  /* We must always fail if the operand is a REG, but
1740		     we did not find a suitable class.
1741
1742		     Otherwise we may perform an uninitialized read
1743		     from this_op_costs after the `continue' statement
1744		     below.  */
1745		  alt_fail = 1;
1746		}
1747	      else
1748		{
1749		  struct costs *pp = &this_op_costs[i];
1750
1751		  for (class = 0; class < N_REG_CLASSES; class++)
1752		    pp->cost[class]
1753		      = ((recog_data.operand_type[i] != OP_OUT
1754			  ? may_move_in_cost[mode][class][(int) classes[i]]
1755			  : 0)
1756			 + (recog_data.operand_type[i] != OP_IN
1757			    ? may_move_out_cost[mode][(int) classes[i]][class]
1758			    : 0));
1759
1760		  /* If the alternative actually allows memory, make things
1761		     a bit cheaper since we won't need an extra insn to
1762		     load it.  */
1763
1764		  pp->mem_cost
1765		    = ((recog_data.operand_type[i] != OP_IN
1766		        ? MEMORY_MOVE_COST (mode, classes[i], 0)
1767			: 0)
1768		       + (recog_data.operand_type[i] != OP_OUT
1769			  ? MEMORY_MOVE_COST (mode, classes[i], 1)
1770			  : 0) - allows_mem[i]);
1771
1772		  /* If we have assigned a class to this register in our
1773		     first pass, add a cost to this alternative corresponding
1774		     to what we would add if this register were not in the
1775		     appropriate class.  */
1776
1777		  if (reg_pref)
1778		    alt_cost
1779		      += (may_move_in_cost[mode]
1780			  [(unsigned char) reg_pref[REGNO (op)].prefclass]
1781			  [(int) classes[i]]);
1782		}
1783	    }
1784
1785	  /* Otherwise, if this alternative wins, either because we
1786	     have already determined that or if we have a hard register of
1787	     the proper class, there is no cost for this alternative.  */
1788
1789	  else if (win
1790		   || (GET_CODE (op) == REG
1791		       && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1792	    ;
1793
1794	  /* If registers are valid, the cost of this alternative includes
1795	     copying the object to and/or from a register.  */
1796
1797	  else if (classes[i] != NO_REGS)
1798	    {
1799	      if (recog_data.operand_type[i] != OP_OUT)
1800		alt_cost += copy_cost (op, mode, classes[i], 1);
1801
1802	      if (recog_data.operand_type[i] != OP_IN)
1803		alt_cost += copy_cost (op, mode, classes[i], 0);
1804	    }
1805
1806	  /* The only other way this alternative can be used is if this is a
1807	     constant that could be placed into memory.  */
1808
1809	  else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1810	    alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1811	  else
1812	    alt_fail = 1;
1813	}
1814
1815      if (alt_fail)
1816	continue;
1817
1818      /* Finally, update the costs with the information we've calculated
1819	 about this alternative.  */
1820
1821      for (i = 0; i < n_ops; i++)
1822	if (GET_CODE (ops[i]) == REG
1823	    && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1824	  {
1825	    struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1826	    int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1827
1828	    pp->mem_cost = MIN (pp->mem_cost,
1829				(qq->mem_cost + alt_cost) * scale);
1830
1831	    for (class = 0; class < N_REG_CLASSES; class++)
1832	      pp->cost[class] = MIN (pp->cost[class],
1833				     (qq->cost[class] + alt_cost) * scale);
1834	  }
1835    }
1836
1837  /* If this insn is a single set copying operand 1 to operand 0
1838     and one operand is a pseudo with the other a hard reg or a pseudo
1839     that prefers a register that is in its own register class then
1840     we may want to adjust the cost of that register class to -1.
1841
1842     Avoid the adjustment if the source does not die to avoid stressing of
1843     register allocator by preferrencing two coliding registers into single
1844     class.
1845
1846     Also avoid the adjustment if a copy between registers of the class
1847     is expensive (ten times the cost of a default copy is considered
1848     arbitrarily expensive).  This avoids losing when the preferred class
1849     is very expensive as the source of a copy instruction.  */
1850
1851  if ((set = single_set (insn)) != 0
1852      && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1853      && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1854      && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1855    for (i = 0; i <= 1; i++)
1856      if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1857	{
1858	  unsigned int regno = REGNO (ops[!i]);
1859	  enum machine_mode mode = GET_MODE (ops[!i]);
1860	  int class;
1861	  unsigned int nr;
1862
1863	  if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1864	    {
1865	      enum reg_class pref = reg_pref[regno].prefclass;
1866
1867	      if ((reg_class_size[(unsigned char) pref]
1868		   == CLASS_MAX_NREGS (pref, mode))
1869		  && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1870		op_costs[i].cost[(unsigned char) pref] = -1;
1871	    }
1872	  else if (regno < FIRST_PSEUDO_REGISTER)
1873	    for (class = 0; class < N_REG_CLASSES; class++)
1874	      if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1875		  && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1876		{
1877		  if (reg_class_size[class] == 1)
1878		    op_costs[i].cost[class] = -1;
1879		  else
1880		    {
1881		      for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1882			{
1883			  if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1884						   regno + nr))
1885			    break;
1886			}
1887
1888		      if (nr == HARD_REGNO_NREGS (regno,mode))
1889			op_costs[i].cost[class] = -1;
1890		    }
1891		}
1892	}
1893}
1894
1895/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1896   TO_P is zero) a register of class CLASS in mode MODE.
1897
1898   X must not be a pseudo.  */
1899
1900static int
1901copy_cost (x, mode, class, to_p)
1902     rtx x;
1903     enum machine_mode mode ATTRIBUTE_UNUSED;
1904     enum reg_class class;
1905     int to_p ATTRIBUTE_UNUSED;
1906{
1907#ifdef HAVE_SECONDARY_RELOADS
1908  enum reg_class secondary_class = NO_REGS;
1909#endif
1910
1911  /* If X is a SCRATCH, there is actually nothing to move since we are
1912     assuming optimal allocation.  */
1913
1914  if (GET_CODE (x) == SCRATCH)
1915    return 0;
1916
1917  /* Get the class we will actually use for a reload.  */
1918  class = PREFERRED_RELOAD_CLASS (x, class);
1919
1920#ifdef HAVE_SECONDARY_RELOADS
1921  /* If we need a secondary reload (we assume here that we are using
1922     the secondary reload as an intermediate, not a scratch register), the
1923     cost is that to load the input into the intermediate register, then
1924     to copy them.  We use a special value of TO_P to avoid recursion.  */
1925
1926#ifdef SECONDARY_INPUT_RELOAD_CLASS
1927  if (to_p == 1)
1928    secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1929#endif
1930
1931#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1932  if (! to_p)
1933    secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1934#endif
1935
1936  if (secondary_class != NO_REGS)
1937    return (move_cost[mode][(int) secondary_class][(int) class]
1938	    + copy_cost (x, mode, secondary_class, 2));
1939#endif  /* HAVE_SECONDARY_RELOADS */
1940
1941  /* For memory, use the memory move cost, for (hard) registers, use the
1942     cost to move between the register classes, and use 2 for everything
1943     else (constants).  */
1944
1945  if (GET_CODE (x) == MEM || class == NO_REGS)
1946    return MEMORY_MOVE_COST (mode, class, to_p);
1947
1948  else if (GET_CODE (x) == REG)
1949    return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1950
1951  else
1952    /* If this is a constant, we may eventually want to call rtx_cost here.  */
1953    return COSTS_N_INSNS (1);
1954}
1955
1956/* Record the pseudo registers we must reload into hard registers
1957   in a subexpression of a memory address, X.
1958
1959   CLASS is the class that the register needs to be in and is either
1960   BASE_REG_CLASS or INDEX_REG_CLASS.
1961
1962   SCALE is twice the amount to multiply the cost by (it is twice so we
1963   can represent half-cost adjustments).  */
1964
1965static void
1966record_address_regs (x, class, scale)
1967     rtx x;
1968     enum reg_class class;
1969     int scale;
1970{
1971  enum rtx_code code = GET_CODE (x);
1972
1973  switch (code)
1974    {
1975    case CONST_INT:
1976    case CONST:
1977    case CC0:
1978    case PC:
1979    case SYMBOL_REF:
1980    case LABEL_REF:
1981      return;
1982
1983    case PLUS:
1984      /* When we have an address that is a sum,
1985	 we must determine whether registers are "base" or "index" regs.
1986	 If there is a sum of two registers, we must choose one to be
1987	 the "base".  Luckily, we can use the REG_POINTER to make a good
1988	 choice most of the time.  We only need to do this on machines
1989	 that can have two registers in an address and where the base
1990	 and index register classes are different.
1991
1992	 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1993	 that seems bogus since it should only be set when we are sure
1994	 the register is being used as a pointer.  */
1995
1996      {
1997	rtx arg0 = XEXP (x, 0);
1998	rtx arg1 = XEXP (x, 1);
1999	enum rtx_code code0 = GET_CODE (arg0);
2000	enum rtx_code code1 = GET_CODE (arg1);
2001
2002	/* Look inside subregs.  */
2003	if (code0 == SUBREG)
2004	  arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
2005	if (code1 == SUBREG)
2006	  arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
2007
2008	/* If this machine only allows one register per address, it must
2009	   be in the first operand.  */
2010
2011	if (MAX_REGS_PER_ADDRESS == 1)
2012	  record_address_regs (arg0, class, scale);
2013
2014	/* If index and base registers are the same on this machine, just
2015	   record registers in any non-constant operands.  We assume here,
2016	   as well as in the tests below, that all addresses are in
2017	   canonical form.  */
2018
2019	else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
2020	  {
2021	    record_address_regs (arg0, class, scale);
2022	    if (! CONSTANT_P (arg1))
2023	      record_address_regs (arg1, class, scale);
2024	  }
2025
2026	/* If the second operand is a constant integer, it doesn't change
2027	   what class the first operand must be.  */
2028
2029	else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2030	  record_address_regs (arg0, class, scale);
2031
2032	/* If the second operand is a symbolic constant, the first operand
2033	   must be an index register.  */
2034
2035	else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2036	  record_address_regs (arg0, INDEX_REG_CLASS, scale);
2037
2038	/* If both operands are registers but one is already a hard register
2039	   of index or base class, give the other the class that the hard
2040	   register is not.  */
2041
2042#ifdef REG_OK_FOR_BASE_P
2043	else if (code0 == REG && code1 == REG
2044		 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2045		 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2046	  record_address_regs (arg1,
2047			       REG_OK_FOR_BASE_P (arg0)
2048			       ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2049			       scale);
2050	else if (code0 == REG && code1 == REG
2051		 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2052		 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2053	  record_address_regs (arg0,
2054			       REG_OK_FOR_BASE_P (arg1)
2055			       ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2056			       scale);
2057#endif
2058
2059	/* If one operand is known to be a pointer, it must be the base
2060	   with the other operand the index.  Likewise if the other operand
2061	   is a MULT.  */
2062
2063	else if ((code0 == REG && REG_POINTER (arg0))
2064		 || code1 == MULT)
2065	  {
2066	    record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2067	    record_address_regs (arg1, INDEX_REG_CLASS, scale);
2068	  }
2069	else if ((code1 == REG && REG_POINTER (arg1))
2070		 || code0 == MULT)
2071	  {
2072	    record_address_regs (arg0, INDEX_REG_CLASS, scale);
2073	    record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2074	  }
2075
2076	/* Otherwise, count equal chances that each might be a base
2077	   or index register.  This case should be rare.  */
2078
2079	else
2080	  {
2081	    record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2082				 scale / 2);
2083	    record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2084	    record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2085				 scale / 2);
2086	    record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2087	  }
2088      }
2089      break;
2090
2091      /* Double the importance of a pseudo register that is incremented
2092	 or decremented, since it would take two extra insns
2093	 if it ends up in the wrong place.  */
2094    case POST_MODIFY:
2095    case PRE_MODIFY:
2096      record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2097			   2 * scale);
2098      if (REG_P (XEXP (XEXP (x, 1), 1)))
2099	record_address_regs (XEXP (XEXP (x, 1), 1),
2100			     INDEX_REG_CLASS, 2 * scale);
2101      break;
2102
2103    case POST_INC:
2104    case PRE_INC:
2105    case POST_DEC:
2106    case PRE_DEC:
2107      /* Double the importance of a pseudo register that is incremented
2108	 or decremented, since it would take two extra insns
2109	 if it ends up in the wrong place.  If the operand is a pseudo,
2110	 show it is being used in an INC_DEC context.  */
2111
2112#ifdef FORBIDDEN_INC_DEC_CLASSES
2113      if (GET_CODE (XEXP (x, 0)) == REG
2114	  && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2115	in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2116#endif
2117
2118      record_address_regs (XEXP (x, 0), class, 2 * scale);
2119      break;
2120
2121    case REG:
2122      {
2123	struct costs *pp = &costs[REGNO (x)];
2124	int i;
2125
2126	pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2127
2128	for (i = 0; i < N_REG_CLASSES; i++)
2129	  pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2130      }
2131      break;
2132
2133    default:
2134      {
2135	const char *fmt = GET_RTX_FORMAT (code);
2136	int i;
2137	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2138	  if (fmt[i] == 'e')
2139	    record_address_regs (XEXP (x, i), class, scale);
2140      }
2141    }
2142}
2143
2144#ifdef FORBIDDEN_INC_DEC_CLASSES
2145
2146/* Return 1 if REG is valid as an auto-increment memory reference
2147   to an object of MODE.  */
2148
2149static int
2150auto_inc_dec_reg_p (reg, mode)
2151     rtx reg;
2152     enum machine_mode mode;
2153{
2154  if (HAVE_POST_INCREMENT
2155      && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2156    return 1;
2157
2158  if (HAVE_POST_DECREMENT
2159      && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2160    return 1;
2161
2162  if (HAVE_PRE_INCREMENT
2163      && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2164    return 1;
2165
2166  if (HAVE_PRE_DECREMENT
2167      && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2168    return 1;
2169
2170  return 0;
2171}
2172#endif
2173
2174static short *renumber;
2175static size_t regno_allocated;
2176static unsigned int reg_n_max;
2177
2178/* Allocate enough space to hold NUM_REGS registers for the tables used for
2179   reg_scan and flow_analysis that are indexed by the register number.  If
2180   NEW_P is non zero, initialize all of the registers, otherwise only
2181   initialize the new registers allocated.  The same table is kept from
2182   function to function, only reallocating it when we need more room.  If
2183   RENUMBER_P is non zero, allocate the reg_renumber array also.  */
2184
2185void
2186allocate_reg_info (num_regs, new_p, renumber_p)
2187     size_t num_regs;
2188     int new_p;
2189     int renumber_p;
2190{
2191  size_t size_info;
2192  size_t size_renumber;
2193  size_t min = (new_p) ? 0 : reg_n_max;
2194  struct reg_info_data *reg_data;
2195
2196  if (num_regs > regno_allocated)
2197    {
2198      size_t old_allocated = regno_allocated;
2199
2200      regno_allocated = num_regs + (num_regs / 20);	/* add some slop space */
2201      size_renumber = regno_allocated * sizeof (short);
2202
2203      if (!reg_n_info)
2204	{
2205	  VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2206	  renumber = (short *) xmalloc (size_renumber);
2207	  reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2208					      * sizeof (struct reg_pref));
2209	}
2210
2211      else
2212	{
2213	  VARRAY_GROW (reg_n_info, regno_allocated);
2214
2215	  if (new_p)		/* if we're zapping everything, no need to realloc */
2216	    {
2217	      free ((char *) renumber);
2218	      free ((char *) reg_pref);
2219	      renumber = (short *) xmalloc (size_renumber);
2220	      reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2221						  * sizeof (struct reg_pref));
2222	    }
2223
2224	  else
2225	    {
2226	      renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2227	      reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
2228						   regno_allocated
2229						   * sizeof (struct reg_pref));
2230	    }
2231	}
2232
2233      size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2234	+ sizeof (struct reg_info_data) - sizeof (reg_info);
2235      reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2236      reg_data->min_index = old_allocated;
2237      reg_data->max_index = regno_allocated - 1;
2238      reg_data->next = reg_info_head;
2239      reg_info_head = reg_data;
2240    }
2241
2242  reg_n_max = num_regs;
2243  if (min < num_regs)
2244    {
2245      /* Loop through each of the segments allocated for the actual
2246	 reg_info pages, and set up the pointers, zero the pages, etc.  */
2247      for (reg_data = reg_info_head;
2248	   reg_data && reg_data->max_index >= min;
2249	   reg_data = reg_data->next)
2250	{
2251	  size_t min_index = reg_data->min_index;
2252	  size_t max_index = reg_data->max_index;
2253	  size_t max = MIN (max_index, num_regs);
2254	  size_t local_min = min - min_index;
2255	  size_t i;
2256
2257	  if (reg_data->min_index > num_regs)
2258	    continue;
2259
2260	  if (min < min_index)
2261	    local_min = 0;
2262	  if (!reg_data->used_p)	/* page just allocated with calloc */
2263	    reg_data->used_p = 1;	/* no need to zero */
2264	  else
2265	    memset ((char *) &reg_data->data[local_min], 0,
2266		   sizeof (reg_info) * (max - min_index - local_min + 1));
2267
2268	  for (i = min_index+local_min; i <= max; i++)
2269	    {
2270	      VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2271	      REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2272	      renumber[i] = -1;
2273	      reg_pref_buffer[i].prefclass = (char) NO_REGS;
2274	      reg_pref_buffer[i].altclass = (char) NO_REGS;
2275	    }
2276	}
2277    }
2278
2279  /* If {pref,alt}class have already been allocated, update the pointers to
2280     the newly realloced ones.  */
2281  if (reg_pref)
2282    reg_pref = reg_pref_buffer;
2283
2284  if (renumber_p)
2285    reg_renumber = renumber;
2286
2287  /* Tell the regset code about the new number of registers */
2288  MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2289}
2290
2291/* Free up the space allocated by allocate_reg_info.  */
2292void
2293free_reg_info ()
2294{
2295  if (reg_n_info)
2296    {
2297      struct reg_info_data *reg_data;
2298      struct reg_info_data *reg_next;
2299
2300      VARRAY_FREE (reg_n_info);
2301      for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2302	{
2303	  reg_next = reg_data->next;
2304	  free ((char *) reg_data);
2305	}
2306
2307      free (reg_pref_buffer);
2308      reg_pref_buffer = (struct reg_pref *) 0;
2309      reg_info_head = (struct reg_info_data *) 0;
2310      renumber = (short *) 0;
2311    }
2312  regno_allocated = 0;
2313  reg_n_max = 0;
2314}
2315
2316/* This is the `regscan' pass of the compiler, run just before cse
2317   and again just before loop.
2318
2319   It finds the first and last use of each pseudo-register
2320   and records them in the vectors regno_first_uid, regno_last_uid
2321   and counts the number of sets in the vector reg_n_sets.
2322
2323   REPEAT is nonzero the second time this is called.  */
2324
2325/* Maximum number of parallel sets and clobbers in any insn in this fn.
2326   Always at least 3, since the combiner could put that many together
2327   and we want this to remain correct for all the remaining passes.
2328   This corresponds to the maximum number of times note_stores will call
2329   a function for any insn.  */
2330
2331int max_parallel;
2332
2333/* Used as a temporary to record the largest number of registers in
2334   PARALLEL in a SET_DEST.  This is added to max_parallel.  */
2335
2336static int max_set_parallel;
2337
2338void
2339reg_scan (f, nregs, repeat)
2340     rtx f;
2341     unsigned int nregs;
2342     int repeat ATTRIBUTE_UNUSED;
2343{
2344  rtx insn;
2345
2346  allocate_reg_info (nregs, TRUE, FALSE);
2347  max_parallel = 3;
2348  max_set_parallel = 0;
2349
2350  for (insn = f; insn; insn = NEXT_INSN (insn))
2351    if (GET_CODE (insn) == INSN
2352	|| GET_CODE (insn) == CALL_INSN
2353	|| GET_CODE (insn) == JUMP_INSN)
2354      {
2355	if (GET_CODE (PATTERN (insn)) == PARALLEL
2356	    && XVECLEN (PATTERN (insn), 0) > max_parallel)
2357	  max_parallel = XVECLEN (PATTERN (insn), 0);
2358	reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2359
2360	if (REG_NOTES (insn))
2361	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2362      }
2363
2364  max_parallel += max_set_parallel;
2365}
2366
2367/* Update 'regscan' information by looking at the insns
2368   from FIRST to LAST.  Some new REGs have been created,
2369   and any REG with number greater than OLD_MAX_REGNO is
2370   such a REG.  We only update information for those.  */
2371
2372void
2373reg_scan_update (first, last, old_max_regno)
2374     rtx first;
2375     rtx last;
2376     unsigned int old_max_regno;
2377{
2378  rtx insn;
2379
2380  allocate_reg_info (max_reg_num (), FALSE, FALSE);
2381
2382  for (insn = first; insn != last; insn = NEXT_INSN (insn))
2383    if (GET_CODE (insn) == INSN
2384	|| GET_CODE (insn) == CALL_INSN
2385	|| GET_CODE (insn) == JUMP_INSN)
2386      {
2387	if (GET_CODE (PATTERN (insn)) == PARALLEL
2388	    && XVECLEN (PATTERN (insn), 0) > max_parallel)
2389	  max_parallel = XVECLEN (PATTERN (insn), 0);
2390	reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2391
2392	if (REG_NOTES (insn))
2393	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2394      }
2395}
2396
2397/* X is the expression to scan.  INSN is the insn it appears in.
2398   NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2399   We should only record information for REGs with numbers
2400   greater than or equal to MIN_REGNO.  */
2401
2402static void
2403reg_scan_mark_refs (x, insn, note_flag, min_regno)
2404     rtx x;
2405     rtx insn;
2406     int note_flag;
2407     unsigned int min_regno;
2408{
2409  enum rtx_code code;
2410  rtx dest;
2411  rtx note;
2412
2413  code = GET_CODE (x);
2414  switch (code)
2415    {
2416    case CONST:
2417    case CONST_INT:
2418    case CONST_DOUBLE:
2419    case CONST_VECTOR:
2420    case CC0:
2421    case PC:
2422    case SYMBOL_REF:
2423    case LABEL_REF:
2424    case ADDR_VEC:
2425    case ADDR_DIFF_VEC:
2426      return;
2427
2428    case REG:
2429      {
2430	unsigned int regno = REGNO (x);
2431
2432	if (regno >= min_regno)
2433	  {
2434	    REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2435	    if (!note_flag)
2436	      REGNO_LAST_UID (regno) = INSN_UID (insn);
2437	    if (REGNO_FIRST_UID (regno) == 0)
2438	      REGNO_FIRST_UID (regno) = INSN_UID (insn);
2439	  }
2440      }
2441      break;
2442
2443    case EXPR_LIST:
2444      if (XEXP (x, 0))
2445	reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2446      if (XEXP (x, 1))
2447	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2448      break;
2449
2450    case INSN_LIST:
2451      if (XEXP (x, 1))
2452	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2453      break;
2454
2455    case SET:
2456      /* Count a set of the destination if it is a register.  */
2457      for (dest = SET_DEST (x);
2458	   GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2459	   || GET_CODE (dest) == ZERO_EXTEND;
2460	   dest = XEXP (dest, 0))
2461	;
2462
2463      /* For a PARALLEL, record the number of things (less the usual one for a
2464	 SET) that are set.  */
2465      if (GET_CODE (dest) == PARALLEL)
2466	max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2467
2468      if (GET_CODE (dest) == REG
2469	  && REGNO (dest) >= min_regno)
2470	{
2471	  REG_N_SETS (REGNO (dest))++;
2472	  REG_N_REFS (REGNO (dest))++;
2473	}
2474
2475      /* If this is setting a pseudo from another pseudo or the sum of a
2476	 pseudo and a constant integer and the other pseudo is known to be
2477	 a pointer, set the destination to be a pointer as well.
2478
2479	 Likewise if it is setting the destination from an address or from a
2480	 value equivalent to an address or to the sum of an address and
2481	 something else.
2482
2483	 But don't do any of this if the pseudo corresponds to a user
2484	 variable since it should have already been set as a pointer based
2485	 on the type.  */
2486
2487      if (GET_CODE (SET_DEST (x)) == REG
2488	  && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2489	  && REGNO (SET_DEST (x)) >= min_regno
2490	  /* If the destination pseudo is set more than once, then other
2491	     sets might not be to a pointer value (consider access to a
2492	     union in two threads of control in the presense of global
2493	     optimizations).  So only set REG_POINTER on the destination
2494	     pseudo if this is the only set of that pseudo.  */
2495	  && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2496	  && ! REG_USERVAR_P (SET_DEST (x))
2497	  && ! REG_POINTER (SET_DEST (x))
2498	  && ((GET_CODE (SET_SRC (x)) == REG
2499	       && REG_POINTER (SET_SRC (x)))
2500	      || ((GET_CODE (SET_SRC (x)) == PLUS
2501		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2502		  && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2503		  && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2504		  && REG_POINTER (XEXP (SET_SRC (x), 0)))
2505	      || GET_CODE (SET_SRC (x)) == CONST
2506	      || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2507	      || GET_CODE (SET_SRC (x)) == LABEL_REF
2508	      || (GET_CODE (SET_SRC (x)) == HIGH
2509		  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2510		      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2511		      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2512	      || ((GET_CODE (SET_SRC (x)) == PLUS
2513		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2514		  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2515		      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2516		      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2517	      || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2518		  && (GET_CODE (XEXP (note, 0)) == CONST
2519		      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2520		      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2521	REG_POINTER (SET_DEST (x)) = 1;
2522
2523      /* If this is setting a register from a register or from a simple
2524	 conversion of a register, propagate REG_DECL.  */
2525      if (GET_CODE (dest) == REG)
2526	{
2527	  rtx src = SET_SRC (x);
2528
2529	  while (GET_CODE (src) == SIGN_EXTEND
2530		 || GET_CODE (src) == ZERO_EXTEND
2531		 || GET_CODE (src) == TRUNCATE
2532		 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2533	    src = XEXP (src, 0);
2534
2535	  if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2536	    REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2537	  else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2538	    REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2539	}
2540
2541      /* ... fall through ...  */
2542
2543    default:
2544      {
2545	const char *fmt = GET_RTX_FORMAT (code);
2546	int i;
2547	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2548	  {
2549	    if (fmt[i] == 'e')
2550	      reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2551	    else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2552	      {
2553		int j;
2554		for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2555		  reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2556	      }
2557	  }
2558      }
2559    }
2560}
2561
2562/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2563   is also in C2.  */
2564
2565int
2566reg_class_subset_p (c1, c2)
2567     enum reg_class c1;
2568     enum reg_class c2;
2569{
2570  if (c1 == c2) return 1;
2571
2572  if (c2 == ALL_REGS)
2573  win:
2574    return 1;
2575  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2576			 reg_class_contents[(int) c2],
2577			 win);
2578  return 0;
2579}
2580
2581/* Return nonzero if there is a register that is in both C1 and C2.  */
2582
2583int
2584reg_classes_intersect_p (c1, c2)
2585     enum reg_class c1;
2586     enum reg_class c2;
2587{
2588#ifdef HARD_REG_SET
2589  register
2590#endif
2591    HARD_REG_SET c;
2592
2593  if (c1 == c2) return 1;
2594
2595  if (c1 == ALL_REGS || c2 == ALL_REGS)
2596    return 1;
2597
2598  COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2599  AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2600
2601  GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2602  return 1;
2603
2604 lose:
2605  return 0;
2606}
2607
2608/* Release any memory allocated by register sets.  */
2609
2610void
2611regset_release_memory ()
2612{
2613  bitmap_release_memory ();
2614}
2615