1/* Compute register class preferences for pseudo-registers.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24/* This file contains two passes of the compiler: reg_scan and reg_class.
25   It also defines some tables of information about the hardware registers
26   and a function init_reg_sets to initialize the tables.  */
27
28#include "config.h"
29#include "system.h"
30#include "coretypes.h"
31#include "tm.h"
32#include "hard-reg-set.h"
33#include "rtl.h"
34#include "expr.h"
35#include "tm_p.h"
36#include "flags.h"
37#include "basic-block.h"
38#include "regs.h"
39#include "addresses.h"
40#include "function.h"
41#include "insn-config.h"
42#include "recog.h"
43#include "reload.h"
44#include "real.h"
45#include "toplev.h"
46#include "output.h"
47#include "ggc.h"
48#include "timevar.h"
49#include "hashtab.h"
50#include "target.h"
51
52static void init_reg_sets_1 (void);
53static void init_reg_autoinc (void);
54
55/* If we have auto-increment or auto-decrement and we can have secondary
56   reloads, we are not allowed to use classes requiring secondary
57   reloads for pseudos auto-incremented since reload can't handle it.  */
58/* We leave it to target hooks to decide if we have secondary reloads, so
59   assume that we might have them.  */
60#if defined(AUTO_INC_DEC) /* */
61#define FORBIDDEN_INC_DEC_CLASSES
62#endif
63
64/* Register tables used by many passes.  */
65
66/* Indexed by hard register number, contains 1 for registers
67   that are fixed use (stack pointer, pc, frame pointer, etc.).
68   These are the registers that cannot be used to allocate
69   a pseudo reg for general use.  */
70
71char fixed_regs[FIRST_PSEUDO_REGISTER];
72
73/* Same info as a HARD_REG_SET.  */
74
75HARD_REG_SET fixed_reg_set;
76
77/* Data for initializing the above.  */
78
79static const char initial_fixed_regs[] = FIXED_REGISTERS;
80
81/* Indexed by hard register number, contains 1 for registers
82   that are fixed use or are clobbered by function calls.
83   These are the registers that cannot be used to allocate
84   a pseudo reg whose life crosses calls unless we are able
85   to save/restore them across the calls.  */
86
87char call_used_regs[FIRST_PSEUDO_REGISTER];
88
89/* Same info as a HARD_REG_SET.  */
90
91HARD_REG_SET call_used_reg_set;
92
93/* HARD_REG_SET of registers we want to avoid caller saving.  */
94HARD_REG_SET losing_caller_save_reg_set;
95
96/* Data for initializing the above.  */
97
98static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
99
100/* This is much like call_used_regs, except it doesn't have to
101   be a superset of FIXED_REGISTERS. This vector indicates
102   what is really call clobbered, and is used when defining
103   regs_invalidated_by_call.  */
104
105#ifdef CALL_REALLY_USED_REGISTERS
106char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107#endif
108
109#ifdef CALL_REALLY_USED_REGISTERS
110#define CALL_REALLY_USED_REGNO_P(X)  call_really_used_regs[X]
111#else
112#define CALL_REALLY_USED_REGNO_P(X)  call_used_regs[X]
113#endif
114
115
116/* Indexed by hard register number, contains 1 for registers that are
117   fixed use or call used registers that cannot hold quantities across
118   calls even if we are willing to save and restore them.  call fixed
119   registers are a subset of call used registers.  */
120
121char call_fixed_regs[FIRST_PSEUDO_REGISTER];
122
123/* The same info as a HARD_REG_SET.  */
124
125HARD_REG_SET call_fixed_reg_set;
126
127/* Indexed by hard register number, contains 1 for registers
128   that are being used for global register decls.
129   These must be exempt from ordinary flow analysis
130   and are also considered fixed.  */
131
132char global_regs[FIRST_PSEUDO_REGISTER];
133
134/* Contains 1 for registers that are set or clobbered by calls.  */
135/* ??? Ideally, this would be just call_used_regs plus global_regs, but
136   for someone's bright idea to have call_used_regs strictly include
137   fixed_regs.  Which leaves us guessing as to the set of fixed_regs
138   that are actually preserved.  We know for sure that those associated
139   with the local stack frame are safe, but scant others.  */
140
141HARD_REG_SET regs_invalidated_by_call;
142
143/* Table of register numbers in the order in which to try to use them.  */
144#ifdef REG_ALLOC_ORDER
145int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
146
147/* The inverse of reg_alloc_order.  */
148int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
149#endif
150
151/* For each reg class, a HARD_REG_SET saying which registers are in it.  */
152
153HARD_REG_SET reg_class_contents[N_REG_CLASSES];
154
155/* The same information, but as an array of unsigned ints.  We copy from
156   these unsigned ints to the table above.  We do this so the tm.h files
157   do not have to be aware of the wordsize for machines with <= 64 regs.
158   Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
159
160#define N_REG_INTS  \
161  ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
162
163static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
164  = REG_CLASS_CONTENTS;
165
166/* For each reg class, number of regs it contains.  */
167
168unsigned int reg_class_size[N_REG_CLASSES];
169
170/* For each reg class, table listing all the containing classes.  */
171
172static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
173
174/* For each reg class, table listing all the classes contained in it.  */
175
176static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
177
178/* For each pair of reg classes,
179   a largest reg class contained in their union.  */
180
181enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
182
183/* For each pair of reg classes,
184   the smallest reg class containing their union.  */
185
186enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
187
188/* Array containing all of the register names.  */
189
190const char * reg_names[] = REGISTER_NAMES;
191
192/* Array containing all of the register class names.  */
193
194const char * reg_class_names[] = REG_CLASS_NAMES;
195
196/* For each hard register, the widest mode object that it can contain.
197   This will be a MODE_INT mode if the register can hold integers.  Otherwise
198   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
199   register.  */
200
201enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
202
203/* 1 if there is a register of given mode.  */
204
205bool have_regs_of_mode [MAX_MACHINE_MODE];
206
207/* 1 if class does contain register of given mode.  */
208
209static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
210
211/* Maximum cost of moving from a register in one class to a register in
212   another class.  Based on REGISTER_MOVE_COST.  */
213
214static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
215
216/* Similar, but here we don't have to move if the first index is a subset
217   of the second so in that case the cost is zero.  */
218
219static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
220
221/* Similar, but here we don't have to move if the first index is a superset
222   of the second so in that case the cost is zero.  */
223
224static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
225
226#ifdef FORBIDDEN_INC_DEC_CLASSES
227
228/* These are the classes that regs which are auto-incremented or decremented
229   cannot be put in.  */
230
231static int forbidden_inc_dec_class[N_REG_CLASSES];
232
233/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
234   context.  */
235
236static char *in_inc_dec;
237
238#endif /* FORBIDDEN_INC_DEC_CLASSES */
239
240/* Sample MEM values for use by memory_move_secondary_cost.  */
241
242static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
243
244/* Linked list of reg_info structures allocated for reg_n_info array.
245   Grouping all of the allocated structures together in one lump
246   means only one call to bzero to clear them, rather than n smaller
247   calls.  */
248struct reg_info_data {
249  struct reg_info_data *next;	/* next set of reg_info structures */
250  size_t min_index;		/* minimum index # */
251  size_t max_index;		/* maximum index # */
252  char used_p;			/* nonzero if this has been used previously */
253  reg_info data[1];		/* beginning of the reg_info data */
254};
255
256static struct reg_info_data *reg_info_head;
257
258/* No more global register variables may be declared; true once
259   regclass has been initialized.  */
260
261static int no_global_reg_vars = 0;
262
263/* Specify number of hard registers given machine mode occupy.  */
264unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
265
266/* Function called only once to initialize the above data on reg usage.
267   Once this is done, various switches may override.  */
268
269void
270init_reg_sets (void)
271{
272  int i, j;
273
274  /* First copy the register information from the initial int form into
275     the regsets.  */
276
277  for (i = 0; i < N_REG_CLASSES; i++)
278    {
279      CLEAR_HARD_REG_SET (reg_class_contents[i]);
280
281      /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
282      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
283	if (int_reg_class_contents[i][j / 32]
284	    & ((unsigned) 1 << (j % 32)))
285	  SET_HARD_REG_BIT (reg_class_contents[i], j);
286    }
287
288  /* Sanity check: make sure the target macros FIXED_REGISTERS and
289     CALL_USED_REGISTERS had the right number of initializers.  */
290  gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
291  gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
292
293  memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
294  memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
295  memset (global_regs, 0, sizeof global_regs);
296
297#ifdef REG_ALLOC_ORDER
298  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
299    inv_reg_alloc_order[reg_alloc_order[i]] = i;
300#endif
301}
302
303/* After switches have been processed, which perhaps alter
304   `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
305
306static void
307init_reg_sets_1 (void)
308{
309  unsigned int i, j;
310  unsigned int /* enum machine_mode */ m;
311
312  /* This macro allows the fixed or call-used registers
313     and the register classes to depend on target flags.  */
314
315#ifdef CONDITIONAL_REGISTER_USAGE
316  CONDITIONAL_REGISTER_USAGE;
317#endif
318
319  /* Compute number of hard regs in each class.  */
320
321  memset (reg_class_size, 0, sizeof reg_class_size);
322  for (i = 0; i < N_REG_CLASSES; i++)
323    for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
324      if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
325	reg_class_size[i]++;
326
327  /* Initialize the table of subunions.
328     reg_class_subunion[I][J] gets the largest-numbered reg-class
329     that is contained in the union of classes I and J.  */
330
331  for (i = 0; i < N_REG_CLASSES; i++)
332    {
333      for (j = 0; j < N_REG_CLASSES; j++)
334	{
335	  HARD_REG_SET c;
336	  int k;
337
338	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
339	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
340	  for (k = 0; k < N_REG_CLASSES; k++)
341	    {
342	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
343				     subclass1);
344	      continue;
345
346	    subclass1:
347	      /* Keep the largest subclass.  */		/* SPEE 900308 */
348	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
349				     reg_class_contents[(int) reg_class_subunion[i][j]],
350				     subclass2);
351	      reg_class_subunion[i][j] = (enum reg_class) k;
352	    subclass2:
353	      ;
354	    }
355	}
356    }
357
358  /* Initialize the table of superunions.
359     reg_class_superunion[I][J] gets the smallest-numbered reg-class
360     containing the union of classes I and J.  */
361
362  for (i = 0; i < N_REG_CLASSES; i++)
363    {
364      for (j = 0; j < N_REG_CLASSES; j++)
365	{
366	  HARD_REG_SET c;
367	  int k;
368
369	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
370	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
371	  for (k = 0; k < N_REG_CLASSES; k++)
372	    GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
373
374	superclass:
375	  reg_class_superunion[i][j] = (enum reg_class) k;
376	}
377    }
378
379  /* Initialize the tables of subclasses and superclasses of each reg class.
380     First clear the whole table, then add the elements as they are found.  */
381
382  for (i = 0; i < N_REG_CLASSES; i++)
383    {
384      for (j = 0; j < N_REG_CLASSES; j++)
385	{
386	  reg_class_superclasses[i][j] = LIM_REG_CLASSES;
387	  reg_class_subclasses[i][j] = LIM_REG_CLASSES;
388	}
389    }
390
391  for (i = 0; i < N_REG_CLASSES; i++)
392    {
393      if (i == (int) NO_REGS)
394	continue;
395
396      for (j = i + 1; j < N_REG_CLASSES; j++)
397	{
398	  enum reg_class *p;
399
400	  GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
401				 subclass);
402	  continue;
403	subclass:
404	  /* Reg class I is a subclass of J.
405	     Add J to the table of superclasses of I.  */
406	  p = &reg_class_superclasses[i][0];
407	  while (*p != LIM_REG_CLASSES) p++;
408	  *p = (enum reg_class) j;
409	  /* Add I to the table of superclasses of J.  */
410	  p = &reg_class_subclasses[j][0];
411	  while (*p != LIM_REG_CLASSES) p++;
412	  *p = (enum reg_class) i;
413	}
414    }
415
416  /* Initialize "constant" tables.  */
417
418  CLEAR_HARD_REG_SET (fixed_reg_set);
419  CLEAR_HARD_REG_SET (call_used_reg_set);
420  CLEAR_HARD_REG_SET (call_fixed_reg_set);
421  CLEAR_HARD_REG_SET (regs_invalidated_by_call);
422
423  memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
424
425  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
426    {
427      /* call_used_regs must include fixed_regs.  */
428      gcc_assert (!fixed_regs[i] || call_used_regs[i]);
429#ifdef CALL_REALLY_USED_REGISTERS
430      /* call_used_regs must include call_really_used_regs.  */
431      gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
432#endif
433
434      if (fixed_regs[i])
435	SET_HARD_REG_BIT (fixed_reg_set, i);
436
437      if (call_used_regs[i])
438	SET_HARD_REG_BIT (call_used_reg_set, i);
439      if (call_fixed_regs[i])
440	SET_HARD_REG_BIT (call_fixed_reg_set, i);
441      if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
442	SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
443
444      /* There are a couple of fixed registers that we know are safe to
445	 exclude from being clobbered by calls:
446
447	 The frame pointer is always preserved across calls.  The arg pointer
448	 is if it is fixed.  The stack pointer usually is, unless
449	 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
450	 If we are generating PIC code, the PIC offset table register is
451	 preserved across calls, though the target can override that.  */
452
453      if (i == STACK_POINTER_REGNUM)
454	;
455      else if (global_regs[i])
456	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
457      else if (i == FRAME_POINTER_REGNUM)
458	;
459#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
460      else if (i == HARD_FRAME_POINTER_REGNUM)
461	;
462#endif
463#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
464      else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
465	;
466#endif
467#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
468      else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
469	;
470#endif
471      else if (CALL_REALLY_USED_REGNO_P (i))
472	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
473    }
474
475  memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
476  memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
477  for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
478    for (i = 0; i < N_REG_CLASSES; i++)
479      if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
480	for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481	  if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482	      && HARD_REGNO_MODE_OK (j, m))
483	     {
484	       contains_reg_of_mode [i][m] = 1;
485	       have_regs_of_mode [m] = 1;
486	       break;
487	     }
488
489  /* Initialize the move cost table.  Find every subset of each class
490     and take the maximum cost of moving any subset to any other.  */
491
492  for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
493    if (have_regs_of_mode [m])
494      {
495	for (i = 0; i < N_REG_CLASSES; i++)
496	  if (contains_reg_of_mode [i][m])
497	    for (j = 0; j < N_REG_CLASSES; j++)
498	      {
499		int cost;
500		enum reg_class *p1, *p2;
501
502		if (!contains_reg_of_mode [j][m])
503		  {
504		    move_cost[m][i][j] = 65536;
505		    may_move_in_cost[m][i][j] = 65536;
506		    may_move_out_cost[m][i][j] = 65536;
507		  }
508		else
509		  {
510		    cost = REGISTER_MOVE_COST (m, i, j);
511
512		    for (p2 = &reg_class_subclasses[j][0];
513			 *p2 != LIM_REG_CLASSES;
514			 p2++)
515		      if (*p2 != i && contains_reg_of_mode [*p2][m])
516			cost = MAX (cost, move_cost [m][i][*p2]);
517
518		    for (p1 = &reg_class_subclasses[i][0];
519			 *p1 != LIM_REG_CLASSES;
520			 p1++)
521		      if (*p1 != j && contains_reg_of_mode [*p1][m])
522			cost = MAX (cost, move_cost [m][*p1][j]);
523
524		    move_cost[m][i][j] = cost;
525
526		    if (reg_class_subset_p (i, j))
527		      may_move_in_cost[m][i][j] = 0;
528		    else
529		      may_move_in_cost[m][i][j] = cost;
530
531		    if (reg_class_subset_p (j, i))
532		      may_move_out_cost[m][i][j] = 0;
533		    else
534		      may_move_out_cost[m][i][j] = cost;
535		  }
536	      }
537	  else
538	    for (j = 0; j < N_REG_CLASSES; j++)
539	      {
540		move_cost[m][i][j] = 65536;
541		may_move_in_cost[m][i][j] = 65536;
542		may_move_out_cost[m][i][j] = 65536;
543	      }
544      }
545}
546
547/* Compute the table of register modes.
548   These values are used to record death information for individual registers
549   (as opposed to a multi-register mode).  */
550
551void
552init_reg_modes_once (void)
553{
554  int i, j;
555
556  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
557    for (j = 0; j < MAX_MACHINE_MODE; j++)
558      hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
559
560  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
561    {
562      reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
563
564      /* If we couldn't find a valid mode, just use the previous mode.
565         ??? One situation in which we need to do this is on the mips where
566	 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2.  Ideally we'd like
567	 to use DF mode for the even registers and VOIDmode for the odd
568	 (for the cpu models where the odd ones are inaccessible).  */
569      if (reg_raw_mode[i] == VOIDmode)
570	reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
571    }
572}
573
574/* Finish initializing the register sets and
575   initialize the register modes.  */
576
577void
578init_regs (void)
579{
580  /* This finishes what was started by init_reg_sets, but couldn't be done
581     until after register usage was specified.  */
582  init_reg_sets_1 ();
583
584  init_reg_autoinc ();
585}
586
587/* Initialize some fake stack-frame MEM references for use in
588   memory_move_secondary_cost.  */
589
590void
591init_fake_stack_mems (void)
592{
593  {
594    int i;
595
596    for (i = 0; i < MAX_MACHINE_MODE; i++)
597      top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
598  }
599}
600
601
602/* Compute extra cost of moving registers to/from memory due to reloads.
603   Only needed if secondary reloads are required for memory moves.  */
604
605int
606memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
607{
608  enum reg_class altclass;
609  int partial_cost = 0;
610  /* We need a memory reference to feed to SECONDARY... macros.  */
611  /* mem may be unused even if the SECONDARY_ macros are defined.  */
612  rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
613
614
615  altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
616
617  if (altclass == NO_REGS)
618    return 0;
619
620  if (in)
621    partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
622  else
623    partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
624
625  if (class == altclass)
626    /* This isn't simply a copy-to-temporary situation.  Can't guess
627       what it is, so MEMORY_MOVE_COST really ought not to be calling
628       here in that case.
629
630       I'm tempted to put in an assert here, but returning this will
631       probably only give poor estimates, which is what we would've
632       had before this code anyways.  */
633    return partial_cost;
634
635  /* Check if the secondary reload register will also need a
636     secondary reload.  */
637  return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
638}
639
640/* Return a machine mode that is legitimate for hard reg REGNO and large
641   enough to save nregs.  If we can't find one, return VOIDmode.
642   If CALL_SAVED is true, only consider modes that are call saved.  */
643
644enum machine_mode
645choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
646		      unsigned int nregs, bool call_saved)
647{
648  unsigned int /* enum machine_mode */ m;
649  enum machine_mode found_mode = VOIDmode, mode;
650
651  /* We first look for the largest integer mode that can be validly
652     held in REGNO.  If none, we look for the largest floating-point mode.
653     If we still didn't find a valid mode, try CCmode.  */
654
655  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
656       mode != VOIDmode;
657       mode = GET_MODE_WIDER_MODE (mode))
658    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
659	&& HARD_REGNO_MODE_OK (regno, mode)
660	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
661      found_mode = mode;
662
663  if (found_mode != VOIDmode)
664    return found_mode;
665
666  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
667       mode != VOIDmode;
668       mode = GET_MODE_WIDER_MODE (mode))
669    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
670	&& HARD_REGNO_MODE_OK (regno, mode)
671	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
672      found_mode = mode;
673
674  if (found_mode != VOIDmode)
675    return found_mode;
676
677  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
678       mode != VOIDmode;
679       mode = GET_MODE_WIDER_MODE (mode))
680    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
681	&& HARD_REGNO_MODE_OK (regno, mode)
682	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
683      found_mode = mode;
684
685  if (found_mode != VOIDmode)
686    return found_mode;
687
688  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
689       mode != VOIDmode;
690       mode = GET_MODE_WIDER_MODE (mode))
691    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
692	&& HARD_REGNO_MODE_OK (regno, mode)
693	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
694      found_mode = mode;
695
696  if (found_mode != VOIDmode)
697    return found_mode;
698
699  /* Iterate over all of the CCmodes.  */
700  for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
701    {
702      mode = (enum machine_mode) m;
703      if ((unsigned) hard_regno_nregs[regno][mode] == nregs
704	  && HARD_REGNO_MODE_OK (regno, mode)
705	  && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
706	return mode;
707    }
708
709  /* We can't find a mode valid for this register.  */
710  return VOIDmode;
711}
712
713/* Specify the usage characteristics of the register named NAME.
714   It should be a fixed register if FIXED and a
715   call-used register if CALL_USED.  */
716
717void
718fix_register (const char *name, int fixed, int call_used)
719{
720  int i;
721
722  /* Decode the name and update the primary form of
723     the register info.  */
724
725  if ((i = decode_reg_name (name)) >= 0)
726    {
727      if ((i == STACK_POINTER_REGNUM
728#ifdef HARD_FRAME_POINTER_REGNUM
729	   || i == HARD_FRAME_POINTER_REGNUM
730#else
731	   || i == FRAME_POINTER_REGNUM
732#endif
733	   )
734	  && (fixed == 0 || call_used == 0))
735	{
736	  static const char * const what_option[2][2] = {
737	    { "call-saved", "call-used" },
738	    { "no-such-option", "fixed" }};
739
740	  error ("can't use '%s' as a %s register", name,
741		 what_option[fixed][call_used]);
742	}
743      else
744	{
745	  fixed_regs[i] = fixed;
746	  call_used_regs[i] = call_used;
747#ifdef CALL_REALLY_USED_REGISTERS
748	  if (fixed == 0)
749	    call_really_used_regs[i] = call_used;
750#endif
751	}
752    }
753  else
754    {
755      warning (0, "unknown register name: %s", name);
756    }
757}
758
759/* Mark register number I as global.  */
760
761void
762globalize_reg (int i)
763{
764  if (fixed_regs[i] == 0 && no_global_reg_vars)
765    error ("global register variable follows a function definition");
766
767  if (global_regs[i])
768    {
769      warning (0, "register used for two global register variables");
770      return;
771    }
772
773  if (call_used_regs[i] && ! fixed_regs[i])
774    warning (0, "call-clobbered register used for global register variable");
775
776  global_regs[i] = 1;
777
778  /* If we're globalizing the frame pointer, we need to set the
779     appropriate regs_invalidated_by_call bit, even if it's already
780     set in fixed_regs.  */
781  if (i != STACK_POINTER_REGNUM)
782    SET_HARD_REG_BIT (regs_invalidated_by_call, i);
783
784  /* If already fixed, nothing else to do.  */
785  if (fixed_regs[i])
786    return;
787
788  fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
789#ifdef CALL_REALLY_USED_REGISTERS
790  call_really_used_regs[i] = 1;
791#endif
792
793  SET_HARD_REG_BIT (fixed_reg_set, i);
794  SET_HARD_REG_BIT (call_used_reg_set, i);
795  SET_HARD_REG_BIT (call_fixed_reg_set, i);
796}
797
798/* Now the data and code for the `regclass' pass, which happens
799   just before local-alloc.  */
800
801/* The `costs' struct records the cost of using a hard register of each class
802   and of using memory for each pseudo.  We use this data to set up
803   register class preferences.  */
804
805struct costs
806{
807  int cost[N_REG_CLASSES];
808  int mem_cost;
809};
810
811/* Structure used to record preferences of given pseudo.  */
812struct reg_pref
813{
814  /* (enum reg_class) prefclass is the preferred class.  May be
815     NO_REGS if no class is better than memory.  */
816  char prefclass;
817
818  /* altclass is a register class that we should use for allocating
819     pseudo if no register in the preferred class is available.
820     If no register in this class is available, memory is preferred.
821
822     It might appear to be more general to have a bitmask of classes here,
823     but since it is recommended that there be a class corresponding to the
824     union of most major pair of classes, that generality is not required.  */
825  char altclass;
826};
827
828/* Record the cost of each class for each pseudo.  */
829
830static struct costs *costs;
831
832/* Initialized once, and used to initialize cost values for each insn.  */
833
834static struct costs init_cost;
835
836/* Record preferences of each pseudo.
837   This is available after `regclass' is run.  */
838
839static struct reg_pref *reg_pref;
840
841/* Allocated buffers for reg_pref.  */
842
843static struct reg_pref *reg_pref_buffer;
844
845/* Frequency of executions of current insn.  */
846
847static int frequency;
848
849static rtx scan_one_insn (rtx, int);
850static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
851static void dump_regclass (FILE *);
852static void record_reg_classes (int, int, rtx *, enum machine_mode *,
853				const char **, rtx, struct costs *,
854				struct reg_pref *);
855static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
856		      secondary_reload_info *);
857static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
858				 enum rtx_code, int);
859#ifdef FORBIDDEN_INC_DEC_CLASSES
860static int auto_inc_dec_reg_p (rtx, enum machine_mode);
861#endif
862static void reg_scan_mark_refs (rtx, rtx, int);
863
864/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers.  */
865
866static inline bool
867ok_for_index_p_nonstrict (rtx reg)
868{
869  unsigned regno = REGNO (reg);
870  return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
871}
872
873/* A version of regno_ok_for_base_p for use during regclass, when all pseudos
874   should count as OK.  Arguments as for regno_ok_for_base_p.  */
875
876static inline bool
877ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
878			 enum rtx_code outer_code, enum rtx_code index_code)
879{
880  unsigned regno = REGNO (reg);
881  if (regno >= FIRST_PSEUDO_REGISTER)
882    return true;
883
884  return ok_for_base_p_1 (regno, mode, outer_code, index_code);
885}
886
887/* Return the reg_class in which pseudo reg number REGNO is best allocated.
888   This function is sometimes called before the info has been computed.
889   When that happens, just return GENERAL_REGS, which is innocuous.  */
890
891enum reg_class
892reg_preferred_class (int regno)
893{
894  if (reg_pref == 0)
895    return GENERAL_REGS;
896  return (enum reg_class) reg_pref[regno].prefclass;
897}
898
899enum reg_class
900reg_alternate_class (int regno)
901{
902  if (reg_pref == 0)
903    return ALL_REGS;
904
905  return (enum reg_class) reg_pref[regno].altclass;
906}
907
908/* Initialize some global data for this pass.  */
909
910void
911regclass_init (void)
912{
913  int i;
914
915  init_cost.mem_cost = 10000;
916  for (i = 0; i < N_REG_CLASSES; i++)
917    init_cost.cost[i] = 10000;
918
919  /* This prevents dump_flow_info from losing if called
920     before regclass is run.  */
921  reg_pref = NULL;
922
923  /* No more global register variables may be declared.  */
924  no_global_reg_vars = 1;
925}
926
927/* Dump register costs.  */
928static void
929dump_regclass (FILE *dump)
930{
931  int i;
932  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
933    {
934      int /* enum reg_class */ class;
935      if (REG_N_REFS (i))
936	{
937	  fprintf (dump, "  Register %i costs:", i);
938	  for (class = 0; class < (int) N_REG_CLASSES; class++)
939	    if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
940#ifdef FORBIDDEN_INC_DEC_CLASSES
941		&& (!in_inc_dec[i]
942		    || !forbidden_inc_dec_class[(enum reg_class) class])
943#endif
944#ifdef CANNOT_CHANGE_MODE_CLASS
945		&& ! invalid_mode_change_p (i, (enum reg_class) class,
946					    PSEUDO_REGNO_MODE (i))
947#endif
948		)
949	    fprintf (dump, " %s:%i", reg_class_names[class],
950		     costs[i].cost[(enum reg_class) class]);
951	  fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
952	}
953    }
954}
955
956
957/* Calculate the costs of insn operands.  */
958
959static void
960record_operand_costs (rtx insn, struct costs *op_costs,
961		      struct reg_pref *reg_pref)
962{
963  const char *constraints[MAX_RECOG_OPERANDS];
964  enum machine_mode modes[MAX_RECOG_OPERANDS];
965  int i;
966
967  for (i = 0; i < recog_data.n_operands; i++)
968    {
969      constraints[i] = recog_data.constraints[i];
970      modes[i] = recog_data.operand_mode[i];
971    }
972
973  /* If we get here, we are set up to record the costs of all the
974     operands for this insn.  Start by initializing the costs.
975     Then handle any address registers.  Finally record the desired
976     classes for any pseudos, doing it twice if some pair of
977     operands are commutative.  */
978
979  for (i = 0; i < recog_data.n_operands; i++)
980    {
981      op_costs[i] = init_cost;
982
983      if (GET_CODE (recog_data.operand[i]) == SUBREG)
984	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
985
986      if (MEM_P (recog_data.operand[i]))
987	record_address_regs (GET_MODE (recog_data.operand[i]),
988			     XEXP (recog_data.operand[i], 0),
989			     0, MEM, SCRATCH, frequency * 2);
990      else if (constraints[i][0] == 'p'
991	       || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
992	record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
993			     SCRATCH, frequency * 2);
994    }
995
996  /* Check for commutative in a separate loop so everything will
997     have been initialized.  We must do this even if one operand
998     is a constant--see addsi3 in m68k.md.  */
999
1000  for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1001    if (constraints[i][0] == '%')
1002      {
1003	const char *xconstraints[MAX_RECOG_OPERANDS];
1004	int j;
1005
1006	/* Handle commutative operands by swapping the constraints.
1007	   We assume the modes are the same.  */
1008
1009	for (j = 0; j < recog_data.n_operands; j++)
1010	  xconstraints[j] = constraints[j];
1011
1012	xconstraints[i] = constraints[i+1];
1013	xconstraints[i+1] = constraints[i];
1014	record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1015			    recog_data.operand, modes,
1016			    xconstraints, insn, op_costs, reg_pref);
1017      }
1018
1019  record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1020		      recog_data.operand, modes,
1021		      constraints, insn, op_costs, reg_pref);
1022}
1023
1024/* Subroutine of regclass, processes one insn INSN.  Scan it and record each
1025   time it would save code to put a certain register in a certain class.
1026   PASS, when nonzero, inhibits some optimizations which need only be done
1027   once.
1028   Return the last insn processed, so that the scan can be continued from
1029   there.  */
1030
1031static rtx
1032scan_one_insn (rtx insn, int pass)
1033{
1034  enum rtx_code pat_code;
1035  rtx set, note;
1036  int i, j;
1037  struct costs op_costs[MAX_RECOG_OPERANDS];
1038
1039  if (!INSN_P (insn))
1040    return insn;
1041
1042  pat_code = GET_CODE (PATTERN (insn));
1043  if (pat_code == USE
1044      || pat_code == CLOBBER
1045      || pat_code == ASM_INPUT
1046      || pat_code == ADDR_VEC
1047      || pat_code == ADDR_DIFF_VEC)
1048    return insn;
1049
1050  set = single_set (insn);
1051  extract_insn (insn);
1052
1053  /* If this insn loads a parameter from its stack slot, then
1054     it represents a savings, rather than a cost, if the
1055     parameter is stored in memory.  Record this fact.  */
1056
1057  if (set != 0 && REG_P (SET_DEST (set))
1058      && MEM_P (SET_SRC (set))
1059      && (note = find_reg_note (insn, REG_EQUIV,
1060				NULL_RTX)) != 0
1061      && MEM_P (XEXP (note, 0)))
1062    {
1063      costs[REGNO (SET_DEST (set))].mem_cost
1064	-= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1065			      GENERAL_REGS, 1)
1066	    * frequency);
1067      record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1068			   0, MEM, SCRATCH, frequency * 2);
1069      return insn;
1070    }
1071
1072  /* Improve handling of two-address insns such as
1073     (set X (ashift CONST Y)) where CONST must be made to
1074     match X. Change it into two insns: (set X CONST)
1075     (set X (ashift X Y)).  If we left this for reloading, it
1076     would probably get three insns because X and Y might go
1077     in the same place. This prevents X and Y from receiving
1078     the same hard reg.
1079
1080     We can only do this if the modes of operands 0 and 1
1081     (which might not be the same) are tieable and we only need
1082     do this during our first pass.  */
1083
1084  if (pass == 0 && optimize
1085      && recog_data.n_operands >= 3
1086      && recog_data.constraints[1][0] == '0'
1087      && recog_data.constraints[1][1] == 0
1088      && CONSTANT_P (recog_data.operand[1])
1089      && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1090      && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1091      && REG_P (recog_data.operand[0])
1092      && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1093			  recog_data.operand_mode[1]))
1094    {
1095      rtx previnsn = prev_real_insn (insn);
1096      rtx dest
1097	= gen_lowpart (recog_data.operand_mode[1],
1098		       recog_data.operand[0]);
1099      rtx newinsn
1100	= emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1101
1102      /* If this insn was the start of a basic block,
1103	 include the new insn in that block.
1104	 We need not check for code_label here;
1105	 while a basic block can start with a code_label,
1106	 INSN could not be at the beginning of that block.  */
1107      if (previnsn == 0 || JUMP_P (previnsn))
1108	{
1109	  basic_block b;
1110	  FOR_EACH_BB (b)
1111	    if (insn == BB_HEAD (b))
1112	      BB_HEAD (b) = newinsn;
1113	}
1114
1115      /* This makes one more setting of new insns's dest.  */
1116      REG_N_SETS (REGNO (recog_data.operand[0]))++;
1117      REG_N_REFS (REGNO (recog_data.operand[0]))++;
1118      REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1119
1120      *recog_data.operand_loc[1] = recog_data.operand[0];
1121      REG_N_REFS (REGNO (recog_data.operand[0]))++;
1122      REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1123      for (i = recog_data.n_dups - 1; i >= 0; i--)
1124	if (recog_data.dup_num[i] == 1)
1125	  {
1126	    *recog_data.dup_loc[i] = recog_data.operand[0];
1127	    REG_N_REFS (REGNO (recog_data.operand[0]))++;
1128	    REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1129	  }
1130
1131      return PREV_INSN (newinsn);
1132    }
1133
1134  record_operand_costs (insn, op_costs, reg_pref);
1135
1136  /* Now add the cost for each operand to the total costs for
1137     its register.  */
1138
1139  for (i = 0; i < recog_data.n_operands; i++)
1140    if (REG_P (recog_data.operand[i])
1141	&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1142      {
1143	int regno = REGNO (recog_data.operand[i]);
1144	struct costs *p = &costs[regno], *q = &op_costs[i];
1145
1146	p->mem_cost += q->mem_cost * frequency;
1147	for (j = 0; j < N_REG_CLASSES; j++)
1148	  p->cost[j] += q->cost[j] * frequency;
1149      }
1150
1151  return insn;
1152}
1153
1154/* Initialize information about which register classes can be used for
1155   pseudos that are auto-incremented or auto-decremented.  */
1156
1157static void
1158init_reg_autoinc (void)
1159{
1160#ifdef FORBIDDEN_INC_DEC_CLASSES
1161  int i;
1162
1163  for (i = 0; i < N_REG_CLASSES; i++)
1164    {
1165      rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1166      enum machine_mode m;
1167      int j;
1168
1169      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1170	if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1171	  {
1172	    REGNO (r) = j;
1173
1174	    for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1175		 m = (enum machine_mode) ((int) m + 1))
1176	      if (HARD_REGNO_MODE_OK (j, m))
1177		{
1178		  /* ??? There are two assumptions here; that the base class does not
1179		     depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
1180		     that it does not depend on the machine mode of the memory
1181		     reference.  */
1182		  enum reg_class base_class
1183		    = base_reg_class (VOIDmode, POST_INC, SCRATCH);
1184
1185		  PUT_MODE (r, m);
1186
1187		  /* If a register is not directly suitable for an
1188		     auto-increment or decrement addressing mode and
1189		     requires secondary reloads, disallow its class from
1190		     being used in such addresses.  */
1191
1192		  if ((secondary_reload_class (1, base_class, m, r)
1193		       || secondary_reload_class (1, base_class, m, r))
1194		      && ! auto_inc_dec_reg_p (r, m))
1195		    forbidden_inc_dec_class[i] = 1;
1196		}
1197	  }
1198    }
1199#endif /* FORBIDDEN_INC_DEC_CLASSES */
1200}
1201
1202/* This is a pass of the compiler that scans all instructions
1203   and calculates the preferred class for each pseudo-register.
1204   This information can be accessed later by calling `reg_preferred_class'.
1205   This pass comes just before local register allocation.  */
1206
1207void
1208regclass (rtx f, int nregs)
1209{
1210  rtx insn;
1211  int i;
1212  int pass;
1213
1214  init_recog ();
1215
1216  costs = XNEWVEC (struct costs, nregs);
1217
1218#ifdef FORBIDDEN_INC_DEC_CLASSES
1219
1220  in_inc_dec = XNEWVEC (char, nregs);
1221
1222#endif /* FORBIDDEN_INC_DEC_CLASSES */
1223
1224  /* Normally we scan the insns once and determine the best class to use for
1225     each register.  However, if -fexpensive_optimizations are on, we do so
1226     twice, the second time using the tentative best classes to guide the
1227     selection.  */
1228
1229  for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1230    {
1231      basic_block bb;
1232
1233      if (dump_file)
1234	fprintf (dump_file, "\n\nPass %i\n\n",pass);
1235      /* Zero out our accumulation of the cost of each class for each reg.  */
1236
1237      memset (costs, 0, nregs * sizeof (struct costs));
1238
1239#ifdef FORBIDDEN_INC_DEC_CLASSES
1240      memset (in_inc_dec, 0, nregs);
1241#endif
1242
1243      /* Scan the instructions and record each time it would
1244	 save code to put a certain register in a certain class.  */
1245
1246      if (!optimize)
1247	{
1248	  frequency = REG_FREQ_MAX;
1249	  for (insn = f; insn; insn = NEXT_INSN (insn))
1250	    insn = scan_one_insn (insn, pass);
1251	}
1252      else
1253	FOR_EACH_BB (bb)
1254	  {
1255	    /* Show that an insn inside a loop is likely to be executed three
1256	       times more than insns outside a loop.  This is much more
1257	       aggressive than the assumptions made elsewhere and is being
1258	       tried as an experiment.  */
1259	    frequency = REG_FREQ_FROM_BB (bb);
1260	    for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1261	      {
1262		insn = scan_one_insn (insn, pass);
1263		if (insn == BB_END (bb))
1264		  break;
1265	      }
1266	  }
1267
1268      /* Now for each register look at how desirable each class is
1269	 and find which class is preferred.  Store that in
1270	 `prefclass'.  Record in `altclass' the largest register
1271	 class any of whose registers is better than memory.  */
1272
1273      if (pass == 0)
1274	reg_pref = reg_pref_buffer;
1275
1276      if (dump_file)
1277	{
1278	  dump_regclass (dump_file);
1279	  fprintf (dump_file,"\n");
1280	}
1281      for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1282	{
1283	  int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1284	  enum reg_class best = ALL_REGS, alt = NO_REGS;
1285	  /* This is an enum reg_class, but we call it an int
1286	     to save lots of casts.  */
1287	  int class;
1288	  struct costs *p = &costs[i];
1289
1290	  /* In non-optimizing compilation REG_N_REFS is not initialized
1291	     yet.  */
1292	  if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1293	    continue;
1294
1295	  for (class = (int) ALL_REGS - 1; class > 0; class--)
1296	    {
1297	      /* Ignore classes that are too small for this operand or
1298		 invalid for an operand that was auto-incremented.  */
1299	      if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1300#ifdef FORBIDDEN_INC_DEC_CLASSES
1301		  || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1302#endif
1303#ifdef CANNOT_CHANGE_MODE_CLASS
1304		  || invalid_mode_change_p (i, (enum reg_class) class,
1305					    PSEUDO_REGNO_MODE (i))
1306#endif
1307		  )
1308		;
1309	      else if (p->cost[class] < best_cost)
1310		{
1311		  best_cost = p->cost[class];
1312		  best = (enum reg_class) class;
1313		}
1314	      else if (p->cost[class] == best_cost)
1315		best = reg_class_subunion[(int) best][class];
1316	    }
1317
1318	  /* If no register class is better than memory, use memory. */
1319	  if (p->mem_cost < best_cost)
1320	    best = NO_REGS;
1321
1322	  /* Record the alternate register class; i.e., a class for which
1323	     every register in it is better than using memory.  If adding a
1324	     class would make a smaller class (i.e., no union of just those
1325	     classes exists), skip that class.  The major unions of classes
1326	     should be provided as a register class.  Don't do this if we
1327	     will be doing it again later.  */
1328
1329	  if ((pass == 1  || dump_file) || ! flag_expensive_optimizations)
1330	    for (class = 0; class < N_REG_CLASSES; class++)
1331	      if (p->cost[class] < p->mem_cost
1332		  && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1333		      > reg_class_size[(int) alt])
1334#ifdef FORBIDDEN_INC_DEC_CLASSES
1335		  && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1336#endif
1337#ifdef CANNOT_CHANGE_MODE_CLASS
1338		  && ! invalid_mode_change_p (i, (enum reg_class) class,
1339					      PSEUDO_REGNO_MODE (i))
1340#endif
1341		  )
1342		alt = reg_class_subunion[(int) alt][class];
1343
1344	  /* If we don't add any classes, nothing to try.  */
1345	  if (alt == best)
1346	    alt = NO_REGS;
1347
1348	  if (dump_file
1349	      && (reg_pref[i].prefclass != (int) best
1350		  || reg_pref[i].altclass != (int) alt))
1351	    {
1352	      fprintf (dump_file, "  Register %i", i);
1353	      if (alt == ALL_REGS || best == ALL_REGS)
1354		fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
1355	      else if (alt == NO_REGS)
1356		fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
1357	      else
1358		fprintf (dump_file, " pref %s, else %s\n",
1359			 reg_class_names[(int) best],
1360			 reg_class_names[(int) alt]);
1361	    }
1362
1363	  /* We cast to (int) because (char) hits bugs in some compilers.  */
1364	  reg_pref[i].prefclass = (int) best;
1365	  reg_pref[i].altclass = (int) alt;
1366	}
1367    }
1368
1369#ifdef FORBIDDEN_INC_DEC_CLASSES
1370  free (in_inc_dec);
1371#endif
1372  free (costs);
1373}
1374
1375/* Record the cost of using memory or registers of various classes for
1376   the operands in INSN.
1377
1378   N_ALTS is the number of alternatives.
1379
1380   N_OPS is the number of operands.
1381
1382   OPS is an array of the operands.
1383
1384   MODES are the modes of the operands, in case any are VOIDmode.
1385
1386   CONSTRAINTS are the constraints to use for the operands.  This array
1387   is modified by this procedure.
1388
1389   This procedure works alternative by alternative.  For each alternative
1390   we assume that we will be able to allocate all pseudos to their ideal
1391   register class and calculate the cost of using that alternative.  Then
1392   we compute for each operand that is a pseudo-register, the cost of
1393   having the pseudo allocated to each register class and using it in that
1394   alternative.  To this cost is added the cost of the alternative.
1395
1396   The cost of each class for this insn is its lowest cost among all the
1397   alternatives.  */
1398
1399static void
1400record_reg_classes (int n_alts, int n_ops, rtx *ops,
1401		    enum machine_mode *modes, const char **constraints,
1402		    rtx insn, struct costs *op_costs,
1403		    struct reg_pref *reg_pref)
1404{
1405  int alt;
1406  int i, j;
1407  rtx set;
1408
1409  /* Process each alternative, each time minimizing an operand's cost with
1410     the cost for each operand in that alternative.  */
1411
1412  for (alt = 0; alt < n_alts; alt++)
1413    {
1414      struct costs this_op_costs[MAX_RECOG_OPERANDS];
1415      int alt_fail = 0;
1416      int alt_cost = 0;
1417      enum reg_class classes[MAX_RECOG_OPERANDS];
1418      int allows_mem[MAX_RECOG_OPERANDS];
1419      int class;
1420
1421      for (i = 0; i < n_ops; i++)
1422	{
1423	  const char *p = constraints[i];
1424	  rtx op = ops[i];
1425	  enum machine_mode mode = modes[i];
1426	  int allows_addr = 0;
1427	  int win = 0;
1428	  unsigned char c;
1429
1430	  /* Initially show we know nothing about the register class.  */
1431	  classes[i] = NO_REGS;
1432	  allows_mem[i] = 0;
1433
1434	  /* If this operand has no constraints at all, we can conclude
1435	     nothing about it since anything is valid.  */
1436
1437	  if (*p == 0)
1438	    {
1439	      if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1440		memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1441
1442	      continue;
1443	    }
1444
1445	  /* If this alternative is only relevant when this operand
1446	     matches a previous operand, we do different things depending
1447	     on whether this operand is a pseudo-reg or not.  We must process
1448	     any modifiers for the operand before we can make this test.  */
1449
1450	  while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1451	    p++;
1452
1453	  if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1454	    {
1455	      /* Copy class and whether memory is allowed from the matching
1456		 alternative.  Then perform any needed cost computations
1457		 and/or adjustments.  */
1458	      j = p[0] - '0';
1459	      classes[i] = classes[j];
1460	      allows_mem[i] = allows_mem[j];
1461
1462	      if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1463		{
1464		  /* If this matches the other operand, we have no added
1465		     cost and we win.  */
1466		  if (rtx_equal_p (ops[j], op))
1467		    win = 1;
1468
1469		  /* If we can put the other operand into a register, add to
1470		     the cost of this alternative the cost to copy this
1471		     operand to the register used for the other operand.  */
1472
1473		  else if (classes[j] != NO_REGS)
1474		    {
1475		      alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1476		      win = 1;
1477		    }
1478		}
1479	      else if (!REG_P (ops[j])
1480		       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1481		{
1482		  /* This op is a pseudo but the one it matches is not.  */
1483
1484		  /* If we can't put the other operand into a register, this
1485		     alternative can't be used.  */
1486
1487		  if (classes[j] == NO_REGS)
1488		    alt_fail = 1;
1489
1490		  /* Otherwise, add to the cost of this alternative the cost
1491		     to copy the other operand to the register used for this
1492		     operand.  */
1493
1494		  else
1495		    alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
1496		}
1497	      else
1498		{
1499		  /* The costs of this operand are not the same as the other
1500		     operand since move costs are not symmetric.  Moreover,
1501		     if we cannot tie them, this alternative needs to do a
1502		     copy, which is one instruction.  */
1503
1504		  struct costs *pp = &this_op_costs[i];
1505
1506		  for (class = 0; class < N_REG_CLASSES; class++)
1507		    pp->cost[class]
1508		      = ((recog_data.operand_type[i] != OP_OUT
1509			  ? may_move_in_cost[mode][class][(int) classes[i]]
1510			  : 0)
1511			 + (recog_data.operand_type[i] != OP_IN
1512			    ? may_move_out_cost[mode][(int) classes[i]][class]
1513			    : 0));
1514
1515		  /* If the alternative actually allows memory, make things
1516		     a bit cheaper since we won't need an extra insn to
1517		     load it.  */
1518
1519		  pp->mem_cost
1520		    = ((recog_data.operand_type[i] != OP_IN
1521		        ? MEMORY_MOVE_COST (mode, classes[i], 0)
1522			: 0)
1523		       + (recog_data.operand_type[i] != OP_OUT
1524			  ? MEMORY_MOVE_COST (mode, classes[i], 1)
1525			  : 0) - allows_mem[i]);
1526
1527		  /* If we have assigned a class to this register in our
1528		     first pass, add a cost to this alternative corresponding
1529		     to what we would add if this register were not in the
1530		     appropriate class.  */
1531
1532		  if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1533		    alt_cost
1534		      += (may_move_in_cost[mode]
1535			  [(unsigned char) reg_pref[REGNO (op)].prefclass]
1536			  [(int) classes[i]]);
1537
1538		  if (REGNO (ops[i]) != REGNO (ops[j])
1539		      && ! find_reg_note (insn, REG_DEAD, op))
1540		    alt_cost += 2;
1541
1542		  /* This is in place of ordinary cost computation
1543		     for this operand, so skip to the end of the
1544		     alternative (should be just one character).  */
1545		  while (*p && *p++ != ',')
1546		    ;
1547
1548		  constraints[i] = p;
1549		  continue;
1550		}
1551	    }
1552
1553	  /* Scan all the constraint letters.  See if the operand matches
1554	     any of the constraints.  Collect the valid register classes
1555	     and see if this operand accepts memory.  */
1556
1557	  while ((c = *p))
1558	    {
1559	      switch (c)
1560		{
1561		case ',':
1562		  break;
1563		case '*':
1564		  /* Ignore the next letter for this pass.  */
1565		  c = *++p;
1566		  break;
1567
1568		case '?':
1569		  alt_cost += 2;
1570		case '!':  case '#':  case '&':
1571		case '0':  case '1':  case '2':  case '3':  case '4':
1572		case '5':  case '6':  case '7':  case '8':  case '9':
1573		  break;
1574
1575		case 'p':
1576		  allows_addr = 1;
1577		  win = address_operand (op, GET_MODE (op));
1578		  /* We know this operand is an address, so we want it to be
1579		     allocated to a register that can be the base of an
1580		     address, i.e. BASE_REG_CLASS.  */
1581		  classes[i]
1582		    = reg_class_subunion[(int) classes[i]]
1583		    [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1584		  break;
1585
1586		case 'm':  case 'o':  case 'V':
1587		  /* It doesn't seem worth distinguishing between offsettable
1588		     and non-offsettable addresses here.  */
1589		  allows_mem[i] = 1;
1590		  if (MEM_P (op))
1591		    win = 1;
1592		  break;
1593
1594		case '<':
1595		  if (MEM_P (op)
1596		      && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1597			  || GET_CODE (XEXP (op, 0)) == POST_DEC))
1598		    win = 1;
1599		  break;
1600
1601		case '>':
1602		  if (MEM_P (op)
1603		      && (GET_CODE (XEXP (op, 0)) == PRE_INC
1604			  || GET_CODE (XEXP (op, 0)) == POST_INC))
1605		    win = 1;
1606		  break;
1607
1608		case 'E':
1609		case 'F':
1610		  if (GET_CODE (op) == CONST_DOUBLE
1611		      || (GET_CODE (op) == CONST_VECTOR
1612			  && (GET_MODE_CLASS (GET_MODE (op))
1613			      == MODE_VECTOR_FLOAT)))
1614		    win = 1;
1615		  break;
1616
1617		case 'G':
1618		case 'H':
1619		  if (GET_CODE (op) == CONST_DOUBLE
1620		      && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1621		    win = 1;
1622		  break;
1623
1624		case 's':
1625		  if (GET_CODE (op) == CONST_INT
1626		      || (GET_CODE (op) == CONST_DOUBLE
1627			  && GET_MODE (op) == VOIDmode))
1628		    break;
1629		case 'i':
1630		  if (CONSTANT_P (op)
1631		      && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1632		    win = 1;
1633		  break;
1634
1635		case 'n':
1636		  if (GET_CODE (op) == CONST_INT
1637		      || (GET_CODE (op) == CONST_DOUBLE
1638			  && GET_MODE (op) == VOIDmode))
1639		    win = 1;
1640		  break;
1641
1642		case 'I':
1643		case 'J':
1644		case 'K':
1645		case 'L':
1646		case 'M':
1647		case 'N':
1648		case 'O':
1649		case 'P':
1650		  if (GET_CODE (op) == CONST_INT
1651		      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1652		    win = 1;
1653		  break;
1654
1655		case 'X':
1656		  win = 1;
1657		  break;
1658
1659		case 'g':
1660		  if (MEM_P (op)
1661		      || (CONSTANT_P (op)
1662			  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1663		    win = 1;
1664		  allows_mem[i] = 1;
1665		case 'r':
1666		  classes[i]
1667		    = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1668		  break;
1669
1670		default:
1671		  if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1672		    classes[i]
1673		      = reg_class_subunion[(int) classes[i]]
1674			[(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1675#ifdef EXTRA_CONSTRAINT_STR
1676		  else if (EXTRA_CONSTRAINT_STR (op, c, p))
1677		    win = 1;
1678
1679		  if (EXTRA_MEMORY_CONSTRAINT (c, p))
1680		    {
1681		      /* Every MEM can be reloaded to fit.  */
1682		      allows_mem[i] = 1;
1683		      if (MEM_P (op))
1684			win = 1;
1685		    }
1686		  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1687		    {
1688		      /* Every address can be reloaded to fit.  */
1689		      allows_addr = 1;
1690		      if (address_operand (op, GET_MODE (op)))
1691			win = 1;
1692		      /* We know this operand is an address, so we want it to
1693			 be allocated to a register that can be the base of an
1694			 address, i.e. BASE_REG_CLASS.  */
1695		      classes[i]
1696			= reg_class_subunion[(int) classes[i]]
1697			[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1698		    }
1699#endif
1700		  break;
1701		}
1702	      p += CONSTRAINT_LEN (c, p);
1703	      if (c == ',')
1704		break;
1705	    }
1706
1707	  constraints[i] = p;
1708
1709	  /* How we account for this operand now depends on whether it is  a
1710	     pseudo register or not.  If it is, we first check if any
1711	     register classes are valid.  If not, we ignore this alternative,
1712	     since we want to assume that all pseudos get allocated for
1713	     register preferencing.  If some register class is valid, compute
1714	     the costs of moving the pseudo into that class.  */
1715
1716	  if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1717	    {
1718	      if (classes[i] == NO_REGS)
1719		{
1720		  /* We must always fail if the operand is a REG, but
1721		     we did not find a suitable class.
1722
1723		     Otherwise we may perform an uninitialized read
1724		     from this_op_costs after the `continue' statement
1725		     below.  */
1726		  alt_fail = 1;
1727		}
1728	      else
1729		{
1730		  struct costs *pp = &this_op_costs[i];
1731
1732		  for (class = 0; class < N_REG_CLASSES; class++)
1733		    pp->cost[class]
1734		      = ((recog_data.operand_type[i] != OP_OUT
1735			  ? may_move_in_cost[mode][class][(int) classes[i]]
1736			  : 0)
1737			 + (recog_data.operand_type[i] != OP_IN
1738			    ? may_move_out_cost[mode][(int) classes[i]][class]
1739			    : 0));
1740
1741		  /* If the alternative actually allows memory, make things
1742		     a bit cheaper since we won't need an extra insn to
1743		     load it.  */
1744
1745		  pp->mem_cost
1746		    = ((recog_data.operand_type[i] != OP_IN
1747		        ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748			: 0)
1749		       + (recog_data.operand_type[i] != OP_OUT
1750			  ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751			  : 0) - allows_mem[i]);
1752
1753		  /* If we have assigned a class to this register in our
1754		     first pass, add a cost to this alternative corresponding
1755		     to what we would add if this register were not in the
1756		     appropriate class.  */
1757
1758		  if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1759		    alt_cost
1760		      += (may_move_in_cost[mode]
1761			  [(unsigned char) reg_pref[REGNO (op)].prefclass]
1762			  [(int) classes[i]]);
1763		}
1764	    }
1765
1766	  /* Otherwise, if this alternative wins, either because we
1767	     have already determined that or if we have a hard register of
1768	     the proper class, there is no cost for this alternative.  */
1769
1770	  else if (win
1771		   || (REG_P (op)
1772		       && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1773	    ;
1774
1775	  /* If registers are valid, the cost of this alternative includes
1776	     copying the object to and/or from a register.  */
1777
1778	  else if (classes[i] != NO_REGS)
1779	    {
1780	      if (recog_data.operand_type[i] != OP_OUT)
1781		alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1782
1783	      if (recog_data.operand_type[i] != OP_IN)
1784		alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1785	    }
1786
1787	  /* The only other way this alternative can be used is if this is a
1788	     constant that could be placed into memory.  */
1789
1790	  else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1791	    alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1792	  else
1793	    alt_fail = 1;
1794	}
1795
1796      if (alt_fail)
1797	continue;
1798
1799      /* Finally, update the costs with the information we've calculated
1800	 about this alternative.  */
1801
1802      for (i = 0; i < n_ops; i++)
1803	if (REG_P (ops[i])
1804	    && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1805	  {
1806	    struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1807	    int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1808
1809	    pp->mem_cost = MIN (pp->mem_cost,
1810				(qq->mem_cost + alt_cost) * scale);
1811
1812	    for (class = 0; class < N_REG_CLASSES; class++)
1813	      pp->cost[class] = MIN (pp->cost[class],
1814				     (qq->cost[class] + alt_cost) * scale);
1815	  }
1816    }
1817
1818  /* If this insn is a single set copying operand 1 to operand 0
1819     and one operand is a pseudo with the other a hard reg or a pseudo
1820     that prefers a register that is in its own register class then
1821     we may want to adjust the cost of that register class to -1.
1822
1823     Avoid the adjustment if the source does not die to avoid stressing of
1824     register allocator by preferrencing two colliding registers into single
1825     class.
1826
1827     Also avoid the adjustment if a copy between registers of the class
1828     is expensive (ten times the cost of a default copy is considered
1829     arbitrarily expensive).  This avoids losing when the preferred class
1830     is very expensive as the source of a copy instruction.  */
1831
1832  if ((set = single_set (insn)) != 0
1833      && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1834      && REG_P (ops[0]) && REG_P (ops[1])
1835      && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1836    for (i = 0; i <= 1; i++)
1837      if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838	{
1839	  unsigned int regno = REGNO (ops[!i]);
1840	  enum machine_mode mode = GET_MODE (ops[!i]);
1841	  int class;
1842	  unsigned int nr;
1843
1844	  if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
1845	      && reg_pref[regno].prefclass != NO_REGS)
1846	    {
1847	      enum reg_class pref = reg_pref[regno].prefclass;
1848
1849	      if ((reg_class_size[(unsigned char) pref]
1850		   == (unsigned) CLASS_MAX_NREGS (pref, mode))
1851		  && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1852		op_costs[i].cost[(unsigned char) pref] = -1;
1853	    }
1854	  else if (regno < FIRST_PSEUDO_REGISTER)
1855	    for (class = 0; class < N_REG_CLASSES; class++)
1856	      if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1857		  && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1858		{
1859		  if (reg_class_size[class] == 1)
1860		    op_costs[i].cost[class] = -1;
1861		  else
1862		    {
1863		      for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1864			{
1865			  if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1866						   regno + nr))
1867			    break;
1868			}
1869
1870		      if (nr == (unsigned) hard_regno_nregs[regno][mode])
1871			op_costs[i].cost[class] = -1;
1872		    }
1873		}
1874	}
1875}
1876
1877/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1878   TO_P is zero) a register of class CLASS in mode MODE.
1879
1880   X must not be a pseudo.  */
1881
1882static int
1883copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1884	   secondary_reload_info *prev_sri)
1885{
1886  enum reg_class secondary_class = NO_REGS;
1887  secondary_reload_info sri;
1888
1889  /* If X is a SCRATCH, there is actually nothing to move since we are
1890     assuming optimal allocation.  */
1891
1892  if (GET_CODE (x) == SCRATCH)
1893    return 0;
1894
1895  /* Get the class we will actually use for a reload.  */
1896  class = PREFERRED_RELOAD_CLASS (x, class);
1897
1898  /* If we need a secondary reload for an intermediate, the
1899     cost is that to load the input into the intermediate register, then
1900     to copy it.  */
1901
1902  sri.prev_sri = prev_sri;
1903  sri.extra_cost = 0;
1904  secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
1905
1906  if (secondary_class != NO_REGS)
1907    return (move_cost[mode][(int) secondary_class][(int) class]
1908	    + sri.extra_cost
1909	    + copy_cost (x, mode, secondary_class, to_p, &sri));
1910
1911  /* For memory, use the memory move cost, for (hard) registers, use the
1912     cost to move between the register classes, and use 2 for everything
1913     else (constants).  */
1914
1915  if (MEM_P (x) || class == NO_REGS)
1916    return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
1917
1918  else if (REG_P (x))
1919    return (sri.extra_cost
1920	    + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
1921
1922  else
1923    /* If this is a constant, we may eventually want to call rtx_cost here.  */
1924    return sri.extra_cost + COSTS_N_INSNS (1);
1925}
1926
1927/* Record the pseudo registers we must reload into hard registers
1928   in a subexpression of a memory address, X.
1929
1930   If CONTEXT is 0, we are looking at the base part of an address, otherwise we
1931   are looking at the index part.
1932
1933   MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
1934   give the context that the rtx appears in.  These three arguments are
1935   passed down to base_reg_class.
1936
1937   SCALE is twice the amount to multiply the cost by (it is twice so we
1938   can represent half-cost adjustments).  */
1939
1940static void
1941record_address_regs (enum machine_mode mode, rtx x, int context,
1942		     enum rtx_code outer_code, enum rtx_code index_code,
1943		     int scale)
1944{
1945  enum rtx_code code = GET_CODE (x);
1946  enum reg_class class;
1947
1948  if (context == 1)
1949    class = INDEX_REG_CLASS;
1950  else
1951    class = base_reg_class (mode, outer_code, index_code);
1952
1953  switch (code)
1954    {
1955    case CONST_INT:
1956    case CONST:
1957    case CC0:
1958    case PC:
1959    case SYMBOL_REF:
1960    case LABEL_REF:
1961      return;
1962
1963    case PLUS:
1964      /* When we have an address that is a sum,
1965	 we must determine whether registers are "base" or "index" regs.
1966	 If there is a sum of two registers, we must choose one to be
1967	 the "base".  Luckily, we can use the REG_POINTER to make a good
1968	 choice most of the time.  We only need to do this on machines
1969	 that can have two registers in an address and where the base
1970	 and index register classes are different.
1971
1972	 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1973	 that seems bogus since it should only be set when we are sure
1974	 the register is being used as a pointer.  */
1975
1976      {
1977	rtx arg0 = XEXP (x, 0);
1978	rtx arg1 = XEXP (x, 1);
1979	enum rtx_code code0 = GET_CODE (arg0);
1980	enum rtx_code code1 = GET_CODE (arg1);
1981
1982	/* Look inside subregs.  */
1983	if (code0 == SUBREG)
1984	  arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1985	if (code1 == SUBREG)
1986	  arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1987
1988	/* If this machine only allows one register per address, it must
1989	   be in the first operand.  */
1990
1991	if (MAX_REGS_PER_ADDRESS == 1)
1992	  record_address_regs (mode, arg0, 0, PLUS, code1, scale);
1993
1994	/* If index and base registers are the same on this machine, just
1995	   record registers in any non-constant operands.  We assume here,
1996	   as well as in the tests below, that all addresses are in
1997	   canonical form.  */
1998
1999	else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
2000	  {
2001	    record_address_regs (mode, arg0, context, PLUS, code1, scale);
2002	    if (! CONSTANT_P (arg1))
2003	      record_address_regs (mode, arg1, context, PLUS, code0, scale);
2004	  }
2005
2006	/* If the second operand is a constant integer, it doesn't change
2007	   what class the first operand must be.  */
2008
2009	else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2010	  record_address_regs (mode, arg0, context, PLUS, code1, scale);
2011
2012	/* If the second operand is a symbolic constant, the first operand
2013	   must be an index register.  */
2014
2015	else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2016	  record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2017
2018	/* If both operands are registers but one is already a hard register
2019	   of index or reg-base class, give the other the class that the
2020	   hard register is not.  */
2021
2022	else if (code0 == REG && code1 == REG
2023		 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2024		 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2025		     || ok_for_index_p_nonstrict (arg0)))
2026	  record_address_regs (mode, arg1,
2027			       ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2028			       ? 1 : 0,
2029			       PLUS, REG, scale);
2030	else if (code0 == REG && code1 == REG
2031		 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2032		 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2033		     || ok_for_index_p_nonstrict (arg1)))
2034	  record_address_regs (mode, arg0,
2035			       ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2036			       ? 1 : 0,
2037			       PLUS, REG, scale);
2038
2039	/* If one operand is known to be a pointer, it must be the base
2040	   with the other operand the index.  Likewise if the other operand
2041	   is a MULT.  */
2042
2043	else if ((code0 == REG && REG_POINTER (arg0))
2044		 || code1 == MULT)
2045	  {
2046	    record_address_regs (mode, arg0, 0, PLUS, code1, scale);
2047	    record_address_regs (mode, arg1, 1, PLUS, code0, scale);
2048	  }
2049	else if ((code1 == REG && REG_POINTER (arg1))
2050		 || code0 == MULT)
2051	  {
2052	    record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2053	    record_address_regs (mode, arg1, 0, PLUS, code0, scale);
2054	  }
2055
2056	/* Otherwise, count equal chances that each might be a base
2057	   or index register.  This case should be rare.  */
2058
2059	else
2060	  {
2061	    record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
2062	    record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
2063	    record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
2064	    record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
2065	  }
2066      }
2067      break;
2068
2069      /* Double the importance of a pseudo register that is incremented
2070	 or decremented, since it would take two extra insns
2071	 if it ends up in the wrong place.  */
2072    case POST_MODIFY:
2073    case PRE_MODIFY:
2074      record_address_regs (mode, XEXP (x, 0), 0, code,
2075			   GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
2076      if (REG_P (XEXP (XEXP (x, 1), 1)))
2077	record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
2078			     2 * scale);
2079      break;
2080
2081    case POST_INC:
2082    case PRE_INC:
2083    case POST_DEC:
2084    case PRE_DEC:
2085      /* Double the importance of a pseudo register that is incremented
2086	 or decremented, since it would take two extra insns
2087	 if it ends up in the wrong place.  If the operand is a pseudo,
2088	 show it is being used in an INC_DEC context.  */
2089
2090#ifdef FORBIDDEN_INC_DEC_CLASSES
2091      if (REG_P (XEXP (x, 0))
2092	  && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2093	in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2094#endif
2095
2096      record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
2097      break;
2098
2099    case REG:
2100      {
2101	struct costs *pp = &costs[REGNO (x)];
2102	int i;
2103
2104	pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2105
2106	for (i = 0; i < N_REG_CLASSES; i++)
2107	  pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2108      }
2109      break;
2110
2111    default:
2112      {
2113	const char *fmt = GET_RTX_FORMAT (code);
2114	int i;
2115	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2116	  if (fmt[i] == 'e')
2117	    record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
2118				 scale);
2119      }
2120    }
2121}
2122
2123#ifdef FORBIDDEN_INC_DEC_CLASSES
2124
2125/* Return 1 if REG is valid as an auto-increment memory reference
2126   to an object of MODE.  */
2127
2128static int
2129auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2130{
2131  if (HAVE_POST_INCREMENT
2132      && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2133    return 1;
2134
2135  if (HAVE_POST_DECREMENT
2136      && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2137    return 1;
2138
2139  if (HAVE_PRE_INCREMENT
2140      && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2141    return 1;
2142
2143  if (HAVE_PRE_DECREMENT
2144      && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2145    return 1;
2146
2147  return 0;
2148}
2149#endif
2150
2151static short *renumber;
2152static size_t regno_allocated;
2153static unsigned int reg_n_max;
2154
2155/* Allocate enough space to hold NUM_REGS registers for the tables used for
2156   reg_scan and flow_analysis that are indexed by the register number.  If
2157   NEW_P is nonzero, initialize all of the registers, otherwise only
2158   initialize the new registers allocated.  The same table is kept from
2159   function to function, only reallocating it when we need more room.  If
2160   RENUMBER_P is nonzero, allocate the reg_renumber array also.  */
2161
2162void
2163allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2164{
2165  size_t size_info;
2166  size_t size_renumber;
2167  size_t min = (new_p) ? 0 : reg_n_max;
2168  struct reg_info_data *reg_data;
2169
2170  if (num_regs > regno_allocated)
2171    {
2172      size_t old_allocated = regno_allocated;
2173
2174      regno_allocated = num_regs + (num_regs / 20);	/* Add some slop space.  */
2175      size_renumber = regno_allocated * sizeof (short);
2176
2177      if (!reg_n_info)
2178	{
2179	  reg_n_info = VEC_alloc (reg_info_p, heap, regno_allocated);
2180	  VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
2181	  memset (VEC_address (reg_info_p, reg_n_info), 0,
2182		  sizeof (reg_info_p) * regno_allocated);
2183	  renumber = xmalloc (size_renumber);
2184	  reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2185	}
2186      else
2187	{
2188	  size_t old_length = VEC_length (reg_info_p, reg_n_info);
2189	  if (old_length < regno_allocated)
2190	    {
2191	      reg_info_p *addr;
2192	      VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
2193	      addr = VEC_address (reg_info_p, reg_n_info);
2194	      memset (&addr[old_length], 0,
2195		      sizeof (reg_info_p) * (regno_allocated - old_length));
2196	    }
2197	  else if (regno_allocated < old_length)
2198	    {
2199	      VEC_truncate (reg_info_p, reg_n_info, regno_allocated);
2200	    }
2201
2202	  if (new_p)		/* If we're zapping everything, no need to realloc.  */
2203	    {
2204	      free ((char *) renumber);
2205	      free ((char *) reg_pref);
2206	      renumber = xmalloc (size_renumber);
2207	      reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2208	    }
2209
2210	  else
2211	    {
2212	      renumber = xrealloc (renumber, size_renumber);
2213	      reg_pref_buffer = (struct reg_pref *) xrealloc (reg_pref_buffer,
2214					  regno_allocated
2215					  * sizeof (struct reg_pref));
2216	    }
2217	}
2218
2219      size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2220	+ sizeof (struct reg_info_data) - sizeof (reg_info);
2221      reg_data = xcalloc (size_info, 1);
2222      reg_data->min_index = old_allocated;
2223      reg_data->max_index = regno_allocated - 1;
2224      reg_data->next = reg_info_head;
2225      reg_info_head = reg_data;
2226    }
2227
2228  reg_n_max = num_regs;
2229  if (min < num_regs)
2230    {
2231      /* Loop through each of the segments allocated for the actual
2232	 reg_info pages, and set up the pointers, zero the pages, etc.  */
2233      for (reg_data = reg_info_head;
2234	   reg_data && reg_data->max_index >= min;
2235	   reg_data = reg_data->next)
2236	{
2237	  size_t min_index = reg_data->min_index;
2238	  size_t max_index = reg_data->max_index;
2239	  size_t max = MIN (max_index, num_regs);
2240	  size_t local_min = min - min_index;
2241	  size_t i;
2242
2243	  if (reg_data->min_index > num_regs)
2244	    continue;
2245
2246	  if (min < min_index)
2247	    local_min = 0;
2248	  if (!reg_data->used_p)	/* page just allocated with calloc */
2249	    reg_data->used_p = 1;	/* no need to zero */
2250	  else
2251	    memset (&reg_data->data[local_min], 0,
2252		    sizeof (reg_info) * (max - min_index - local_min + 1));
2253
2254	  for (i = min_index+local_min; i <= max; i++)
2255	    {
2256	      VEC_replace (reg_info_p, reg_n_info, i,
2257			   &reg_data->data[i-min_index]);
2258	      REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2259	      renumber[i] = -1;
2260	      reg_pref_buffer[i].prefclass = (char) NO_REGS;
2261	      reg_pref_buffer[i].altclass = (char) NO_REGS;
2262	    }
2263	}
2264    }
2265
2266  /* If {pref,alt}class have already been allocated, update the pointers to
2267     the newly realloced ones.  */
2268  if (reg_pref)
2269    reg_pref = reg_pref_buffer;
2270
2271  if (renumber_p)
2272    reg_renumber = renumber;
2273}
2274
2275/* Free up the space allocated by allocate_reg_info.  */
2276void
2277free_reg_info (void)
2278{
2279  if (reg_n_info)
2280    {
2281      struct reg_info_data *reg_data;
2282      struct reg_info_data *reg_next;
2283
2284      VEC_free (reg_info_p, heap, reg_n_info);
2285      for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2286	{
2287	  reg_next = reg_data->next;
2288	  free ((char *) reg_data);
2289	}
2290
2291      free (reg_pref_buffer);
2292      reg_pref_buffer = (struct reg_pref *) 0;
2293      reg_info_head = (struct reg_info_data *) 0;
2294      renumber = (short *) 0;
2295    }
2296  regno_allocated = 0;
2297  reg_n_max = 0;
2298}
2299
2300/* This is the `regscan' pass of the compiler, run just before cse
2301   and again just before loop.
2302
2303   It finds the first and last use of each pseudo-register
2304   and records them in the vectors regno_first_uid, regno_last_uid
2305   and counts the number of sets in the vector reg_n_sets.
2306
2307   REPEAT is nonzero the second time this is called.  */
2308
2309/* Maximum number of parallel sets and clobbers in any insn in this fn.
2310   Always at least 3, since the combiner could put that many together
2311   and we want this to remain correct for all the remaining passes.
2312   This corresponds to the maximum number of times note_stores will call
2313   a function for any insn.  */
2314
2315int max_parallel;
2316
2317/* Used as a temporary to record the largest number of registers in
2318   PARALLEL in a SET_DEST.  This is added to max_parallel.  */
2319
2320static int max_set_parallel;
2321
2322void
2323reg_scan (rtx f, unsigned int nregs)
2324{
2325  rtx insn;
2326
2327  timevar_push (TV_REG_SCAN);
2328
2329  allocate_reg_info (nregs, TRUE, FALSE);
2330  max_parallel = 3;
2331  max_set_parallel = 0;
2332
2333  for (insn = f; insn; insn = NEXT_INSN (insn))
2334    if (INSN_P (insn))
2335      {
2336	rtx pat = PATTERN (insn);
2337	if (GET_CODE (pat) == PARALLEL
2338	    && XVECLEN (pat, 0) > max_parallel)
2339	  max_parallel = XVECLEN (pat, 0);
2340	reg_scan_mark_refs (pat, insn, 0);
2341
2342	if (REG_NOTES (insn))
2343	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
2344      }
2345
2346  max_parallel += max_set_parallel;
2347
2348  timevar_pop (TV_REG_SCAN);
2349}
2350
2351/* X is the expression to scan.  INSN is the insn it appears in.
2352   NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.  */
2353
2354static void
2355reg_scan_mark_refs (rtx x, rtx insn, int note_flag)
2356{
2357  enum rtx_code code;
2358  rtx dest;
2359  rtx note;
2360
2361  if (!x)
2362    return;
2363  code = GET_CODE (x);
2364  switch (code)
2365    {
2366    case CONST:
2367    case CONST_INT:
2368    case CONST_DOUBLE:
2369    case CONST_VECTOR:
2370    case CC0:
2371    case PC:
2372    case SYMBOL_REF:
2373    case LABEL_REF:
2374    case ADDR_VEC:
2375    case ADDR_DIFF_VEC:
2376      return;
2377
2378    case REG:
2379      {
2380	unsigned int regno = REGNO (x);
2381
2382	if (!note_flag)
2383	  REGNO_LAST_UID (regno) = INSN_UID (insn);
2384	if (REGNO_FIRST_UID (regno) == 0)
2385	  REGNO_FIRST_UID (regno) = INSN_UID (insn);
2386      }
2387      break;
2388
2389    case EXPR_LIST:
2390      if (XEXP (x, 0))
2391	reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
2392      if (XEXP (x, 1))
2393	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
2394      break;
2395
2396    case INSN_LIST:
2397      if (XEXP (x, 1))
2398	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
2399      break;
2400
2401    case CLOBBER:
2402      {
2403	rtx reg = XEXP (x, 0);
2404	if (REG_P (reg))
2405	  {
2406	    REG_N_SETS (REGNO (reg))++;
2407	    REG_N_REFS (REGNO (reg))++;
2408	  }
2409	else if (MEM_P (reg))
2410	  reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag);
2411      }
2412      break;
2413
2414    case SET:
2415      /* Count a set of the destination if it is a register.  */
2416      for (dest = SET_DEST (x);
2417	   GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2418	   || GET_CODE (dest) == ZERO_EXTEND;
2419	   dest = XEXP (dest, 0))
2420	;
2421
2422      /* For a PARALLEL, record the number of things (less the usual one for a
2423	 SET) that are set.  */
2424      if (GET_CODE (dest) == PARALLEL)
2425	max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2426
2427      if (REG_P (dest))
2428	{
2429	  REG_N_SETS (REGNO (dest))++;
2430	  REG_N_REFS (REGNO (dest))++;
2431	}
2432
2433      /* If this is setting a pseudo from another pseudo or the sum of a
2434	 pseudo and a constant integer and the other pseudo is known to be
2435	 a pointer, set the destination to be a pointer as well.
2436
2437	 Likewise if it is setting the destination from an address or from a
2438	 value equivalent to an address or to the sum of an address and
2439	 something else.
2440
2441	 But don't do any of this if the pseudo corresponds to a user
2442	 variable since it should have already been set as a pointer based
2443	 on the type.  */
2444
2445      if (REG_P (SET_DEST (x))
2446	  && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2447	  /* If the destination pseudo is set more than once, then other
2448	     sets might not be to a pointer value (consider access to a
2449	     union in two threads of control in the presence of global
2450	     optimizations).  So only set REG_POINTER on the destination
2451	     pseudo if this is the only set of that pseudo.  */
2452	  && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2453	  && ! REG_USERVAR_P (SET_DEST (x))
2454	  && ! REG_POINTER (SET_DEST (x))
2455	  && ((REG_P (SET_SRC (x))
2456	       && REG_POINTER (SET_SRC (x)))
2457	      || ((GET_CODE (SET_SRC (x)) == PLUS
2458		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2459		  && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2460		  && REG_P (XEXP (SET_SRC (x), 0))
2461		  && REG_POINTER (XEXP (SET_SRC (x), 0)))
2462	      || GET_CODE (SET_SRC (x)) == CONST
2463	      || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2464	      || GET_CODE (SET_SRC (x)) == LABEL_REF
2465	      || (GET_CODE (SET_SRC (x)) == HIGH
2466		  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2467		      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2468		      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2469	      || ((GET_CODE (SET_SRC (x)) == PLUS
2470		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2471		  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2472		      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2473		      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2474	      || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2475		  && (GET_CODE (XEXP (note, 0)) == CONST
2476		      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2477		      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2478	REG_POINTER (SET_DEST (x)) = 1;
2479
2480      /* If this is setting a register from a register or from a simple
2481	 conversion of a register, propagate REG_EXPR.  */
2482      if (REG_P (dest))
2483	{
2484	  rtx src = SET_SRC (x);
2485
2486	  while (GET_CODE (src) == SIGN_EXTEND
2487		 || GET_CODE (src) == ZERO_EXTEND
2488		 || GET_CODE (src) == TRUNCATE
2489		 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2490	    src = XEXP (src, 0);
2491
2492	  if (!REG_ATTRS (dest) && REG_P (src))
2493	    REG_ATTRS (dest) = REG_ATTRS (src);
2494	  if (!REG_ATTRS (dest) && MEM_P (src))
2495	    set_reg_attrs_from_mem (dest, src);
2496	}
2497
2498      /* ... fall through ...  */
2499
2500    default:
2501      {
2502	const char *fmt = GET_RTX_FORMAT (code);
2503	int i;
2504	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2505	  {
2506	    if (fmt[i] == 'e')
2507	      reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
2508	    else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2509	      {
2510		int j;
2511		for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2512		  reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
2513	      }
2514	  }
2515      }
2516    }
2517}
2518
2519/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2520   is also in C2.  */
2521
2522int
2523reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2524{
2525  if (c1 == c2) return 1;
2526
2527  if (c2 == ALL_REGS)
2528  win:
2529    return 1;
2530  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2531			 reg_class_contents[(int) c2],
2532			 win);
2533  return 0;
2534}
2535
2536/* Return nonzero if there is a register that is in both C1 and C2.  */
2537
2538int
2539reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2540{
2541  HARD_REG_SET c;
2542
2543  if (c1 == c2) return 1;
2544
2545  if (c1 == ALL_REGS || c2 == ALL_REGS)
2546    return 1;
2547
2548  COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2549  AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2550
2551  GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2552  return 1;
2553
2554 lose:
2555  return 0;
2556}
2557
2558#ifdef CANNOT_CHANGE_MODE_CLASS
2559
2560struct subregs_of_mode_node
2561{
2562  unsigned int block;
2563  unsigned char modes[MAX_MACHINE_MODE];
2564};
2565
2566static htab_t subregs_of_mode;
2567
2568static hashval_t
2569som_hash (const void *x)
2570{
2571  const struct subregs_of_mode_node *a = x;
2572  return a->block;
2573}
2574
2575static int
2576som_eq (const void *x, const void *y)
2577{
2578  const struct subregs_of_mode_node *a = x;
2579  const struct subregs_of_mode_node *b = y;
2580  return a->block == b->block;
2581}
2582
2583void
2584init_subregs_of_mode (void)
2585{
2586  if (subregs_of_mode)
2587    htab_empty (subregs_of_mode);
2588  else
2589    subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2590}
2591
2592void
2593record_subregs_of_mode (rtx subreg)
2594{
2595  struct subregs_of_mode_node dummy, *node;
2596  enum machine_mode mode;
2597  unsigned int regno;
2598  void **slot;
2599
2600  if (!REG_P (SUBREG_REG (subreg)))
2601    return;
2602
2603  regno = REGNO (SUBREG_REG (subreg));
2604  mode = GET_MODE (subreg);
2605
2606  if (regno < FIRST_PSEUDO_REGISTER)
2607    return;
2608
2609  dummy.block = regno & -8;
2610  slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2611				   dummy.block, INSERT);
2612  node = *slot;
2613  if (node == NULL)
2614    {
2615      node = XCNEW (struct subregs_of_mode_node);
2616      node->block = regno & -8;
2617      *slot = node;
2618    }
2619
2620  node->modes[mode] |= 1 << (regno & 7);
2621}
2622
2623/* Set bits in *USED which correspond to registers which can't change
2624   their mode from FROM to any mode in which REGNO was encountered.  */
2625
2626void
2627cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2628			     unsigned int regno)
2629{
2630  struct subregs_of_mode_node dummy, *node;
2631  enum machine_mode to;
2632  unsigned char mask;
2633  unsigned int i;
2634
2635  dummy.block = regno & -8;
2636  node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2637  if (node == NULL)
2638    return;
2639
2640  mask = 1 << (regno & 7);
2641  for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2642    if (node->modes[to] & mask)
2643      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2644	if (!TEST_HARD_REG_BIT (*used, i)
2645	    && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2646	  SET_HARD_REG_BIT (*used, i);
2647}
2648
2649/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2650   mode.  */
2651
2652bool
2653invalid_mode_change_p (unsigned int regno, enum reg_class class,
2654		       enum machine_mode from)
2655{
2656  struct subregs_of_mode_node dummy, *node;
2657  enum machine_mode to;
2658  unsigned char mask;
2659
2660  dummy.block = regno & -8;
2661  node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2662  if (node == NULL)
2663    return false;
2664
2665  mask = 1 << (regno & 7);
2666  for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2667    if (node->modes[to] & mask)
2668      if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2669	return true;
2670
2671  return false;
2672}
2673#endif /* CANNOT_CHANGE_MODE_CLASS */
2674
2675#include "gt-regclass.h"
2676