regclass.c revision 52284
1/* Compute register class preferences for pseudo-registers.
2   Copyright (C) 1987, 88, 91-98, 1999 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING.  If not, write to
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA.  */
20
21
22/* This file contains two passes of the compiler: reg_scan and reg_class.
23   It also defines some tables of information about the hardware registers
24   and a function init_reg_sets to initialize the tables.  */
25
26#include "config.h"
27#include "system.h"
28#include "rtl.h"
29#include "hard-reg-set.h"
30#include "flags.h"
31#include "basic-block.h"
32#include "regs.h"
33#include "insn-config.h"
34#include "recog.h"
35#include "reload.h"
36#include "real.h"
37#include "toplev.h"
38#include "output.h"
39
40#ifndef REGISTER_MOVE_COST
41#define REGISTER_MOVE_COST(x, y) 2
42#endif
43
44static void init_reg_sets_1	PROTO((void));
45static void init_reg_modes	PROTO((void));
46
47/* If we have auto-increment or auto-decrement and we can have secondary
48   reloads, we are not allowed to use classes requiring secondary
49   reloads for pseudos auto-incremented since reload can't handle it.  */
50
51#ifdef AUTO_INC_DEC
52#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
53#define FORBIDDEN_INC_DEC_CLASSES
54#endif
55#endif
56
57/* Register tables used by many passes.  */
58
59/* Indexed by hard register number, contains 1 for registers
60   that are fixed use (stack pointer, pc, frame pointer, etc.).
61   These are the registers that cannot be used to allocate
62   a pseudo reg for general use.  */
63
64char fixed_regs[FIRST_PSEUDO_REGISTER];
65
66/* Same info as a HARD_REG_SET.  */
67
68HARD_REG_SET fixed_reg_set;
69
70/* Data for initializing the above.  */
71
72static char initial_fixed_regs[] = FIXED_REGISTERS;
73
74/* Indexed by hard register number, contains 1 for registers
75   that are fixed use or are clobbered by function calls.
76   These are the registers that cannot be used to allocate
77   a pseudo reg whose life crosses calls unless we are able
78   to save/restore them across the calls.  */
79
80char call_used_regs[FIRST_PSEUDO_REGISTER];
81
82/* Same info as a HARD_REG_SET.  */
83
84HARD_REG_SET call_used_reg_set;
85
86/* HARD_REG_SET of registers we want to avoid caller saving.  */
87HARD_REG_SET losing_caller_save_reg_set;
88
89/* Data for initializing the above.  */
90
91static char initial_call_used_regs[] = CALL_USED_REGISTERS;
92
93/* Indexed by hard register number, contains 1 for registers that are
94   fixed use or call used registers that cannot hold quantities across
95   calls even if we are willing to save and restore them.  call fixed
96   registers are a subset of call used registers.  */
97
98char call_fixed_regs[FIRST_PSEUDO_REGISTER];
99
100/* The same info as a HARD_REG_SET.  */
101
102HARD_REG_SET call_fixed_reg_set;
103
104/* Number of non-fixed registers.  */
105
106int n_non_fixed_regs;
107
108/* Indexed by hard register number, contains 1 for registers
109   that are being used for global register decls.
110   These must be exempt from ordinary flow analysis
111   and are also considered fixed.  */
112
113char global_regs[FIRST_PSEUDO_REGISTER];
114
115/* Table of register numbers in the order in which to try to use them.  */
116#ifdef REG_ALLOC_ORDER
117int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
118#endif
119
120/* For each reg class, a HARD_REG_SET saying which registers are in it.  */
121
122HARD_REG_SET reg_class_contents[N_REG_CLASSES];
123
124/* The same information, but as an array of unsigned ints.  We copy from
125   these unsigned ints to the table above.  We do this so the tm.h files
126   do not have to be aware of the wordsize for machines with <= 64 regs.  */
127
128#define N_REG_INTS  \
129  ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
130
131static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
132  = REG_CLASS_CONTENTS;
133
134/* For each reg class, number of regs it contains.  */
135
136int reg_class_size[N_REG_CLASSES];
137
138/* For each reg class, table listing all the containing classes.  */
139
140enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
141
142/* For each reg class, table listing all the classes contained in it.  */
143
144enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
145
146/* For each pair of reg classes,
147   a largest reg class contained in their union.  */
148
149enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
150
151/* For each pair of reg classes,
152   the smallest reg class containing their union.  */
153
154enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
155
156/* Array containing all of the register names */
157
158char *reg_names[] = REGISTER_NAMES;
159
160/* For each hard register, the widest mode object that it can contain.
161   This will be a MODE_INT mode if the register can hold integers.  Otherwise
162   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
163   register.  */
164
165enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
166
167/* Maximum cost of moving from a register in one class to a register in
168   another class.  Based on REGISTER_MOVE_COST.  */
169
170static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
171
172/* Similar, but here we don't have to move if the first index is a subset
173   of the second so in that case the cost is zero.  */
174
175static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
176
177#ifdef FORBIDDEN_INC_DEC_CLASSES
178
179/* These are the classes that regs which are auto-incremented or decremented
180   cannot be put in.  */
181
182static int forbidden_inc_dec_class[N_REG_CLASSES];
183
184/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
185   context.  */
186
187static char *in_inc_dec;
188
189#endif /* FORBIDDEN_INC_DEC_CLASSES */
190
191#ifdef HAVE_SECONDARY_RELOADS
192
193/* Sample MEM values for use by memory_move_secondary_cost.  */
194
195static rtx top_of_stack[MAX_MACHINE_MODE];
196
197#endif /* HAVE_SECONDARY_RELOADS */
198
199/* Linked list of reg_info structures allocated for reg_n_info array.
200   Grouping all of the allocated structures together in one lump
201   means only one call to bzero to clear them, rather than n smaller
202   calls.  */
203struct reg_info_data {
204  struct reg_info_data *next;	/* next set of reg_info structures */
205  size_t min_index;		/* minimum index # */
206  size_t max_index;		/* maximum index # */
207  char used_p;			/* non-zero if this has been used previously */
208  reg_info data[1];		/* beginning of the reg_info data */
209};
210
211static struct reg_info_data *reg_info_head;
212
213
214/* Function called only once to initialize the above data on reg usage.
215   Once this is done, various switches may override.  */
216
217void
218init_reg_sets ()
219{
220  register int i, j;
221
222  /* First copy the register information from the initial int form into
223     the regsets.  */
224
225  for (i = 0; i < N_REG_CLASSES; i++)
226    {
227      CLEAR_HARD_REG_SET (reg_class_contents[i]);
228
229      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
230	if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
231	    & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
232	  SET_HARD_REG_BIT (reg_class_contents[i], j);
233    }
234
235  bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
236  bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
237  bzero (global_regs, sizeof global_regs);
238
239  /* Do any additional initialization regsets may need */
240  INIT_ONCE_REG_SET ();
241}
242
243/* After switches have been processed, which perhaps alter
244   `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
245
246static void
247init_reg_sets_1 ()
248{
249  register unsigned int i, j;
250
251  /* This macro allows the fixed or call-used registers
252     and the register classes to depend on target flags.  */
253
254#ifdef CONDITIONAL_REGISTER_USAGE
255  CONDITIONAL_REGISTER_USAGE;
256#endif
257
258  /* Compute number of hard regs in each class.  */
259
260  bzero ((char *) reg_class_size, sizeof reg_class_size);
261  for (i = 0; i < N_REG_CLASSES; i++)
262    for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
263      if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
264	reg_class_size[i]++;
265
266  /* Initialize the table of subunions.
267     reg_class_subunion[I][J] gets the largest-numbered reg-class
268     that is contained in the union of classes I and J.  */
269
270  for (i = 0; i < N_REG_CLASSES; i++)
271    {
272      for (j = 0; j < N_REG_CLASSES; j++)
273	{
274#ifdef HARD_REG_SET
275	  register		/* Declare it register if it's a scalar.  */
276#endif
277	    HARD_REG_SET c;
278	  register int k;
279
280	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
281	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
282	  for (k = 0; k < N_REG_CLASSES; k++)
283	    {
284	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
285				     subclass1);
286	      continue;
287
288	    subclass1:
289	      /* keep the largest subclass */		/* SPEE 900308 */
290	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
291				     reg_class_contents[(int) reg_class_subunion[i][j]],
292				     subclass2);
293	      reg_class_subunion[i][j] = (enum reg_class) k;
294	    subclass2:
295	      ;
296	    }
297	}
298    }
299
300  /* Initialize the table of superunions.
301     reg_class_superunion[I][J] gets the smallest-numbered reg-class
302     containing the union of classes I and J.  */
303
304  for (i = 0; i < N_REG_CLASSES; i++)
305    {
306      for (j = 0; j < N_REG_CLASSES; j++)
307	{
308#ifdef HARD_REG_SET
309	  register		/* Declare it register if it's a scalar.  */
310#endif
311	    HARD_REG_SET c;
312	  register int k;
313
314	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
315	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
316	  for (k = 0; k < N_REG_CLASSES; k++)
317	    GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
318
319	superclass:
320	  reg_class_superunion[i][j] = (enum reg_class) k;
321	}
322    }
323
324  /* Initialize the tables of subclasses and superclasses of each reg class.
325     First clear the whole table, then add the elements as they are found.  */
326
327  for (i = 0; i < N_REG_CLASSES; i++)
328    {
329      for (j = 0; j < N_REG_CLASSES; j++)
330	{
331	  reg_class_superclasses[i][j] = LIM_REG_CLASSES;
332	  reg_class_subclasses[i][j] = LIM_REG_CLASSES;
333	}
334    }
335
336  for (i = 0; i < N_REG_CLASSES; i++)
337    {
338      if (i == (int) NO_REGS)
339	continue;
340
341      for (j = i + 1; j < N_REG_CLASSES; j++)
342	{
343	  enum reg_class *p;
344
345	  GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
346				 subclass);
347	  continue;
348	subclass:
349	  /* Reg class I is a subclass of J.
350	     Add J to the table of superclasses of I.  */
351	  p = &reg_class_superclasses[i][0];
352	  while (*p != LIM_REG_CLASSES) p++;
353	  *p = (enum reg_class) j;
354	  /* Add I to the table of superclasses of J.  */
355	  p = &reg_class_subclasses[j][0];
356	  while (*p != LIM_REG_CLASSES) p++;
357	  *p = (enum reg_class) i;
358	}
359    }
360
361  /* Initialize "constant" tables.  */
362
363  CLEAR_HARD_REG_SET (fixed_reg_set);
364  CLEAR_HARD_REG_SET (call_used_reg_set);
365  CLEAR_HARD_REG_SET (call_fixed_reg_set);
366
367  bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
368
369  n_non_fixed_regs = 0;
370
371  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
372    {
373      if (fixed_regs[i])
374	SET_HARD_REG_BIT (fixed_reg_set, i);
375      else
376	n_non_fixed_regs++;
377
378      if (call_used_regs[i])
379	SET_HARD_REG_BIT (call_used_reg_set, i);
380      if (call_fixed_regs[i])
381	SET_HARD_REG_BIT (call_fixed_reg_set, i);
382      if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
383	SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
384    }
385
386  /* Initialize the move cost table.  Find every subset of each class
387     and take the maximum cost of moving any subset to any other.  */
388
389  for (i = 0; i < N_REG_CLASSES; i++)
390    for (j = 0; j < N_REG_CLASSES; j++)
391      {
392	int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
393	enum reg_class *p1, *p2;
394
395	for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
396	  if (*p2 != i)
397	    cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
398
399	for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
400	  {
401	    if (*p1 != j)
402	      cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
403
404	    for (p2 = &reg_class_subclasses[j][0];
405		 *p2 != LIM_REG_CLASSES; p2++)
406	      if (*p1 != *p2)
407		cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
408	  }
409
410	move_cost[i][j] = cost;
411
412	if (reg_class_subset_p (i, j))
413	  cost = 0;
414
415	may_move_cost[i][j] = cost;
416      }
417}
418
419/* Compute the table of register modes.
420   These values are used to record death information for individual registers
421   (as opposed to a multi-register mode).  */
422
423static void
424init_reg_modes ()
425{
426  register int i;
427
428  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
429    {
430      reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
431
432      /* If we couldn't find a valid mode, just use the previous mode.
433         ??? One situation in which we need to do this is on the mips where
434	 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2.  Ideally we'd like
435	 to use DF mode for the even registers and VOIDmode for the odd
436	 (for the cpu models where the odd ones are inaccessible).  */
437      if (reg_raw_mode[i] == VOIDmode)
438	reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
439    }
440}
441
442/* Finish initializing the register sets and
443   initialize the register modes.  */
444
445void
446init_regs ()
447{
448  /* This finishes what was started by init_reg_sets, but couldn't be done
449     until after register usage was specified.  */
450  init_reg_sets_1 ();
451
452  init_reg_modes ();
453
454#ifdef HAVE_SECONDARY_RELOADS
455  {
456    /* Make some fake stack-frame MEM references for use in
457       memory_move_secondary_cost.  */
458    int i;
459    for (i = 0; i < MAX_MACHINE_MODE; i++)
460      top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
461  }
462#endif
463}
464
465#ifdef HAVE_SECONDARY_RELOADS
466
467/* Compute extra cost of moving registers to/from memory due to reloads.
468   Only needed if secondary reloads are required for memory moves.  */
469
470int
471memory_move_secondary_cost (mode, class, in)
472     enum machine_mode mode;
473     enum reg_class class;
474     int in;
475{
476  enum reg_class altclass;
477  int partial_cost = 0;
478  /* We need a memory reference to feed to SECONDARY... macros.  */
479  rtx mem = top_of_stack[(int) mode];
480
481  if (in)
482    {
483#ifdef SECONDARY_INPUT_RELOAD_CLASS
484      altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
485#else
486      altclass = NO_REGS;
487#endif
488    }
489  else
490    {
491#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
492      altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
493#else
494      altclass = NO_REGS;
495#endif
496    }
497
498  if (altclass == NO_REGS)
499    return 0;
500
501  if (in)
502    partial_cost = REGISTER_MOVE_COST (altclass, class);
503  else
504    partial_cost = REGISTER_MOVE_COST (class, altclass);
505
506  if (class == altclass)
507    /* This isn't simply a copy-to-temporary situation.  Can't guess
508       what it is, so MEMORY_MOVE_COST really ought not to be calling
509       here in that case.
510
511       I'm tempted to put in an abort here, but returning this will
512       probably only give poor estimates, which is what we would've
513       had before this code anyways.  */
514    return partial_cost;
515
516  /* Check if the secondary reload register will also need a
517     secondary reload.  */
518  return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
519}
520#endif
521
522/* Return a machine mode that is legitimate for hard reg REGNO and large
523   enough to save nregs.  If we can't find one, return VOIDmode.  */
524
525enum machine_mode
526choose_hard_reg_mode (regno, nregs)
527     int regno;
528     int nregs;
529{
530  enum machine_mode found_mode = VOIDmode, mode;
531
532  /* We first look for the largest integer mode that can be validly
533     held in REGNO.  If none, we look for the largest floating-point mode.
534     If we still didn't find a valid mode, try CCmode.  */
535
536  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
537       mode != VOIDmode;
538       mode = GET_MODE_WIDER_MODE (mode))
539    if (HARD_REGNO_NREGS (regno, mode) == nregs
540	&& HARD_REGNO_MODE_OK (regno, mode))
541      found_mode = mode;
542
543  if (found_mode != VOIDmode)
544    return found_mode;
545
546  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
547       mode != VOIDmode;
548       mode = GET_MODE_WIDER_MODE (mode))
549    if (HARD_REGNO_NREGS (regno, mode) == nregs
550	&& HARD_REGNO_MODE_OK (regno, mode))
551      found_mode = mode;
552
553  if (found_mode != VOIDmode)
554    return found_mode;
555
556  if (HARD_REGNO_NREGS (regno, CCmode) == nregs
557      && HARD_REGNO_MODE_OK (regno, CCmode))
558    return CCmode;
559
560  /* We can't find a mode valid for this register.  */
561  return VOIDmode;
562}
563
564/* Specify the usage characteristics of the register named NAME.
565   It should be a fixed register if FIXED and a
566   call-used register if CALL_USED.  */
567
568void
569fix_register (name, fixed, call_used)
570     char *name;
571     int fixed, call_used;
572{
573  int i;
574
575  /* Decode the name and update the primary form of
576     the register info.  */
577
578  if ((i = decode_reg_name (name)) >= 0)
579    {
580      if ((i == STACK_POINTER_REGNUM
581#ifdef HARD_FRAME_POINTER_REGNUM
582	   || i == HARD_FRAME_POINTER_REGNUM
583#else
584	   || i == FRAME_POINTER_REGNUM
585#endif
586	   )
587	  && (fixed == 0 || call_used == 0))
588	{
589	  static char* what_option[2][2] = {
590	    { "call-saved", "call-used" },
591	    { "no-such-option", "fixed" }};
592
593	  error ("can't use '%s' as a %s register", name,
594		 what_option[fixed][call_used]);
595	}
596      else
597	{
598	  fixed_regs[i] = fixed;
599	  call_used_regs[i] = call_used;
600	}
601    }
602  else
603    {
604      warning ("unknown register name: %s", name);
605    }
606}
607
608/* Mark register number I as global.  */
609
610void
611globalize_reg (i)
612     int i;
613{
614  if (global_regs[i])
615    {
616      warning ("register used for two global register variables");
617      return;
618    }
619
620  if (call_used_regs[i] && ! fixed_regs[i])
621    warning ("call-clobbered register used for global register variable");
622
623  global_regs[i] = 1;
624
625  /* If already fixed, nothing else to do.  */
626  if (fixed_regs[i])
627    return;
628
629  fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
630  n_non_fixed_regs--;
631
632  SET_HARD_REG_BIT (fixed_reg_set, i);
633  SET_HARD_REG_BIT (call_used_reg_set, i);
634  SET_HARD_REG_BIT (call_fixed_reg_set, i);
635}
636
637/* Now the data and code for the `regclass' pass, which happens
638   just before local-alloc.  */
639
640/* The `costs' struct records the cost of using a hard register of each class
641   and of using memory for each pseudo.  We use this data to set up
642   register class preferences.  */
643
644struct costs
645{
646  int cost[N_REG_CLASSES];
647  int mem_cost;
648};
649
650/* Record the cost of each class for each pseudo.  */
651
652static struct costs *costs;
653
654/* Initialized once, and used to initialize cost values for each insn.  */
655
656static struct costs init_cost;
657
658/* Record the same data by operand number, accumulated for each alternative
659   in an insn.  The contribution to a pseudo is that of the minimum-cost
660   alternative.  */
661
662static struct costs op_costs[MAX_RECOG_OPERANDS];
663
664/* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
665   This is available after `regclass' is run.  */
666
667static char *prefclass;
668
669/* altclass[R] is a register class that we should use for allocating
670   pseudo number R if no register in the preferred class is available.
671   If no register in this class is available, memory is preferred.
672
673   It might appear to be more general to have a bitmask of classes here,
674   but since it is recommended that there be a class corresponding to the
675   union of most major pair of classes, that generality is not required.
676
677   This is available after `regclass' is run.  */
678
679static char *altclass;
680
681/* Allocated buffers for prefclass and altclass. */
682static char *prefclass_buffer;
683static char *altclass_buffer;
684
685/* Record the depth of loops that we are in.  */
686
687static int loop_depth;
688
689/* Account for the fact that insns within a loop are executed very commonly,
690   but don't keep doing this as loops go too deep.  */
691
692static int loop_cost;
693
694static rtx scan_one_insn	PROTO((rtx, int));
695static void record_reg_classes	PROTO((int, int, rtx *, enum machine_mode *,
696				       char *, const char **, rtx));
697static int copy_cost		PROTO((rtx, enum machine_mode,
698				       enum reg_class, int));
699static void record_address_regs	PROTO((rtx, enum reg_class, int));
700#ifdef FORBIDDEN_INC_DEC_CLASSES
701static int auto_inc_dec_reg_p	PROTO((rtx, enum machine_mode));
702#endif
703static void reg_scan_mark_refs	PROTO((rtx, rtx, int, int));
704
705/* Return the reg_class in which pseudo reg number REGNO is best allocated.
706   This function is sometimes called before the info has been computed.
707   When that happens, just return GENERAL_REGS, which is innocuous.  */
708
709enum reg_class
710reg_preferred_class (regno)
711     int regno;
712{
713  if (prefclass == 0)
714    return GENERAL_REGS;
715  return (enum reg_class) prefclass[regno];
716}
717
718enum reg_class
719reg_alternate_class (regno)
720     int regno;
721{
722  if (prefclass == 0)
723    return ALL_REGS;
724
725  return (enum reg_class) altclass[regno];
726}
727
728/* Initialize some global data for this pass.  */
729
730void
731regclass_init ()
732{
733  int i;
734
735  init_cost.mem_cost = 10000;
736  for (i = 0; i < N_REG_CLASSES; i++)
737    init_cost.cost[i] = 10000;
738
739  /* This prevents dump_flow_info from losing if called
740     before regclass is run.  */
741  prefclass = 0;
742}
743
744/* Subroutine of regclass, processes one insn INSN.  Scan it and record each
745   time it would save code to put a certain register in a certain class.
746   PASS, when nonzero, inhibits some optimizations which need only be done
747   once.
748   Return the last insn processed, so that the scan can be continued from
749   there.  */
750
751static rtx
752scan_one_insn (insn, pass)
753     rtx insn;
754     int pass;
755{
756  enum rtx_code code = GET_CODE (insn);
757  enum rtx_code pat_code;
758  const char *constraints[MAX_RECOG_OPERANDS];
759  enum machine_mode modes[MAX_RECOG_OPERANDS];
760  char subreg_changes_size[MAX_RECOG_OPERANDS];
761  rtx set, note;
762  int i, j;
763
764  /* Show that an insn inside a loop is likely to be executed three
765     times more than insns outside a loop.  This is much more aggressive
766     than the assumptions made elsewhere and is being tried as an
767     experiment.  */
768
769  if (code == NOTE)
770    {
771      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
772	loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
773      else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
774	loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
775
776      return insn;
777    }
778
779  if (GET_RTX_CLASS (code) != 'i')
780    return insn;
781
782  pat_code = GET_CODE (PATTERN (insn));
783  if (pat_code == USE
784      || pat_code == CLOBBER
785      || pat_code == ASM_INPUT
786      || pat_code == ADDR_VEC
787      || pat_code == ADDR_DIFF_VEC)
788    return insn;
789
790  set = single_set (insn);
791  extract_insn (insn);
792
793  for (i = 0; i < recog_n_operands; i++)
794    {
795      constraints[i] = recog_constraints[i];
796      modes[i] = recog_operand_mode[i];
797    }
798  memset (subreg_changes_size, 0, sizeof (subreg_changes_size));
799
800  /* If this insn loads a parameter from its stack slot, then
801     it represents a savings, rather than a cost, if the
802     parameter is stored in memory.  Record this fact.  */
803
804  if (set != 0 && GET_CODE (SET_DEST (set)) == REG
805      && GET_CODE (SET_SRC (set)) == MEM
806      && (note = find_reg_note (insn, REG_EQUIV,
807				NULL_RTX)) != 0
808      && GET_CODE (XEXP (note, 0)) == MEM)
809    {
810      costs[REGNO (SET_DEST (set))].mem_cost
811	-= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
812			      GENERAL_REGS, 1)
813	    * loop_cost);
814      record_address_regs (XEXP (SET_SRC (set), 0),
815			   BASE_REG_CLASS, loop_cost * 2);
816      return insn;
817    }
818
819  /* Improve handling of two-address insns such as
820     (set X (ashift CONST Y)) where CONST must be made to
821     match X. Change it into two insns: (set X CONST)
822     (set X (ashift X Y)).  If we left this for reloading, it
823     would probably get three insns because X and Y might go
824     in the same place. This prevents X and Y from receiving
825     the same hard reg.
826
827     We can only do this if the modes of operands 0 and 1
828     (which might not be the same) are tieable and we only need
829     do this during our first pass.  */
830
831  if (pass == 0 && optimize
832      && recog_n_operands >= 3
833      && recog_constraints[1][0] == '0'
834      && recog_constraints[1][1] == 0
835      && CONSTANT_P (recog_operand[1])
836      && ! rtx_equal_p (recog_operand[0], recog_operand[1])
837      && ! rtx_equal_p (recog_operand[0], recog_operand[2])
838      && GET_CODE (recog_operand[0]) == REG
839      && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
840			  recog_operand_mode[1]))
841    {
842      rtx previnsn = prev_real_insn (insn);
843      rtx dest
844	= gen_lowpart (recog_operand_mode[1],
845		       recog_operand[0]);
846      rtx newinsn
847	= emit_insn_before (gen_move_insn (dest,
848					   recog_operand[1]),
849			    insn);
850
851      /* If this insn was the start of a basic block,
852	 include the new insn in that block.
853	 We need not check for code_label here;
854	 while a basic block can start with a code_label,
855	 INSN could not be at the beginning of that block.  */
856      if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
857	{
858	  int b;
859	  for (b = 0; b < n_basic_blocks; b++)
860	    if (insn == BLOCK_HEAD (b))
861	      BLOCK_HEAD (b) = newinsn;
862	}
863
864      /* This makes one more setting of new insns's dest.  */
865      REG_N_SETS (REGNO (recog_operand[0]))++;
866
867      *recog_operand_loc[1] = recog_operand[0];
868      for (i = recog_n_dups - 1; i >= 0; i--)
869	if (recog_dup_num[i] == 1)
870	  *recog_dup_loc[i] = recog_operand[0];
871
872      return PREV_INSN (newinsn);
873    }
874
875  /* If we get here, we are set up to record the costs of all the
876     operands for this insn.  Start by initializing the costs.
877     Then handle any address registers.  Finally record the desired
878     classes for any pseudos, doing it twice if some pair of
879     operands are commutative.  */
880
881  for (i = 0; i < recog_n_operands; i++)
882    {
883      op_costs[i] = init_cost;
884
885      if (GET_CODE (recog_operand[i]) == SUBREG)
886	{
887	  rtx inner = SUBREG_REG (recog_operand[i]);
888	  if (GET_MODE_SIZE (modes[i]) != GET_MODE_SIZE (GET_MODE (inner)))
889	    subreg_changes_size[i] = 1;
890	  recog_operand[i] = inner;
891	}
892
893      if (GET_CODE (recog_operand[i]) == MEM)
894	record_address_regs (XEXP (recog_operand[i], 0),
895			     BASE_REG_CLASS, loop_cost * 2);
896      else if (constraints[i][0] == 'p')
897	record_address_regs (recog_operand[i],
898			     BASE_REG_CLASS, loop_cost * 2);
899    }
900
901  /* Check for commutative in a separate loop so everything will
902     have been initialized.  We must do this even if one operand
903     is a constant--see addsi3 in m68k.md.  */
904
905  for (i = 0; i < recog_n_operands - 1; i++)
906    if (constraints[i][0] == '%')
907      {
908	const char *xconstraints[MAX_RECOG_OPERANDS];
909	int j;
910
911	/* Handle commutative operands by swapping the constraints.
912	   We assume the modes are the same.  */
913
914	for (j = 0; j < recog_n_operands; j++)
915	  xconstraints[j] = constraints[j];
916
917	xconstraints[i] = constraints[i+1];
918	xconstraints[i+1] = constraints[i];
919	record_reg_classes (recog_n_alternatives, recog_n_operands,
920			    recog_operand, modes, subreg_changes_size,
921			    xconstraints, insn);
922      }
923
924  record_reg_classes (recog_n_alternatives, recog_n_operands, recog_operand,
925		      modes, subreg_changes_size, constraints, insn);
926
927  /* Now add the cost for each operand to the total costs for
928     its register.  */
929
930  for (i = 0; i < recog_n_operands; i++)
931    if (GET_CODE (recog_operand[i]) == REG
932	&& REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
933      {
934	int regno = REGNO (recog_operand[i]);
935	struct costs *p = &costs[regno], *q = &op_costs[i];
936
937	p->mem_cost += q->mem_cost * loop_cost;
938	for (j = 0; j < N_REG_CLASSES; j++)
939	  p->cost[j] += q->cost[j] * loop_cost;
940      }
941
942  return insn;
943}
944
945/* This is a pass of the compiler that scans all instructions
946   and calculates the preferred class for each pseudo-register.
947   This information can be accessed later by calling `reg_preferred_class'.
948   This pass comes just before local register allocation.  */
949
950void
951regclass (f, nregs)
952     rtx f;
953     int nregs;
954{
955#ifdef REGISTER_CONSTRAINTS
956  register rtx insn;
957  register int i;
958  int pass;
959
960  init_recog ();
961
962  costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
963
964#ifdef FORBIDDEN_INC_DEC_CLASSES
965
966  in_inc_dec = (char *) alloca (nregs);
967
968  /* Initialize information about which register classes can be used for
969     pseudos that are auto-incremented or auto-decremented.  It would
970     seem better to put this in init_reg_sets, but we need to be able
971     to allocate rtx, which we can't do that early.  */
972
973  for (i = 0; i < N_REG_CLASSES; i++)
974    {
975      rtx r = gen_rtx_REG (VOIDmode, 0);
976      enum machine_mode m;
977      register int j;
978
979      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
980	if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
981	  {
982	    REGNO (r) = j;
983
984	    for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
985		 m = (enum machine_mode) ((int) m + 1))
986	      if (HARD_REGNO_MODE_OK (j, m))
987		{
988		  PUT_MODE (r, m);
989
990		  /* If a register is not directly suitable for an
991		     auto-increment or decrement addressing mode and
992		     requires secondary reloads, disallow its class from
993		     being used in such addresses.  */
994
995		  if ((0
996#ifdef SECONDARY_RELOAD_CLASS
997		       || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
998			   != NO_REGS)
999#else
1000#ifdef SECONDARY_INPUT_RELOAD_CLASS
1001		       || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1002			   != NO_REGS)
1003#endif
1004#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1005		       || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1006			   != NO_REGS)
1007#endif
1008#endif
1009		       )
1010		      && ! auto_inc_dec_reg_p (r, m))
1011		    forbidden_inc_dec_class[i] = 1;
1012		}
1013	  }
1014    }
1015#endif /* FORBIDDEN_INC_DEC_CLASSES */
1016
1017  /* Normally we scan the insns once and determine the best class to use for
1018     each register.  However, if -fexpensive_optimizations are on, we do so
1019     twice, the second time using the tentative best classes to guide the
1020     selection.  */
1021
1022  for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1023    {
1024      /* Zero out our accumulation of the cost of each class for each reg.  */
1025
1026      bzero ((char *) costs, nregs * sizeof (struct costs));
1027
1028#ifdef FORBIDDEN_INC_DEC_CLASSES
1029      bzero (in_inc_dec, nregs);
1030#endif
1031
1032      loop_depth = 0, loop_cost = 1;
1033
1034      /* Scan the instructions and record each time it would
1035	 save code to put a certain register in a certain class.  */
1036
1037      for (insn = f; insn; insn = NEXT_INSN (insn))
1038	{
1039	  insn = scan_one_insn (insn, pass);
1040	}
1041
1042      /* Now for each register look at how desirable each class is
1043	 and find which class is preferred.  Store that in
1044	 `prefclass[REGNO]'.  Record in `altclass[REGNO]' the largest register
1045	 class any of whose registers is better than memory.  */
1046
1047      if (pass == 0)
1048	{
1049	  prefclass = prefclass_buffer;
1050	  altclass = altclass_buffer;
1051	}
1052
1053      for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1054	{
1055	  register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1056	  enum reg_class best = ALL_REGS, alt = NO_REGS;
1057	  /* This is an enum reg_class, but we call it an int
1058	     to save lots of casts.  */
1059	  register int class;
1060	  register struct costs *p = &costs[i];
1061
1062	  for (class = (int) ALL_REGS - 1; class > 0; class--)
1063	    {
1064	      /* Ignore classes that are too small for this operand or
1065		 invalid for a operand that was auto-incremented.  */
1066	      if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1067		  > reg_class_size[class]
1068#ifdef FORBIDDEN_INC_DEC_CLASSES
1069		  || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1070#endif
1071		  )
1072		;
1073	      else if (p->cost[class] < best_cost)
1074		{
1075		  best_cost = p->cost[class];
1076		  best = (enum reg_class) class;
1077		}
1078	      else if (p->cost[class] == best_cost)
1079		best = reg_class_subunion[(int)best][class];
1080	    }
1081
1082	  /* Record the alternate register class; i.e., a class for which
1083	     every register in it is better than using memory.  If adding a
1084	     class would make a smaller class (i.e., no union of just those
1085	     classes exists), skip that class.  The major unions of classes
1086	     should be provided as a register class.  Don't do this if we
1087	     will be doing it again later.  */
1088
1089	  if (pass == 1 || ! flag_expensive_optimizations)
1090	    for (class = 0; class < N_REG_CLASSES; class++)
1091	      if (p->cost[class] < p->mem_cost
1092		  && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1093		      > reg_class_size[(int) alt])
1094#ifdef FORBIDDEN_INC_DEC_CLASSES
1095		  && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1096#endif
1097		  )
1098		alt = reg_class_subunion[(int) alt][class];
1099
1100	  /* If we don't add any classes, nothing to try.  */
1101	  if (alt == best)
1102	    alt = NO_REGS;
1103
1104	  /* We cast to (int) because (char) hits bugs in some compilers.  */
1105	  prefclass[i] = (int) best;
1106	  altclass[i] = (int) alt;
1107	}
1108    }
1109#endif /* REGISTER_CONSTRAINTS */
1110
1111  free (costs);
1112}
1113
1114#ifdef REGISTER_CONSTRAINTS
1115
1116/* Record the cost of using memory or registers of various classes for
1117   the operands in INSN.
1118
1119   N_ALTS is the number of alternatives.
1120
1121   N_OPS is the number of operands.
1122
1123   OPS is an array of the operands.
1124
1125   MODES are the modes of the operands, in case any are VOIDmode.
1126
1127   CONSTRAINTS are the constraints to use for the operands.  This array
1128   is modified by this procedure.
1129
1130   This procedure works alternative by alternative.  For each alternative
1131   we assume that we will be able to allocate all pseudos to their ideal
1132   register class and calculate the cost of using that alternative.  Then
1133   we compute for each operand that is a pseudo-register, the cost of
1134   having the pseudo allocated to each register class and using it in that
1135   alternative.  To this cost is added the cost of the alternative.
1136
1137   The cost of each class for this insn is its lowest cost among all the
1138   alternatives.  */
1139
1140static void
1141record_reg_classes (n_alts, n_ops, ops, modes, subreg_changes_size,
1142		    constraints, insn)
1143     int n_alts;
1144     int n_ops;
1145     rtx *ops;
1146     enum machine_mode *modes;
1147     char *subreg_changes_size;
1148     const char **constraints;
1149     rtx insn;
1150{
1151  int alt;
1152  int i, j;
1153  rtx set;
1154
1155  /* Process each alternative, each time minimizing an operand's cost with
1156     the cost for each operand in that alternative.  */
1157
1158  for (alt = 0; alt < n_alts; alt++)
1159    {
1160      struct costs this_op_costs[MAX_RECOG_OPERANDS];
1161      int alt_fail = 0;
1162      int alt_cost = 0;
1163      enum reg_class classes[MAX_RECOG_OPERANDS];
1164      int class;
1165
1166      for (i = 0; i < n_ops; i++)
1167	{
1168	  const char *p = constraints[i];
1169	  rtx op = ops[i];
1170	  enum machine_mode mode = modes[i];
1171	  int allows_addr = 0;
1172	  int allows_mem = 0;
1173	  int win = 0;
1174	  unsigned char c;
1175
1176	  /* Initially show we know nothing about the register class.  */
1177	  classes[i] = NO_REGS;
1178
1179	  /* If this operand has no constraints at all, we can conclude
1180	     nothing about it since anything is valid.  */
1181
1182	  if (*p == 0)
1183	    {
1184	      if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1185		bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1186
1187	      continue;
1188	    }
1189
1190	  /* If this alternative is only relevant when this operand
1191	     matches a previous operand, we do different things depending
1192	     on whether this operand is a pseudo-reg or not.  We must process
1193	     any modifiers for the operand before we can make this test.  */
1194
1195	  while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1196	    p++;
1197
1198	  if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1199	    {
1200	      j = p[0] - '0';
1201	      classes[i] = classes[j];
1202
1203	      if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1204		{
1205		  /* If this matches the other operand, we have no added
1206		     cost and we win.  */
1207		  if (rtx_equal_p (ops[j], op))
1208		    win = 1;
1209
1210		  /* If we can put the other operand into a register, add to
1211		     the cost of this alternative the cost to copy this
1212		     operand to the register used for the other operand.  */
1213
1214		  else if (classes[j] != NO_REGS)
1215		    alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1216		}
1217	      else if (GET_CODE (ops[j]) != REG
1218		       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1219		{
1220		  /* This op is a pseudo but the one it matches is not.  */
1221
1222		  /* If we can't put the other operand into a register, this
1223		     alternative can't be used.  */
1224
1225		  if (classes[j] == NO_REGS)
1226		    alt_fail = 1;
1227
1228		  /* Otherwise, add to the cost of this alternative the cost
1229		     to copy the other operand to the register used for this
1230		     operand.  */
1231
1232		  else
1233		    alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1234		}
1235	      else
1236		{
1237		  /* The costs of this operand are the same as that of the
1238		     other operand.  However, if we cannot tie them, this
1239		     alternative needs to do a copy, which is one
1240		     instruction.  */
1241
1242		  this_op_costs[i] = this_op_costs[j];
1243		  if (REGNO (ops[i]) != REGNO (ops[j])
1244		      && ! find_reg_note (insn, REG_DEAD, op))
1245		    alt_cost += 2;
1246
1247		  /* This is in place of ordinary cost computation
1248		     for this operand, so skip to the end of the
1249		     alternative (should be just one character).  */
1250		  while (*p && *p++ != ',')
1251		    ;
1252
1253		  constraints[i] = p;
1254		  continue;
1255		}
1256	    }
1257
1258	  /* Scan all the constraint letters.  See if the operand matches
1259	     any of the constraints.  Collect the valid register classes
1260	     and see if this operand accepts memory.  */
1261
1262	  while (*p && (c = *p++) != ',')
1263	    switch (c)
1264	      {
1265	      case '*':
1266		/* Ignore the next letter for this pass.  */
1267		p++;
1268		break;
1269
1270	      case '?':
1271		alt_cost += 2;
1272	      case '!':  case '#':  case '&':
1273	      case '0':  case '1':  case '2':  case '3':  case '4':
1274	      case '5':  case '6':  case '7':  case '8':  case '9':
1275		break;
1276
1277	      case 'p':
1278		allows_addr = 1;
1279		win = address_operand (op, GET_MODE (op));
1280		/* We know this operand is an address, so we want it to be
1281		   allocated to a register that can be the base of an
1282		   address, ie BASE_REG_CLASS.  */
1283		classes[i]
1284		  = reg_class_subunion[(int) classes[i]]
1285		    [(int) BASE_REG_CLASS];
1286		break;
1287
1288	      case 'm':  case 'o':  case 'V':
1289		/* It doesn't seem worth distinguishing between offsettable
1290		   and non-offsettable addresses here.  */
1291		allows_mem = 1;
1292		if (GET_CODE (op) == MEM)
1293		  win = 1;
1294		break;
1295
1296	      case '<':
1297		if (GET_CODE (op) == MEM
1298		    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1299			|| GET_CODE (XEXP (op, 0)) == POST_DEC))
1300		  win = 1;
1301		break;
1302
1303	      case '>':
1304		if (GET_CODE (op) == MEM
1305		    && (GET_CODE (XEXP (op, 0)) == PRE_INC
1306			|| GET_CODE (XEXP (op, 0)) == POST_INC))
1307		  win = 1;
1308		break;
1309
1310	      case 'E':
1311#ifndef REAL_ARITHMETIC
1312		/* Match any floating double constant, but only if
1313		   we can examine the bits of it reliably.  */
1314		if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1315		     || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1316		    && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1317		  break;
1318#endif
1319		if (GET_CODE (op) == CONST_DOUBLE)
1320		  win = 1;
1321		break;
1322
1323	      case 'F':
1324		if (GET_CODE (op) == CONST_DOUBLE)
1325		  win = 1;
1326		break;
1327
1328	      case 'G':
1329	      case 'H':
1330		if (GET_CODE (op) == CONST_DOUBLE
1331		    && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1332		  win = 1;
1333		break;
1334
1335	      case 's':
1336		if (GET_CODE (op) == CONST_INT
1337		    || (GET_CODE (op) == CONST_DOUBLE
1338			&& GET_MODE (op) == VOIDmode))
1339		  break;
1340	      case 'i':
1341		if (CONSTANT_P (op)
1342#ifdef LEGITIMATE_PIC_OPERAND_P
1343		    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1344#endif
1345		    )
1346		  win = 1;
1347		break;
1348
1349	      case 'n':
1350		if (GET_CODE (op) == CONST_INT
1351		    || (GET_CODE (op) == CONST_DOUBLE
1352			&& GET_MODE (op) == VOIDmode))
1353		  win = 1;
1354		break;
1355
1356	      case 'I':
1357	      case 'J':
1358	      case 'K':
1359	      case 'L':
1360	      case 'M':
1361	      case 'N':
1362	      case 'O':
1363	      case 'P':
1364		if (GET_CODE (op) == CONST_INT
1365		    && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1366		  win = 1;
1367		break;
1368
1369	      case 'X':
1370		win = 1;
1371		break;
1372
1373#ifdef EXTRA_CONSTRAINT
1374              case 'Q':
1375              case 'R':
1376              case 'S':
1377              case 'T':
1378              case 'U':
1379		if (EXTRA_CONSTRAINT (op, c))
1380		  win = 1;
1381		break;
1382#endif
1383
1384	      case 'g':
1385		if (GET_CODE (op) == MEM
1386		    || (CONSTANT_P (op)
1387#ifdef LEGITIMATE_PIC_OPERAND_P
1388			&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1389#endif
1390			))
1391		  win = 1;
1392		allows_mem = 1;
1393	      case 'r':
1394		classes[i]
1395		  = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1396		break;
1397
1398	      default:
1399		classes[i]
1400		  = reg_class_subunion[(int) classes[i]]
1401		    [(int) REG_CLASS_FROM_LETTER (c)];
1402	      }
1403
1404	  constraints[i] = p;
1405
1406#ifdef CLASS_CANNOT_CHANGE_SIZE
1407	  /* If we noted a subreg earlier, and the selected class is a
1408	     subclass of CLASS_CANNOT_CHANGE_SIZE, zap it.  */
1409	  if (subreg_changes_size[i]
1410	      && (reg_class_subunion[(int) CLASS_CANNOT_CHANGE_SIZE]
1411				    [(int) classes[i]]
1412		  == CLASS_CANNOT_CHANGE_SIZE))
1413	    classes[i] = NO_REGS;
1414#endif
1415
1416	  /* How we account for this operand now depends on whether it is  a
1417	     pseudo register or not.  If it is, we first check if any
1418	     register classes are valid.  If not, we ignore this alternative,
1419	     since we want to assume that all pseudos get allocated for
1420	     register preferencing.  If some register class is valid, compute
1421	     the costs of moving the pseudo into that class.  */
1422
1423	  if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1424	    {
1425	      if (classes[i] == NO_REGS)
1426		{
1427		    /* We must always fail if the operand is a REG, but
1428		       we did not find a suitable class.
1429
1430		       Otherwise we may perform an uninitialized read
1431		       from this_op_costs after the `continue' statement
1432		       below.  */
1433		    alt_fail = 1;
1434		}
1435	      else
1436		{
1437		  struct costs *pp = &this_op_costs[i];
1438
1439		  for (class = 0; class < N_REG_CLASSES; class++)
1440		    pp->cost[class] = may_move_cost[class][(int) classes[i]];
1441
1442		  /* If the alternative actually allows memory, make things
1443		     a bit cheaper since we won't need an extra insn to
1444		     load it.  */
1445
1446		  pp->mem_cost = (MEMORY_MOVE_COST (mode, classes[i], 1)
1447				  - allows_mem);
1448
1449		  /* If we have assigned a class to this register in our
1450		     first pass, add a cost to this alternative corresponding
1451		     to what we would add if this register were not in the
1452		     appropriate class.  */
1453
1454		  if (prefclass)
1455		    alt_cost
1456		      += may_move_cost[(unsigned char)prefclass[REGNO (op)]][(int) classes[i]];
1457		}
1458	    }
1459
1460	  /* Otherwise, if this alternative wins, either because we
1461	     have already determined that or if we have a hard register of
1462	     the proper class, there is no cost for this alternative.  */
1463
1464	  else if (win
1465		   || (GET_CODE (op) == REG
1466		       && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1467	    ;
1468
1469	  /* If registers are valid, the cost of this alternative includes
1470	     copying the object to and/or from a register.  */
1471
1472	  else if (classes[i] != NO_REGS)
1473	    {
1474	      if (recog_op_type[i] != OP_OUT)
1475		alt_cost += copy_cost (op, mode, classes[i], 1);
1476
1477	      if (recog_op_type[i] != OP_IN)
1478		alt_cost += copy_cost (op, mode, classes[i], 0);
1479	    }
1480
1481	  /* The only other way this alternative can be used is if this is a
1482	     constant that could be placed into memory.  */
1483
1484	  else if (CONSTANT_P (op) && (allows_addr || allows_mem))
1485	    alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1486	  else
1487	    alt_fail = 1;
1488	}
1489
1490      if (alt_fail)
1491	continue;
1492
1493      /* Finally, update the costs with the information we've calculated
1494	 about this alternative.  */
1495
1496      for (i = 0; i < n_ops; i++)
1497	if (GET_CODE (ops[i]) == REG
1498	    && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1499	  {
1500	    struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1501	    int scale = 1 + (recog_op_type[i] == OP_INOUT);
1502
1503	    pp->mem_cost = MIN (pp->mem_cost,
1504				(qq->mem_cost + alt_cost) * scale);
1505
1506	    for (class = 0; class < N_REG_CLASSES; class++)
1507	      pp->cost[class] = MIN (pp->cost[class],
1508				     (qq->cost[class] + alt_cost) * scale);
1509	  }
1510    }
1511
1512  /* If this insn is a single set copying operand 1 to operand 0
1513     and one is a pseudo with the other a hard reg that is in its
1514     own register class, set the cost of that register class to -1.  */
1515
1516  if ((set = single_set (insn)) != 0
1517      && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1518      && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1519    for (i = 0; i <= 1; i++)
1520      if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1521	{
1522	  int regno = REGNO (ops[!i]);
1523	  enum machine_mode mode = GET_MODE (ops[!i]);
1524	  int class;
1525	  int nr;
1526
1527	  if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1528	      && (reg_class_size[(unsigned char)prefclass[regno]]
1529		  == CLASS_MAX_NREGS (prefclass[regno], mode)))
1530	    op_costs[i].cost[(unsigned char)prefclass[regno]] = -1;
1531	  else if (regno < FIRST_PSEUDO_REGISTER)
1532	    for (class = 0; class < N_REG_CLASSES; class++)
1533	      if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1534		  && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1535		{
1536		  if (reg_class_size[class] == 1)
1537		    op_costs[i].cost[class] = -1;
1538		  else
1539		    {
1540		      for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1541			{
1542			  if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1543			    break;
1544			}
1545
1546		      if (nr == HARD_REGNO_NREGS(regno,mode))
1547			op_costs[i].cost[class] = -1;
1548		    }
1549		}
1550	}
1551}
1552
1553/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1554   TO_P is zero) a register of class CLASS in mode MODE.
1555
1556   X must not be a pseudo.  */
1557
1558static int
1559copy_cost (x, mode, class, to_p)
1560     rtx x;
1561     enum machine_mode mode;
1562     enum reg_class class;
1563     int to_p;
1564{
1565#ifdef HAVE_SECONDARY_RELOADS
1566  enum reg_class secondary_class = NO_REGS;
1567#endif
1568
1569  /* If X is a SCRATCH, there is actually nothing to move since we are
1570     assuming optimal allocation.  */
1571
1572  if (GET_CODE (x) == SCRATCH)
1573    return 0;
1574
1575  /* Get the class we will actually use for a reload.  */
1576  class = PREFERRED_RELOAD_CLASS (x, class);
1577
1578#ifdef HAVE_SECONDARY_RELOADS
1579  /* If we need a secondary reload (we assume here that we are using
1580     the secondary reload as an intermediate, not a scratch register), the
1581     cost is that to load the input into the intermediate register, then
1582     to copy them.  We use a special value of TO_P to avoid recursion.  */
1583
1584#ifdef SECONDARY_INPUT_RELOAD_CLASS
1585  if (to_p == 1)
1586    secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1587#endif
1588
1589#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1590  if (! to_p)
1591    secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1592#endif
1593
1594  if (secondary_class != NO_REGS)
1595    return (move_cost[(int) secondary_class][(int) class]
1596	    + copy_cost (x, mode, secondary_class, 2));
1597#endif  /* HAVE_SECONDARY_RELOADS */
1598
1599  /* For memory, use the memory move cost, for (hard) registers, use the
1600     cost to move between the register classes, and use 2 for everything
1601     else (constants).  */
1602
1603  if (GET_CODE (x) == MEM || class == NO_REGS)
1604    return MEMORY_MOVE_COST (mode, class, to_p);
1605
1606  else if (GET_CODE (x) == REG)
1607    return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1608
1609  else
1610    /* If this is a constant, we may eventually want to call rtx_cost here.  */
1611    return 2;
1612}
1613
1614/* Record the pseudo registers we must reload into hard registers
1615   in a subexpression of a memory address, X.
1616
1617   CLASS is the class that the register needs to be in and is either
1618   BASE_REG_CLASS or INDEX_REG_CLASS.
1619
1620   SCALE is twice the amount to multiply the cost by (it is twice so we
1621   can represent half-cost adjustments).  */
1622
1623static void
1624record_address_regs (x, class, scale)
1625     rtx x;
1626     enum reg_class class;
1627     int scale;
1628{
1629  register enum rtx_code code = GET_CODE (x);
1630
1631  switch (code)
1632    {
1633    case CONST_INT:
1634    case CONST:
1635    case CC0:
1636    case PC:
1637    case SYMBOL_REF:
1638    case LABEL_REF:
1639      return;
1640
1641    case PLUS:
1642      /* When we have an address that is a sum,
1643	 we must determine whether registers are "base" or "index" regs.
1644	 If there is a sum of two registers, we must choose one to be
1645	 the "base".  Luckily, we can use the REGNO_POINTER_FLAG
1646	 to make a good choice most of the time.  We only need to do this
1647	 on machines that can have two registers in an address and where
1648	 the base and index register classes are different.
1649
1650	 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1651	 that seems bogus since it should only be set when we are sure
1652	 the register is being used as a pointer.  */
1653
1654      {
1655	rtx arg0 = XEXP (x, 0);
1656	rtx arg1 = XEXP (x, 1);
1657	register enum rtx_code code0 = GET_CODE (arg0);
1658	register enum rtx_code code1 = GET_CODE (arg1);
1659
1660	/* Look inside subregs.  */
1661	if (code0 == SUBREG)
1662	  arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1663	if (code1 == SUBREG)
1664	  arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1665
1666	/* If this machine only allows one register per address, it must
1667	   be in the first operand.  */
1668
1669	if (MAX_REGS_PER_ADDRESS == 1)
1670	  record_address_regs (arg0, class, scale);
1671
1672	/* If index and base registers are the same on this machine, just
1673	   record registers in any non-constant operands.  We assume here,
1674	   as well as in the tests below, that all addresses are in
1675	   canonical form.  */
1676
1677	else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1678	  {
1679	    record_address_regs (arg0, class, scale);
1680	    if (! CONSTANT_P (arg1))
1681	      record_address_regs (arg1, class, scale);
1682	  }
1683
1684	/* If the second operand is a constant integer, it doesn't change
1685	   what class the first operand must be.  */
1686
1687	else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1688	  record_address_regs (arg0, class, scale);
1689
1690	/* If the second operand is a symbolic constant, the first operand
1691	   must be an index register.  */
1692
1693	else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1694	  record_address_regs (arg0, INDEX_REG_CLASS, scale);
1695
1696	/* If both operands are registers but one is already a hard register
1697	   of index or base class, give the other the class that the hard
1698	   register is not.  */
1699
1700#ifdef REG_OK_FOR_BASE_P
1701	else if (code0 == REG && code1 == REG
1702		 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1703		 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1704	  record_address_regs (arg1,
1705			       REG_OK_FOR_BASE_P (arg0)
1706			       ? INDEX_REG_CLASS : BASE_REG_CLASS,
1707			       scale);
1708	else if (code0 == REG && code1 == REG
1709		 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1710		 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1711	  record_address_regs (arg0,
1712			       REG_OK_FOR_BASE_P (arg1)
1713			       ? INDEX_REG_CLASS : BASE_REG_CLASS,
1714			       scale);
1715#endif
1716
1717	/* If one operand is known to be a pointer, it must be the base
1718	   with the other operand the index.  Likewise if the other operand
1719	   is a MULT.  */
1720
1721	else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1722		 || code1 == MULT)
1723	  {
1724	    record_address_regs (arg0, BASE_REG_CLASS, scale);
1725	    record_address_regs (arg1, INDEX_REG_CLASS, scale);
1726	  }
1727	else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1728		 || code0 == MULT)
1729	  {
1730	    record_address_regs (arg0, INDEX_REG_CLASS, scale);
1731	    record_address_regs (arg1, BASE_REG_CLASS, scale);
1732	  }
1733
1734	/* Otherwise, count equal chances that each might be a base
1735	   or index register.  This case should be rare.  */
1736
1737	else
1738	  {
1739	    record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1740	    record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1741	    record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1742	    record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1743	  }
1744      }
1745      break;
1746
1747    case POST_INC:
1748    case PRE_INC:
1749    case POST_DEC:
1750    case PRE_DEC:
1751      /* Double the importance of a pseudo register that is incremented
1752	 or decremented, since it would take two extra insns
1753	 if it ends up in the wrong place.  If the operand is a pseudo,
1754	 show it is being used in an INC_DEC context.  */
1755
1756#ifdef FORBIDDEN_INC_DEC_CLASSES
1757      if (GET_CODE (XEXP (x, 0)) == REG
1758	  && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1759	in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1760#endif
1761
1762      record_address_regs (XEXP (x, 0), class, 2 * scale);
1763      break;
1764
1765    case REG:
1766      {
1767	register struct costs *pp = &costs[REGNO (x)];
1768	register int i;
1769
1770	pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1771
1772	for (i = 0; i < N_REG_CLASSES; i++)
1773	  pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1774      }
1775      break;
1776
1777    default:
1778      {
1779	register char *fmt = GET_RTX_FORMAT (code);
1780	register int i;
1781	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1782	  if (fmt[i] == 'e')
1783	    record_address_regs (XEXP (x, i), class, scale);
1784      }
1785    }
1786}
1787
1788#ifdef FORBIDDEN_INC_DEC_CLASSES
1789
1790/* Return 1 if REG is valid as an auto-increment memory reference
1791   to an object of MODE.  */
1792
1793static int
1794auto_inc_dec_reg_p (reg, mode)
1795     rtx reg;
1796     enum machine_mode mode;
1797{
1798  if (HAVE_POST_INCREMENT
1799      && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1800    return 1;
1801
1802  if (HAVE_POST_DECREMENT
1803      && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1804    return 1;
1805
1806  if (HAVE_PRE_INCREMENT
1807      && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1808    return 1;
1809
1810  if (HAVE_PRE_DECREMENT
1811      && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1812    return 1;
1813
1814  return 0;
1815}
1816#endif
1817
1818#endif /* REGISTER_CONSTRAINTS */
1819
1820static short *renumber = (short *)0;
1821static size_t regno_allocated = 0;
1822
1823/* Allocate enough space to hold NUM_REGS registers for the tables used for
1824   reg_scan and flow_analysis that are indexed by the register number.  If
1825   NEW_P is non zero, initialize all of the registers, otherwise only
1826   initialize the new registers allocated.  The same table is kept from
1827   function to function, only reallocating it when we need more room.  If
1828   RENUMBER_P is non zero, allocate the reg_renumber array also.  */
1829
1830void
1831allocate_reg_info (num_regs, new_p, renumber_p)
1832     size_t num_regs;
1833     int new_p;
1834     int renumber_p;
1835{
1836  size_t size_info;
1837  size_t size_renumber;
1838  size_t min = (new_p) ? 0 : reg_n_max;
1839  struct reg_info_data *reg_data;
1840  struct reg_info_data *reg_next;
1841
1842  if (num_regs > regno_allocated)
1843    {
1844      size_t old_allocated = regno_allocated;
1845
1846      regno_allocated = num_regs + (num_regs / 20);	/* add some slop space */
1847      size_renumber = regno_allocated * sizeof (short);
1848
1849      if (!reg_n_info)
1850	{
1851	  VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
1852	  renumber = (short *) xmalloc (size_renumber);
1853	  prefclass_buffer = (char *) xmalloc (regno_allocated);
1854	  altclass_buffer = (char *) xmalloc (regno_allocated);
1855	}
1856
1857      else
1858	{
1859	  VARRAY_GROW (reg_n_info, regno_allocated);
1860
1861	  if (new_p)		/* if we're zapping everything, no need to realloc */
1862	    {
1863	      free ((char *)renumber);
1864	      free ((char *)prefclass_buffer);
1865	      free ((char *)altclass_buffer);
1866	      renumber = (short *) xmalloc (size_renumber);
1867	      prefclass_buffer = (char *) xmalloc (regno_allocated);
1868	      altclass_buffer = (char *) xmalloc (regno_allocated);
1869	    }
1870
1871	  else
1872	    {
1873	      renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1874	      prefclass_buffer = (char *) xrealloc ((char *)prefclass_buffer,
1875						    regno_allocated);
1876
1877	      altclass_buffer = (char *) xrealloc ((char *)altclass_buffer,
1878						   regno_allocated);
1879	    }
1880	}
1881
1882      size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
1883	+ sizeof (struct reg_info_data) - sizeof (reg_info);
1884      reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
1885      reg_data->min_index = old_allocated;
1886      reg_data->max_index = regno_allocated - 1;
1887      reg_data->next = reg_info_head;
1888      reg_info_head = reg_data;
1889    }
1890
1891  reg_n_max = num_regs;
1892  if (min < num_regs)
1893    {
1894      /* Loop through each of the segments allocated for the actual
1895	 reg_info pages, and set up the pointers, zero the pages, etc.  */
1896      for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1897	{
1898	  size_t min_index = reg_data->min_index;
1899	  size_t max_index = reg_data->max_index;
1900
1901	  reg_next = reg_data->next;
1902	  if (min <= max_index)
1903	    {
1904	      size_t max = max_index;
1905	      size_t local_min = min - min_index;
1906	      size_t i;
1907
1908	      if (min < min_index)
1909		local_min = 0;
1910	      if (!reg_data->used_p)	/* page just allocated with calloc */
1911		reg_data->used_p = 1;	/* no need to zero */
1912	      else
1913		bzero ((char *) &reg_data->data[local_min],
1914		       sizeof (reg_info) * (max - min_index - local_min + 1));
1915
1916	      for (i = min_index+local_min; i <= max; i++)
1917		{
1918		  VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
1919		  REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1920		  renumber[i] = -1;
1921		  prefclass_buffer[i] = (char) NO_REGS;
1922		  altclass_buffer[i] = (char) NO_REGS;
1923		}
1924	    }
1925	}
1926    }
1927
1928  /* If {pref,alt}class have already been allocated, update the pointers to
1929     the newly realloced ones.  */
1930  if (prefclass)
1931    {
1932      prefclass = prefclass_buffer;
1933      altclass = altclass_buffer;
1934    }
1935
1936  if (renumber_p)
1937    reg_renumber = renumber;
1938
1939  /* Tell the regset code about the new number of registers */
1940  MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1941}
1942
1943/* Free up the space allocated by allocate_reg_info.  */
1944void
1945free_reg_info ()
1946{
1947  if (reg_n_info)
1948    {
1949      struct reg_info_data *reg_data;
1950      struct reg_info_data *reg_next;
1951
1952      VARRAY_FREE (reg_n_info);
1953      for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1954	{
1955	  reg_next = reg_data->next;
1956	  free ((char *)reg_data);
1957	}
1958
1959      free (prefclass_buffer);
1960      free (altclass_buffer);
1961      prefclass_buffer = (char *)0;
1962      altclass_buffer = (char *)0;
1963      reg_info_head = (struct reg_info_data *)0;
1964      renumber = (short *)0;
1965    }
1966  regno_allocated = 0;
1967  reg_n_max = 0;
1968}
1969
1970/* This is the `regscan' pass of the compiler, run just before cse
1971   and again just before loop.
1972
1973   It finds the first and last use of each pseudo-register
1974   and records them in the vectors regno_first_uid, regno_last_uid
1975   and counts the number of sets in the vector reg_n_sets.
1976
1977   REPEAT is nonzero the second time this is called.  */
1978
1979/* Maximum number of parallel sets and clobbers in any insn in this fn.
1980   Always at least 3, since the combiner could put that many together
1981   and we want this to remain correct for all the remaining passes.  */
1982
1983int max_parallel;
1984
1985void
1986reg_scan (f, nregs, repeat)
1987     rtx f;
1988     int nregs;
1989     int repeat;
1990{
1991  register rtx insn;
1992
1993  allocate_reg_info (nregs, TRUE, FALSE);
1994  max_parallel = 3;
1995
1996  for (insn = f; insn; insn = NEXT_INSN (insn))
1997    if (GET_CODE (insn) == INSN
1998	|| GET_CODE (insn) == CALL_INSN
1999	|| GET_CODE (insn) == JUMP_INSN)
2000      {
2001	if (GET_CODE (PATTERN (insn)) == PARALLEL
2002	    && XVECLEN (PATTERN (insn), 0) > max_parallel)
2003	  max_parallel = XVECLEN (PATTERN (insn), 0);
2004	reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2005
2006	if (REG_NOTES (insn))
2007	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2008      }
2009}
2010
2011/* Update 'regscan' information by looking at the insns
2012   from FIRST to LAST.  Some new REGs have been created,
2013   and any REG with number greater than OLD_MAX_REGNO is
2014   such a REG.  We only update information for those.  */
2015
2016void
2017reg_scan_update(first, last, old_max_regno)
2018     rtx first;
2019     rtx last;
2020     int old_max_regno;
2021{
2022  register rtx insn;
2023
2024  allocate_reg_info (max_reg_num (), FALSE, FALSE);
2025
2026  for (insn = first; insn != last; insn = NEXT_INSN (insn))
2027    if (GET_CODE (insn) == INSN
2028	|| GET_CODE (insn) == CALL_INSN
2029	|| GET_CODE (insn) == JUMP_INSN)
2030      {
2031	if (GET_CODE (PATTERN (insn)) == PARALLEL
2032	    && XVECLEN (PATTERN (insn), 0) > max_parallel)
2033	  max_parallel = XVECLEN (PATTERN (insn), 0);
2034	reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2035
2036	if (REG_NOTES (insn))
2037	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2038      }
2039}
2040
2041/* X is the expression to scan.  INSN is the insn it appears in.
2042   NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2043   We should only record information for REGs with numbers
2044   greater than or equal to MIN_REGNO.  */
2045
2046static void
2047reg_scan_mark_refs (x, insn, note_flag, min_regno)
2048     rtx x;
2049     rtx insn;
2050     int note_flag;
2051     int min_regno;
2052{
2053  register enum rtx_code code;
2054  register rtx dest;
2055  register rtx note;
2056
2057  code = GET_CODE (x);
2058  switch (code)
2059    {
2060    case CONST:
2061    case CONST_INT:
2062    case CONST_DOUBLE:
2063    case CC0:
2064    case PC:
2065    case SYMBOL_REF:
2066    case LABEL_REF:
2067    case ADDR_VEC:
2068    case ADDR_DIFF_VEC:
2069      return;
2070
2071    case REG:
2072      {
2073	register int regno = REGNO (x);
2074
2075	if (regno >= min_regno)
2076	  {
2077	    REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2078	    if (!note_flag)
2079	      REGNO_LAST_UID (regno) = INSN_UID (insn);
2080	    if (REGNO_FIRST_UID (regno) == 0)
2081	      REGNO_FIRST_UID (regno) = INSN_UID (insn);
2082	  }
2083      }
2084      break;
2085
2086    case EXPR_LIST:
2087      if (XEXP (x, 0))
2088	reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2089      if (XEXP (x, 1))
2090	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2091      break;
2092
2093    case INSN_LIST:
2094      if (XEXP (x, 1))
2095	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2096      break;
2097
2098    case SET:
2099      /* Count a set of the destination if it is a register.  */
2100      for (dest = SET_DEST (x);
2101	   GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2102	   || GET_CODE (dest) == ZERO_EXTEND;
2103	   dest = XEXP (dest, 0))
2104	;
2105
2106      if (GET_CODE (dest) == REG
2107	  && REGNO (dest) >= min_regno)
2108	REG_N_SETS (REGNO (dest))++;
2109
2110      /* If this is setting a pseudo from another pseudo or the sum of a
2111	 pseudo and a constant integer and the other pseudo is known to be
2112	 a pointer, set the destination to be a pointer as well.
2113
2114	 Likewise if it is setting the destination from an address or from a
2115	 value equivalent to an address or to the sum of an address and
2116	 something else.
2117
2118	 But don't do any of this if the pseudo corresponds to a user
2119	 variable since it should have already been set as a pointer based
2120	 on the type.  */
2121
2122      if (GET_CODE (SET_DEST (x)) == REG
2123	  && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2124	  && REGNO (SET_DEST (x)) >= min_regno
2125	  /* If the destination pseudo is set more than once, then other
2126	     sets might not be to a pointer value (consider access to a
2127	     union in two threads of control in the presense of global
2128	     optimizations).  So only set REGNO_POINTER_FLAG on the destination
2129	     pseudo if this is the only set of that pseudo.  */
2130	  && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2131	  && ! REG_USERVAR_P (SET_DEST (x))
2132	  && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2133	  && ((GET_CODE (SET_SRC (x)) == REG
2134	       && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2135	      || ((GET_CODE (SET_SRC (x)) == PLUS
2136		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2137		  && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2138		  && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2139		  && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2140	      || GET_CODE (SET_SRC (x)) == CONST
2141	      || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2142	      || GET_CODE (SET_SRC (x)) == LABEL_REF
2143	      || (GET_CODE (SET_SRC (x)) == HIGH
2144		  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2145		      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2146		      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2147	      || ((GET_CODE (SET_SRC (x)) == PLUS
2148		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2149		  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2150		      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2151		      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2152	      || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2153		  && (GET_CODE (XEXP (note, 0)) == CONST
2154		      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2155		      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2156	REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2157
2158      /* ... fall through ...  */
2159
2160    default:
2161      {
2162	register char *fmt = GET_RTX_FORMAT (code);
2163	register int i;
2164	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2165	  {
2166	    if (fmt[i] == 'e')
2167	      reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2168	    else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2169	      {
2170		register int j;
2171		for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2172		  reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2173	      }
2174	  }
2175      }
2176    }
2177}
2178
2179/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2180   is also in C2.  */
2181
2182int
2183reg_class_subset_p (c1, c2)
2184     register enum reg_class c1;
2185     register enum reg_class c2;
2186{
2187  if (c1 == c2) return 1;
2188
2189  if (c2 == ALL_REGS)
2190  win:
2191    return 1;
2192  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2193			 reg_class_contents[(int)c2],
2194			 win);
2195  return 0;
2196}
2197
2198/* Return nonzero if there is a register that is in both C1 and C2.  */
2199
2200int
2201reg_classes_intersect_p (c1, c2)
2202     register enum reg_class c1;
2203     register enum reg_class c2;
2204{
2205#ifdef HARD_REG_SET
2206  register
2207#endif
2208    HARD_REG_SET c;
2209
2210  if (c1 == c2) return 1;
2211
2212  if (c1 == ALL_REGS || c2 == ALL_REGS)
2213    return 1;
2214
2215  COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2216  AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2217
2218  GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2219  return 1;
2220
2221 lose:
2222  return 0;
2223}
2224
2225/* Release any memory allocated by register sets.  */
2226
2227void
2228regset_release_memory ()
2229{
2230  bitmap_release_memory ();
2231}
2232