1/* Definitions of target machine for GCC for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
40  const int add;		/* cost of an add instruction */
41  const int lea;		/* cost of a lea instruction */
42  const int shift_var;		/* variable shift costs */
43  const int shift_const;	/* constant shift costs */
44  const int mult_init[5];	/* cost of starting a multiply
45				   in QImode, HImode, SImode, DImode, TImode*/
46  const int mult_bit;		/* cost of multiply per each bit set */
47  const int divide[5];		/* cost of a divide/mod
48				   in QImode, HImode, SImode, DImode, TImode*/
49  int movsx;			/* The cost of movsx operation.  */
50  int movzx;			/* The cost of movzx operation.  */
51  const int large_insn;		/* insns larger than this cost more */
52  const int move_ratio;		/* The threshold of number of scalar
53				   memory-to-memory move insns.  */
54  const int movzbl_load;	/* cost of loading using movzbl */
55  const int int_load[3];	/* cost of loading integer registers
56				   in QImode, HImode and SImode relative
57				   to reg-reg move (2).  */
58  const int int_store[3];	/* cost of storing integer register
59				   in QImode, HImode and SImode */
60  const int fp_move;		/* cost of reg,reg fld/fst */
61  const int fp_load[3];		/* cost of loading FP register
62				   in SFmode, DFmode and XFmode */
63  const int fp_store[3];	/* cost of storing FP register
64				   in SFmode, DFmode and XFmode */
65  const int mmx_move;		/* cost of moving MMX register.  */
66  const int mmx_load[2];	/* cost of loading MMX register
67				   in SImode and DImode */
68  const int mmx_store[2];	/* cost of storing MMX register
69				   in SImode and DImode */
70  const int sse_move;		/* cost of moving SSE register.  */
71  const int sse_load[3];	/* cost of loading SSE register
72				   in SImode, DImode and TImode*/
73  const int sse_store[3];	/* cost of storing SSE register
74				   in SImode, DImode and TImode*/
75  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76				   integer and vice versa.  */
77  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78  const int simultaneous_prefetches; /* number of parallel prefetch
79				   operations.  */
80  const int branch_cost;	/* Default value for BRANCH_COST.  */
81  const int fadd;		/* cost of FADD and FSUB instructions.  */
82  const int fmul;		/* cost of FMUL instruction.  */
83  const int fdiv;		/* cost of FDIV instruction.  */
84  const int fabs;		/* cost of FABS instruction.  */
85  const int fchs;		/* cost of FCHS instruction.  */
86  const int fsqrt;		/* cost of FSQRT instruction.  */
87};
88
89extern const struct processor_costs *ix86_cost;
90
91/* Macros used in the machine description to test the flags.  */
92
93/* configure can arrange to make this 2, to force a 486.  */
94
95#ifndef TARGET_CPU_DEFAULT
96#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
97#endif
98
99#ifndef TARGET_FPMATH_DEFAULT
100#define TARGET_FPMATH_DEFAULT \
101  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102#endif
103
104#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
105
106/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
107   compile-time constant.  */
108#ifdef IN_LIBGCC2
109#undef TARGET_64BIT
110#ifdef __x86_64__
111#define TARGET_64BIT 1
112#else
113#define TARGET_64BIT 0
114#endif
115#else
116#ifndef TARGET_BI_ARCH
117#undef TARGET_64BIT
118#if TARGET_64BIT_DEFAULT
119#define TARGET_64BIT 1
120#else
121#define TARGET_64BIT 0
122#endif
123#endif
124#endif
125
126#define HAS_LONG_COND_BRANCH 1
127#define HAS_LONG_UNCOND_BRANCH 1
128
129#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
134#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
135#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
136#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
137#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
138#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
139#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
140#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
141#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
142#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
143#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
144#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
145
146#define TUNEMASK (1 << ix86_tune)
147extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
148extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
149extern const int x86_branch_hints, x86_unroll_strlen;
150extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
151extern const int x86_use_himode_fiop, x86_use_simode_fiop;
152extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
153extern const int x86_read_modify, x86_split_long_moves;
154extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
155extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
156extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
157extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
158extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
159extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
160extern const int x86_epilogue_using_move, x86_decompose_lea;
161extern const int x86_arch_always_fancy_math_387, x86_shift1;
162extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
163extern const int x86_sse_unaligned_move_optimal;
164extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
165extern const int x86_use_ffreep;
166extern const int x86_inter_unit_moves, x86_schedule;
167extern const int x86_use_bt;
168extern const int x86_cmpxchg, x86_cmpxchg8b, x86_xadd;
169extern const int x86_use_incdec;
170extern const int x86_pad_returns;
171extern const int x86_partial_flag_reg_stall;
172extern int x86_prefetch_sse, x86_cmpxchg16b;
173
174#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
175#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
176#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
177#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
178#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
179/* For sane SSE instruction set generation we need fcomi instruction.  It is
180   safe to enable all CMOVE instructions.  */
181#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
182#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
183#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
184#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
185#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
186#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
187#define TARGET_MOVX (x86_movx & TUNEMASK)
188#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
189#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
190#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
191#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
192#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
193#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
194#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
195#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
196#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
197#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
198#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
199#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
200#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
201#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
202#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
203#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
204#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
205#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
206#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
207#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
208#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
209#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
210#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
211				      (x86_sse_partial_reg_dependency & TUNEMASK)
212#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
213				      (x86_sse_unaligned_move_optimal & TUNEMASK)
214#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
215#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
216#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
217#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
218#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
219#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
220#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
221#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
222#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
223#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
224#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
225#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
226#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
227#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
228#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
229#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
230
231#define ASSEMBLER_DIALECT (ix86_asm_dialect)
232
233#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
234#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
235			     && (ix86_fpmath & FPMATH_387))
236
237#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
238#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
239#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
240#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
241
242#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
243#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
244#define TARGET_CMPXCHG16B (x86_cmpxchg16b)
245#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
246
247#ifndef TARGET_64BIT_DEFAULT
248#define TARGET_64BIT_DEFAULT 0
249#endif
250#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
251#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
252#endif
253
254/* Once GDB has been enhanced to deal with functions without frame
255   pointers, we can change this to allow for elimination of
256   the frame pointer in leaf functions.  */
257#define TARGET_DEFAULT 0
258
259/* This is not really a target flag, but is done this way so that
260   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
261   redefines this to 1.  */
262#define TARGET_MACHO 0
263
264/* Subtargets may reset this to 1 in order to enable 96-bit long double
265   with the rounding mode forced to 53 bits.  */
266#define TARGET_96_ROUND_53_LONG_DOUBLE 0
267
268/* Sometimes certain combinations of command options do not make
269   sense on a particular target machine.  You can define a macro
270   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
271   defined, is executed once just after all the command options have
272   been parsed.
273
274   Don't use this macro to turn on various extra optimizations for
275   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
276
277#define OVERRIDE_OPTIONS override_options ()
278
279/* Define this to change the optimizations performed by default.  */
280#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
281  optimization_options ((LEVEL), (SIZE))
282
283/* -march=native handling only makes sense with compiler running on
284   an x86 or x86_64 chip.  If changing this condition, also change
285   the condition in driver-i386.c.  */
286#if defined(__i386__) || defined(__x86_64__)
287/* In driver-i386.c.  */
288extern const char *host_detect_local_cpu (int argc, const char **argv);
289#define EXTRA_SPEC_FUNCTIONS \
290  { "local_cpu_detect", host_detect_local_cpu },
291#define HAVE_LOCAL_CPU_DETECT
292#endif
293
294/* Support for configure-time defaults of some command line options.
295   The order here is important so that -march doesn't squash the
296   tune or cpu values.  */
297#define OPTION_DEFAULT_SPECS \
298  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
299  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
300  {"arch", "%{!march=*:-march=%(VALUE)}"}
301
302/* Specs for the compiler proper */
303
304#ifndef CC1_CPU_SPEC
305#define CC1_CPU_SPEC_1 "\
306%{!mtune*: \
307%{m386:mtune=i386 \
308%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
309%{m486:-mtune=i486 \
310%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
311%{mpentium:-mtune=pentium \
312%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
313%{mpentiumpro:-mtune=pentiumpro \
314%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
315%{mcpu=*:-mtune=%* \
316%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
317%<mcpu=* \
318%{mintel-syntax:-masm=intel \
319%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
320%{mno-intel-syntax:-masm=att \
321%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
322
323#ifndef HAVE_LOCAL_CPU_DETECT
324#define CC1_CPU_SPEC CC1_CPU_SPEC_1
325#else
326#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
327"%{march=native:%<march=native %:local_cpu_detect(arch) \
328  %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
329%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
330#endif
331#endif
332
333/* Target CPU builtins.  */
334#define TARGET_CPU_CPP_BUILTINS()				\
335  do								\
336    {								\
337      size_t arch_len = strlen (ix86_arch_string);		\
338      size_t tune_len = strlen (ix86_tune_string);		\
339      int last_arch_char = ix86_arch_string[arch_len - 1];	\
340      int last_tune_char = ix86_tune_string[tune_len - 1];		\
341								\
342      if (TARGET_64BIT)						\
343	{							\
344	  builtin_assert ("cpu=x86_64");			\
345	  builtin_assert ("machine=x86_64");			\
346	  builtin_define ("__amd64");				\
347	  builtin_define ("__amd64__");				\
348	  builtin_define ("__x86_64");				\
349	  builtin_define ("__x86_64__");			\
350	}							\
351      else							\
352	{							\
353	  builtin_assert ("cpu=i386");				\
354	  builtin_assert ("machine=i386");			\
355	  builtin_define_std ("i386");				\
356	}							\
357								\
358      /* Built-ins based on -mtune= (or -march= if no		\
359	 -mtune= given).  */					\
360      if (TARGET_386)						\
361	builtin_define ("__tune_i386__");			\
362      else if (TARGET_486)					\
363	builtin_define ("__tune_i486__");			\
364      else if (TARGET_PENTIUM)					\
365	{							\
366	  builtin_define ("__tune_i586__");			\
367	  builtin_define ("__tune_pentium__");			\
368	  if (last_tune_char == 'x')				\
369	    builtin_define ("__tune_pentium_mmx__");		\
370	}							\
371      else if (TARGET_PENTIUMPRO)				\
372	{							\
373	  builtin_define ("__tune_i686__");			\
374	  builtin_define ("__tune_pentiumpro__");		\
375	  switch (last_tune_char)				\
376	    {							\
377	    case '3':						\
378	      builtin_define ("__tune_pentium3__");		\
379	      /* FALLTHRU */					\
380	    case '2':						\
381	      builtin_define ("__tune_pentium2__");		\
382	      break;						\
383	    }							\
384	}							\
385      else if (TARGET_GEODE)					\
386	{							\
387	  builtin_define ("__tune_geode__");			\
388	}							\
389      else if (TARGET_K6)					\
390	{							\
391	  builtin_define ("__tune_k6__");			\
392	  if (last_tune_char == '2')				\
393	    builtin_define ("__tune_k6_2__");			\
394	  else if (last_tune_char == '3')			\
395	    builtin_define ("__tune_k6_3__");			\
396	}							\
397      else if (TARGET_ATHLON)					\
398	{							\
399	  builtin_define ("__tune_athlon__");			\
400	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
401	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
402	    builtin_define ("__tune_athlon_sse__");		\
403	}							\
404      else if (TARGET_K8)					\
405	builtin_define ("__tune_k8__");				\
406      else if (TARGET_AMDFAM10)					\
407	builtin_define ("__tune_amdfam10__");			\
408      else if (TARGET_PENTIUM4)					\
409	builtin_define ("__tune_pentium4__");			\
410      else if (TARGET_NOCONA)					\
411	builtin_define ("__tune_nocona__");			\
412      else if (TARGET_CORE2)					\
413	builtin_define ("__tune_core2__");			\
414								\
415      if (TARGET_MMX)						\
416	builtin_define ("__MMX__");				\
417      if (TARGET_3DNOW)						\
418	builtin_define ("__3dNOW__");				\
419      if (TARGET_3DNOW_A)					\
420	builtin_define ("__3dNOW_A__");				\
421      if (TARGET_SSE)						\
422	builtin_define ("__SSE__");				\
423      if (TARGET_SSE2)						\
424	builtin_define ("__SSE2__");				\
425      if (TARGET_SSE3)						\
426	builtin_define ("__SSE3__");				\
427      if (TARGET_SSSE3)						\
428	builtin_define ("__SSSE3__");				\
429      if (TARGET_SSE4A)					\
430 	builtin_define ("__SSE4A__");		                \
431      if (TARGET_SSE_MATH && TARGET_SSE)			\
432	builtin_define ("__SSE_MATH__");			\
433      if (TARGET_SSE_MATH && TARGET_SSE2)			\
434	builtin_define ("__SSE2_MATH__");			\
435								\
436      /* Built-ins based on -march=.  */			\
437      if (ix86_arch == PROCESSOR_I486)				\
438	{							\
439	  builtin_define ("__i486");				\
440	  builtin_define ("__i486__");				\
441	}							\
442      else if (ix86_arch == PROCESSOR_PENTIUM)			\
443	{							\
444	  builtin_define ("__i586");				\
445	  builtin_define ("__i586__");				\
446	  builtin_define ("__pentium");				\
447	  builtin_define ("__pentium__");			\
448	  if (last_arch_char == 'x')				\
449	    builtin_define ("__pentium_mmx__");			\
450	}							\
451      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
452	{							\
453	  builtin_define ("__i686");				\
454	  builtin_define ("__i686__");				\
455	  builtin_define ("__pentiumpro");			\
456	  builtin_define ("__pentiumpro__");			\
457	}							\
458      else if (ix86_arch == PROCESSOR_GEODE)			\
459	{							\
460	  builtin_define ("__geode");				\
461	  builtin_define ("__geode__");				\
462	}							\
463      else if (ix86_arch == PROCESSOR_K6)			\
464	{							\
465								\
466	  builtin_define ("__k6");				\
467	  builtin_define ("__k6__");				\
468	  if (last_arch_char == '2')				\
469	    builtin_define ("__k6_2__");			\
470	  else if (last_arch_char == '3')			\
471	    builtin_define ("__k6_3__");			\
472	}							\
473      else if (ix86_arch == PROCESSOR_ATHLON)			\
474	{							\
475	  builtin_define ("__athlon");				\
476	  builtin_define ("__athlon__");			\
477	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
478	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
479	    builtin_define ("__athlon_sse__");			\
480	}							\
481      else if (ix86_arch == PROCESSOR_K8)			\
482	{							\
483	  builtin_define ("__k8");				\
484	  builtin_define ("__k8__");				\
485	}							\
486      else if (ix86_arch == PROCESSOR_AMDFAM10)			\
487	{							\
488	  builtin_define ("__amdfam10");			\
489	  builtin_define ("__amdfam10__");			\
490	}							\
491      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
492	{							\
493	  builtin_define ("__pentium4");			\
494	  builtin_define ("__pentium4__");			\
495	}							\
496      else if (ix86_arch == PROCESSOR_NOCONA)			\
497	{							\
498	  builtin_define ("__nocona");				\
499	  builtin_define ("__nocona__");			\
500	}							\
501      else if (ix86_arch == PROCESSOR_CORE2)			\
502	{							\
503	  builtin_define ("__core2");				\
504	  builtin_define ("__core2__");				\
505	}							\
506    }								\
507  while (0)
508
509#define TARGET_CPU_DEFAULT_i386 0
510#define TARGET_CPU_DEFAULT_i486 1
511#define TARGET_CPU_DEFAULT_pentium 2
512#define TARGET_CPU_DEFAULT_pentium_mmx 3
513#define TARGET_CPU_DEFAULT_pentiumpro 4
514#define TARGET_CPU_DEFAULT_pentium2 5
515#define TARGET_CPU_DEFAULT_pentium3 6
516#define TARGET_CPU_DEFAULT_pentium4 7
517#define TARGET_CPU_DEFAULT_geode 8
518#define TARGET_CPU_DEFAULT_k6 9
519#define TARGET_CPU_DEFAULT_k6_2 10
520#define TARGET_CPU_DEFAULT_k6_3 11
521#define TARGET_CPU_DEFAULT_athlon 12
522#define TARGET_CPU_DEFAULT_athlon_sse 13
523#define TARGET_CPU_DEFAULT_k8 14
524#define TARGET_CPU_DEFAULT_pentium_m 15
525#define TARGET_CPU_DEFAULT_prescott 16
526#define TARGET_CPU_DEFAULT_nocona 17
527#define TARGET_CPU_DEFAULT_core2 18
528#define TARGET_CPU_DEFAULT_generic 19
529#define TARGET_CPU_DEFAULT_amdfam10 20
530
531#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
532				  "pentiumpro", "pentium2", "pentium3", \
533                                  "pentium4", "geode", "k6", "k6-2", "k6-3", \
534				  "athlon", "athlon-4", "k8", \
535				  "pentium-m", "prescott", "nocona", \
536				  "core2", "generic", "amdfam10"}
537
538#ifndef CC1_SPEC
539#define CC1_SPEC "%(cc1_cpu) "
540#endif
541
542/* This macro defines names of additional specifications to put in the
543   specs that can be used in various specifications like CC1_SPEC.  Its
544   definition is an initializer with a subgrouping for each command option.
545
546   Each subgrouping contains a string constant, that defines the
547   specification name, and a string constant that used by the GCC driver
548   program.
549
550   Do not define this macro if it does not need to do anything.  */
551
552#ifndef SUBTARGET_EXTRA_SPECS
553#define SUBTARGET_EXTRA_SPECS
554#endif
555
556#define EXTRA_SPECS							\
557  { "cc1_cpu",  CC1_CPU_SPEC },						\
558  SUBTARGET_EXTRA_SPECS
559
560/* target machine storage layout */
561
562#define LONG_DOUBLE_TYPE_SIZE 80
563
564/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
565   FPU, assume that the fpcw is set to extended precision; when using
566   only SSE, rounding is correct; when using both SSE and the FPU,
567   the rounding precision is indeterminate, since either may be chosen
568   apparently at random.  */
569#define TARGET_FLT_EVAL_METHOD \
570  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
571
572#define SHORT_TYPE_SIZE 16
573#define INT_TYPE_SIZE 32
574#define FLOAT_TYPE_SIZE 32
575#ifndef LONG_TYPE_SIZE
576#define LONG_TYPE_SIZE BITS_PER_WORD
577#endif
578#define DOUBLE_TYPE_SIZE 64
579#define LONG_LONG_TYPE_SIZE 64
580
581#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
582#define MAX_BITS_PER_WORD 64
583#else
584#define MAX_BITS_PER_WORD 32
585#endif
586
587/* Define this if most significant byte of a word is the lowest numbered.  */
588/* That is true on the 80386.  */
589
590#define BITS_BIG_ENDIAN 0
591
592/* Define this if most significant byte of a word is the lowest numbered.  */
593/* That is not true on the 80386.  */
594#define BYTES_BIG_ENDIAN 0
595
596/* Define this if most significant word of a multiword number is the lowest
597   numbered.  */
598/* Not true for 80386 */
599#define WORDS_BIG_ENDIAN 0
600
601/* Width of a word, in units (bytes).  */
602#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
603#ifdef IN_LIBGCC2
604#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
605#else
606#define MIN_UNITS_PER_WORD	4
607#endif
608
609/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
610#define PARM_BOUNDARY BITS_PER_WORD
611
612/* Boundary (in *bits*) on which stack pointer should be aligned.  */
613#define STACK_BOUNDARY BITS_PER_WORD
614
615/* Boundary (in *bits*) on which the stack pointer prefers to be
616   aligned; the compiler cannot rely on having this alignment.  */
617#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
618
619/* As of July 2001, many runtimes do not align the stack properly when
620   entering main.  This causes expand_main_function to forcibly align
621   the stack, which results in aligned frames for functions called from
622   main, though it does nothing for the alignment of main itself.  */
623#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
624  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
625
626/* Minimum allocation boundary for the code of a function.  */
627#define FUNCTION_BOUNDARY 8
628
629/* C++ stores the virtual bit in the lowest bit of function pointers.  */
630#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
631
632/* Alignment of field after `int : 0' in a structure.  */
633
634#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
635
636/* Minimum size in bits of the largest boundary to which any
637   and all fundamental data types supported by the hardware
638   might need to be aligned. No data type wants to be aligned
639   rounder than this.
640
641   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
642   and Pentium Pro XFmode values at 128 bit boundaries.  */
643
644#define BIGGEST_ALIGNMENT 128
645
646/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
647#define ALIGN_MODE_128(MODE) \
648 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
649
650/* The published ABIs say that doubles should be aligned on word
651   boundaries, so lower the alignment for structure fields unless
652   -malign-double is set.  */
653
654/* ??? Blah -- this macro is used directly by libobjc.  Since it
655   supports no vector modes, cut out the complexity and fall back
656   on BIGGEST_FIELD_ALIGNMENT.  */
657#ifdef IN_TARGET_LIBS
658#ifdef __x86_64__
659#define BIGGEST_FIELD_ALIGNMENT 128
660#else
661#define BIGGEST_FIELD_ALIGNMENT 32
662#endif
663#else
664#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
665   x86_field_alignment (FIELD, COMPUTED)
666#endif
667
668/* If defined, a C expression to compute the alignment given to a
669   constant that is being placed in memory.  EXP is the constant
670   and ALIGN is the alignment that the object would ordinarily have.
671   The value of this macro is used instead of that alignment to align
672   the object.
673
674   If this macro is not defined, then ALIGN is used.
675
676   The typical use of this macro is to increase alignment for string
677   constants to be word aligned so that `strcpy' calls that copy
678   constants can be done inline.  */
679
680#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
681
682/* If defined, a C expression to compute the alignment for a static
683   variable.  TYPE is the data type, and ALIGN is the alignment that
684   the object would ordinarily have.  The value of this macro is used
685   instead of that alignment to align the object.
686
687   If this macro is not defined, then ALIGN is used.
688
689   One use of this macro is to increase alignment of medium-size
690   data to make it all fit in fewer cache lines.  Another is to
691   cause character arrays to be word-aligned so that `strcpy' calls
692   that copy constants to character arrays can be done inline.  */
693
694#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
695
696/* If defined, a C expression to compute the alignment for a local
697   variable.  TYPE is the data type, and ALIGN is the alignment that
698   the object would ordinarily have.  The value of this macro is used
699   instead of that alignment to align the object.
700
701   If this macro is not defined, then ALIGN is used.
702
703   One use of this macro is to increase alignment of medium-size
704   data to make it all fit in fewer cache lines.  */
705
706#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
707
708/* If defined, a C expression that gives the alignment boundary, in
709   bits, of an argument with the specified mode and type.  If it is
710   not defined, `PARM_BOUNDARY' is used for all arguments.  */
711
712#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
713  ix86_function_arg_boundary ((MODE), (TYPE))
714
715/* Set this nonzero if move instructions will actually fail to work
716   when given unaligned data.  */
717#define STRICT_ALIGNMENT 0
718
719/* If bit field type is int, don't let it cross an int,
720   and give entire struct the alignment of an int.  */
721/* Required on the 386 since it doesn't have bit-field insns.  */
722#define PCC_BITFIELD_TYPE_MATTERS 1
723
724/* Standard register usage.  */
725
726/* This processor has special stack-like registers.  See reg-stack.c
727   for details.  */
728
729#define STACK_REGS
730#define IS_STACK_MODE(MODE)					\
731  (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH))	\
732   || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH))  \
733   || (MODE) == XFmode)
734
735/* Number of actual hardware registers.
736   The hardware registers are assigned numbers for the compiler
737   from 0 to just below FIRST_PSEUDO_REGISTER.
738   All registers that the compiler knows about must be given numbers,
739   even those that are not normally considered general registers.
740
741   In the 80386 we give the 8 general purpose registers the numbers 0-7.
742   We number the floating point registers 8-15.
743   Note that registers 0-7 can be accessed as a  short or int,
744   while only 0-3 may be used with byte `mov' instructions.
745
746   Reg 16 does not correspond to any hardware register, but instead
747   appears in the RTL as an argument pointer prior to reload, and is
748   eliminated during reloading in favor of either the stack or frame
749   pointer.  */
750
751#define FIRST_PSEUDO_REGISTER 53
752
753/* Number of hardware registers that go into the DWARF-2 unwind info.
754   If not defined, equals FIRST_PSEUDO_REGISTER.  */
755
756#define DWARF_FRAME_REGISTERS 17
757
758/* 1 for registers that have pervasive standard uses
759   and are not available for the register allocator.
760   On the 80386, the stack pointer is such, as is the arg pointer.
761
762   The value is zero if the register is not fixed on either 32 or
763   64 bit targets, one if the register if fixed on both 32 and 64
764   bit targets, two if it is only fixed on 32bit targets and three
765   if its only fixed on 64bit targets.
766   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
767 */
768#define FIXED_REGISTERS						\
769/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
770{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
771/*arg,flags,fpsr,dir,frame*/					\
772    1,    1,   1,  1,    1,					\
773/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
774     0,   0,   0,   0,   0,   0,   0,   0,			\
775/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
776     0,   0,   0,   0,   0,   0,   0,   0,			\
777/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
778     2,   2,   2,   2,   2,   2,   2,   2,			\
779/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
780     2,   2,    2,    2,    2,    2,    2,    2}
781
782
783/* 1 for registers not available across function calls.
784   These must include the FIXED_REGISTERS and also any
785   registers that can be used without being saved.
786   The latter must include the registers where values are returned
787   and the register where structure-value addresses are passed.
788   Aside from that, you can include as many other registers as you like.
789
790   The value is zero if the register is not call used on either 32 or
791   64 bit targets, one if the register if call used on both 32 and 64
792   bit targets, two if it is only call used on 32bit targets and three
793   if its only call used on 64bit targets.
794   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
795*/
796#define CALL_USED_REGISTERS					\
797/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
798{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
799/*arg,flags,fpsr,dir,frame*/					\
800     1,   1,   1,  1,    1,					\
801/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
802     1,   1,   1,   1,   1,  1,    1,   1,			\
803/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
804     1,   1,   1,   1,   1,   1,   1,   1,			\
805/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
806     1,   1,   1,   1,   2,   2,   2,   2,			\
807/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
808     1,   1,    1,    1,    1,    1,    1,    1}		\
809
810/* Order in which to allocate registers.  Each register must be
811   listed once, even those in FIXED_REGISTERS.  List frame pointer
812   late and fixed registers last.  Note that, in general, we prefer
813   registers listed in CALL_USED_REGISTERS, keeping the others
814   available for storage of persistent values.
815
816   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
817   so this is just empty initializer for array.  */
818
819#define REG_ALLOC_ORDER 					\
820{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
821   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
822   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
823   48, 49, 50, 51, 52 }
824
825/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
826   to be rearranged based on a particular function.  When using sse math,
827   we want to allocate SSE before x87 registers and vice vera.  */
828
829#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
830
831
832/* Macro to conditionally modify fixed_regs/call_used_regs.  */
833#define CONDITIONAL_REGISTER_USAGE					\
834do {									\
835    int i;								\
836    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
837      {									\
838	if (fixed_regs[i] > 1)						\
839	  fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));	\
840	if (call_used_regs[i] > 1)					\
841	  call_used_regs[i] = (call_used_regs[i]			\
842			       == (TARGET_64BIT ? 3 : 2));		\
843      }									\
844    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
845      {									\
846	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
847	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
848      }									\
849    if (! TARGET_MMX)							\
850      {									\
851	int i;								\
852        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
853          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
854	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
855      }									\
856    if (! TARGET_SSE)							\
857      {									\
858	int i;								\
859        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
860          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
861	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
862      }									\
863    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
864      {									\
865	int i;								\
866	HARD_REG_SET x;							\
867        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
868        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
869          if (TEST_HARD_REG_BIT (x, i)) 				\
870	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
871      }									\
872    if (! TARGET_64BIT)							\
873      {									\
874	int i;								\
875	for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)		\
876	  reg_names[i] = "";						\
877	for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)		\
878	  reg_names[i] = "";						\
879      }									\
880  } while (0)
881
882/* Return number of consecutive hard regs needed starting at reg REGNO
883   to hold something of mode MODE.
884   This is ordinarily the length in words of a value of mode MODE
885   but can be less for certain modes in special long registers.
886
887   Actually there are no two word move instructions for consecutive
888   registers.  And only registers 0-3 may have mov byte instructions
889   applied to them.
890   */
891
892#define HARD_REGNO_NREGS(REGNO, MODE)   \
893  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
894   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
895   : ((MODE) == XFmode							\
896      ? (TARGET_64BIT ? 2 : 3)						\
897      : (MODE) == XCmode						\
898      ? (TARGET_64BIT ? 4 : 6)						\
899      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
900
901#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
902  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
903   ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
904      ? 0								\
905      : ((MODE) == XFmode || (MODE) == XCmode))				\
906   : 0)
907
908#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
909
910#define VALID_SSE2_REG_MODE(MODE) \
911    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
912     || (MODE) == V2DImode || (MODE) == DFmode)
913
914#define VALID_SSE_REG_MODE(MODE)					\
915    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
916     || (MODE) == SFmode || (MODE) == TFmode)
917
918#define VALID_MMX_REG_MODE_3DNOW(MODE) \
919    ((MODE) == V2SFmode || (MODE) == SFmode)
920
921#define VALID_MMX_REG_MODE(MODE)					\
922    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
923     || (MODE) == V2SImode || (MODE) == SImode)
924
925/* ??? No autovectorization into MMX or 3DNOW until we can reliably
926   place emms and femms instructions.  */
927#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
928
929#define VALID_FP_MODE_P(MODE)						\
930    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
931     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
932
933#define VALID_INT_MODE_P(MODE)						\
934    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
935     || (MODE) == DImode						\
936     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
937     || (MODE) == CDImode						\
938     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
939         || (MODE) == TFmode || (MODE) == TCmode)))
940
941/* Return true for modes passed in SSE registers.  */
942#define SSE_REG_MODE_P(MODE) \
943 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
944   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
945   || (MODE) == V4SFmode || (MODE) == V4SImode)
946
947/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
948
949#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
950   ix86_hard_regno_mode_ok ((REGNO), (MODE))
951
952/* Value is 1 if it is a good idea to tie two pseudo registers
953   when one has mode MODE1 and one has mode MODE2.
954   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
955   for any hard reg, then this must be 0 for correct output.  */
956
957#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
958
959/* It is possible to write patterns to move flags; but until someone
960   does it,  */
961#define AVOID_CCMODE_COPIES
962
963/* Specify the modes required to caller save a given hard regno.
964   We do this on i386 to prevent flags from being saved at all.
965
966   Kill any attempts to combine saving of modes.  */
967
968#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
969  (CC_REGNO_P (REGNO) ? VOIDmode					\
970   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
971   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
972   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
973   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
974   : (MODE))
975/* Specify the registers used for certain standard purposes.
976   The values of these macros are register numbers.  */
977
978/* on the 386 the pc register is %eip, and is not usable as a general
979   register.  The ordinary mov instructions won't work */
980/* #define PC_REGNUM  */
981
982/* Register to use for pushing function arguments.  */
983#define STACK_POINTER_REGNUM 7
984
985/* Base register for access to local variables of the function.  */
986#define HARD_FRAME_POINTER_REGNUM 6
987
988/* Base register for access to local variables of the function.  */
989#define FRAME_POINTER_REGNUM 20
990
991/* First floating point reg */
992#define FIRST_FLOAT_REG 8
993
994/* First & last stack-like regs */
995#define FIRST_STACK_REG FIRST_FLOAT_REG
996#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
997
998#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
999#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1000
1001#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1002#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1003
1004#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1005#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1006
1007#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1008#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1009
1010/* Value should be nonzero if functions must have frame pointers.
1011   Zero means the frame pointer need not be set up (and parms
1012   may be accessed via the stack pointer) in functions that seem suitable.
1013   This is computed in `reload', in reload1.c.  */
1014#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1015
1016/* Override this in other tm.h files to cope with various OS lossage
1017   requiring a frame pointer.  */
1018#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1019#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1020#endif
1021
1022/* Make sure we can access arbitrary call frames.  */
1023#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1024
1025/* Base register for access to arguments of the function.  */
1026#define ARG_POINTER_REGNUM 16
1027
1028/* Register in which static-chain is passed to a function.
1029   We do use ECX as static chain register for 32 bit ABI.  On the
1030   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1031#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1032
1033/* Register to hold the addressing base for position independent
1034   code access to data items.  We don't use PIC pointer for 64bit
1035   mode.  Define the regnum to dummy value to prevent gcc from
1036   pessimizing code dealing with EBX.
1037
1038   To avoid clobbering a call-saved register unnecessarily, we renumber
1039   the pic register when possible.  The change is visible after the
1040   prologue has been emitted.  */
1041
1042#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1043
1044#define PIC_OFFSET_TABLE_REGNUM				\
1045  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)	\
1046   || !flag_pic ? INVALID_REGNUM			\
1047   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1048   : REAL_PIC_OFFSET_TABLE_REGNUM)
1049
1050#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1051
1052/* A C expression which can inhibit the returning of certain function
1053   values in registers, based on the type of value.  A nonzero value
1054   says to return the function value in memory, just as large
1055   structures are always returned.  Here TYPE will be a C expression
1056   of type `tree', representing the data type of the value.
1057
1058   Note that values of mode `BLKmode' must be explicitly handled by
1059   this macro.  Also, the option `-fpcc-struct-return' takes effect
1060   regardless of this macro.  On most systems, it is possible to
1061   leave the macro undefined; this causes a default definition to be
1062   used, whose value is the constant 1 for `BLKmode' values, and 0
1063   otherwise.
1064
1065   Do not use this macro to indicate that structures and unions
1066   should always be returned in memory.  You should instead use
1067   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1068
1069#define RETURN_IN_MEMORY(TYPE) \
1070  ix86_return_in_memory (TYPE)
1071
1072/* This is overridden by <cygwin.h>.  */
1073#define MS_AGGREGATE_RETURN 0
1074
1075/* This is overridden by <netware.h>.  */
1076#define KEEP_AGGREGATE_RETURN_POINTER 0
1077
1078/* Define the classes of registers for register constraints in the
1079   machine description.  Also define ranges of constants.
1080
1081   One of the classes must always be named ALL_REGS and include all hard regs.
1082   If there is more than one class, another class must be named NO_REGS
1083   and contain no registers.
1084
1085   The name GENERAL_REGS must be the name of a class (or an alias for
1086   another name such as ALL_REGS).  This is the class of registers
1087   that is allowed by "g" or "r" in a register constraint.
1088   Also, registers outside this class are allocated only when
1089   instructions express preferences for them.
1090
1091   The classes must be numbered in nondecreasing order; that is,
1092   a larger-numbered class must never be contained completely
1093   in a smaller-numbered class.
1094
1095   For any two classes, it is very desirable that there be another
1096   class that represents their union.
1097
1098   It might seem that class BREG is unnecessary, since no useful 386
1099   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1100   and the "b" register constraint is useful in asms for syscalls.
1101
1102   The flags and fpsr registers are in no class.  */
1103
1104enum reg_class
1105{
1106  NO_REGS,
1107  AREG, DREG, CREG, BREG, SIREG, DIREG,
1108  AD_REGS,			/* %eax/%edx for DImode */
1109  Q_REGS,			/* %eax %ebx %ecx %edx */
1110  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1111  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1112  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1113  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1114  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1115  FLOAT_REGS,
1116  SSE_REGS,
1117  MMX_REGS,
1118  FP_TOP_SSE_REGS,
1119  FP_SECOND_SSE_REGS,
1120  FLOAT_SSE_REGS,
1121  FLOAT_INT_REGS,
1122  INT_SSE_REGS,
1123  FLOAT_INT_SSE_REGS,
1124  ALL_REGS, LIM_REG_CLASSES
1125};
1126
1127#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1128
1129#define INTEGER_CLASS_P(CLASS) \
1130  reg_class_subset_p ((CLASS), GENERAL_REGS)
1131#define FLOAT_CLASS_P(CLASS) \
1132  reg_class_subset_p ((CLASS), FLOAT_REGS)
1133#define SSE_CLASS_P(CLASS) \
1134  ((CLASS) == SSE_REGS)
1135#define MMX_CLASS_P(CLASS) \
1136  ((CLASS) == MMX_REGS)
1137#define MAYBE_INTEGER_CLASS_P(CLASS) \
1138  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1139#define MAYBE_FLOAT_CLASS_P(CLASS) \
1140  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1141#define MAYBE_SSE_CLASS_P(CLASS) \
1142  reg_classes_intersect_p (SSE_REGS, (CLASS))
1143#define MAYBE_MMX_CLASS_P(CLASS) \
1144  reg_classes_intersect_p (MMX_REGS, (CLASS))
1145
1146#define Q_CLASS_P(CLASS) \
1147  reg_class_subset_p ((CLASS), Q_REGS)
1148
1149/* Give names of register classes as strings for dump file.  */
1150
1151#define REG_CLASS_NAMES \
1152{  "NO_REGS",				\
1153   "AREG", "DREG", "CREG", "BREG",	\
1154   "SIREG", "DIREG",			\
1155   "AD_REGS",				\
1156   "Q_REGS", "NON_Q_REGS",		\
1157   "INDEX_REGS",			\
1158   "LEGACY_REGS",			\
1159   "GENERAL_REGS",			\
1160   "FP_TOP_REG", "FP_SECOND_REG",	\
1161   "FLOAT_REGS",			\
1162   "SSE_REGS",				\
1163   "MMX_REGS",				\
1164   "FP_TOP_SSE_REGS",			\
1165   "FP_SECOND_SSE_REGS",		\
1166   "FLOAT_SSE_REGS",			\
1167   "FLOAT_INT_REGS",			\
1168   "INT_SSE_REGS",			\
1169   "FLOAT_INT_SSE_REGS",		\
1170   "ALL_REGS" }
1171
1172/* Define which registers fit in which classes.
1173   This is an initializer for a vector of HARD_REG_SET
1174   of length N_REG_CLASSES.  */
1175
1176#define REG_CLASS_CONTENTS						\
1177{     { 0x00,     0x0 },						\
1178      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1179      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1180      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1181      { 0x03,     0x0 },		/* AD_REGS */			\
1182      { 0x0f,     0x0 },		/* Q_REGS */			\
1183  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1184      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1185  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1186  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1187     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1188    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1189{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1190{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1191{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1192{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1193{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1194   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1195{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1196{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1197{ 0xffffffff,0x1fffff }							\
1198}
1199
1200/* The same information, inverted:
1201   Return the class number of the smallest class containing
1202   reg number REGNO.  This could be a conditional expression
1203   or could index an array.  */
1204
1205#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1206
1207/* When defined, the compiler allows registers explicitly used in the
1208   rtl to be used as spill registers but prevents the compiler from
1209   extending the lifetime of these registers.  */
1210
1211#define SMALL_REGISTER_CLASSES 1
1212
1213#define QI_REG_P(X) \
1214  (REG_P (X) && REGNO (X) < 4)
1215
1216#define GENERAL_REGNO_P(N) \
1217  ((N) < 8 || REX_INT_REGNO_P (N))
1218
1219#define GENERAL_REG_P(X) \
1220  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1221
1222#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1223
1224#define NON_QI_REG_P(X) \
1225  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1226
1227#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1228#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1229
1230#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1231#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1232#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1233#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1234
1235#define SSE_REGNO_P(N) \
1236  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1237   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1238
1239#define REX_SSE_REGNO_P(N) \
1240   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1241
1242#define SSE_REGNO(N) \
1243  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1244#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1245
1246#define SSE_FLOAT_MODE_P(MODE) \
1247  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1248
1249#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1250#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1251
1252#define STACK_REG_P(XOP)		\
1253  (REG_P (XOP) &&		       	\
1254   REGNO (XOP) >= FIRST_STACK_REG &&	\
1255   REGNO (XOP) <= LAST_STACK_REG)
1256
1257#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1258
1259#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1260
1261#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1262#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1263
1264/* The class value for index registers, and the one for base regs.  */
1265
1266#define INDEX_REG_CLASS INDEX_REGS
1267#define BASE_REG_CLASS GENERAL_REGS
1268
1269/* Place additional restrictions on the register class to use when it
1270   is necessary to be able to hold a value of mode MODE in a reload
1271   register for which class CLASS would ordinarily be used.  */
1272
1273#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1274  ((MODE) == QImode && !TARGET_64BIT				\
1275   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1276       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1277   ? Q_REGS : (CLASS))
1278
1279/* Given an rtx X being reloaded into a reg required to be
1280   in class CLASS, return the class of reg to actually use.
1281   In general this is just CLASS; but on some machines
1282   in some cases it is preferable to use a more restrictive class.
1283   On the 80386 series, we prevent floating constants from being
1284   reloaded into floating registers (since no move-insn can do that)
1285   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1286
1287/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1288   QImode must go into class Q_REGS.
1289   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1290   movdf to do mem-to-mem moves through integer regs.  */
1291
1292#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1293   ix86_preferred_reload_class ((X), (CLASS))
1294
1295/* Discourage putting floating-point values in SSE registers unless
1296   SSE math is being used, and likewise for the 387 registers.  */
1297
1298#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1299   ix86_preferred_output_reload_class ((X), (CLASS))
1300
1301/* If we are copying between general and FP registers, we need a memory
1302   location. The same is true for SSE and MMX registers.  */
1303#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1304  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1305
1306/* QImode spills from non-QI registers need a scratch.  This does not
1307   happen often -- the only example so far requires an uninitialized
1308   pseudo.  */
1309
1310#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1311  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1312    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1313   ? Q_REGS : NO_REGS)
1314
1315/* Return the maximum number of consecutive registers
1316   needed to represent mode MODE in a register of class CLASS.  */
1317/* On the 80386, this is the size of MODE in words,
1318   except in the FP regs, where a single reg is always enough.  */
1319#define CLASS_MAX_NREGS(CLASS, MODE)					\
1320 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1321  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1322  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1323      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1324
1325/* A C expression whose value is nonzero if pseudos that have been
1326   assigned to registers of class CLASS would likely be spilled
1327   because registers of CLASS are needed for spill registers.
1328
1329   The default value of this macro returns 1 if CLASS has exactly one
1330   register and zero otherwise.  On most machines, this default
1331   should be used.  Only define this macro to some other expression
1332   if pseudo allocated by `local-alloc.c' end up in memory because
1333   their hard registers were needed for spill registers.  If this
1334   macro returns nonzero for those classes, those pseudos will only
1335   be allocated by `global.c', which knows how to reallocate the
1336   pseudo to another register.  If there would not be another
1337   register available for reallocation, you should not change the
1338   definition of this macro since the only effect of such a
1339   definition would be to slow down register allocation.  */
1340
1341#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1342  (((CLASS) == AREG)							\
1343   || ((CLASS) == DREG)							\
1344   || ((CLASS) == CREG)							\
1345   || ((CLASS) == BREG)							\
1346   || ((CLASS) == AD_REGS)						\
1347   || ((CLASS) == SIREG)						\
1348   || ((CLASS) == DIREG)						\
1349   || ((CLASS) == FP_TOP_REG)						\
1350   || ((CLASS) == FP_SECOND_REG))
1351
1352/* Return a class of registers that cannot change FROM mode to TO mode.  */
1353
1354#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1355  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1356
1357/* Stack layout; function entry, exit and calling.  */
1358
1359/* Define this if pushing a word on the stack
1360   makes the stack pointer a smaller address.  */
1361#define STACK_GROWS_DOWNWARD
1362
1363/* Define this to nonzero if the nominal address of the stack frame
1364   is at the high-address end of the local variables;
1365   that is, each additional local variable allocated
1366   goes at a more negative offset in the frame.  */
1367#define FRAME_GROWS_DOWNWARD 1
1368
1369/* Offset within stack frame to start allocating local variables at.
1370   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1371   first local allocated.  Otherwise, it is the offset to the BEGINNING
1372   of the first local allocated.  */
1373#define STARTING_FRAME_OFFSET 0
1374
1375/* If we generate an insn to push BYTES bytes,
1376   this says how many the stack pointer really advances by.
1377   On 386, we have pushw instruction that decrements by exactly 2 no
1378   matter what the position was, there is no pushb.
1379   But as CIE data alignment factor on this arch is -4, we need to make
1380   sure all stack pointer adjustments are in multiple of 4.
1381
1382   For 64bit ABI we round up to 8 bytes.
1383 */
1384
1385#define PUSH_ROUNDING(BYTES) \
1386  (TARGET_64BIT		     \
1387   ? (((BYTES) + 7) & (-8))  \
1388   : (((BYTES) + 3) & (-4)))
1389
1390/* If defined, the maximum amount of space required for outgoing arguments will
1391   be computed and placed into the variable
1392   `current_function_outgoing_args_size'.  No space will be pushed onto the
1393   stack for each call; instead, the function prologue should increase the stack
1394   frame size by this amount.  */
1395
1396#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1397
1398/* If defined, a C expression whose value is nonzero when we want to use PUSH
1399   instructions to pass outgoing arguments.  */
1400
1401#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1402
1403/* We want the stack and args grow in opposite directions, even if
1404   PUSH_ARGS is 0.  */
1405#define PUSH_ARGS_REVERSED 1
1406
1407/* Offset of first parameter from the argument pointer register value.  */
1408#define FIRST_PARM_OFFSET(FNDECL) 0
1409
1410/* Define this macro if functions should assume that stack space has been
1411   allocated for arguments even when their values are passed in registers.
1412
1413   The value of this macro is the size, in bytes, of the area reserved for
1414   arguments passed in registers for the function represented by FNDECL.
1415
1416   This space can be allocated by the caller, or be a part of the
1417   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1418   which.  */
1419#define REG_PARM_STACK_SPACE(FNDECL) 0
1420
1421/* Value is the number of bytes of arguments automatically
1422   popped when returning from a subroutine call.
1423   FUNDECL is the declaration node of the function (as a tree),
1424   FUNTYPE is the data type of the function (as a tree),
1425   or for a library call it is an identifier node for the subroutine name.
1426   SIZE is the number of bytes of arguments passed on the stack.
1427
1428   On the 80386, the RTD insn may be used to pop them if the number
1429     of args is fixed, but if the number is variable then the caller
1430     must pop them all.  RTD can't be used for library calls now
1431     because the library is compiled with the Unix compiler.
1432   Use of RTD is a selectable option, since it is incompatible with
1433   standard Unix calling sequences.  If the option is not selected,
1434   the caller must always pop the args.
1435
1436   The attribute stdcall is equivalent to RTD on a per module basis.  */
1437
1438#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1439  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1440
1441#define FUNCTION_VALUE_REGNO_P(N) \
1442  ix86_function_value_regno_p (N)
1443
1444/* Define how to find the value returned by a library function
1445   assuming the value has mode MODE.  */
1446
1447#define LIBCALL_VALUE(MODE) \
1448  ix86_libcall_value (MODE)
1449
1450/* Define the size of the result block used for communication between
1451   untyped_call and untyped_return.  The block contains a DImode value
1452   followed by the block used by fnsave and frstor.  */
1453
1454#define APPLY_RESULT_SIZE (8+108)
1455
1456/* 1 if N is a possible register number for function argument passing.  */
1457#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1458
1459/* Define a data type for recording info about an argument list
1460   during the scan of that argument list.  This data type should
1461   hold all necessary information about the function itself
1462   and about the args processed so far, enough to enable macros
1463   such as FUNCTION_ARG to determine where the next arg should go.  */
1464
1465typedef struct ix86_args {
1466  int words;			/* # words passed so far */
1467  int nregs;			/* # registers available for passing */
1468  int regno;			/* next available register number */
1469  int fastcall;			/* fastcall calling convention is used */
1470  int sse_words;		/* # sse words passed so far */
1471  int sse_nregs;		/* # sse registers available for passing */
1472  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1473  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1474  int sse_regno;		/* next available sse register number */
1475  int mmx_words;		/* # mmx words passed so far */
1476  int mmx_nregs;		/* # mmx registers available for passing */
1477  int mmx_regno;		/* next available mmx register number */
1478  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1479  int float_in_sse;		/* 1 if in 32-bit mode SFmode (2 for DFmode) should
1480				   be passed in SSE registers.  Otherwise 0.  */
1481} CUMULATIVE_ARGS;
1482
1483/* Initialize a variable CUM of type CUMULATIVE_ARGS
1484   for a call to a function whose data type is FNTYPE.
1485   For a library call, FNTYPE is 0.  */
1486
1487#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1488  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1489
1490/* Update the data in CUM to advance over an argument
1491   of mode MODE and data type TYPE.
1492   (TYPE is null for libcalls where that information may not be available.)  */
1493
1494#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1495  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1496
1497/* Define where to put the arguments to a function.
1498   Value is zero to push the argument on the stack,
1499   or a hard register in which to store the argument.
1500
1501   MODE is the argument's machine mode.
1502   TYPE is the data type of the argument (as a tree).
1503    This is null for libcalls where that information may
1504    not be available.
1505   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1506    the preceding args and about the function being called.
1507   NAMED is nonzero if this argument is a named parameter
1508    (otherwise it is an extra parameter matching an ellipsis).  */
1509
1510#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1511  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1512
1513/* Implement `va_start' for varargs and stdarg.  */
1514#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1515  ix86_va_start (VALIST, NEXTARG)
1516
1517#define TARGET_ASM_FILE_END ix86_file_end
1518#define NEED_INDICATE_EXEC_STACK 0
1519
1520/* Output assembler code to FILE to increment profiler label # LABELNO
1521   for profiling a function entry.  */
1522
1523#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1524
1525#define MCOUNT_NAME "_mcount"
1526
1527#define PROFILE_COUNT_REGISTER "edx"
1528
1529/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1530   the stack pointer does not matter.  The value is tested only in
1531   functions that have frame pointers.
1532   No definition is equivalent to always zero.  */
1533/* Note on the 386 it might be more efficient not to define this since
1534   we have to restore it ourselves from the frame pointer, in order to
1535   use pop */
1536
1537#define EXIT_IGNORE_STACK 1
1538
1539/* Output assembler code for a block containing the constant parts
1540   of a trampoline, leaving space for the variable parts.  */
1541
1542/* On the 386, the trampoline contains two instructions:
1543     mov #STATIC,ecx
1544     jmp FUNCTION
1545   The trampoline is generated entirely at runtime.  The operand of JMP
1546   is the address of FUNCTION relative to the instruction following the
1547   JMP (which is 5 bytes long).  */
1548
1549/* Length in units of the trampoline for entering a nested function.  */
1550
1551#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1552
1553/* Emit RTL insns to initialize the variable parts of a trampoline.
1554   FNADDR is an RTX for the address of the function's pure code.
1555   CXT is an RTX for the static chain value for the function.  */
1556
1557#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1558  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1559
1560/* Definitions for register eliminations.
1561
1562   This is an array of structures.  Each structure initializes one pair
1563   of eliminable registers.  The "from" register number is given first,
1564   followed by "to".  Eliminations of the same "from" register are listed
1565   in order of preference.
1566
1567   There are two registers that can always be eliminated on the i386.
1568   The frame pointer and the arg pointer can be replaced by either the
1569   hard frame pointer or to the stack pointer, depending upon the
1570   circumstances.  The hard frame pointer is not used before reload and
1571   so it is not eligible for elimination.  */
1572
1573#define ELIMINABLE_REGS					\
1574{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1575 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1576 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1577 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1578
1579/* Given FROM and TO register numbers, say whether this elimination is
1580   allowed.  Frame pointer elimination is automatically handled.
1581
1582   All other eliminations are valid.  */
1583
1584#define CAN_ELIMINATE(FROM, TO) \
1585  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1586
1587/* Define the offset between two registers, one to be eliminated, and the other
1588   its replacement, at the start of a routine.  */
1589
1590#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1591  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1592
1593/* Addressing modes, and classification of registers for them.  */
1594
1595/* Macros to check register numbers against specific register classes.  */
1596
1597/* These assume that REGNO is a hard or pseudo reg number.
1598   They give nonzero only if REGNO is a hard reg of the suitable class
1599   or a pseudo reg currently allocated to a suitable hard reg.
1600   Since they use reg_renumber, they are safe only once reg_renumber
1601   has been allocated, which happens in local-alloc.c.  */
1602
1603#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1604  ((REGNO) < STACK_POINTER_REGNUM 					\
1605   || (REGNO >= FIRST_REX_INT_REG					\
1606       && (REGNO) <= LAST_REX_INT_REG)					\
1607   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1608       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1609   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1610
1611#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1612  ((REGNO) <= STACK_POINTER_REGNUM 					\
1613   || (REGNO) == ARG_POINTER_REGNUM 					\
1614   || (REGNO) == FRAME_POINTER_REGNUM 					\
1615   || (REGNO >= FIRST_REX_INT_REG					\
1616       && (REGNO) <= LAST_REX_INT_REG)					\
1617   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1618       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1619   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1620
1621#define REGNO_OK_FOR_SIREG_P(REGNO) \
1622  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1623#define REGNO_OK_FOR_DIREG_P(REGNO) \
1624  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1625
1626/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1627   and check its validity for a certain class.
1628   We have two alternate definitions for each of them.
1629   The usual definition accepts all pseudo regs; the other rejects
1630   them unless they have been allocated suitable hard regs.
1631   The symbol REG_OK_STRICT causes the latter definition to be used.
1632
1633   Most source files want to accept pseudo regs in the hope that
1634   they will get allocated to the class that the insn wants them to be in.
1635   Source files for reload pass need to be strict.
1636   After reload, it makes no difference, since pseudo regs have
1637   been eliminated by then.  */
1638
1639
1640/* Non strict versions, pseudos are ok.  */
1641#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1642  (REGNO (X) < STACK_POINTER_REGNUM					\
1643   || (REGNO (X) >= FIRST_REX_INT_REG					\
1644       && REGNO (X) <= LAST_REX_INT_REG)				\
1645   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1646
1647#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1648  (REGNO (X) <= STACK_POINTER_REGNUM					\
1649   || REGNO (X) == ARG_POINTER_REGNUM					\
1650   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1651   || (REGNO (X) >= FIRST_REX_INT_REG					\
1652       && REGNO (X) <= LAST_REX_INT_REG)				\
1653   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1654
1655/* Strict versions, hard registers only */
1656#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1657#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1658
1659#ifndef REG_OK_STRICT
1660#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1661#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1662
1663#else
1664#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1665#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1666#endif
1667
1668/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1669   that is a valid memory address for an instruction.
1670   The MODE argument is the machine mode for the MEM expression
1671   that wants to use this address.
1672
1673   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1674   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1675
1676   See legitimize_pic_address in i386.c for details as to what
1677   constitutes a legitimate address when -fpic is used.  */
1678
1679#define MAX_REGS_PER_ADDRESS 2
1680
1681#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1682
1683/* Nonzero if the constant value X is a legitimate general operand.
1684   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1685
1686#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1687
1688#ifdef REG_OK_STRICT
1689#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1690do {									\
1691  if (legitimate_address_p ((MODE), (X), 1))				\
1692    goto ADDR;								\
1693} while (0)
1694
1695#else
1696#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1697do {									\
1698  if (legitimate_address_p ((MODE), (X), 0))				\
1699    goto ADDR;								\
1700} while (0)
1701
1702#endif
1703
1704/* If defined, a C expression to determine the base term of address X.
1705   This macro is used in only one place: `find_base_term' in alias.c.
1706
1707   It is always safe for this macro to not be defined.  It exists so
1708   that alias analysis can understand machine-dependent addresses.
1709
1710   The typical use of this macro is to handle addresses containing
1711   a label_ref or symbol_ref within an UNSPEC.  */
1712
1713#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1714
1715/* Try machine-dependent ways of modifying an illegitimate address
1716   to be legitimate.  If we find one, return the new, valid address.
1717   This macro is used in only one place: `memory_address' in explow.c.
1718
1719   OLDX is the address as it was before break_out_memory_refs was called.
1720   In some cases it is useful to look at this to decide what needs to be done.
1721
1722   MODE and WIN are passed so that this macro can use
1723   GO_IF_LEGITIMATE_ADDRESS.
1724
1725   It is always safe for this macro to do nothing.  It exists to recognize
1726   opportunities to optimize the output.
1727
1728   For the 80386, we handle X+REG by loading X into a register R and
1729   using R+REG.  R will go in a general reg and indexing will be used.
1730   However, if REG is a broken-out memory address or multiplication,
1731   nothing needs to be done because REG can certainly go in a general reg.
1732
1733   When -fpic is used, special handling is needed for symbolic references.
1734   See comments by legitimize_pic_address in i386.c for details.  */
1735
1736#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1737do {									\
1738  (X) = legitimize_address ((X), (OLDX), (MODE));			\
1739  if (memory_address_p ((MODE), (X)))					\
1740    goto WIN;								\
1741} while (0)
1742
1743#define REWRITE_ADDRESS(X) rewrite_address (X)
1744
1745/* Nonzero if the constant value X is a legitimate general operand
1746   when generating PIC code.  It is given that flag_pic is on and
1747   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1748
1749#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1750
1751#define SYMBOLIC_CONST(X)	\
1752  (GET_CODE (X) == SYMBOL_REF						\
1753   || GET_CODE (X) == LABEL_REF						\
1754   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1755
1756/* Go to LABEL if ADDR (a legitimate address expression)
1757   has an effect that depends on the machine mode it is used for.
1758   On the 80386, only postdecrement and postincrement address depend thus
1759   (the amount of decrement or increment being the length of the operand).  */
1760#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1761do {							\
1762 if (GET_CODE (ADDR) == POST_INC			\
1763     || GET_CODE (ADDR) == POST_DEC)			\
1764   goto LABEL;						\
1765} while (0)
1766
1767/* Max number of args passed in registers.  If this is more than 3, we will
1768   have problems with ebx (register #4), since it is a caller save register and
1769   is also used as the pic register in ELF.  So for now, don't allow more than
1770   3 registers to be passed in registers.  */
1771
1772#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1773
1774#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1775
1776#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1777
1778
1779/* Specify the machine mode that this machine uses
1780   for the index in the tablejump instruction.  */
1781#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1782
1783/* Define this as 1 if `char' should by default be signed; else as 0.  */
1784#define DEFAULT_SIGNED_CHAR 1
1785
1786/* Number of bytes moved into a data cache for a single prefetch operation.  */
1787#define PREFETCH_BLOCK ix86_cost->prefetch_block
1788
1789/* Number of prefetch operations that can be done in parallel.  */
1790#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1791
1792/* Max number of bytes we can move from memory to memory
1793   in one reasonably fast instruction.  */
1794#define MOVE_MAX 16
1795
1796/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1797   move efficiently, as opposed to  MOVE_MAX which is the maximum
1798   number of bytes we can move with a single instruction.  */
1799#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1800
1801/* If a memory-to-memory move would take MOVE_RATIO or more simple
1802   move-instruction pairs, we will do a movmem or libcall instead.
1803   Increasing the value will always make code faster, but eventually
1804   incurs high cost in increased code size.
1805
1806   If you don't define this, a reasonable default is used.  */
1807
1808#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1809
1810/* If a clear memory operation would take CLEAR_RATIO or more simple
1811   move-instruction sequences, we will do a clrmem or libcall instead.  */
1812
1813#define CLEAR_RATIO (optimize_size ? 2 \
1814		     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1815
1816/* Define if shifts truncate the shift count
1817   which implies one can omit a sign-extension or zero-extension
1818   of a shift count.  */
1819/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1820
1821/* #define SHIFT_COUNT_TRUNCATED */
1822
1823/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1824   is done just by pretending it is already truncated.  */
1825#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1826
1827/* A macro to update M and UNSIGNEDP when an object whose type is
1828   TYPE and which has the specified mode and signedness is to be
1829   stored in a register.  This macro is only called when TYPE is a
1830   scalar type.
1831
1832   On i386 it is sometimes useful to promote HImode and QImode
1833   quantities to SImode.  The choice depends on target type.  */
1834
1835#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1836do {							\
1837  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1838      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1839    (MODE) = SImode;					\
1840} while (0)
1841
1842/* Specify the machine mode that pointers have.
1843   After generation of rtl, the compiler makes no further distinction
1844   between pointers and any other objects of this machine mode.  */
1845#define Pmode (TARGET_64BIT ? DImode : SImode)
1846
1847/* A function address in a call instruction
1848   is a byte address (for indexing purposes)
1849   so give the MEM rtx a byte's mode.  */
1850#define FUNCTION_MODE QImode
1851
1852/* A C expression for the cost of moving data from a register in class FROM to
1853   one in class TO.  The classes are expressed using the enumeration values
1854   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1855   interpreted relative to that.
1856
1857   It is not required that the cost always equal 2 when FROM is the same as TO;
1858   on some machines it is expensive to move between registers if they are not
1859   general registers.  */
1860
1861#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1862   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1863
1864/* A C expression for the cost of moving data of mode M between a
1865   register and memory.  A value of 2 is the default; this cost is
1866   relative to those in `REGISTER_MOVE_COST'.
1867
1868   If moving between registers and memory is more expensive than
1869   between two registers, you should define this macro to express the
1870   relative cost.  */
1871
1872#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
1873  ix86_memory_move_cost ((MODE), (CLASS), (IN))
1874
1875/* A C expression for the cost of a branch instruction.  A value of 1
1876   is the default; other values are interpreted relative to that.  */
1877
1878#define BRANCH_COST ix86_branch_cost
1879
1880/* Define this macro as a C expression which is nonzero if accessing
1881   less than a word of memory (i.e. a `char' or a `short') is no
1882   faster than accessing a word of memory, i.e., if such access
1883   require more than one instruction or if there is no difference in
1884   cost between byte and (aligned) word loads.
1885
1886   When this macro is not defined, the compiler will access a field by
1887   finding the smallest containing object; when it is defined, a
1888   fullword load will be used if alignment permits.  Unless bytes
1889   accesses are faster than word accesses, using word accesses is
1890   preferable since it may eliminate subsequent memory access if
1891   subsequent accesses occur to other fields in the same word of the
1892   structure, but to different bytes.  */
1893
1894#define SLOW_BYTE_ACCESS 0
1895
1896/* Nonzero if access to memory by shorts is slow and undesirable.  */
1897#define SLOW_SHORT_ACCESS 0
1898
1899/* Define this macro to be the value 1 if unaligned accesses have a
1900   cost many times greater than aligned accesses, for example if they
1901   are emulated in a trap handler.
1902
1903   When this macro is nonzero, the compiler will act as if
1904   `STRICT_ALIGNMENT' were nonzero when generating code for block
1905   moves.  This can cause significantly more instructions to be
1906   produced.  Therefore, do not set this macro nonzero if unaligned
1907   accesses only add a cycle or two to the time for a memory access.
1908
1909   If the value of this macro is always zero, it need not be defined.  */
1910
1911/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1912
1913/* Define this macro if it is as good or better to call a constant
1914   function address than to call an address kept in a register.
1915
1916   Desirable on the 386 because a CALL with a constant address is
1917   faster than one with a register address.  */
1918
1919#define NO_FUNCTION_CSE
1920
1921/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1922   return the mode to be used for the comparison.
1923
1924   For floating-point equality comparisons, CCFPEQmode should be used.
1925   VOIDmode should be used in all other cases.
1926
1927   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1928   possible, to allow for more combinations.  */
1929
1930#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1931
1932/* Return nonzero if MODE implies a floating point inequality can be
1933   reversed.  */
1934
1935#define REVERSIBLE_CC_MODE(MODE) 1
1936
1937/* A C expression whose value is reversed condition code of the CODE for
1938   comparison done in CC_MODE mode.  */
1939#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1940
1941
1942/* Control the assembler format that we output, to the extent
1943   this does not vary between assemblers.  */
1944
1945/* How to refer to registers in assembler output.
1946   This sequence is indexed by compiler's hard-register-number (see above).  */
1947
1948/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1949   For non floating point regs, the following are the HImode names.
1950
1951   For float regs, the stack top is sometimes referred to as "%st(0)"
1952   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1953
1954#define HI_REGISTER_NAMES						\
1955{"ax","dx","cx","bx","si","di","bp","sp",				\
1956 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1957 "argp", "flags", "fpsr", "dirflag", "frame",				\
1958 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1959 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
1960 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1961 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1962
1963#define REGISTER_NAMES HI_REGISTER_NAMES
1964
1965/* Table of additional register names to use in user input.  */
1966
1967#define ADDITIONAL_REGISTER_NAMES \
1968{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
1969  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
1970  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
1971  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
1972  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
1973  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1974
1975/* Note we are omitting these since currently I don't know how
1976to get gcc to use these, since they want the same but different
1977number as al, and ax.
1978*/
1979
1980#define QI_REGISTER_NAMES \
1981{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1982
1983/* These parallel the array above, and can be used to access bits 8:15
1984   of regs 0 through 3.  */
1985
1986#define QI_HIGH_REGISTER_NAMES \
1987{"ah", "dh", "ch", "bh", }
1988
1989/* How to renumber registers for dbx and gdb.  */
1990
1991#define DBX_REGISTER_NUMBER(N) \
1992  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1993
1994extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1995extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1996extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1997
1998/* Before the prologue, RA is at 0(%esp).  */
1999#define INCOMING_RETURN_ADDR_RTX \
2000  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2001
2002/* After the prologue, RA is at -4(AP) in the current frame.  */
2003#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2004  ((COUNT) == 0								   \
2005   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2006   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2007
2008/* PC is dbx register 8; let's use that column for RA.  */
2009#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2010
2011/* Before the prologue, the top of the frame is at 4(%esp).  */
2012#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2013
2014/* Describe how we implement __builtin_eh_return.  */
2015#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2016#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2017
2018
2019/* Select a format to encode pointers in exception handling data.  CODE
2020   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2021   true if the symbol may be affected by dynamic relocations.
2022
2023   ??? All x86 object file formats are capable of representing this.
2024   After all, the relocation needed is the same as for the call insn.
2025   Whether or not a particular assembler allows us to enter such, I
2026   guess we'll have to see.  */
2027#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2028  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2029
2030/* This is how to output an insn to push a register on the stack.
2031   It need not be very fast code.  */
2032
2033#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2034do {									\
2035  if (TARGET_64BIT)							\
2036    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2037		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2038  else									\
2039    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2040} while (0)
2041
2042/* This is how to output an insn to pop a register from the stack.
2043   It need not be very fast code.  */
2044
2045#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2046do {									\
2047  if (TARGET_64BIT)							\
2048    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2049		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2050  else									\
2051    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2052} while (0)
2053
2054/* This is how to output an element of a case-vector that is absolute.  */
2055
2056#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2057  ix86_output_addr_vec_elt ((FILE), (VALUE))
2058
2059/* This is how to output an element of a case-vector that is relative.  */
2060
2061#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2062  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2063
2064/* Under some conditions we need jump tables in the text section,
2065   because the assembler cannot handle label differences between
2066   sections.  This is the case for x86_64 on Mach-O for example.  */
2067
2068#define JUMP_TABLES_IN_TEXT_SECTION \
2069  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2070   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2071
2072/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2073   and switch back.  For x86 we do this only to save a few bytes that
2074   would otherwise be unused in the text section.  */
2075#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2076   asm (SECTION_OP "\n\t"				\
2077	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2078	TEXT_SECTION_ASM_OP);
2079
2080/* Print operand X (an rtx) in assembler syntax to file FILE.
2081   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2082   Effect of various CODE letters is described in i386.c near
2083   print_operand function.  */
2084
2085#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2086  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2087
2088#define PRINT_OPERAND(FILE, X, CODE)  \
2089  print_operand ((FILE), (X), (CODE))
2090
2091#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2092  print_operand_address ((FILE), (ADDR))
2093
2094#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2095do {						\
2096  if (! output_addr_const_extra (FILE, (X)))	\
2097    goto FAIL;					\
2098} while (0);
2099
2100/* a letter which is not needed by the normal asm syntax, which
2101   we can use for operand syntax in the extended asm */
2102
2103#define ASM_OPERAND_LETTER '#'
2104#define RET return ""
2105#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2106
2107/* Which processor to schedule for. The cpu attribute defines a list that
2108   mirrors this list, so changes to i386.md must be made at the same time.  */
2109
2110enum processor_type
2111{
2112  PROCESSOR_I386,			/* 80386 */
2113  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2114  PROCESSOR_PENTIUM,
2115  PROCESSOR_PENTIUMPRO,
2116  PROCESSOR_GEODE,
2117  PROCESSOR_K6,
2118  PROCESSOR_ATHLON,
2119  PROCESSOR_PENTIUM4,
2120  PROCESSOR_K8,
2121  PROCESSOR_NOCONA,
2122  PROCESSOR_CORE2,
2123  PROCESSOR_GENERIC32,
2124  PROCESSOR_GENERIC64,
2125  PROCESSOR_AMDFAM10,
2126  PROCESSOR_max
2127};
2128
2129extern enum processor_type ix86_tune;
2130extern enum processor_type ix86_arch;
2131
2132enum fpmath_unit
2133{
2134  FPMATH_387 = 1,
2135  FPMATH_SSE = 2
2136};
2137
2138extern enum fpmath_unit ix86_fpmath;
2139
2140enum tls_dialect
2141{
2142  TLS_DIALECT_GNU,
2143  TLS_DIALECT_GNU2,
2144  TLS_DIALECT_SUN
2145};
2146
2147extern enum tls_dialect ix86_tls_dialect;
2148
2149enum cmodel {
2150  CM_32,	/* The traditional 32-bit ABI.  */
2151  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
2152  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
2153  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
2154  CM_LARGE,	/* No assumptions.  */
2155  CM_SMALL_PIC,	/* Assumes code+data+got/plt fits in a 31 bit region.  */
2156  CM_MEDIUM_PIC	/* Assumes code+got/plt fits in a 31 bit region.  */
2157};
2158
2159extern enum cmodel ix86_cmodel;
2160
2161/* Size of the RED_ZONE area.  */
2162#define RED_ZONE_SIZE 128
2163/* Reserved area of the red zone for temporaries.  */
2164#define RED_ZONE_RESERVE 8
2165
2166enum asm_dialect {
2167  ASM_ATT,
2168  ASM_INTEL
2169};
2170
2171extern enum asm_dialect ix86_asm_dialect;
2172extern unsigned int ix86_preferred_stack_boundary;
2173extern int ix86_branch_cost, ix86_section_threshold;
2174
2175/* Smallest class containing REGNO.  */
2176extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2177
2178extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
2179extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
2180extern rtx ix86_compare_emitted;
2181
2182/* To properly truncate FP values into integers, we need to set i387 control
2183   word.  We can't emit proper mode switching code before reload, as spills
2184   generated by reload may truncate values incorrectly, but we still can avoid
2185   redundant computation of new control word by the mode switching pass.
2186   The fldcw instructions are still emitted redundantly, but this is probably
2187   not going to be noticeable problem, as most CPUs do have fast path for
2188   the sequence.
2189
2190   The machinery is to emit simple truncation instructions and split them
2191   before reload to instructions having USEs of two memory locations that
2192   are filled by this code to old and new control word.
2193
2194   Post-reload pass may be later used to eliminate the redundant fildcw if
2195   needed.  */
2196
2197enum ix86_entity
2198{
2199  I387_TRUNC = 0,
2200  I387_FLOOR,
2201  I387_CEIL,
2202  I387_MASK_PM,
2203  MAX_386_ENTITIES
2204};
2205
2206enum ix86_stack_slot
2207{
2208  SLOT_VIRTUAL = 0,
2209  SLOT_TEMP,
2210  SLOT_CW_STORED,
2211  SLOT_CW_TRUNC,
2212  SLOT_CW_FLOOR,
2213  SLOT_CW_CEIL,
2214  SLOT_CW_MASK_PM,
2215  MAX_386_STACK_LOCALS
2216};
2217
2218/* Define this macro if the port needs extra instructions inserted
2219   for mode switching in an optimizing compilation.  */
2220
2221#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2222   ix86_optimize_mode_switching[(ENTITY)]
2223
2224/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2225   initializer for an array of integers.  Each initializer element N
2226   refers to an entity that needs mode switching, and specifies the
2227   number of different modes that might need to be set for this
2228   entity.  The position of the initializer in the initializer -
2229   starting counting at zero - determines the integer that is used to
2230   refer to the mode-switched entity in question.  */
2231
2232#define NUM_MODES_FOR_MODE_SWITCHING \
2233   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2234
2235/* ENTITY is an integer specifying a mode-switched entity.  If
2236   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2237   return an integer value not larger than the corresponding element
2238   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2239   must be switched into prior to the execution of INSN. */
2240
2241#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2242
2243/* This macro specifies the order in which modes for ENTITY are
2244   processed.  0 is the highest priority.  */
2245
2246#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2247
2248/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2249   is the set of hard registers live at the point where the insn(s)
2250   are to be inserted.  */
2251
2252#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
2253  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED		\
2254   ? emit_i387_cw_initialization (MODE), 0				\
2255   : 0)
2256
2257
2258/* Avoid renaming of stack registers, as doing so in combination with
2259   scheduling just increases amount of live registers at time and in
2260   the turn amount of fxch instructions needed.
2261
2262   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2263
2264#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2265   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2266
2267
2268#define DLL_IMPORT_EXPORT_PREFIX '#'
2269
2270#define FASTCALL_PREFIX '@'
2271
2272struct machine_function GTY(())
2273{
2274  struct stack_local_entry *stack_locals;
2275  const char *some_ld_name;
2276  rtx force_align_arg_pointer;
2277  int save_varrargs_registers;
2278  int accesses_prev_frame;
2279  int optimize_mode_switching[MAX_386_ENTITIES];
2280  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2281     determine the style used.  */
2282  int use_fast_prologue_epilogue;
2283  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2284     for.  */
2285  int use_fast_prologue_epilogue_nregs;
2286  /* If true, the current function needs the default PIC register, not
2287     an alternate register (on x86) and must not use the red zone (on
2288     x86_64), even if it's a leaf function.  We don't want the
2289     function to be regarded as non-leaf because TLS calls need not
2290     affect register allocation.  This flag is set when a TLS call
2291     instruction is expanded within a function, and never reset, even
2292     if all such instructions are optimized away.  Use the
2293     ix86_current_function_calls_tls_descriptor macro for a better
2294     approximation.  */
2295  int tls_descriptor_call_expanded_p;
2296};
2297
2298#define ix86_stack_locals (cfun->machine->stack_locals)
2299#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2300#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2301#define ix86_tls_descriptor_calls_expanded_in_cfun \
2302  (cfun->machine->tls_descriptor_call_expanded_p)
2303/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2304   calls are optimized away, we try to detect cases in which it was
2305   optimized away.  Since such instructions (use (reg REG_SP)), we can
2306   verify whether there's any such instruction live by testing that
2307   REG_SP is live.  */
2308#define ix86_current_function_calls_tls_descriptor \
2309  (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2310
2311/* Control behavior of x86_file_start.  */
2312#define X86_FILE_START_VERSION_DIRECTIVE false
2313#define X86_FILE_START_FLTUSED false
2314
2315/* Flag to mark data that is in the large address area.  */
2316#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2317#define SYMBOL_REF_FAR_ADDR_P(X)	\
2318	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2319/*
2320Local variables:
2321version-control: t
2322End:
2323*/
2324