combine.c revision 96263
1193323Sed/* Optimize by combining instructions for GNU compiler.
2193323Sed   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3193323Sed   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4193323Sed
5193323SedThis file is part of GCC.
6193323Sed
7193323SedGCC is free software; you can redistribute it and/or modify it under
8193323Sedthe terms of the GNU General Public License as published by the Free
9193323SedSoftware Foundation; either version 2, or (at your option) any later
10193323Sedversion.
11193323Sed
12193323SedGCC is distributed in the hope that it will be useful, but WITHOUT ANY
13193323SedWARRANTY; without even the implied warranty of MERCHANTABILITY or
14193323SedFITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15212904Sdimfor more details.
16249423Sdim
17249423SdimYou should have received a copy of the GNU General Public License
18249423Sdimalong with GCC; see the file COPYING.  If not, write to the Free
19249423SdimSoftware Foundation, 59 Temple Place - Suite 330, Boston, MA
20249423Sdim02111-1307, USA.  */
21193323Sed
22193323Sed/* This module is essentially the "combiner" phase of the U. of Arizona
23193323Sed   Portable Optimizer, but redone to work on our list-structured
24263508Sdim   representation for RTL instead of their string representation.
25263508Sdim
26263508Sdim   The LOG_LINKS of each insn identify the most recent assignment
27263508Sdim   to each REG used in the insn.  It is a list of previous insns,
28263508Sdim   each of which contains a SET for a REG that is used in this insn
29263508Sdim   and not used or set in between.  LOG_LINKs never cross basic blocks.
30263508Sdim   They were set up by the preceding pass (lifetime analysis).
31263508Sdim
32263508Sdim   We try to combine each pair of insns joined by a logical link.
33263508Sdim   We also try to combine triples of insns A, B and C when
34263508Sdim   C has a link back to B and B has a link back to A.
35263508Sdim
36263508Sdim   LOG_LINKS does not have links for use of the CC0.  They don't
37263508Sdim   need to, because the insn that sets the CC0 is always immediately
38263508Sdim   before the insn that tests it.  So we always regard a branch
39263508Sdim   insn as having a logical link to the preceding insn.  The same is true
40263508Sdim   for an insn explicitly using CC0.
41263508Sdim
42263508Sdim   We check (with use_crosses_set_p) to avoid combining in such a way
43263508Sdim   as to move a computation to a place where its value would be different.
44263508Sdim
45263508Sdim   Combination is done by mathematically substituting the previous
46263508Sdim   insn(s) values for the regs they set into the expressions in
47263508Sdim   the later insns that refer to these regs.  If the result is a valid insn
48263508Sdim   for our target machine, according to the machine description,
49263508Sdim   we install it, delete the earlier insns, and update the data flow
50263508Sdim   information (LOG_LINKS and REG_NOTES) for what we did.
51263508Sdim
52263508Sdim   There are a few exceptions where the dataflow information created by
53263508Sdim   flow.c aren't completely updated:
54263508Sdim
55263508Sdim   - reg_live_length is not updated
56193323Sed   - reg_n_refs is not adjusted in the rare case when a register is
57193323Sed     no longer required in a computation
58198892Srdivacky   - there are extremely rare cases (see distribute_regnotes) when a
59212904Sdim     REG_DEAD note is lost
60193323Sed   - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61193323Sed     removed because there is no way to know which register it was
62193323Sed     linking
63193323Sed
64193323Sed   To simplify substitution, we combine only when the earlier insn(s)
65193323Sed   consist of only a single assignment.  To simplify updating afterward,
66193323Sed   we never combine when a subroutine call appears in the middle.
67193323Sed
68212904Sdim   Since we do not represent assignments to CC0 explicitly except when that
69212904Sdim   is all an insn does, there is no LOG_LINKS entry in an insn that uses
70193323Sed   the condition code for the insn that set the condition code.
71193323Sed   Fortunately, these two insns must be consecutive.
72212904Sdim   Therefore, every JUMP_INSN is taken to have an implicit logical link
73212904Sdim   to the preceding insn.  This is not quite right, since non-jumps can
74212904Sdim   also use the condition code; but in practice such insns would not
75193323Sed   combine anyway.  */
76212904Sdim
77212904Sdim#include "config.h"
78212904Sdim#include "system.h"
79212904Sdim#include "rtl.h"
80212904Sdim#include "tm_p.h"
81212904Sdim#include "flags.h"
82193323Sed#include "regs.h"
83212904Sdim#include "hard-reg-set.h"
84212904Sdim#include "basic-block.h"
85218893Sdim#include "insn-config.h"
86243830Sdim#include "function.h"
87243830Sdim/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
88243830Sdim#include "expr.h"
89239462Sdim#include "insn-attr.h"
90239462Sdim#include "recog.h"
91239462Sdim#include "real.h"
92239462Sdim#include "toplev.h"
93239462Sdim
94223017Sdim/* It is not safe to use ordinary gen_lowpart in combine.
95263508Sdim   Use gen_lowpart_for_combine instead.  See comments there.  */
96243830Sdim#define gen_lowpart dont_use_gen_lowpart_you_dummy
97243830Sdim
98243830Sdim/* Number of attempts to combine instructions in this function.  */
99218893Sdim
100212904Sdimstatic int combine_attempts;
101212904Sdim
102218893Sdim/* Number of attempts that got as far as substitution in this function.  */
103243830Sdim
104243830Sdimstatic int combine_merges;
105243830Sdim
106239462Sdim/* Number of instructions combined with added SETs in this function.  */
107239462Sdim
108239462Sdimstatic int combine_extras;
109223017Sdim
110263508Sdim/* Number of instructions combined in this function.  */
111243830Sdim
112243830Sdimstatic int combine_successes;
113243830Sdim
114218893Sdim/* Totals over entire compilation.  */
115193323Sed
116243830Sdimstatic int total_attempts, total_merges, total_extras, total_successes;
117243830Sdim
118243830Sdim
119243830Sdim/* Vector mapping INSN_UIDs to cuids.
120243830Sdim   The cuids are like uids but increase monotonically always.
121243830Sdim   Combine always uses cuids so that it can compare them.
122263508Sdim   But actually renumbering the uids, which we used to do,
123263508Sdim   proves to be a bad idea because it makes it hard to compare
124243830Sdim   the dumps produced by earlier passes with those from later passes.  */
125263508Sdim
126243830Sdimstatic int *uid_cuid;
127243830Sdimstatic int max_uid_cuid;
128243830Sdim
129243830Sdim/* Get the cuid of an insn.  */
130243830Sdim
131243830Sdim#define INSN_CUID(INSN) \
132243830Sdim(INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133243830Sdim
134243830Sdim/* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135243830Sdim   BITS_PER_WORD would invoke undefined behavior.  Work around it.  */
136243830Sdim
137243830Sdim#define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138243830Sdim  (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139243830Sdim
140243830Sdim/* Maximum register number, which is the size of the tables below.  */
141243830Sdim
142243830Sdimstatic unsigned int combine_max_regno;
143243830Sdim
144243830Sdim/* Record last point of death of (hard or pseudo) register n.  */
145193323Sed
146193323Sedstatic rtx *reg_last_death;
147193323Sed
148193323Sed/* Record last point of modification of (hard or pseudo) register n.  */
149193323Sed
150193323Sedstatic rtx *reg_last_set;
151193323Sed
152193323Sed/* Record the cuid of the last insn that invalidated memory
153212904Sdim   (anything that writes memory, and subroutine calls, but not pushes).  */
154212904Sdim
155193323Sedstatic int mem_last_set;
156
157/* Record the cuid of the last CALL_INSN
158   so we can tell whether a potential combination crosses any calls.  */
159
160static int last_call_cuid;
161
162/* When `subst' is called, this is the insn that is being modified
163   (by combining in a previous insn).  The PATTERN of this insn
164   is still the old pattern partially modified and it should not be
165   looked at, but this may be used to examine the successors of the insn
166   to judge whether a simplification is valid.  */
167
168static rtx subst_insn;
169
170/* This is an insn that belongs before subst_insn, but is not currently
171   on the insn chain.  */
172
173static rtx subst_prev_insn;
174
175/* This is the lowest CUID that `subst' is currently dealing with.
176   get_last_value will not return a value if the register was set at or
177   after this CUID.  If not for this mechanism, we could get confused if
178   I2 or I1 in try_combine were an insn that used the old value of a register
179   to obtain a new value.  In that case, we might erroneously get the
180   new value of the register when we wanted the old one.  */
181
182static int subst_low_cuid;
183
184/* This contains any hard registers that are used in newpat; reg_dead_at_p
185   must consider all these registers to be always live.  */
186
187static HARD_REG_SET newpat_used_regs;
188
189/* This is an insn to which a LOG_LINKS entry has been added.  If this
190   insn is the earlier than I2 or I3, combine should rescan starting at
191   that location.  */
192
193static rtx added_links_insn;
194
195/* Basic block number of the block in which we are performing combines.  */
196static int this_basic_block;
197
198/* A bitmap indicating which blocks had registers go dead at entry.
199   After combine, we'll need to re-do global life analysis with
200   those blocks as starting points.  */
201static sbitmap refresh_blocks;
202static int need_refresh;
203
204/* The next group of arrays allows the recording of the last value assigned
205   to (hard or pseudo) register n.  We use this information to see if a
206   operation being processed is redundant given a prior operation performed
207   on the register.  For example, an `and' with a constant is redundant if
208   all the zero bits are already known to be turned off.
209
210   We use an approach similar to that used by cse, but change it in the
211   following ways:
212
213   (1) We do not want to reinitialize at each label.
214   (2) It is useful, but not critical, to know the actual value assigned
215       to a register.  Often just its form is helpful.
216
217   Therefore, we maintain the following arrays:
218
219   reg_last_set_value		the last value assigned
220   reg_last_set_label		records the value of label_tick when the
221				register was assigned
222   reg_last_set_table_tick	records the value of label_tick when a
223				value using the register is assigned
224   reg_last_set_invalid		set to non-zero when it is not valid
225				to use the value of this register in some
226				register's value
227
228   To understand the usage of these tables, it is important to understand
229   the distinction between the value in reg_last_set_value being valid
230   and the register being validly contained in some other expression in the
231   table.
232
233   Entry I in reg_last_set_value is valid if it is non-zero, and either
234   reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235
236   Register I may validly appear in any expression returned for the value
237   of another register if reg_n_sets[i] is 1.  It may also appear in the
238   value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239   reg_last_set_invalid[j] is zero.
240
241   If an expression is found in the table containing a register which may
242   not validly appear in an expression, the register is replaced by
243   something that won't match, (clobber (const_int 0)).
244
245   reg_last_set_invalid[i] is set non-zero when register I is being assigned
246   to and reg_last_set_table_tick[i] == label_tick.  */
247
248/* Record last value assigned to (hard or pseudo) register n.  */
249
250static rtx *reg_last_set_value;
251
252/* Record the value of label_tick when the value for register n is placed in
253   reg_last_set_value[n].  */
254
255static int *reg_last_set_label;
256
257/* Record the value of label_tick when an expression involving register n
258   is placed in reg_last_set_value.  */
259
260static int *reg_last_set_table_tick;
261
262/* Set non-zero if references to register n in expressions should not be
263   used.  */
264
265static char *reg_last_set_invalid;
266
267/* Incremented for each label.  */
268
269static int label_tick;
270
271/* Some registers that are set more than once and used in more than one
272   basic block are nevertheless always set in similar ways.  For example,
273   a QImode register may be loaded from memory in two places on a machine
274   where byte loads zero extend.
275
276   We record in the following array what we know about the nonzero
277   bits of a register, specifically which bits are known to be zero.
278
279   If an entry is zero, it means that we don't know anything special.  */
280
281static unsigned HOST_WIDE_INT *reg_nonzero_bits;
282
283/* Mode used to compute significance in reg_nonzero_bits.  It is the largest
284   integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
285
286static enum machine_mode nonzero_bits_mode;
287
288/* Nonzero if we know that a register has some leading bits that are always
289   equal to the sign bit.  */
290
291static unsigned char *reg_sign_bit_copies;
292
293/* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294   It is zero while computing them and after combine has completed.  This
295   former test prevents propagating values based on previously set values,
296   which can be incorrect if a variable is modified in a loop.  */
297
298static int nonzero_sign_valid;
299
300/* These arrays are maintained in parallel with reg_last_set_value
301   and are used to store the mode in which the register was last set,
302   the bits that were known to be zero when it was last set, and the
303   number of sign bits copies it was known to have when it was last set.  */
304
305static enum machine_mode *reg_last_set_mode;
306static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307static char *reg_last_set_sign_bit_copies;
308
309/* Record one modification to rtl structure
310   to be undone by storing old_contents into *where.
311   is_int is 1 if the contents are an int.  */
312
313struct undo
314{
315  struct undo *next;
316  int is_int;
317  union {rtx r; unsigned int i;} old_contents;
318  union {rtx *r; unsigned int *i;} where;
319};
320
321/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322   num_undo says how many are currently recorded.
323
324   other_insn is nonzero if we have modified some other insn in the process
325   of working on subst_insn.  It must be verified too.  */
326
327struct undobuf
328{
329  struct undo *undos;
330  struct undo *frees;
331  rtx other_insn;
332};
333
334static struct undobuf undobuf;
335
336/* Number of times the pseudo being substituted for
337   was found and replaced.  */
338
339static int n_occurrences;
340
341static void do_SUBST			PARAMS ((rtx *, rtx));
342static void do_SUBST_INT		PARAMS ((unsigned int *,
343						 unsigned int));
344static void init_reg_last_arrays	PARAMS ((void));
345static void setup_incoming_promotions   PARAMS ((void));
346static void set_nonzero_bits_and_sign_copies  PARAMS ((rtx, rtx, void *));
347static int cant_combine_insn_p	PARAMS ((rtx));
348static int can_combine_p	PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349static int sets_function_arg_p	PARAMS ((rtx));
350static int combinable_i3pat	PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351static int contains_muldiv	PARAMS ((rtx));
352static rtx try_combine		PARAMS ((rtx, rtx, rtx, int *));
353static void undo_all		PARAMS ((void));
354static void undo_commit		PARAMS ((void));
355static rtx *find_split_point	PARAMS ((rtx *, rtx));
356static rtx subst		PARAMS ((rtx, rtx, rtx, int, int));
357static rtx combine_simplify_rtx	PARAMS ((rtx, enum machine_mode, int, int));
358static rtx simplify_if_then_else  PARAMS ((rtx));
359static rtx simplify_set		PARAMS ((rtx));
360static rtx simplify_logical	PARAMS ((rtx, int));
361static rtx expand_compound_operation  PARAMS ((rtx));
362static rtx expand_field_assignment  PARAMS ((rtx));
363static rtx make_extraction	PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364					 rtx, unsigned HOST_WIDE_INT, int,
365					 int, int));
366static rtx extract_left_shift	PARAMS ((rtx, int));
367static rtx make_compound_operation  PARAMS ((rtx, enum rtx_code));
368static int get_pos_from_mask	PARAMS ((unsigned HOST_WIDE_INT,
369					 unsigned HOST_WIDE_INT *));
370static rtx force_to_mode	PARAMS ((rtx, enum machine_mode,
371					 unsigned HOST_WIDE_INT, rtx, int));
372static rtx if_then_else_cond	PARAMS ((rtx, rtx *, rtx *));
373static rtx known_cond		PARAMS ((rtx, enum rtx_code, rtx, rtx));
374static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375static rtx make_field_assignment  PARAMS ((rtx));
376static rtx apply_distributive_law  PARAMS ((rtx));
377static rtx simplify_and_const_int  PARAMS ((rtx, enum machine_mode, rtx,
378					    unsigned HOST_WIDE_INT));
379static unsigned HOST_WIDE_INT nonzero_bits  PARAMS ((rtx, enum machine_mode));
380static unsigned int num_sign_bit_copies  PARAMS ((rtx, enum machine_mode));
381static int merge_outer_ops	PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382					 enum rtx_code, HOST_WIDE_INT,
383					 enum machine_mode, int *));
384static rtx simplify_shift_const	PARAMS ((rtx, enum rtx_code, enum machine_mode,
385					 rtx, int));
386static int recog_for_combine	PARAMS ((rtx *, rtx, rtx *));
387static rtx gen_lowpart_for_combine  PARAMS ((enum machine_mode, rtx));
388static rtx gen_binary		PARAMS ((enum rtx_code, enum machine_mode,
389					 rtx, rtx));
390static enum rtx_code simplify_comparison  PARAMS ((enum rtx_code, rtx *, rtx *));
391static void update_table_tick	PARAMS ((rtx));
392static void record_value_for_reg  PARAMS ((rtx, rtx, rtx));
393static void check_promoted_subreg PARAMS ((rtx, rtx));
394static void record_dead_and_set_regs_1  PARAMS ((rtx, rtx, void *));
395static void record_dead_and_set_regs  PARAMS ((rtx));
396static int get_last_value_validate  PARAMS ((rtx *, rtx, int, int));
397static rtx get_last_value	PARAMS ((rtx));
398static int use_crosses_set_p	PARAMS ((rtx, int));
399static void reg_dead_at_p_1	PARAMS ((rtx, rtx, void *));
400static int reg_dead_at_p	PARAMS ((rtx, rtx));
401static void move_deaths		PARAMS ((rtx, rtx, int, rtx, rtx *));
402static int reg_bitfield_target_p  PARAMS ((rtx, rtx));
403static void distribute_notes	PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404static void distribute_links	PARAMS ((rtx));
405static void mark_used_regs_combine PARAMS ((rtx));
406static int insn_cuid		PARAMS ((rtx));
407static void record_promoted_value PARAMS ((rtx, rtx));
408static rtx reversed_comparison  PARAMS ((rtx, enum machine_mode, rtx, rtx));
409static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
410
411/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412   insn.  The substitution can be undone by undo_all.  If INTO is already
413   set to NEWVAL, do not record this change.  Because computing NEWVAL might
414   also call SUBST, we have to compute it before we put anything into
415   the undo table.  */
416
417static void
418do_SUBST (into, newval)
419     rtx *into, newval;
420{
421  struct undo *buf;
422  rtx oldval = *into;
423
424  if (oldval == newval)
425    return;
426
427  /* We'd like to catch as many invalid transformations here as
428     possible.  Unfortunately, there are way too many mode changes
429     that are perfectly valid, so we'd waste too much effort for
430     little gain doing the checks here.  Focus on catching invalid
431     transformations involving integer constants.  */
432  if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
433      && GET_CODE (newval) == CONST_INT)
434    {
435      /* Sanity check that we're replacing oldval with a CONST_INT
436	 that is a valid sign-extension for the original mode.  */
437      if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
438						 GET_MODE (oldval)))
439	abort ();
440
441      /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
442	 CONST_INT is not valid, because after the replacement, the
443	 original mode would be gone.  Unfortunately, we can't tell
444	 when do_SUBST is called to replace the operand thereof, so we
445	 perform this test on oldval instead, checking whether an
446	 invalid replacement took place before we got here.  */
447      if ((GET_CODE (oldval) == SUBREG
448	   && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
449	  || (GET_CODE (oldval) == ZERO_EXTEND
450	      && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
451	abort ();
452     }
453
454  if (undobuf.frees)
455    buf = undobuf.frees, undobuf.frees = buf->next;
456  else
457    buf = (struct undo *) xmalloc (sizeof (struct undo));
458
459  buf->is_int = 0;
460  buf->where.r = into;
461  buf->old_contents.r = oldval;
462  *into = newval;
463
464  buf->next = undobuf.undos, undobuf.undos = buf;
465}
466
467#define SUBST(INTO, NEWVAL)	do_SUBST(&(INTO), (NEWVAL))
468
469/* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
470   for the value of a HOST_WIDE_INT value (including CONST_INT) is
471   not safe.  */
472
473static void
474do_SUBST_INT (into, newval)
475     unsigned int *into, newval;
476{
477  struct undo *buf;
478  unsigned int oldval = *into;
479
480  if (oldval == newval)
481    return;
482
483  if (undobuf.frees)
484    buf = undobuf.frees, undobuf.frees = buf->next;
485  else
486    buf = (struct undo *) xmalloc (sizeof (struct undo));
487
488  buf->is_int = 1;
489  buf->where.i = into;
490  buf->old_contents.i = oldval;
491  *into = newval;
492
493  buf->next = undobuf.undos, undobuf.undos = buf;
494}
495
496#define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT(&(INTO), (NEWVAL))
497
498/* Main entry point for combiner.  F is the first insn of the function.
499   NREGS is the first unused pseudo-reg number.
500
501   Return non-zero if the combiner has turned an indirect jump
502   instruction into a direct jump.  */
503int
504combine_instructions (f, nregs)
505     rtx f;
506     unsigned int nregs;
507{
508  rtx insn, next;
509#ifdef HAVE_cc0
510  rtx prev;
511#endif
512  int i;
513  rtx links, nextlinks;
514
515  int new_direct_jump_p = 0;
516
517  combine_attempts = 0;
518  combine_merges = 0;
519  combine_extras = 0;
520  combine_successes = 0;
521
522  combine_max_regno = nregs;
523
524  reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
525		      xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
526  reg_sign_bit_copies
527    = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
528
529  reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
530  reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
531  reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
532  reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
533  reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
534  reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
535  reg_last_set_mode
536    = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
537  reg_last_set_nonzero_bits
538    = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
539  reg_last_set_sign_bit_copies
540    = (char *) xmalloc (nregs * sizeof (char));
541
542  init_reg_last_arrays ();
543
544  init_recog_no_volatile ();
545
546  /* Compute maximum uid value so uid_cuid can be allocated.  */
547
548  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
549    if (INSN_UID (insn) > i)
550      i = INSN_UID (insn);
551
552  uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
553  max_uid_cuid = i;
554
555  nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
556
557  /* Don't use reg_nonzero_bits when computing it.  This can cause problems
558     when, for example, we have j <<= 1 in a loop.  */
559
560  nonzero_sign_valid = 0;
561
562  /* Compute the mapping from uids to cuids.
563     Cuids are numbers assigned to insns, like uids,
564     except that cuids increase monotonically through the code.
565
566     Scan all SETs and see if we can deduce anything about what
567     bits are known to be zero for some registers and how many copies
568     of the sign bit are known to exist for those registers.
569
570     Also set any known values so that we can use it while searching
571     for what bits are known to be set.  */
572
573  label_tick = 1;
574
575  /* We need to initialize it here, because record_dead_and_set_regs may call
576     get_last_value.  */
577  subst_prev_insn = NULL_RTX;
578
579  setup_incoming_promotions ();
580
581  refresh_blocks = sbitmap_alloc (n_basic_blocks);
582  sbitmap_zero (refresh_blocks);
583  need_refresh = 0;
584
585  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
586    {
587      uid_cuid[INSN_UID (insn)] = ++i;
588      subst_low_cuid = i;
589      subst_insn = insn;
590
591      if (INSN_P (insn))
592	{
593	  note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
594		       NULL);
595	  record_dead_and_set_regs (insn);
596
597#ifdef AUTO_INC_DEC
598	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
599	    if (REG_NOTE_KIND (links) == REG_INC)
600	      set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
601						NULL);
602#endif
603	}
604
605      if (GET_CODE (insn) == CODE_LABEL)
606	label_tick++;
607    }
608
609  nonzero_sign_valid = 1;
610
611  /* Now scan all the insns in forward order.  */
612
613  this_basic_block = -1;
614  label_tick = 1;
615  last_call_cuid = 0;
616  mem_last_set = 0;
617  init_reg_last_arrays ();
618  setup_incoming_promotions ();
619
620  for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
621    {
622      next = 0;
623
624      /* If INSN starts a new basic block, update our basic block number.  */
625      if (this_basic_block + 1 < n_basic_blocks
626	  && BLOCK_HEAD (this_basic_block + 1) == insn)
627	this_basic_block++;
628
629      if (GET_CODE (insn) == CODE_LABEL)
630	label_tick++;
631
632      else if (INSN_P (insn))
633	{
634	  /* See if we know about function return values before this
635	     insn based upon SUBREG flags.  */
636	  check_promoted_subreg (insn, PATTERN (insn));
637
638	  /* Try this insn with each insn it links back to.  */
639
640	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
641	    if ((next = try_combine (insn, XEXP (links, 0),
642				     NULL_RTX, &new_direct_jump_p)) != 0)
643	      goto retry;
644
645	  /* Try each sequence of three linked insns ending with this one.  */
646
647	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
648	    {
649	      rtx link = XEXP (links, 0);
650
651	      /* If the linked insn has been replaced by a note, then there
652		 is no point in pursuing this chain any further.  */
653	      if (GET_CODE (link) == NOTE)
654		continue;
655
656	      for (nextlinks = LOG_LINKS (link);
657		   nextlinks;
658		   nextlinks = XEXP (nextlinks, 1))
659		if ((next = try_combine (insn, link,
660					 XEXP (nextlinks, 0),
661					 &new_direct_jump_p)) != 0)
662		  goto retry;
663	    }
664
665#ifdef HAVE_cc0
666	  /* Try to combine a jump insn that uses CC0
667	     with a preceding insn that sets CC0, and maybe with its
668	     logical predecessor as well.
669	     This is how we make decrement-and-branch insns.
670	     We need this special code because data flow connections
671	     via CC0 do not get entered in LOG_LINKS.  */
672
673	  if (GET_CODE (insn) == JUMP_INSN
674	      && (prev = prev_nonnote_insn (insn)) != 0
675	      && GET_CODE (prev) == INSN
676	      && sets_cc0_p (PATTERN (prev)))
677	    {
678	      if ((next = try_combine (insn, prev,
679				       NULL_RTX, &new_direct_jump_p)) != 0)
680		goto retry;
681
682	      for (nextlinks = LOG_LINKS (prev); nextlinks;
683		   nextlinks = XEXP (nextlinks, 1))
684		if ((next = try_combine (insn, prev,
685					 XEXP (nextlinks, 0),
686					 &new_direct_jump_p)) != 0)
687		  goto retry;
688	    }
689
690	  /* Do the same for an insn that explicitly references CC0.  */
691	  if (GET_CODE (insn) == INSN
692	      && (prev = prev_nonnote_insn (insn)) != 0
693	      && GET_CODE (prev) == INSN
694	      && sets_cc0_p (PATTERN (prev))
695	      && GET_CODE (PATTERN (insn)) == SET
696	      && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
697	    {
698	      if ((next = try_combine (insn, prev,
699				       NULL_RTX, &new_direct_jump_p)) != 0)
700		goto retry;
701
702	      for (nextlinks = LOG_LINKS (prev); nextlinks;
703		   nextlinks = XEXP (nextlinks, 1))
704		if ((next = try_combine (insn, prev,
705					 XEXP (nextlinks, 0),
706					 &new_direct_jump_p)) != 0)
707		  goto retry;
708	    }
709
710	  /* Finally, see if any of the insns that this insn links to
711	     explicitly references CC0.  If so, try this insn, that insn,
712	     and its predecessor if it sets CC0.  */
713	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
714	    if (GET_CODE (XEXP (links, 0)) == INSN
715		&& GET_CODE (PATTERN (XEXP (links, 0))) == SET
716		&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
717		&& (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
718		&& GET_CODE (prev) == INSN
719		&& sets_cc0_p (PATTERN (prev))
720		&& (next = try_combine (insn, XEXP (links, 0),
721					prev, &new_direct_jump_p)) != 0)
722	      goto retry;
723#endif
724
725	  /* Try combining an insn with two different insns whose results it
726	     uses.  */
727	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
728	    for (nextlinks = XEXP (links, 1); nextlinks;
729		 nextlinks = XEXP (nextlinks, 1))
730	      if ((next = try_combine (insn, XEXP (links, 0),
731				       XEXP (nextlinks, 0),
732				       &new_direct_jump_p)) != 0)
733		goto retry;
734
735	  if (GET_CODE (insn) != NOTE)
736	    record_dead_and_set_regs (insn);
737
738	retry:
739	  ;
740	}
741    }
742
743  delete_noop_moves (f);
744
745  if (need_refresh)
746    {
747      update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
748			PROP_DEATH_NOTES);
749    }
750
751  /* Clean up.  */
752  sbitmap_free (refresh_blocks);
753  free (reg_nonzero_bits);
754  free (reg_sign_bit_copies);
755  free (reg_last_death);
756  free (reg_last_set);
757  free (reg_last_set_value);
758  free (reg_last_set_table_tick);
759  free (reg_last_set_label);
760  free (reg_last_set_invalid);
761  free (reg_last_set_mode);
762  free (reg_last_set_nonzero_bits);
763  free (reg_last_set_sign_bit_copies);
764  free (uid_cuid);
765
766  {
767    struct undo *undo, *next;
768    for (undo = undobuf.frees; undo; undo = next)
769      {
770	next = undo->next;
771	free (undo);
772      }
773    undobuf.frees = 0;
774  }
775
776  total_attempts += combine_attempts;
777  total_merges += combine_merges;
778  total_extras += combine_extras;
779  total_successes += combine_successes;
780
781  nonzero_sign_valid = 0;
782
783  /* Make recognizer allow volatile MEMs again.  */
784  init_recog ();
785
786  return new_direct_jump_p;
787}
788
789/* Wipe the reg_last_xxx arrays in preparation for another pass.  */
790
791static void
792init_reg_last_arrays ()
793{
794  unsigned int nregs = combine_max_regno;
795
796  memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
797  memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
798  memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
799  memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
800  memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
801  memset (reg_last_set_invalid, 0, nregs * sizeof (char));
802  memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
803  memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
804  memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
805}
806
807/* Set up any promoted values for incoming argument registers.  */
808
809static void
810setup_incoming_promotions ()
811{
812#ifdef PROMOTE_FUNCTION_ARGS
813  unsigned int regno;
814  rtx reg;
815  enum machine_mode mode;
816  int unsignedp;
817  rtx first = get_insns ();
818
819#ifndef OUTGOING_REGNO
820#define OUTGOING_REGNO(N) N
821#endif
822  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
823    /* Check whether this register can hold an incoming pointer
824       argument.  FUNCTION_ARG_REGNO_P tests outgoing register
825       numbers, so translate if necessary due to register windows.  */
826    if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
827	&& (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
828      {
829	record_value_for_reg
830	  (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
831				       : SIGN_EXTEND),
832				      GET_MODE (reg),
833				      gen_rtx_CLOBBER (mode, const0_rtx)));
834      }
835#endif
836}
837
838/* Called via note_stores.  If X is a pseudo that is narrower than
839   HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
840
841   If we are setting only a portion of X and we can't figure out what
842   portion, assume all bits will be used since we don't know what will
843   be happening.
844
845   Similarly, set how many bits of X are known to be copies of the sign bit
846   at all locations in the function.  This is the smallest number implied
847   by any set of X.  */
848
849static void
850set_nonzero_bits_and_sign_copies (x, set, data)
851     rtx x;
852     rtx set;
853     void *data ATTRIBUTE_UNUSED;
854{
855  unsigned int num;
856
857  if (GET_CODE (x) == REG
858      && REGNO (x) >= FIRST_PSEUDO_REGISTER
859      /* If this register is undefined at the start of the file, we can't
860	 say what its contents were.  */
861      && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
862      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
863    {
864      if (set == 0 || GET_CODE (set) == CLOBBER)
865	{
866	  reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
867	  reg_sign_bit_copies[REGNO (x)] = 1;
868	  return;
869	}
870
871      /* If this is a complex assignment, see if we can convert it into a
872	 simple assignment.  */
873      set = expand_field_assignment (set);
874
875      /* If this is a simple assignment, or we have a paradoxical SUBREG,
876	 set what we know about X.  */
877
878      if (SET_DEST (set) == x
879	  || (GET_CODE (SET_DEST (set)) == SUBREG
880	      && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
881		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
882	      && SUBREG_REG (SET_DEST (set)) == x))
883	{
884	  rtx src = SET_SRC (set);
885
886#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
887	  /* If X is narrower than a word and SRC is a non-negative
888	     constant that would appear negative in the mode of X,
889	     sign-extend it for use in reg_nonzero_bits because some
890	     machines (maybe most) will actually do the sign-extension
891	     and this is the conservative approach.
892
893	     ??? For 2.5, try to tighten up the MD files in this regard
894	     instead of this kludge.  */
895
896	  if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
897	      && GET_CODE (src) == CONST_INT
898	      && INTVAL (src) > 0
899	      && 0 != (INTVAL (src)
900		       & ((HOST_WIDE_INT) 1
901			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
902	    src = GEN_INT (INTVAL (src)
903			   | ((HOST_WIDE_INT) (-1)
904			      << GET_MODE_BITSIZE (GET_MODE (x))));
905#endif
906
907	  /* Don't call nonzero_bits if it cannot change anything.  */
908	  if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
909	    reg_nonzero_bits[REGNO (x)]
910	      |= nonzero_bits (src, nonzero_bits_mode);
911	  num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
912	  if (reg_sign_bit_copies[REGNO (x)] == 0
913	      || reg_sign_bit_copies[REGNO (x)] > num)
914	    reg_sign_bit_copies[REGNO (x)] = num;
915	}
916      else
917	{
918	  reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
919	  reg_sign_bit_copies[REGNO (x)] = 1;
920	}
921    }
922}
923
924/* See if INSN can be combined into I3.  PRED and SUCC are optionally
925   insns that were previously combined into I3 or that will be combined
926   into the merger of INSN and I3.
927
928   Return 0 if the combination is not allowed for any reason.
929
930   If the combination is allowed, *PDEST will be set to the single
931   destination of INSN and *PSRC to the single source, and this function
932   will return 1.  */
933
934static int
935can_combine_p (insn, i3, pred, succ, pdest, psrc)
936     rtx insn;
937     rtx i3;
938     rtx pred ATTRIBUTE_UNUSED;
939     rtx succ;
940     rtx *pdest, *psrc;
941{
942  int i;
943  rtx set = 0, src, dest;
944  rtx p;
945#ifdef AUTO_INC_DEC
946  rtx link;
947#endif
948  int all_adjacent = (succ ? (next_active_insn (insn) == succ
949			      && next_active_insn (succ) == i3)
950		      : next_active_insn (insn) == i3);
951
952  /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
953     or a PARALLEL consisting of such a SET and CLOBBERs.
954
955     If INSN has CLOBBER parallel parts, ignore them for our processing.
956     By definition, these happen during the execution of the insn.  When it
957     is merged with another insn, all bets are off.  If they are, in fact,
958     needed and aren't also supplied in I3, they may be added by
959     recog_for_combine.  Otherwise, it won't match.
960
961     We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
962     note.
963
964     Get the source and destination of INSN.  If more than one, can't
965     combine.  */
966
967  if (GET_CODE (PATTERN (insn)) == SET)
968    set = PATTERN (insn);
969  else if (GET_CODE (PATTERN (insn)) == PARALLEL
970	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
971    {
972      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
973	{
974	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
975
976	  switch (GET_CODE (elt))
977	    {
978	    /* This is important to combine floating point insns
979	       for the SH4 port.  */
980	    case USE:
981	      /* Combining an isolated USE doesn't make sense.
982		 We depend here on combinable_i3pat to reject them.  */
983	      /* The code below this loop only verifies that the inputs of
984		 the SET in INSN do not change.  We call reg_set_between_p
985		 to verify that the REG in the USE does not change between
986		 I3 and INSN.
987		 If the USE in INSN was for a pseudo register, the matching
988		 insn pattern will likely match any register; combining this
989		 with any other USE would only be safe if we knew that the
990		 used registers have identical values, or if there was
991		 something to tell them apart, e.g. different modes.  For
992		 now, we forgo such complicated tests and simply disallow
993		 combining of USES of pseudo registers with any other USE.  */
994	      if (GET_CODE (XEXP (elt, 0)) == REG
995		  && GET_CODE (PATTERN (i3)) == PARALLEL)
996		{
997		  rtx i3pat = PATTERN (i3);
998		  int i = XVECLEN (i3pat, 0) - 1;
999		  unsigned int regno = REGNO (XEXP (elt, 0));
1000
1001		  do
1002		    {
1003		      rtx i3elt = XVECEXP (i3pat, 0, i);
1004
1005		      if (GET_CODE (i3elt) == USE
1006			  && GET_CODE (XEXP (i3elt, 0)) == REG
1007			  && (REGNO (XEXP (i3elt, 0)) == regno
1008			      ? reg_set_between_p (XEXP (elt, 0),
1009						   PREV_INSN (insn), i3)
1010			      : regno >= FIRST_PSEUDO_REGISTER))
1011			return 0;
1012		    }
1013		  while (--i >= 0);
1014		}
1015	      break;
1016
1017	      /* We can ignore CLOBBERs.  */
1018	    case CLOBBER:
1019	      break;
1020
1021	    case SET:
1022	      /* Ignore SETs whose result isn't used but not those that
1023		 have side-effects.  */
1024	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1025		  && ! side_effects_p (elt))
1026		break;
1027
1028	      /* If we have already found a SET, this is a second one and
1029		 so we cannot combine with this insn.  */
1030	      if (set)
1031		return 0;
1032
1033	      set = elt;
1034	      break;
1035
1036	    default:
1037	      /* Anything else means we can't combine.  */
1038	      return 0;
1039	    }
1040	}
1041
1042      if (set == 0
1043	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1044	     so don't do anything with it.  */
1045	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1046	return 0;
1047    }
1048  else
1049    return 0;
1050
1051  if (set == 0)
1052    return 0;
1053
1054  set = expand_field_assignment (set);
1055  src = SET_SRC (set), dest = SET_DEST (set);
1056
1057  /* Don't eliminate a store in the stack pointer.  */
1058  if (dest == stack_pointer_rtx
1059      /* If we couldn't eliminate a field assignment, we can't combine.  */
1060      || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1061      /* Don't combine with an insn that sets a register to itself if it has
1062	 a REG_EQUAL note.  This may be part of a REG_NO_CONFLICT sequence.  */
1063      || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1064      /* Can't merge an ASM_OPERANDS.  */
1065      || GET_CODE (src) == ASM_OPERANDS
1066      /* Can't merge a function call.  */
1067      || GET_CODE (src) == CALL
1068      /* Don't eliminate a function call argument.  */
1069      || (GET_CODE (i3) == CALL_INSN
1070	  && (find_reg_fusage (i3, USE, dest)
1071	      || (GET_CODE (dest) == REG
1072		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1073		  && global_regs[REGNO (dest)])))
1074      /* Don't substitute into an incremented register.  */
1075      || FIND_REG_INC_NOTE (i3, dest)
1076      || (succ && FIND_REG_INC_NOTE (succ, dest))
1077#if 0
1078      /* Don't combine the end of a libcall into anything.  */
1079      /* ??? This gives worse code, and appears to be unnecessary, since no
1080	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  Local-alloc does
1081	 use REG_RETVAL notes for noconflict blocks, but other code here
1082	 makes sure that those insns don't disappear.  */
1083      || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1084#endif
1085      /* Make sure that DEST is not used after SUCC but before I3.  */
1086      || (succ && ! all_adjacent
1087	  && reg_used_between_p (dest, succ, i3))
1088      /* Make sure that the value that is to be substituted for the register
1089	 does not use any registers whose values alter in between.  However,
1090	 If the insns are adjacent, a use can't cross a set even though we
1091	 think it might (this can happen for a sequence of insns each setting
1092	 the same destination; reg_last_set of that register might point to
1093	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
1094	 equivalent to the memory so the substitution is valid even if there
1095	 are intervening stores.  Also, don't move a volatile asm or
1096	 UNSPEC_VOLATILE across any other insns.  */
1097      || (! all_adjacent
1098	  && (((GET_CODE (src) != MEM
1099		|| ! find_reg_note (insn, REG_EQUIV, src))
1100	       && use_crosses_set_p (src, INSN_CUID (insn)))
1101	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1102	      || GET_CODE (src) == UNSPEC_VOLATILE))
1103      /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1104	 better register allocation by not doing the combine.  */
1105      || find_reg_note (i3, REG_NO_CONFLICT, dest)
1106      || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1107      /* Don't combine across a CALL_INSN, because that would possibly
1108	 change whether the life span of some REGs crosses calls or not,
1109	 and it is a pain to update that information.
1110	 Exception: if source is a constant, moving it later can't hurt.
1111	 Accept that special case, because it helps -fforce-addr a lot.  */
1112      || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1113    return 0;
1114
1115  /* DEST must either be a REG or CC0.  */
1116  if (GET_CODE (dest) == REG)
1117    {
1118      /* If register alignment is being enforced for multi-word items in all
1119	 cases except for parameters, it is possible to have a register copy
1120	 insn referencing a hard register that is not allowed to contain the
1121	 mode being copied and which would not be valid as an operand of most
1122	 insns.  Eliminate this problem by not combining with such an insn.
1123
1124	 Also, on some machines we don't want to extend the life of a hard
1125	 register.  */
1126
1127      if (GET_CODE (src) == REG
1128	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1129	       && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1130	      /* Don't extend the life of a hard register unless it is
1131		 user variable (if we have few registers) or it can't
1132		 fit into the desired register (meaning something special
1133		 is going on).
1134		 Also avoid substituting a return register into I3, because
1135		 reload can't handle a conflict with constraints of other
1136		 inputs.  */
1137	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
1138		  && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1139	return 0;
1140    }
1141  else if (GET_CODE (dest) != CC0)
1142    return 0;
1143
1144  /* Don't substitute for a register intended as a clobberable operand.
1145     Similarly, don't substitute an expression containing a register that
1146     will be clobbered in I3.  */
1147  if (GET_CODE (PATTERN (i3)) == PARALLEL)
1148    for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1149      if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1150	  && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1151				       src)
1152	      || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1153	return 0;
1154
1155  /* If INSN contains anything volatile, or is an `asm' (whether volatile
1156     or not), reject, unless nothing volatile comes between it and I3 */
1157
1158  if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1159    {
1160      /* Make sure succ doesn't contain a volatile reference.  */
1161      if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1162        return 0;
1163
1164      for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1165        if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1166	  return 0;
1167    }
1168
1169  /* If INSN is an asm, and DEST is a hard register, reject, since it has
1170     to be an explicit register variable, and was chosen for a reason.  */
1171
1172  if (GET_CODE (src) == ASM_OPERANDS
1173      && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1174    return 0;
1175
1176  /* If there are any volatile insns between INSN and I3, reject, because
1177     they might affect machine state.  */
1178
1179  for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1180    if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1181      return 0;
1182
1183  /* If INSN or I2 contains an autoincrement or autodecrement,
1184     make sure that register is not used between there and I3,
1185     and not already used in I3 either.
1186     Also insist that I3 not be a jump; if it were one
1187     and the incremented register were spilled, we would lose.  */
1188
1189#ifdef AUTO_INC_DEC
1190  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1191    if (REG_NOTE_KIND (link) == REG_INC
1192	&& (GET_CODE (i3) == JUMP_INSN
1193	    || reg_used_between_p (XEXP (link, 0), insn, i3)
1194	    || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1195      return 0;
1196#endif
1197
1198#ifdef HAVE_cc0
1199  /* Don't combine an insn that follows a CC0-setting insn.
1200     An insn that uses CC0 must not be separated from the one that sets it.
1201     We do, however, allow I2 to follow a CC0-setting insn if that insn
1202     is passed as I1; in that case it will be deleted also.
1203     We also allow combining in this case if all the insns are adjacent
1204     because that would leave the two CC0 insns adjacent as well.
1205     It would be more logical to test whether CC0 occurs inside I1 or I2,
1206     but that would be much slower, and this ought to be equivalent.  */
1207
1208  p = prev_nonnote_insn (insn);
1209  if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1210      && ! all_adjacent)
1211    return 0;
1212#endif
1213
1214  /* If we get here, we have passed all the tests and the combination is
1215     to be allowed.  */
1216
1217  *pdest = dest;
1218  *psrc = src;
1219
1220  return 1;
1221}
1222
1223/* Check if PAT is an insn - or a part of it - used to set up an
1224   argument for a function in a hard register.  */
1225
1226static int
1227sets_function_arg_p (pat)
1228     rtx pat;
1229{
1230  int i;
1231  rtx inner_dest;
1232
1233  switch (GET_CODE (pat))
1234    {
1235    case INSN:
1236      return sets_function_arg_p (PATTERN (pat));
1237
1238    case PARALLEL:
1239      for (i = XVECLEN (pat, 0); --i >= 0;)
1240	if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1241	  return 1;
1242
1243      break;
1244
1245    case SET:
1246      inner_dest = SET_DEST (pat);
1247      while (GET_CODE (inner_dest) == STRICT_LOW_PART
1248	     || GET_CODE (inner_dest) == SUBREG
1249	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
1250	inner_dest = XEXP (inner_dest, 0);
1251
1252      return (GET_CODE (inner_dest) == REG
1253	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1254	      && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1255
1256    default:
1257      break;
1258    }
1259
1260  return 0;
1261}
1262
1263/* LOC is the location within I3 that contains its pattern or the component
1264   of a PARALLEL of the pattern.  We validate that it is valid for combining.
1265
1266   One problem is if I3 modifies its output, as opposed to replacing it
1267   entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1268   so would produce an insn that is not equivalent to the original insns.
1269
1270   Consider:
1271
1272         (set (reg:DI 101) (reg:DI 100))
1273	 (set (subreg:SI (reg:DI 101) 0) <foo>)
1274
1275   This is NOT equivalent to:
1276
1277         (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1278		    (set (reg:DI 101) (reg:DI 100))])
1279
1280   Not only does this modify 100 (in which case it might still be valid
1281   if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1282
1283   We can also run into a problem if I2 sets a register that I1
1284   uses and I1 gets directly substituted into I3 (not via I2).  In that
1285   case, we would be getting the wrong value of I2DEST into I3, so we
1286   must reject the combination.  This case occurs when I2 and I1 both
1287   feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1288   If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1289   of a SET must prevent combination from occurring.
1290
1291   Before doing the above check, we first try to expand a field assignment
1292   into a set of logical operations.
1293
1294   If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1295   we place a register that is both set and used within I3.  If more than one
1296   such register is detected, we fail.
1297
1298   Return 1 if the combination is valid, zero otherwise.  */
1299
1300static int
1301combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1302     rtx i3;
1303     rtx *loc;
1304     rtx i2dest;
1305     rtx i1dest;
1306     int i1_not_in_src;
1307     rtx *pi3dest_killed;
1308{
1309  rtx x = *loc;
1310
1311  if (GET_CODE (x) == SET)
1312    {
1313      rtx set = expand_field_assignment (x);
1314      rtx dest = SET_DEST (set);
1315      rtx src = SET_SRC (set);
1316      rtx inner_dest = dest;
1317
1318#if 0
1319      rtx inner_src = src;
1320#endif
1321
1322      SUBST (*loc, set);
1323
1324      while (GET_CODE (inner_dest) == STRICT_LOW_PART
1325	     || GET_CODE (inner_dest) == SUBREG
1326	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
1327	inner_dest = XEXP (inner_dest, 0);
1328
1329  /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1330     was added.  */
1331#if 0
1332      while (GET_CODE (inner_src) == STRICT_LOW_PART
1333	     || GET_CODE (inner_src) == SUBREG
1334	     || GET_CODE (inner_src) == ZERO_EXTRACT)
1335	inner_src = XEXP (inner_src, 0);
1336
1337      /* If it is better that two different modes keep two different pseudos,
1338	 avoid combining them.  This avoids producing the following pattern
1339	 on a 386:
1340	  (set (subreg:SI (reg/v:QI 21) 0)
1341	       (lshiftrt:SI (reg/v:SI 20)
1342	           (const_int 24)))
1343	 If that were made, reload could not handle the pair of
1344	 reg 20/21, since it would try to get any GENERAL_REGS
1345	 but some of them don't handle QImode.  */
1346
1347      if (rtx_equal_p (inner_src, i2dest)
1348	  && GET_CODE (inner_dest) == REG
1349	  && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1350	return 0;
1351#endif
1352
1353      /* Check for the case where I3 modifies its output, as
1354	 discussed above.  */
1355      if ((inner_dest != dest
1356	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
1357	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1358
1359	  /* This is the same test done in can_combine_p except we can't test
1360	     all_adjacent; we don't have to, since this instruction will stay
1361	     in place, thus we are not considering increasing the lifetime of
1362	     INNER_DEST.
1363
1364	     Also, if this insn sets a function argument, combining it with
1365	     something that might need a spill could clobber a previous
1366	     function argument; the all_adjacent test in can_combine_p also
1367	     checks this; here, we do a more specific test for this case.  */
1368
1369	  || (GET_CODE (inner_dest) == REG
1370	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1371	      && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1372					GET_MODE (inner_dest))))
1373	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1374	return 0;
1375
1376      /* If DEST is used in I3, it is being killed in this insn,
1377	 so record that for later.
1378	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1379	 STACK_POINTER_REGNUM, since these are always considered to be
1380	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
1381      if (pi3dest_killed && GET_CODE (dest) == REG
1382	  && reg_referenced_p (dest, PATTERN (i3))
1383	  && REGNO (dest) != FRAME_POINTER_REGNUM
1384#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1385	  && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1386#endif
1387#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1388	  && (REGNO (dest) != ARG_POINTER_REGNUM
1389	      || ! fixed_regs [REGNO (dest)])
1390#endif
1391	  && REGNO (dest) != STACK_POINTER_REGNUM)
1392	{
1393	  if (*pi3dest_killed)
1394	    return 0;
1395
1396	  *pi3dest_killed = dest;
1397	}
1398    }
1399
1400  else if (GET_CODE (x) == PARALLEL)
1401    {
1402      int i;
1403
1404      for (i = 0; i < XVECLEN (x, 0); i++)
1405	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1406				i1_not_in_src, pi3dest_killed))
1407	  return 0;
1408    }
1409
1410  return 1;
1411}
1412
1413/* Return 1 if X is an arithmetic expression that contains a multiplication
1414   and division.  We don't count multiplications by powers of two here.  */
1415
1416static int
1417contains_muldiv (x)
1418     rtx x;
1419{
1420  switch (GET_CODE (x))
1421    {
1422    case MOD:  case DIV:  case UMOD:  case UDIV:
1423      return 1;
1424
1425    case MULT:
1426      return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1427		&& exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1428    default:
1429      switch (GET_RTX_CLASS (GET_CODE (x)))
1430	{
1431	case 'c':  case '<':  case '2':
1432	  return contains_muldiv (XEXP (x, 0))
1433	    || contains_muldiv (XEXP (x, 1));
1434
1435	case '1':
1436	  return contains_muldiv (XEXP (x, 0));
1437
1438	default:
1439	  return 0;
1440	}
1441    }
1442}
1443
1444/* Determine whether INSN can be used in a combination.  Return nonzero if
1445   not.  This is used in try_combine to detect early some cases where we
1446   can't perform combinations.  */
1447
1448static int
1449cant_combine_insn_p (insn)
1450     rtx insn;
1451{
1452  rtx set;
1453  rtx src, dest;
1454
1455  /* If this isn't really an insn, we can't do anything.
1456     This can occur when flow deletes an insn that it has merged into an
1457     auto-increment address.  */
1458  if (! INSN_P (insn))
1459    return 1;
1460
1461  /* Never combine loads and stores involving hard regs.  The register
1462     allocator can usually handle such reg-reg moves by tying.  If we allow
1463     the combiner to make substitutions of hard regs, we risk aborting in
1464     reload on machines that have SMALL_REGISTER_CLASSES.
1465     As an exception, we allow combinations involving fixed regs; these are
1466     not available to the register allocator so there's no risk involved.  */
1467
1468  set = single_set (insn);
1469  if (! set)
1470    return 0;
1471  src = SET_SRC (set);
1472  dest = SET_DEST (set);
1473  if (GET_CODE (src) == SUBREG)
1474    src = SUBREG_REG (src);
1475  if (GET_CODE (dest) == SUBREG)
1476    dest = SUBREG_REG (dest);
1477  if (REG_P (src) && REG_P (dest)
1478      && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1479	   && ! fixed_regs[REGNO (src)])
1480	  || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1481	      && ! fixed_regs[REGNO (dest)])))
1482    return 1;
1483
1484  return 0;
1485}
1486
1487/* Try to combine the insns I1 and I2 into I3.
1488   Here I1 and I2 appear earlier than I3.
1489   I1 can be zero; then we combine just I2 into I3.
1490
1491   If we are combining three insns and the resulting insn is not recognized,
1492   try splitting it into two insns.  If that happens, I2 and I3 are retained
1493   and I1 is pseudo-deleted by turning it into a NOTE.  Otherwise, I1 and I2
1494   are pseudo-deleted.
1495
1496   Return 0 if the combination does not work.  Then nothing is changed.
1497   If we did the combination, return the insn at which combine should
1498   resume scanning.
1499
1500   Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1501   new direct jump instruction.  */
1502
1503static rtx
1504try_combine (i3, i2, i1, new_direct_jump_p)
1505     rtx i3, i2, i1;
1506     int *new_direct_jump_p;
1507{
1508  /* New patterns for I3 and I2, respectively.  */
1509  rtx newpat, newi2pat = 0;
1510  int substed_i2 = 0, substed_i1 = 0;
1511  /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead.  */
1512  int added_sets_1, added_sets_2;
1513  /* Total number of SETs to put into I3.  */
1514  int total_sets;
1515  /* Nonzero is I2's body now appears in I3.  */
1516  int i2_is_used;
1517  /* INSN_CODEs for new I3, new I2, and user of condition code.  */
1518  int insn_code_number, i2_code_number = 0, other_code_number = 0;
1519  /* Contains I3 if the destination of I3 is used in its source, which means
1520     that the old life of I3 is being killed.  If that usage is placed into
1521     I2 and not in I3, a REG_DEAD note must be made.  */
1522  rtx i3dest_killed = 0;
1523  /* SET_DEST and SET_SRC of I2 and I1.  */
1524  rtx i2dest, i2src, i1dest = 0, i1src = 0;
1525  /* PATTERN (I2), or a copy of it in certain cases.  */
1526  rtx i2pat;
1527  /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
1528  int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1529  int i1_feeds_i3 = 0;
1530  /* Notes that must be added to REG_NOTES in I3 and I2.  */
1531  rtx new_i3_notes, new_i2_notes;
1532  /* Notes that we substituted I3 into I2 instead of the normal case.  */
1533  int i3_subst_into_i2 = 0;
1534  /* Notes that I1, I2 or I3 is a MULT operation.  */
1535  int have_mult = 0;
1536
1537  int maxreg;
1538  rtx temp;
1539  rtx link;
1540  int i;
1541
1542  /* Exit early if one of the insns involved can't be used for
1543     combinations.  */
1544  if (cant_combine_insn_p (i3)
1545      || cant_combine_insn_p (i2)
1546      || (i1 && cant_combine_insn_p (i1))
1547      /* We also can't do anything if I3 has a
1548	 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1549	 libcall.  */
1550#if 0
1551      /* ??? This gives worse code, and appears to be unnecessary, since no
1552	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  */
1553      || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1554#endif
1555      )
1556    return 0;
1557
1558  combine_attempts++;
1559  undobuf.other_insn = 0;
1560
1561  /* Reset the hard register usage information.  */
1562  CLEAR_HARD_REG_SET (newpat_used_regs);
1563
1564  /* If I1 and I2 both feed I3, they can be in any order.  To simplify the
1565     code below, set I1 to be the earlier of the two insns.  */
1566  if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1567    temp = i1, i1 = i2, i2 = temp;
1568
1569  added_links_insn = 0;
1570
1571  /* First check for one important special-case that the code below will
1572     not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
1573     and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
1574     we may be able to replace that destination with the destination of I3.
1575     This occurs in the common code where we compute both a quotient and
1576     remainder into a structure, in which case we want to do the computation
1577     directly into the structure to avoid register-register copies.
1578
1579     Note that this case handles both multiple sets in I2 and also
1580     cases where I2 has a number of CLOBBER or PARALLELs.
1581
1582     We make very conservative checks below and only try to handle the
1583     most common cases of this.  For example, we only handle the case
1584     where I2 and I3 are adjacent to avoid making difficult register
1585     usage tests.  */
1586
1587  if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1588      && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1589      && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1590      && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1591      && GET_CODE (PATTERN (i2)) == PARALLEL
1592      && ! side_effects_p (SET_DEST (PATTERN (i3)))
1593      /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1594	 below would need to check what is inside (and reg_overlap_mentioned_p
1595	 doesn't support those codes anyway).  Don't allow those destinations;
1596	 the resulting insn isn't likely to be recognized anyway.  */
1597      && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1598      && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1599      && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1600				    SET_DEST (PATTERN (i3)))
1601      && next_real_insn (i2) == i3)
1602    {
1603      rtx p2 = PATTERN (i2);
1604
1605      /* Make sure that the destination of I3,
1606	 which we are going to substitute into one output of I2,
1607	 is not used within another output of I2.  We must avoid making this:
1608	 (parallel [(set (mem (reg 69)) ...)
1609		    (set (reg 69) ...)])
1610	 which is not well-defined as to order of actions.
1611	 (Besides, reload can't handle output reloads for this.)
1612
1613	 The problem can also happen if the dest of I3 is a memory ref,
1614	 if another dest in I2 is an indirect memory ref.  */
1615      for (i = 0; i < XVECLEN (p2, 0); i++)
1616	if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1617	     || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1618	    && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1619					SET_DEST (XVECEXP (p2, 0, i))))
1620	  break;
1621
1622      if (i == XVECLEN (p2, 0))
1623	for (i = 0; i < XVECLEN (p2, 0); i++)
1624	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1625	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1626	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1627	    {
1628	      combine_merges++;
1629
1630	      subst_insn = i3;
1631	      subst_low_cuid = INSN_CUID (i2);
1632
1633	      added_sets_2 = added_sets_1 = 0;
1634	      i2dest = SET_SRC (PATTERN (i3));
1635
1636	      /* Replace the dest in I2 with our dest and make the resulting
1637		 insn the new pattern for I3.  Then skip to where we
1638		 validate the pattern.  Everything was set up above.  */
1639	      SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1640		     SET_DEST (PATTERN (i3)));
1641
1642	      newpat = p2;
1643	      i3_subst_into_i2 = 1;
1644	      goto validate_replacement;
1645	    }
1646    }
1647
1648  /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1649     one of those words to another constant, merge them by making a new
1650     constant.  */
1651  if (i1 == 0
1652      && (temp = single_set (i2)) != 0
1653      && (GET_CODE (SET_SRC (temp)) == CONST_INT
1654	  || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1655      && GET_CODE (SET_DEST (temp)) == REG
1656      && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1657      && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1658      && GET_CODE (PATTERN (i3)) == SET
1659      && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1660      && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1661      && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1662      && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1663      && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1664    {
1665      HOST_WIDE_INT lo, hi;
1666
1667      if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1668	lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1669      else
1670	{
1671	  lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1672	  hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1673	}
1674
1675      if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1676	{
1677	  /* We don't handle the case of the target word being wider
1678	     than a host wide int.  */
1679	  if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1680	    abort ();
1681
1682	  lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1683	  lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1684		 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1685	}
1686      else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1687	hi = INTVAL (SET_SRC (PATTERN (i3)));
1688      else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1689	{
1690	  int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1691			     >> (HOST_BITS_PER_WIDE_INT - 1));
1692
1693	  lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1694		   (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1695	  lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1696		 (INTVAL (SET_SRC (PATTERN (i3)))));
1697	  if (hi == sign)
1698	    hi = lo < 0 ? -1 : 0;
1699	}
1700      else
1701	/* We don't handle the case of the higher word not fitting
1702	   entirely in either hi or lo.  */
1703	abort ();
1704
1705      combine_merges++;
1706      subst_insn = i3;
1707      subst_low_cuid = INSN_CUID (i2);
1708      added_sets_2 = added_sets_1 = 0;
1709      i2dest = SET_DEST (temp);
1710
1711      SUBST (SET_SRC (temp),
1712	     immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1713
1714      newpat = PATTERN (i2);
1715      goto validate_replacement;
1716    }
1717
1718#ifndef HAVE_cc0
1719  /* If we have no I1 and I2 looks like:
1720	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1721		   (set Y OP)])
1722     make up a dummy I1 that is
1723	(set Y OP)
1724     and change I2 to be
1725        (set (reg:CC X) (compare:CC Y (const_int 0)))
1726
1727     (We can ignore any trailing CLOBBERs.)
1728
1729     This undoes a previous combination and allows us to match a branch-and-
1730     decrement insn.  */
1731
1732  if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1733      && XVECLEN (PATTERN (i2), 0) >= 2
1734      && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1735      && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1736	  == MODE_CC)
1737      && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1738      && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1739      && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1740      && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1741      && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1742		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1743    {
1744      for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1745	if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1746	  break;
1747
1748      if (i == 1)
1749	{
1750	  /* We make I1 with the same INSN_UID as I2.  This gives it
1751	     the same INSN_CUID for value tracking.  Our fake I1 will
1752	     never appear in the insn stream so giving it the same INSN_UID
1753	     as I2 will not cause a problem.  */
1754
1755	  subst_prev_insn = i1
1756	    = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1757			    XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1758			    NULL_RTX);
1759
1760	  SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1761	  SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1762		 SET_DEST (PATTERN (i1)));
1763	}
1764    }
1765#endif
1766
1767  /* Verify that I2 and I1 are valid for combining.  */
1768  if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1769      || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1770    {
1771      undo_all ();
1772      return 0;
1773    }
1774
1775  /* Record whether I2DEST is used in I2SRC and similarly for the other
1776     cases.  Knowing this will help in register status updating below.  */
1777  i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1778  i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1779  i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1780
1781  /* See if I1 directly feeds into I3.  It does if I1DEST is not used
1782     in I2SRC.  */
1783  i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1784
1785  /* Ensure that I3's pattern can be the destination of combines.  */
1786  if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1787			  i1 && i2dest_in_i1src && i1_feeds_i3,
1788			  &i3dest_killed))
1789    {
1790      undo_all ();
1791      return 0;
1792    }
1793
1794  /* See if any of the insns is a MULT operation.  Unless one is, we will
1795     reject a combination that is, since it must be slower.  Be conservative
1796     here.  */
1797  if (GET_CODE (i2src) == MULT
1798      || (i1 != 0 && GET_CODE (i1src) == MULT)
1799      || (GET_CODE (PATTERN (i3)) == SET
1800	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1801    have_mult = 1;
1802
1803  /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1804     We used to do this EXCEPT in one case: I3 has a post-inc in an
1805     output operand.  However, that exception can give rise to insns like
1806	mov r3,(r3)+
1807     which is a famous insn on the PDP-11 where the value of r3 used as the
1808     source was model-dependent.  Avoid this sort of thing.  */
1809
1810#if 0
1811  if (!(GET_CODE (PATTERN (i3)) == SET
1812	&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
1813	&& GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1814	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1815	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1816    /* It's not the exception.  */
1817#endif
1818#ifdef AUTO_INC_DEC
1819    for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1820      if (REG_NOTE_KIND (link) == REG_INC
1821	  && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1822	      || (i1 != 0
1823		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1824	{
1825	  undo_all ();
1826	  return 0;
1827	}
1828#endif
1829
1830  /* See if the SETs in I1 or I2 need to be kept around in the merged
1831     instruction: whenever the value set there is still needed past I3.
1832     For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1833
1834     For the SET in I1, we have two cases:  If I1 and I2 independently
1835     feed into I3, the set in I1 needs to be kept around if I1DEST dies
1836     or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
1837     in I1 needs to be kept around unless I1DEST dies or is set in either
1838     I2 or I3.  We can distinguish these cases by seeing if I2SRC mentions
1839     I1DEST.  If so, we know I1 feeds into I2.  */
1840
1841  added_sets_2 = ! dead_or_set_p (i3, i2dest);
1842
1843  added_sets_1
1844    = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1845	       : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1846
1847  /* If the set in I2 needs to be kept around, we must make a copy of
1848     PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1849     PATTERN (I2), we are only substituting for the original I1DEST, not into
1850     an already-substituted copy.  This also prevents making self-referential
1851     rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1852     I2DEST.  */
1853
1854  i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1855	   ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1856	   : PATTERN (i2));
1857
1858  if (added_sets_2)
1859    i2pat = copy_rtx (i2pat);
1860
1861  combine_merges++;
1862
1863  /* Substitute in the latest insn for the regs set by the earlier ones.  */
1864
1865  maxreg = max_reg_num ();
1866
1867  subst_insn = i3;
1868
1869  /* It is possible that the source of I2 or I1 may be performing an
1870     unneeded operation, such as a ZERO_EXTEND of something that is known
1871     to have the high part zero.  Handle that case by letting subst look at
1872     the innermost one of them.
1873
1874     Another way to do this would be to have a function that tries to
1875     simplify a single insn instead of merging two or more insns.  We don't
1876     do this because of the potential of infinite loops and because
1877     of the potential extra memory required.  However, doing it the way
1878     we are is a bit of a kludge and doesn't catch all cases.
1879
1880     But only do this if -fexpensive-optimizations since it slows things down
1881     and doesn't usually win.  */
1882
1883  if (flag_expensive_optimizations)
1884    {
1885      /* Pass pc_rtx so no substitutions are done, just simplifications.
1886	 The cases that we are interested in here do not involve the few
1887	 cases were is_replaced is checked.  */
1888      if (i1)
1889	{
1890	  subst_low_cuid = INSN_CUID (i1);
1891	  i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1892	}
1893      else
1894	{
1895	  subst_low_cuid = INSN_CUID (i2);
1896	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1897	}
1898    }
1899
1900#ifndef HAVE_cc0
1901  /* Many machines that don't use CC0 have insns that can both perform an
1902     arithmetic operation and set the condition code.  These operations will
1903     be represented as a PARALLEL with the first element of the vector
1904     being a COMPARE of an arithmetic operation with the constant zero.
1905     The second element of the vector will set some pseudo to the result
1906     of the same arithmetic operation.  If we simplify the COMPARE, we won't
1907     match such a pattern and so will generate an extra insn.   Here we test
1908     for this case, where both the comparison and the operation result are
1909     needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1910     I2SRC.  Later we will make the PARALLEL that contains I2.  */
1911
1912  if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1913      && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1914      && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1915      && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1916    {
1917#ifdef EXTRA_CC_MODES
1918      rtx *cc_use;
1919      enum machine_mode compare_mode;
1920#endif
1921
1922      newpat = PATTERN (i3);
1923      SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1924
1925      i2_is_used = 1;
1926
1927#ifdef EXTRA_CC_MODES
1928      /* See if a COMPARE with the operand we substituted in should be done
1929	 with the mode that is currently being used.  If not, do the same
1930	 processing we do in `subst' for a SET; namely, if the destination
1931	 is used only once, try to replace it with a register of the proper
1932	 mode and also replace the COMPARE.  */
1933      if (undobuf.other_insn == 0
1934	  && (cc_use = find_single_use (SET_DEST (newpat), i3,
1935					&undobuf.other_insn))
1936	  && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1937					      i2src, const0_rtx))
1938	      != GET_MODE (SET_DEST (newpat))))
1939	{
1940	  unsigned int regno = REGNO (SET_DEST (newpat));
1941	  rtx new_dest = gen_rtx_REG (compare_mode, regno);
1942
1943	  if (regno < FIRST_PSEUDO_REGISTER
1944	      || (REG_N_SETS (regno) == 1 && ! added_sets_2
1945		  && ! REG_USERVAR_P (SET_DEST (newpat))))
1946	    {
1947	      if (regno >= FIRST_PSEUDO_REGISTER)
1948		SUBST (regno_reg_rtx[regno], new_dest);
1949
1950	      SUBST (SET_DEST (newpat), new_dest);
1951	      SUBST (XEXP (*cc_use, 0), new_dest);
1952	      SUBST (SET_SRC (newpat),
1953		     gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1954	    }
1955	  else
1956	    undobuf.other_insn = 0;
1957	}
1958#endif
1959    }
1960  else
1961#endif
1962    {
1963      n_occurrences = 0;		/* `subst' counts here */
1964
1965      /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1966	 need to make a unique copy of I2SRC each time we substitute it
1967	 to avoid self-referential rtl.  */
1968
1969      subst_low_cuid = INSN_CUID (i2);
1970      newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1971		      ! i1_feeds_i3 && i1dest_in_i1src);
1972      substed_i2 = 1;
1973
1974      /* Record whether i2's body now appears within i3's body.  */
1975      i2_is_used = n_occurrences;
1976    }
1977
1978  /* If we already got a failure, don't try to do more.  Otherwise,
1979     try to substitute in I1 if we have it.  */
1980
1981  if (i1 && GET_CODE (newpat) != CLOBBER)
1982    {
1983      /* Before we can do this substitution, we must redo the test done
1984	 above (see detailed comments there) that ensures  that I1DEST
1985	 isn't mentioned in any SETs in NEWPAT that are field assignments.  */
1986
1987      if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1988			      0, (rtx*) 0))
1989	{
1990	  undo_all ();
1991	  return 0;
1992	}
1993
1994      n_occurrences = 0;
1995      subst_low_cuid = INSN_CUID (i1);
1996      newpat = subst (newpat, i1dest, i1src, 0, 0);
1997      substed_i1 = 1;
1998    }
1999
2000  /* Fail if an autoincrement side-effect has been duplicated.  Be careful
2001     to count all the ways that I2SRC and I1SRC can be used.  */
2002  if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2003       && i2_is_used + added_sets_2 > 1)
2004      || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2005	  && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2006	      > 1))
2007      /* Fail if we tried to make a new register (we used to abort, but there's
2008	 really no reason to).  */
2009      || max_reg_num () != maxreg
2010      /* Fail if we couldn't do something and have a CLOBBER.  */
2011      || GET_CODE (newpat) == CLOBBER
2012      /* Fail if this new pattern is a MULT and we didn't have one before
2013	 at the outer level.  */
2014      || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2015	  && ! have_mult))
2016    {
2017      undo_all ();
2018      return 0;
2019    }
2020
2021  /* If the actions of the earlier insns must be kept
2022     in addition to substituting them into the latest one,
2023     we must make a new PARALLEL for the latest insn
2024     to hold additional the SETs.  */
2025
2026  if (added_sets_1 || added_sets_2)
2027    {
2028      combine_extras++;
2029
2030      if (GET_CODE (newpat) == PARALLEL)
2031	{
2032	  rtvec old = XVEC (newpat, 0);
2033	  total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2034	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2035	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2036		  sizeof (old->elem[0]) * old->num_elem);
2037	}
2038      else
2039	{
2040	  rtx old = newpat;
2041	  total_sets = 1 + added_sets_1 + added_sets_2;
2042	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2043	  XVECEXP (newpat, 0, 0) = old;
2044	}
2045
2046      if (added_sets_1)
2047	XVECEXP (newpat, 0, --total_sets)
2048	  = (GET_CODE (PATTERN (i1)) == PARALLEL
2049	     ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2050
2051      if (added_sets_2)
2052	{
2053	  /* If there is no I1, use I2's body as is.  We used to also not do
2054	     the subst call below if I2 was substituted into I3,
2055	     but that could lose a simplification.  */
2056	  if (i1 == 0)
2057	    XVECEXP (newpat, 0, --total_sets) = i2pat;
2058	  else
2059	    /* See comment where i2pat is assigned.  */
2060	    XVECEXP (newpat, 0, --total_sets)
2061	      = subst (i2pat, i1dest, i1src, 0, 0);
2062	}
2063    }
2064
2065  /* We come here when we are replacing a destination in I2 with the
2066     destination of I3.  */
2067 validate_replacement:
2068
2069  /* Note which hard regs this insn has as inputs.  */
2070  mark_used_regs_combine (newpat);
2071
2072  /* Is the result of combination a valid instruction?  */
2073  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2074
2075  /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2076     the second SET's destination is a register that is unused.  In that case,
2077     we just need the first SET.   This can occur when simplifying a divmod
2078     insn.  We *must* test for this case here because the code below that
2079     splits two independent SETs doesn't handle this case correctly when it
2080     updates the register status.  Also check the case where the first
2081     SET's destination is unused.  That would not cause incorrect code, but
2082     does cause an unneeded insn to remain.  */
2083
2084  if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2085      && XVECLEN (newpat, 0) == 2
2086      && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2087      && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2088      && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2089      && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2090      && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2091      && asm_noperands (newpat) < 0)
2092    {
2093      newpat = XVECEXP (newpat, 0, 0);
2094      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2095    }
2096
2097  else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2098	   && XVECLEN (newpat, 0) == 2
2099	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2100	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2101	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2102	   && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2103	   && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2104	   && asm_noperands (newpat) < 0)
2105    {
2106      newpat = XVECEXP (newpat, 0, 1);
2107      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2108    }
2109
2110  /* If we were combining three insns and the result is a simple SET
2111     with no ASM_OPERANDS that wasn't recognized, try to split it into two
2112     insns.  There are two ways to do this.  It can be split using a
2113     machine-specific method (like when you have an addition of a large
2114     constant) or by combine in the function find_split_point.  */
2115
2116  if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2117      && asm_noperands (newpat) < 0)
2118    {
2119      rtx m_split, *split;
2120      rtx ni2dest = i2dest;
2121
2122      /* See if the MD file can split NEWPAT.  If it can't, see if letting it
2123	 use I2DEST as a scratch register will help.  In the latter case,
2124	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
2125
2126      m_split = split_insns (newpat, i3);
2127
2128      /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2129	 inputs of NEWPAT.  */
2130
2131      /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2132	 possible to try that as a scratch reg.  This would require adding
2133	 more code to make it work though.  */
2134
2135      if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2136	{
2137	  /* If I2DEST is a hard register or the only use of a pseudo,
2138	     we can change its mode.  */
2139	  if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2140	      && GET_MODE (SET_DEST (newpat)) != VOIDmode
2141	      && GET_CODE (i2dest) == REG
2142	      && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2143		  || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2144		      && ! REG_USERVAR_P (i2dest))))
2145	    ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2146				   REGNO (i2dest));
2147
2148	  m_split = split_insns (gen_rtx_PARALLEL
2149				 (VOIDmode,
2150				  gen_rtvec (2, newpat,
2151					     gen_rtx_CLOBBER (VOIDmode,
2152							      ni2dest))),
2153				 i3);
2154	  /* If the split with the mode-changed register didn't work, try
2155	     the original register.  */
2156	  if (! m_split && ni2dest != i2dest)
2157	    {
2158	      ni2dest = i2dest;
2159	      m_split = split_insns (gen_rtx_PARALLEL
2160				     (VOIDmode,
2161				      gen_rtvec (2, newpat,
2162						 gen_rtx_CLOBBER (VOIDmode,
2163								  i2dest))),
2164				     i3);
2165	    }
2166	}
2167
2168      /* If we've split a jump pattern, we'll wind up with a sequence even
2169	 with one instruction.  We can handle that below, so extract it.  */
2170      if (m_split && GET_CODE (m_split) == SEQUENCE
2171	  && XVECLEN (m_split, 0) == 1)
2172	m_split = PATTERN (XVECEXP (m_split, 0, 0));
2173
2174      if (m_split && GET_CODE (m_split) != SEQUENCE)
2175	{
2176	  insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2177	  if (insn_code_number >= 0)
2178	    newpat = m_split;
2179	}
2180      else if (m_split && GET_CODE (m_split) == SEQUENCE
2181	       && XVECLEN (m_split, 0) == 2
2182	       && (next_real_insn (i2) == i3
2183		   || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2184					   INSN_CUID (i2))))
2185	{
2186	  rtx i2set, i3set;
2187	  rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2188	  newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2189
2190	  i3set = single_set (XVECEXP (m_split, 0, 1));
2191	  i2set = single_set (XVECEXP (m_split, 0, 0));
2192
2193	  /* In case we changed the mode of I2DEST, replace it in the
2194	     pseudo-register table here.  We can't do it above in case this
2195	     code doesn't get executed and we do a split the other way.  */
2196
2197	  if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2198	    SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2199
2200	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2201
2202	  /* If I2 or I3 has multiple SETs, we won't know how to track
2203	     register status, so don't use these insns.  If I2's destination
2204	     is used between I2 and I3, we also can't use these insns.  */
2205
2206	  if (i2_code_number >= 0 && i2set && i3set
2207	      && (next_real_insn (i2) == i3
2208		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2209	    insn_code_number = recog_for_combine (&newi3pat, i3,
2210						  &new_i3_notes);
2211	  if (insn_code_number >= 0)
2212	    newpat = newi3pat;
2213
2214	  /* It is possible that both insns now set the destination of I3.
2215	     If so, we must show an extra use of it.  */
2216
2217	  if (insn_code_number >= 0)
2218	    {
2219	      rtx new_i3_dest = SET_DEST (i3set);
2220	      rtx new_i2_dest = SET_DEST (i2set);
2221
2222	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2223		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2224		     || GET_CODE (new_i3_dest) == SUBREG)
2225		new_i3_dest = XEXP (new_i3_dest, 0);
2226
2227	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2228		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2229		     || GET_CODE (new_i2_dest) == SUBREG)
2230		new_i2_dest = XEXP (new_i2_dest, 0);
2231
2232	      if (GET_CODE (new_i3_dest) == REG
2233		  && GET_CODE (new_i2_dest) == REG
2234		  && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2235		REG_N_SETS (REGNO (new_i2_dest))++;
2236	    }
2237	}
2238
2239      /* If we can split it and use I2DEST, go ahead and see if that
2240	 helps things be recognized.  Verify that none of the registers
2241	 are set between I2 and I3.  */
2242      if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2243#ifdef HAVE_cc0
2244	  && GET_CODE (i2dest) == REG
2245#endif
2246	  /* We need I2DEST in the proper mode.  If it is a hard register
2247	     or the only use of a pseudo, we can change its mode.  */
2248	  && (GET_MODE (*split) == GET_MODE (i2dest)
2249	      || GET_MODE (*split) == VOIDmode
2250	      || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2251	      || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2252		  && ! REG_USERVAR_P (i2dest)))
2253	  && (next_real_insn (i2) == i3
2254	      || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2255	  /* We can't overwrite I2DEST if its value is still used by
2256	     NEWPAT.  */
2257	  && ! reg_referenced_p (i2dest, newpat))
2258	{
2259	  rtx newdest = i2dest;
2260	  enum rtx_code split_code = GET_CODE (*split);
2261	  enum machine_mode split_mode = GET_MODE (*split);
2262
2263	  /* Get NEWDEST as a register in the proper mode.  We have already
2264	     validated that we can do this.  */
2265	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2266	    {
2267	      newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2268
2269	      if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2270		SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2271	    }
2272
2273	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2274	     an ASHIFT.  This can occur if it was inside a PLUS and hence
2275	     appeared to be a memory address.  This is a kludge.  */
2276	  if (split_code == MULT
2277	      && GET_CODE (XEXP (*split, 1)) == CONST_INT
2278	      && INTVAL (XEXP (*split, 1)) > 0
2279	      && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2280	    {
2281	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
2282					     XEXP (*split, 0), GEN_INT (i)));
2283	      /* Update split_code because we may not have a multiply
2284		 anymore.  */
2285	      split_code = GET_CODE (*split);
2286	    }
2287
2288#ifdef INSN_SCHEDULING
2289	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2290	     be written as a ZERO_EXTEND.  */
2291	  if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2292	    SUBST (*split, gen_rtx_ZERO_EXTEND  (split_mode,
2293						 SUBREG_REG (*split)));
2294#endif
2295
2296	  newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2297	  SUBST (*split, newdest);
2298	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2299
2300	  /* If the split point was a MULT and we didn't have one before,
2301	     don't use one now.  */
2302	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2303	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2304	}
2305    }
2306
2307  /* Check for a case where we loaded from memory in a narrow mode and
2308     then sign extended it, but we need both registers.  In that case,
2309     we have a PARALLEL with both loads from the same memory location.
2310     We can split this into a load from memory followed by a register-register
2311     copy.  This saves at least one insn, more if register allocation can
2312     eliminate the copy.
2313
2314     We cannot do this if the destination of the second assignment is
2315     a register that we have already assumed is zero-extended.  Similarly
2316     for a SUBREG of such a register.  */
2317
2318  else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2319	   && GET_CODE (newpat) == PARALLEL
2320	   && XVECLEN (newpat, 0) == 2
2321	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2322	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2323	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2324	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2325			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2326	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2327				   INSN_CUID (i2))
2328	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2329	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2330	   && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2331		 (GET_CODE (temp) == REG
2332		  && reg_nonzero_bits[REGNO (temp)] != 0
2333		  && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2334		  && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2335		  && (reg_nonzero_bits[REGNO (temp)]
2336		      != GET_MODE_MASK (word_mode))))
2337	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2338		 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2339		     (GET_CODE (temp) == REG
2340		      && reg_nonzero_bits[REGNO (temp)] != 0
2341		      && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2342		      && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2343		      && (reg_nonzero_bits[REGNO (temp)]
2344			  != GET_MODE_MASK (word_mode)))))
2345	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2346					 SET_SRC (XVECEXP (newpat, 0, 1)))
2347	   && ! find_reg_note (i3, REG_UNUSED,
2348			       SET_DEST (XVECEXP (newpat, 0, 0))))
2349    {
2350      rtx ni2dest;
2351
2352      newi2pat = XVECEXP (newpat, 0, 0);
2353      ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2354      newpat = XVECEXP (newpat, 0, 1);
2355      SUBST (SET_SRC (newpat),
2356	     gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2357      i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2358
2359      if (i2_code_number >= 0)
2360	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2361
2362      if (insn_code_number >= 0)
2363	{
2364	  rtx insn;
2365	  rtx link;
2366
2367	  /* If we will be able to accept this, we have made a change to the
2368	     destination of I3.  This can invalidate a LOG_LINKS pointing
2369	     to I3.  No other part of combine.c makes such a transformation.
2370
2371	     The new I3 will have a destination that was previously the
2372	     destination of I1 or I2 and which was used in i2 or I3.  Call
2373	     distribute_links to make a LOG_LINK from the next use of
2374	     that destination.  */
2375
2376	  PATTERN (i3) = newpat;
2377	  distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2378
2379	  /* I3 now uses what used to be its destination and which is
2380	     now I2's destination.  That means we need a LOG_LINK from
2381	     I3 to I2.  But we used to have one, so we still will.
2382
2383	     However, some later insn might be using I2's dest and have
2384	     a LOG_LINK pointing at I3.  We must remove this link.
2385	     The simplest way to remove the link is to point it at I1,
2386	     which we know will be a NOTE.  */
2387
2388	  for (insn = NEXT_INSN (i3);
2389	       insn && (this_basic_block == n_basic_blocks - 1
2390			|| insn != BLOCK_HEAD (this_basic_block + 1));
2391	       insn = NEXT_INSN (insn))
2392	    {
2393	      if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2394		{
2395		  for (link = LOG_LINKS (insn); link;
2396		       link = XEXP (link, 1))
2397		    if (XEXP (link, 0) == i3)
2398		      XEXP (link, 0) = i1;
2399
2400		  break;
2401		}
2402	    }
2403	}
2404    }
2405
2406  /* Similarly, check for a case where we have a PARALLEL of two independent
2407     SETs but we started with three insns.  In this case, we can do the sets
2408     as two separate insns.  This case occurs when some SET allows two
2409     other insns to combine, but the destination of that SET is still live.  */
2410
2411  else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2412	   && GET_CODE (newpat) == PARALLEL
2413	   && XVECLEN (newpat, 0) == 2
2414	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2415	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2416	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2417	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2418	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2419	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2420	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2421				   INSN_CUID (i2))
2422	   /* Don't pass sets with (USE (MEM ...)) dests to the following.  */
2423	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2424	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2425	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2426				  XVECEXP (newpat, 0, 0))
2427	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2428				  XVECEXP (newpat, 0, 1))
2429	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2430		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2431    {
2432      /* Normally, it doesn't matter which of the two is done first,
2433	 but it does if one references cc0.  In that case, it has to
2434	 be first.  */
2435#ifdef HAVE_cc0
2436      if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2437	{
2438	  newi2pat = XVECEXP (newpat, 0, 0);
2439	  newpat = XVECEXP (newpat, 0, 1);
2440	}
2441      else
2442#endif
2443	{
2444	  newi2pat = XVECEXP (newpat, 0, 1);
2445	  newpat = XVECEXP (newpat, 0, 0);
2446	}
2447
2448      i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2449
2450      if (i2_code_number >= 0)
2451	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2452    }
2453
2454  /* If it still isn't recognized, fail and change things back the way they
2455     were.  */
2456  if ((insn_code_number < 0
2457       /* Is the result a reasonable ASM_OPERANDS?  */
2458       && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2459    {
2460      undo_all ();
2461      return 0;
2462    }
2463
2464  /* If we had to change another insn, make sure it is valid also.  */
2465  if (undobuf.other_insn)
2466    {
2467      rtx other_pat = PATTERN (undobuf.other_insn);
2468      rtx new_other_notes;
2469      rtx note, next;
2470
2471      CLEAR_HARD_REG_SET (newpat_used_regs);
2472
2473      other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2474					     &new_other_notes);
2475
2476      if (other_code_number < 0 && ! check_asm_operands (other_pat))
2477	{
2478	  undo_all ();
2479	  return 0;
2480	}
2481
2482      PATTERN (undobuf.other_insn) = other_pat;
2483
2484      /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2485	 are still valid.  Then add any non-duplicate notes added by
2486	 recog_for_combine.  */
2487      for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2488	{
2489	  next = XEXP (note, 1);
2490
2491	  if (REG_NOTE_KIND (note) == REG_UNUSED
2492	      && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2493	    {
2494	      if (GET_CODE (XEXP (note, 0)) == REG)
2495		REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2496
2497	      remove_note (undobuf.other_insn, note);
2498	    }
2499	}
2500
2501      for (note = new_other_notes; note; note = XEXP (note, 1))
2502	if (GET_CODE (XEXP (note, 0)) == REG)
2503	  REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2504
2505      distribute_notes (new_other_notes, undobuf.other_insn,
2506			undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2507    }
2508#ifdef HAVE_cc0
2509  /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2510     they are adjacent to each other or not.  */
2511  {
2512    rtx p = prev_nonnote_insn (i3);
2513    if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2514	&& sets_cc0_p (newi2pat))
2515      {
2516	undo_all ();
2517	return 0;
2518      }
2519  }
2520#endif
2521
2522  /* We now know that we can do this combination.  Merge the insns and
2523     update the status of registers and LOG_LINKS.  */
2524
2525  {
2526    rtx i3notes, i2notes, i1notes = 0;
2527    rtx i3links, i2links, i1links = 0;
2528    rtx midnotes = 0;
2529    unsigned int regno;
2530    /* Compute which registers we expect to eliminate.  newi2pat may be setting
2531       either i3dest or i2dest, so we must check it.  Also, i1dest may be the
2532       same as i3dest, in which case newi2pat may be setting i1dest.  */
2533    rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2534		   || i2dest_in_i2src || i2dest_in_i1src
2535		   ? 0 : i2dest);
2536    rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2537		   || (newi2pat && reg_set_p (i1dest, newi2pat))
2538		   ? 0 : i1dest);
2539
2540    /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2541       clear them.  */
2542    i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2543    i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2544    if (i1)
2545      i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2546
2547    /* Ensure that we do not have something that should not be shared but
2548       occurs multiple times in the new insns.  Check this by first
2549       resetting all the `used' flags and then copying anything is shared.  */
2550
2551    reset_used_flags (i3notes);
2552    reset_used_flags (i2notes);
2553    reset_used_flags (i1notes);
2554    reset_used_flags (newpat);
2555    reset_used_flags (newi2pat);
2556    if (undobuf.other_insn)
2557      reset_used_flags (PATTERN (undobuf.other_insn));
2558
2559    i3notes = copy_rtx_if_shared (i3notes);
2560    i2notes = copy_rtx_if_shared (i2notes);
2561    i1notes = copy_rtx_if_shared (i1notes);
2562    newpat = copy_rtx_if_shared (newpat);
2563    newi2pat = copy_rtx_if_shared (newi2pat);
2564    if (undobuf.other_insn)
2565      reset_used_flags (PATTERN (undobuf.other_insn));
2566
2567    INSN_CODE (i3) = insn_code_number;
2568    PATTERN (i3) = newpat;
2569
2570    if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2571      {
2572	rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2573
2574	reset_used_flags (call_usage);
2575	call_usage = copy_rtx (call_usage);
2576
2577	if (substed_i2)
2578	  replace_rtx (call_usage, i2dest, i2src);
2579
2580	if (substed_i1)
2581	  replace_rtx (call_usage, i1dest, i1src);
2582
2583	CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2584      }
2585
2586    if (undobuf.other_insn)
2587      INSN_CODE (undobuf.other_insn) = other_code_number;
2588
2589    /* We had one special case above where I2 had more than one set and
2590       we replaced a destination of one of those sets with the destination
2591       of I3.  In that case, we have to update LOG_LINKS of insns later
2592       in this basic block.  Note that this (expensive) case is rare.
2593
2594       Also, in this case, we must pretend that all REG_NOTEs for I2
2595       actually came from I3, so that REG_UNUSED notes from I2 will be
2596       properly handled.  */
2597
2598    if (i3_subst_into_i2)
2599      {
2600	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2601	  if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2602	      && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2603	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2604	      && ! find_reg_note (i2, REG_UNUSED,
2605				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2606	    for (temp = NEXT_INSN (i2);
2607		 temp && (this_basic_block == n_basic_blocks - 1
2608			  || BLOCK_HEAD (this_basic_block) != temp);
2609		 temp = NEXT_INSN (temp))
2610	      if (temp != i3 && INSN_P (temp))
2611		for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2612		  if (XEXP (link, 0) == i2)
2613		    XEXP (link, 0) = i3;
2614
2615	if (i3notes)
2616	  {
2617	    rtx link = i3notes;
2618	    while (XEXP (link, 1))
2619	      link = XEXP (link, 1);
2620	    XEXP (link, 1) = i2notes;
2621	  }
2622	else
2623	  i3notes = i2notes;
2624	i2notes = 0;
2625      }
2626
2627    LOG_LINKS (i3) = 0;
2628    REG_NOTES (i3) = 0;
2629    LOG_LINKS (i2) = 0;
2630    REG_NOTES (i2) = 0;
2631
2632    if (newi2pat)
2633      {
2634	INSN_CODE (i2) = i2_code_number;
2635	PATTERN (i2) = newi2pat;
2636      }
2637    else
2638      {
2639	PUT_CODE (i2, NOTE);
2640	NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2641	NOTE_SOURCE_FILE (i2) = 0;
2642      }
2643
2644    if (i1)
2645      {
2646	LOG_LINKS (i1) = 0;
2647	REG_NOTES (i1) = 0;
2648	PUT_CODE (i1, NOTE);
2649	NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2650	NOTE_SOURCE_FILE (i1) = 0;
2651      }
2652
2653    /* Get death notes for everything that is now used in either I3 or
2654       I2 and used to die in a previous insn.  If we built two new
2655       patterns, move from I1 to I2 then I2 to I3 so that we get the
2656       proper movement on registers that I2 modifies.  */
2657
2658    if (newi2pat)
2659      {
2660	move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2661	move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2662      }
2663    else
2664      move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2665		   i3, &midnotes);
2666
2667    /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
2668    if (i3notes)
2669      distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2670			elim_i2, elim_i1);
2671    if (i2notes)
2672      distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2673			elim_i2, elim_i1);
2674    if (i1notes)
2675      distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2676			elim_i2, elim_i1);
2677    if (midnotes)
2678      distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2679			elim_i2, elim_i1);
2680
2681    /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
2682       know these are REG_UNUSED and want them to go to the desired insn,
2683       so we always pass it as i3.  We have not counted the notes in
2684       reg_n_deaths yet, so we need to do so now.  */
2685
2686    if (newi2pat && new_i2_notes)
2687      {
2688	for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2689	  if (GET_CODE (XEXP (temp, 0)) == REG)
2690	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2691
2692	distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2693      }
2694
2695    if (new_i3_notes)
2696      {
2697	for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2698	  if (GET_CODE (XEXP (temp, 0)) == REG)
2699	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2700
2701	distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2702      }
2703
2704    /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
2705       put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
2706       I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
2707       in that case, it might delete I2.  Similarly for I2 and I1.
2708       Show an additional death due to the REG_DEAD note we make here.  If
2709       we discard it in distribute_notes, we will decrement it again.  */
2710
2711    if (i3dest_killed)
2712      {
2713	if (GET_CODE (i3dest_killed) == REG)
2714	  REG_N_DEATHS (REGNO (i3dest_killed))++;
2715
2716	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2717	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2718					       NULL_RTX),
2719			    NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2720	else
2721	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2722					       NULL_RTX),
2723			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2724			    elim_i2, elim_i1);
2725      }
2726
2727    if (i2dest_in_i2src)
2728      {
2729	if (GET_CODE (i2dest) == REG)
2730	  REG_N_DEATHS (REGNO (i2dest))++;
2731
2732	if (newi2pat && reg_set_p (i2dest, newi2pat))
2733	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2734			    NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2735	else
2736	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2737			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2738			    NULL_RTX, NULL_RTX);
2739      }
2740
2741    if (i1dest_in_i1src)
2742      {
2743	if (GET_CODE (i1dest) == REG)
2744	  REG_N_DEATHS (REGNO (i1dest))++;
2745
2746	if (newi2pat && reg_set_p (i1dest, newi2pat))
2747	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2748			    NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2749	else
2750	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2751			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2752			    NULL_RTX, NULL_RTX);
2753      }
2754
2755    distribute_links (i3links);
2756    distribute_links (i2links);
2757    distribute_links (i1links);
2758
2759    if (GET_CODE (i2dest) == REG)
2760      {
2761	rtx link;
2762	rtx i2_insn = 0, i2_val = 0, set;
2763
2764	/* The insn that used to set this register doesn't exist, and
2765	   this life of the register may not exist either.  See if one of
2766	   I3's links points to an insn that sets I2DEST.  If it does,
2767	   that is now the last known value for I2DEST. If we don't update
2768	   this and I2 set the register to a value that depended on its old
2769	   contents, we will get confused.  If this insn is used, thing
2770	   will be set correctly in combine_instructions.  */
2771
2772	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2773	  if ((set = single_set (XEXP (link, 0))) != 0
2774	      && rtx_equal_p (i2dest, SET_DEST (set)))
2775	    i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2776
2777	record_value_for_reg (i2dest, i2_insn, i2_val);
2778
2779	/* If the reg formerly set in I2 died only once and that was in I3,
2780	   zero its use count so it won't make `reload' do any work.  */
2781	if (! added_sets_2
2782	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2783	    && ! i2dest_in_i2src)
2784	  {
2785	    regno = REGNO (i2dest);
2786	    REG_N_SETS (regno)--;
2787	  }
2788      }
2789
2790    if (i1 && GET_CODE (i1dest) == REG)
2791      {
2792	rtx link;
2793	rtx i1_insn = 0, i1_val = 0, set;
2794
2795	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2796	  if ((set = single_set (XEXP (link, 0))) != 0
2797	      && rtx_equal_p (i1dest, SET_DEST (set)))
2798	    i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2799
2800	record_value_for_reg (i1dest, i1_insn, i1_val);
2801
2802	regno = REGNO (i1dest);
2803	if (! added_sets_1 && ! i1dest_in_i1src)
2804	  REG_N_SETS (regno)--;
2805      }
2806
2807    /* Update reg_nonzero_bits et al for any changes that may have been made
2808       to this insn.  The order of set_nonzero_bits_and_sign_copies() is
2809       important.  Because newi2pat can affect nonzero_bits of newpat */
2810    if (newi2pat)
2811      note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2812    note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2813
2814    /* Set new_direct_jump_p if a new return or simple jump instruction
2815       has been created.
2816
2817       If I3 is now an unconditional jump, ensure that it has a
2818       BARRIER following it since it may have initially been a
2819       conditional jump.  It may also be the last nonnote insn.  */
2820
2821    if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2822      {
2823	*new_direct_jump_p = 1;
2824
2825	if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2826	    || GET_CODE (temp) != BARRIER)
2827	  emit_barrier_after (i3);
2828      }
2829    /* An NOOP jump does not need barrier, but it does need cleaning up
2830       of CFG.  */
2831    if (GET_CODE (newpat) == SET
2832	&& SET_SRC (newpat) == pc_rtx
2833	&& SET_DEST (newpat) == pc_rtx)
2834      *new_direct_jump_p = 1;
2835  }
2836
2837  combine_successes++;
2838  undo_commit ();
2839
2840  /* Clear this here, so that subsequent get_last_value calls are not
2841     affected.  */
2842  subst_prev_insn = NULL_RTX;
2843
2844  if (added_links_insn
2845      && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2846      && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2847    return added_links_insn;
2848  else
2849    return newi2pat ? i2 : i3;
2850}
2851
2852/* Undo all the modifications recorded in undobuf.  */
2853
2854static void
2855undo_all ()
2856{
2857  struct undo *undo, *next;
2858
2859  for (undo = undobuf.undos; undo; undo = next)
2860    {
2861      next = undo->next;
2862      if (undo->is_int)
2863	*undo->where.i = undo->old_contents.i;
2864      else
2865	*undo->where.r = undo->old_contents.r;
2866
2867      undo->next = undobuf.frees;
2868      undobuf.frees = undo;
2869    }
2870
2871  undobuf.undos = 0;
2872
2873  /* Clear this here, so that subsequent get_last_value calls are not
2874     affected.  */
2875  subst_prev_insn = NULL_RTX;
2876}
2877
2878/* We've committed to accepting the changes we made.  Move all
2879   of the undos to the free list.  */
2880
2881static void
2882undo_commit ()
2883{
2884  struct undo *undo, *next;
2885
2886  for (undo = undobuf.undos; undo; undo = next)
2887    {
2888      next = undo->next;
2889      undo->next = undobuf.frees;
2890      undobuf.frees = undo;
2891    }
2892  undobuf.undos = 0;
2893}
2894
2895
2896/* Find the innermost point within the rtx at LOC, possibly LOC itself,
2897   where we have an arithmetic expression and return that point.  LOC will
2898   be inside INSN.
2899
2900   try_combine will call this function to see if an insn can be split into
2901   two insns.  */
2902
2903static rtx *
2904find_split_point (loc, insn)
2905     rtx *loc;
2906     rtx insn;
2907{
2908  rtx x = *loc;
2909  enum rtx_code code = GET_CODE (x);
2910  rtx *split;
2911  unsigned HOST_WIDE_INT len = 0;
2912  HOST_WIDE_INT pos = 0;
2913  int unsignedp = 0;
2914  rtx inner = NULL_RTX;
2915
2916  /* First special-case some codes.  */
2917  switch (code)
2918    {
2919    case SUBREG:
2920#ifdef INSN_SCHEDULING
2921      /* If we are making a paradoxical SUBREG invalid, it becomes a split
2922	 point.  */
2923      if (GET_CODE (SUBREG_REG (x)) == MEM)
2924	return loc;
2925#endif
2926      return find_split_point (&SUBREG_REG (x), insn);
2927
2928    case MEM:
2929#ifdef HAVE_lo_sum
2930      /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2931	 using LO_SUM and HIGH.  */
2932      if (GET_CODE (XEXP (x, 0)) == CONST
2933	  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2934	{
2935	  SUBST (XEXP (x, 0),
2936		 gen_rtx_LO_SUM (Pmode,
2937				 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2938				 XEXP (x, 0)));
2939	  return &XEXP (XEXP (x, 0), 0);
2940	}
2941#endif
2942
2943      /* If we have a PLUS whose second operand is a constant and the
2944	 address is not valid, perhaps will can split it up using
2945	 the machine-specific way to split large constants.  We use
2946	 the first pseudo-reg (one of the virtual regs) as a placeholder;
2947	 it will not remain in the result.  */
2948      if (GET_CODE (XEXP (x, 0)) == PLUS
2949	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2950	  && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2951	{
2952	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2953	  rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2954				 subst_insn);
2955
2956	  /* This should have produced two insns, each of which sets our
2957	     placeholder.  If the source of the second is a valid address,
2958	     we can make put both sources together and make a split point
2959	     in the middle.  */
2960
2961	  if (seq && XVECLEN (seq, 0) == 2
2962	      && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2963	      && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2964	      && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2965	      && ! reg_mentioned_p (reg,
2966				    SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2967	      && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2968	      && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2969	      && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2970	      && memory_address_p (GET_MODE (x),
2971				   SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2972	    {
2973	      rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2974	      rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2975
2976	      /* Replace the placeholder in SRC2 with SRC1.  If we can
2977		 find where in SRC2 it was placed, that can become our
2978		 split point and we can replace this address with SRC2.
2979		 Just try two obvious places.  */
2980
2981	      src2 = replace_rtx (src2, reg, src1);
2982	      split = 0;
2983	      if (XEXP (src2, 0) == src1)
2984		split = &XEXP (src2, 0);
2985	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2986		       && XEXP (XEXP (src2, 0), 0) == src1)
2987		split = &XEXP (XEXP (src2, 0), 0);
2988
2989	      if (split)
2990		{
2991		  SUBST (XEXP (x, 0), src2);
2992		  return split;
2993		}
2994	    }
2995
2996	  /* If that didn't work, perhaps the first operand is complex and
2997	     needs to be computed separately, so make a split point there.
2998	     This will occur on machines that just support REG + CONST
2999	     and have a constant moved through some previous computation.  */
3000
3001	  else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3002		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3003			 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3004			     == 'o')))
3005	    return &XEXP (XEXP (x, 0), 0);
3006	}
3007      break;
3008
3009    case SET:
3010#ifdef HAVE_cc0
3011      /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3012	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3013	 we need to put the operand into a register.  So split at that
3014	 point.  */
3015
3016      if (SET_DEST (x) == cc0_rtx
3017	  && GET_CODE (SET_SRC (x)) != COMPARE
3018	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3019	  && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3020	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
3021		&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3022	return &SET_SRC (x);
3023#endif
3024
3025      /* See if we can split SET_SRC as it stands.  */
3026      split = find_split_point (&SET_SRC (x), insn);
3027      if (split && split != &SET_SRC (x))
3028	return split;
3029
3030      /* See if we can split SET_DEST as it stands.  */
3031      split = find_split_point (&SET_DEST (x), insn);
3032      if (split && split != &SET_DEST (x))
3033	return split;
3034
3035      /* See if this is a bitfield assignment with everything constant.  If
3036	 so, this is an IOR of an AND, so split it into that.  */
3037      if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3038	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3039	      <= HOST_BITS_PER_WIDE_INT)
3040	  && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3041	  && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3042	  && GET_CODE (SET_SRC (x)) == CONST_INT
3043	  && ((INTVAL (XEXP (SET_DEST (x), 1))
3044	       + INTVAL (XEXP (SET_DEST (x), 2)))
3045	      <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3046	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3047	{
3048	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3049	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3050	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3051	  rtx dest = XEXP (SET_DEST (x), 0);
3052	  enum machine_mode mode = GET_MODE (dest);
3053	  unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3054
3055	  if (BITS_BIG_ENDIAN)
3056	    pos = GET_MODE_BITSIZE (mode) - len - pos;
3057
3058	  if (src == mask)
3059	    SUBST (SET_SRC (x),
3060		   gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3061	  else
3062	    SUBST (SET_SRC (x),
3063		   gen_binary (IOR, mode,
3064			       gen_binary (AND, mode, dest,
3065					   GEN_INT
3066					   (
3067					    trunc_int_for_mode
3068					    (~(mask << pos)
3069					     & GET_MODE_MASK (mode), mode))),
3070			       GEN_INT (src << pos)));
3071
3072	  SUBST (SET_DEST (x), dest);
3073
3074	  split = find_split_point (&SET_SRC (x), insn);
3075	  if (split && split != &SET_SRC (x))
3076	    return split;
3077	}
3078
3079      /* Otherwise, see if this is an operation that we can split into two.
3080	 If so, try to split that.  */
3081      code = GET_CODE (SET_SRC (x));
3082
3083      switch (code)
3084	{
3085	case AND:
3086	  /* If we are AND'ing with a large constant that is only a single
3087	     bit and the result is only being used in a context where we
3088	     need to know if it is zero or non-zero, replace it with a bit
3089	     extraction.  This will avoid the large constant, which might
3090	     have taken more than one insn to make.  If the constant were
3091	     not a valid argument to the AND but took only one insn to make,
3092	     this is no worse, but if it took more than one insn, it will
3093	     be better.  */
3094
3095	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3096	      && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3097	      && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3098	      && GET_CODE (SET_DEST (x)) == REG
3099	      && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3100	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3101	      && XEXP (*split, 0) == SET_DEST (x)
3102	      && XEXP (*split, 1) == const0_rtx)
3103	    {
3104	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3105						XEXP (SET_SRC (x), 0),
3106						pos, NULL_RTX, 1, 1, 0, 0);
3107	      if (extraction != 0)
3108		{
3109		  SUBST (SET_SRC (x), extraction);
3110		  return find_split_point (loc, insn);
3111		}
3112	    }
3113	  break;
3114
3115	case NE:
3116	  /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3117	     is known to be on, this can be converted into a NEG of a shift.  */
3118	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3119	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3120	      && 1 <= (pos = exact_log2
3121		       (nonzero_bits (XEXP (SET_SRC (x), 0),
3122				      GET_MODE (XEXP (SET_SRC (x), 0))))))
3123	    {
3124	      enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3125
3126	      SUBST (SET_SRC (x),
3127		     gen_rtx_NEG (mode,
3128				  gen_rtx_LSHIFTRT (mode,
3129						    XEXP (SET_SRC (x), 0),
3130						    GEN_INT (pos))));
3131
3132	      split = find_split_point (&SET_SRC (x), insn);
3133	      if (split && split != &SET_SRC (x))
3134		return split;
3135	    }
3136	  break;
3137
3138	case SIGN_EXTEND:
3139	  inner = XEXP (SET_SRC (x), 0);
3140
3141	  /* We can't optimize if either mode is a partial integer
3142	     mode as we don't know how many bits are significant
3143	     in those modes.  */
3144	  if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3145	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3146	    break;
3147
3148	  pos = 0;
3149	  len = GET_MODE_BITSIZE (GET_MODE (inner));
3150	  unsignedp = 0;
3151	  break;
3152
3153	case SIGN_EXTRACT:
3154	case ZERO_EXTRACT:
3155	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3156	      && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3157	    {
3158	      inner = XEXP (SET_SRC (x), 0);
3159	      len = INTVAL (XEXP (SET_SRC (x), 1));
3160	      pos = INTVAL (XEXP (SET_SRC (x), 2));
3161
3162	      if (BITS_BIG_ENDIAN)
3163		pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3164	      unsignedp = (code == ZERO_EXTRACT);
3165	    }
3166	  break;
3167
3168	default:
3169	  break;
3170	}
3171
3172      if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3173	{
3174	  enum machine_mode mode = GET_MODE (SET_SRC (x));
3175
3176	  /* For unsigned, we have a choice of a shift followed by an
3177	     AND or two shifts.  Use two shifts for field sizes where the
3178	     constant might be too large.  We assume here that we can
3179	     always at least get 8-bit constants in an AND insn, which is
3180	     true for every current RISC.  */
3181
3182	  if (unsignedp && len <= 8)
3183	    {
3184	      SUBST (SET_SRC (x),
3185		     gen_rtx_AND (mode,
3186				  gen_rtx_LSHIFTRT
3187				  (mode, gen_lowpart_for_combine (mode, inner),
3188				   GEN_INT (pos)),
3189				  GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3190
3191	      split = find_split_point (&SET_SRC (x), insn);
3192	      if (split && split != &SET_SRC (x))
3193		return split;
3194	    }
3195	  else
3196	    {
3197	      SUBST (SET_SRC (x),
3198		     gen_rtx_fmt_ee
3199		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3200		      gen_rtx_ASHIFT (mode,
3201				      gen_lowpart_for_combine (mode, inner),
3202				      GEN_INT (GET_MODE_BITSIZE (mode)
3203					       - len - pos)),
3204		      GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3205
3206	      split = find_split_point (&SET_SRC (x), insn);
3207	      if (split && split != &SET_SRC (x))
3208		return split;
3209	    }
3210	}
3211
3212      /* See if this is a simple operation with a constant as the second
3213	 operand.  It might be that this constant is out of range and hence
3214	 could be used as a split point.  */
3215      if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3216	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3217	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3218	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
3219	  && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3220	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3221		  && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3222		      == 'o'))))
3223	return &XEXP (SET_SRC (x), 1);
3224
3225      /* Finally, see if this is a simple operation with its first operand
3226	 not in a register.  The operation might require this operand in a
3227	 register, so return it as a split point.  We can always do this
3228	 because if the first operand were another operation, we would have
3229	 already found it as a split point.  */
3230      if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3231	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3232	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3233	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3234	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3235	return &XEXP (SET_SRC (x), 0);
3236
3237      return 0;
3238
3239    case AND:
3240    case IOR:
3241      /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3242	 it is better to write this as (not (ior A B)) so we can split it.
3243	 Similarly for IOR.  */
3244      if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3245	{
3246	  SUBST (*loc,
3247		 gen_rtx_NOT (GET_MODE (x),
3248			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3249					      GET_MODE (x),
3250					      XEXP (XEXP (x, 0), 0),
3251					      XEXP (XEXP (x, 1), 0))));
3252	  return find_split_point (loc, insn);
3253	}
3254
3255      /* Many RISC machines have a large set of logical insns.  If the
3256	 second operand is a NOT, put it first so we will try to split the
3257	 other operand first.  */
3258      if (GET_CODE (XEXP (x, 1)) == NOT)
3259	{
3260	  rtx tem = XEXP (x, 0);
3261	  SUBST (XEXP (x, 0), XEXP (x, 1));
3262	  SUBST (XEXP (x, 1), tem);
3263	}
3264      break;
3265
3266    default:
3267      break;
3268    }
3269
3270  /* Otherwise, select our actions depending on our rtx class.  */
3271  switch (GET_RTX_CLASS (code))
3272    {
3273    case 'b':			/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
3274    case '3':
3275      split = find_split_point (&XEXP (x, 2), insn);
3276      if (split)
3277	return split;
3278      /* ... fall through ...  */
3279    case '2':
3280    case 'c':
3281    case '<':
3282      split = find_split_point (&XEXP (x, 1), insn);
3283      if (split)
3284	return split;
3285      /* ... fall through ...  */
3286    case '1':
3287      /* Some machines have (and (shift ...) ...) insns.  If X is not
3288	 an AND, but XEXP (X, 0) is, use it as our split point.  */
3289      if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3290	return &XEXP (x, 0);
3291
3292      split = find_split_point (&XEXP (x, 0), insn);
3293      if (split)
3294	return split;
3295      return loc;
3296    }
3297
3298  /* Otherwise, we don't have a split point.  */
3299  return 0;
3300}
3301
3302/* Throughout X, replace FROM with TO, and return the result.
3303   The result is TO if X is FROM;
3304   otherwise the result is X, but its contents may have been modified.
3305   If they were modified, a record was made in undobuf so that
3306   undo_all will (among other things) return X to its original state.
3307
3308   If the number of changes necessary is too much to record to undo,
3309   the excess changes are not made, so the result is invalid.
3310   The changes already made can still be undone.
3311   undobuf.num_undo is incremented for such changes, so by testing that
3312   the caller can tell whether the result is valid.
3313
3314   `n_occurrences' is incremented each time FROM is replaced.
3315
3316   IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3317
3318   UNIQUE_COPY is non-zero if each substitution must be unique.  We do this
3319   by copying if `n_occurrences' is non-zero.  */
3320
3321static rtx
3322subst (x, from, to, in_dest, unique_copy)
3323     rtx x, from, to;
3324     int in_dest;
3325     int unique_copy;
3326{
3327  enum rtx_code code = GET_CODE (x);
3328  enum machine_mode op0_mode = VOIDmode;
3329  const char *fmt;
3330  int len, i;
3331  rtx new;
3332
3333/* Two expressions are equal if they are identical copies of a shared
3334   RTX or if they are both registers with the same register number
3335   and mode.  */
3336
3337#define COMBINE_RTX_EQUAL_P(X,Y)			\
3338  ((X) == (Y)						\
3339   || (GET_CODE (X) == REG && GET_CODE (Y) == REG	\
3340       && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3341
3342  if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3343    {
3344      n_occurrences++;
3345      return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3346    }
3347
3348  /* If X and FROM are the same register but different modes, they will
3349     not have been seen as equal above.  However, flow.c will make a
3350     LOG_LINKS entry for that case.  If we do nothing, we will try to
3351     rerecognize our original insn and, when it succeeds, we will
3352     delete the feeding insn, which is incorrect.
3353
3354     So force this insn not to match in this (rare) case.  */
3355  if (! in_dest && code == REG && GET_CODE (from) == REG
3356      && REGNO (x) == REGNO (from))
3357    return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3358
3359  /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3360     of which may contain things that can be combined.  */
3361  if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3362    return x;
3363
3364  /* It is possible to have a subexpression appear twice in the insn.
3365     Suppose that FROM is a register that appears within TO.
3366     Then, after that subexpression has been scanned once by `subst',
3367     the second time it is scanned, TO may be found.  If we were
3368     to scan TO here, we would find FROM within it and create a
3369     self-referent rtl structure which is completely wrong.  */
3370  if (COMBINE_RTX_EQUAL_P (x, to))
3371    return to;
3372
3373  /* Parallel asm_operands need special attention because all of the
3374     inputs are shared across the arms.  Furthermore, unsharing the
3375     rtl results in recognition failures.  Failure to handle this case
3376     specially can result in circular rtl.
3377
3378     Solve this by doing a normal pass across the first entry of the
3379     parallel, and only processing the SET_DESTs of the subsequent
3380     entries.  Ug.  */
3381
3382  if (code == PARALLEL
3383      && GET_CODE (XVECEXP (x, 0, 0)) == SET
3384      && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3385    {
3386      new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3387
3388      /* If this substitution failed, this whole thing fails.  */
3389      if (GET_CODE (new) == CLOBBER
3390	  && XEXP (new, 0) == const0_rtx)
3391	return new;
3392
3393      SUBST (XVECEXP (x, 0, 0), new);
3394
3395      for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3396	{
3397	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
3398
3399	  if (GET_CODE (dest) != REG
3400	      && GET_CODE (dest) != CC0
3401	      && GET_CODE (dest) != PC)
3402	    {
3403	      new = subst (dest, from, to, 0, unique_copy);
3404
3405	      /* If this substitution failed, this whole thing fails.  */
3406	      if (GET_CODE (new) == CLOBBER
3407		  && XEXP (new, 0) == const0_rtx)
3408		return new;
3409
3410	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3411	    }
3412	}
3413    }
3414  else
3415    {
3416      len = GET_RTX_LENGTH (code);
3417      fmt = GET_RTX_FORMAT (code);
3418
3419      /* We don't need to process a SET_DEST that is a register, CC0,
3420	 or PC, so set up to skip this common case.  All other cases
3421	 where we want to suppress replacing something inside a
3422	 SET_SRC are handled via the IN_DEST operand.  */
3423      if (code == SET
3424	  && (GET_CODE (SET_DEST (x)) == REG
3425	      || GET_CODE (SET_DEST (x)) == CC0
3426	      || GET_CODE (SET_DEST (x)) == PC))
3427	fmt = "ie";
3428
3429      /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3430	 constant.  */
3431      if (fmt[0] == 'e')
3432	op0_mode = GET_MODE (XEXP (x, 0));
3433
3434      for (i = 0; i < len; i++)
3435	{
3436	  if (fmt[i] == 'E')
3437	    {
3438	      int j;
3439	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3440		{
3441		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3442		    {
3443		      new = (unique_copy && n_occurrences
3444			     ? copy_rtx (to) : to);
3445		      n_occurrences++;
3446		    }
3447		  else
3448		    {
3449		      new = subst (XVECEXP (x, i, j), from, to, 0,
3450				   unique_copy);
3451
3452		      /* If this substitution failed, this whole thing
3453			 fails.  */
3454		      if (GET_CODE (new) == CLOBBER
3455			  && XEXP (new, 0) == const0_rtx)
3456			return new;
3457		    }
3458
3459		  SUBST (XVECEXP (x, i, j), new);
3460		}
3461	    }
3462	  else if (fmt[i] == 'e')
3463	    {
3464	      /* If this is a register being set, ignore it.  */
3465	      new = XEXP (x, i);
3466	      if (in_dest
3467		  && (code == SUBREG || code == STRICT_LOW_PART
3468		      || code == ZERO_EXTRACT)
3469		  && i == 0
3470		  && GET_CODE (new) == REG)
3471		;
3472
3473	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3474		{
3475		  /* In general, don't install a subreg involving two
3476		     modes not tieable.  It can worsen register
3477		     allocation, and can even make invalid reload
3478		     insns, since the reg inside may need to be copied
3479		     from in the outside mode, and that may be invalid
3480		     if it is an fp reg copied in integer mode.
3481
3482		     We allow two exceptions to this: It is valid if
3483		     it is inside another SUBREG and the mode of that
3484		     SUBREG and the mode of the inside of TO is
3485		     tieable and it is valid if X is a SET that copies
3486		     FROM to CC0.  */
3487
3488		  if (GET_CODE (to) == SUBREG
3489		      && ! MODES_TIEABLE_P (GET_MODE (to),
3490					    GET_MODE (SUBREG_REG (to)))
3491		      && ! (code == SUBREG
3492			    && MODES_TIEABLE_P (GET_MODE (x),
3493						GET_MODE (SUBREG_REG (to))))
3494#ifdef HAVE_cc0
3495		      && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3496#endif
3497		      )
3498		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3499
3500#ifdef CLASS_CANNOT_CHANGE_MODE
3501		  if (code == SUBREG
3502		      && GET_CODE (to) == REG
3503		      && REGNO (to) < FIRST_PSEUDO_REGISTER
3504		      && (TEST_HARD_REG_BIT
3505			  (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3506			   REGNO (to)))
3507		      && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3508						     GET_MODE (x)))
3509		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3510#endif
3511
3512		  new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3513		  n_occurrences++;
3514		}
3515	      else
3516		/* If we are in a SET_DEST, suppress most cases unless we
3517		   have gone inside a MEM, in which case we want to
3518		   simplify the address.  We assume here that things that
3519		   are actually part of the destination have their inner
3520		   parts in the first expression.  This is true for SUBREG,
3521		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3522		   things aside from REG and MEM that should appear in a
3523		   SET_DEST.  */
3524		new = subst (XEXP (x, i), from, to,
3525			     (((in_dest
3526				&& (code == SUBREG || code == STRICT_LOW_PART
3527				    || code == ZERO_EXTRACT))
3528			       || code == SET)
3529			      && i == 0), unique_copy);
3530
3531	      /* If we found that we will have to reject this combination,
3532		 indicate that by returning the CLOBBER ourselves, rather than
3533		 an expression containing it.  This will speed things up as
3534		 well as prevent accidents where two CLOBBERs are considered
3535		 to be equal, thus producing an incorrect simplification.  */
3536
3537	      if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3538		return new;
3539
3540	      if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3541		{
3542		  x = simplify_subreg (GET_MODE (x), new,
3543				       GET_MODE (SUBREG_REG (x)),
3544				       SUBREG_BYTE (x));
3545		  if (! x)
3546		    abort ();
3547		}
3548	      else if (GET_CODE (new) == CONST_INT
3549		       && GET_CODE (x) == ZERO_EXTEND)
3550		{
3551		  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3552						new, GET_MODE (XEXP (x, 0)));
3553		  if (! x)
3554		    abort ();
3555		}
3556	      else
3557		SUBST (XEXP (x, i), new);
3558	    }
3559	}
3560    }
3561
3562  /* Try to simplify X.  If the simplification changed the code, it is likely
3563     that further simplification will help, so loop, but limit the number
3564     of repetitions that will be performed.  */
3565
3566  for (i = 0; i < 4; i++)
3567    {
3568      /* If X is sufficiently simple, don't bother trying to do anything
3569	 with it.  */
3570      if (code != CONST_INT && code != REG && code != CLOBBER)
3571	x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3572
3573      if (GET_CODE (x) == code)
3574	break;
3575
3576      code = GET_CODE (x);
3577
3578      /* We no longer know the original mode of operand 0 since we
3579	 have changed the form of X)  */
3580      op0_mode = VOIDmode;
3581    }
3582
3583  return x;
3584}
3585
3586/* Simplify X, a piece of RTL.  We just operate on the expression at the
3587   outer level; call `subst' to simplify recursively.  Return the new
3588   expression.
3589
3590   OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3591   will be the iteration even if an expression with a code different from
3592   X is returned; IN_DEST is nonzero if we are inside a SET_DEST.  */
3593
3594static rtx
3595combine_simplify_rtx (x, op0_mode, last, in_dest)
3596     rtx x;
3597     enum machine_mode op0_mode;
3598     int last;
3599     int in_dest;
3600{
3601  enum rtx_code code = GET_CODE (x);
3602  enum machine_mode mode = GET_MODE (x);
3603  rtx temp;
3604  rtx reversed;
3605  int i;
3606
3607  /* If this is a commutative operation, put a constant last and a complex
3608     expression first.  We don't need to do this for comparisons here.  */
3609  if (GET_RTX_CLASS (code) == 'c'
3610      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3611    {
3612      temp = XEXP (x, 0);
3613      SUBST (XEXP (x, 0), XEXP (x, 1));
3614      SUBST (XEXP (x, 1), temp);
3615    }
3616
3617  /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3618     sign extension of a PLUS with a constant, reverse the order of the sign
3619     extension and the addition. Note that this not the same as the original
3620     code, but overflow is undefined for signed values.  Also note that the
3621     PLUS will have been partially moved "inside" the sign-extension, so that
3622     the first operand of X will really look like:
3623         (ashiftrt (plus (ashift A C4) C5) C4).
3624     We convert this to
3625         (plus (ashiftrt (ashift A C4) C2) C4)
3626     and replace the first operand of X with that expression.  Later parts
3627     of this function may simplify the expression further.
3628
3629     For example, if we start with (mult (sign_extend (plus A C1)) C2),
3630     we swap the SIGN_EXTEND and PLUS.  Later code will apply the
3631     distributive law to produce (plus (mult (sign_extend X) C1) C3).
3632
3633     We do this to simplify address expressions.  */
3634
3635  if ((code == PLUS || code == MINUS || code == MULT)
3636      && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3637      && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3638      && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3639      && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3640      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3641      && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3642      && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3643      && (temp = simplify_binary_operation (ASHIFTRT, mode,
3644					    XEXP (XEXP (XEXP (x, 0), 0), 1),
3645					    XEXP (XEXP (x, 0), 1))) != 0)
3646    {
3647      rtx new
3648	= simplify_shift_const (NULL_RTX, ASHIFT, mode,
3649				XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3650				INTVAL (XEXP (XEXP (x, 0), 1)));
3651
3652      new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3653				  INTVAL (XEXP (XEXP (x, 0), 1)));
3654
3655      SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3656    }
3657
3658  /* If this is a simple operation applied to an IF_THEN_ELSE, try
3659     applying it to the arms of the IF_THEN_ELSE.  This often simplifies
3660     things.  Check for cases where both arms are testing the same
3661     condition.
3662
3663     Don't do anything if all operands are very simple.  */
3664
3665  if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3666	|| GET_RTX_CLASS (code) == '<')
3667       && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3668	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3669		  && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3670		      == 'o')))
3671	   || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3672	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3673		     && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3674			 == 'o')))))
3675      || (GET_RTX_CLASS (code) == '1'
3676	  && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3677	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3678		     && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3679			 == 'o'))))))
3680    {
3681      rtx cond, true_rtx, false_rtx;
3682
3683      cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3684      if (cond != 0
3685	  /* If everything is a comparison, what we have is highly unlikely
3686	     to be simpler, so don't use it.  */
3687	  && ! (GET_RTX_CLASS (code) == '<'
3688		&& (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3689		    || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3690	{
3691	  rtx cop1 = const0_rtx;
3692	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3693
3694	  if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3695	    return x;
3696
3697	  /* Simplify the alternative arms; this may collapse the true and
3698	     false arms to store-flag values.  */
3699	  true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3700	  false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3701
3702	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
3703	     is unlikely to be simpler.  */
3704	  if (general_operand (true_rtx, VOIDmode)
3705	      && general_operand (false_rtx, VOIDmode))
3706	    {
3707	      /* Restarting if we generate a store-flag expression will cause
3708		 us to loop.  Just drop through in this case.  */
3709
3710	      /* If the result values are STORE_FLAG_VALUE and zero, we can
3711		 just make the comparison operation.  */
3712	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3713		x = gen_binary (cond_code, mode, cond, cop1);
3714	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3715		       && reverse_condition (cond_code) != UNKNOWN)
3716		x = gen_binary (reverse_condition (cond_code),
3717				mode, cond, cop1);
3718
3719	      /* Likewise, we can make the negate of a comparison operation
3720		 if the result values are - STORE_FLAG_VALUE and zero.  */
3721	      else if (GET_CODE (true_rtx) == CONST_INT
3722		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3723		       && false_rtx == const0_rtx)
3724		x = simplify_gen_unary (NEG, mode,
3725					gen_binary (cond_code, mode, cond,
3726						    cop1),
3727					mode);
3728	      else if (GET_CODE (false_rtx) == CONST_INT
3729		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3730		       && true_rtx == const0_rtx)
3731		x = simplify_gen_unary (NEG, mode,
3732					gen_binary (reverse_condition
3733						    (cond_code),
3734						    mode, cond, cop1),
3735					mode);
3736	      else
3737		return gen_rtx_IF_THEN_ELSE (mode,
3738					     gen_binary (cond_code, VOIDmode,
3739							 cond, cop1),
3740					     true_rtx, false_rtx);
3741
3742	      code = GET_CODE (x);
3743	      op0_mode = VOIDmode;
3744	    }
3745	}
3746    }
3747
3748  /* Try to fold this expression in case we have constants that weren't
3749     present before.  */
3750  temp = 0;
3751  switch (GET_RTX_CLASS (code))
3752    {
3753    case '1':
3754      temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3755      break;
3756    case '<':
3757      {
3758	enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3759	if (cmp_mode == VOIDmode)
3760	  {
3761	    cmp_mode = GET_MODE (XEXP (x, 1));
3762	    if (cmp_mode == VOIDmode)
3763	      cmp_mode = op0_mode;
3764	  }
3765	temp = simplify_relational_operation (code, cmp_mode,
3766					      XEXP (x, 0), XEXP (x, 1));
3767      }
3768#ifdef FLOAT_STORE_FLAG_VALUE
3769      if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3770	{
3771	  if (temp == const0_rtx)
3772	    temp = CONST0_RTX (mode);
3773	  else
3774	    temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3775	}
3776#endif
3777      break;
3778    case 'c':
3779    case '2':
3780      temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3781      break;
3782    case 'b':
3783    case '3':
3784      temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3785					 XEXP (x, 1), XEXP (x, 2));
3786      break;
3787    }
3788
3789  if (temp)
3790    {
3791      x = temp;
3792      code = GET_CODE (temp);
3793      op0_mode = VOIDmode;
3794      mode = GET_MODE (temp);
3795    }
3796
3797  /* First see if we can apply the inverse distributive law.  */
3798  if (code == PLUS || code == MINUS
3799      || code == AND || code == IOR || code == XOR)
3800    {
3801      x = apply_distributive_law (x);
3802      code = GET_CODE (x);
3803      op0_mode = VOIDmode;
3804    }
3805
3806  /* If CODE is an associative operation not otherwise handled, see if we
3807     can associate some operands.  This can win if they are constants or
3808     if they are logically related (i.e. (a & b) & a).  */
3809  if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3810       || code == AND || code == IOR || code == XOR
3811       || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3812      && ((INTEGRAL_MODE_P (mode) && code != DIV)
3813	  || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3814    {
3815      if (GET_CODE (XEXP (x, 0)) == code)
3816	{
3817	  rtx other = XEXP (XEXP (x, 0), 0);
3818	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3819	  rtx inner_op1 = XEXP (x, 1);
3820	  rtx inner;
3821
3822	  /* Make sure we pass the constant operand if any as the second
3823	     one if this is a commutative operation.  */
3824	  if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3825	    {
3826	      rtx tem = inner_op0;
3827	      inner_op0 = inner_op1;
3828	      inner_op1 = tem;
3829	    }
3830	  inner = simplify_binary_operation (code == MINUS ? PLUS
3831					     : code == DIV ? MULT
3832					     : code,
3833					     mode, inner_op0, inner_op1);
3834
3835	  /* For commutative operations, try the other pair if that one
3836	     didn't simplify.  */
3837	  if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3838	    {
3839	      other = XEXP (XEXP (x, 0), 1);
3840	      inner = simplify_binary_operation (code, mode,
3841						 XEXP (XEXP (x, 0), 0),
3842						 XEXP (x, 1));
3843	    }
3844
3845	  if (inner)
3846	    return gen_binary (code, mode, other, inner);
3847	}
3848    }
3849
3850  /* A little bit of algebraic simplification here.  */
3851  switch (code)
3852    {
3853    case MEM:
3854      /* Ensure that our address has any ASHIFTs converted to MULT in case
3855	 address-recognizing predicates are called later.  */
3856      temp = make_compound_operation (XEXP (x, 0), MEM);
3857      SUBST (XEXP (x, 0), temp);
3858      break;
3859
3860    case SUBREG:
3861      if (op0_mode == VOIDmode)
3862	op0_mode = GET_MODE (SUBREG_REG (x));
3863
3864      /* simplify_subreg can't use gen_lowpart_for_combine.  */
3865      if (CONSTANT_P (SUBREG_REG (x))
3866	  && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3867	return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3868
3869      if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3870        break;
3871      {
3872	rtx temp;
3873	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3874				SUBREG_BYTE (x));
3875	if (temp)
3876	  return temp;
3877      }
3878
3879      /* Don't change the mode of the MEM if that would change the meaning
3880	 of the address.  */
3881      if (GET_CODE (SUBREG_REG (x)) == MEM
3882	  && (MEM_VOLATILE_P (SUBREG_REG (x))
3883	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3884	return gen_rtx_CLOBBER (mode, const0_rtx);
3885
3886      /* Note that we cannot do any narrowing for non-constants since
3887	 we might have been counting on using the fact that some bits were
3888	 zero.  We now do this in the SET.  */
3889
3890      break;
3891
3892    case NOT:
3893      /* (not (plus X -1)) can become (neg X).  */
3894      if (GET_CODE (XEXP (x, 0)) == PLUS
3895	  && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3896	return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3897
3898      /* Similarly, (not (neg X)) is (plus X -1).  */
3899      if (GET_CODE (XEXP (x, 0)) == NEG)
3900	return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3901
3902      /* (not (xor X C)) for C constant is (xor X D) with D = ~C.  */
3903      if (GET_CODE (XEXP (x, 0)) == XOR
3904	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3905	  && (temp = simplify_unary_operation (NOT, mode,
3906					       XEXP (XEXP (x, 0), 1),
3907					       mode)) != 0)
3908	return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3909
3910      /* (not (ashift 1 X)) is (rotate ~1 X).  We used to do this for operands
3911	 other than 1, but that is not valid.  We could do a similar
3912	 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3913	 but this doesn't seem common enough to bother with.  */
3914      if (GET_CODE (XEXP (x, 0)) == ASHIFT
3915	  && XEXP (XEXP (x, 0), 0) == const1_rtx)
3916	return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3917							 const1_rtx, mode),
3918			       XEXP (XEXP (x, 0), 1));
3919
3920      if (GET_CODE (XEXP (x, 0)) == SUBREG
3921	  && subreg_lowpart_p (XEXP (x, 0))
3922	  && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3923	      < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3924	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3925	  && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3926	{
3927	  enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3928
3929	  x = gen_rtx_ROTATE (inner_mode,
3930			      simplify_gen_unary (NOT, inner_mode, const1_rtx,
3931						  inner_mode),
3932			      XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3933	  return gen_lowpart_for_combine (mode, x);
3934	}
3935
3936      /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3937	 reversing the comparison code if valid.  */
3938      if (STORE_FLAG_VALUE == -1
3939	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3940	  && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3941					      XEXP (XEXP (x, 0), 1))))
3942	return reversed;
3943
3944      /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3945	 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3946	 perform the above simplification.  */
3947
3948      if (STORE_FLAG_VALUE == -1
3949	  && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3950	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3951	  && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3952	return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3953
3954      /* Apply De Morgan's laws to reduce number of patterns for machines
3955	 with negating logical insns (and-not, nand, etc.).  If result has
3956	 only one NOT, put it first, since that is how the patterns are
3957	 coded.  */
3958
3959      if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3960	{
3961	  rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3962	  enum machine_mode op_mode;
3963
3964	  op_mode = GET_MODE (in1);
3965	  in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3966
3967	  op_mode = GET_MODE (in2);
3968	  if (op_mode == VOIDmode)
3969	    op_mode = mode;
3970	  in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3971
3972	  if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3973	    {
3974	      rtx tem = in2;
3975	      in2 = in1; in1 = tem;
3976	    }
3977
3978	  return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3979				 mode, in1, in2);
3980	}
3981      break;
3982
3983    case NEG:
3984      /* (neg (plus X 1)) can become (not X).  */
3985      if (GET_CODE (XEXP (x, 0)) == PLUS
3986	  && XEXP (XEXP (x, 0), 1) == const1_rtx)
3987	return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3988
3989      /* Similarly, (neg (not X)) is (plus X 1).  */
3990      if (GET_CODE (XEXP (x, 0)) == NOT)
3991	return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3992
3993      /* (neg (minus X Y)) can become (minus Y X).  */
3994      if (GET_CODE (XEXP (x, 0)) == MINUS
3995	  && (! FLOAT_MODE_P (mode)
3996	      /* x-y != -(y-x) with IEEE floating point.  */
3997	      || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3998	      || flag_unsafe_math_optimizations))
3999	return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4000			   XEXP (XEXP (x, 0), 0));
4001
4002      /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1.  */
4003      if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4004	  && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4005	return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4006
4007      /* NEG commutes with ASHIFT since it is multiplication.  Only do this
4008	 if we can then eliminate the NEG (e.g.,
4009	 if the operand is a constant).  */
4010
4011      if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4012	{
4013	  temp = simplify_unary_operation (NEG, mode,
4014					   XEXP (XEXP (x, 0), 0), mode);
4015	  if (temp)
4016	    return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4017	}
4018
4019      temp = expand_compound_operation (XEXP (x, 0));
4020
4021      /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4022	 replaced by (lshiftrt X C).  This will convert
4023	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
4024
4025      if (GET_CODE (temp) == ASHIFTRT
4026	  && GET_CODE (XEXP (temp, 1)) == CONST_INT
4027	  && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4028	return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4029				     INTVAL (XEXP (temp, 1)));
4030
4031      /* If X has only a single bit that might be nonzero, say, bit I, convert
4032	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4033	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
4034	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
4035	 or a SUBREG of one since we'd be making the expression more
4036	 complex if it was just a register.  */
4037
4038      if (GET_CODE (temp) != REG
4039	  && ! (GET_CODE (temp) == SUBREG
4040		&& GET_CODE (SUBREG_REG (temp)) == REG)
4041	  && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4042	{
4043	  rtx temp1 = simplify_shift_const
4044	    (NULL_RTX, ASHIFTRT, mode,
4045	     simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4046				   GET_MODE_BITSIZE (mode) - 1 - i),
4047	     GET_MODE_BITSIZE (mode) - 1 - i);
4048
4049	  /* If all we did was surround TEMP with the two shifts, we
4050	     haven't improved anything, so don't use it.  Otherwise,
4051	     we are better off with TEMP1.  */
4052	  if (GET_CODE (temp1) != ASHIFTRT
4053	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4054	      || XEXP (XEXP (temp1, 0), 0) != temp)
4055	    return temp1;
4056	}
4057      break;
4058
4059    case TRUNCATE:
4060      /* We can't handle truncation to a partial integer mode here
4061	 because we don't know the real bitsize of the partial
4062	 integer mode.  */
4063      if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4064	break;
4065
4066      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4067	  && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4068				    GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4069	SUBST (XEXP (x, 0),
4070	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4071			      GET_MODE_MASK (mode), NULL_RTX, 0));
4072
4073      /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI.  */
4074      if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4075	   || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4076	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4077	return XEXP (XEXP (x, 0), 0);
4078
4079      /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4080	 (OP:SI foo:SI) if OP is NEG or ABS.  */
4081      if ((GET_CODE (XEXP (x, 0)) == ABS
4082	   || GET_CODE (XEXP (x, 0)) == NEG)
4083	  && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4084	      || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4085	  && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4086	return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4087				   XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4088
4089      /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4090	 (truncate:SI x).  */
4091      if (GET_CODE (XEXP (x, 0)) == SUBREG
4092	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4093	  && subreg_lowpart_p (XEXP (x, 0)))
4094	return SUBREG_REG (XEXP (x, 0));
4095
4096      /* If we know that the value is already truncated, we can
4097         replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4098         is nonzero for the corresponding modes.  But don't do this
4099         for an (LSHIFTRT (MULT ...)) since this will cause problems
4100         with the umulXi3_highpart patterns.  */
4101      if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4102				 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4103	  && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4104	     >= GET_MODE_BITSIZE (mode) + 1
4105	  && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4106		&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4107	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4108
4109      /* A truncate of a comparison can be replaced with a subreg if
4110         STORE_FLAG_VALUE permits.  This is like the previous test,
4111         but it works even if the comparison is done in a mode larger
4112         than HOST_BITS_PER_WIDE_INT.  */
4113      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4114	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4115	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4116	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4117
4118      /* Similarly, a truncate of a register whose value is a
4119         comparison can be replaced with a subreg if STORE_FLAG_VALUE
4120         permits.  */
4121      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4122	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4123	  && (temp = get_last_value (XEXP (x, 0)))
4124	  && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4125	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4126
4127      break;
4128
4129    case FLOAT_TRUNCATE:
4130      /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF.  */
4131      if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4132	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4133	return XEXP (XEXP (x, 0), 0);
4134
4135      /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4136	 (OP:SF foo:SF) if OP is NEG or ABS.  */
4137      if ((GET_CODE (XEXP (x, 0)) == ABS
4138	   || GET_CODE (XEXP (x, 0)) == NEG)
4139	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4140	  && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4141	return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4142				   XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4143
4144      /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4145	 is (float_truncate:SF x).  */
4146      if (GET_CODE (XEXP (x, 0)) == SUBREG
4147	  && subreg_lowpart_p (XEXP (x, 0))
4148	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4149	return SUBREG_REG (XEXP (x, 0));
4150      break;
4151
4152#ifdef HAVE_cc0
4153    case COMPARE:
4154      /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4155	 using cc0, in which case we want to leave it as a COMPARE
4156	 so we can distinguish it from a register-register-copy.  */
4157      if (XEXP (x, 1) == const0_rtx)
4158	return XEXP (x, 0);
4159
4160      /* In IEEE floating point, x-0 is not the same as x.  */
4161      if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4162	   || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4163	   || flag_unsafe_math_optimizations)
4164	  && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4165	return XEXP (x, 0);
4166      break;
4167#endif
4168
4169    case CONST:
4170      /* (const (const X)) can become (const X).  Do it this way rather than
4171	 returning the inner CONST since CONST can be shared with a
4172	 REG_EQUAL note.  */
4173      if (GET_CODE (XEXP (x, 0)) == CONST)
4174	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4175      break;
4176
4177#ifdef HAVE_lo_sum
4178    case LO_SUM:
4179      /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
4180	 can add in an offset.  find_split_point will split this address up
4181	 again if it doesn't match.  */
4182      if (GET_CODE (XEXP (x, 0)) == HIGH
4183	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4184	return XEXP (x, 1);
4185      break;
4186#endif
4187
4188    case PLUS:
4189      /* If we have (plus (plus (A const) B)), associate it so that CONST is
4190	 outermost.  That's because that's the way indexed addresses are
4191	 supposed to appear.  This code used to check many more cases, but
4192	 they are now checked elsewhere.  */
4193      if (GET_CODE (XEXP (x, 0)) == PLUS
4194	  && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4195	return gen_binary (PLUS, mode,
4196			   gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4197				       XEXP (x, 1)),
4198			   XEXP (XEXP (x, 0), 1));
4199
4200      /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4201	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4202	 bit-field and can be replaced by either a sign_extend or a
4203	 sign_extract.  The `and' may be a zero_extend and the two
4204	 <c>, -<c> constants may be reversed.  */
4205      if (GET_CODE (XEXP (x, 0)) == XOR
4206	  && GET_CODE (XEXP (x, 1)) == CONST_INT
4207	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4208	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4209	  && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4210	      || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4211	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4212	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4213	       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4214	       && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4215		   == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4216	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4217		  && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4218		      == (unsigned int) i + 1))))
4219	return simplify_shift_const
4220	  (NULL_RTX, ASHIFTRT, mode,
4221	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
4222				 XEXP (XEXP (XEXP (x, 0), 0), 0),
4223				 GET_MODE_BITSIZE (mode) - (i + 1)),
4224	   GET_MODE_BITSIZE (mode) - (i + 1));
4225
4226      /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4227	 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4228	 is 1.  This produces better code than the alternative immediately
4229	 below.  */
4230      if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4231	  && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4232	      || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4233	  && (reversed = reversed_comparison (XEXP (x, 0), mode,
4234					      XEXP (XEXP (x, 0), 0),
4235					      XEXP (XEXP (x, 0), 1))))
4236	return
4237	  simplify_gen_unary (NEG, mode, reversed, mode);
4238
4239      /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4240	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4241	 the bitsize of the mode - 1.  This allows simplification of
4242	 "a = (b & 8) == 0;"  */
4243      if (XEXP (x, 1) == constm1_rtx
4244	  && GET_CODE (XEXP (x, 0)) != REG
4245	  && ! (GET_CODE (XEXP (x,0)) == SUBREG
4246		&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4247	  && nonzero_bits (XEXP (x, 0), mode) == 1)
4248	return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4249	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
4250				 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4251				 GET_MODE_BITSIZE (mode) - 1),
4252	   GET_MODE_BITSIZE (mode) - 1);
4253
4254      /* If we are adding two things that have no bits in common, convert
4255	 the addition into an IOR.  This will often be further simplified,
4256	 for example in cases like ((a & 1) + (a & 2)), which can
4257	 become a & 3.  */
4258
4259      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4260	  && (nonzero_bits (XEXP (x, 0), mode)
4261	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
4262	{
4263	  /* Try to simplify the expression further.  */
4264	  rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4265	  temp = combine_simplify_rtx (tor, mode, last, in_dest);
4266
4267	  /* If we could, great.  If not, do not go ahead with the IOR
4268	     replacement, since PLUS appears in many special purpose
4269	     address arithmetic instructions.  */
4270	  if (GET_CODE (temp) != CLOBBER && temp != tor)
4271	    return temp;
4272	}
4273      break;
4274
4275    case MINUS:
4276      /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4277	 by reversing the comparison code if valid.  */
4278      if (STORE_FLAG_VALUE == 1
4279	  && XEXP (x, 0) == const1_rtx
4280	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4281	  && (reversed = reversed_comparison (XEXP (x, 1), mode,
4282					      XEXP (XEXP (x, 1), 0),
4283					      XEXP (XEXP (x, 1), 1))))
4284	return reversed;
4285
4286      /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4287	 (and <foo> (const_int pow2-1))  */
4288      if (GET_CODE (XEXP (x, 1)) == AND
4289	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4290	  && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4291	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4292	return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4293				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4294
4295      /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4296	 integers.  */
4297      if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4298	return gen_binary (MINUS, mode,
4299			   gen_binary (MINUS, mode, XEXP (x, 0),
4300				       XEXP (XEXP (x, 1), 0)),
4301			   XEXP (XEXP (x, 1), 1));
4302      break;
4303
4304    case MULT:
4305      /* If we have (mult (plus A B) C), apply the distributive law and then
4306	 the inverse distributive law to see if things simplify.  This
4307	 occurs mostly in addresses, often when unrolling loops.  */
4308
4309      if (GET_CODE (XEXP (x, 0)) == PLUS)
4310	{
4311	  x = apply_distributive_law
4312	    (gen_binary (PLUS, mode,
4313			 gen_binary (MULT, mode,
4314				     XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4315			 gen_binary (MULT, mode,
4316				     XEXP (XEXP (x, 0), 1),
4317				     copy_rtx (XEXP (x, 1)))));
4318
4319	  if (GET_CODE (x) != MULT)
4320	    return x;
4321	}
4322      /* Try simplify a*(b/c) as (a*b)/c.  */
4323      if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4324	  && GET_CODE (XEXP (x, 0)) == DIV)
4325	{
4326	  rtx tem = simplify_binary_operation (MULT, mode,
4327					       XEXP (XEXP (x, 0), 0),
4328					       XEXP (x, 1));
4329	  if (tem)
4330	    return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4331	}
4332      break;
4333
4334    case UDIV:
4335      /* If this is a divide by a power of two, treat it as a shift if
4336	 its first operand is a shift.  */
4337      if (GET_CODE (XEXP (x, 1)) == CONST_INT
4338	  && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4339	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
4340	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4341	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4342	      || GET_CODE (XEXP (x, 0)) == ROTATE
4343	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
4344	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4345      break;
4346
4347    case EQ:  case NE:
4348    case GT:  case GTU:  case GE:  case GEU:
4349    case LT:  case LTU:  case LE:  case LEU:
4350    case UNEQ:  case LTGT:
4351    case UNGT:  case UNGE:
4352    case UNLT:  case UNLE:
4353    case UNORDERED: case ORDERED:
4354      /* If the first operand is a condition code, we can't do anything
4355	 with it.  */
4356      if (GET_CODE (XEXP (x, 0)) == COMPARE
4357	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4358#ifdef HAVE_cc0
4359	      && XEXP (x, 0) != cc0_rtx
4360#endif
4361	      ))
4362	{
4363	  rtx op0 = XEXP (x, 0);
4364	  rtx op1 = XEXP (x, 1);
4365	  enum rtx_code new_code;
4366
4367	  if (GET_CODE (op0) == COMPARE)
4368	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4369
4370	  /* Simplify our comparison, if possible.  */
4371	  new_code = simplify_comparison (code, &op0, &op1);
4372
4373	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4374	     if only the low-order bit is possibly nonzero in X (such as when
4375	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
4376	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
4377	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
4378	     (plus X 1).
4379
4380	     Remove any ZERO_EXTRACT we made when thinking this was a
4381	     comparison.  It may now be simpler to use, e.g., an AND.  If a
4382	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
4383	     the call to make_compound_operation in the SET case.  */
4384
4385	  if (STORE_FLAG_VALUE == 1
4386	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4387	      && op1 == const0_rtx
4388	      && mode == GET_MODE (op0)
4389	      && nonzero_bits (op0, mode) == 1)
4390	    return gen_lowpart_for_combine (mode,
4391					    expand_compound_operation (op0));
4392
4393	  else if (STORE_FLAG_VALUE == 1
4394		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4395		   && op1 == const0_rtx
4396		   && mode == GET_MODE (op0)
4397		   && (num_sign_bit_copies (op0, mode)
4398		       == GET_MODE_BITSIZE (mode)))
4399	    {
4400	      op0 = expand_compound_operation (op0);
4401	      return simplify_gen_unary (NEG, mode,
4402					 gen_lowpart_for_combine (mode, op0),
4403					 mode);
4404	    }
4405
4406	  else if (STORE_FLAG_VALUE == 1
4407		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4408		   && op1 == const0_rtx
4409		   && mode == GET_MODE (op0)
4410		   && nonzero_bits (op0, mode) == 1)
4411	    {
4412	      op0 = expand_compound_operation (op0);
4413	      return gen_binary (XOR, mode,
4414				 gen_lowpart_for_combine (mode, op0),
4415				 const1_rtx);
4416	    }
4417
4418	  else if (STORE_FLAG_VALUE == 1
4419		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4420		   && op1 == const0_rtx
4421		   && mode == GET_MODE (op0)
4422		   && (num_sign_bit_copies (op0, mode)
4423		       == GET_MODE_BITSIZE (mode)))
4424	    {
4425	      op0 = expand_compound_operation (op0);
4426	      return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4427	    }
4428
4429	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
4430	     those above.  */
4431	  if (STORE_FLAG_VALUE == -1
4432	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4433	      && op1 == const0_rtx
4434	      && (num_sign_bit_copies (op0, mode)
4435		  == GET_MODE_BITSIZE (mode)))
4436	    return gen_lowpart_for_combine (mode,
4437					    expand_compound_operation (op0));
4438
4439	  else if (STORE_FLAG_VALUE == -1
4440		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4441		   && op1 == const0_rtx
4442		   && mode == GET_MODE (op0)
4443		   && nonzero_bits (op0, mode) == 1)
4444	    {
4445	      op0 = expand_compound_operation (op0);
4446	      return simplify_gen_unary (NEG, mode,
4447					 gen_lowpart_for_combine (mode, op0),
4448					 mode);
4449	    }
4450
4451	  else if (STORE_FLAG_VALUE == -1
4452		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4453		   && op1 == const0_rtx
4454		   && mode == GET_MODE (op0)
4455		   && (num_sign_bit_copies (op0, mode)
4456		       == GET_MODE_BITSIZE (mode)))
4457	    {
4458	      op0 = expand_compound_operation (op0);
4459	      return simplify_gen_unary (NOT, mode,
4460					 gen_lowpart_for_combine (mode, op0),
4461					 mode);
4462	    }
4463
4464	  /* If X is 0/1, (eq X 0) is X-1.  */
4465	  else if (STORE_FLAG_VALUE == -1
4466		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4467		   && op1 == const0_rtx
4468		   && mode == GET_MODE (op0)
4469		   && nonzero_bits (op0, mode) == 1)
4470	    {
4471	      op0 = expand_compound_operation (op0);
4472	      return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4473	    }
4474
4475	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4476	     one bit that might be nonzero, we can convert (ne x 0) to
4477	     (ashift x c) where C puts the bit in the sign bit.  Remove any
4478	     AND with STORE_FLAG_VALUE when we are done, since we are only
4479	     going to test the sign bit.  */
4480	  if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4481	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4482	      && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4483		  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4484	      && op1 == const0_rtx
4485	      && mode == GET_MODE (op0)
4486	      && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4487	    {
4488	      x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4489					expand_compound_operation (op0),
4490					GET_MODE_BITSIZE (mode) - 1 - i);
4491	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4492		return XEXP (x, 0);
4493	      else
4494		return x;
4495	    }
4496
4497	  /* If the code changed, return a whole new comparison.  */
4498	  if (new_code != code)
4499	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4500
4501	  /* Otherwise, keep this operation, but maybe change its operands.
4502	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
4503	  SUBST (XEXP (x, 0), op0);
4504	  SUBST (XEXP (x, 1), op1);
4505	}
4506      break;
4507
4508    case IF_THEN_ELSE:
4509      return simplify_if_then_else (x);
4510
4511    case ZERO_EXTRACT:
4512    case SIGN_EXTRACT:
4513    case ZERO_EXTEND:
4514    case SIGN_EXTEND:
4515      /* If we are processing SET_DEST, we are done.  */
4516      if (in_dest)
4517	return x;
4518
4519      return expand_compound_operation (x);
4520
4521    case SET:
4522      return simplify_set (x);
4523
4524    case AND:
4525    case IOR:
4526    case XOR:
4527      return simplify_logical (x, last);
4528
4529    case ABS:
4530      /* (abs (neg <foo>)) -> (abs <foo>) */
4531      if (GET_CODE (XEXP (x, 0)) == NEG)
4532	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4533
4534      /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4535         do nothing.  */
4536      if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4537	break;
4538
4539      /* If operand is something known to be positive, ignore the ABS.  */
4540      if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4541	  || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4542	       <= HOST_BITS_PER_WIDE_INT)
4543	      && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4544		   & ((HOST_WIDE_INT) 1
4545		      << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4546		  == 0)))
4547	return XEXP (x, 0);
4548
4549      /* If operand is known to be only -1 or 0, convert ABS to NEG.  */
4550      if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4551	return gen_rtx_NEG (mode, XEXP (x, 0));
4552
4553      break;
4554
4555    case FFS:
4556      /* (ffs (*_extend <X>)) = (ffs <X>) */
4557      if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4558	  || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4559	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4560      break;
4561
4562    case FLOAT:
4563      /* (float (sign_extend <X>)) = (float <X>).  */
4564      if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4565	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4566      break;
4567
4568    case ASHIFT:
4569    case LSHIFTRT:
4570    case ASHIFTRT:
4571    case ROTATE:
4572    case ROTATERT:
4573      /* If this is a shift by a constant amount, simplify it.  */
4574      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4575	return simplify_shift_const (x, code, mode, XEXP (x, 0),
4576				     INTVAL (XEXP (x, 1)));
4577
4578#ifdef SHIFT_COUNT_TRUNCATED
4579      else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4580	SUBST (XEXP (x, 1),
4581	       force_to_mode (XEXP (x, 1), GET_MODE (x),
4582			      ((HOST_WIDE_INT) 1
4583			       << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4584			      - 1,
4585			      NULL_RTX, 0));
4586#endif
4587
4588      break;
4589
4590    case VEC_SELECT:
4591      {
4592	rtx op0 = XEXP (x, 0);
4593	rtx op1 = XEXP (x, 1);
4594	int len;
4595
4596	if (GET_CODE (op1) != PARALLEL)
4597	  abort ();
4598	len = XVECLEN (op1, 0);
4599	if (len == 1
4600	    && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4601	    && GET_CODE (op0) == VEC_CONCAT)
4602	  {
4603	    int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4604
4605	    /* Try to find the element in the VEC_CONCAT.  */
4606	    for (;;)
4607	      {
4608		if (GET_MODE (op0) == GET_MODE (x))
4609		  return op0;
4610		if (GET_CODE (op0) == VEC_CONCAT)
4611		  {
4612		    HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4613		    if (op0_size < offset)
4614		      op0 = XEXP (op0, 0);
4615		    else
4616		      {
4617			offset -= op0_size;
4618			op0 = XEXP (op0, 1);
4619		      }
4620		  }
4621		else
4622		  break;
4623	      }
4624	  }
4625      }
4626
4627      break;
4628
4629    default:
4630      break;
4631    }
4632
4633  return x;
4634}
4635
4636/* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
4637
4638static rtx
4639simplify_if_then_else (x)
4640     rtx x;
4641{
4642  enum machine_mode mode = GET_MODE (x);
4643  rtx cond = XEXP (x, 0);
4644  rtx true_rtx = XEXP (x, 1);
4645  rtx false_rtx = XEXP (x, 2);
4646  enum rtx_code true_code = GET_CODE (cond);
4647  int comparison_p = GET_RTX_CLASS (true_code) == '<';
4648  rtx temp;
4649  int i;
4650  enum rtx_code false_code;
4651  rtx reversed;
4652
4653  /* Simplify storing of the truth value.  */
4654  if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4655    return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4656
4657  /* Also when the truth value has to be reversed.  */
4658  if (comparison_p
4659      && true_rtx == const0_rtx && false_rtx == const_true_rtx
4660      && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4661					  XEXP (cond, 1))))
4662    return reversed;
4663
4664  /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4665     in it is being compared against certain values.  Get the true and false
4666     comparisons and see if that says anything about the value of each arm.  */
4667
4668  if (comparison_p
4669      && ((false_code = combine_reversed_comparison_code (cond))
4670	  != UNKNOWN)
4671      && GET_CODE (XEXP (cond, 0)) == REG)
4672    {
4673      HOST_WIDE_INT nzb;
4674      rtx from = XEXP (cond, 0);
4675      rtx true_val = XEXP (cond, 1);
4676      rtx false_val = true_val;
4677      int swapped = 0;
4678
4679      /* If FALSE_CODE is EQ, swap the codes and arms.  */
4680
4681      if (false_code == EQ)
4682	{
4683	  swapped = 1, true_code = EQ, false_code = NE;
4684	  temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4685	}
4686
4687      /* If we are comparing against zero and the expression being tested has
4688	 only a single bit that might be nonzero, that is its value when it is
4689	 not equal to zero.  Similarly if it is known to be -1 or 0.  */
4690
4691      if (true_code == EQ && true_val == const0_rtx
4692	  && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4693	false_code = EQ, false_val = GEN_INT (nzb);
4694      else if (true_code == EQ && true_val == const0_rtx
4695	       && (num_sign_bit_copies (from, GET_MODE (from))
4696		   == GET_MODE_BITSIZE (GET_MODE (from))))
4697	false_code = EQ, false_val = constm1_rtx;
4698
4699      /* Now simplify an arm if we know the value of the register in the
4700	 branch and it is used in the arm.  Be careful due to the potential
4701	 of locally-shared RTL.  */
4702
4703      if (reg_mentioned_p (from, true_rtx))
4704	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4705				      from, true_val),
4706		      pc_rtx, pc_rtx, 0, 0);
4707      if (reg_mentioned_p (from, false_rtx))
4708	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4709				   from, false_val),
4710		       pc_rtx, pc_rtx, 0, 0);
4711
4712      SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4713      SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4714
4715      true_rtx = XEXP (x, 1);
4716      false_rtx = XEXP (x, 2);
4717      true_code = GET_CODE (cond);
4718    }
4719
4720  /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4721     reversed, do so to avoid needing two sets of patterns for
4722     subtract-and-branch insns.  Similarly if we have a constant in the true
4723     arm, the false arm is the same as the first operand of the comparison, or
4724     the false arm is more complicated than the true arm.  */
4725
4726  if (comparison_p
4727      && combine_reversed_comparison_code (cond) != UNKNOWN
4728      && (true_rtx == pc_rtx
4729	  || (CONSTANT_P (true_rtx)
4730	      && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4731	  || true_rtx == const0_rtx
4732	  || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4733	      && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4734	  || (GET_CODE (true_rtx) == SUBREG
4735	      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4736	      && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4737	  || reg_mentioned_p (true_rtx, false_rtx)
4738	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4739    {
4740      true_code = reversed_comparison_code (cond, NULL);
4741      SUBST (XEXP (x, 0),
4742	     reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4743				  XEXP (cond, 1)));
4744
4745      SUBST (XEXP (x, 1), false_rtx);
4746      SUBST (XEXP (x, 2), true_rtx);
4747
4748      temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4749      cond = XEXP (x, 0);
4750
4751      /* It is possible that the conditional has been simplified out.  */
4752      true_code = GET_CODE (cond);
4753      comparison_p = GET_RTX_CLASS (true_code) == '<';
4754    }
4755
4756  /* If the two arms are identical, we don't need the comparison.  */
4757
4758  if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4759    return true_rtx;
4760
4761  /* Convert a == b ? b : a to "a".  */
4762  if (true_code == EQ && ! side_effects_p (cond)
4763      && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4764      && rtx_equal_p (XEXP (cond, 0), false_rtx)
4765      && rtx_equal_p (XEXP (cond, 1), true_rtx))
4766    return false_rtx;
4767  else if (true_code == NE && ! side_effects_p (cond)
4768	   && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4769	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
4770	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
4771    return true_rtx;
4772
4773  /* Look for cases where we have (abs x) or (neg (abs X)).  */
4774
4775  if (GET_MODE_CLASS (mode) == MODE_INT
4776      && GET_CODE (false_rtx) == NEG
4777      && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4778      && comparison_p
4779      && rtx_equal_p (true_rtx, XEXP (cond, 0))
4780      && ! side_effects_p (true_rtx))
4781    switch (true_code)
4782      {
4783      case GT:
4784      case GE:
4785	return simplify_gen_unary (ABS, mode, true_rtx, mode);
4786      case LT:
4787      case LE:
4788	return
4789	  simplify_gen_unary (NEG, mode,
4790			      simplify_gen_unary (ABS, mode, true_rtx, mode),
4791			      mode);
4792      default:
4793	break;
4794      }
4795
4796  /* Look for MIN or MAX.  */
4797
4798  if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4799      && comparison_p
4800      && rtx_equal_p (XEXP (cond, 0), true_rtx)
4801      && rtx_equal_p (XEXP (cond, 1), false_rtx)
4802      && ! side_effects_p (cond))
4803    switch (true_code)
4804      {
4805      case GE:
4806      case GT:
4807	return gen_binary (SMAX, mode, true_rtx, false_rtx);
4808      case LE:
4809      case LT:
4810	return gen_binary (SMIN, mode, true_rtx, false_rtx);
4811      case GEU:
4812      case GTU:
4813	return gen_binary (UMAX, mode, true_rtx, false_rtx);
4814      case LEU:
4815      case LTU:
4816	return gen_binary (UMIN, mode, true_rtx, false_rtx);
4817      default:
4818	break;
4819      }
4820
4821  /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4822     second operand is zero, this can be done as (OP Z (mult COND C2)) where
4823     C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4824     SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4825     We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4826     neither 1 or -1, but it isn't worth checking for.  */
4827
4828  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4829      && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4830    {
4831      rtx t = make_compound_operation (true_rtx, SET);
4832      rtx f = make_compound_operation (false_rtx, SET);
4833      rtx cond_op0 = XEXP (cond, 0);
4834      rtx cond_op1 = XEXP (cond, 1);
4835      enum rtx_code op = NIL, extend_op = NIL;
4836      enum machine_mode m = mode;
4837      rtx z = 0, c1 = NULL_RTX;
4838
4839      if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4840	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4841	   || GET_CODE (t) == ASHIFT
4842	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4843	  && rtx_equal_p (XEXP (t, 0), f))
4844	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4845
4846      /* If an identity-zero op is commutative, check whether there
4847	 would be a match if we swapped the operands.  */
4848      else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4849		|| GET_CODE (t) == XOR)
4850	       && rtx_equal_p (XEXP (t, 1), f))
4851	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4852      else if (GET_CODE (t) == SIGN_EXTEND
4853	       && (GET_CODE (XEXP (t, 0)) == PLUS
4854		   || GET_CODE (XEXP (t, 0)) == MINUS
4855		   || GET_CODE (XEXP (t, 0)) == IOR
4856		   || GET_CODE (XEXP (t, 0)) == XOR
4857		   || GET_CODE (XEXP (t, 0)) == ASHIFT
4858		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4859		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4860	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4861	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4862	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4863	       && (num_sign_bit_copies (f, GET_MODE (f))
4864		   > (GET_MODE_BITSIZE (mode)
4865		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4866	{
4867	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4868	  extend_op = SIGN_EXTEND;
4869	  m = GET_MODE (XEXP (t, 0));
4870	}
4871      else if (GET_CODE (t) == SIGN_EXTEND
4872	       && (GET_CODE (XEXP (t, 0)) == PLUS
4873		   || GET_CODE (XEXP (t, 0)) == IOR
4874		   || GET_CODE (XEXP (t, 0)) == XOR)
4875	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4876	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4877	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4878	       && (num_sign_bit_copies (f, GET_MODE (f))
4879		   > (GET_MODE_BITSIZE (mode)
4880		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4881	{
4882	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4883	  extend_op = SIGN_EXTEND;
4884	  m = GET_MODE (XEXP (t, 0));
4885	}
4886      else if (GET_CODE (t) == ZERO_EXTEND
4887	       && (GET_CODE (XEXP (t, 0)) == PLUS
4888		   || GET_CODE (XEXP (t, 0)) == MINUS
4889		   || GET_CODE (XEXP (t, 0)) == IOR
4890		   || GET_CODE (XEXP (t, 0)) == XOR
4891		   || GET_CODE (XEXP (t, 0)) == ASHIFT
4892		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4893		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4894	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4895	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4896	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4897	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4898	       && ((nonzero_bits (f, GET_MODE (f))
4899		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4900		   == 0))
4901	{
4902	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4903	  extend_op = ZERO_EXTEND;
4904	  m = GET_MODE (XEXP (t, 0));
4905	}
4906      else if (GET_CODE (t) == ZERO_EXTEND
4907	       && (GET_CODE (XEXP (t, 0)) == PLUS
4908		   || GET_CODE (XEXP (t, 0)) == IOR
4909		   || GET_CODE (XEXP (t, 0)) == XOR)
4910	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4911	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4912	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4913	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4914	       && ((nonzero_bits (f, GET_MODE (f))
4915		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4916		   == 0))
4917	{
4918	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4919	  extend_op = ZERO_EXTEND;
4920	  m = GET_MODE (XEXP (t, 0));
4921	}
4922
4923      if (z)
4924	{
4925	  temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4926			pc_rtx, pc_rtx, 0, 0);
4927	  temp = gen_binary (MULT, m, temp,
4928			     gen_binary (MULT, m, c1, const_true_rtx));
4929	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4930	  temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4931
4932	  if (extend_op != NIL)
4933	    temp = simplify_gen_unary (extend_op, mode, temp, m);
4934
4935	  return temp;
4936	}
4937    }
4938
4939  /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4940     1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4941     negation of a single bit, we can convert this operation to a shift.  We
4942     can actually do this more generally, but it doesn't seem worth it.  */
4943
4944  if (true_code == NE && XEXP (cond, 1) == const0_rtx
4945      && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4946      && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4947	   && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4948	  || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4949	       == GET_MODE_BITSIZE (mode))
4950	      && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4951    return
4952      simplify_shift_const (NULL_RTX, ASHIFT, mode,
4953			    gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4954
4955  return x;
4956}
4957
4958/* Simplify X, a SET expression.  Return the new expression.  */
4959
4960static rtx
4961simplify_set (x)
4962     rtx x;
4963{
4964  rtx src = SET_SRC (x);
4965  rtx dest = SET_DEST (x);
4966  enum machine_mode mode
4967    = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4968  rtx other_insn;
4969  rtx *cc_use;
4970
4971  /* (set (pc) (return)) gets written as (return).  */
4972  if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4973    return src;
4974
4975  /* Now that we know for sure which bits of SRC we are using, see if we can
4976     simplify the expression for the object knowing that we only need the
4977     low-order bits.  */
4978
4979  if (GET_MODE_CLASS (mode) == MODE_INT)
4980    {
4981      src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4982      SUBST (SET_SRC (x), src);
4983    }
4984
4985  /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4986     the comparison result and try to simplify it unless we already have used
4987     undobuf.other_insn.  */
4988  if ((GET_CODE (src) == COMPARE
4989#ifdef HAVE_cc0
4990       || dest == cc0_rtx
4991#endif
4992       )
4993      && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4994      && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4995      && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4996      && rtx_equal_p (XEXP (*cc_use, 0), dest))
4997    {
4998      enum rtx_code old_code = GET_CODE (*cc_use);
4999      enum rtx_code new_code;
5000      rtx op0, op1;
5001      int other_changed = 0;
5002      enum machine_mode compare_mode = GET_MODE (dest);
5003
5004      if (GET_CODE (src) == COMPARE)
5005	op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5006      else
5007	op0 = src, op1 = const0_rtx;
5008
5009      /* Simplify our comparison, if possible.  */
5010      new_code = simplify_comparison (old_code, &op0, &op1);
5011
5012#ifdef EXTRA_CC_MODES
5013      /* If this machine has CC modes other than CCmode, check to see if we
5014	 need to use a different CC mode here.  */
5015      compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5016#endif /* EXTRA_CC_MODES */
5017
5018#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5019      /* If the mode changed, we have to change SET_DEST, the mode in the
5020	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
5021	 a hard register, just build new versions with the proper mode.  If it
5022	 is a pseudo, we lose unless it is only time we set the pseudo, in
5023	 which case we can safely change its mode.  */
5024      if (compare_mode != GET_MODE (dest))
5025	{
5026	  unsigned int regno = REGNO (dest);
5027	  rtx new_dest = gen_rtx_REG (compare_mode, regno);
5028
5029	  if (regno < FIRST_PSEUDO_REGISTER
5030	      || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5031	    {
5032	      if (regno >= FIRST_PSEUDO_REGISTER)
5033		SUBST (regno_reg_rtx[regno], new_dest);
5034
5035	      SUBST (SET_DEST (x), new_dest);
5036	      SUBST (XEXP (*cc_use, 0), new_dest);
5037	      other_changed = 1;
5038
5039	      dest = new_dest;
5040	    }
5041	}
5042#endif
5043
5044      /* If the code changed, we have to build a new comparison in
5045	 undobuf.other_insn.  */
5046      if (new_code != old_code)
5047	{
5048	  unsigned HOST_WIDE_INT mask;
5049
5050	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5051					  dest, const0_rtx));
5052
5053	  /* If the only change we made was to change an EQ into an NE or
5054	     vice versa, OP0 has only one bit that might be nonzero, and OP1
5055	     is zero, check if changing the user of the condition code will
5056	     produce a valid insn.  If it won't, we can keep the original code
5057	     in that insn by surrounding our operation with an XOR.  */
5058
5059	  if (((old_code == NE && new_code == EQ)
5060	       || (old_code == EQ && new_code == NE))
5061	      && ! other_changed && op1 == const0_rtx
5062	      && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5063	      && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5064	    {
5065	      rtx pat = PATTERN (other_insn), note = 0;
5066
5067	      if ((recog_for_combine (&pat, other_insn, &note) < 0
5068		   && ! check_asm_operands (pat)))
5069		{
5070		  PUT_CODE (*cc_use, old_code);
5071		  other_insn = 0;
5072
5073		  op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5074		}
5075	    }
5076
5077	  other_changed = 1;
5078	}
5079
5080      if (other_changed)
5081	undobuf.other_insn = other_insn;
5082
5083#ifdef HAVE_cc0
5084      /* If we are now comparing against zero, change our source if
5085	 needed.  If we do not use cc0, we always have a COMPARE.  */
5086      if (op1 == const0_rtx && dest == cc0_rtx)
5087	{
5088	  SUBST (SET_SRC (x), op0);
5089	  src = op0;
5090	}
5091      else
5092#endif
5093
5094      /* Otherwise, if we didn't previously have a COMPARE in the
5095	 correct mode, we need one.  */
5096      if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5097	{
5098	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5099	  src = SET_SRC (x);
5100	}
5101      else
5102	{
5103	  /* Otherwise, update the COMPARE if needed.  */
5104	  SUBST (XEXP (src, 0), op0);
5105	  SUBST (XEXP (src, 1), op1);
5106	}
5107    }
5108  else
5109    {
5110      /* Get SET_SRC in a form where we have placed back any
5111	 compound expressions.  Then do the checks below.  */
5112      src = make_compound_operation (src, SET);
5113      SUBST (SET_SRC (x), src);
5114    }
5115
5116  /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5117     and X being a REG or (subreg (reg)), we may be able to convert this to
5118     (set (subreg:m2 x) (op)).
5119
5120     We can always do this if M1 is narrower than M2 because that means that
5121     we only care about the low bits of the result.
5122
5123     However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5124     perform a narrower operation than requested since the high-order bits will
5125     be undefined.  On machine where it is defined, this transformation is safe
5126     as long as M1 and M2 have the same number of words.  */
5127
5128  if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5129      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5130      && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5131	   / UNITS_PER_WORD)
5132	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5133	       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5134#ifndef WORD_REGISTER_OPERATIONS
5135      && (GET_MODE_SIZE (GET_MODE (src))
5136	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5137#endif
5138#ifdef CLASS_CANNOT_CHANGE_MODE
5139      && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5140	    && (TEST_HARD_REG_BIT
5141		(reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5142		 REGNO (dest)))
5143	    && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5144					   GET_MODE (SUBREG_REG (src))))
5145#endif
5146      && (GET_CODE (dest) == REG
5147	  || (GET_CODE (dest) == SUBREG
5148	      && GET_CODE (SUBREG_REG (dest)) == REG)))
5149    {
5150      SUBST (SET_DEST (x),
5151	     gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5152				      dest));
5153      SUBST (SET_SRC (x), SUBREG_REG (src));
5154
5155      src = SET_SRC (x), dest = SET_DEST (x);
5156    }
5157
5158#ifdef LOAD_EXTEND_OP
5159  /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5160     would require a paradoxical subreg.  Replace the subreg with a
5161     zero_extend to avoid the reload that would otherwise be required.  */
5162
5163  if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5164      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5165      && SUBREG_BYTE (src) == 0
5166      && (GET_MODE_SIZE (GET_MODE (src))
5167	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5168      && GET_CODE (SUBREG_REG (src)) == MEM)
5169    {
5170      SUBST (SET_SRC (x),
5171	     gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5172		      GET_MODE (src), SUBREG_REG (src)));
5173
5174      src = SET_SRC (x);
5175    }
5176#endif
5177
5178  /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5179     are comparing an item known to be 0 or -1 against 0, use a logical
5180     operation instead. Check for one of the arms being an IOR of the other
5181     arm with some value.  We compute three terms to be IOR'ed together.  In
5182     practice, at most two will be nonzero.  Then we do the IOR's.  */
5183
5184  if (GET_CODE (dest) != PC
5185      && GET_CODE (src) == IF_THEN_ELSE
5186      && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5187      && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5188      && XEXP (XEXP (src, 0), 1) == const0_rtx
5189      && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5190#ifdef HAVE_conditional_move
5191      && ! can_conditionally_move_p (GET_MODE (src))
5192#endif
5193      && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5194			       GET_MODE (XEXP (XEXP (src, 0), 0)))
5195	  == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5196      && ! side_effects_p (src))
5197    {
5198      rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5199		      ? XEXP (src, 1) : XEXP (src, 2));
5200      rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5201		   ? XEXP (src, 2) : XEXP (src, 1));
5202      rtx term1 = const0_rtx, term2, term3;
5203
5204      if (GET_CODE (true_rtx) == IOR
5205	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5206	term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5207      else if (GET_CODE (true_rtx) == IOR
5208	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5209	term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5210      else if (GET_CODE (false_rtx) == IOR
5211	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5212	term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5213      else if (GET_CODE (false_rtx) == IOR
5214	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5215	term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5216
5217      term2 = gen_binary (AND, GET_MODE (src),
5218			  XEXP (XEXP (src, 0), 0), true_rtx);
5219      term3 = gen_binary (AND, GET_MODE (src),
5220			  simplify_gen_unary (NOT, GET_MODE (src),
5221					      XEXP (XEXP (src, 0), 0),
5222					      GET_MODE (src)),
5223			  false_rtx);
5224
5225      SUBST (SET_SRC (x),
5226	     gen_binary (IOR, GET_MODE (src),
5227			 gen_binary (IOR, GET_MODE (src), term1, term2),
5228			 term3));
5229
5230      src = SET_SRC (x);
5231    }
5232
5233  /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5234     whole thing fail.  */
5235  if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5236    return src;
5237  else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5238    return dest;
5239  else
5240    /* Convert this into a field assignment operation, if possible.  */
5241    return make_field_assignment (x);
5242}
5243
5244/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5245   result.  LAST is nonzero if this is the last retry.  */
5246
5247static rtx
5248simplify_logical (x, last)
5249     rtx x;
5250     int last;
5251{
5252  enum machine_mode mode = GET_MODE (x);
5253  rtx op0 = XEXP (x, 0);
5254  rtx op1 = XEXP (x, 1);
5255  rtx reversed;
5256
5257  switch (GET_CODE (x))
5258    {
5259    case AND:
5260      /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5261	 insn (and may simplify more).  */
5262      if (GET_CODE (op0) == XOR
5263	  && rtx_equal_p (XEXP (op0, 0), op1)
5264	  && ! side_effects_p (op1))
5265	x = gen_binary (AND, mode,
5266			simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5267			op1);
5268
5269      if (GET_CODE (op0) == XOR
5270	  && rtx_equal_p (XEXP (op0, 1), op1)
5271	  && ! side_effects_p (op1))
5272	x = gen_binary (AND, mode,
5273			simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5274			op1);
5275
5276      /* Similarly for (~(A ^ B)) & A.  */
5277      if (GET_CODE (op0) == NOT
5278	  && GET_CODE (XEXP (op0, 0)) == XOR
5279	  && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5280	  && ! side_effects_p (op1))
5281	x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5282
5283      if (GET_CODE (op0) == NOT
5284	  && GET_CODE (XEXP (op0, 0)) == XOR
5285	  && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5286	  && ! side_effects_p (op1))
5287	x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5288
5289      /* We can call simplify_and_const_int only if we don't lose
5290	 any (sign) bits when converting INTVAL (op1) to
5291	 "unsigned HOST_WIDE_INT".  */
5292      if (GET_CODE (op1) == CONST_INT
5293	  && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5294	      || INTVAL (op1) > 0))
5295	{
5296	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5297
5298	  /* If we have (ior (and (X C1) C2)) and the next restart would be
5299	     the last, simplify this by making C1 as small as possible
5300	     and then exit.  */
5301	  if (last
5302	      && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5303	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
5304	      && GET_CODE (op1) == CONST_INT)
5305	    return gen_binary (IOR, mode,
5306			       gen_binary (AND, mode, XEXP (op0, 0),
5307					   GEN_INT (INTVAL (XEXP (op0, 1))
5308						    & ~INTVAL (op1))), op1);
5309
5310	  if (GET_CODE (x) != AND)
5311	    return x;
5312
5313	  if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5314	      || GET_RTX_CLASS (GET_CODE (x)) == '2')
5315	    op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5316	}
5317
5318      /* Convert (A | B) & A to A.  */
5319      if (GET_CODE (op0) == IOR
5320	  && (rtx_equal_p (XEXP (op0, 0), op1)
5321	      || rtx_equal_p (XEXP (op0, 1), op1))
5322	  && ! side_effects_p (XEXP (op0, 0))
5323	  && ! side_effects_p (XEXP (op0, 1)))
5324	return op1;
5325
5326      /* In the following group of tests (and those in case IOR below),
5327	 we start with some combination of logical operations and apply
5328	 the distributive law followed by the inverse distributive law.
5329	 Most of the time, this results in no change.  However, if some of
5330	 the operands are the same or inverses of each other, simplifications
5331	 will result.
5332
5333	 For example, (and (ior A B) (not B)) can occur as the result of
5334	 expanding a bit field assignment.  When we apply the distributive
5335	 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5336	 which then simplifies to (and (A (not B))).
5337
5338	 If we have (and (ior A B) C), apply the distributive law and then
5339	 the inverse distributive law to see if things simplify.  */
5340
5341      if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5342	{
5343	  x = apply_distributive_law
5344	    (gen_binary (GET_CODE (op0), mode,
5345			 gen_binary (AND, mode, XEXP (op0, 0), op1),
5346			 gen_binary (AND, mode, XEXP (op0, 1),
5347				     copy_rtx (op1))));
5348	  if (GET_CODE (x) != AND)
5349	    return x;
5350	}
5351
5352      if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5353	return apply_distributive_law
5354	  (gen_binary (GET_CODE (op1), mode,
5355		       gen_binary (AND, mode, XEXP (op1, 0), op0),
5356		       gen_binary (AND, mode, XEXP (op1, 1),
5357				   copy_rtx (op0))));
5358
5359      /* Similarly, taking advantage of the fact that
5360	 (and (not A) (xor B C)) == (xor (ior A B) (ior A C))  */
5361
5362      if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5363	return apply_distributive_law
5364	  (gen_binary (XOR, mode,
5365		       gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5366		       gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5367				   XEXP (op1, 1))));
5368
5369      else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5370	return apply_distributive_law
5371	  (gen_binary (XOR, mode,
5372		       gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5373		       gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5374      break;
5375
5376    case IOR:
5377      /* (ior A C) is C if all bits of A that might be nonzero are on in C.  */
5378      if (GET_CODE (op1) == CONST_INT
5379	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5380	  && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5381	return op1;
5382
5383      /* Convert (A & B) | A to A.  */
5384      if (GET_CODE (op0) == AND
5385	  && (rtx_equal_p (XEXP (op0, 0), op1)
5386	      || rtx_equal_p (XEXP (op0, 1), op1))
5387	  && ! side_effects_p (XEXP (op0, 0))
5388	  && ! side_effects_p (XEXP (op0, 1)))
5389	return op1;
5390
5391      /* If we have (ior (and A B) C), apply the distributive law and then
5392	 the inverse distributive law to see if things simplify.  */
5393
5394      if (GET_CODE (op0) == AND)
5395	{
5396	  x = apply_distributive_law
5397	    (gen_binary (AND, mode,
5398			 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5399			 gen_binary (IOR, mode, XEXP (op0, 1),
5400				     copy_rtx (op1))));
5401
5402	  if (GET_CODE (x) != IOR)
5403	    return x;
5404	}
5405
5406      if (GET_CODE (op1) == AND)
5407	{
5408	  x = apply_distributive_law
5409	    (gen_binary (AND, mode,
5410			 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5411			 gen_binary (IOR, mode, XEXP (op1, 1),
5412				     copy_rtx (op0))));
5413
5414	  if (GET_CODE (x) != IOR)
5415	    return x;
5416	}
5417
5418      /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5419	 mode size to (rotate A CX).  */
5420
5421      if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5422	   || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5423	  && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5424	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5425	  && GET_CODE (XEXP (op1, 1)) == CONST_INT
5426	  && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5427	      == GET_MODE_BITSIZE (mode)))
5428	return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5429			       (GET_CODE (op0) == ASHIFT
5430				? XEXP (op0, 1) : XEXP (op1, 1)));
5431
5432      /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5433	 a (sign_extend (plus ...)).  If so, OP1 is a CONST_INT, and the PLUS
5434	 does not affect any of the bits in OP1, it can really be done
5435	 as a PLUS and we can associate.  We do this by seeing if OP1
5436	 can be safely shifted left C bits.  */
5437      if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5438	  && GET_CODE (XEXP (op0, 0)) == PLUS
5439	  && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5440	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5441	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5442	{
5443	  int count = INTVAL (XEXP (op0, 1));
5444	  HOST_WIDE_INT mask = INTVAL (op1) << count;
5445
5446	  if (mask >> count == INTVAL (op1)
5447	      && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5448	    {
5449	      SUBST (XEXP (XEXP (op0, 0), 1),
5450		     GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5451	      return op0;
5452	    }
5453	}
5454      break;
5455
5456    case XOR:
5457      /* If we are XORing two things that have no bits in common,
5458	 convert them into an IOR.  This helps to detect rotation encoded
5459	 using those methods and possibly other simplifications.  */
5460
5461      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5462	  && (nonzero_bits (op0, mode)
5463	      & nonzero_bits (op1, mode)) == 0)
5464	return (gen_binary (IOR, mode, op0, op1));
5465
5466      /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5467	 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5468	 (NOT y).  */
5469      {
5470	int num_negated = 0;
5471
5472	if (GET_CODE (op0) == NOT)
5473	  num_negated++, op0 = XEXP (op0, 0);
5474	if (GET_CODE (op1) == NOT)
5475	  num_negated++, op1 = XEXP (op1, 0);
5476
5477	if (num_negated == 2)
5478	  {
5479	    SUBST (XEXP (x, 0), op0);
5480	    SUBST (XEXP (x, 1), op1);
5481	  }
5482	else if (num_negated == 1)
5483	  return
5484	    simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5485				mode);
5486      }
5487
5488      /* Convert (xor (and A B) B) to (and (not A) B).  The latter may
5489	 correspond to a machine insn or result in further simplifications
5490	 if B is a constant.  */
5491
5492      if (GET_CODE (op0) == AND
5493	  && rtx_equal_p (XEXP (op0, 1), op1)
5494	  && ! side_effects_p (op1))
5495	return gen_binary (AND, mode,
5496			   simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5497			   op1);
5498
5499      else if (GET_CODE (op0) == AND
5500	       && rtx_equal_p (XEXP (op0, 0), op1)
5501	       && ! side_effects_p (op1))
5502	return gen_binary (AND, mode,
5503			   simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5504			   op1);
5505
5506      /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5507	 comparison if STORE_FLAG_VALUE is 1.  */
5508      if (STORE_FLAG_VALUE == 1
5509	  && op1 == const1_rtx
5510	  && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5511	  && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5512					      XEXP (op0, 1))))
5513	return reversed;
5514
5515      /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5516	 is (lt foo (const_int 0)), so we can perform the above
5517	 simplification if STORE_FLAG_VALUE is 1.  */
5518
5519      if (STORE_FLAG_VALUE == 1
5520	  && op1 == const1_rtx
5521	  && GET_CODE (op0) == LSHIFTRT
5522	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5523	  && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5524	return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5525
5526      /* (xor (comparison foo bar) (const_int sign-bit))
5527	 when STORE_FLAG_VALUE is the sign bit.  */
5528      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5529	  && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5530	      == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5531	  && op1 == const_true_rtx
5532	  && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5533	  && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5534					      XEXP (op0, 1))))
5535	return reversed;
5536
5537      break;
5538
5539    default:
5540      abort ();
5541    }
5542
5543  return x;
5544}
5545
5546/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5547   operations" because they can be replaced with two more basic operations.
5548   ZERO_EXTEND is also considered "compound" because it can be replaced with
5549   an AND operation, which is simpler, though only one operation.
5550
5551   The function expand_compound_operation is called with an rtx expression
5552   and will convert it to the appropriate shifts and AND operations,
5553   simplifying at each stage.
5554
5555   The function make_compound_operation is called to convert an expression
5556   consisting of shifts and ANDs into the equivalent compound expression.
5557   It is the inverse of this function, loosely speaking.  */
5558
5559static rtx
5560expand_compound_operation (x)
5561     rtx x;
5562{
5563  unsigned HOST_WIDE_INT pos = 0, len;
5564  int unsignedp = 0;
5565  unsigned int modewidth;
5566  rtx tem;
5567
5568  switch (GET_CODE (x))
5569    {
5570    case ZERO_EXTEND:
5571      unsignedp = 1;
5572    case SIGN_EXTEND:
5573      /* We can't necessarily use a const_int for a multiword mode;
5574	 it depends on implicitly extending the value.
5575	 Since we don't know the right way to extend it,
5576	 we can't tell whether the implicit way is right.
5577
5578	 Even for a mode that is no wider than a const_int,
5579	 we can't win, because we need to sign extend one of its bits through
5580	 the rest of it, and we don't know which bit.  */
5581      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5582	return x;
5583
5584      /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5585	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
5586	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5587	 reloaded. If not for that, MEM's would very rarely be safe.
5588
5589	 Reject MODEs bigger than a word, because we might not be able
5590	 to reference a two-register group starting with an arbitrary register
5591	 (and currently gen_lowpart might crash for a SUBREG).  */
5592
5593      if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5594	return x;
5595
5596      len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5597      /* If the inner object has VOIDmode (the only way this can happen
5598	 is if it is a ASM_OPERANDS), we can't do anything since we don't
5599	 know how much masking to do.  */
5600      if (len == 0)
5601	return x;
5602
5603      break;
5604
5605    case ZERO_EXTRACT:
5606      unsignedp = 1;
5607    case SIGN_EXTRACT:
5608      /* If the operand is a CLOBBER, just return it.  */
5609      if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5610	return XEXP (x, 0);
5611
5612      if (GET_CODE (XEXP (x, 1)) != CONST_INT
5613	  || GET_CODE (XEXP (x, 2)) != CONST_INT
5614	  || GET_MODE (XEXP (x, 0)) == VOIDmode)
5615	return x;
5616
5617      len = INTVAL (XEXP (x, 1));
5618      pos = INTVAL (XEXP (x, 2));
5619
5620      /* If this goes outside the object being extracted, replace the object
5621	 with a (use (mem ...)) construct that only combine understands
5622	 and is used only for this purpose.  */
5623      if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5624	SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5625
5626      if (BITS_BIG_ENDIAN)
5627	pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5628
5629      break;
5630
5631    default:
5632      return x;
5633    }
5634  /* Convert sign extension to zero extension, if we know that the high
5635     bit is not set, as this is easier to optimize.  It will be converted
5636     back to cheaper alternative in make_extraction.  */
5637  if (GET_CODE (x) == SIGN_EXTEND
5638      && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5639	  && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5640		& ~(((unsigned HOST_WIDE_INT)
5641		      GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5642		     >> 1))
5643	       == 0)))
5644    {
5645      rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5646      return expand_compound_operation (temp);
5647    }
5648
5649  /* We can optimize some special cases of ZERO_EXTEND.  */
5650  if (GET_CODE (x) == ZERO_EXTEND)
5651    {
5652      /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5653         know that the last value didn't have any inappropriate bits
5654         set.  */
5655      if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5656	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5657	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5658	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5659	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5660	return XEXP (XEXP (x, 0), 0);
5661
5662      /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5663      if (GET_CODE (XEXP (x, 0)) == SUBREG
5664	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5665	  && subreg_lowpart_p (XEXP (x, 0))
5666	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5667	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5668	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5669	return SUBREG_REG (XEXP (x, 0));
5670
5671      /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5672         is a comparison and STORE_FLAG_VALUE permits.  This is like
5673         the first case, but it works even when GET_MODE (x) is larger
5674         than HOST_WIDE_INT.  */
5675      if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5676	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5677	  && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5678	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5679	      <= HOST_BITS_PER_WIDE_INT)
5680	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5681	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5682	return XEXP (XEXP (x, 0), 0);
5683
5684      /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5685      if (GET_CODE (XEXP (x, 0)) == SUBREG
5686	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5687	  && subreg_lowpart_p (XEXP (x, 0))
5688	  && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5689	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5690	      <= HOST_BITS_PER_WIDE_INT)
5691	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5692	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5693	return SUBREG_REG (XEXP (x, 0));
5694
5695    }
5696
5697  /* If we reach here, we want to return a pair of shifts.  The inner
5698     shift is a left shift of BITSIZE - POS - LEN bits.  The outer
5699     shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
5700     logical depending on the value of UNSIGNEDP.
5701
5702     If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5703     converted into an AND of a shift.
5704
5705     We must check for the case where the left shift would have a negative
5706     count.  This can happen in a case like (x >> 31) & 255 on machines
5707     that can't shift by a constant.  On those machines, we would first
5708     combine the shift with the AND to produce a variable-position
5709     extraction.  Then the constant of 31 would be substituted in to produce
5710     a such a position.  */
5711
5712  modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5713  if (modewidth + len >= pos)
5714    tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5715				GET_MODE (x),
5716				simplify_shift_const (NULL_RTX, ASHIFT,
5717						      GET_MODE (x),
5718						      XEXP (x, 0),
5719						      modewidth - pos - len),
5720				modewidth - len);
5721
5722  else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5723    tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5724				  simplify_shift_const (NULL_RTX, LSHIFTRT,
5725							GET_MODE (x),
5726							XEXP (x, 0), pos),
5727				  ((HOST_WIDE_INT) 1 << len) - 1);
5728  else
5729    /* Any other cases we can't handle.  */
5730    return x;
5731
5732  /* If we couldn't do this for some reason, return the original
5733     expression.  */
5734  if (GET_CODE (tem) == CLOBBER)
5735    return x;
5736
5737  return tem;
5738}
5739
5740/* X is a SET which contains an assignment of one object into
5741   a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5742   or certain SUBREGS). If possible, convert it into a series of
5743   logical operations.
5744
5745   We half-heartedly support variable positions, but do not at all
5746   support variable lengths.  */
5747
5748static rtx
5749expand_field_assignment (x)
5750     rtx x;
5751{
5752  rtx inner;
5753  rtx pos;			/* Always counts from low bit.  */
5754  int len;
5755  rtx mask;
5756  enum machine_mode compute_mode;
5757
5758  /* Loop until we find something we can't simplify.  */
5759  while (1)
5760    {
5761      if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5762	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5763	{
5764	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5765	  len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5766	  pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5767	}
5768      else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5769	       && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5770	{
5771	  inner = XEXP (SET_DEST (x), 0);
5772	  len = INTVAL (XEXP (SET_DEST (x), 1));
5773	  pos = XEXP (SET_DEST (x), 2);
5774
5775	  /* If the position is constant and spans the width of INNER,
5776	     surround INNER  with a USE to indicate this.  */
5777	  if (GET_CODE (pos) == CONST_INT
5778	      && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5779	    inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5780
5781	  if (BITS_BIG_ENDIAN)
5782	    {
5783	      if (GET_CODE (pos) == CONST_INT)
5784		pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5785			       - INTVAL (pos));
5786	      else if (GET_CODE (pos) == MINUS
5787		       && GET_CODE (XEXP (pos, 1)) == CONST_INT
5788		       && (INTVAL (XEXP (pos, 1))
5789			   == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5790		/* If position is ADJUST - X, new position is X.  */
5791		pos = XEXP (pos, 0);
5792	      else
5793		pos = gen_binary (MINUS, GET_MODE (pos),
5794				  GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5795					   - len),
5796				  pos);
5797	    }
5798	}
5799
5800      /* A SUBREG between two modes that occupy the same numbers of words
5801	 can be done by moving the SUBREG to the source.  */
5802      else if (GET_CODE (SET_DEST (x)) == SUBREG
5803	       /* We need SUBREGs to compute nonzero_bits properly.  */
5804	       && nonzero_sign_valid
5805	       && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5806		     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5807		   == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5808			+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5809	{
5810	  x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5811			   gen_lowpart_for_combine
5812			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
5813			    SET_SRC (x)));
5814	  continue;
5815	}
5816      else
5817	break;
5818
5819      while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5820	inner = SUBREG_REG (inner);
5821
5822      compute_mode = GET_MODE (inner);
5823
5824      /* Don't attempt bitwise arithmetic on non-integral modes.  */
5825      if (! INTEGRAL_MODE_P (compute_mode))
5826	{
5827	  enum machine_mode imode;
5828
5829	  /* Something is probably seriously wrong if this matches.  */
5830	  if (! FLOAT_MODE_P (compute_mode))
5831	    break;
5832
5833	  /* Try to find an integral mode to pun with.  */
5834	  imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5835	  if (imode == BLKmode)
5836	    break;
5837
5838	  compute_mode = imode;
5839	  inner = gen_lowpart_for_combine (imode, inner);
5840	}
5841
5842      /* Compute a mask of LEN bits, if we can do this on the host machine.  */
5843      if (len < HOST_BITS_PER_WIDE_INT)
5844	mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5845      else
5846	break;
5847
5848      /* Now compute the equivalent expression.  Make a copy of INNER
5849	 for the SET_DEST in case it is a MEM into which we will substitute;
5850	 we don't want shared RTL in that case.  */
5851      x = gen_rtx_SET
5852	(VOIDmode, copy_rtx (inner),
5853	 gen_binary (IOR, compute_mode,
5854		     gen_binary (AND, compute_mode,
5855				 simplify_gen_unary (NOT, compute_mode,
5856						     gen_binary (ASHIFT,
5857								 compute_mode,
5858								 mask, pos),
5859						     compute_mode),
5860				 inner),
5861		     gen_binary (ASHIFT, compute_mode,
5862				 gen_binary (AND, compute_mode,
5863					     gen_lowpart_for_combine
5864					     (compute_mode, SET_SRC (x)),
5865					     mask),
5866				 pos)));
5867    }
5868
5869  return x;
5870}
5871
5872/* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
5873   it is an RTX that represents a variable starting position; otherwise,
5874   POS is the (constant) starting bit position (counted from the LSB).
5875
5876   INNER may be a USE.  This will occur when we started with a bitfield
5877   that went outside the boundary of the object in memory, which is
5878   allowed on most machines.  To isolate this case, we produce a USE
5879   whose mode is wide enough and surround the MEM with it.  The only
5880   code that understands the USE is this routine.  If it is not removed,
5881   it will cause the resulting insn not to match.
5882
5883   UNSIGNEDP is non-zero for an unsigned reference and zero for a
5884   signed reference.
5885
5886   IN_DEST is non-zero if this is a reference in the destination of a
5887   SET.  This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If non-zero,
5888   a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5889   be used.
5890
5891   IN_COMPARE is non-zero if we are in a COMPARE.  This means that a
5892   ZERO_EXTRACT should be built even for bits starting at bit 0.
5893
5894   MODE is the desired mode of the result (if IN_DEST == 0).
5895
5896   The result is an RTX for the extraction or NULL_RTX if the target
5897   can't handle it.  */
5898
5899static rtx
5900make_extraction (mode, inner, pos, pos_rtx, len,
5901		 unsignedp, in_dest, in_compare)
5902     enum machine_mode mode;
5903     rtx inner;
5904     HOST_WIDE_INT pos;
5905     rtx pos_rtx;
5906     unsigned HOST_WIDE_INT len;
5907     int unsignedp;
5908     int in_dest, in_compare;
5909{
5910  /* This mode describes the size of the storage area
5911     to fetch the overall value from.  Within that, we
5912     ignore the POS lowest bits, etc.  */
5913  enum machine_mode is_mode = GET_MODE (inner);
5914  enum machine_mode inner_mode;
5915  enum machine_mode wanted_inner_mode = byte_mode;
5916  enum machine_mode wanted_inner_reg_mode = word_mode;
5917  enum machine_mode pos_mode = word_mode;
5918  enum machine_mode extraction_mode = word_mode;
5919  enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5920  int spans_byte = 0;
5921  rtx new = 0;
5922  rtx orig_pos_rtx = pos_rtx;
5923  HOST_WIDE_INT orig_pos;
5924
5925  /* Get some information about INNER and get the innermost object.  */
5926  if (GET_CODE (inner) == USE)
5927    /* (use:SI (mem:QI foo)) stands for (mem:SI foo).  */
5928    /* We don't need to adjust the position because we set up the USE
5929       to pretend that it was a full-word object.  */
5930    spans_byte = 1, inner = XEXP (inner, 0);
5931  else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5932    {
5933      /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5934	 consider just the QI as the memory to extract from.
5935	 The subreg adds or removes high bits; its mode is
5936	 irrelevant to the meaning of this extraction,
5937	 since POS and LEN count from the lsb.  */
5938      if (GET_CODE (SUBREG_REG (inner)) == MEM)
5939	is_mode = GET_MODE (SUBREG_REG (inner));
5940      inner = SUBREG_REG (inner);
5941    }
5942
5943  inner_mode = GET_MODE (inner);
5944
5945  if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5946    pos = INTVAL (pos_rtx), pos_rtx = 0;
5947
5948  /* See if this can be done without an extraction.  We never can if the
5949     width of the field is not the same as that of some integer mode. For
5950     registers, we can only avoid the extraction if the position is at the
5951     low-order bit and this is either not in the destination or we have the
5952     appropriate STRICT_LOW_PART operation available.
5953
5954     For MEM, we can avoid an extract if the field starts on an appropriate
5955     boundary and we can change the mode of the memory reference.  However,
5956     we cannot directly access the MEM if we have a USE and the underlying
5957     MEM is not TMODE.  This combination means that MEM was being used in a
5958     context where bits outside its mode were being referenced; that is only
5959     valid in bit-field insns.  */
5960
5961  if (tmode != BLKmode
5962      && ! (spans_byte && inner_mode != tmode)
5963      && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5964	   && GET_CODE (inner) != MEM
5965	   && (! in_dest
5966	       || (GET_CODE (inner) == REG
5967		   && have_insn_for (STRICT_LOW_PART, tmode))))
5968	  || (GET_CODE (inner) == MEM && pos_rtx == 0
5969	      && (pos
5970		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5971		     : BITS_PER_UNIT)) == 0
5972	      /* We can't do this if we are widening INNER_MODE (it
5973		 may not be aligned, for one thing).  */
5974	      && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5975	      && (inner_mode == tmode
5976		  || (! mode_dependent_address_p (XEXP (inner, 0))
5977		      && ! MEM_VOLATILE_P (inner))))))
5978    {
5979      /* If INNER is a MEM, make a new MEM that encompasses just the desired
5980	 field.  If the original and current mode are the same, we need not
5981	 adjust the offset.  Otherwise, we do if bytes big endian.
5982
5983	 If INNER is not a MEM, get a piece consisting of just the field
5984	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
5985
5986      if (GET_CODE (inner) == MEM)
5987	{
5988	  HOST_WIDE_INT offset;
5989
5990	  /* POS counts from lsb, but make OFFSET count in memory order.  */
5991	  if (BYTES_BIG_ENDIAN)
5992	    offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5993	  else
5994	    offset = pos / BITS_PER_UNIT;
5995
5996	  new = adjust_address_nv (inner, tmode, offset);
5997	}
5998      else if (GET_CODE (inner) == REG)
5999	{
6000	  /* We can't call gen_lowpart_for_combine here since we always want
6001	     a SUBREG and it would sometimes return a new hard register.  */
6002	  if (tmode != inner_mode)
6003	    {
6004	      HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6005
6006	      if (WORDS_BIG_ENDIAN
6007		  && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6008		final_word = ((GET_MODE_SIZE (inner_mode)
6009			       - GET_MODE_SIZE (tmode))
6010			      / UNITS_PER_WORD) - final_word;
6011
6012	      final_word *= UNITS_PER_WORD;
6013	      if (BYTES_BIG_ENDIAN &&
6014		  GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6015		final_word += (GET_MODE_SIZE (inner_mode)
6016			       - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6017
6018	      new = gen_rtx_SUBREG (tmode, inner, final_word);
6019	    }
6020	  else
6021	    new = inner;
6022	}
6023      else
6024	new = force_to_mode (inner, tmode,
6025			     len >= HOST_BITS_PER_WIDE_INT
6026			     ? ~(unsigned HOST_WIDE_INT) 0
6027			     : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6028			     NULL_RTX, 0);
6029
6030      /* If this extraction is going into the destination of a SET,
6031	 make a STRICT_LOW_PART unless we made a MEM.  */
6032
6033      if (in_dest)
6034	return (GET_CODE (new) == MEM ? new
6035		: (GET_CODE (new) != SUBREG
6036		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
6037		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6038
6039      if (mode == tmode)
6040	return new;
6041
6042      if (GET_CODE (new) == CONST_INT)
6043	return GEN_INT (trunc_int_for_mode (INTVAL (new), mode));
6044
6045      /* If we know that no extraneous bits are set, and that the high
6046	 bit is not set, convert the extraction to the cheaper of
6047	 sign and zero extension, that are equivalent in these cases.  */
6048      if (flag_expensive_optimizations
6049	  && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6050	      && ((nonzero_bits (new, tmode)
6051		   & ~(((unsigned HOST_WIDE_INT)
6052			GET_MODE_MASK (tmode))
6053		       >> 1))
6054		  == 0)))
6055	{
6056	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6057	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6058
6059	  /* Prefer ZERO_EXTENSION, since it gives more information to
6060	     backends.  */
6061	  if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6062	    return temp;
6063	  return temp1;
6064	}
6065
6066      /* Otherwise, sign- or zero-extend unless we already are in the
6067	 proper mode.  */
6068
6069      return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6070			     mode, new));
6071    }
6072
6073  /* Unless this is a COMPARE or we have a funny memory reference,
6074     don't do anything with zero-extending field extracts starting at
6075     the low-order bit since they are simple AND operations.  */
6076  if (pos_rtx == 0 && pos == 0 && ! in_dest
6077      && ! in_compare && ! spans_byte && unsignedp)
6078    return 0;
6079
6080  /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6081     we would be spanning bytes or if the position is not a constant and the
6082     length is not 1.  In all other cases, we would only be going outside
6083     our object in cases when an original shift would have been
6084     undefined.  */
6085  if (! spans_byte && GET_CODE (inner) == MEM
6086      && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6087	  || (pos_rtx != 0 && len != 1)))
6088    return 0;
6089
6090  /* Get the mode to use should INNER not be a MEM, the mode for the position,
6091     and the mode for the result.  */
6092  if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6093    {
6094      wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6095      pos_mode = mode_for_extraction (EP_insv, 2);
6096      extraction_mode = mode_for_extraction (EP_insv, 3);
6097    }
6098
6099  if (! in_dest && unsignedp
6100      && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6101    {
6102      wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6103      pos_mode = mode_for_extraction (EP_extzv, 3);
6104      extraction_mode = mode_for_extraction (EP_extzv, 0);
6105    }
6106
6107  if (! in_dest && ! unsignedp
6108      && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6109    {
6110      wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6111      pos_mode = mode_for_extraction (EP_extv, 3);
6112      extraction_mode = mode_for_extraction (EP_extv, 0);
6113    }
6114
6115  /* Never narrow an object, since that might not be safe.  */
6116
6117  if (mode != VOIDmode
6118      && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6119    extraction_mode = mode;
6120
6121  if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6122      && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6123    pos_mode = GET_MODE (pos_rtx);
6124
6125  /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6126     if we have to change the mode of memory and cannot, the desired mode is
6127     EXTRACTION_MODE.  */
6128  if (GET_CODE (inner) != MEM)
6129    wanted_inner_mode = wanted_inner_reg_mode;
6130  else if (inner_mode != wanted_inner_mode
6131	   && (mode_dependent_address_p (XEXP (inner, 0))
6132	       || MEM_VOLATILE_P (inner)))
6133    wanted_inner_mode = extraction_mode;
6134
6135  orig_pos = pos;
6136
6137  if (BITS_BIG_ENDIAN)
6138    {
6139      /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6140	 BITS_BIG_ENDIAN style.  If position is constant, compute new
6141	 position.  Otherwise, build subtraction.
6142	 Note that POS is relative to the mode of the original argument.
6143	 If it's a MEM we need to recompute POS relative to that.
6144	 However, if we're extracting from (or inserting into) a register,
6145	 we want to recompute POS relative to wanted_inner_mode.  */
6146      int width = (GET_CODE (inner) == MEM
6147		   ? GET_MODE_BITSIZE (is_mode)
6148		   : GET_MODE_BITSIZE (wanted_inner_mode));
6149
6150      if (pos_rtx == 0)
6151	pos = width - len - pos;
6152      else
6153	pos_rtx
6154	  = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6155      /* POS may be less than 0 now, but we check for that below.
6156	 Note that it can only be less than 0 if GET_CODE (inner) != MEM.  */
6157    }
6158
6159  /* If INNER has a wider mode, make it smaller.  If this is a constant
6160     extract, try to adjust the byte to point to the byte containing
6161     the value.  */
6162  if (wanted_inner_mode != VOIDmode
6163      && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6164      && ((GET_CODE (inner) == MEM
6165	   && (inner_mode == wanted_inner_mode
6166	       || (! mode_dependent_address_p (XEXP (inner, 0))
6167		   && ! MEM_VOLATILE_P (inner))))))
6168    {
6169      int offset = 0;
6170
6171      /* The computations below will be correct if the machine is big
6172	 endian in both bits and bytes or little endian in bits and bytes.
6173	 If it is mixed, we must adjust.  */
6174
6175      /* If bytes are big endian and we had a paradoxical SUBREG, we must
6176	 adjust OFFSET to compensate.  */
6177      if (BYTES_BIG_ENDIAN
6178	  && ! spans_byte
6179	  && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6180	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6181
6182      /* If this is a constant position, we can move to the desired byte.  */
6183      if (pos_rtx == 0)
6184	{
6185	  offset += pos / BITS_PER_UNIT;
6186	  pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6187	}
6188
6189      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6190	  && ! spans_byte
6191	  && is_mode != wanted_inner_mode)
6192	offset = (GET_MODE_SIZE (is_mode)
6193		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
6194
6195      if (offset != 0 || inner_mode != wanted_inner_mode)
6196	inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6197    }
6198
6199  /* If INNER is not memory, we can always get it into the proper mode.  If we
6200     are changing its mode, POS must be a constant and smaller than the size
6201     of the new mode.  */
6202  else if (GET_CODE (inner) != MEM)
6203    {
6204      if (GET_MODE (inner) != wanted_inner_mode
6205	  && (pos_rtx != 0
6206	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6207	return 0;
6208
6209      inner = force_to_mode (inner, wanted_inner_mode,
6210			     pos_rtx
6211			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6212			     ? ~(unsigned HOST_WIDE_INT) 0
6213			     : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6214				<< orig_pos),
6215			     NULL_RTX, 0);
6216    }
6217
6218  /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
6219     have to zero extend.  Otherwise, we can just use a SUBREG.  */
6220  if (pos_rtx != 0
6221      && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6222    {
6223      rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6224
6225      /* If we know that no extraneous bits are set, and that the high
6226	 bit is not set, convert extraction to cheaper one - either
6227	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6228	 cases.  */
6229      if (flag_expensive_optimizations
6230	  && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6231	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6232		   & ~(((unsigned HOST_WIDE_INT)
6233			GET_MODE_MASK (GET_MODE (pos_rtx)))
6234		       >> 1))
6235		  == 0)))
6236	{
6237	  rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6238
6239	  /* Prefer ZERO_EXTENSION, since it gives more information to
6240	     backends.  */
6241	  if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6242	    temp = temp1;
6243	}
6244      pos_rtx = temp;
6245    }
6246  else if (pos_rtx != 0
6247	   && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6248    pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6249
6250  /* Make POS_RTX unless we already have it and it is correct.  If we don't
6251     have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6252     be a CONST_INT.  */
6253  if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6254    pos_rtx = orig_pos_rtx;
6255
6256  else if (pos_rtx == 0)
6257    pos_rtx = GEN_INT (pos);
6258
6259  /* Make the required operation.  See if we can use existing rtx.  */
6260  new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6261			 extraction_mode, inner, GEN_INT (len), pos_rtx);
6262  if (! in_dest)
6263    new = gen_lowpart_for_combine (mode, new);
6264
6265  return new;
6266}
6267
6268/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6269   with any other operations in X.  Return X without that shift if so.  */
6270
6271static rtx
6272extract_left_shift (x, count)
6273     rtx x;
6274     int count;
6275{
6276  enum rtx_code code = GET_CODE (x);
6277  enum machine_mode mode = GET_MODE (x);
6278  rtx tem;
6279
6280  switch (code)
6281    {
6282    case ASHIFT:
6283      /* This is the shift itself.  If it is wide enough, we will return
6284	 either the value being shifted if the shift count is equal to
6285	 COUNT or a shift for the difference.  */
6286      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6287	  && INTVAL (XEXP (x, 1)) >= count)
6288	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6289				     INTVAL (XEXP (x, 1)) - count);
6290      break;
6291
6292    case NEG:  case NOT:
6293      if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6294	return simplify_gen_unary (code, mode, tem, mode);
6295
6296      break;
6297
6298    case PLUS:  case IOR:  case XOR:  case AND:
6299      /* If we can safely shift this constant and we find the inner shift,
6300	 make a new operation.  */
6301      if (GET_CODE (XEXP (x,1)) == CONST_INT
6302	  && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6303	  && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6304	return gen_binary (code, mode, tem,
6305			   GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6306
6307      break;
6308
6309    default:
6310      break;
6311    }
6312
6313  return 0;
6314}
6315
6316/* Look at the expression rooted at X.  Look for expressions
6317   equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6318   Form these expressions.
6319
6320   Return the new rtx, usually just X.
6321
6322   Also, for machines like the VAX that don't have logical shift insns,
6323   try to convert logical to arithmetic shift operations in cases where
6324   they are equivalent.  This undoes the canonicalizations to logical
6325   shifts done elsewhere.
6326
6327   We try, as much as possible, to re-use rtl expressions to save memory.
6328
6329   IN_CODE says what kind of expression we are processing.  Normally, it is
6330   SET.  In a memory address (inside a MEM, PLUS or minus, the latter two
6331   being kludges), it is MEM.  When processing the arguments of a comparison
6332   or a COMPARE against zero, it is COMPARE.  */
6333
6334static rtx
6335make_compound_operation (x, in_code)
6336     rtx x;
6337     enum rtx_code in_code;
6338{
6339  enum rtx_code code = GET_CODE (x);
6340  enum machine_mode mode = GET_MODE (x);
6341  int mode_width = GET_MODE_BITSIZE (mode);
6342  rtx rhs, lhs;
6343  enum rtx_code next_code;
6344  int i;
6345  rtx new = 0;
6346  rtx tem;
6347  const char *fmt;
6348
6349  /* Select the code to be used in recursive calls.  Once we are inside an
6350     address, we stay there.  If we have a comparison, set to COMPARE,
6351     but once inside, go back to our default of SET.  */
6352
6353  next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6354	       : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6355		  && XEXP (x, 1) == const0_rtx) ? COMPARE
6356	       : in_code == COMPARE ? SET : in_code);
6357
6358  /* Process depending on the code of this operation.  If NEW is set
6359     non-zero, it will be returned.  */
6360
6361  switch (code)
6362    {
6363    case ASHIFT:
6364      /* Convert shifts by constants into multiplications if inside
6365	 an address.  */
6366      if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6367	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6368	  && INTVAL (XEXP (x, 1)) >= 0)
6369	{
6370	  new = make_compound_operation (XEXP (x, 0), next_code);
6371	  new = gen_rtx_MULT (mode, new,
6372			      GEN_INT ((HOST_WIDE_INT) 1
6373				       << INTVAL (XEXP (x, 1))));
6374	}
6375      break;
6376
6377    case AND:
6378      /* If the second operand is not a constant, we can't do anything
6379	 with it.  */
6380      if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6381	break;
6382
6383      /* If the constant is a power of two minus one and the first operand
6384	 is a logical right shift, make an extraction.  */
6385      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6386	  && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6387	{
6388	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6389	  new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6390				 0, in_code == COMPARE);
6391	}
6392
6393      /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
6394      else if (GET_CODE (XEXP (x, 0)) == SUBREG
6395	       && subreg_lowpart_p (XEXP (x, 0))
6396	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6397	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6398	{
6399	  new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6400					 next_code);
6401	  new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6402				 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6403				 0, in_code == COMPARE);
6404	}
6405      /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
6406      else if ((GET_CODE (XEXP (x, 0)) == XOR
6407		|| GET_CODE (XEXP (x, 0)) == IOR)
6408	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6409	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6410	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6411	{
6412	  /* Apply the distributive law, and then try to make extractions.  */
6413	  new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6414				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6415					     XEXP (x, 1)),
6416				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6417					     XEXP (x, 1)));
6418	  new = make_compound_operation (new, in_code);
6419	}
6420
6421      /* If we are have (and (rotate X C) M) and C is larger than the number
6422	 of bits in M, this is an extraction.  */
6423
6424      else if (GET_CODE (XEXP (x, 0)) == ROTATE
6425	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6426	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6427	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6428	{
6429	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6430	  new = make_extraction (mode, new,
6431				 (GET_MODE_BITSIZE (mode)
6432				  - INTVAL (XEXP (XEXP (x, 0), 1))),
6433				 NULL_RTX, i, 1, 0, in_code == COMPARE);
6434	}
6435
6436      /* On machines without logical shifts, if the operand of the AND is
6437	 a logical shift and our mask turns off all the propagated sign
6438	 bits, we can replace the logical shift with an arithmetic shift.  */
6439      else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6440	       && !have_insn_for (LSHIFTRT, mode)
6441	       && have_insn_for (ASHIFTRT, mode)
6442	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6443	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6444	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6445	       && mode_width <= HOST_BITS_PER_WIDE_INT)
6446	{
6447	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6448
6449	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6450	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6451	    SUBST (XEXP (x, 0),
6452		   gen_rtx_ASHIFTRT (mode,
6453				     make_compound_operation
6454				     (XEXP (XEXP (x, 0), 0), next_code),
6455				     XEXP (XEXP (x, 0), 1)));
6456	}
6457
6458      /* If the constant is one less than a power of two, this might be
6459	 representable by an extraction even if no shift is present.
6460	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6461	 we are in a COMPARE.  */
6462      else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6463	new = make_extraction (mode,
6464			       make_compound_operation (XEXP (x, 0),
6465							next_code),
6466			       0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6467
6468      /* If we are in a comparison and this is an AND with a power of two,
6469	 convert this into the appropriate bit extract.  */
6470      else if (in_code == COMPARE
6471	       && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6472	new = make_extraction (mode,
6473			       make_compound_operation (XEXP (x, 0),
6474							next_code),
6475			       i, NULL_RTX, 1, 1, 0, 1);
6476
6477      break;
6478
6479    case LSHIFTRT:
6480      /* If the sign bit is known to be zero, replace this with an
6481	 arithmetic shift.  */
6482      if (have_insn_for (ASHIFTRT, mode)
6483	  && ! have_insn_for (LSHIFTRT, mode)
6484	  && mode_width <= HOST_BITS_PER_WIDE_INT
6485	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6486	{
6487	  new = gen_rtx_ASHIFTRT (mode,
6488				  make_compound_operation (XEXP (x, 0),
6489							   next_code),
6490				  XEXP (x, 1));
6491	  break;
6492	}
6493
6494      /* ... fall through ...  */
6495
6496    case ASHIFTRT:
6497      lhs = XEXP (x, 0);
6498      rhs = XEXP (x, 1);
6499
6500      /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6501	 this is a SIGN_EXTRACT.  */
6502      if (GET_CODE (rhs) == CONST_INT
6503	  && GET_CODE (lhs) == ASHIFT
6504	  && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6505	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6506	{
6507	  new = make_compound_operation (XEXP (lhs, 0), next_code);
6508	  new = make_extraction (mode, new,
6509				 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6510				 NULL_RTX, mode_width - INTVAL (rhs),
6511				 code == LSHIFTRT, 0, in_code == COMPARE);
6512	  break;
6513	}
6514
6515      /* See if we have operations between an ASHIFTRT and an ASHIFT.
6516	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
6517	 also do this for some cases of SIGN_EXTRACT, but it doesn't
6518	 seem worth the effort; the case checked for occurs on Alpha.  */
6519
6520      if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6521	  && ! (GET_CODE (lhs) == SUBREG
6522		&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6523	  && GET_CODE (rhs) == CONST_INT
6524	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6525	  && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6526	new = make_extraction (mode, make_compound_operation (new, next_code),
6527			       0, NULL_RTX, mode_width - INTVAL (rhs),
6528			       code == LSHIFTRT, 0, in_code == COMPARE);
6529
6530      break;
6531
6532    case SUBREG:
6533      /* Call ourselves recursively on the inner expression.  If we are
6534	 narrowing the object and it has a different RTL code from
6535	 what it originally did, do this SUBREG as a force_to_mode.  */
6536
6537      tem = make_compound_operation (SUBREG_REG (x), in_code);
6538      if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6539	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6540	  && subreg_lowpart_p (x))
6541	{
6542	  rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6543				     NULL_RTX, 0);
6544
6545	  /* If we have something other than a SUBREG, we might have
6546	     done an expansion, so rerun ourselves.  */
6547	  if (GET_CODE (newer) != SUBREG)
6548	    newer = make_compound_operation (newer, in_code);
6549
6550	  return newer;
6551	}
6552
6553      /* If this is a paradoxical subreg, and the new code is a sign or
6554	 zero extension, omit the subreg and widen the extension.  If it
6555	 is a regular subreg, we can still get rid of the subreg by not
6556	 widening so much, or in fact removing the extension entirely.  */
6557      if ((GET_CODE (tem) == SIGN_EXTEND
6558	   || GET_CODE (tem) == ZERO_EXTEND)
6559	  && subreg_lowpart_p (x))
6560	{
6561	  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6562	      || (GET_MODE_SIZE (mode) >
6563		  GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6564	    tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6565	  else
6566	    tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6567	  return tem;
6568	}
6569      break;
6570
6571    default:
6572      break;
6573    }
6574
6575  if (new)
6576    {
6577      x = gen_lowpart_for_combine (mode, new);
6578      code = GET_CODE (x);
6579    }
6580
6581  /* Now recursively process each operand of this operation.  */
6582  fmt = GET_RTX_FORMAT (code);
6583  for (i = 0; i < GET_RTX_LENGTH (code); i++)
6584    if (fmt[i] == 'e')
6585      {
6586	new = make_compound_operation (XEXP (x, i), next_code);
6587	SUBST (XEXP (x, i), new);
6588      }
6589
6590  return x;
6591}
6592
6593/* Given M see if it is a value that would select a field of bits
6594   within an item, but not the entire word.  Return -1 if not.
6595   Otherwise, return the starting position of the field, where 0 is the
6596   low-order bit.
6597
6598   *PLEN is set to the length of the field.  */
6599
6600static int
6601get_pos_from_mask (m, plen)
6602     unsigned HOST_WIDE_INT m;
6603     unsigned HOST_WIDE_INT *plen;
6604{
6605  /* Get the bit number of the first 1 bit from the right, -1 if none.  */
6606  int pos = exact_log2 (m & -m);
6607  int len;
6608
6609  if (pos < 0)
6610    return -1;
6611
6612  /* Now shift off the low-order zero bits and see if we have a power of
6613     two minus 1.  */
6614  len = exact_log2 ((m >> pos) + 1);
6615
6616  if (len <= 0)
6617    return -1;
6618
6619  *plen = len;
6620  return pos;
6621}
6622
6623/* See if X can be simplified knowing that we will only refer to it in
6624   MODE and will only refer to those bits that are nonzero in MASK.
6625   If other bits are being computed or if masking operations are done
6626   that select a superset of the bits in MASK, they can sometimes be
6627   ignored.
6628
6629   Return a possibly simplified expression, but always convert X to
6630   MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
6631
6632   Also, if REG is non-zero and X is a register equal in value to REG,
6633   replace X with REG.
6634
6635   If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6636   are all off in X.  This is used when X will be complemented, by either
6637   NOT, NEG, or XOR.  */
6638
6639static rtx
6640force_to_mode (x, mode, mask, reg, just_select)
6641     rtx x;
6642     enum machine_mode mode;
6643     unsigned HOST_WIDE_INT mask;
6644     rtx reg;
6645     int just_select;
6646{
6647  enum rtx_code code = GET_CODE (x);
6648  int next_select = just_select || code == XOR || code == NOT || code == NEG;
6649  enum machine_mode op_mode;
6650  unsigned HOST_WIDE_INT fuller_mask, nonzero;
6651  rtx op0, op1, temp;
6652
6653  /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
6654     code below will do the wrong thing since the mode of such an
6655     expression is VOIDmode.
6656
6657     Also do nothing if X is a CLOBBER; this can happen if X was
6658     the return value from a call to gen_lowpart_for_combine.  */
6659  if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6660    return x;
6661
6662  /* We want to perform the operation is its present mode unless we know
6663     that the operation is valid in MODE, in which case we do the operation
6664     in MODE.  */
6665  op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6666	      && have_insn_for (code, mode))
6667	     ? mode : GET_MODE (x));
6668
6669  /* It is not valid to do a right-shift in a narrower mode
6670     than the one it came in with.  */
6671  if ((code == LSHIFTRT || code == ASHIFTRT)
6672      && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6673    op_mode = GET_MODE (x);
6674
6675  /* Truncate MASK to fit OP_MODE.  */
6676  if (op_mode)
6677    mask &= GET_MODE_MASK (op_mode);
6678
6679  /* When we have an arithmetic operation, or a shift whose count we
6680     do not know, we need to assume that all bit the up to the highest-order
6681     bit in MASK will be needed.  This is how we form such a mask.  */
6682  if (op_mode)
6683    fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6684		   ? GET_MODE_MASK (op_mode)
6685		   : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6686		      - 1));
6687  else
6688    fuller_mask = ~(HOST_WIDE_INT) 0;
6689
6690  /* Determine what bits of X are guaranteed to be (non)zero.  */
6691  nonzero = nonzero_bits (x, mode);
6692
6693  /* If none of the bits in X are needed, return a zero.  */
6694  if (! just_select && (nonzero & mask) == 0)
6695    return const0_rtx;
6696
6697  /* If X is a CONST_INT, return a new one.  Do this here since the
6698     test below will fail.  */
6699  if (GET_CODE (x) == CONST_INT)
6700    {
6701      HOST_WIDE_INT cval = INTVAL (x) & mask;
6702      int width = GET_MODE_BITSIZE (mode);
6703
6704      /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6705	 number, sign extend it.  */
6706      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6707	  && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6708	cval |= (HOST_WIDE_INT) -1 << width;
6709
6710      return GEN_INT (cval);
6711    }
6712
6713  /* If X is narrower than MODE and we want all the bits in X's mode, just
6714     get X in the proper mode.  */
6715  if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6716      && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6717    return gen_lowpart_for_combine (mode, x);
6718
6719  /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6720     MASK are already known to be zero in X, we need not do anything.  */
6721  if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6722    return x;
6723
6724  switch (code)
6725    {
6726    case CLOBBER:
6727      /* If X is a (clobber (const_int)), return it since we know we are
6728	 generating something that won't match.  */
6729      return x;
6730
6731    case USE:
6732      /* X is a (use (mem ..)) that was made from a bit-field extraction that
6733	 spanned the boundary of the MEM.  If we are now masking so it is
6734	 within that boundary, we don't need the USE any more.  */
6735      if (! BITS_BIG_ENDIAN
6736	  && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6737	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6738      break;
6739
6740    case SIGN_EXTEND:
6741    case ZERO_EXTEND:
6742    case ZERO_EXTRACT:
6743    case SIGN_EXTRACT:
6744      x = expand_compound_operation (x);
6745      if (GET_CODE (x) != code)
6746	return force_to_mode (x, mode, mask, reg, next_select);
6747      break;
6748
6749    case REG:
6750      if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6751		       || rtx_equal_p (reg, get_last_value (x))))
6752	x = reg;
6753      break;
6754
6755    case SUBREG:
6756      if (subreg_lowpart_p (x)
6757	  /* We can ignore the effect of this SUBREG if it narrows the mode or
6758	     if the constant masks to zero all the bits the mode doesn't
6759	     have.  */
6760	  && ((GET_MODE_SIZE (GET_MODE (x))
6761	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6762	      || (0 == (mask
6763			& GET_MODE_MASK (GET_MODE (x))
6764			& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6765	return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6766      break;
6767
6768    case AND:
6769      /* If this is an AND with a constant, convert it into an AND
6770	 whose constant is the AND of that constant with MASK.  If it
6771	 remains an AND of MASK, delete it since it is redundant.  */
6772
6773      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6774	{
6775	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6776				      mask & INTVAL (XEXP (x, 1)));
6777
6778	  /* If X is still an AND, see if it is an AND with a mask that
6779	     is just some low-order bits.  If so, and it is MASK, we don't
6780	     need it.  */
6781
6782	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6783	      && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6784		  == (HOST_WIDE_INT) mask))
6785	    x = XEXP (x, 0);
6786
6787	  /* If it remains an AND, try making another AND with the bits
6788	     in the mode mask that aren't in MASK turned on.  If the
6789	     constant in the AND is wide enough, this might make a
6790	     cheaper constant.  */
6791
6792	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6793	      && GET_MODE_MASK (GET_MODE (x)) != mask
6794	      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6795	    {
6796	      HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6797				    | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6798	      int width = GET_MODE_BITSIZE (GET_MODE (x));
6799	      rtx y;
6800
6801	      /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6802		 number, sign extend it.  */
6803	      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6804		  && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6805		cval |= (HOST_WIDE_INT) -1 << width;
6806
6807	      y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6808	      if (rtx_cost (y, SET) < rtx_cost (x, SET))
6809		x = y;
6810	    }
6811
6812	  break;
6813	}
6814
6815      goto binop;
6816
6817    case PLUS:
6818      /* In (and (plus FOO C1) M), if M is a mask that just turns off
6819	 low-order bits (as in an alignment operation) and FOO is already
6820	 aligned to that boundary, mask C1 to that boundary as well.
6821	 This may eliminate that PLUS and, later, the AND.  */
6822
6823      {
6824	unsigned int width = GET_MODE_BITSIZE (mode);
6825	unsigned HOST_WIDE_INT smask = mask;
6826
6827	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6828	   number, sign extend it.  */
6829
6830	if (width < HOST_BITS_PER_WIDE_INT
6831	    && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6832	  smask |= (HOST_WIDE_INT) -1 << width;
6833
6834	if (GET_CODE (XEXP (x, 1)) == CONST_INT
6835	    && exact_log2 (- smask) >= 0
6836	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6837	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6838	  return force_to_mode (plus_constant (XEXP (x, 0),
6839					       (INTVAL (XEXP (x, 1)) & smask)),
6840				mode, smask, reg, next_select);
6841      }
6842
6843      /* ... fall through ...  */
6844
6845    case MULT:
6846      /* For PLUS, MINUS and MULT, we need any bits less significant than the
6847	 most significant bit in MASK since carries from those bits will
6848	 affect the bits we are interested in.  */
6849      mask = fuller_mask;
6850      goto binop;
6851
6852    case MINUS:
6853      /* If X is (minus C Y) where C's least set bit is larger than any bit
6854	 in the mask, then we may replace with (neg Y).  */
6855      if (GET_CODE (XEXP (x, 0)) == CONST_INT
6856	  && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6857					& -INTVAL (XEXP (x, 0))))
6858	      > mask))
6859	{
6860	  x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6861				  GET_MODE (x));
6862	  return force_to_mode (x, mode, mask, reg, next_select);
6863	}
6864
6865      /* Similarly, if C contains every bit in the mask, then we may
6866	 replace with (not Y).  */
6867      if (GET_CODE (XEXP (x, 0)) == CONST_INT
6868	  && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6869	      == INTVAL (XEXP (x, 0))))
6870	{
6871	  x = simplify_gen_unary (NOT, GET_MODE (x),
6872				  XEXP (x, 1), GET_MODE (x));
6873	  return force_to_mode (x, mode, mask, reg, next_select);
6874	}
6875
6876      mask = fuller_mask;
6877      goto binop;
6878
6879    case IOR:
6880    case XOR:
6881      /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6882	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6883	 operation which may be a bitfield extraction.  Ensure that the
6884	 constant we form is not wider than the mode of X.  */
6885
6886      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6887	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6888	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6889	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6890	  && GET_CODE (XEXP (x, 1)) == CONST_INT
6891	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
6892	       + floor_log2 (INTVAL (XEXP (x, 1))))
6893	      < GET_MODE_BITSIZE (GET_MODE (x)))
6894	  && (INTVAL (XEXP (x, 1))
6895	      & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6896	{
6897	  temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6898			  << INTVAL (XEXP (XEXP (x, 0), 1)));
6899	  temp = gen_binary (GET_CODE (x), GET_MODE (x),
6900			     XEXP (XEXP (x, 0), 0), temp);
6901	  x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6902			  XEXP (XEXP (x, 0), 1));
6903	  return force_to_mode (x, mode, mask, reg, next_select);
6904	}
6905
6906    binop:
6907      /* For most binary operations, just propagate into the operation and
6908	 change the mode if we have an operation of that mode.  */
6909
6910      op0 = gen_lowpart_for_combine (op_mode,
6911				     force_to_mode (XEXP (x, 0), mode, mask,
6912						    reg, next_select));
6913      op1 = gen_lowpart_for_combine (op_mode,
6914				     force_to_mode (XEXP (x, 1), mode, mask,
6915						    reg, next_select));
6916
6917      /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6918	 MASK since OP1 might have been sign-extended but we never want
6919	 to turn on extra bits, since combine might have previously relied
6920	 on them being off.  */
6921      if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6922	  && (INTVAL (op1) & mask) != 0)
6923	op1 = GEN_INT (INTVAL (op1) & mask);
6924
6925      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6926	x = gen_binary (code, op_mode, op0, op1);
6927      break;
6928
6929    case ASHIFT:
6930      /* For left shifts, do the same, but just for the first operand.
6931	 However, we cannot do anything with shifts where we cannot
6932	 guarantee that the counts are smaller than the size of the mode
6933	 because such a count will have a different meaning in a
6934	 wider mode.  */
6935
6936      if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6937	     && INTVAL (XEXP (x, 1)) >= 0
6938	     && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6939	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6940		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6941		    < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6942	break;
6943
6944      /* If the shift count is a constant and we can do arithmetic in
6945	 the mode of the shift, refine which bits we need.  Otherwise, use the
6946	 conservative form of the mask.  */
6947      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6948	  && INTVAL (XEXP (x, 1)) >= 0
6949	  && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6950	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6951	mask >>= INTVAL (XEXP (x, 1));
6952      else
6953	mask = fuller_mask;
6954
6955      op0 = gen_lowpart_for_combine (op_mode,
6956				     force_to_mode (XEXP (x, 0), op_mode,
6957						    mask, reg, next_select));
6958
6959      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6960	x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6961      break;
6962
6963    case LSHIFTRT:
6964      /* Here we can only do something if the shift count is a constant,
6965	 this shift constant is valid for the host, and we can do arithmetic
6966	 in OP_MODE.  */
6967
6968      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6969	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6970	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6971	{
6972	  rtx inner = XEXP (x, 0);
6973	  unsigned HOST_WIDE_INT inner_mask;
6974
6975	  /* Select the mask of the bits we need for the shift operand.  */
6976	  inner_mask = mask << INTVAL (XEXP (x, 1));
6977
6978	  /* We can only change the mode of the shift if we can do arithmetic
6979	     in the mode of the shift and INNER_MASK is no wider than the
6980	     width of OP_MODE.  */
6981	  if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6982	      || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6983	    op_mode = GET_MODE (x);
6984
6985	  inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6986
6987	  if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6988	    x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6989	}
6990
6991      /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6992	 shift and AND produces only copies of the sign bit (C2 is one less
6993	 than a power of two), we can do this with just a shift.  */
6994
6995      if (GET_CODE (x) == LSHIFTRT
6996	  && GET_CODE (XEXP (x, 1)) == CONST_INT
6997	  /* The shift puts one of the sign bit copies in the least significant
6998	     bit.  */
6999	  && ((INTVAL (XEXP (x, 1))
7000	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7001	      >= GET_MODE_BITSIZE (GET_MODE (x)))
7002	  && exact_log2 (mask + 1) >= 0
7003	  /* Number of bits left after the shift must be more than the mask
7004	     needs.  */
7005	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7006	      <= GET_MODE_BITSIZE (GET_MODE (x)))
7007	  /* Must be more sign bit copies than the mask needs.  */
7008	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7009	      >= exact_log2 (mask + 1)))
7010	x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7011			GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7012				 - exact_log2 (mask + 1)));
7013
7014      goto shiftrt;
7015
7016    case ASHIFTRT:
7017      /* If we are just looking for the sign bit, we don't need this shift at
7018	 all, even if it has a variable count.  */
7019      if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7020	  && (mask == ((unsigned HOST_WIDE_INT) 1
7021		       << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7022	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7023
7024      /* If this is a shift by a constant, get a mask that contains those bits
7025	 that are not copies of the sign bit.  We then have two cases:  If
7026	 MASK only includes those bits, this can be a logical shift, which may
7027	 allow simplifications.  If MASK is a single-bit field not within
7028	 those bits, we are requesting a copy of the sign bit and hence can
7029	 shift the sign bit to the appropriate location.  */
7030
7031      if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7032	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7033	{
7034	  int i = -1;
7035
7036	  /* If the considered data is wider than HOST_WIDE_INT, we can't
7037	     represent a mask for all its bits in a single scalar.
7038	     But we only care about the lower bits, so calculate these.  */
7039
7040	  if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7041	    {
7042	      nonzero = ~(HOST_WIDE_INT) 0;
7043
7044	      /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7045		 is the number of bits a full-width mask would have set.
7046		 We need only shift if these are fewer than nonzero can
7047		 hold.  If not, we must keep all bits set in nonzero.  */
7048
7049	      if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7050		  < HOST_BITS_PER_WIDE_INT)
7051		nonzero >>= INTVAL (XEXP (x, 1))
7052			    + HOST_BITS_PER_WIDE_INT
7053			    - GET_MODE_BITSIZE (GET_MODE (x)) ;
7054	    }
7055	  else
7056	    {
7057	      nonzero = GET_MODE_MASK (GET_MODE (x));
7058	      nonzero >>= INTVAL (XEXP (x, 1));
7059	    }
7060
7061	  if ((mask & ~nonzero) == 0
7062	      || (i = exact_log2 (mask)) >= 0)
7063	    {
7064	      x = simplify_shift_const
7065		(x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7066		 i < 0 ? INTVAL (XEXP (x, 1))
7067		 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7068
7069	      if (GET_CODE (x) != ASHIFTRT)
7070		return force_to_mode (x, mode, mask, reg, next_select);
7071	    }
7072	}
7073
7074      /* If MASK is 1, convert this to a LSHIFTRT.  This can be done
7075	 even if the shift count isn't a constant.  */
7076      if (mask == 1)
7077	x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7078
7079    shiftrt:
7080
7081      /* If this is a zero- or sign-extension operation that just affects bits
7082	 we don't care about, remove it.  Be sure the call above returned
7083	 something that is still a shift.  */
7084
7085      if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7086	  && GET_CODE (XEXP (x, 1)) == CONST_INT
7087	  && INTVAL (XEXP (x, 1)) >= 0
7088	  && (INTVAL (XEXP (x, 1))
7089	      <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7090	  && GET_CODE (XEXP (x, 0)) == ASHIFT
7091	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7092	  && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7093	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7094			      reg, next_select);
7095
7096      break;
7097
7098    case ROTATE:
7099    case ROTATERT:
7100      /* If the shift count is constant and we can do computations
7101	 in the mode of X, compute where the bits we care about are.
7102	 Otherwise, we can't do anything.  Don't change the mode of
7103	 the shift or propagate MODE into the shift, though.  */
7104      if (GET_CODE (XEXP (x, 1)) == CONST_INT
7105	  && INTVAL (XEXP (x, 1)) >= 0)
7106	{
7107	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7108					    GET_MODE (x), GEN_INT (mask),
7109					    XEXP (x, 1));
7110	  if (temp && GET_CODE(temp) == CONST_INT)
7111	    SUBST (XEXP (x, 0),
7112		   force_to_mode (XEXP (x, 0), GET_MODE (x),
7113				  INTVAL (temp), reg, next_select));
7114	}
7115      break;
7116
7117    case NEG:
7118      /* If we just want the low-order bit, the NEG isn't needed since it
7119	 won't change the low-order bit.  */
7120      if (mask == 1)
7121	return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7122
7123      /* We need any bits less significant than the most significant bit in
7124	 MASK since carries from those bits will affect the bits we are
7125	 interested in.  */
7126      mask = fuller_mask;
7127      goto unop;
7128
7129    case NOT:
7130      /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7131	 same as the XOR case above.  Ensure that the constant we form is not
7132	 wider than the mode of X.  */
7133
7134      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7135	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7136	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7137	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7138	      < GET_MODE_BITSIZE (GET_MODE (x)))
7139	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7140	{
7141	  temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7142	  temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7143	  x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7144
7145	  return force_to_mode (x, mode, mask, reg, next_select);
7146	}
7147
7148      /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7149	 use the full mask inside the NOT.  */
7150      mask = fuller_mask;
7151
7152    unop:
7153      op0 = gen_lowpart_for_combine (op_mode,
7154				     force_to_mode (XEXP (x, 0), mode, mask,
7155						    reg, next_select));
7156      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7157	x = simplify_gen_unary (code, op_mode, op0, op_mode);
7158      break;
7159
7160    case NE:
7161      /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7162	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7163	 which is equal to STORE_FLAG_VALUE.  */
7164      if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7165	  && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7166	  && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7167	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7168
7169      break;
7170
7171    case IF_THEN_ELSE:
7172      /* We have no way of knowing if the IF_THEN_ELSE can itself be
7173	 written in a narrower mode.  We play it safe and do not do so.  */
7174
7175      SUBST (XEXP (x, 1),
7176	     gen_lowpart_for_combine (GET_MODE (x),
7177				      force_to_mode (XEXP (x, 1), mode,
7178						     mask, reg, next_select)));
7179      SUBST (XEXP (x, 2),
7180	     gen_lowpart_for_combine (GET_MODE (x),
7181				      force_to_mode (XEXP (x, 2), mode,
7182						     mask, reg,next_select)));
7183      break;
7184
7185    default:
7186      break;
7187    }
7188
7189  /* Ensure we return a value of the proper mode.  */
7190  return gen_lowpart_for_combine (mode, x);
7191}
7192
7193/* Return nonzero if X is an expression that has one of two values depending on
7194   whether some other value is zero or nonzero.  In that case, we return the
7195   value that is being tested, *PTRUE is set to the value if the rtx being
7196   returned has a nonzero value, and *PFALSE is set to the other alternative.
7197
7198   If we return zero, we set *PTRUE and *PFALSE to X.  */
7199
7200static rtx
7201if_then_else_cond (x, ptrue, pfalse)
7202     rtx x;
7203     rtx *ptrue, *pfalse;
7204{
7205  enum machine_mode mode = GET_MODE (x);
7206  enum rtx_code code = GET_CODE (x);
7207  rtx cond0, cond1, true0, true1, false0, false1;
7208  unsigned HOST_WIDE_INT nz;
7209
7210  /* If we are comparing a value against zero, we are done.  */
7211  if ((code == NE || code == EQ)
7212      && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7213    {
7214      *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7215      *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7216      return XEXP (x, 0);
7217    }
7218
7219  /* If this is a unary operation whose operand has one of two values, apply
7220     our opcode to compute those values.  */
7221  else if (GET_RTX_CLASS (code) == '1'
7222	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7223    {
7224      *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7225      *pfalse = simplify_gen_unary (code, mode, false0,
7226				    GET_MODE (XEXP (x, 0)));
7227      return cond0;
7228    }
7229
7230  /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7231     make can't possibly match and would suppress other optimizations.  */
7232  else if (code == COMPARE)
7233    ;
7234
7235  /* If this is a binary operation, see if either side has only one of two
7236     values.  If either one does or if both do and they are conditional on
7237     the same value, compute the new true and false values.  */
7238  else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7239	   || GET_RTX_CLASS (code) == '<')
7240    {
7241      cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7242      cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7243
7244      if ((cond0 != 0 || cond1 != 0)
7245	  && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7246	{
7247	  /* If if_then_else_cond returned zero, then true/false are the
7248	     same rtl.  We must copy one of them to prevent invalid rtl
7249	     sharing.  */
7250	  if (cond0 == 0)
7251	    true0 = copy_rtx (true0);
7252	  else if (cond1 == 0)
7253	    true1 = copy_rtx (true1);
7254
7255	  *ptrue = gen_binary (code, mode, true0, true1);
7256	  *pfalse = gen_binary (code, mode, false0, false1);
7257	  return cond0 ? cond0 : cond1;
7258	}
7259
7260      /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7261	 operands is zero when the other is non-zero, and vice-versa,
7262	 and STORE_FLAG_VALUE is 1 or -1.  */
7263
7264      if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7265	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
7266	      || code == UMAX)
7267	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7268	{
7269	  rtx op0 = XEXP (XEXP (x, 0), 1);
7270	  rtx op1 = XEXP (XEXP (x, 1), 1);
7271
7272	  cond0 = XEXP (XEXP (x, 0), 0);
7273	  cond1 = XEXP (XEXP (x, 1), 0);
7274
7275	  if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7276	      && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7277	      && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7278		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7279		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7280		  || ((swap_condition (GET_CODE (cond0))
7281		       == combine_reversed_comparison_code (cond1))
7282		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7283		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7284	      && ! side_effects_p (x))
7285	    {
7286	      *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7287	      *pfalse = gen_binary (MULT, mode,
7288				    (code == MINUS
7289				     ? simplify_gen_unary (NEG, mode, op1,
7290							   mode)
7291				     : op1),
7292				    const_true_rtx);
7293	      return cond0;
7294	    }
7295	}
7296
7297      /* Similarly for MULT, AND and UMIN, except that for these the result
7298	 is always zero.  */
7299      if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7300	  && (code == MULT || code == AND || code == UMIN)
7301	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7302	{
7303	  cond0 = XEXP (XEXP (x, 0), 0);
7304	  cond1 = XEXP (XEXP (x, 1), 0);
7305
7306	  if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7307	      && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7308	      && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7309		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7310		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7311		  || ((swap_condition (GET_CODE (cond0))
7312		       == combine_reversed_comparison_code (cond1))
7313		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7314		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7315	      && ! side_effects_p (x))
7316	    {
7317	      *ptrue = *pfalse = const0_rtx;
7318	      return cond0;
7319	    }
7320	}
7321    }
7322
7323  else if (code == IF_THEN_ELSE)
7324    {
7325      /* If we have IF_THEN_ELSE already, extract the condition and
7326	 canonicalize it if it is NE or EQ.  */
7327      cond0 = XEXP (x, 0);
7328      *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7329      if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7330	return XEXP (cond0, 0);
7331      else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7332	{
7333	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7334	  return XEXP (cond0, 0);
7335	}
7336      else
7337	return cond0;
7338    }
7339
7340  /* If X is a SUBREG, we can narrow both the true and false values
7341     if the inner expression, if there is a condition.  */
7342  else if (code == SUBREG
7343	   && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7344					       &true0, &false0)))
7345    {
7346      *ptrue = simplify_gen_subreg (mode, true0,
7347				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7348      *pfalse = simplify_gen_subreg (mode, false0,
7349				     GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7350
7351      return cond0;
7352    }
7353
7354  /* If X is a constant, this isn't special and will cause confusions
7355     if we treat it as such.  Likewise if it is equivalent to a constant.  */
7356  else if (CONSTANT_P (x)
7357	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7358    ;
7359
7360  /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7361     will be least confusing to the rest of the compiler.  */
7362  else if (mode == BImode)
7363    {
7364      *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7365      return x;
7366    }
7367
7368  /* If X is known to be either 0 or -1, those are the true and
7369     false values when testing X.  */
7370  else if (x == constm1_rtx || x == const0_rtx
7371	   || (mode != VOIDmode
7372	       && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7373    {
7374      *ptrue = constm1_rtx, *pfalse = const0_rtx;
7375      return x;
7376    }
7377
7378  /* Likewise for 0 or a single bit.  */
7379  else if (mode != VOIDmode
7380	   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7381	   && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7382    {
7383      *ptrue = GEN_INT (trunc_int_for_mode (nz, mode)), *pfalse = const0_rtx;
7384      return x;
7385    }
7386
7387  /* Otherwise fail; show no condition with true and false values the same.  */
7388  *ptrue = *pfalse = x;
7389  return 0;
7390}
7391
7392/* Return the value of expression X given the fact that condition COND
7393   is known to be true when applied to REG as its first operand and VAL
7394   as its second.  X is known to not be shared and so can be modified in
7395   place.
7396
7397   We only handle the simplest cases, and specifically those cases that
7398   arise with IF_THEN_ELSE expressions.  */
7399
7400static rtx
7401known_cond (x, cond, reg, val)
7402     rtx x;
7403     enum rtx_code cond;
7404     rtx reg, val;
7405{
7406  enum rtx_code code = GET_CODE (x);
7407  rtx temp;
7408  const char *fmt;
7409  int i, j;
7410
7411  if (side_effects_p (x))
7412    return x;
7413
7414  /* If either operand of the condition is a floating point value,
7415     then we have to avoid collapsing an EQ comparison.  */
7416  if (cond == EQ
7417      && rtx_equal_p (x, reg)
7418      && ! FLOAT_MODE_P (GET_MODE (x))
7419      && ! FLOAT_MODE_P (GET_MODE (val)))
7420    return val;
7421
7422  if (cond == UNEQ && rtx_equal_p (x, reg))
7423    return val;
7424
7425  /* If X is (abs REG) and we know something about REG's relationship
7426     with zero, we may be able to simplify this.  */
7427
7428  if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7429    switch (cond)
7430      {
7431      case GE:  case GT:  case EQ:
7432	return XEXP (x, 0);
7433      case LT:  case LE:
7434	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7435				   XEXP (x, 0),
7436				   GET_MODE (XEXP (x, 0)));
7437      default:
7438	break;
7439      }
7440
7441  /* The only other cases we handle are MIN, MAX, and comparisons if the
7442     operands are the same as REG and VAL.  */
7443
7444  else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7445    {
7446      if (rtx_equal_p (XEXP (x, 0), val))
7447	cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7448
7449      if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7450	{
7451	  if (GET_RTX_CLASS (code) == '<')
7452	    {
7453	      if (comparison_dominates_p (cond, code))
7454		return const_true_rtx;
7455
7456	      code = combine_reversed_comparison_code (x);
7457	      if (code != UNKNOWN
7458		  && comparison_dominates_p (cond, code))
7459		return const0_rtx;
7460	      else
7461		return x;
7462	    }
7463	  else if (code == SMAX || code == SMIN
7464		   || code == UMIN || code == UMAX)
7465	    {
7466	      int unsignedp = (code == UMIN || code == UMAX);
7467
7468	      /* Do not reverse the condition when it is NE or EQ.
7469		 This is because we cannot conclude anything about
7470		 the value of 'SMAX (x, y)' when x is not equal to y,
7471		 but we can when x equals y.  */
7472	      if ((code == SMAX || code == UMAX)
7473		  && ! (cond == EQ || cond == NE))
7474		cond = reverse_condition (cond);
7475
7476	      switch (cond)
7477		{
7478		case GE:   case GT:
7479		  return unsignedp ? x : XEXP (x, 1);
7480		case LE:   case LT:
7481		  return unsignedp ? x : XEXP (x, 0);
7482		case GEU:  case GTU:
7483		  return unsignedp ? XEXP (x, 1) : x;
7484		case LEU:  case LTU:
7485		  return unsignedp ? XEXP (x, 0) : x;
7486		default:
7487		  break;
7488		}
7489	    }
7490	}
7491    }
7492  else if (code == SUBREG)
7493    {
7494      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7495      rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7496
7497      if (SUBREG_REG (x) != r)
7498	{
7499	  /* We must simplify subreg here, before we lose track of the
7500	     original inner_mode.  */
7501	  new = simplify_subreg (GET_MODE (x), r,
7502				 inner_mode, SUBREG_BYTE (x));
7503	  if (new)
7504	    return new;
7505	  else
7506	    SUBST (SUBREG_REG (x), r);
7507	}
7508
7509      return x;
7510    }
7511  /* We don't have to handle SIGN_EXTEND here, because even in the
7512     case of replacing something with a modeless CONST_INT, a
7513     CONST_INT is already (supposed to be) a valid sign extension for
7514     its narrower mode, which implies it's already properly
7515     sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
7516     story is different.  */
7517  else if (code == ZERO_EXTEND)
7518    {
7519      enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7520      rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7521
7522      if (XEXP (x, 0) != r)
7523	{
7524	  /* We must simplify the zero_extend here, before we lose
7525             track of the original inner_mode.  */
7526	  new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7527					  r, inner_mode);
7528	  if (new)
7529	    return new;
7530	  else
7531	    SUBST (XEXP (x, 0), r);
7532	}
7533
7534      return x;
7535    }
7536
7537  fmt = GET_RTX_FORMAT (code);
7538  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7539    {
7540      if (fmt[i] == 'e')
7541	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7542      else if (fmt[i] == 'E')
7543	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7544	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7545						cond, reg, val));
7546    }
7547
7548  return x;
7549}
7550
7551/* See if X and Y are equal for the purposes of seeing if we can rewrite an
7552   assignment as a field assignment.  */
7553
7554static int
7555rtx_equal_for_field_assignment_p (x, y)
7556     rtx x;
7557     rtx y;
7558{
7559  if (x == y || rtx_equal_p (x, y))
7560    return 1;
7561
7562  if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7563    return 0;
7564
7565  /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7566     Note that all SUBREGs of MEM are paradoxical; otherwise they
7567     would have been rewritten.  */
7568  if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7569      && GET_CODE (SUBREG_REG (y)) == MEM
7570      && rtx_equal_p (SUBREG_REG (y),
7571		      gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7572    return 1;
7573
7574  if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7575      && GET_CODE (SUBREG_REG (x)) == MEM
7576      && rtx_equal_p (SUBREG_REG (x),
7577		      gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7578    return 1;
7579
7580  /* We used to see if get_last_value of X and Y were the same but that's
7581     not correct.  In one direction, we'll cause the assignment to have
7582     the wrong destination and in the case, we'll import a register into this
7583     insn that might have already have been dead.   So fail if none of the
7584     above cases are true.  */
7585  return 0;
7586}
7587
7588/* See if X, a SET operation, can be rewritten as a bit-field assignment.
7589   Return that assignment if so.
7590
7591   We only handle the most common cases.  */
7592
7593static rtx
7594make_field_assignment (x)
7595     rtx x;
7596{
7597  rtx dest = SET_DEST (x);
7598  rtx src = SET_SRC (x);
7599  rtx assign;
7600  rtx rhs, lhs;
7601  HOST_WIDE_INT c1;
7602  HOST_WIDE_INT pos;
7603  unsigned HOST_WIDE_INT len;
7604  rtx other;
7605  enum machine_mode mode;
7606
7607  /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7608     a clear of a one-bit field.  We will have changed it to
7609     (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
7610     for a SUBREG.  */
7611
7612  if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7613      && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7614      && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7615      && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7616    {
7617      assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7618				1, 1, 1, 0);
7619      if (assign != 0)
7620	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7621      return x;
7622    }
7623
7624  else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7625	   && subreg_lowpart_p (XEXP (src, 0))
7626	   && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7627	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7628	   && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7629	   && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7630	   && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7631    {
7632      assign = make_extraction (VOIDmode, dest, 0,
7633				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7634				1, 1, 1, 0);
7635      if (assign != 0)
7636	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7637      return x;
7638    }
7639
7640  /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7641     one-bit field.  */
7642  else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7643	   && XEXP (XEXP (src, 0), 0) == const1_rtx
7644	   && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7645    {
7646      assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7647				1, 1, 1, 0);
7648      if (assign != 0)
7649	return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7650      return x;
7651    }
7652
7653  /* The other case we handle is assignments into a constant-position
7654     field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
7655     a mask that has all one bits except for a group of zero bits and
7656     OTHER is known to have zeros where C1 has ones, this is such an
7657     assignment.  Compute the position and length from C1.  Shift OTHER
7658     to the appropriate position, force it to the required mode, and
7659     make the extraction.  Check for the AND in both operands.  */
7660
7661  if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7662    return x;
7663
7664  rhs = expand_compound_operation (XEXP (src, 0));
7665  lhs = expand_compound_operation (XEXP (src, 1));
7666
7667  if (GET_CODE (rhs) == AND
7668      && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7669      && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7670    c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7671  else if (GET_CODE (lhs) == AND
7672	   && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7673	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7674    c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7675  else
7676    return x;
7677
7678  pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7679  if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7680      || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7681      || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7682    return x;
7683
7684  assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7685  if (assign == 0)
7686    return x;
7687
7688  /* The mode to use for the source is the mode of the assignment, or of
7689     what is inside a possible STRICT_LOW_PART.  */
7690  mode = (GET_CODE (assign) == STRICT_LOW_PART
7691	  ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7692
7693  /* Shift OTHER right POS places and make it the source, restricting it
7694     to the proper length and mode.  */
7695
7696  src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7697					     GET_MODE (src), other, pos),
7698		       mode,
7699		       GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7700		       ? ~(unsigned HOST_WIDE_INT) 0
7701		       : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7702		       dest, 0);
7703
7704  return gen_rtx_SET (VOIDmode, assign, src);
7705}
7706
7707/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7708   if so.  */
7709
7710static rtx
7711apply_distributive_law (x)
7712     rtx x;
7713{
7714  enum rtx_code code = GET_CODE (x);
7715  rtx lhs, rhs, other;
7716  rtx tem;
7717  enum rtx_code inner_code;
7718
7719  /* Distributivity is not true for floating point.
7720     It can change the value.  So don't do it.
7721     -- rms and moshier@world.std.com.  */
7722  if (FLOAT_MODE_P (GET_MODE (x)))
7723    return x;
7724
7725  /* The outer operation can only be one of the following:  */
7726  if (code != IOR && code != AND && code != XOR
7727      && code != PLUS && code != MINUS)
7728    return x;
7729
7730  lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7731
7732  /* If either operand is a primitive we can't do anything, so get out
7733     fast.  */
7734  if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7735      || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7736    return x;
7737
7738  lhs = expand_compound_operation (lhs);
7739  rhs = expand_compound_operation (rhs);
7740  inner_code = GET_CODE (lhs);
7741  if (inner_code != GET_CODE (rhs))
7742    return x;
7743
7744  /* See if the inner and outer operations distribute.  */
7745  switch (inner_code)
7746    {
7747    case LSHIFTRT:
7748    case ASHIFTRT:
7749    case AND:
7750    case IOR:
7751      /* These all distribute except over PLUS.  */
7752      if (code == PLUS || code == MINUS)
7753	return x;
7754      break;
7755
7756    case MULT:
7757      if (code != PLUS && code != MINUS)
7758	return x;
7759      break;
7760
7761    case ASHIFT:
7762      /* This is also a multiply, so it distributes over everything.  */
7763      break;
7764
7765    case SUBREG:
7766      /* Non-paradoxical SUBREGs distributes over all operations, provided
7767	 the inner modes and byte offsets are the same, this is an extraction
7768	 of a low-order part, we don't convert an fp operation to int or
7769	 vice versa, and we would not be converting a single-word
7770	 operation into a multi-word operation.  The latter test is not
7771	 required, but it prevents generating unneeded multi-word operations.
7772	 Some of the previous tests are redundant given the latter test, but
7773	 are retained because they are required for correctness.
7774
7775	 We produce the result slightly differently in this case.  */
7776
7777      if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7778	  || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7779	  || ! subreg_lowpart_p (lhs)
7780	  || (GET_MODE_CLASS (GET_MODE (lhs))
7781	      != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7782	  || (GET_MODE_SIZE (GET_MODE (lhs))
7783	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7784	  || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7785	return x;
7786
7787      tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7788			SUBREG_REG (lhs), SUBREG_REG (rhs));
7789      return gen_lowpart_for_combine (GET_MODE (x), tem);
7790
7791    default:
7792      return x;
7793    }
7794
7795  /* Set LHS and RHS to the inner operands (A and B in the example
7796     above) and set OTHER to the common operand (C in the example).
7797     These is only one way to do this unless the inner operation is
7798     commutative.  */
7799  if (GET_RTX_CLASS (inner_code) == 'c'
7800      && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7801    other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7802  else if (GET_RTX_CLASS (inner_code) == 'c'
7803	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7804    other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7805  else if (GET_RTX_CLASS (inner_code) == 'c'
7806	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7807    other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7808  else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7809    other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7810  else
7811    return x;
7812
7813  /* Form the new inner operation, seeing if it simplifies first.  */
7814  tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7815
7816  /* There is one exception to the general way of distributing:
7817     (a ^ b) | (a ^ c) -> (~a) & (b ^ c)  */
7818  if (code == XOR && inner_code == IOR)
7819    {
7820      inner_code = AND;
7821      other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7822    }
7823
7824  /* We may be able to continuing distributing the result, so call
7825     ourselves recursively on the inner operation before forming the
7826     outer operation, which we return.  */
7827  return gen_binary (inner_code, GET_MODE (x),
7828		     apply_distributive_law (tem), other);
7829}
7830
7831/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7832   in MODE.
7833
7834   Return an equivalent form, if different from X.  Otherwise, return X.  If
7835   X is zero, we are to always construct the equivalent form.  */
7836
7837static rtx
7838simplify_and_const_int (x, mode, varop, constop)
7839     rtx x;
7840     enum machine_mode mode;
7841     rtx varop;
7842     unsigned HOST_WIDE_INT constop;
7843{
7844  unsigned HOST_WIDE_INT nonzero;
7845  int i;
7846
7847  /* Simplify VAROP knowing that we will be only looking at some of the
7848     bits in it.
7849
7850     Note by passing in CONSTOP, we guarantee that the bits not set in
7851     CONSTOP are not significant and will never be examined.  We must
7852     ensure that is the case by explicitly masking out those bits
7853     before returning.  */
7854  varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7855
7856  /* If VAROP is a CLOBBER, we will fail so return it.  */
7857  if (GET_CODE (varop) == CLOBBER)
7858    return varop;
7859
7860  /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7861     to VAROP and return the new constant.  */
7862  if (GET_CODE (varop) == CONST_INT)
7863    return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7864
7865  /* See what bits may be nonzero in VAROP.  Unlike the general case of
7866     a call to nonzero_bits, here we don't care about bits outside
7867     MODE.  */
7868
7869  nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7870
7871  /* Turn off all bits in the constant that are known to already be zero.
7872     Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7873     which is tested below.  */
7874
7875  constop &= nonzero;
7876
7877  /* If we don't have any bits left, return zero.  */
7878  if (constop == 0)
7879    return const0_rtx;
7880
7881  /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7882     a power of two, we can replace this with a ASHIFT.  */
7883  if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7884      && (i = exact_log2 (constop)) >= 0)
7885    return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7886
7887  /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7888     or XOR, then try to apply the distributive law.  This may eliminate
7889     operations if either branch can be simplified because of the AND.
7890     It may also make some cases more complex, but those cases probably
7891     won't match a pattern either with or without this.  */
7892
7893  if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7894    return
7895      gen_lowpart_for_combine
7896	(mode,
7897	 apply_distributive_law
7898	 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7899		      simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7900					      XEXP (varop, 0), constop),
7901		      simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7902					      XEXP (varop, 1), constop))));
7903
7904  /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7905     the AND and see if one of the operands simplifies to zero.  If so, we
7906     may eliminate it.  */
7907
7908  if (GET_CODE (varop) == PLUS
7909      && exact_log2 (constop + 1) >= 0)
7910    {
7911      rtx o0, o1;
7912
7913      o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7914      o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7915      if (o0 == const0_rtx)
7916	return o1;
7917      if (o1 == const0_rtx)
7918	return o0;
7919    }
7920
7921  /* Get VAROP in MODE.  Try to get a SUBREG if not.  Don't make a new SUBREG
7922     if we already had one (just check for the simplest cases).  */
7923  if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7924      && GET_MODE (XEXP (x, 0)) == mode
7925      && SUBREG_REG (XEXP (x, 0)) == varop)
7926    varop = XEXP (x, 0);
7927  else
7928    varop = gen_lowpart_for_combine (mode, varop);
7929
7930  /* If we can't make the SUBREG, try to return what we were given.  */
7931  if (GET_CODE (varop) == CLOBBER)
7932    return x ? x : varop;
7933
7934  /* If we are only masking insignificant bits, return VAROP.  */
7935  if (constop == nonzero)
7936    x = varop;
7937  else
7938    {
7939      /* Otherwise, return an AND.  */
7940      constop = trunc_int_for_mode (constop, mode);
7941      /* See how much, if any, of X we can use.  */
7942      if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7943	x = gen_binary (AND, mode, varop, GEN_INT (constop));
7944
7945      else
7946	{
7947	  if (GET_CODE (XEXP (x, 1)) != CONST_INT
7948	      || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7949	    SUBST (XEXP (x, 1), GEN_INT (constop));
7950
7951	  SUBST (XEXP (x, 0), varop);
7952	}
7953    }
7954
7955  return x;
7956}
7957
7958/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7959   We don't let nonzero_bits recur into num_sign_bit_copies, because that
7960   is less useful.  We can't allow both, because that results in exponential
7961   run time recursion.  There is a nullstone testcase that triggered
7962   this.  This macro avoids accidental uses of num_sign_bit_copies.  */
7963#define num_sign_bit_copies()
7964
7965/* Given an expression, X, compute which bits in X can be non-zero.
7966   We don't care about bits outside of those defined in MODE.
7967
7968   For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7969   a shift, AND, or zero_extract, we can do better.  */
7970
7971static unsigned HOST_WIDE_INT
7972nonzero_bits (x, mode)
7973     rtx x;
7974     enum machine_mode mode;
7975{
7976  unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7977  unsigned HOST_WIDE_INT inner_nz;
7978  enum rtx_code code;
7979  unsigned int mode_width = GET_MODE_BITSIZE (mode);
7980  rtx tem;
7981
7982  /* For floating-point values, assume all bits are needed.  */
7983  if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7984    return nonzero;
7985
7986  /* If X is wider than MODE, use its mode instead.  */
7987  if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7988    {
7989      mode = GET_MODE (x);
7990      nonzero = GET_MODE_MASK (mode);
7991      mode_width = GET_MODE_BITSIZE (mode);
7992    }
7993
7994  if (mode_width > HOST_BITS_PER_WIDE_INT)
7995    /* Our only callers in this case look for single bit values.  So
7996       just return the mode mask.  Those tests will then be false.  */
7997    return nonzero;
7998
7999#ifndef WORD_REGISTER_OPERATIONS
8000  /* If MODE is wider than X, but both are a single word for both the host
8001     and target machines, we can compute this from which bits of the
8002     object might be nonzero in its own mode, taking into account the fact
8003     that on many CISC machines, accessing an object in a wider mode
8004     causes the high-order bits to become undefined.  So they are
8005     not known to be zero.  */
8006
8007  if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8008      && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8009      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8010      && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8011    {
8012      nonzero &= nonzero_bits (x, GET_MODE (x));
8013      nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8014      return nonzero;
8015    }
8016#endif
8017
8018  code = GET_CODE (x);
8019  switch (code)
8020    {
8021    case REG:
8022#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8023      /* If pointers extend unsigned and this is a pointer in Pmode, say that
8024	 all the bits above ptr_mode are known to be zero.  */
8025      if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8026	  && REG_POINTER (x))
8027	nonzero &= GET_MODE_MASK (ptr_mode);
8028#endif
8029
8030      /* Include declared information about alignment of pointers.  */
8031      /* ??? We don't properly preserve REG_POINTER changes across
8032	 pointer-to-integer casts, so we can't trust it except for
8033	 things that we know must be pointers.  See execute/960116-1.c.  */
8034      if ((x == stack_pointer_rtx
8035	   || x == frame_pointer_rtx
8036	   || x == arg_pointer_rtx)
8037	  && REGNO_POINTER_ALIGN (REGNO (x)))
8038	{
8039	  unsigned HOST_WIDE_INT alignment
8040	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8041
8042#ifdef PUSH_ROUNDING
8043	  /* If PUSH_ROUNDING is defined, it is possible for the
8044	     stack to be momentarily aligned only to that amount,
8045	     so we pick the least alignment.  */
8046	  if (x == stack_pointer_rtx && PUSH_ARGS)
8047	    alignment = MIN (PUSH_ROUNDING (1), alignment);
8048#endif
8049
8050	  nonzero &= ~(alignment - 1);
8051	}
8052
8053      /* If X is a register whose nonzero bits value is current, use it.
8054	 Otherwise, if X is a register whose value we can find, use that
8055	 value.  Otherwise, use the previously-computed global nonzero bits
8056	 for this register.  */
8057
8058      if (reg_last_set_value[REGNO (x)] != 0
8059	  && (reg_last_set_mode[REGNO (x)] == mode
8060	      || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8061		  && GET_MODE_CLASS (mode) == MODE_INT))
8062	  && (reg_last_set_label[REGNO (x)] == label_tick
8063	      || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8064		  && REG_N_SETS (REGNO (x)) == 1
8065		  && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8066					REGNO (x))))
8067	  && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8068	return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8069
8070      tem = get_last_value (x);
8071
8072      if (tem)
8073	{
8074#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8075	  /* If X is narrower than MODE and TEM is a non-negative
8076	     constant that would appear negative in the mode of X,
8077	     sign-extend it for use in reg_nonzero_bits because some
8078	     machines (maybe most) will actually do the sign-extension
8079	     and this is the conservative approach.
8080
8081	     ??? For 2.5, try to tighten up the MD files in this regard
8082	     instead of this kludge.  */
8083
8084	  if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8085	      && GET_CODE (tem) == CONST_INT
8086	      && INTVAL (tem) > 0
8087	      && 0 != (INTVAL (tem)
8088		       & ((HOST_WIDE_INT) 1
8089			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8090	    tem = GEN_INT (INTVAL (tem)
8091			   | ((HOST_WIDE_INT) (-1)
8092			      << GET_MODE_BITSIZE (GET_MODE (x))));
8093#endif
8094	  return nonzero_bits (tem, mode) & nonzero;
8095	}
8096      else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8097	{
8098	  unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8099
8100	  if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8101	    /* We don't know anything about the upper bits.  */
8102	    mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8103	  return nonzero & mask;
8104	}
8105      else
8106	return nonzero;
8107
8108    case CONST_INT:
8109#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8110      /* If X is negative in MODE, sign-extend the value.  */
8111      if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8112	  && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8113	return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8114#endif
8115
8116      return INTVAL (x);
8117
8118    case MEM:
8119#ifdef LOAD_EXTEND_OP
8120      /* In many, if not most, RISC machines, reading a byte from memory
8121	 zeros the rest of the register.  Noticing that fact saves a lot
8122	 of extra zero-extends.  */
8123      if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8124	nonzero &= GET_MODE_MASK (GET_MODE (x));
8125#endif
8126      break;
8127
8128    case EQ:  case NE:
8129    case UNEQ:  case LTGT:
8130    case GT:  case GTU:  case UNGT:
8131    case LT:  case LTU:  case UNLT:
8132    case GE:  case GEU:  case UNGE:
8133    case LE:  case LEU:  case UNLE:
8134    case UNORDERED: case ORDERED:
8135
8136      /* If this produces an integer result, we know which bits are set.
8137	 Code here used to clear bits outside the mode of X, but that is
8138	 now done above.  */
8139
8140      if (GET_MODE_CLASS (mode) == MODE_INT
8141	  && mode_width <= HOST_BITS_PER_WIDE_INT)
8142	nonzero = STORE_FLAG_VALUE;
8143      break;
8144
8145    case NEG:
8146#if 0
8147      /* Disabled to avoid exponential mutual recursion between nonzero_bits
8148	 and num_sign_bit_copies.  */
8149      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8150	  == GET_MODE_BITSIZE (GET_MODE (x)))
8151	nonzero = 1;
8152#endif
8153
8154      if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8155	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8156      break;
8157
8158    case ABS:
8159#if 0
8160      /* Disabled to avoid exponential mutual recursion between nonzero_bits
8161	 and num_sign_bit_copies.  */
8162      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8163	  == GET_MODE_BITSIZE (GET_MODE (x)))
8164	nonzero = 1;
8165#endif
8166      break;
8167
8168    case TRUNCATE:
8169      nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8170      break;
8171
8172    case ZERO_EXTEND:
8173      nonzero &= nonzero_bits (XEXP (x, 0), mode);
8174      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8175	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8176      break;
8177
8178    case SIGN_EXTEND:
8179      /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8180	 Otherwise, show all the bits in the outer mode but not the inner
8181	 may be non-zero.  */
8182      inner_nz = nonzero_bits (XEXP (x, 0), mode);
8183      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8184	{
8185	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8186	  if (inner_nz
8187	      & (((HOST_WIDE_INT) 1
8188		  << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8189	    inner_nz |= (GET_MODE_MASK (mode)
8190			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8191	}
8192
8193      nonzero &= inner_nz;
8194      break;
8195
8196    case AND:
8197      nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8198		  & nonzero_bits (XEXP (x, 1), mode));
8199      break;
8200
8201    case XOR:   case IOR:
8202    case UMIN:  case UMAX:  case SMIN:  case SMAX:
8203      {
8204	unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8205
8206	/* Don't call nonzero_bits for the second time if it cannot change
8207	   anything.  */
8208	if ((nonzero & nonzero0) != nonzero)
8209	  nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8210      }
8211      break;
8212
8213    case PLUS:  case MINUS:
8214    case MULT:
8215    case DIV:   case UDIV:
8216    case MOD:   case UMOD:
8217      /* We can apply the rules of arithmetic to compute the number of
8218	 high- and low-order zero bits of these operations.  We start by
8219	 computing the width (position of the highest-order non-zero bit)
8220	 and the number of low-order zero bits for each value.  */
8221      {
8222	unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8223	unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8224	int width0 = floor_log2 (nz0) + 1;
8225	int width1 = floor_log2 (nz1) + 1;
8226	int low0 = floor_log2 (nz0 & -nz0);
8227	int low1 = floor_log2 (nz1 & -nz1);
8228	HOST_WIDE_INT op0_maybe_minusp
8229	  = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8230	HOST_WIDE_INT op1_maybe_minusp
8231	  = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8232	unsigned int result_width = mode_width;
8233	int result_low = 0;
8234
8235	switch (code)
8236	  {
8237	  case PLUS:
8238	    result_width = MAX (width0, width1) + 1;
8239	    result_low = MIN (low0, low1);
8240	    break;
8241	  case MINUS:
8242	    result_low = MIN (low0, low1);
8243	    break;
8244	  case MULT:
8245	    result_width = width0 + width1;
8246	    result_low = low0 + low1;
8247	    break;
8248	  case DIV:
8249	    if (width1 == 0)
8250	      break;
8251	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
8252	      result_width = width0;
8253	    break;
8254	  case UDIV:
8255	    if (width1 == 0)
8256	      break;
8257	    result_width = width0;
8258	    break;
8259	  case MOD:
8260	    if (width1 == 0)
8261	      break;
8262	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
8263	      result_width = MIN (width0, width1);
8264	    result_low = MIN (low0, low1);
8265	    break;
8266	  case UMOD:
8267	    if (width1 == 0)
8268	      break;
8269	    result_width = MIN (width0, width1);
8270	    result_low = MIN (low0, low1);
8271	    break;
8272	  default:
8273	    abort ();
8274	  }
8275
8276	if (result_width < mode_width)
8277	  nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8278
8279	if (result_low > 0)
8280	  nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8281
8282#ifdef POINTERS_EXTEND_UNSIGNED
8283	/* If pointers extend unsigned and this is an addition or subtraction
8284	   to a pointer in Pmode, all the bits above ptr_mode are known to be
8285	   zero.  */
8286	if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8287	    && (code == PLUS || code == MINUS)
8288	    && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8289	  nonzero &= GET_MODE_MASK (ptr_mode);
8290#endif
8291      }
8292      break;
8293
8294    case ZERO_EXTRACT:
8295      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8296	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8297	nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8298      break;
8299
8300    case SUBREG:
8301      /* If this is a SUBREG formed for a promoted variable that has
8302	 been zero-extended, we know that at least the high-order bits
8303	 are zero, though others might be too.  */
8304
8305      if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8306	nonzero = (GET_MODE_MASK (GET_MODE (x))
8307		   & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8308
8309      /* If the inner mode is a single word for both the host and target
8310	 machines, we can compute this from which bits of the inner
8311	 object might be nonzero.  */
8312      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8313	  && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8314	      <= HOST_BITS_PER_WIDE_INT))
8315	{
8316	  nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8317
8318#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8319	  /* If this is a typical RISC machine, we only have to worry
8320	     about the way loads are extended.  */
8321	  if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8322	      ? (((nonzero
8323		   & (((unsigned HOST_WIDE_INT) 1
8324		       << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8325		  != 0))
8326	      : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8327#endif
8328	    {
8329	      /* On many CISC machines, accessing an object in a wider mode
8330		 causes the high-order bits to become undefined.  So they are
8331		 not known to be zero.  */
8332	      if (GET_MODE_SIZE (GET_MODE (x))
8333		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8334		nonzero |= (GET_MODE_MASK (GET_MODE (x))
8335			    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8336	    }
8337	}
8338      break;
8339
8340    case ASHIFTRT:
8341    case LSHIFTRT:
8342    case ASHIFT:
8343    case ROTATE:
8344      /* The nonzero bits are in two classes: any bits within MODE
8345	 that aren't in GET_MODE (x) are always significant.  The rest of the
8346	 nonzero bits are those that are significant in the operand of
8347	 the shift when shifted the appropriate number of bits.  This
8348	 shows that high-order bits are cleared by the right shift and
8349	 low-order bits by left shifts.  */
8350      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8351	  && INTVAL (XEXP (x, 1)) >= 0
8352	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8353	{
8354	  enum machine_mode inner_mode = GET_MODE (x);
8355	  unsigned int width = GET_MODE_BITSIZE (inner_mode);
8356	  int count = INTVAL (XEXP (x, 1));
8357	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8358	  unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8359	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8360	  unsigned HOST_WIDE_INT outer = 0;
8361
8362	  if (mode_width > width)
8363	    outer = (op_nonzero & nonzero & ~mode_mask);
8364
8365	  if (code == LSHIFTRT)
8366	    inner >>= count;
8367	  else if (code == ASHIFTRT)
8368	    {
8369	      inner >>= count;
8370
8371	      /* If the sign bit may have been nonzero before the shift, we
8372		 need to mark all the places it could have been copied to
8373		 by the shift as possibly nonzero.  */
8374	      if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8375		inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8376	    }
8377	  else if (code == ASHIFT)
8378	    inner <<= count;
8379	  else
8380	    inner = ((inner << (count % width)
8381		      | (inner >> (width - (count % width)))) & mode_mask);
8382
8383	  nonzero &= (outer | inner);
8384	}
8385      break;
8386
8387    case FFS:
8388      /* This is at most the number of bits in the mode.  */
8389      nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8390      break;
8391
8392    case IF_THEN_ELSE:
8393      nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8394		  | nonzero_bits (XEXP (x, 2), mode));
8395      break;
8396
8397    default:
8398      break;
8399    }
8400
8401  return nonzero;
8402}
8403
8404/* See the macro definition above.  */
8405#undef num_sign_bit_copies
8406
8407/* Return the number of bits at the high-order end of X that are known to
8408   be equal to the sign bit.  X will be used in mode MODE; if MODE is
8409   VOIDmode, X will be used in its own mode.  The returned value  will always
8410   be between 1 and the number of bits in MODE.  */
8411
8412static unsigned int
8413num_sign_bit_copies (x, mode)
8414     rtx x;
8415     enum machine_mode mode;
8416{
8417  enum rtx_code code = GET_CODE (x);
8418  unsigned int bitwidth;
8419  int num0, num1, result;
8420  unsigned HOST_WIDE_INT nonzero;
8421  rtx tem;
8422
8423  /* If we weren't given a mode, use the mode of X.  If the mode is still
8424     VOIDmode, we don't know anything.  Likewise if one of the modes is
8425     floating-point.  */
8426
8427  if (mode == VOIDmode)
8428    mode = GET_MODE (x);
8429
8430  if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8431    return 1;
8432
8433  bitwidth = GET_MODE_BITSIZE (mode);
8434
8435  /* For a smaller object, just ignore the high bits.  */
8436  if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8437    {
8438      num0 = num_sign_bit_copies (x, GET_MODE (x));
8439      return MAX (1,
8440		  num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8441    }
8442
8443  if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8444    {
8445#ifndef WORD_REGISTER_OPERATIONS
8446  /* If this machine does not do all register operations on the entire
8447     register and MODE is wider than the mode of X, we can say nothing
8448     at all about the high-order bits.  */
8449      return 1;
8450#else
8451      /* Likewise on machines that do, if the mode of the object is smaller
8452	 than a word and loads of that size don't sign extend, we can say
8453	 nothing about the high order bits.  */
8454      if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8455#ifdef LOAD_EXTEND_OP
8456	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8457#endif
8458	  )
8459	return 1;
8460#endif
8461    }
8462
8463  switch (code)
8464    {
8465    case REG:
8466
8467#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8468      /* If pointers extend signed and this is a pointer in Pmode, say that
8469	 all the bits above ptr_mode are known to be sign bit copies.  */
8470      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8471	  && REG_POINTER (x))
8472	return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8473#endif
8474
8475      if (reg_last_set_value[REGNO (x)] != 0
8476	  && reg_last_set_mode[REGNO (x)] == mode
8477	  && (reg_last_set_label[REGNO (x)] == label_tick
8478	      || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8479		  && REG_N_SETS (REGNO (x)) == 1
8480		  && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8481					REGNO (x))))
8482	  && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8483	return reg_last_set_sign_bit_copies[REGNO (x)];
8484
8485      tem = get_last_value (x);
8486      if (tem != 0)
8487	return num_sign_bit_copies (tem, mode);
8488
8489      if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8490	  && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8491	return reg_sign_bit_copies[REGNO (x)];
8492      break;
8493
8494    case MEM:
8495#ifdef LOAD_EXTEND_OP
8496      /* Some RISC machines sign-extend all loads of smaller than a word.  */
8497      if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8498	return MAX (1, ((int) bitwidth
8499			- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8500#endif
8501      break;
8502
8503    case CONST_INT:
8504      /* If the constant is negative, take its 1's complement and remask.
8505	 Then see how many zero bits we have.  */
8506      nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8507      if (bitwidth <= HOST_BITS_PER_WIDE_INT
8508	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8509	nonzero = (~nonzero) & GET_MODE_MASK (mode);
8510
8511      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8512
8513    case SUBREG:
8514      /* If this is a SUBREG for a promoted object that is sign-extended
8515	 and we are looking at it in a wider mode, we know that at least the
8516	 high-order bits are known to be sign bit copies.  */
8517
8518      if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8519	{
8520	  num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8521	  return MAX ((int) bitwidth
8522		      - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8523		      num0);
8524	}
8525
8526      /* For a smaller object, just ignore the high bits.  */
8527      if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8528	{
8529	  num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8530	  return MAX (1, (num0
8531			  - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8532				   - bitwidth)));
8533	}
8534
8535#ifdef WORD_REGISTER_OPERATIONS
8536#ifdef LOAD_EXTEND_OP
8537      /* For paradoxical SUBREGs on machines where all register operations
8538	 affect the entire register, just look inside.  Note that we are
8539	 passing MODE to the recursive call, so the number of sign bit copies
8540	 will remain relative to that mode, not the inner mode.  */
8541
8542      /* This works only if loads sign extend.  Otherwise, if we get a
8543	 reload for the inner part, it may be loaded from the stack, and
8544	 then we lose all sign bit copies that existed before the store
8545	 to the stack.  */
8546
8547      if ((GET_MODE_SIZE (GET_MODE (x))
8548	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8549	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8550	return num_sign_bit_copies (SUBREG_REG (x), mode);
8551#endif
8552#endif
8553      break;
8554
8555    case SIGN_EXTRACT:
8556      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8557	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8558      break;
8559
8560    case SIGN_EXTEND:
8561      return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8562	      + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8563
8564    case TRUNCATE:
8565      /* For a smaller object, just ignore the high bits.  */
8566      num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8567      return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8568				    - bitwidth)));
8569
8570    case NOT:
8571      return num_sign_bit_copies (XEXP (x, 0), mode);
8572
8573    case ROTATE:       case ROTATERT:
8574      /* If we are rotating left by a number of bits less than the number
8575	 of sign bit copies, we can just subtract that amount from the
8576	 number.  */
8577      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8578	  && INTVAL (XEXP (x, 1)) >= 0
8579	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8580	{
8581	  num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8582	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8583				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8584	}
8585      break;
8586
8587    case NEG:
8588      /* In general, this subtracts one sign bit copy.  But if the value
8589	 is known to be positive, the number of sign bit copies is the
8590	 same as that of the input.  Finally, if the input has just one bit
8591	 that might be nonzero, all the bits are copies of the sign bit.  */
8592      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8593      if (bitwidth > HOST_BITS_PER_WIDE_INT)
8594	return num0 > 1 ? num0 - 1 : 1;
8595
8596      nonzero = nonzero_bits (XEXP (x, 0), mode);
8597      if (nonzero == 1)
8598	return bitwidth;
8599
8600      if (num0 > 1
8601	  && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8602	num0--;
8603
8604      return num0;
8605
8606    case IOR:   case AND:   case XOR:
8607    case SMIN:  case SMAX:  case UMIN:  case UMAX:
8608      /* Logical operations will preserve the number of sign-bit copies.
8609	 MIN and MAX operations always return one of the operands.  */
8610      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8611      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8612      return MIN (num0, num1);
8613
8614    case PLUS:  case MINUS:
8615      /* For addition and subtraction, we can have a 1-bit carry.  However,
8616	 if we are subtracting 1 from a positive number, there will not
8617	 be such a carry.  Furthermore, if the positive number is known to
8618	 be 0 or 1, we know the result is either -1 or 0.  */
8619
8620      if (code == PLUS && XEXP (x, 1) == constm1_rtx
8621	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
8622	{
8623	  nonzero = nonzero_bits (XEXP (x, 0), mode);
8624	  if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8625	    return (nonzero == 1 || nonzero == 0 ? bitwidth
8626		    : bitwidth - floor_log2 (nonzero) - 1);
8627	}
8628
8629      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8630      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8631      result = MAX (1, MIN (num0, num1) - 1);
8632
8633#ifdef POINTERS_EXTEND_UNSIGNED
8634      /* If pointers extend signed and this is an addition or subtraction
8635	 to a pointer in Pmode, all the bits above ptr_mode are known to be
8636	 sign bit copies.  */
8637      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8638	  && (code == PLUS || code == MINUS)
8639	  && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8640	result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8641			     - GET_MODE_BITSIZE (ptr_mode) + 1),
8642		      result);
8643#endif
8644      return result;
8645
8646    case MULT:
8647      /* The number of bits of the product is the sum of the number of
8648	 bits of both terms.  However, unless one of the terms if known
8649	 to be positive, we must allow for an additional bit since negating
8650	 a negative number can remove one sign bit copy.  */
8651
8652      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8653      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8654
8655      result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8656      if (result > 0
8657	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8658	      || (((nonzero_bits (XEXP (x, 0), mode)
8659		    & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8660		  && ((nonzero_bits (XEXP (x, 1), mode)
8661		       & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8662	result--;
8663
8664      return MAX (1, result);
8665
8666    case UDIV:
8667      /* The result must be <= the first operand.  If the first operand
8668         has the high bit set, we know nothing about the number of sign
8669         bit copies.  */
8670      if (bitwidth > HOST_BITS_PER_WIDE_INT)
8671	return 1;
8672      else if ((nonzero_bits (XEXP (x, 0), mode)
8673		& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8674	return 1;
8675      else
8676	return num_sign_bit_copies (XEXP (x, 0), mode);
8677
8678    case UMOD:
8679      /* The result must be <= the second operand.  */
8680      return num_sign_bit_copies (XEXP (x, 1), mode);
8681
8682    case DIV:
8683      /* Similar to unsigned division, except that we have to worry about
8684	 the case where the divisor is negative, in which case we have
8685	 to add 1.  */
8686      result = num_sign_bit_copies (XEXP (x, 0), mode);
8687      if (result > 1
8688	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8689	      || (nonzero_bits (XEXP (x, 1), mode)
8690		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8691	result--;
8692
8693      return result;
8694
8695    case MOD:
8696      result = num_sign_bit_copies (XEXP (x, 1), mode);
8697      if (result > 1
8698	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8699	      || (nonzero_bits (XEXP (x, 1), mode)
8700		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8701	result--;
8702
8703      return result;
8704
8705    case ASHIFTRT:
8706      /* Shifts by a constant add to the number of bits equal to the
8707	 sign bit.  */
8708      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8709      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8710	  && INTVAL (XEXP (x, 1)) > 0)
8711	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8712
8713      return num0;
8714
8715    case ASHIFT:
8716      /* Left shifts destroy copies.  */
8717      if (GET_CODE (XEXP (x, 1)) != CONST_INT
8718	  || INTVAL (XEXP (x, 1)) < 0
8719	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8720	return 1;
8721
8722      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8723      return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8724
8725    case IF_THEN_ELSE:
8726      num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8727      num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8728      return MIN (num0, num1);
8729
8730    case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
8731    case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
8732    case GEU: case GTU: case LEU: case LTU:
8733    case UNORDERED: case ORDERED:
8734      /* If the constant is negative, take its 1's complement and remask.
8735	 Then see how many zero bits we have.  */
8736      nonzero = STORE_FLAG_VALUE;
8737      if (bitwidth <= HOST_BITS_PER_WIDE_INT
8738	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8739	nonzero = (~nonzero) & GET_MODE_MASK (mode);
8740
8741      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8742      break;
8743
8744    default:
8745      break;
8746    }
8747
8748  /* If we haven't been able to figure it out by one of the above rules,
8749     see if some of the high-order bits are known to be zero.  If so,
8750     count those bits and return one less than that amount.  If we can't
8751     safely compute the mask for this mode, always return BITWIDTH.  */
8752
8753  if (bitwidth > HOST_BITS_PER_WIDE_INT)
8754    return 1;
8755
8756  nonzero = nonzero_bits (x, mode);
8757  return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8758	  ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8759}
8760
8761/* Return the number of "extended" bits there are in X, when interpreted
8762   as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
8763   unsigned quantities, this is the number of high-order zero bits.
8764   For signed quantities, this is the number of copies of the sign bit
8765   minus 1.  In both case, this function returns the number of "spare"
8766   bits.  For example, if two quantities for which this function returns
8767   at least 1 are added, the addition is known not to overflow.
8768
8769   This function will always return 0 unless called during combine, which
8770   implies that it must be called from a define_split.  */
8771
8772unsigned int
8773extended_count (x, mode, unsignedp)
8774     rtx x;
8775     enum machine_mode mode;
8776     int unsignedp;
8777{
8778  if (nonzero_sign_valid == 0)
8779    return 0;
8780
8781  return (unsignedp
8782	  ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8783	     ? (GET_MODE_BITSIZE (mode) - 1
8784		- floor_log2 (nonzero_bits (x, mode)))
8785	     : 0)
8786	  : num_sign_bit_copies (x, mode) - 1);
8787}
8788
8789/* This function is called from `simplify_shift_const' to merge two
8790   outer operations.  Specifically, we have already found that we need
8791   to perform operation *POP0 with constant *PCONST0 at the outermost
8792   position.  We would now like to also perform OP1 with constant CONST1
8793   (with *POP0 being done last).
8794
8795   Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8796   the resulting operation.  *PCOMP_P is set to 1 if we would need to
8797   complement the innermost operand, otherwise it is unchanged.
8798
8799   MODE is the mode in which the operation will be done.  No bits outside
8800   the width of this mode matter.  It is assumed that the width of this mode
8801   is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8802
8803   If *POP0 or OP1 are NIL, it means no operation is required.  Only NEG, PLUS,
8804   IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
8805   result is simply *PCONST0.
8806
8807   If the resulting operation cannot be expressed as one operation, we
8808   return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
8809
8810static int
8811merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8812     enum rtx_code *pop0;
8813     HOST_WIDE_INT *pconst0;
8814     enum rtx_code op1;
8815     HOST_WIDE_INT const1;
8816     enum machine_mode mode;
8817     int *pcomp_p;
8818{
8819  enum rtx_code op0 = *pop0;
8820  HOST_WIDE_INT const0 = *pconst0;
8821
8822  const0 &= GET_MODE_MASK (mode);
8823  const1 &= GET_MODE_MASK (mode);
8824
8825  /* If OP0 is an AND, clear unimportant bits in CONST1.  */
8826  if (op0 == AND)
8827    const1 &= const0;
8828
8829  /* If OP0 or OP1 is NIL, this is easy.  Similarly if they are the same or
8830     if OP0 is SET.  */
8831
8832  if (op1 == NIL || op0 == SET)
8833    return 1;
8834
8835  else if (op0 == NIL)
8836    op0 = op1, const0 = const1;
8837
8838  else if (op0 == op1)
8839    {
8840      switch (op0)
8841	{
8842	case AND:
8843	  const0 &= const1;
8844	  break;
8845	case IOR:
8846	  const0 |= const1;
8847	  break;
8848	case XOR:
8849	  const0 ^= const1;
8850	  break;
8851	case PLUS:
8852	  const0 += const1;
8853	  break;
8854	case NEG:
8855	  op0 = NIL;
8856	  break;
8857	default:
8858	  break;
8859	}
8860    }
8861
8862  /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
8863  else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8864    return 0;
8865
8866  /* If the two constants aren't the same, we can't do anything.  The
8867     remaining six cases can all be done.  */
8868  else if (const0 != const1)
8869    return 0;
8870
8871  else
8872    switch (op0)
8873      {
8874      case IOR:
8875	if (op1 == AND)
8876	  /* (a & b) | b == b */
8877	  op0 = SET;
8878	else /* op1 == XOR */
8879	  /* (a ^ b) | b == a | b */
8880	  {;}
8881	break;
8882
8883      case XOR:
8884	if (op1 == AND)
8885	  /* (a & b) ^ b == (~a) & b */
8886	  op0 = AND, *pcomp_p = 1;
8887	else /* op1 == IOR */
8888	  /* (a | b) ^ b == a & ~b */
8889	  op0 = AND, *pconst0 = ~const0;
8890	break;
8891
8892      case AND:
8893	if (op1 == IOR)
8894	  /* (a | b) & b == b */
8895	op0 = SET;
8896	else /* op1 == XOR */
8897	  /* (a ^ b) & b) == (~a) & b */
8898	  *pcomp_p = 1;
8899	break;
8900      default:
8901	break;
8902      }
8903
8904  /* Check for NO-OP cases.  */
8905  const0 &= GET_MODE_MASK (mode);
8906  if (const0 == 0
8907      && (op0 == IOR || op0 == XOR || op0 == PLUS))
8908    op0 = NIL;
8909  else if (const0 == 0 && op0 == AND)
8910    op0 = SET;
8911  else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8912	   && op0 == AND)
8913    op0 = NIL;
8914
8915  /* ??? Slightly redundant with the above mask, but not entirely.
8916     Moving this above means we'd have to sign-extend the mode mask
8917     for the final test.  */
8918  const0 = trunc_int_for_mode (const0, mode);
8919
8920  *pop0 = op0;
8921  *pconst0 = const0;
8922
8923  return 1;
8924}
8925
8926/* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
8927   The result of the shift is RESULT_MODE.  X, if non-zero, is an expression
8928   that we started with.
8929
8930   The shift is normally computed in the widest mode we find in VAROP, as
8931   long as it isn't a different number of words than RESULT_MODE.  Exceptions
8932   are ASHIFTRT and ROTATE, which are always done in their original mode,  */
8933
8934static rtx
8935simplify_shift_const (x, code, result_mode, varop, orig_count)
8936     rtx x;
8937     enum rtx_code code;
8938     enum machine_mode result_mode;
8939     rtx varop;
8940     int orig_count;
8941{
8942  enum rtx_code orig_code = code;
8943  unsigned int count;
8944  int signed_count;
8945  enum machine_mode mode = result_mode;
8946  enum machine_mode shift_mode, tmode;
8947  unsigned int mode_words
8948    = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8949  /* We form (outer_op (code varop count) (outer_const)).  */
8950  enum rtx_code outer_op = NIL;
8951  HOST_WIDE_INT outer_const = 0;
8952  rtx const_rtx;
8953  int complement_p = 0;
8954  rtx new;
8955
8956  /* Make sure and truncate the "natural" shift on the way in.  We don't
8957     want to do this inside the loop as it makes it more difficult to
8958     combine shifts.  */
8959#ifdef SHIFT_COUNT_TRUNCATED
8960  if (SHIFT_COUNT_TRUNCATED)
8961    orig_count &= GET_MODE_BITSIZE (mode) - 1;
8962#endif
8963
8964  /* If we were given an invalid count, don't do anything except exactly
8965     what was requested.  */
8966
8967  if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8968    {
8969      if (x)
8970	return x;
8971
8972      return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8973    }
8974
8975  count = orig_count;
8976
8977  /* Unless one of the branches of the `if' in this loop does a `continue',
8978     we will `break' the loop after the `if'.  */
8979
8980  while (count != 0)
8981    {
8982      /* If we have an operand of (clobber (const_int 0)), just return that
8983	 value.  */
8984      if (GET_CODE (varop) == CLOBBER)
8985	return varop;
8986
8987      /* If we discovered we had to complement VAROP, leave.  Making a NOT
8988	 here would cause an infinite loop.  */
8989      if (complement_p)
8990	break;
8991
8992      /* Convert ROTATERT to ROTATE.  */
8993      if (code == ROTATERT)
8994	code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8995
8996      /* We need to determine what mode we will do the shift in.  If the
8997	 shift is a right shift or a ROTATE, we must always do it in the mode
8998	 it was originally done in.  Otherwise, we can do it in MODE, the
8999	 widest mode encountered.  */
9000      shift_mode
9001	= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9002	   ? result_mode : mode);
9003
9004      /* Handle cases where the count is greater than the size of the mode
9005	 minus 1.  For ASHIFT, use the size minus one as the count (this can
9006	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
9007	 take the count modulo the size.  For other shifts, the result is
9008	 zero.
9009
9010	 Since these shifts are being produced by the compiler by combining
9011	 multiple operations, each of which are defined, we know what the
9012	 result is supposed to be.  */
9013
9014      if (count > GET_MODE_BITSIZE (shift_mode) - 1)
9015	{
9016	  if (code == ASHIFTRT)
9017	    count = GET_MODE_BITSIZE (shift_mode) - 1;
9018	  else if (code == ROTATE || code == ROTATERT)
9019	    count %= GET_MODE_BITSIZE (shift_mode);
9020	  else
9021	    {
9022	      /* We can't simply return zero because there may be an
9023		 outer op.  */
9024	      varop = const0_rtx;
9025	      count = 0;
9026	      break;
9027	    }
9028	}
9029
9030      /* An arithmetic right shift of a quantity known to be -1 or 0
9031	 is a no-op.  */
9032      if (code == ASHIFTRT
9033	  && (num_sign_bit_copies (varop, shift_mode)
9034	      == GET_MODE_BITSIZE (shift_mode)))
9035	{
9036	  count = 0;
9037	  break;
9038	}
9039
9040      /* If we are doing an arithmetic right shift and discarding all but
9041	 the sign bit copies, this is equivalent to doing a shift by the
9042	 bitsize minus one.  Convert it into that shift because it will often
9043	 allow other simplifications.  */
9044
9045      if (code == ASHIFTRT
9046	  && (count + num_sign_bit_copies (varop, shift_mode)
9047	      >= GET_MODE_BITSIZE (shift_mode)))
9048	count = GET_MODE_BITSIZE (shift_mode) - 1;
9049
9050      /* We simplify the tests below and elsewhere by converting
9051	 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9052	 `make_compound_operation' will convert it to a ASHIFTRT for
9053	 those machines (such as VAX) that don't have a LSHIFTRT.  */
9054      if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9055	  && code == ASHIFTRT
9056	  && ((nonzero_bits (varop, shift_mode)
9057	       & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9058	      == 0))
9059	code = LSHIFTRT;
9060
9061      switch (GET_CODE (varop))
9062	{
9063	case SIGN_EXTEND:
9064	case ZERO_EXTEND:
9065	case SIGN_EXTRACT:
9066	case ZERO_EXTRACT:
9067	  new = expand_compound_operation (varop);
9068	  if (new != varop)
9069	    {
9070	      varop = new;
9071	      continue;
9072	    }
9073	  break;
9074
9075	case MEM:
9076	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9077	     minus the width of a smaller mode, we can do this with a
9078	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
9079	  if ((code == ASHIFTRT || code == LSHIFTRT)
9080	      && ! mode_dependent_address_p (XEXP (varop, 0))
9081	      && ! MEM_VOLATILE_P (varop)
9082	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9083					 MODE_INT, 1)) != BLKmode)
9084	    {
9085	      new = adjust_address_nv (varop, tmode,
9086				       BYTES_BIG_ENDIAN ? 0
9087				       : count / BITS_PER_UNIT);
9088
9089	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9090				     : ZERO_EXTEND, mode, new);
9091	      count = 0;
9092	      continue;
9093	    }
9094	  break;
9095
9096	case USE:
9097	  /* Similar to the case above, except that we can only do this if
9098	     the resulting mode is the same as that of the underlying
9099	     MEM and adjust the address depending on the *bits* endianness
9100	     because of the way that bit-field extract insns are defined.  */
9101	  if ((code == ASHIFTRT || code == LSHIFTRT)
9102	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9103					 MODE_INT, 1)) != BLKmode
9104	      && tmode == GET_MODE (XEXP (varop, 0)))
9105	    {
9106	      if (BITS_BIG_ENDIAN)
9107		new = XEXP (varop, 0);
9108	      else
9109		{
9110		  new = copy_rtx (XEXP (varop, 0));
9111		  SUBST (XEXP (new, 0),
9112			 plus_constant (XEXP (new, 0),
9113					count / BITS_PER_UNIT));
9114		}
9115
9116	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9117				     : ZERO_EXTEND, mode, new);
9118	      count = 0;
9119	      continue;
9120	    }
9121	  break;
9122
9123	case SUBREG:
9124	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
9125	     the same number of words as what we've seen so far.  Then store
9126	     the widest mode in MODE.  */
9127	  if (subreg_lowpart_p (varop)
9128	      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9129		  > GET_MODE_SIZE (GET_MODE (varop)))
9130	      && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9131		    + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9132		  == mode_words))
9133	    {
9134	      varop = SUBREG_REG (varop);
9135	      if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9136		mode = GET_MODE (varop);
9137	      continue;
9138	    }
9139	  break;
9140
9141	case MULT:
9142	  /* Some machines use MULT instead of ASHIFT because MULT
9143	     is cheaper.  But it is still better on those machines to
9144	     merge two shifts into one.  */
9145	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9146	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9147	    {
9148	      varop
9149		= gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9150			      GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9151	      continue;
9152	    }
9153	  break;
9154
9155	case UDIV:
9156	  /* Similar, for when divides are cheaper.  */
9157	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9158	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9159	    {
9160	      varop
9161		= gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9162			      GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9163	      continue;
9164	    }
9165	  break;
9166
9167	case ASHIFTRT:
9168	  /* If we are extracting just the sign bit of an arithmetic
9169	     right shift, that shift is not needed.  However, the sign
9170	     bit of a wider mode may be different from what would be
9171	     interpreted as the sign bit in a narrower mode, so, if
9172	     the result is narrower, don't discard the shift.  */
9173	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9174	      && (GET_MODE_BITSIZE (result_mode)
9175		  >= GET_MODE_BITSIZE (GET_MODE (varop))))
9176	    {
9177	      varop = XEXP (varop, 0);
9178	      continue;
9179	    }
9180
9181	  /* ... fall through ...  */
9182
9183	case LSHIFTRT:
9184	case ASHIFT:
9185	case ROTATE:
9186	  /* Here we have two nested shifts.  The result is usually the
9187	     AND of a new shift with a mask.  We compute the result below.  */
9188	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9189	      && INTVAL (XEXP (varop, 1)) >= 0
9190	      && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9191	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9192	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9193	    {
9194	      enum rtx_code first_code = GET_CODE (varop);
9195	      unsigned int first_count = INTVAL (XEXP (varop, 1));
9196	      unsigned HOST_WIDE_INT mask;
9197	      rtx mask_rtx;
9198
9199	      /* We have one common special case.  We can't do any merging if
9200		 the inner code is an ASHIFTRT of a smaller mode.  However, if
9201		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9202		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9203		 we can convert it to
9204		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9205		 This simplifies certain SIGN_EXTEND operations.  */
9206	      if (code == ASHIFT && first_code == ASHIFTRT
9207		  && (GET_MODE_BITSIZE (result_mode)
9208		      - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9209		{
9210		  /* C3 has the low-order C1 bits zero.  */
9211
9212		  mask = (GET_MODE_MASK (mode)
9213			  & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9214
9215		  varop = simplify_and_const_int (NULL_RTX, result_mode,
9216						  XEXP (varop, 0), mask);
9217		  varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9218						varop, count);
9219		  count = first_count;
9220		  code = ASHIFTRT;
9221		  continue;
9222		}
9223
9224	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9225		 than C1 high-order bits equal to the sign bit, we can convert
9226		 this to either an ASHIFT or a ASHIFTRT depending on the
9227		 two counts.
9228
9229		 We cannot do this if VAROP's mode is not SHIFT_MODE.  */
9230
9231	      if (code == ASHIFTRT && first_code == ASHIFT
9232		  && GET_MODE (varop) == shift_mode
9233		  && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9234		      > first_count))
9235		{
9236		  varop = XEXP (varop, 0);
9237
9238		  signed_count = count - first_count;
9239		  if (signed_count < 0)
9240		    count = -signed_count, code = ASHIFT;
9241		  else
9242		    count = signed_count;
9243
9244		  continue;
9245		}
9246
9247	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
9248		 we can only do this if FIRST_CODE is also ASHIFTRT.
9249
9250		 We can't do the case when CODE is ROTATE and FIRST_CODE is
9251		 ASHIFTRT.
9252
9253		 If the mode of this shift is not the mode of the outer shift,
9254		 we can't do this if either shift is a right shift or ROTATE.
9255
9256		 Finally, we can't do any of these if the mode is too wide
9257		 unless the codes are the same.
9258
9259		 Handle the case where the shift codes are the same
9260		 first.  */
9261
9262	      if (code == first_code)
9263		{
9264		  if (GET_MODE (varop) != result_mode
9265		      && (code == ASHIFTRT || code == LSHIFTRT
9266			  || code == ROTATE))
9267		    break;
9268
9269		  count += first_count;
9270		  varop = XEXP (varop, 0);
9271		  continue;
9272		}
9273
9274	      if (code == ASHIFTRT
9275		  || (code == ROTATE && first_code == ASHIFTRT)
9276		  || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9277		  || (GET_MODE (varop) != result_mode
9278		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
9279			  || first_code == ROTATE
9280			  || code == ROTATE)))
9281		break;
9282
9283	      /* To compute the mask to apply after the shift, shift the
9284		 nonzero bits of the inner shift the same way the
9285		 outer shift will.  */
9286
9287	      mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9288
9289	      mask_rtx
9290		= simplify_binary_operation (code, result_mode, mask_rtx,
9291					     GEN_INT (count));
9292
9293	      /* Give up if we can't compute an outer operation to use.  */
9294	      if (mask_rtx == 0
9295		  || GET_CODE (mask_rtx) != CONST_INT
9296		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
9297					INTVAL (mask_rtx),
9298					result_mode, &complement_p))
9299		break;
9300
9301	      /* If the shifts are in the same direction, we add the
9302		 counts.  Otherwise, we subtract them.  */
9303	      signed_count = count;
9304	      if ((code == ASHIFTRT || code == LSHIFTRT)
9305		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9306		signed_count += first_count;
9307	      else
9308		signed_count -= first_count;
9309
9310	      /* If COUNT is positive, the new shift is usually CODE,
9311		 except for the two exceptions below, in which case it is
9312		 FIRST_CODE.  If the count is negative, FIRST_CODE should
9313		 always be used  */
9314	      if (signed_count > 0
9315		  && ((first_code == ROTATE && code == ASHIFT)
9316		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
9317		code = first_code, count = signed_count;
9318	      else if (signed_count < 0)
9319		code = first_code, count = -signed_count;
9320	      else
9321		count = signed_count;
9322
9323	      varop = XEXP (varop, 0);
9324	      continue;
9325	    }
9326
9327	  /* If we have (A << B << C) for any shift, we can convert this to
9328	     (A << C << B).  This wins if A is a constant.  Only try this if
9329	     B is not a constant.  */
9330
9331	  else if (GET_CODE (varop) == code
9332		   && GET_CODE (XEXP (varop, 1)) != CONST_INT
9333		   && 0 != (new
9334			    = simplify_binary_operation (code, mode,
9335							 XEXP (varop, 0),
9336							 GEN_INT (count))))
9337	    {
9338	      varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9339	      count = 0;
9340	      continue;
9341	    }
9342	  break;
9343
9344	case NOT:
9345	  /* Make this fit the case below.  */
9346	  varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9347			       GEN_INT (GET_MODE_MASK (mode)));
9348	  continue;
9349
9350	case IOR:
9351	case AND:
9352	case XOR:
9353	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9354	     with C the size of VAROP - 1 and the shift is logical if
9355	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9356	     we have an (le X 0) operation.   If we have an arithmetic shift
9357	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
9358	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
9359
9360	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9361	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9362	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9363	      && (code == LSHIFTRT || code == ASHIFTRT)
9364	      && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9365	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9366	    {
9367	      count = 0;
9368	      varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9369				  const0_rtx);
9370
9371	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9372		varop = gen_rtx_NEG (GET_MODE (varop), varop);
9373
9374	      continue;
9375	    }
9376
9377	  /* If we have (shift (logical)), move the logical to the outside
9378	     to allow it to possibly combine with another logical and the
9379	     shift to combine with another shift.  This also canonicalizes to
9380	     what a ZERO_EXTRACT looks like.  Also, some machines have
9381	     (and (shift)) insns.  */
9382
9383	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9384	      && (new = simplify_binary_operation (code, result_mode,
9385						   XEXP (varop, 1),
9386						   GEN_INT (count))) != 0
9387	      && GET_CODE (new) == CONST_INT
9388	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9389				  INTVAL (new), result_mode, &complement_p))
9390	    {
9391	      varop = XEXP (varop, 0);
9392	      continue;
9393	    }
9394
9395	  /* If we can't do that, try to simplify the shift in each arm of the
9396	     logical expression, make a new logical expression, and apply
9397	     the inverse distributive law.  */
9398	  {
9399	    rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9400					    XEXP (varop, 0), count);
9401	    rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9402					    XEXP (varop, 1), count);
9403
9404	    varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9405	    varop = apply_distributive_law (varop);
9406
9407	    count = 0;
9408	  }
9409	  break;
9410
9411	case EQ:
9412	  /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9413	     says that the sign bit can be tested, FOO has mode MODE, C is
9414	     GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9415	     that may be nonzero.  */
9416	  if (code == LSHIFTRT
9417	      && XEXP (varop, 1) == const0_rtx
9418	      && GET_MODE (XEXP (varop, 0)) == result_mode
9419	      && count == GET_MODE_BITSIZE (result_mode) - 1
9420	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9421	      && ((STORE_FLAG_VALUE
9422		   & ((HOST_WIDE_INT) 1
9423		      < (GET_MODE_BITSIZE (result_mode) - 1))))
9424	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9425	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9426				  (HOST_WIDE_INT) 1, result_mode,
9427				  &complement_p))
9428	    {
9429	      varop = XEXP (varop, 0);
9430	      count = 0;
9431	      continue;
9432	    }
9433	  break;
9434
9435	case NEG:
9436	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9437	     than the number of bits in the mode is equivalent to A.  */
9438	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9439	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9440	    {
9441	      varop = XEXP (varop, 0);
9442	      count = 0;
9443	      continue;
9444	    }
9445
9446	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
9447	     NEG outside to allow shifts to combine.  */
9448	  if (code == ASHIFT
9449	      && merge_outer_ops (&outer_op, &outer_const, NEG,
9450				  (HOST_WIDE_INT) 0, result_mode,
9451				  &complement_p))
9452	    {
9453	      varop = XEXP (varop, 0);
9454	      continue;
9455	    }
9456	  break;
9457
9458	case PLUS:
9459	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9460	     is one less than the number of bits in the mode is
9461	     equivalent to (xor A 1).  */
9462	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9463	      && XEXP (varop, 1) == constm1_rtx
9464	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9465	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9466				  (HOST_WIDE_INT) 1, result_mode,
9467				  &complement_p))
9468	    {
9469	      count = 0;
9470	      varop = XEXP (varop, 0);
9471	      continue;
9472	    }
9473
9474	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9475	     that might be nonzero in BAR are those being shifted out and those
9476	     bits are known zero in FOO, we can replace the PLUS with FOO.
9477	     Similarly in the other operand order.  This code occurs when
9478	     we are computing the size of a variable-size array.  */
9479
9480	  if ((code == ASHIFTRT || code == LSHIFTRT)
9481	      && count < HOST_BITS_PER_WIDE_INT
9482	      && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9483	      && (nonzero_bits (XEXP (varop, 1), result_mode)
9484		  & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9485	    {
9486	      varop = XEXP (varop, 0);
9487	      continue;
9488	    }
9489	  else if ((code == ASHIFTRT || code == LSHIFTRT)
9490		   && count < HOST_BITS_PER_WIDE_INT
9491		   && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9492		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9493			    >> count)
9494		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9495			    & nonzero_bits (XEXP (varop, 1),
9496						 result_mode)))
9497	    {
9498	      varop = XEXP (varop, 1);
9499	      continue;
9500	    }
9501
9502	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
9503	  if (code == ASHIFT
9504	      && GET_CODE (XEXP (varop, 1)) == CONST_INT
9505	      && (new = simplify_binary_operation (ASHIFT, result_mode,
9506						   XEXP (varop, 1),
9507						   GEN_INT (count))) != 0
9508	      && GET_CODE (new) == CONST_INT
9509	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
9510				  INTVAL (new), result_mode, &complement_p))
9511	    {
9512	      varop = XEXP (varop, 0);
9513	      continue;
9514	    }
9515	  break;
9516
9517	case MINUS:
9518	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9519	     with C the size of VAROP - 1 and the shift is logical if
9520	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9521	     we have a (gt X 0) operation.  If the shift is arithmetic with
9522	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9523	     we have a (neg (gt X 0)) operation.  */
9524
9525	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9526	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9527	      && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9528	      && (code == LSHIFTRT || code == ASHIFTRT)
9529	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9530	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9531	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9532	    {
9533	      count = 0;
9534	      varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9535				  const0_rtx);
9536
9537	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9538		varop = gen_rtx_NEG (GET_MODE (varop), varop);
9539
9540	      continue;
9541	    }
9542	  break;
9543
9544	case TRUNCATE:
9545	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9546	     if the truncate does not affect the value.  */
9547	  if (code == LSHIFTRT
9548	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9549	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9550	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
9551		  >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9552		      - GET_MODE_BITSIZE (GET_MODE (varop)))))
9553	    {
9554	      rtx varop_inner = XEXP (varop, 0);
9555
9556	      varop_inner
9557		= gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9558				    XEXP (varop_inner, 0),
9559				    GEN_INT
9560				    (count + INTVAL (XEXP (varop_inner, 1))));
9561	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9562	      count = 0;
9563	      continue;
9564	    }
9565	  break;
9566
9567	default:
9568	  break;
9569	}
9570
9571      break;
9572    }
9573
9574  /* We need to determine what mode to do the shift in.  If the shift is
9575     a right shift or ROTATE, we must always do it in the mode it was
9576     originally done in.  Otherwise, we can do it in MODE, the widest mode
9577     encountered.  The code we care about is that of the shift that will
9578     actually be done, not the shift that was originally requested.  */
9579  shift_mode
9580    = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9581       ? result_mode : mode);
9582
9583  /* We have now finished analyzing the shift.  The result should be
9584     a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
9585     OUTER_OP is non-NIL, it is an operation that needs to be applied
9586     to the result of the shift.  OUTER_CONST is the relevant constant,
9587     but we must turn off all bits turned off in the shift.
9588
9589     If we were passed a value for X, see if we can use any pieces of
9590     it.  If not, make new rtx.  */
9591
9592  if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9593      && GET_CODE (XEXP (x, 1)) == CONST_INT
9594      && INTVAL (XEXP (x, 1)) == count)
9595    const_rtx = XEXP (x, 1);
9596  else
9597    const_rtx = GEN_INT (count);
9598
9599  if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9600      && GET_MODE (XEXP (x, 0)) == shift_mode
9601      && SUBREG_REG (XEXP (x, 0)) == varop)
9602    varop = XEXP (x, 0);
9603  else if (GET_MODE (varop) != shift_mode)
9604    varop = gen_lowpart_for_combine (shift_mode, varop);
9605
9606  /* If we can't make the SUBREG, try to return what we were given.  */
9607  if (GET_CODE (varop) == CLOBBER)
9608    return x ? x : varop;
9609
9610  new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9611  if (new != 0)
9612    x = new;
9613  else
9614    x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9615
9616  /* If we have an outer operation and we just made a shift, it is
9617     possible that we could have simplified the shift were it not
9618     for the outer operation.  So try to do the simplification
9619     recursively.  */
9620
9621  if (outer_op != NIL && GET_CODE (x) == code
9622      && GET_CODE (XEXP (x, 1)) == CONST_INT)
9623    x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9624			      INTVAL (XEXP (x, 1)));
9625
9626  /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9627     turn off all the bits that the shift would have turned off.  */
9628  if (orig_code == LSHIFTRT && result_mode != shift_mode)
9629    x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9630				GET_MODE_MASK (result_mode) >> orig_count);
9631
9632  /* Do the remainder of the processing in RESULT_MODE.  */
9633  x = gen_lowpart_for_combine (result_mode, x);
9634
9635  /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9636     operation.  */
9637  if (complement_p)
9638    x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9639
9640  if (outer_op != NIL)
9641    {
9642      if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9643	outer_const = trunc_int_for_mode (outer_const, result_mode);
9644
9645      if (outer_op == AND)
9646	x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9647      else if (outer_op == SET)
9648	/* This means that we have determined that the result is
9649	   equivalent to a constant.  This should be rare.  */
9650	x = GEN_INT (outer_const);
9651      else if (GET_RTX_CLASS (outer_op) == '1')
9652	x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9653      else
9654	x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9655    }
9656
9657  return x;
9658}
9659
9660/* Like recog, but we receive the address of a pointer to a new pattern.
9661   We try to match the rtx that the pointer points to.
9662   If that fails, we may try to modify or replace the pattern,
9663   storing the replacement into the same pointer object.
9664
9665   Modifications include deletion or addition of CLOBBERs.
9666
9667   PNOTES is a pointer to a location where any REG_UNUSED notes added for
9668   the CLOBBERs are placed.
9669
9670   The value is the final insn code from the pattern ultimately matched,
9671   or -1.  */
9672
9673static int
9674recog_for_combine (pnewpat, insn, pnotes)
9675     rtx *pnewpat;
9676     rtx insn;
9677     rtx *pnotes;
9678{
9679  rtx pat = *pnewpat;
9680  int insn_code_number;
9681  int num_clobbers_to_add = 0;
9682  int i;
9683  rtx notes = 0;
9684  rtx dummy_insn;
9685
9686  /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9687     we use to indicate that something didn't match.  If we find such a
9688     thing, force rejection.  */
9689  if (GET_CODE (pat) == PARALLEL)
9690    for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9691      if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9692	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9693	return -1;
9694
9695  /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9696     instruction for pattern recognition.  */
9697  dummy_insn = shallow_copy_rtx (insn);
9698  PATTERN (dummy_insn) = pat;
9699  REG_NOTES (dummy_insn) = 0;
9700
9701  insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9702
9703  /* If it isn't, there is the possibility that we previously had an insn
9704     that clobbered some register as a side effect, but the combined
9705     insn doesn't need to do that.  So try once more without the clobbers
9706     unless this represents an ASM insn.  */
9707
9708  if (insn_code_number < 0 && ! check_asm_operands (pat)
9709      && GET_CODE (pat) == PARALLEL)
9710    {
9711      int pos;
9712
9713      for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9714	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9715	  {
9716	    if (i != pos)
9717	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9718	    pos++;
9719	  }
9720
9721      SUBST_INT (XVECLEN (pat, 0), pos);
9722
9723      if (pos == 1)
9724	pat = XVECEXP (pat, 0, 0);
9725
9726      PATTERN (dummy_insn) = pat;
9727      insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9728    }
9729
9730  /* Recognize all noop sets, these will be killed by followup pass.  */
9731  if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9732    insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9733
9734  /* If we had any clobbers to add, make a new pattern than contains
9735     them.  Then check to make sure that all of them are dead.  */
9736  if (num_clobbers_to_add)
9737    {
9738      rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9739				     rtvec_alloc (GET_CODE (pat) == PARALLEL
9740						  ? (XVECLEN (pat, 0)
9741						     + num_clobbers_to_add)
9742						  : num_clobbers_to_add + 1));
9743
9744      if (GET_CODE (pat) == PARALLEL)
9745	for (i = 0; i < XVECLEN (pat, 0); i++)
9746	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9747      else
9748	XVECEXP (newpat, 0, 0) = pat;
9749
9750      add_clobbers (newpat, insn_code_number);
9751
9752      for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9753	   i < XVECLEN (newpat, 0); i++)
9754	{
9755	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9756	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9757	    return -1;
9758	  notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9759				     XEXP (XVECEXP (newpat, 0, i), 0), notes);
9760	}
9761      pat = newpat;
9762    }
9763
9764  *pnewpat = pat;
9765  *pnotes = notes;
9766
9767  return insn_code_number;
9768}
9769
9770/* Like gen_lowpart but for use by combine.  In combine it is not possible
9771   to create any new pseudoregs.  However, it is safe to create
9772   invalid memory addresses, because combine will try to recognize
9773   them and all they will do is make the combine attempt fail.
9774
9775   If for some reason this cannot do its job, an rtx
9776   (clobber (const_int 0)) is returned.
9777   An insn containing that will not be recognized.  */
9778
9779#undef gen_lowpart
9780
9781static rtx
9782gen_lowpart_for_combine (mode, x)
9783     enum machine_mode mode;
9784     rtx x;
9785{
9786  rtx result;
9787
9788  if (GET_MODE (x) == mode)
9789    return x;
9790
9791  /* We can only support MODE being wider than a word if X is a
9792     constant integer or has a mode the same size.  */
9793
9794  if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9795      && ! ((GET_MODE (x) == VOIDmode
9796	     && (GET_CODE (x) == CONST_INT
9797		 || GET_CODE (x) == CONST_DOUBLE))
9798	    || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9799    return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9800
9801  /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
9802     won't know what to do.  So we will strip off the SUBREG here and
9803     process normally.  */
9804  if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9805    {
9806      x = SUBREG_REG (x);
9807      if (GET_MODE (x) == mode)
9808	return x;
9809    }
9810
9811  result = gen_lowpart_common (mode, x);
9812#ifdef CLASS_CANNOT_CHANGE_MODE
9813  if (result != 0
9814      && GET_CODE (result) == SUBREG
9815      && GET_CODE (SUBREG_REG (result)) == REG
9816      && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9817      && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9818				     GET_MODE (SUBREG_REG (result))))
9819    REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9820#endif
9821
9822  if (result)
9823    return result;
9824
9825  if (GET_CODE (x) == MEM)
9826    {
9827      int offset = 0;
9828
9829      /* Refuse to work on a volatile memory ref or one with a mode-dependent
9830	 address.  */
9831      if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9832	return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9833
9834      /* If we want to refer to something bigger than the original memref,
9835	 generate a perverse subreg instead.  That will force a reload
9836	 of the original memref X.  */
9837      if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9838	return gen_rtx_SUBREG (mode, x, 0);
9839
9840      if (WORDS_BIG_ENDIAN)
9841	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9842		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9843
9844      if (BYTES_BIG_ENDIAN)
9845	{
9846	  /* Adjust the address so that the address-after-the-data is
9847	     unchanged.  */
9848	  offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9849		     - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9850	}
9851
9852      return adjust_address_nv (x, mode, offset);
9853    }
9854
9855  /* If X is a comparison operator, rewrite it in a new mode.  This
9856     probably won't match, but may allow further simplifications.  */
9857  else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9858    return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9859
9860  /* If we couldn't simplify X any other way, just enclose it in a
9861     SUBREG.  Normally, this SUBREG won't match, but some patterns may
9862     include an explicit SUBREG or we may simplify it further in combine.  */
9863  else
9864    {
9865      int offset = 0;
9866      rtx res;
9867
9868      offset = subreg_lowpart_offset (mode, GET_MODE (x));
9869      res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9870      if (res)
9871	return res;
9872      return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9873    }
9874}
9875
9876/* These routines make binary and unary operations by first seeing if they
9877   fold; if not, a new expression is allocated.  */
9878
9879static rtx
9880gen_binary (code, mode, op0, op1)
9881     enum rtx_code code;
9882     enum machine_mode mode;
9883     rtx op0, op1;
9884{
9885  rtx result;
9886  rtx tem;
9887
9888  if (GET_RTX_CLASS (code) == 'c'
9889      && swap_commutative_operands_p (op0, op1))
9890    tem = op0, op0 = op1, op1 = tem;
9891
9892  if (GET_RTX_CLASS (code) == '<')
9893    {
9894      enum machine_mode op_mode = GET_MODE (op0);
9895
9896      /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9897	 just (REL_OP X Y).  */
9898      if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9899	{
9900	  op1 = XEXP (op0, 1);
9901	  op0 = XEXP (op0, 0);
9902	  op_mode = GET_MODE (op0);
9903	}
9904
9905      if (op_mode == VOIDmode)
9906	op_mode = GET_MODE (op1);
9907      result = simplify_relational_operation (code, op_mode, op0, op1);
9908    }
9909  else
9910    result = simplify_binary_operation (code, mode, op0, op1);
9911
9912  if (result)
9913    return result;
9914
9915  /* Put complex operands first and constants second.  */
9916  if (GET_RTX_CLASS (code) == 'c'
9917      && swap_commutative_operands_p (op0, op1))
9918    return gen_rtx_fmt_ee (code, mode, op1, op0);
9919
9920  /* If we are turning off bits already known off in OP0, we need not do
9921     an AND.  */
9922  else if (code == AND && GET_CODE (op1) == CONST_INT
9923	   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9924	   && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9925    return op0;
9926
9927  return gen_rtx_fmt_ee (code, mode, op0, op1);
9928}
9929
9930/* Simplify a comparison between *POP0 and *POP1 where CODE is the
9931   comparison code that will be tested.
9932
9933   The result is a possibly different comparison code to use.  *POP0 and
9934   *POP1 may be updated.
9935
9936   It is possible that we might detect that a comparison is either always
9937   true or always false.  However, we do not perform general constant
9938   folding in combine, so this knowledge isn't useful.  Such tautologies
9939   should have been detected earlier.  Hence we ignore all such cases.  */
9940
9941static enum rtx_code
9942simplify_comparison (code, pop0, pop1)
9943     enum rtx_code code;
9944     rtx *pop0;
9945     rtx *pop1;
9946{
9947  rtx op0 = *pop0;
9948  rtx op1 = *pop1;
9949  rtx tem, tem1;
9950  int i;
9951  enum machine_mode mode, tmode;
9952
9953  /* Try a few ways of applying the same transformation to both operands.  */
9954  while (1)
9955    {
9956#ifndef WORD_REGISTER_OPERATIONS
9957      /* The test below this one won't handle SIGN_EXTENDs on these machines,
9958	 so check specially.  */
9959      if (code != GTU && code != GEU && code != LTU && code != LEU
9960	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9961	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
9962	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
9963	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9964	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9965	  && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9966	      == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9967	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
9968	  && GET_CODE (XEXP (op1, 1)) == CONST_INT
9969	  && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9970	  && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9971	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9972	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9973	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9974	  && (INTVAL (XEXP (op0, 1))
9975	      == (GET_MODE_BITSIZE (GET_MODE (op0))
9976		  - (GET_MODE_BITSIZE
9977		     (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9978	{
9979	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9980	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9981	}
9982#endif
9983
9984      /* If both operands are the same constant shift, see if we can ignore the
9985	 shift.  We can if the shift is a rotate or if the bits shifted out of
9986	 this shift are known to be zero for both inputs and if the type of
9987	 comparison is compatible with the shift.  */
9988      if (GET_CODE (op0) == GET_CODE (op1)
9989	  && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9990	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9991	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9992		  && (code != GT && code != LT && code != GE && code != LE))
9993	      || (GET_CODE (op0) == ASHIFTRT
9994		  && (code != GTU && code != LTU
9995		      && code != GEU && code != LEU)))
9996	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
9997	  && INTVAL (XEXP (op0, 1)) >= 0
9998	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9999	  && XEXP (op0, 1) == XEXP (op1, 1))
10000	{
10001	  enum machine_mode mode = GET_MODE (op0);
10002	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10003	  int shift_count = INTVAL (XEXP (op0, 1));
10004
10005	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10006	    mask &= (mask >> shift_count) << shift_count;
10007	  else if (GET_CODE (op0) == ASHIFT)
10008	    mask = (mask & (mask << shift_count)) >> shift_count;
10009
10010	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10011	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10012	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10013	  else
10014	    break;
10015	}
10016
10017      /* If both operands are AND's of a paradoxical SUBREG by constant, the
10018	 SUBREGs are of the same mode, and, in both cases, the AND would
10019	 be redundant if the comparison was done in the narrower mode,
10020	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10021	 and the operand's possibly nonzero bits are 0xffffff01; in that case
10022	 if we only care about QImode, we don't need the AND).  This case
10023	 occurs if the output mode of an scc insn is not SImode and
10024	 STORE_FLAG_VALUE == 1 (e.g., the 386).
10025
10026	 Similarly, check for a case where the AND's are ZERO_EXTEND
10027	 operations from some narrower mode even though a SUBREG is not
10028	 present.  */
10029
10030      else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10031	       && GET_CODE (XEXP (op0, 1)) == CONST_INT
10032	       && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10033	{
10034	  rtx inner_op0 = XEXP (op0, 0);
10035	  rtx inner_op1 = XEXP (op1, 0);
10036	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10037	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10038	  int changed = 0;
10039
10040	  if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10041	      && (GET_MODE_SIZE (GET_MODE (inner_op0))
10042		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10043	      && (GET_MODE (SUBREG_REG (inner_op0))
10044		  == GET_MODE (SUBREG_REG (inner_op1)))
10045	      && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10046		  <= HOST_BITS_PER_WIDE_INT)
10047	      && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10048					     GET_MODE (SUBREG_REG (inner_op0)))))
10049	      && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10050					     GET_MODE (SUBREG_REG (inner_op1))))))
10051	    {
10052	      op0 = SUBREG_REG (inner_op0);
10053	      op1 = SUBREG_REG (inner_op1);
10054
10055	      /* The resulting comparison is always unsigned since we masked
10056		 off the original sign bit.  */
10057	      code = unsigned_condition (code);
10058
10059	      changed = 1;
10060	    }
10061
10062	  else if (c0 == c1)
10063	    for (tmode = GET_CLASS_NARROWEST_MODE
10064		 (GET_MODE_CLASS (GET_MODE (op0)));
10065		 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10066	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10067		{
10068		  op0 = gen_lowpart_for_combine (tmode, inner_op0);
10069		  op1 = gen_lowpart_for_combine (tmode, inner_op1);
10070		  code = unsigned_condition (code);
10071		  changed = 1;
10072		  break;
10073		}
10074
10075	  if (! changed)
10076	    break;
10077	}
10078
10079      /* If both operands are NOT, we can strip off the outer operation
10080	 and adjust the comparison code for swapped operands; similarly for
10081	 NEG, except that this must be an equality comparison.  */
10082      else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10083	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10084		   && (code == EQ || code == NE)))
10085	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10086
10087      else
10088	break;
10089    }
10090
10091  /* If the first operand is a constant, swap the operands and adjust the
10092     comparison code appropriately, but don't do this if the second operand
10093     is already a constant integer.  */
10094  if (swap_commutative_operands_p (op0, op1))
10095    {
10096      tem = op0, op0 = op1, op1 = tem;
10097      code = swap_condition (code);
10098    }
10099
10100  /* We now enter a loop during which we will try to simplify the comparison.
10101     For the most part, we only are concerned with comparisons with zero,
10102     but some things may really be comparisons with zero but not start
10103     out looking that way.  */
10104
10105  while (GET_CODE (op1) == CONST_INT)
10106    {
10107      enum machine_mode mode = GET_MODE (op0);
10108      unsigned int mode_width = GET_MODE_BITSIZE (mode);
10109      unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10110      int equality_comparison_p;
10111      int sign_bit_comparison_p;
10112      int unsigned_comparison_p;
10113      HOST_WIDE_INT const_op;
10114
10115      /* We only want to handle integral modes.  This catches VOIDmode,
10116	 CCmode, and the floating-point modes.  An exception is that we
10117	 can handle VOIDmode if OP0 is a COMPARE or a comparison
10118	 operation.  */
10119
10120      if (GET_MODE_CLASS (mode) != MODE_INT
10121	  && ! (mode == VOIDmode
10122		&& (GET_CODE (op0) == COMPARE
10123		    || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10124	break;
10125
10126      /* Get the constant we are comparing against and turn off all bits
10127	 not on in our mode.  */
10128      const_op = trunc_int_for_mode (INTVAL (op1), mode);
10129      op1 = GEN_INT (const_op);
10130
10131      /* If we are comparing against a constant power of two and the value
10132	 being compared can only have that single bit nonzero (e.g., it was
10133	 `and'ed with that bit), we can replace this with a comparison
10134	 with zero.  */
10135      if (const_op
10136	  && (code == EQ || code == NE || code == GE || code == GEU
10137	      || code == LT || code == LTU)
10138	  && mode_width <= HOST_BITS_PER_WIDE_INT
10139	  && exact_log2 (const_op) >= 0
10140	  && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10141	{
10142	  code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10143	  op1 = const0_rtx, const_op = 0;
10144	}
10145
10146      /* Similarly, if we are comparing a value known to be either -1 or
10147	 0 with -1, change it to the opposite comparison against zero.  */
10148
10149      if (const_op == -1
10150	  && (code == EQ || code == NE || code == GT || code == LE
10151	      || code == GEU || code == LTU)
10152	  && num_sign_bit_copies (op0, mode) == mode_width)
10153	{
10154	  code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10155	  op1 = const0_rtx, const_op = 0;
10156	}
10157
10158      /* Do some canonicalizations based on the comparison code.  We prefer
10159	 comparisons against zero and then prefer equality comparisons.
10160	 If we can reduce the size of a constant, we will do that too.  */
10161
10162      switch (code)
10163	{
10164	case LT:
10165	  /* < C is equivalent to <= (C - 1) */
10166	  if (const_op > 0)
10167	    {
10168	      const_op -= 1;
10169	      op1 = GEN_INT (const_op);
10170	      code = LE;
10171	      /* ... fall through to LE case below.  */
10172	    }
10173	  else
10174	    break;
10175
10176	case LE:
10177	  /* <= C is equivalent to < (C + 1); we do this for C < 0  */
10178	  if (const_op < 0)
10179	    {
10180	      const_op += 1;
10181	      op1 = GEN_INT (const_op);
10182	      code = LT;
10183	    }
10184
10185	  /* If we are doing a <= 0 comparison on a value known to have
10186	     a zero sign bit, we can replace this with == 0.  */
10187	  else if (const_op == 0
10188		   && mode_width <= HOST_BITS_PER_WIDE_INT
10189		   && (nonzero_bits (op0, mode)
10190		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10191	    code = EQ;
10192	  break;
10193
10194	case GE:
10195	  /* >= C is equivalent to > (C - 1).  */
10196	  if (const_op > 0)
10197	    {
10198	      const_op -= 1;
10199	      op1 = GEN_INT (const_op);
10200	      code = GT;
10201	      /* ... fall through to GT below.  */
10202	    }
10203	  else
10204	    break;
10205
10206	case GT:
10207	  /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
10208	  if (const_op < 0)
10209	    {
10210	      const_op += 1;
10211	      op1 = GEN_INT (const_op);
10212	      code = GE;
10213	    }
10214
10215	  /* If we are doing a > 0 comparison on a value known to have
10216	     a zero sign bit, we can replace this with != 0.  */
10217	  else if (const_op == 0
10218		   && mode_width <= HOST_BITS_PER_WIDE_INT
10219		   && (nonzero_bits (op0, mode)
10220		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10221	    code = NE;
10222	  break;
10223
10224	case LTU:
10225	  /* < C is equivalent to <= (C - 1).  */
10226	  if (const_op > 0)
10227	    {
10228	      const_op -= 1;
10229	      op1 = GEN_INT (const_op);
10230	      code = LEU;
10231	      /* ... fall through ...  */
10232	    }
10233
10234	  /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
10235	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10236		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10237	    {
10238	      const_op = 0, op1 = const0_rtx;
10239	      code = GE;
10240	      break;
10241	    }
10242	  else
10243	    break;
10244
10245	case LEU:
10246	  /* unsigned <= 0 is equivalent to == 0 */
10247	  if (const_op == 0)
10248	    code = EQ;
10249
10250	  /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
10251	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10252		   && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10253	    {
10254	      const_op = 0, op1 = const0_rtx;
10255	      code = GE;
10256	    }
10257	  break;
10258
10259	case GEU:
10260	  /* >= C is equivalent to < (C - 1).  */
10261	  if (const_op > 1)
10262	    {
10263	      const_op -= 1;
10264	      op1 = GEN_INT (const_op);
10265	      code = GTU;
10266	      /* ... fall through ...  */
10267	    }
10268
10269	  /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
10270	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10271		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10272	    {
10273	      const_op = 0, op1 = const0_rtx;
10274	      code = LT;
10275	      break;
10276	    }
10277	  else
10278	    break;
10279
10280	case GTU:
10281	  /* unsigned > 0 is equivalent to != 0 */
10282	  if (const_op == 0)
10283	    code = NE;
10284
10285	  /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
10286	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10287		    && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10288	    {
10289	      const_op = 0, op1 = const0_rtx;
10290	      code = LT;
10291	    }
10292	  break;
10293
10294	default:
10295	  break;
10296	}
10297
10298      /* Compute some predicates to simplify code below.  */
10299
10300      equality_comparison_p = (code == EQ || code == NE);
10301      sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10302      unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10303			       || code == GEU);
10304
10305      /* If this is a sign bit comparison and we can do arithmetic in
10306	 MODE, say that we will only be needing the sign bit of OP0.  */
10307      if (sign_bit_comparison_p
10308	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10309	op0 = force_to_mode (op0, mode,
10310			     ((HOST_WIDE_INT) 1
10311			      << (GET_MODE_BITSIZE (mode) - 1)),
10312			     NULL_RTX, 0);
10313
10314      /* Now try cases based on the opcode of OP0.  If none of the cases
10315	 does a "continue", we exit this loop immediately after the
10316	 switch.  */
10317
10318      switch (GET_CODE (op0))
10319	{
10320	case ZERO_EXTRACT:
10321	  /* If we are extracting a single bit from a variable position in
10322	     a constant that has only a single bit set and are comparing it
10323	     with zero, we can convert this into an equality comparison
10324	     between the position and the location of the single bit.  */
10325
10326	  if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10327	      && XEXP (op0, 1) == const1_rtx
10328	      && equality_comparison_p && const_op == 0
10329	      && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10330	    {
10331	      if (BITS_BIG_ENDIAN)
10332		{
10333		  enum machine_mode new_mode
10334		    = mode_for_extraction (EP_extzv, 1);
10335		  if (new_mode == MAX_MACHINE_MODE)
10336		    i = BITS_PER_WORD - 1 - i;
10337		  else
10338		    {
10339		      mode = new_mode;
10340		      i = (GET_MODE_BITSIZE (mode) - 1 - i);
10341		    }
10342		}
10343
10344	      op0 = XEXP (op0, 2);
10345	      op1 = GEN_INT (i);
10346	      const_op = i;
10347
10348	      /* Result is nonzero iff shift count is equal to I.  */
10349	      code = reverse_condition (code);
10350	      continue;
10351	    }
10352
10353	  /* ... fall through ...  */
10354
10355	case SIGN_EXTRACT:
10356	  tem = expand_compound_operation (op0);
10357	  if (tem != op0)
10358	    {
10359	      op0 = tem;
10360	      continue;
10361	    }
10362	  break;
10363
10364	case NOT:
10365	  /* If testing for equality, we can take the NOT of the constant.  */
10366	  if (equality_comparison_p
10367	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10368	    {
10369	      op0 = XEXP (op0, 0);
10370	      op1 = tem;
10371	      continue;
10372	    }
10373
10374	  /* If just looking at the sign bit, reverse the sense of the
10375	     comparison.  */
10376	  if (sign_bit_comparison_p)
10377	    {
10378	      op0 = XEXP (op0, 0);
10379	      code = (code == GE ? LT : GE);
10380	      continue;
10381	    }
10382	  break;
10383
10384	case NEG:
10385	  /* If testing for equality, we can take the NEG of the constant.  */
10386	  if (equality_comparison_p
10387	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10388	    {
10389	      op0 = XEXP (op0, 0);
10390	      op1 = tem;
10391	      continue;
10392	    }
10393
10394	  /* The remaining cases only apply to comparisons with zero.  */
10395	  if (const_op != 0)
10396	    break;
10397
10398	  /* When X is ABS or is known positive,
10399	     (neg X) is < 0 if and only if X != 0.  */
10400
10401	  if (sign_bit_comparison_p
10402	      && (GET_CODE (XEXP (op0, 0)) == ABS
10403		  || (mode_width <= HOST_BITS_PER_WIDE_INT
10404		      && (nonzero_bits (XEXP (op0, 0), mode)
10405			  & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10406	    {
10407	      op0 = XEXP (op0, 0);
10408	      code = (code == LT ? NE : EQ);
10409	      continue;
10410	    }
10411
10412	  /* If we have NEG of something whose two high-order bits are the
10413	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
10414	  if (num_sign_bit_copies (op0, mode) >= 2)
10415	    {
10416	      op0 = XEXP (op0, 0);
10417	      code = swap_condition (code);
10418	      continue;
10419	    }
10420	  break;
10421
10422	case ROTATE:
10423	  /* If we are testing equality and our count is a constant, we
10424	     can perform the inverse operation on our RHS.  */
10425	  if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10426	      && (tem = simplify_binary_operation (ROTATERT, mode,
10427						   op1, XEXP (op0, 1))) != 0)
10428	    {
10429	      op0 = XEXP (op0, 0);
10430	      op1 = tem;
10431	      continue;
10432	    }
10433
10434	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10435	     a particular bit.  Convert it to an AND of a constant of that
10436	     bit.  This will be converted into a ZERO_EXTRACT.  */
10437	  if (const_op == 0 && sign_bit_comparison_p
10438	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10439	      && mode_width <= HOST_BITS_PER_WIDE_INT)
10440	    {
10441	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10442					    ((HOST_WIDE_INT) 1
10443					     << (mode_width - 1
10444						 - INTVAL (XEXP (op0, 1)))));
10445	      code = (code == LT ? NE : EQ);
10446	      continue;
10447	    }
10448
10449	  /* Fall through.  */
10450
10451	case ABS:
10452	  /* ABS is ignorable inside an equality comparison with zero.  */
10453	  if (const_op == 0 && equality_comparison_p)
10454	    {
10455	      op0 = XEXP (op0, 0);
10456	      continue;
10457	    }
10458	  break;
10459
10460	case SIGN_EXTEND:
10461	  /* Can simplify (compare (zero/sign_extend FOO) CONST)
10462	     to (compare FOO CONST) if CONST fits in FOO's mode and we
10463	     are either testing inequality or have an unsigned comparison
10464	     with ZERO_EXTEND or a signed comparison with SIGN_EXTEND.  */
10465	  if (! unsigned_comparison_p
10466	      && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10467		  <= HOST_BITS_PER_WIDE_INT)
10468	      && ((unsigned HOST_WIDE_INT) const_op
10469		  < (((unsigned HOST_WIDE_INT) 1
10470		      << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10471	    {
10472	      op0 = XEXP (op0, 0);
10473	      continue;
10474	    }
10475	  break;
10476
10477	case SUBREG:
10478	  /* Check for the case where we are comparing A - C1 with C2,
10479	     both constants are smaller than 1/2 the maximum positive
10480	     value in MODE, and the comparison is equality or unsigned.
10481	     In that case, if A is either zero-extended to MODE or has
10482	     sufficient sign bits so that the high-order bit in MODE
10483	     is a copy of the sign in the inner mode, we can prove that it is
10484	     safe to do the operation in the wider mode.  This simplifies
10485	     many range checks.  */
10486
10487	  if (mode_width <= HOST_BITS_PER_WIDE_INT
10488	      && subreg_lowpart_p (op0)
10489	      && GET_CODE (SUBREG_REG (op0)) == PLUS
10490	      && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10491	      && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10492	      && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10493		  < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10494	      && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10495	      && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10496				      GET_MODE (SUBREG_REG (op0)))
10497			& ~GET_MODE_MASK (mode))
10498		  || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10499					   GET_MODE (SUBREG_REG (op0)))
10500		      > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10501			 - GET_MODE_BITSIZE (mode)))))
10502	    {
10503	      op0 = SUBREG_REG (op0);
10504	      continue;
10505	    }
10506
10507	  /* If the inner mode is narrower and we are extracting the low part,
10508	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
10509	  if (subreg_lowpart_p (op0)
10510	      && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10511	    /* Fall through */ ;
10512	  else
10513	    break;
10514
10515	  /* ... fall through ...  */
10516
10517	case ZERO_EXTEND:
10518	  if ((unsigned_comparison_p || equality_comparison_p)
10519	      && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10520		  <= HOST_BITS_PER_WIDE_INT)
10521	      && ((unsigned HOST_WIDE_INT) const_op
10522		  < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10523	    {
10524	      op0 = XEXP (op0, 0);
10525	      continue;
10526	    }
10527	  break;
10528
10529	case PLUS:
10530	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
10531	     this for equality comparisons due to pathological cases involving
10532	     overflows.  */
10533	  if (equality_comparison_p
10534	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10535							op1, XEXP (op0, 1))))
10536	    {
10537	      op0 = XEXP (op0, 0);
10538	      op1 = tem;
10539	      continue;
10540	    }
10541
10542	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
10543	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10544	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10545	    {
10546	      op0 = XEXP (XEXP (op0, 0), 0);
10547	      code = (code == LT ? EQ : NE);
10548	      continue;
10549	    }
10550	  break;
10551
10552	case MINUS:
10553	  /* We used to optimize signed comparisons against zero, but that
10554	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
10555	     arrive here as equality comparisons, or (GEU, LTU) are
10556	     optimized away.  No need to special-case them.  */
10557
10558	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
10559	     (eq B (minus A C)), whichever simplifies.  We can only do
10560	     this for equality comparisons due to pathological cases involving
10561	     overflows.  */
10562	  if (equality_comparison_p
10563	      && 0 != (tem = simplify_binary_operation (PLUS, mode,
10564							XEXP (op0, 1), op1)))
10565	    {
10566	      op0 = XEXP (op0, 0);
10567	      op1 = tem;
10568	      continue;
10569	    }
10570
10571	  if (equality_comparison_p
10572	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10573							XEXP (op0, 0), op1)))
10574	    {
10575	      op0 = XEXP (op0, 1);
10576	      op1 = tem;
10577	      continue;
10578	    }
10579
10580	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10581	     of bits in X minus 1, is one iff X > 0.  */
10582	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10583	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10584	      && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10585	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10586	    {
10587	      op0 = XEXP (op0, 1);
10588	      code = (code == GE ? LE : GT);
10589	      continue;
10590	    }
10591	  break;
10592
10593	case XOR:
10594	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
10595	     if C is zero or B is a constant.  */
10596	  if (equality_comparison_p
10597	      && 0 != (tem = simplify_binary_operation (XOR, mode,
10598							XEXP (op0, 1), op1)))
10599	    {
10600	      op0 = XEXP (op0, 0);
10601	      op1 = tem;
10602	      continue;
10603	    }
10604	  break;
10605
10606	case EQ:  case NE:
10607	case UNEQ:  case LTGT:
10608	case LT:  case LTU:  case UNLT:  case LE:  case LEU:  case UNLE:
10609	case GT:  case GTU:  case UNGT:  case GE:  case GEU:  case UNGE:
10610        case UNORDERED: case ORDERED:
10611	  /* We can't do anything if OP0 is a condition code value, rather
10612	     than an actual data value.  */
10613	  if (const_op != 0
10614#ifdef HAVE_cc0
10615	      || XEXP (op0, 0) == cc0_rtx
10616#endif
10617	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10618	    break;
10619
10620	  /* Get the two operands being compared.  */
10621	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10622	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10623	  else
10624	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10625
10626	  /* Check for the cases where we simply want the result of the
10627	     earlier test or the opposite of that result.  */
10628	  if (code == NE || code == EQ
10629	      || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10630		  && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10631		  && (STORE_FLAG_VALUE
10632		      & (((HOST_WIDE_INT) 1
10633			  << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10634		  && (code == LT || code == GE)))
10635	    {
10636	      enum rtx_code new_code;
10637	      if (code == LT || code == NE)
10638		new_code = GET_CODE (op0);
10639	      else
10640		new_code = combine_reversed_comparison_code (op0);
10641
10642	      if (new_code != UNKNOWN)
10643		{
10644		  code = new_code;
10645		  op0 = tem;
10646		  op1 = tem1;
10647		  continue;
10648		}
10649	    }
10650	  break;
10651
10652	case IOR:
10653	  /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10654	     iff X <= 0.  */
10655	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10656	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10657	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10658	    {
10659	      op0 = XEXP (op0, 1);
10660	      code = (code == GE ? GT : LE);
10661	      continue;
10662	    }
10663	  break;
10664
10665	case AND:
10666	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
10667	     will be converted to a ZERO_EXTRACT later.  */
10668	  if (const_op == 0 && equality_comparison_p
10669	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10670	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10671	    {
10672	      op0 = simplify_and_const_int
10673		(op0, mode, gen_rtx_LSHIFTRT (mode,
10674					      XEXP (op0, 1),
10675					      XEXP (XEXP (op0, 0), 1)),
10676		 (HOST_WIDE_INT) 1);
10677	      continue;
10678	    }
10679
10680	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10681	     zero and X is a comparison and C1 and C2 describe only bits set
10682	     in STORE_FLAG_VALUE, we can compare with X.  */
10683	  if (const_op == 0 && equality_comparison_p
10684	      && mode_width <= HOST_BITS_PER_WIDE_INT
10685	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10686	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10687	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10688	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10689	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10690	    {
10691	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10692		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
10693	      if ((~STORE_FLAG_VALUE & mask) == 0
10694		  && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10695		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10696			  && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10697		{
10698		  op0 = XEXP (XEXP (op0, 0), 0);
10699		  continue;
10700		}
10701	    }
10702
10703	  /* If we are doing an equality comparison of an AND of a bit equal
10704	     to the sign bit, replace this with a LT or GE comparison of
10705	     the underlying value.  */
10706	  if (equality_comparison_p
10707	      && const_op == 0
10708	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10709	      && mode_width <= HOST_BITS_PER_WIDE_INT
10710	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10711		  == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10712	    {
10713	      op0 = XEXP (op0, 0);
10714	      code = (code == EQ ? GE : LT);
10715	      continue;
10716	    }
10717
10718	  /* If this AND operation is really a ZERO_EXTEND from a narrower
10719	     mode, the constant fits within that mode, and this is either an
10720	     equality or unsigned comparison, try to do this comparison in
10721	     the narrower mode.  */
10722	  if ((equality_comparison_p || unsigned_comparison_p)
10723	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10724	      && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10725				   & GET_MODE_MASK (mode))
10726				  + 1)) >= 0
10727	      && const_op >> i == 0
10728	      && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10729	    {
10730	      op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10731	      continue;
10732	    }
10733
10734	  /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10735	     in both M1 and M2 and the SUBREG is either paradoxical or
10736	     represents the low part, permute the SUBREG and the AND and
10737	     try again.  */
10738	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
10739	      && (0
10740#ifdef WORD_REGISTER_OPERATIONS
10741		  || ((mode_width
10742		       > (GET_MODE_BITSIZE
10743			   (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10744		      && mode_width <= BITS_PER_WORD)
10745#endif
10746		  || ((mode_width
10747		       <= (GET_MODE_BITSIZE
10748			   (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10749		      && subreg_lowpart_p (XEXP (op0, 0))))
10750#ifndef WORD_REGISTER_OPERATIONS
10751	      /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10752		 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10753		 As originally written the upper bits have a defined value
10754		 due to the AND operation.  However, if we commute the AND
10755		 inside the SUBREG then they no longer have defined values
10756		 and the meaning of the code has been changed.  */
10757	      && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10758		  <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10759#endif
10760	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10761	      && mode_width <= HOST_BITS_PER_WIDE_INT
10762	      && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10763		  <= HOST_BITS_PER_WIDE_INT)
10764	      && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10765	      && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10766		       & INTVAL (XEXP (op0, 1)))
10767	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10768	      && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10769		  != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10770
10771	    {
10772	      op0
10773		= gen_lowpart_for_combine
10774		  (mode,
10775		   gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10776			       SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10777	      continue;
10778	    }
10779
10780	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10781	     (eq (and (lshiftrt X) 1) 0).  */
10782	  if (const_op == 0 && equality_comparison_p
10783	      && XEXP (op0, 1) == const1_rtx
10784	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10785	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10786	    {
10787	      op0 = simplify_and_const_int
10788		(op0, mode,
10789		 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10790				   XEXP (XEXP (op0, 0), 1)),
10791		 (HOST_WIDE_INT) 1);
10792	      code = (code == NE ? EQ : NE);
10793	      continue;
10794	    }
10795	  break;
10796
10797	case ASHIFT:
10798	  /* If we have (compare (ashift FOO N) (const_int C)) and
10799	     the high order N bits of FOO (N+1 if an inequality comparison)
10800	     are known to be zero, we can do this by comparing FOO with C
10801	     shifted right N bits so long as the low-order N bits of C are
10802	     zero.  */
10803	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10804	      && INTVAL (XEXP (op0, 1)) >= 0
10805	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10806		  < HOST_BITS_PER_WIDE_INT)
10807	      && ((const_op
10808		   & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10809	      && mode_width <= HOST_BITS_PER_WIDE_INT
10810	      && (nonzero_bits (XEXP (op0, 0), mode)
10811		  & ~(mask >> (INTVAL (XEXP (op0, 1))
10812			       + ! equality_comparison_p))) == 0)
10813	    {
10814	      /* We must perform a logical shift, not an arithmetic one,
10815		 as we want the top N bits of C to be zero.  */
10816	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10817
10818	      temp >>= INTVAL (XEXP (op0, 1));
10819	      op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10820	      op0 = XEXP (op0, 0);
10821	      continue;
10822	    }
10823
10824	  /* If we are doing a sign bit comparison, it means we are testing
10825	     a particular bit.  Convert it to the appropriate AND.  */
10826	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10827	      && mode_width <= HOST_BITS_PER_WIDE_INT)
10828	    {
10829	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10830					    ((HOST_WIDE_INT) 1
10831					     << (mode_width - 1
10832						 - INTVAL (XEXP (op0, 1)))));
10833	      code = (code == LT ? NE : EQ);
10834	      continue;
10835	    }
10836
10837	  /* If this an equality comparison with zero and we are shifting
10838	     the low bit to the sign bit, we can convert this to an AND of the
10839	     low-order bit.  */
10840	  if (const_op == 0 && equality_comparison_p
10841	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10842	      && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10843	    {
10844	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10845					    (HOST_WIDE_INT) 1);
10846	      continue;
10847	    }
10848	  break;
10849
10850	case ASHIFTRT:
10851	  /* If this is an equality comparison with zero, we can do this
10852	     as a logical shift, which might be much simpler.  */
10853	  if (equality_comparison_p && const_op == 0
10854	      && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10855	    {
10856	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10857					  XEXP (op0, 0),
10858					  INTVAL (XEXP (op0, 1)));
10859	      continue;
10860	    }
10861
10862	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10863	     do the comparison in a narrower mode.  */
10864	  if (! unsigned_comparison_p
10865	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10866	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10867	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10868	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10869					 MODE_INT, 1)) != BLKmode
10870	      && (((unsigned HOST_WIDE_INT) const_op
10871		   + (GET_MODE_MASK (tmode) >> 1) + 1)
10872		  <= GET_MODE_MASK (tmode)))
10873	    {
10874	      op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10875	      continue;
10876	    }
10877
10878	  /* Likewise if OP0 is a PLUS of a sign extension with a
10879	     constant, which is usually represented with the PLUS
10880	     between the shifts.  */
10881	  if (! unsigned_comparison_p
10882	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10883	      && GET_CODE (XEXP (op0, 0)) == PLUS
10884	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10885	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10886	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10887	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10888					 MODE_INT, 1)) != BLKmode
10889	      && (((unsigned HOST_WIDE_INT) const_op
10890		   + (GET_MODE_MASK (tmode) >> 1) + 1)
10891		  <= GET_MODE_MASK (tmode)))
10892	    {
10893	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10894	      rtx add_const = XEXP (XEXP (op0, 0), 1);
10895	      rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10896					  XEXP (op0, 1));
10897
10898	      op0 = gen_binary (PLUS, tmode,
10899				gen_lowpart_for_combine (tmode, inner),
10900				new_const);
10901	      continue;
10902	    }
10903
10904	  /* ... fall through ...  */
10905	case LSHIFTRT:
10906	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10907	     the low order N bits of FOO are known to be zero, we can do this
10908	     by comparing FOO with C shifted left N bits so long as no
10909	     overflow occurs.  */
10910	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10911	      && INTVAL (XEXP (op0, 1)) >= 0
10912	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10913	      && mode_width <= HOST_BITS_PER_WIDE_INT
10914	      && (nonzero_bits (XEXP (op0, 0), mode)
10915		  & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10916	      && (((unsigned HOST_WIDE_INT) const_op
10917		   + (GET_CODE (op0) != LSHIFTRT
10918		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10919			 + 1)
10920		      : 0))
10921		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10922	    {
10923	      /* If the shift was logical, then we must make the condition
10924		 unsigned.  */
10925	      if (GET_CODE (op0) == LSHIFTRT)
10926		code = unsigned_condition (code);
10927
10928	      const_op <<= INTVAL (XEXP (op0, 1));
10929	      op1 = GEN_INT (const_op);
10930	      op0 = XEXP (op0, 0);
10931	      continue;
10932	    }
10933
10934	  /* If we are using this shift to extract just the sign bit, we
10935	     can replace this with an LT or GE comparison.  */
10936	  if (const_op == 0
10937	      && (equality_comparison_p || sign_bit_comparison_p)
10938	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10939	      && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10940	    {
10941	      op0 = XEXP (op0, 0);
10942	      code = (code == NE || code == GT ? LT : GE);
10943	      continue;
10944	    }
10945	  break;
10946
10947	default:
10948	  break;
10949	}
10950
10951      break;
10952    }
10953
10954  /* Now make any compound operations involved in this comparison.  Then,
10955     check for an outmost SUBREG on OP0 that is not doing anything or is
10956     paradoxical.  The latter transformation must only be performed when
10957     it is known that the "extra" bits will be the same in op0 and op1 or
10958     that they don't matter.  There are three cases to consider:
10959
10960     1. SUBREG_REG (op0) is a register.  In this case the bits are don't
10961     care bits and we can assume they have any convenient value.  So
10962     making the transformation is safe.
10963
10964     2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10965     In this case the upper bits of op0 are undefined.  We should not make
10966     the simplification in that case as we do not know the contents of
10967     those bits.
10968
10969     3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10970     NIL.  In that case we know those bits are zeros or ones.  We must
10971     also be sure that they are the same as the upper bits of op1.
10972
10973     We can never remove a SUBREG for a non-equality comparison because
10974     the sign bit is in a different place in the underlying object.  */
10975
10976  op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10977  op1 = make_compound_operation (op1, SET);
10978
10979  if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10980      /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
10981	 implemented.  */
10982      && GET_CODE (SUBREG_REG (op0)) == REG
10983      && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10984      && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10985      && (code == NE || code == EQ))
10986    {
10987      if (GET_MODE_SIZE (GET_MODE (op0))
10988	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10989	{
10990	  op0 = SUBREG_REG (op0);
10991	  op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10992	}
10993      else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10994		<= HOST_BITS_PER_WIDE_INT)
10995	       && (nonzero_bits (SUBREG_REG (op0),
10996				 GET_MODE (SUBREG_REG (op0)))
10997		   & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10998	{
10999	  tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11000
11001	  if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11002	       & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11003	    op0 = SUBREG_REG (op0), op1 = tem;
11004	}
11005    }
11006
11007  /* We now do the opposite procedure: Some machines don't have compare
11008     insns in all modes.  If OP0's mode is an integer mode smaller than a
11009     word and we can't do a compare in that mode, see if there is a larger
11010     mode for which we can do the compare.  There are a number of cases in
11011     which we can use the wider mode.  */
11012
11013  mode = GET_MODE (op0);
11014  if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11015      && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11016      && ! have_insn_for (COMPARE, mode))
11017    for (tmode = GET_MODE_WIDER_MODE (mode);
11018	 (tmode != VOIDmode
11019	  && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11020	 tmode = GET_MODE_WIDER_MODE (tmode))
11021      if (have_insn_for (COMPARE, tmode))
11022	{
11023	  int zero_extended;
11024
11025	  /* If the only nonzero bits in OP0 and OP1 are those in the
11026	     narrower mode and this is an equality or unsigned comparison,
11027	     we can use the wider mode.  Similarly for sign-extended
11028	     values, in which case it is true for all comparisons.  */
11029	  zero_extended = ((code == EQ || code == NE
11030			    || code == GEU || code == GTU
11031			    || code == LEU || code == LTU)
11032			   && (nonzero_bits (op0, tmode)
11033			       & ~GET_MODE_MASK (mode)) == 0
11034			   && ((GET_CODE (op1) == CONST_INT
11035				|| (nonzero_bits (op1, tmode)
11036				    & ~GET_MODE_MASK (mode)) == 0)));
11037
11038	  if (zero_extended
11039	      || ((num_sign_bit_copies (op0, tmode)
11040		   > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
11041		  && (num_sign_bit_copies (op1, tmode)
11042		      > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
11043	    {
11044	      /* If OP0 is an AND and we don't have an AND in MODE either,
11045		 make a new AND in the proper mode.  */
11046	      if (GET_CODE (op0) == AND
11047		  && !have_insn_for (AND, mode))
11048		op0 = gen_binary (AND, tmode,
11049				  gen_lowpart_for_combine (tmode,
11050							   XEXP (op0, 0)),
11051				  gen_lowpart_for_combine (tmode,
11052							   XEXP (op0, 1)));
11053
11054	      op0 = gen_lowpart_for_combine (tmode, op0);
11055	      if (zero_extended && GET_CODE (op1) == CONST_INT)
11056		op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11057	      op1 = gen_lowpart_for_combine (tmode, op1);
11058	      break;
11059	    }
11060
11061	  /* If this is a test for negative, we can make an explicit
11062	     test of the sign bit.  */
11063
11064	  if (op1 == const0_rtx && (code == LT || code == GE)
11065	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11066	    {
11067	      op0 = gen_binary (AND, tmode,
11068				gen_lowpart_for_combine (tmode, op0),
11069				GEN_INT ((HOST_WIDE_INT) 1
11070					 << (GET_MODE_BITSIZE (mode) - 1)));
11071	      code = (code == LT) ? NE : EQ;
11072	      break;
11073	    }
11074	}
11075
11076#ifdef CANONICALIZE_COMPARISON
11077  /* If this machine only supports a subset of valid comparisons, see if we
11078     can convert an unsupported one into a supported one.  */
11079  CANONICALIZE_COMPARISON (code, op0, op1);
11080#endif
11081
11082  *pop0 = op0;
11083  *pop1 = op1;
11084
11085  return code;
11086}
11087
11088/* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11089   searching backward.  */
11090static enum rtx_code
11091combine_reversed_comparison_code (exp)
11092     rtx exp;
11093{
11094  enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11095  rtx x;
11096
11097  if (code1 != UNKNOWN
11098      || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11099    return code1;
11100  /* Otherwise try and find where the condition codes were last set and
11101     use that.  */
11102  x = get_last_value (XEXP (exp, 0));
11103  if (!x || GET_CODE (x) != COMPARE)
11104    return UNKNOWN;
11105  return reversed_comparison_code_parts (GET_CODE (exp),
11106					 XEXP (x, 0), XEXP (x, 1), NULL);
11107}
11108/* Return comparison with reversed code of EXP and operands OP0 and OP1.
11109   Return NULL_RTX in case we fail to do the reversal.  */
11110static rtx
11111reversed_comparison (exp, mode, op0, op1)
11112     rtx exp, op0, op1;
11113     enum machine_mode mode;
11114{
11115  enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11116  if (reversed_code == UNKNOWN)
11117    return NULL_RTX;
11118  else
11119    return gen_binary (reversed_code, mode, op0, op1);
11120}
11121
11122/* Utility function for following routine.  Called when X is part of a value
11123   being stored into reg_last_set_value.  Sets reg_last_set_table_tick
11124   for each register mentioned.  Similar to mention_regs in cse.c  */
11125
11126static void
11127update_table_tick (x)
11128     rtx x;
11129{
11130  enum rtx_code code = GET_CODE (x);
11131  const char *fmt = GET_RTX_FORMAT (code);
11132  int i;
11133
11134  if (code == REG)
11135    {
11136      unsigned int regno = REGNO (x);
11137      unsigned int endregno
11138	= regno + (regno < FIRST_PSEUDO_REGISTER
11139		   ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11140      unsigned int r;
11141
11142      for (r = regno; r < endregno; r++)
11143	reg_last_set_table_tick[r] = label_tick;
11144
11145      return;
11146    }
11147
11148  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11149    /* Note that we can't have an "E" in values stored; see
11150       get_last_value_validate.  */
11151    if (fmt[i] == 'e')
11152      update_table_tick (XEXP (x, i));
11153}
11154
11155/* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
11156   are saying that the register is clobbered and we no longer know its
11157   value.  If INSN is zero, don't update reg_last_set; this is only permitted
11158   with VALUE also zero and is used to invalidate the register.  */
11159
11160static void
11161record_value_for_reg (reg, insn, value)
11162     rtx reg;
11163     rtx insn;
11164     rtx value;
11165{
11166  unsigned int regno = REGNO (reg);
11167  unsigned int endregno
11168    = regno + (regno < FIRST_PSEUDO_REGISTER
11169	       ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11170  unsigned int i;
11171
11172  /* If VALUE contains REG and we have a previous value for REG, substitute
11173     the previous value.  */
11174  if (value && insn && reg_overlap_mentioned_p (reg, value))
11175    {
11176      rtx tem;
11177
11178      /* Set things up so get_last_value is allowed to see anything set up to
11179	 our insn.  */
11180      subst_low_cuid = INSN_CUID (insn);
11181      tem = get_last_value (reg);
11182
11183      /* If TEM is simply a binary operation with two CLOBBERs as operands,
11184	 it isn't going to be useful and will take a lot of time to process,
11185	 so just use the CLOBBER.  */
11186
11187      if (tem)
11188	{
11189	  if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11190	       || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11191	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
11192	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11193	    tem = XEXP (tem, 0);
11194
11195	  value = replace_rtx (copy_rtx (value), reg, tem);
11196	}
11197    }
11198
11199  /* For each register modified, show we don't know its value, that
11200     we don't know about its bitwise content, that its value has been
11201     updated, and that we don't know the location of the death of the
11202     register.  */
11203  for (i = regno; i < endregno; i++)
11204    {
11205      if (insn)
11206	reg_last_set[i] = insn;
11207
11208      reg_last_set_value[i] = 0;
11209      reg_last_set_mode[i] = 0;
11210      reg_last_set_nonzero_bits[i] = 0;
11211      reg_last_set_sign_bit_copies[i] = 0;
11212      reg_last_death[i] = 0;
11213    }
11214
11215  /* Mark registers that are being referenced in this value.  */
11216  if (value)
11217    update_table_tick (value);
11218
11219  /* Now update the status of each register being set.
11220     If someone is using this register in this block, set this register
11221     to invalid since we will get confused between the two lives in this
11222     basic block.  This makes using this register always invalid.  In cse, we
11223     scan the table to invalidate all entries using this register, but this
11224     is too much work for us.  */
11225
11226  for (i = regno; i < endregno; i++)
11227    {
11228      reg_last_set_label[i] = label_tick;
11229      if (value && reg_last_set_table_tick[i] == label_tick)
11230	reg_last_set_invalid[i] = 1;
11231      else
11232	reg_last_set_invalid[i] = 0;
11233    }
11234
11235  /* The value being assigned might refer to X (like in "x++;").  In that
11236     case, we must replace it with (clobber (const_int 0)) to prevent
11237     infinite loops.  */
11238  if (value && ! get_last_value_validate (&value, insn,
11239					  reg_last_set_label[regno], 0))
11240    {
11241      value = copy_rtx (value);
11242      if (! get_last_value_validate (&value, insn,
11243				     reg_last_set_label[regno], 1))
11244	value = 0;
11245    }
11246
11247  /* For the main register being modified, update the value, the mode, the
11248     nonzero bits, and the number of sign bit copies.  */
11249
11250  reg_last_set_value[regno] = value;
11251
11252  if (value)
11253    {
11254      enum machine_mode mode = GET_MODE (reg);
11255      subst_low_cuid = INSN_CUID (insn);
11256      reg_last_set_mode[regno] = mode;
11257      if (GET_MODE_CLASS (mode) == MODE_INT
11258	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11259	mode = nonzero_bits_mode;
11260      reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11261      reg_last_set_sign_bit_copies[regno]
11262	= num_sign_bit_copies (value, GET_MODE (reg));
11263    }
11264}
11265
11266/* Called via note_stores from record_dead_and_set_regs to handle one
11267   SET or CLOBBER in an insn.  DATA is the instruction in which the
11268   set is occurring.  */
11269
11270static void
11271record_dead_and_set_regs_1 (dest, setter, data)
11272     rtx dest, setter;
11273     void *data;
11274{
11275  rtx record_dead_insn = (rtx) data;
11276
11277  if (GET_CODE (dest) == SUBREG)
11278    dest = SUBREG_REG (dest);
11279
11280  if (GET_CODE (dest) == REG)
11281    {
11282      /* If we are setting the whole register, we know its value.  Otherwise
11283	 show that we don't know the value.  We can handle SUBREG in
11284	 some cases.  */
11285      if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11286	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11287      else if (GET_CODE (setter) == SET
11288	       && GET_CODE (SET_DEST (setter)) == SUBREG
11289	       && SUBREG_REG (SET_DEST (setter)) == dest
11290	       && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11291	       && subreg_lowpart_p (SET_DEST (setter)))
11292	record_value_for_reg (dest, record_dead_insn,
11293			      gen_lowpart_for_combine (GET_MODE (dest),
11294						       SET_SRC (setter)));
11295      else
11296	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11297    }
11298  else if (GET_CODE (dest) == MEM
11299	   /* Ignore pushes, they clobber nothing.  */
11300	   && ! push_operand (dest, GET_MODE (dest)))
11301    mem_last_set = INSN_CUID (record_dead_insn);
11302}
11303
11304/* Update the records of when each REG was most recently set or killed
11305   for the things done by INSN.  This is the last thing done in processing
11306   INSN in the combiner loop.
11307
11308   We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11309   reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11310   and also the similar information mem_last_set (which insn most recently
11311   modified memory) and last_call_cuid (which insn was the most recent
11312   subroutine call).  */
11313
11314static void
11315record_dead_and_set_regs (insn)
11316     rtx insn;
11317{
11318  rtx link;
11319  unsigned int i;
11320
11321  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11322    {
11323      if (REG_NOTE_KIND (link) == REG_DEAD
11324	  && GET_CODE (XEXP (link, 0)) == REG)
11325	{
11326	  unsigned int regno = REGNO (XEXP (link, 0));
11327	  unsigned int endregno
11328	    = regno + (regno < FIRST_PSEUDO_REGISTER
11329		       ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11330		       : 1);
11331
11332	  for (i = regno; i < endregno; i++)
11333	    reg_last_death[i] = insn;
11334	}
11335      else if (REG_NOTE_KIND (link) == REG_INC)
11336	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11337    }
11338
11339  if (GET_CODE (insn) == CALL_INSN)
11340    {
11341      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11342	if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11343	  {
11344	    reg_last_set_value[i] = 0;
11345	    reg_last_set_mode[i] = 0;
11346	    reg_last_set_nonzero_bits[i] = 0;
11347	    reg_last_set_sign_bit_copies[i] = 0;
11348	    reg_last_death[i] = 0;
11349	  }
11350
11351      last_call_cuid = mem_last_set = INSN_CUID (insn);
11352
11353      /* Don't bother recording what this insn does.  It might set the
11354	 return value register, but we can't combine into a call
11355	 pattern anyway, so there's no point trying (and it may cause
11356	 a crash, if e.g. we wind up asking for last_set_value of a
11357	 SUBREG of the return value register).  */
11358      return;
11359    }
11360
11361  note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11362}
11363
11364/* If a SUBREG has the promoted bit set, it is in fact a property of the
11365   register present in the SUBREG, so for each such SUBREG go back and
11366   adjust nonzero and sign bit information of the registers that are
11367   known to have some zero/sign bits set.
11368
11369   This is needed because when combine blows the SUBREGs away, the
11370   information on zero/sign bits is lost and further combines can be
11371   missed because of that.  */
11372
11373static void
11374record_promoted_value (insn, subreg)
11375     rtx insn;
11376     rtx subreg;
11377{
11378  rtx links, set;
11379  unsigned int regno = REGNO (SUBREG_REG (subreg));
11380  enum machine_mode mode = GET_MODE (subreg);
11381
11382  if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11383    return;
11384
11385  for (links = LOG_LINKS (insn); links;)
11386    {
11387      insn = XEXP (links, 0);
11388      set = single_set (insn);
11389
11390      if (! set || GET_CODE (SET_DEST (set)) != REG
11391	  || REGNO (SET_DEST (set)) != regno
11392	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11393	{
11394	  links = XEXP (links, 1);
11395	  continue;
11396	}
11397
11398      if (reg_last_set[regno] == insn)
11399	{
11400	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11401	    reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11402	}
11403
11404      if (GET_CODE (SET_SRC (set)) == REG)
11405	{
11406	  regno = REGNO (SET_SRC (set));
11407	  links = LOG_LINKS (insn);
11408	}
11409      else
11410	break;
11411    }
11412}
11413
11414/* Scan X for promoted SUBREGs.  For each one found,
11415   note what it implies to the registers used in it.  */
11416
11417static void
11418check_promoted_subreg (insn, x)
11419     rtx insn;
11420     rtx x;
11421{
11422  if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11423      && GET_CODE (SUBREG_REG (x)) == REG)
11424    record_promoted_value (insn, x);
11425  else
11426    {
11427      const char *format = GET_RTX_FORMAT (GET_CODE (x));
11428      int i, j;
11429
11430      for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11431	switch (format[i])
11432	  {
11433	  case 'e':
11434	    check_promoted_subreg (insn, XEXP (x, i));
11435	    break;
11436	  case 'V':
11437	  case 'E':
11438	    if (XVEC (x, i) != 0)
11439	      for (j = 0; j < XVECLEN (x, i); j++)
11440		check_promoted_subreg (insn, XVECEXP (x, i, j));
11441	    break;
11442	  }
11443    }
11444}
11445
11446/* Utility routine for the following function.  Verify that all the registers
11447   mentioned in *LOC are valid when *LOC was part of a value set when
11448   label_tick == TICK.  Return 0 if some are not.
11449
11450   If REPLACE is non-zero, replace the invalid reference with
11451   (clobber (const_int 0)) and return 1.  This replacement is useful because
11452   we often can get useful information about the form of a value (e.g., if
11453   it was produced by a shift that always produces -1 or 0) even though
11454   we don't know exactly what registers it was produced from.  */
11455
11456static int
11457get_last_value_validate (loc, insn, tick, replace)
11458     rtx *loc;
11459     rtx insn;
11460     int tick;
11461     int replace;
11462{
11463  rtx x = *loc;
11464  const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11465  int len = GET_RTX_LENGTH (GET_CODE (x));
11466  int i;
11467
11468  if (GET_CODE (x) == REG)
11469    {
11470      unsigned int regno = REGNO (x);
11471      unsigned int endregno
11472	= regno + (regno < FIRST_PSEUDO_REGISTER
11473		   ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11474      unsigned int j;
11475
11476      for (j = regno; j < endregno; j++)
11477	if (reg_last_set_invalid[j]
11478	    /* If this is a pseudo-register that was only set once and not
11479	       live at the beginning of the function, it is always valid.  */
11480	    || (! (regno >= FIRST_PSEUDO_REGISTER
11481		   && REG_N_SETS (regno) == 1
11482		   && (! REGNO_REG_SET_P
11483		       (BASIC_BLOCK (0)->global_live_at_start, regno)))
11484		&& reg_last_set_label[j] > tick))
11485	  {
11486	    if (replace)
11487	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11488	    return replace;
11489	  }
11490
11491      return 1;
11492    }
11493  /* If this is a memory reference, make sure that there were
11494     no stores after it that might have clobbered the value.  We don't
11495     have alias info, so we assume any store invalidates it.  */
11496  else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11497	   && INSN_CUID (insn) <= mem_last_set)
11498    {
11499      if (replace)
11500	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11501      return replace;
11502    }
11503
11504  for (i = 0; i < len; i++)
11505    if ((fmt[i] == 'e'
11506	 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11507	/* Don't bother with these.  They shouldn't occur anyway.  */
11508	|| fmt[i] == 'E')
11509      return 0;
11510
11511  /* If we haven't found a reason for it to be invalid, it is valid.  */
11512  return 1;
11513}
11514
11515/* Get the last value assigned to X, if known.  Some registers
11516   in the value may be replaced with (clobber (const_int 0)) if their value
11517   is known longer known reliably.  */
11518
11519static rtx
11520get_last_value (x)
11521     rtx x;
11522{
11523  unsigned int regno;
11524  rtx value;
11525
11526  /* If this is a non-paradoxical SUBREG, get the value of its operand and
11527     then convert it to the desired mode.  If this is a paradoxical SUBREG,
11528     we cannot predict what values the "extra" bits might have.  */
11529  if (GET_CODE (x) == SUBREG
11530      && subreg_lowpart_p (x)
11531      && (GET_MODE_SIZE (GET_MODE (x))
11532	  <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11533      && (value = get_last_value (SUBREG_REG (x))) != 0)
11534    return gen_lowpart_for_combine (GET_MODE (x), value);
11535
11536  if (GET_CODE (x) != REG)
11537    return 0;
11538
11539  regno = REGNO (x);
11540  value = reg_last_set_value[regno];
11541
11542  /* If we don't have a value, or if it isn't for this basic block and
11543     it's either a hard register, set more than once, or it's a live
11544     at the beginning of the function, return 0.
11545
11546     Because if it's not live at the beginning of the function then the reg
11547     is always set before being used (is never used without being set).
11548     And, if it's set only once, and it's always set before use, then all
11549     uses must have the same last value, even if it's not from this basic
11550     block.  */
11551
11552  if (value == 0
11553      || (reg_last_set_label[regno] != label_tick
11554	  && (regno < FIRST_PSEUDO_REGISTER
11555	      || REG_N_SETS (regno) != 1
11556	      || (REGNO_REG_SET_P
11557		  (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11558    return 0;
11559
11560  /* If the value was set in a later insn than the ones we are processing,
11561     we can't use it even if the register was only set once.  */
11562  if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11563    return 0;
11564
11565  /* If the value has all its registers valid, return it.  */
11566  if (get_last_value_validate (&value, reg_last_set[regno],
11567			       reg_last_set_label[regno], 0))
11568    return value;
11569
11570  /* Otherwise, make a copy and replace any invalid register with
11571     (clobber (const_int 0)).  If that fails for some reason, return 0.  */
11572
11573  value = copy_rtx (value);
11574  if (get_last_value_validate (&value, reg_last_set[regno],
11575			       reg_last_set_label[regno], 1))
11576    return value;
11577
11578  return 0;
11579}
11580
11581/* Return nonzero if expression X refers to a REG or to memory
11582   that is set in an instruction more recent than FROM_CUID.  */
11583
11584static int
11585use_crosses_set_p (x, from_cuid)
11586     rtx x;
11587     int from_cuid;
11588{
11589  const char *fmt;
11590  int i;
11591  enum rtx_code code = GET_CODE (x);
11592
11593  if (code == REG)
11594    {
11595      unsigned int regno = REGNO (x);
11596      unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11597				 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11598
11599#ifdef PUSH_ROUNDING
11600      /* Don't allow uses of the stack pointer to be moved,
11601	 because we don't know whether the move crosses a push insn.  */
11602      if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11603	return 1;
11604#endif
11605      for (; regno < endreg; regno++)
11606	if (reg_last_set[regno]
11607	    && INSN_CUID (reg_last_set[regno]) > from_cuid)
11608	  return 1;
11609      return 0;
11610    }
11611
11612  if (code == MEM && mem_last_set > from_cuid)
11613    return 1;
11614
11615  fmt = GET_RTX_FORMAT (code);
11616
11617  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11618    {
11619      if (fmt[i] == 'E')
11620	{
11621	  int j;
11622	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11623	    if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11624	      return 1;
11625	}
11626      else if (fmt[i] == 'e'
11627	       && use_crosses_set_p (XEXP (x, i), from_cuid))
11628	return 1;
11629    }
11630  return 0;
11631}
11632
11633/* Define three variables used for communication between the following
11634   routines.  */
11635
11636static unsigned int reg_dead_regno, reg_dead_endregno;
11637static int reg_dead_flag;
11638
11639/* Function called via note_stores from reg_dead_at_p.
11640
11641   If DEST is within [reg_dead_regno, reg_dead_endregno), set
11642   reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
11643
11644static void
11645reg_dead_at_p_1 (dest, x, data)
11646     rtx dest;
11647     rtx x;
11648     void *data ATTRIBUTE_UNUSED;
11649{
11650  unsigned int regno, endregno;
11651
11652  if (GET_CODE (dest) != REG)
11653    return;
11654
11655  regno = REGNO (dest);
11656  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11657		      ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11658
11659  if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11660    reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11661}
11662
11663/* Return non-zero if REG is known to be dead at INSN.
11664
11665   We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
11666   referencing REG, it is dead.  If we hit a SET referencing REG, it is
11667   live.  Otherwise, see if it is live or dead at the start of the basic
11668   block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
11669   must be assumed to be always live.  */
11670
11671static int
11672reg_dead_at_p (reg, insn)
11673     rtx reg;
11674     rtx insn;
11675{
11676  int block;
11677  unsigned int i;
11678
11679  /* Set variables for reg_dead_at_p_1.  */
11680  reg_dead_regno = REGNO (reg);
11681  reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11682					? HARD_REGNO_NREGS (reg_dead_regno,
11683							    GET_MODE (reg))
11684					: 1);
11685
11686  reg_dead_flag = 0;
11687
11688  /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  */
11689  if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11690    {
11691      for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11692	if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11693	  return 0;
11694    }
11695
11696  /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11697     beginning of function.  */
11698  for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11699       insn = prev_nonnote_insn (insn))
11700    {
11701      note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11702      if (reg_dead_flag)
11703	return reg_dead_flag == 1 ? 1 : 0;
11704
11705      if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11706	return 1;
11707    }
11708
11709  /* Get the basic block number that we were in.  */
11710  if (insn == 0)
11711    block = 0;
11712  else
11713    {
11714      for (block = 0; block < n_basic_blocks; block++)
11715	if (insn == BLOCK_HEAD (block))
11716	  break;
11717
11718      if (block == n_basic_blocks)
11719	return 0;
11720    }
11721
11722  for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11723    if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11724      return 0;
11725
11726  return 1;
11727}
11728
11729/* Note hard registers in X that are used.  This code is similar to
11730   that in flow.c, but much simpler since we don't care about pseudos.  */
11731
11732static void
11733mark_used_regs_combine (x)
11734     rtx x;
11735{
11736  RTX_CODE code = GET_CODE (x);
11737  unsigned int regno;
11738  int i;
11739
11740  switch (code)
11741    {
11742    case LABEL_REF:
11743    case SYMBOL_REF:
11744    case CONST_INT:
11745    case CONST:
11746    case CONST_DOUBLE:
11747    case CONST_VECTOR:
11748    case PC:
11749    case ADDR_VEC:
11750    case ADDR_DIFF_VEC:
11751    case ASM_INPUT:
11752#ifdef HAVE_cc0
11753    /* CC0 must die in the insn after it is set, so we don't need to take
11754       special note of it here.  */
11755    case CC0:
11756#endif
11757      return;
11758
11759    case CLOBBER:
11760      /* If we are clobbering a MEM, mark any hard registers inside the
11761	 address as used.  */
11762      if (GET_CODE (XEXP (x, 0)) == MEM)
11763	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11764      return;
11765
11766    case REG:
11767      regno = REGNO (x);
11768      /* A hard reg in a wide mode may really be multiple registers.
11769	 If so, mark all of them just like the first.  */
11770      if (regno < FIRST_PSEUDO_REGISTER)
11771	{
11772	  unsigned int endregno, r;
11773
11774	  /* None of this applies to the stack, frame or arg pointers */
11775	  if (regno == STACK_POINTER_REGNUM
11776#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11777	      || regno == HARD_FRAME_POINTER_REGNUM
11778#endif
11779#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11780	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11781#endif
11782	      || regno == FRAME_POINTER_REGNUM)
11783	    return;
11784
11785	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11786	  for (r = regno; r < endregno; r++)
11787	    SET_HARD_REG_BIT (newpat_used_regs, r);
11788	}
11789      return;
11790
11791    case SET:
11792      {
11793	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11794	   the address.  */
11795	rtx testreg = SET_DEST (x);
11796
11797	while (GET_CODE (testreg) == SUBREG
11798	       || GET_CODE (testreg) == ZERO_EXTRACT
11799	       || GET_CODE (testreg) == SIGN_EXTRACT
11800	       || GET_CODE (testreg) == STRICT_LOW_PART)
11801	  testreg = XEXP (testreg, 0);
11802
11803	if (GET_CODE (testreg) == MEM)
11804	  mark_used_regs_combine (XEXP (testreg, 0));
11805
11806	mark_used_regs_combine (SET_SRC (x));
11807      }
11808      return;
11809
11810    default:
11811      break;
11812    }
11813
11814  /* Recursively scan the operands of this expression.  */
11815
11816  {
11817    const char *fmt = GET_RTX_FORMAT (code);
11818
11819    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11820      {
11821	if (fmt[i] == 'e')
11822	  mark_used_regs_combine (XEXP (x, i));
11823	else if (fmt[i] == 'E')
11824	  {
11825	    int j;
11826
11827	    for (j = 0; j < XVECLEN (x, i); j++)
11828	      mark_used_regs_combine (XVECEXP (x, i, j));
11829	  }
11830      }
11831  }
11832}
11833
11834/* Remove register number REGNO from the dead registers list of INSN.
11835
11836   Return the note used to record the death, if there was one.  */
11837
11838rtx
11839remove_death (regno, insn)
11840     unsigned int regno;
11841     rtx insn;
11842{
11843  rtx note = find_regno_note (insn, REG_DEAD, regno);
11844
11845  if (note)
11846    {
11847      REG_N_DEATHS (regno)--;
11848      remove_note (insn, note);
11849    }
11850
11851  return note;
11852}
11853
11854/* For each register (hardware or pseudo) used within expression X, if its
11855   death is in an instruction with cuid between FROM_CUID (inclusive) and
11856   TO_INSN (exclusive), put a REG_DEAD note for that register in the
11857   list headed by PNOTES.
11858
11859   That said, don't move registers killed by maybe_kill_insn.
11860
11861   This is done when X is being merged by combination into TO_INSN.  These
11862   notes will then be distributed as needed.  */
11863
11864static void
11865move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11866     rtx x;
11867     rtx maybe_kill_insn;
11868     int from_cuid;
11869     rtx to_insn;
11870     rtx *pnotes;
11871{
11872  const char *fmt;
11873  int len, i;
11874  enum rtx_code code = GET_CODE (x);
11875
11876  if (code == REG)
11877    {
11878      unsigned int regno = REGNO (x);
11879      rtx where_dead = reg_last_death[regno];
11880      rtx before_dead, after_dead;
11881
11882      /* Don't move the register if it gets killed in between from and to */
11883      if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11884	  && ! reg_referenced_p (x, maybe_kill_insn))
11885	return;
11886
11887      /* WHERE_DEAD could be a USE insn made by combine, so first we
11888	 make sure that we have insns with valid INSN_CUID values.  */
11889      before_dead = where_dead;
11890      while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11891	before_dead = PREV_INSN (before_dead);
11892
11893      after_dead = where_dead;
11894      while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11895	after_dead = NEXT_INSN (after_dead);
11896
11897      if (before_dead && after_dead
11898	  && INSN_CUID (before_dead) >= from_cuid
11899	  && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11900	      || (where_dead != after_dead
11901		  && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11902	{
11903	  rtx note = remove_death (regno, where_dead);
11904
11905	  /* It is possible for the call above to return 0.  This can occur
11906	     when reg_last_death points to I2 or I1 that we combined with.
11907	     In that case make a new note.
11908
11909	     We must also check for the case where X is a hard register
11910	     and NOTE is a death note for a range of hard registers
11911	     including X.  In that case, we must put REG_DEAD notes for
11912	     the remaining registers in place of NOTE.  */
11913
11914	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11915	      && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11916		  > GET_MODE_SIZE (GET_MODE (x))))
11917	    {
11918	      unsigned int deadregno = REGNO (XEXP (note, 0));
11919	      unsigned int deadend
11920		= (deadregno + HARD_REGNO_NREGS (deadregno,
11921						 GET_MODE (XEXP (note, 0))));
11922	      unsigned int ourend
11923		= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11924	      unsigned int i;
11925
11926	      for (i = deadregno; i < deadend; i++)
11927		if (i < regno || i >= ourend)
11928		  REG_NOTES (where_dead)
11929		    = gen_rtx_EXPR_LIST (REG_DEAD,
11930					 gen_rtx_REG (reg_raw_mode[i], i),
11931					 REG_NOTES (where_dead));
11932	    }
11933
11934	  /* If we didn't find any note, or if we found a REG_DEAD note that
11935	     covers only part of the given reg, and we have a multi-reg hard
11936	     register, then to be safe we must check for REG_DEAD notes
11937	     for each register other than the first.  They could have
11938	     their own REG_DEAD notes lying around.  */
11939	  else if ((note == 0
11940		    || (note != 0
11941			&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11942			    < GET_MODE_SIZE (GET_MODE (x)))))
11943		   && regno < FIRST_PSEUDO_REGISTER
11944		   && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11945	    {
11946	      unsigned int ourend
11947		= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11948	      unsigned int i, offset;
11949	      rtx oldnotes = 0;
11950
11951	      if (note)
11952		offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11953	      else
11954		offset = 1;
11955
11956	      for (i = regno + offset; i < ourend; i++)
11957		move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11958			     maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11959	    }
11960
11961	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11962	    {
11963	      XEXP (note, 1) = *pnotes;
11964	      *pnotes = note;
11965	    }
11966	  else
11967	    *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11968
11969	  REG_N_DEATHS (regno)++;
11970	}
11971
11972      return;
11973    }
11974
11975  else if (GET_CODE (x) == SET)
11976    {
11977      rtx dest = SET_DEST (x);
11978
11979      move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11980
11981      /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11982	 that accesses one word of a multi-word item, some
11983	 piece of everything register in the expression is used by
11984	 this insn, so remove any old death.  */
11985      /* ??? So why do we test for equality of the sizes?  */
11986
11987      if (GET_CODE (dest) == ZERO_EXTRACT
11988	  || GET_CODE (dest) == STRICT_LOW_PART
11989	  || (GET_CODE (dest) == SUBREG
11990	      && (((GET_MODE_SIZE (GET_MODE (dest))
11991		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11992		  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11993		       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11994	{
11995	  move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11996	  return;
11997	}
11998
11999      /* If this is some other SUBREG, we know it replaces the entire
12000	 value, so use that as the destination.  */
12001      if (GET_CODE (dest) == SUBREG)
12002	dest = SUBREG_REG (dest);
12003
12004      /* If this is a MEM, adjust deaths of anything used in the address.
12005	 For a REG (the only other possibility), the entire value is
12006	 being replaced so the old value is not used in this insn.  */
12007
12008      if (GET_CODE (dest) == MEM)
12009	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12010		     to_insn, pnotes);
12011      return;
12012    }
12013
12014  else if (GET_CODE (x) == CLOBBER)
12015    return;
12016
12017  len = GET_RTX_LENGTH (code);
12018  fmt = GET_RTX_FORMAT (code);
12019
12020  for (i = 0; i < len; i++)
12021    {
12022      if (fmt[i] == 'E')
12023	{
12024	  int j;
12025	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12026	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12027			 to_insn, pnotes);
12028	}
12029      else if (fmt[i] == 'e')
12030	move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12031    }
12032}
12033
12034/* Return 1 if X is the target of a bit-field assignment in BODY, the
12035   pattern of an insn.  X must be a REG.  */
12036
12037static int
12038reg_bitfield_target_p (x, body)
12039     rtx x;
12040     rtx body;
12041{
12042  int i;
12043
12044  if (GET_CODE (body) == SET)
12045    {
12046      rtx dest = SET_DEST (body);
12047      rtx target;
12048      unsigned int regno, tregno, endregno, endtregno;
12049
12050      if (GET_CODE (dest) == ZERO_EXTRACT)
12051	target = XEXP (dest, 0);
12052      else if (GET_CODE (dest) == STRICT_LOW_PART)
12053	target = SUBREG_REG (XEXP (dest, 0));
12054      else
12055	return 0;
12056
12057      if (GET_CODE (target) == SUBREG)
12058	target = SUBREG_REG (target);
12059
12060      if (GET_CODE (target) != REG)
12061	return 0;
12062
12063      tregno = REGNO (target), regno = REGNO (x);
12064      if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12065	return target == x;
12066
12067      endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12068      endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12069
12070      return endregno > tregno && regno < endtregno;
12071    }
12072
12073  else if (GET_CODE (body) == PARALLEL)
12074    for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12075      if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12076	return 1;
12077
12078  return 0;
12079}
12080
12081/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12082   as appropriate.  I3 and I2 are the insns resulting from the combination
12083   insns including FROM (I2 may be zero).
12084
12085   ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12086   not need REG_DEAD notes because they are being substituted for.  This
12087   saves searching in the most common cases.
12088
12089   Each note in the list is either ignored or placed on some insns, depending
12090   on the type of note.  */
12091
12092static void
12093distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12094     rtx notes;
12095     rtx from_insn;
12096     rtx i3, i2;
12097     rtx elim_i2, elim_i1;
12098{
12099  rtx note, next_note;
12100  rtx tem;
12101
12102  for (note = notes; note; note = next_note)
12103    {
12104      rtx place = 0, place2 = 0;
12105
12106      /* If this NOTE references a pseudo register, ensure it references
12107	 the latest copy of that register.  */
12108      if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12109	  && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12110	XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12111
12112      next_note = XEXP (note, 1);
12113      switch (REG_NOTE_KIND (note))
12114	{
12115	case REG_BR_PROB:
12116	case REG_BR_PRED:
12117	case REG_EXEC_COUNT:
12118	  /* Doesn't matter much where we put this, as long as it's somewhere.
12119	     It is preferable to keep these notes on branches, which is most
12120	     likely to be i3.  */
12121	  place = i3;
12122	  break;
12123
12124	case REG_VTABLE_REF:
12125	  /* ??? Should remain with *a particular* memory load.  Given the
12126	     nature of vtable data, the last insn seems relatively safe.  */
12127	  place = i3;
12128	  break;
12129
12130	case REG_NON_LOCAL_GOTO:
12131	  if (GET_CODE (i3) == JUMP_INSN)
12132	    place = i3;
12133	  else if (i2 && GET_CODE (i2) == JUMP_INSN)
12134	    place = i2;
12135	  else
12136	    abort ();
12137	  break;
12138
12139	case REG_EH_REGION:
12140	  /* These notes must remain with the call or trapping instruction.  */
12141	  if (GET_CODE (i3) == CALL_INSN)
12142	    place = i3;
12143	  else if (i2 && GET_CODE (i2) == CALL_INSN)
12144	    place = i2;
12145	  else if (flag_non_call_exceptions)
12146	    {
12147	      if (may_trap_p (i3))
12148		place = i3;
12149	      else if (i2 && may_trap_p (i2))
12150		place = i2;
12151	      /* ??? Otherwise assume we've combined things such that we
12152		 can now prove that the instructions can't trap.  Drop the
12153		 note in this case.  */
12154	    }
12155	  else
12156	    abort ();
12157	  break;
12158
12159	case REG_NORETURN:
12160	case REG_SETJMP:
12161	  /* These notes must remain with the call.  It should not be
12162	     possible for both I2 and I3 to be a call.  */
12163	  if (GET_CODE (i3) == CALL_INSN)
12164	    place = i3;
12165	  else if (i2 && GET_CODE (i2) == CALL_INSN)
12166	    place = i2;
12167	  else
12168	    abort ();
12169	  break;
12170
12171	case REG_UNUSED:
12172	  /* Any clobbers for i3 may still exist, and so we must process
12173	     REG_UNUSED notes from that insn.
12174
12175	     Any clobbers from i2 or i1 can only exist if they were added by
12176	     recog_for_combine.  In that case, recog_for_combine created the
12177	     necessary REG_UNUSED notes.  Trying to keep any original
12178	     REG_UNUSED notes from these insns can cause incorrect output
12179	     if it is for the same register as the original i3 dest.
12180	     In that case, we will notice that the register is set in i3,
12181	     and then add a REG_UNUSED note for the destination of i3, which
12182	     is wrong.  However, it is possible to have REG_UNUSED notes from
12183	     i2 or i1 for register which were both used and clobbered, so
12184	     we keep notes from i2 or i1 if they will turn into REG_DEAD
12185	     notes.  */
12186
12187	  /* If this register is set or clobbered in I3, put the note there
12188	     unless there is one already.  */
12189	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12190	    {
12191	      if (from_insn != i3)
12192		break;
12193
12194	      if (! (GET_CODE (XEXP (note, 0)) == REG
12195		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12196		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12197		place = i3;
12198	    }
12199	  /* Otherwise, if this register is used by I3, then this register
12200	     now dies here, so we must put a REG_DEAD note here unless there
12201	     is one already.  */
12202	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12203		   && ! (GET_CODE (XEXP (note, 0)) == REG
12204			 ? find_regno_note (i3, REG_DEAD,
12205					    REGNO (XEXP (note, 0)))
12206			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12207	    {
12208	      PUT_REG_NOTE_KIND (note, REG_DEAD);
12209	      place = i3;
12210	    }
12211	  break;
12212
12213	case REG_EQUAL:
12214	case REG_EQUIV:
12215	case REG_NOALIAS:
12216	  /* These notes say something about results of an insn.  We can
12217	     only support them if they used to be on I3 in which case they
12218	     remain on I3.  Otherwise they are ignored.
12219
12220	     If the note refers to an expression that is not a constant, we
12221	     must also ignore the note since we cannot tell whether the
12222	     equivalence is still true.  It might be possible to do
12223	     slightly better than this (we only have a problem if I2DEST
12224	     or I1DEST is present in the expression), but it doesn't
12225	     seem worth the trouble.  */
12226
12227	  if (from_insn == i3
12228	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12229	    place = i3;
12230	  break;
12231
12232	case REG_INC:
12233	case REG_NO_CONFLICT:
12234	  /* These notes say something about how a register is used.  They must
12235	     be present on any use of the register in I2 or I3.  */
12236	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12237	    place = i3;
12238
12239	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12240	    {
12241	      if (place)
12242		place2 = i2;
12243	      else
12244		place = i2;
12245	    }
12246	  break;
12247
12248	case REG_LABEL:
12249	  /* This can show up in several ways -- either directly in the
12250	     pattern, or hidden off in the constant pool with (or without?)
12251	     a REG_EQUAL note.  */
12252	  /* ??? Ignore the without-reg_equal-note problem for now.  */
12253	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12254	      || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12255		  && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12256		  && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12257	    place = i3;
12258
12259	  if (i2
12260	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12261		  || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12262		      && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12263		      && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12264	    {
12265	      if (place)
12266		place2 = i2;
12267	      else
12268		place = i2;
12269	    }
12270
12271	  /* Don't attach REG_LABEL note to a JUMP_INSN which has
12272	     JUMP_LABEL already.  Instead, decrement LABEL_NUSES.  */
12273	  if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12274	    {
12275	      if (JUMP_LABEL (place) != XEXP (note, 0))
12276		abort ();
12277	      if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12278		LABEL_NUSES (JUMP_LABEL (place))--;
12279	      place = 0;
12280	    }
12281	  if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12282	    {
12283	      if (JUMP_LABEL (place2) != XEXP (note, 0))
12284		abort ();
12285	      if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12286		LABEL_NUSES (JUMP_LABEL (place2))--;
12287	      place2 = 0;
12288	    }
12289	  break;
12290
12291	case REG_NONNEG:
12292	case REG_WAS_0:
12293	  /* These notes say something about the value of a register prior
12294	     to the execution of an insn.  It is too much trouble to see
12295	     if the note is still correct in all situations.  It is better
12296	     to simply delete it.  */
12297	  break;
12298
12299	case REG_RETVAL:
12300	  /* If the insn previously containing this note still exists,
12301	     put it back where it was.  Otherwise move it to the previous
12302	     insn.  Adjust the corresponding REG_LIBCALL note.  */
12303	  if (GET_CODE (from_insn) != NOTE)
12304	    place = from_insn;
12305	  else
12306	    {
12307	      tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12308	      place = prev_real_insn (from_insn);
12309	      if (tem && place)
12310		XEXP (tem, 0) = place;
12311	      /* If we're deleting the last remaining instruction of a
12312		 libcall sequence, don't add the notes.  */
12313	      else if (XEXP (note, 0) == from_insn)
12314		tem = place = 0;
12315	    }
12316	  break;
12317
12318	case REG_LIBCALL:
12319	  /* This is handled similarly to REG_RETVAL.  */
12320	  if (GET_CODE (from_insn) != NOTE)
12321	    place = from_insn;
12322	  else
12323	    {
12324	      tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12325	      place = next_real_insn (from_insn);
12326	      if (tem && place)
12327		XEXP (tem, 0) = place;
12328	      /* If we're deleting the last remaining instruction of a
12329		 libcall sequence, don't add the notes.  */
12330	      else if (XEXP (note, 0) == from_insn)
12331		tem = place = 0;
12332	    }
12333	  break;
12334
12335	case REG_DEAD:
12336	  /* If the register is used as an input in I3, it dies there.
12337	     Similarly for I2, if it is non-zero and adjacent to I3.
12338
12339	     If the register is not used as an input in either I3 or I2
12340	     and it is not one of the registers we were supposed to eliminate,
12341	     there are two possibilities.  We might have a non-adjacent I2
12342	     or we might have somehow eliminated an additional register
12343	     from a computation.  For example, we might have had A & B where
12344	     we discover that B will always be zero.  In this case we will
12345	     eliminate the reference to A.
12346
12347	     In both cases, we must search to see if we can find a previous
12348	     use of A and put the death note there.  */
12349
12350	  if (from_insn
12351	      && GET_CODE (from_insn) == CALL_INSN
12352	      && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12353	    place = from_insn;
12354	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12355	    place = i3;
12356	  else if (i2 != 0 && next_nonnote_insn (i2) == i3
12357		   && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12358	    place = i2;
12359
12360	  if (rtx_equal_p (XEXP (note, 0), elim_i2)
12361	      || rtx_equal_p (XEXP (note, 0), elim_i1))
12362	    break;
12363
12364	  if (place == 0)
12365	    {
12366	      basic_block bb = BASIC_BLOCK (this_basic_block);
12367
12368	      for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12369		{
12370		  if (! INSN_P (tem))
12371		    {
12372		      if (tem == bb->head)
12373			break;
12374		      continue;
12375		    }
12376
12377		  /* If the register is being set at TEM, see if that is all
12378		     TEM is doing.  If so, delete TEM.  Otherwise, make this
12379		     into a REG_UNUSED note instead.  */
12380		  if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12381		    {
12382		      rtx set = single_set (tem);
12383		      rtx inner_dest = 0;
12384#ifdef HAVE_cc0
12385		      rtx cc0_setter = NULL_RTX;
12386#endif
12387
12388		      if (set != 0)
12389			for (inner_dest = SET_DEST (set);
12390			     (GET_CODE (inner_dest) == STRICT_LOW_PART
12391			      || GET_CODE (inner_dest) == SUBREG
12392			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
12393			     inner_dest = XEXP (inner_dest, 0))
12394			  ;
12395
12396		      /* Verify that it was the set, and not a clobber that
12397			 modified the register.
12398
12399			 CC0 targets must be careful to maintain setter/user
12400			 pairs.  If we cannot delete the setter due to side
12401			 effects, mark the user with an UNUSED note instead
12402			 of deleting it.  */
12403
12404		      if (set != 0 && ! side_effects_p (SET_SRC (set))
12405			  && rtx_equal_p (XEXP (note, 0), inner_dest)
12406#ifdef HAVE_cc0
12407			  && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12408			      || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12409				  && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12410#endif
12411			  )
12412			{
12413			  /* Move the notes and links of TEM elsewhere.
12414			     This might delete other dead insns recursively.
12415			     First set the pattern to something that won't use
12416			     any register.  */
12417
12418			  PATTERN (tem) = pc_rtx;
12419
12420			  distribute_notes (REG_NOTES (tem), tem, tem,
12421					    NULL_RTX, NULL_RTX, NULL_RTX);
12422			  distribute_links (LOG_LINKS (tem));
12423
12424			  PUT_CODE (tem, NOTE);
12425			  NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12426			  NOTE_SOURCE_FILE (tem) = 0;
12427
12428#ifdef HAVE_cc0
12429			  /* Delete the setter too.  */
12430			  if (cc0_setter)
12431			    {
12432			      PATTERN (cc0_setter) = pc_rtx;
12433
12434			      distribute_notes (REG_NOTES (cc0_setter),
12435						cc0_setter, cc0_setter,
12436						NULL_RTX, NULL_RTX, NULL_RTX);
12437			      distribute_links (LOG_LINKS (cc0_setter));
12438
12439			      PUT_CODE (cc0_setter, NOTE);
12440			      NOTE_LINE_NUMBER (cc0_setter)
12441				= NOTE_INSN_DELETED;
12442			      NOTE_SOURCE_FILE (cc0_setter) = 0;
12443			    }
12444#endif
12445			}
12446		      /* If the register is both set and used here, put the
12447			 REG_DEAD note here, but place a REG_UNUSED note
12448			 here too unless there already is one.  */
12449		      else if (reg_referenced_p (XEXP (note, 0),
12450						 PATTERN (tem)))
12451			{
12452			  place = tem;
12453
12454			  if (! find_regno_note (tem, REG_UNUSED,
12455						 REGNO (XEXP (note, 0))))
12456			    REG_NOTES (tem)
12457			      = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12458						   REG_NOTES (tem));
12459			}
12460		      else
12461			{
12462			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
12463
12464			  /*  If there isn't already a REG_UNUSED note, put one
12465			      here.  */
12466			  if (! find_regno_note (tem, REG_UNUSED,
12467						 REGNO (XEXP (note, 0))))
12468			    place = tem;
12469			  break;
12470			}
12471		    }
12472		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12473			   || (GET_CODE (tem) == CALL_INSN
12474			       && find_reg_fusage (tem, USE, XEXP (note, 0))))
12475		    {
12476		      place = tem;
12477
12478		      /* If we are doing a 3->2 combination, and we have a
12479			 register which formerly died in i3 and was not used
12480			 by i2, which now no longer dies in i3 and is used in
12481			 i2 but does not die in i2, and place is between i2
12482			 and i3, then we may need to move a link from place to
12483			 i2.  */
12484		      if (i2 && INSN_UID (place) <= max_uid_cuid
12485			  && INSN_CUID (place) > INSN_CUID (i2)
12486			  && from_insn
12487			  && INSN_CUID (from_insn) > INSN_CUID (i2)
12488			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12489			{
12490			  rtx links = LOG_LINKS (place);
12491			  LOG_LINKS (place) = 0;
12492			  distribute_links (links);
12493			}
12494		      break;
12495		    }
12496
12497		  if (tem == bb->head)
12498		    break;
12499		}
12500
12501	      /* We haven't found an insn for the death note and it
12502		 is still a REG_DEAD note, but we have hit the beginning
12503		 of the block.  If the existing life info says the reg
12504		 was dead, there's nothing left to do.  Otherwise, we'll
12505		 need to do a global life update after combine.  */
12506	      if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12507		  && REGNO_REG_SET_P (bb->global_live_at_start,
12508				      REGNO (XEXP (note, 0))))
12509		{
12510		  SET_BIT (refresh_blocks, this_basic_block);
12511		  need_refresh = 1;
12512		}
12513	    }
12514
12515	  /* If the register is set or already dead at PLACE, we needn't do
12516	     anything with this note if it is still a REG_DEAD note.
12517	     We can here if it is set at all, not if is it totally replace,
12518	     which is what `dead_or_set_p' checks, so also check for it being
12519	     set partially.  */
12520
12521	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
12522	    {
12523	      unsigned int regno = REGNO (XEXP (note, 0));
12524
12525	      /* Similarly, if the instruction on which we want to place
12526		 the note is a noop, we'll need do a global live update
12527		 after we remove them in delete_noop_moves.  */
12528	      if (noop_move_p (place))
12529		{
12530		  SET_BIT (refresh_blocks, this_basic_block);
12531		  need_refresh = 1;
12532		}
12533
12534	      if (dead_or_set_p (place, XEXP (note, 0))
12535		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12536		{
12537		  /* Unless the register previously died in PLACE, clear
12538		     reg_last_death.  [I no longer understand why this is
12539		     being done.] */
12540		  if (reg_last_death[regno] != place)
12541		    reg_last_death[regno] = 0;
12542		  place = 0;
12543		}
12544	      else
12545		reg_last_death[regno] = place;
12546
12547	      /* If this is a death note for a hard reg that is occupying
12548		 multiple registers, ensure that we are still using all
12549		 parts of the object.  If we find a piece of the object
12550		 that is unused, we must arrange for an appropriate REG_DEAD
12551		 note to be added for it.  However, we can't just emit a USE
12552		 and tag the note to it, since the register might actually
12553		 be dead; so we recourse, and the recursive call then finds
12554		 the previous insn that used this register.  */
12555
12556	      if (place && regno < FIRST_PSEUDO_REGISTER
12557		  && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12558		{
12559		  unsigned int endregno
12560		    = regno + HARD_REGNO_NREGS (regno,
12561						GET_MODE (XEXP (note, 0)));
12562		  int all_used = 1;
12563		  unsigned int i;
12564
12565		  for (i = regno; i < endregno; i++)
12566		    if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12567			 && ! find_regno_fusage (place, USE, i))
12568			|| dead_or_set_regno_p (place, i))
12569		      all_used = 0;
12570
12571		  if (! all_used)
12572		    {
12573		      /* Put only REG_DEAD notes for pieces that are
12574			 not already dead or set.  */
12575
12576		      for (i = regno; i < endregno;
12577			   i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12578			{
12579			  rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12580			  basic_block bb = BASIC_BLOCK (this_basic_block);
12581
12582			  if (! dead_or_set_p (place, piece)
12583			      && ! reg_bitfield_target_p (piece,
12584							  PATTERN (place)))
12585			    {
12586			      rtx new_note
12587				= gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12588
12589			      distribute_notes (new_note, place, place,
12590						NULL_RTX, NULL_RTX, NULL_RTX);
12591			    }
12592			  else if (! refers_to_regno_p (i, i + 1,
12593							PATTERN (place), 0)
12594				   && ! find_regno_fusage (place, USE, i))
12595			    for (tem = PREV_INSN (place); ;
12596				 tem = PREV_INSN (tem))
12597			      {
12598				if (! INSN_P (tem))
12599				  {
12600				    if (tem == bb->head)
12601				      {
12602					SET_BIT (refresh_blocks,
12603						 this_basic_block);
12604					need_refresh = 1;
12605					break;
12606				      }
12607				    continue;
12608				  }
12609				if (dead_or_set_p (tem, piece)
12610				    || reg_bitfield_target_p (piece,
12611							      PATTERN (tem)))
12612				  {
12613				    REG_NOTES (tem)
12614				      = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12615							   REG_NOTES (tem));
12616				    break;
12617				  }
12618			      }
12619
12620			}
12621
12622		      place = 0;
12623		    }
12624		}
12625	    }
12626	  break;
12627
12628	default:
12629	  /* Any other notes should not be present at this point in the
12630	     compilation.  */
12631	  abort ();
12632	}
12633
12634      if (place)
12635	{
12636	  XEXP (note, 1) = REG_NOTES (place);
12637	  REG_NOTES (place) = note;
12638	}
12639      else if ((REG_NOTE_KIND (note) == REG_DEAD
12640		|| REG_NOTE_KIND (note) == REG_UNUSED)
12641	       && GET_CODE (XEXP (note, 0)) == REG)
12642	REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12643
12644      if (place2)
12645	{
12646	  if ((REG_NOTE_KIND (note) == REG_DEAD
12647	       || REG_NOTE_KIND (note) == REG_UNUSED)
12648	      && GET_CODE (XEXP (note, 0)) == REG)
12649	    REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12650
12651	  REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12652					       REG_NOTE_KIND (note),
12653					       XEXP (note, 0),
12654					       REG_NOTES (place2));
12655	}
12656    }
12657}
12658
12659/* Similarly to above, distribute the LOG_LINKS that used to be present on
12660   I3, I2, and I1 to new locations.  This is also called in one case to
12661   add a link pointing at I3 when I3's destination is changed.  */
12662
12663static void
12664distribute_links (links)
12665     rtx links;
12666{
12667  rtx link, next_link;
12668
12669  for (link = links; link; link = next_link)
12670    {
12671      rtx place = 0;
12672      rtx insn;
12673      rtx set, reg;
12674
12675      next_link = XEXP (link, 1);
12676
12677      /* If the insn that this link points to is a NOTE or isn't a single
12678	 set, ignore it.  In the latter case, it isn't clear what we
12679	 can do other than ignore the link, since we can't tell which
12680	 register it was for.  Such links wouldn't be used by combine
12681	 anyway.
12682
12683	 It is not possible for the destination of the target of the link to
12684	 have been changed by combine.  The only potential of this is if we
12685	 replace I3, I2, and I1 by I3 and I2.  But in that case the
12686	 destination of I2 also remains unchanged.  */
12687
12688      if (GET_CODE (XEXP (link, 0)) == NOTE
12689	  || (set = single_set (XEXP (link, 0))) == 0)
12690	continue;
12691
12692      reg = SET_DEST (set);
12693      while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12694	     || GET_CODE (reg) == SIGN_EXTRACT
12695	     || GET_CODE (reg) == STRICT_LOW_PART)
12696	reg = XEXP (reg, 0);
12697
12698      /* A LOG_LINK is defined as being placed on the first insn that uses
12699	 a register and points to the insn that sets the register.  Start
12700	 searching at the next insn after the target of the link and stop
12701	 when we reach a set of the register or the end of the basic block.
12702
12703	 Note that this correctly handles the link that used to point from
12704	 I3 to I2.  Also note that not much searching is typically done here
12705	 since most links don't point very far away.  */
12706
12707      for (insn = NEXT_INSN (XEXP (link, 0));
12708	   (insn && (this_basic_block == n_basic_blocks - 1
12709		     || BLOCK_HEAD (this_basic_block + 1) != insn));
12710	   insn = NEXT_INSN (insn))
12711	if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12712	  {
12713	    if (reg_referenced_p (reg, PATTERN (insn)))
12714	      place = insn;
12715	    break;
12716	  }
12717	else if (GET_CODE (insn) == CALL_INSN
12718		 && find_reg_fusage (insn, USE, reg))
12719	  {
12720	    place = insn;
12721	    break;
12722	  }
12723
12724      /* If we found a place to put the link, place it there unless there
12725	 is already a link to the same insn as LINK at that point.  */
12726
12727      if (place)
12728	{
12729	  rtx link2;
12730
12731	  for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12732	    if (XEXP (link2, 0) == XEXP (link, 0))
12733	      break;
12734
12735	  if (link2 == 0)
12736	    {
12737	      XEXP (link, 1) = LOG_LINKS (place);
12738	      LOG_LINKS (place) = link;
12739
12740	      /* Set added_links_insn to the earliest insn we added a
12741		 link to.  */
12742	      if (added_links_insn == 0
12743		  || INSN_CUID (added_links_insn) > INSN_CUID (place))
12744		added_links_insn = place;
12745	    }
12746	}
12747    }
12748}
12749
12750/* Compute INSN_CUID for INSN, which is an insn made by combine.  */
12751
12752static int
12753insn_cuid (insn)
12754     rtx insn;
12755{
12756  while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12757	 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12758    insn = NEXT_INSN (insn);
12759
12760  if (INSN_UID (insn) > max_uid_cuid)
12761    abort ();
12762
12763  return INSN_CUID (insn);
12764}
12765
12766void
12767dump_combine_stats (file)
12768     FILE *file;
12769{
12770  fnotice
12771    (file,
12772     ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12773     combine_attempts, combine_merges, combine_extras, combine_successes);
12774}
12775
12776void
12777dump_combine_total_stats (file)
12778     FILE *file;
12779{
12780  fnotice
12781    (file,
12782     "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12783     total_attempts, total_merges, total_extras, total_successes);
12784}
12785