combine.c revision 90075
1/* Optimize by combining instructions for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA.  */
21
22/* This module is essentially the "combiner" phase of the U. of Arizona
23   Portable Optimizer, but redone to work on our list-structured
24   representation for RTL instead of their string representation.
25
26   The LOG_LINKS of each insn identify the most recent assignment
27   to each REG used in the insn.  It is a list of previous insns,
28   each of which contains a SET for a REG that is used in this insn
29   and not used or set in between.  LOG_LINKs never cross basic blocks.
30   They were set up by the preceding pass (lifetime analysis).
31
32   We try to combine each pair of insns joined by a logical link.
33   We also try to combine triples of insns A, B and C when
34   C has a link back to B and B has a link back to A.
35
36   LOG_LINKS does not have links for use of the CC0.  They don't
37   need to, because the insn that sets the CC0 is always immediately
38   before the insn that tests it.  So we always regard a branch
39   insn as having a logical link to the preceding insn.  The same is true
40   for an insn explicitly using CC0.
41
42   We check (with use_crosses_set_p) to avoid combining in such a way
43   as to move a computation to a place where its value would be different.
44
45   Combination is done by mathematically substituting the previous
46   insn(s) values for the regs they set into the expressions in
47   the later insns that refer to these regs.  If the result is a valid insn
48   for our target machine, according to the machine description,
49   we install it, delete the earlier insns, and update the data flow
50   information (LOG_LINKS and REG_NOTES) for what we did.
51
52   There are a few exceptions where the dataflow information created by
53   flow.c aren't completely updated:
54
55   - reg_live_length is not updated
56   - reg_n_refs is not adjusted in the rare case when a register is
57     no longer required in a computation
58   - there are extremely rare cases (see distribute_regnotes) when a
59     REG_DEAD note is lost
60   - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61     removed because there is no way to know which register it was
62     linking
63
64   To simplify substitution, we combine only when the earlier insn(s)
65   consist of only a single assignment.  To simplify updating afterward,
66   we never combine when a subroutine call appears in the middle.
67
68   Since we do not represent assignments to CC0 explicitly except when that
69   is all an insn does, there is no LOG_LINKS entry in an insn that uses
70   the condition code for the insn that set the condition code.
71   Fortunately, these two insns must be consecutive.
72   Therefore, every JUMP_INSN is taken to have an implicit logical link
73   to the preceding insn.  This is not quite right, since non-jumps can
74   also use the condition code; but in practice such insns would not
75   combine anyway.  */
76
77#include "config.h"
78#include "system.h"
79#include "rtl.h"
80#include "tm_p.h"
81#include "flags.h"
82#include "regs.h"
83#include "hard-reg-set.h"
84#include "basic-block.h"
85#include "insn-config.h"
86#include "function.h"
87/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
88#include "expr.h"
89#include "insn-attr.h"
90#include "recog.h"
91#include "real.h"
92#include "toplev.h"
93
94/* It is not safe to use ordinary gen_lowpart in combine.
95   Use gen_lowpart_for_combine instead.  See comments there.  */
96#define gen_lowpart dont_use_gen_lowpart_you_dummy
97
98/* Number of attempts to combine instructions in this function.  */
99
100static int combine_attempts;
101
102/* Number of attempts that got as far as substitution in this function.  */
103
104static int combine_merges;
105
106/* Number of instructions combined with added SETs in this function.  */
107
108static int combine_extras;
109
110/* Number of instructions combined in this function.  */
111
112static int combine_successes;
113
114/* Totals over entire compilation.  */
115
116static int total_attempts, total_merges, total_extras, total_successes;
117
118
119/* Vector mapping INSN_UIDs to cuids.
120   The cuids are like uids but increase monotonically always.
121   Combine always uses cuids so that it can compare them.
122   But actually renumbering the uids, which we used to do,
123   proves to be a bad idea because it makes it hard to compare
124   the dumps produced by earlier passes with those from later passes.  */
125
126static int *uid_cuid;
127static int max_uid_cuid;
128
129/* Get the cuid of an insn.  */
130
131#define INSN_CUID(INSN) \
132(INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133
134/* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135   BITS_PER_WORD would invoke undefined behavior.  Work around it.  */
136
137#define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138  (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139
140/* Maximum register number, which is the size of the tables below.  */
141
142static unsigned int combine_max_regno;
143
144/* Record last point of death of (hard or pseudo) register n.  */
145
146static rtx *reg_last_death;
147
148/* Record last point of modification of (hard or pseudo) register n.  */
149
150static rtx *reg_last_set;
151
152/* Record the cuid of the last insn that invalidated memory
153   (anything that writes memory, and subroutine calls, but not pushes).  */
154
155static int mem_last_set;
156
157/* Record the cuid of the last CALL_INSN
158   so we can tell whether a potential combination crosses any calls.  */
159
160static int last_call_cuid;
161
162/* When `subst' is called, this is the insn that is being modified
163   (by combining in a previous insn).  The PATTERN of this insn
164   is still the old pattern partially modified and it should not be
165   looked at, but this may be used to examine the successors of the insn
166   to judge whether a simplification is valid.  */
167
168static rtx subst_insn;
169
170/* This is an insn that belongs before subst_insn, but is not currently
171   on the insn chain.  */
172
173static rtx subst_prev_insn;
174
175/* This is the lowest CUID that `subst' is currently dealing with.
176   get_last_value will not return a value if the register was set at or
177   after this CUID.  If not for this mechanism, we could get confused if
178   I2 or I1 in try_combine were an insn that used the old value of a register
179   to obtain a new value.  In that case, we might erroneously get the
180   new value of the register when we wanted the old one.  */
181
182static int subst_low_cuid;
183
184/* This contains any hard registers that are used in newpat; reg_dead_at_p
185   must consider all these registers to be always live.  */
186
187static HARD_REG_SET newpat_used_regs;
188
189/* This is an insn to which a LOG_LINKS entry has been added.  If this
190   insn is the earlier than I2 or I3, combine should rescan starting at
191   that location.  */
192
193static rtx added_links_insn;
194
195/* Basic block number of the block in which we are performing combines.  */
196static int this_basic_block;
197
198/* A bitmap indicating which blocks had registers go dead at entry.
199   After combine, we'll need to re-do global life analysis with
200   those blocks as starting points.  */
201static sbitmap refresh_blocks;
202static int need_refresh;
203
204/* The next group of arrays allows the recording of the last value assigned
205   to (hard or pseudo) register n.  We use this information to see if a
206   operation being processed is redundant given a prior operation performed
207   on the register.  For example, an `and' with a constant is redundant if
208   all the zero bits are already known to be turned off.
209
210   We use an approach similar to that used by cse, but change it in the
211   following ways:
212
213   (1) We do not want to reinitialize at each label.
214   (2) It is useful, but not critical, to know the actual value assigned
215       to a register.  Often just its form is helpful.
216
217   Therefore, we maintain the following arrays:
218
219   reg_last_set_value		the last value assigned
220   reg_last_set_label		records the value of label_tick when the
221				register was assigned
222   reg_last_set_table_tick	records the value of label_tick when a
223				value using the register is assigned
224   reg_last_set_invalid		set to non-zero when it is not valid
225				to use the value of this register in some
226				register's value
227
228   To understand the usage of these tables, it is important to understand
229   the distinction between the value in reg_last_set_value being valid
230   and the register being validly contained in some other expression in the
231   table.
232
233   Entry I in reg_last_set_value is valid if it is non-zero, and either
234   reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235
236   Register I may validly appear in any expression returned for the value
237   of another register if reg_n_sets[i] is 1.  It may also appear in the
238   value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239   reg_last_set_invalid[j] is zero.
240
241   If an expression is found in the table containing a register which may
242   not validly appear in an expression, the register is replaced by
243   something that won't match, (clobber (const_int 0)).
244
245   reg_last_set_invalid[i] is set non-zero when register I is being assigned
246   to and reg_last_set_table_tick[i] == label_tick.  */
247
248/* Record last value assigned to (hard or pseudo) register n.  */
249
250static rtx *reg_last_set_value;
251
252/* Record the value of label_tick when the value for register n is placed in
253   reg_last_set_value[n].  */
254
255static int *reg_last_set_label;
256
257/* Record the value of label_tick when an expression involving register n
258   is placed in reg_last_set_value.  */
259
260static int *reg_last_set_table_tick;
261
262/* Set non-zero if references to register n in expressions should not be
263   used.  */
264
265static char *reg_last_set_invalid;
266
267/* Incremented for each label.  */
268
269static int label_tick;
270
271/* Some registers that are set more than once and used in more than one
272   basic block are nevertheless always set in similar ways.  For example,
273   a QImode register may be loaded from memory in two places on a machine
274   where byte loads zero extend.
275
276   We record in the following array what we know about the nonzero
277   bits of a register, specifically which bits are known to be zero.
278
279   If an entry is zero, it means that we don't know anything special.  */
280
281static unsigned HOST_WIDE_INT *reg_nonzero_bits;
282
283/* Mode used to compute significance in reg_nonzero_bits.  It is the largest
284   integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
285
286static enum machine_mode nonzero_bits_mode;
287
288/* Nonzero if we know that a register has some leading bits that are always
289   equal to the sign bit.  */
290
291static unsigned char *reg_sign_bit_copies;
292
293/* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294   It is zero while computing them and after combine has completed.  This
295   former test prevents propagating values based on previously set values,
296   which can be incorrect if a variable is modified in a loop.  */
297
298static int nonzero_sign_valid;
299
300/* These arrays are maintained in parallel with reg_last_set_value
301   and are used to store the mode in which the register was last set,
302   the bits that were known to be zero when it was last set, and the
303   number of sign bits copies it was known to have when it was last set.  */
304
305static enum machine_mode *reg_last_set_mode;
306static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307static char *reg_last_set_sign_bit_copies;
308
309/* Record one modification to rtl structure
310   to be undone by storing old_contents into *where.
311   is_int is 1 if the contents are an int.  */
312
313struct undo
314{
315  struct undo *next;
316  int is_int;
317  union {rtx r; unsigned int i;} old_contents;
318  union {rtx *r; unsigned int *i;} where;
319};
320
321/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322   num_undo says how many are currently recorded.
323
324   other_insn is nonzero if we have modified some other insn in the process
325   of working on subst_insn.  It must be verified too.  */
326
327struct undobuf
328{
329  struct undo *undos;
330  struct undo *frees;
331  rtx other_insn;
332};
333
334static struct undobuf undobuf;
335
336/* Number of times the pseudo being substituted for
337   was found and replaced.  */
338
339static int n_occurrences;
340
341static void do_SUBST			PARAMS ((rtx *, rtx));
342static void do_SUBST_INT		PARAMS ((unsigned int *,
343						 unsigned int));
344static void init_reg_last_arrays	PARAMS ((void));
345static void setup_incoming_promotions   PARAMS ((void));
346static void set_nonzero_bits_and_sign_copies  PARAMS ((rtx, rtx, void *));
347static int cant_combine_insn_p	PARAMS ((rtx));
348static int can_combine_p	PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349static int sets_function_arg_p	PARAMS ((rtx));
350static int combinable_i3pat	PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351static int contains_muldiv	PARAMS ((rtx));
352static rtx try_combine		PARAMS ((rtx, rtx, rtx, int *));
353static void undo_all		PARAMS ((void));
354static void undo_commit		PARAMS ((void));
355static rtx *find_split_point	PARAMS ((rtx *, rtx));
356static rtx subst		PARAMS ((rtx, rtx, rtx, int, int));
357static rtx combine_simplify_rtx	PARAMS ((rtx, enum machine_mode, int, int));
358static rtx simplify_if_then_else  PARAMS ((rtx));
359static rtx simplify_set		PARAMS ((rtx));
360static rtx simplify_logical	PARAMS ((rtx, int));
361static rtx expand_compound_operation  PARAMS ((rtx));
362static rtx expand_field_assignment  PARAMS ((rtx));
363static rtx make_extraction	PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364					 rtx, unsigned HOST_WIDE_INT, int,
365					 int, int));
366static rtx extract_left_shift	PARAMS ((rtx, int));
367static rtx make_compound_operation  PARAMS ((rtx, enum rtx_code));
368static int get_pos_from_mask	PARAMS ((unsigned HOST_WIDE_INT,
369					 unsigned HOST_WIDE_INT *));
370static rtx force_to_mode	PARAMS ((rtx, enum machine_mode,
371					 unsigned HOST_WIDE_INT, rtx, int));
372static rtx if_then_else_cond	PARAMS ((rtx, rtx *, rtx *));
373static rtx known_cond		PARAMS ((rtx, enum rtx_code, rtx, rtx));
374static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375static rtx make_field_assignment  PARAMS ((rtx));
376static rtx apply_distributive_law  PARAMS ((rtx));
377static rtx simplify_and_const_int  PARAMS ((rtx, enum machine_mode, rtx,
378					    unsigned HOST_WIDE_INT));
379static unsigned HOST_WIDE_INT nonzero_bits  PARAMS ((rtx, enum machine_mode));
380static unsigned int num_sign_bit_copies  PARAMS ((rtx, enum machine_mode));
381static int merge_outer_ops	PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382					 enum rtx_code, HOST_WIDE_INT,
383					 enum machine_mode, int *));
384static rtx simplify_shift_const	PARAMS ((rtx, enum rtx_code, enum machine_mode,
385					 rtx, int));
386static int recog_for_combine	PARAMS ((rtx *, rtx, rtx *));
387static rtx gen_lowpart_for_combine  PARAMS ((enum machine_mode, rtx));
388static rtx gen_binary		PARAMS ((enum rtx_code, enum machine_mode,
389					 rtx, rtx));
390static enum rtx_code simplify_comparison  PARAMS ((enum rtx_code, rtx *, rtx *));
391static void update_table_tick	PARAMS ((rtx));
392static void record_value_for_reg  PARAMS ((rtx, rtx, rtx));
393static void check_promoted_subreg PARAMS ((rtx, rtx));
394static void record_dead_and_set_regs_1  PARAMS ((rtx, rtx, void *));
395static void record_dead_and_set_regs  PARAMS ((rtx));
396static int get_last_value_validate  PARAMS ((rtx *, rtx, int, int));
397static rtx get_last_value	PARAMS ((rtx));
398static int use_crosses_set_p	PARAMS ((rtx, int));
399static void reg_dead_at_p_1	PARAMS ((rtx, rtx, void *));
400static int reg_dead_at_p	PARAMS ((rtx, rtx));
401static void move_deaths		PARAMS ((rtx, rtx, int, rtx, rtx *));
402static int reg_bitfield_target_p  PARAMS ((rtx, rtx));
403static void distribute_notes	PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404static void distribute_links	PARAMS ((rtx));
405static void mark_used_regs_combine PARAMS ((rtx));
406static int insn_cuid		PARAMS ((rtx));
407static void record_promoted_value PARAMS ((rtx, rtx));
408static rtx reversed_comparison  PARAMS ((rtx, enum machine_mode, rtx, rtx));
409static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
410
411/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412   insn.  The substitution can be undone by undo_all.  If INTO is already
413   set to NEWVAL, do not record this change.  Because computing NEWVAL might
414   also call SUBST, we have to compute it before we put anything into
415   the undo table.  */
416
417static void
418do_SUBST (into, newval)
419     rtx *into, newval;
420{
421  struct undo *buf;
422  rtx oldval = *into;
423
424  if (oldval == newval)
425    return;
426
427  if (undobuf.frees)
428    buf = undobuf.frees, undobuf.frees = buf->next;
429  else
430    buf = (struct undo *) xmalloc (sizeof (struct undo));
431
432  buf->is_int = 0;
433  buf->where.r = into;
434  buf->old_contents.r = oldval;
435  *into = newval;
436
437  buf->next = undobuf.undos, undobuf.undos = buf;
438}
439
440#define SUBST(INTO, NEWVAL)	do_SUBST(&(INTO), (NEWVAL))
441
442/* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
443   for the value of a HOST_WIDE_INT value (including CONST_INT) is
444   not safe.  */
445
446static void
447do_SUBST_INT (into, newval)
448     unsigned int *into, newval;
449{
450  struct undo *buf;
451  unsigned int oldval = *into;
452
453  if (oldval == newval)
454    return;
455
456  if (undobuf.frees)
457    buf = undobuf.frees, undobuf.frees = buf->next;
458  else
459    buf = (struct undo *) xmalloc (sizeof (struct undo));
460
461  buf->is_int = 1;
462  buf->where.i = into;
463  buf->old_contents.i = oldval;
464  *into = newval;
465
466  buf->next = undobuf.undos, undobuf.undos = buf;
467}
468
469#define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT(&(INTO), (NEWVAL))
470
471/* Main entry point for combiner.  F is the first insn of the function.
472   NREGS is the first unused pseudo-reg number.
473
474   Return non-zero if the combiner has turned an indirect jump
475   instruction into a direct jump.  */
476int
477combine_instructions (f, nregs)
478     rtx f;
479     unsigned int nregs;
480{
481  rtx insn, next;
482#ifdef HAVE_cc0
483  rtx prev;
484#endif
485  int i;
486  rtx links, nextlinks;
487
488  int new_direct_jump_p = 0;
489
490  combine_attempts = 0;
491  combine_merges = 0;
492  combine_extras = 0;
493  combine_successes = 0;
494
495  combine_max_regno = nregs;
496
497  reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
498		      xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
499  reg_sign_bit_copies
500    = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
501
502  reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
503  reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
504  reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
505  reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
506  reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
507  reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
508  reg_last_set_mode
509    = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
510  reg_last_set_nonzero_bits
511    = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
512  reg_last_set_sign_bit_copies
513    = (char *) xmalloc (nregs * sizeof (char));
514
515  init_reg_last_arrays ();
516
517  init_recog_no_volatile ();
518
519  /* Compute maximum uid value so uid_cuid can be allocated.  */
520
521  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
522    if (INSN_UID (insn) > i)
523      i = INSN_UID (insn);
524
525  uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
526  max_uid_cuid = i;
527
528  nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
529
530  /* Don't use reg_nonzero_bits when computing it.  This can cause problems
531     when, for example, we have j <<= 1 in a loop.  */
532
533  nonzero_sign_valid = 0;
534
535  /* Compute the mapping from uids to cuids.
536     Cuids are numbers assigned to insns, like uids,
537     except that cuids increase monotonically through the code.
538
539     Scan all SETs and see if we can deduce anything about what
540     bits are known to be zero for some registers and how many copies
541     of the sign bit are known to exist for those registers.
542
543     Also set any known values so that we can use it while searching
544     for what bits are known to be set.  */
545
546  label_tick = 1;
547
548  /* We need to initialize it here, because record_dead_and_set_regs may call
549     get_last_value.  */
550  subst_prev_insn = NULL_RTX;
551
552  setup_incoming_promotions ();
553
554  refresh_blocks = sbitmap_alloc (n_basic_blocks);
555  sbitmap_zero (refresh_blocks);
556  need_refresh = 0;
557
558  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
559    {
560      uid_cuid[INSN_UID (insn)] = ++i;
561      subst_low_cuid = i;
562      subst_insn = insn;
563
564      if (INSN_P (insn))
565	{
566	  note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
567		       NULL);
568	  record_dead_and_set_regs (insn);
569
570#ifdef AUTO_INC_DEC
571	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
572	    if (REG_NOTE_KIND (links) == REG_INC)
573	      set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
574						NULL);
575#endif
576	}
577
578      if (GET_CODE (insn) == CODE_LABEL)
579	label_tick++;
580    }
581
582  nonzero_sign_valid = 1;
583
584  /* Now scan all the insns in forward order.  */
585
586  this_basic_block = -1;
587  label_tick = 1;
588  last_call_cuid = 0;
589  mem_last_set = 0;
590  init_reg_last_arrays ();
591  setup_incoming_promotions ();
592
593  for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
594    {
595      next = 0;
596
597      /* If INSN starts a new basic block, update our basic block number.  */
598      if (this_basic_block + 1 < n_basic_blocks
599	  && BLOCK_HEAD (this_basic_block + 1) == insn)
600	this_basic_block++;
601
602      if (GET_CODE (insn) == CODE_LABEL)
603	label_tick++;
604
605      else if (INSN_P (insn))
606	{
607	  /* See if we know about function return values before this
608	     insn based upon SUBREG flags.  */
609	  check_promoted_subreg (insn, PATTERN (insn));
610
611	  /* Try this insn with each insn it links back to.  */
612
613	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
614	    if ((next = try_combine (insn, XEXP (links, 0),
615				     NULL_RTX, &new_direct_jump_p)) != 0)
616	      goto retry;
617
618	  /* Try each sequence of three linked insns ending with this one.  */
619
620	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
621	    {
622	      rtx link = XEXP (links, 0);
623
624	      /* If the linked insn has been replaced by a note, then there
625		 is no point in pursuing this chain any further.  */
626	      if (GET_CODE (link) == NOTE)
627		continue;
628
629	      for (nextlinks = LOG_LINKS (link);
630		   nextlinks;
631		   nextlinks = XEXP (nextlinks, 1))
632		if ((next = try_combine (insn, link,
633					 XEXP (nextlinks, 0),
634					 &new_direct_jump_p)) != 0)
635		  goto retry;
636	    }
637
638#ifdef HAVE_cc0
639	  /* Try to combine a jump insn that uses CC0
640	     with a preceding insn that sets CC0, and maybe with its
641	     logical predecessor as well.
642	     This is how we make decrement-and-branch insns.
643	     We need this special code because data flow connections
644	     via CC0 do not get entered in LOG_LINKS.  */
645
646	  if (GET_CODE (insn) == JUMP_INSN
647	      && (prev = prev_nonnote_insn (insn)) != 0
648	      && GET_CODE (prev) == INSN
649	      && sets_cc0_p (PATTERN (prev)))
650	    {
651	      if ((next = try_combine (insn, prev,
652				       NULL_RTX, &new_direct_jump_p)) != 0)
653		goto retry;
654
655	      for (nextlinks = LOG_LINKS (prev); nextlinks;
656		   nextlinks = XEXP (nextlinks, 1))
657		if ((next = try_combine (insn, prev,
658					 XEXP (nextlinks, 0),
659					 &new_direct_jump_p)) != 0)
660		  goto retry;
661	    }
662
663	  /* Do the same for an insn that explicitly references CC0.  */
664	  if (GET_CODE (insn) == INSN
665	      && (prev = prev_nonnote_insn (insn)) != 0
666	      && GET_CODE (prev) == INSN
667	      && sets_cc0_p (PATTERN (prev))
668	      && GET_CODE (PATTERN (insn)) == SET
669	      && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
670	    {
671	      if ((next = try_combine (insn, prev,
672				       NULL_RTX, &new_direct_jump_p)) != 0)
673		goto retry;
674
675	      for (nextlinks = LOG_LINKS (prev); nextlinks;
676		   nextlinks = XEXP (nextlinks, 1))
677		if ((next = try_combine (insn, prev,
678					 XEXP (nextlinks, 0),
679					 &new_direct_jump_p)) != 0)
680		  goto retry;
681	    }
682
683	  /* Finally, see if any of the insns that this insn links to
684	     explicitly references CC0.  If so, try this insn, that insn,
685	     and its predecessor if it sets CC0.  */
686	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
687	    if (GET_CODE (XEXP (links, 0)) == INSN
688		&& GET_CODE (PATTERN (XEXP (links, 0))) == SET
689		&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
690		&& (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
691		&& GET_CODE (prev) == INSN
692		&& sets_cc0_p (PATTERN (prev))
693		&& (next = try_combine (insn, XEXP (links, 0),
694					prev, &new_direct_jump_p)) != 0)
695	      goto retry;
696#endif
697
698	  /* Try combining an insn with two different insns whose results it
699	     uses.  */
700	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
701	    for (nextlinks = XEXP (links, 1); nextlinks;
702		 nextlinks = XEXP (nextlinks, 1))
703	      if ((next = try_combine (insn, XEXP (links, 0),
704				       XEXP (nextlinks, 0),
705				       &new_direct_jump_p)) != 0)
706		goto retry;
707
708	  if (GET_CODE (insn) != NOTE)
709	    record_dead_and_set_regs (insn);
710
711	retry:
712	  ;
713	}
714    }
715
716  delete_noop_moves (f);
717
718  if (need_refresh)
719    {
720      update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
721			PROP_DEATH_NOTES);
722    }
723
724  /* Clean up.  */
725  sbitmap_free (refresh_blocks);
726  free (reg_nonzero_bits);
727  free (reg_sign_bit_copies);
728  free (reg_last_death);
729  free (reg_last_set);
730  free (reg_last_set_value);
731  free (reg_last_set_table_tick);
732  free (reg_last_set_label);
733  free (reg_last_set_invalid);
734  free (reg_last_set_mode);
735  free (reg_last_set_nonzero_bits);
736  free (reg_last_set_sign_bit_copies);
737  free (uid_cuid);
738
739  {
740    struct undo *undo, *next;
741    for (undo = undobuf.frees; undo; undo = next)
742      {
743	next = undo->next;
744	free (undo);
745      }
746    undobuf.frees = 0;
747  }
748
749  total_attempts += combine_attempts;
750  total_merges += combine_merges;
751  total_extras += combine_extras;
752  total_successes += combine_successes;
753
754  nonzero_sign_valid = 0;
755
756  /* Make recognizer allow volatile MEMs again.  */
757  init_recog ();
758
759  return new_direct_jump_p;
760}
761
762/* Wipe the reg_last_xxx arrays in preparation for another pass.  */
763
764static void
765init_reg_last_arrays ()
766{
767  unsigned int nregs = combine_max_regno;
768
769  memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
770  memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
771  memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
772  memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
773  memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
774  memset (reg_last_set_invalid, 0, nregs * sizeof (char));
775  memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
776  memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
777  memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
778}
779
780/* Set up any promoted values for incoming argument registers.  */
781
782static void
783setup_incoming_promotions ()
784{
785#ifdef PROMOTE_FUNCTION_ARGS
786  unsigned int regno;
787  rtx reg;
788  enum machine_mode mode;
789  int unsignedp;
790  rtx first = get_insns ();
791
792#ifndef OUTGOING_REGNO
793#define OUTGOING_REGNO(N) N
794#endif
795  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
796    /* Check whether this register can hold an incoming pointer
797       argument.  FUNCTION_ARG_REGNO_P tests outgoing register
798       numbers, so translate if necessary due to register windows.  */
799    if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
800	&& (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
801      {
802	record_value_for_reg
803	  (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
804				       : SIGN_EXTEND),
805				      GET_MODE (reg),
806				      gen_rtx_CLOBBER (mode, const0_rtx)));
807      }
808#endif
809}
810
811/* Called via note_stores.  If X is a pseudo that is narrower than
812   HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
813
814   If we are setting only a portion of X and we can't figure out what
815   portion, assume all bits will be used since we don't know what will
816   be happening.
817
818   Similarly, set how many bits of X are known to be copies of the sign bit
819   at all locations in the function.  This is the smallest number implied
820   by any set of X.  */
821
822static void
823set_nonzero_bits_and_sign_copies (x, set, data)
824     rtx x;
825     rtx set;
826     void *data ATTRIBUTE_UNUSED;
827{
828  unsigned int num;
829
830  if (GET_CODE (x) == REG
831      && REGNO (x) >= FIRST_PSEUDO_REGISTER
832      /* If this register is undefined at the start of the file, we can't
833	 say what its contents were.  */
834      && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
835      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
836    {
837      if (set == 0 || GET_CODE (set) == CLOBBER)
838	{
839	  reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
840	  reg_sign_bit_copies[REGNO (x)] = 1;
841	  return;
842	}
843
844      /* If this is a complex assignment, see if we can convert it into a
845	 simple assignment.  */
846      set = expand_field_assignment (set);
847
848      /* If this is a simple assignment, or we have a paradoxical SUBREG,
849	 set what we know about X.  */
850
851      if (SET_DEST (set) == x
852	  || (GET_CODE (SET_DEST (set)) == SUBREG
853	      && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
854		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
855	      && SUBREG_REG (SET_DEST (set)) == x))
856	{
857	  rtx src = SET_SRC (set);
858
859#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
860	  /* If X is narrower than a word and SRC is a non-negative
861	     constant that would appear negative in the mode of X,
862	     sign-extend it for use in reg_nonzero_bits because some
863	     machines (maybe most) will actually do the sign-extension
864	     and this is the conservative approach.
865
866	     ??? For 2.5, try to tighten up the MD files in this regard
867	     instead of this kludge.  */
868
869	  if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
870	      && GET_CODE (src) == CONST_INT
871	      && INTVAL (src) > 0
872	      && 0 != (INTVAL (src)
873		       & ((HOST_WIDE_INT) 1
874			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
875	    src = GEN_INT (INTVAL (src)
876			   | ((HOST_WIDE_INT) (-1)
877			      << GET_MODE_BITSIZE (GET_MODE (x))));
878#endif
879
880	  reg_nonzero_bits[REGNO (x)]
881	    |= nonzero_bits (src, nonzero_bits_mode);
882	  num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
883	  if (reg_sign_bit_copies[REGNO (x)] == 0
884	      || reg_sign_bit_copies[REGNO (x)] > num)
885	    reg_sign_bit_copies[REGNO (x)] = num;
886	}
887      else
888	{
889	  reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
890	  reg_sign_bit_copies[REGNO (x)] = 1;
891	}
892    }
893}
894
895/* See if INSN can be combined into I3.  PRED and SUCC are optionally
896   insns that were previously combined into I3 or that will be combined
897   into the merger of INSN and I3.
898
899   Return 0 if the combination is not allowed for any reason.
900
901   If the combination is allowed, *PDEST will be set to the single
902   destination of INSN and *PSRC to the single source, and this function
903   will return 1.  */
904
905static int
906can_combine_p (insn, i3, pred, succ, pdest, psrc)
907     rtx insn;
908     rtx i3;
909     rtx pred ATTRIBUTE_UNUSED;
910     rtx succ;
911     rtx *pdest, *psrc;
912{
913  int i;
914  rtx set = 0, src, dest;
915  rtx p;
916#ifdef AUTO_INC_DEC
917  rtx link;
918#endif
919  int all_adjacent = (succ ? (next_active_insn (insn) == succ
920			      && next_active_insn (succ) == i3)
921		      : next_active_insn (insn) == i3);
922
923  /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
924     or a PARALLEL consisting of such a SET and CLOBBERs.
925
926     If INSN has CLOBBER parallel parts, ignore them for our processing.
927     By definition, these happen during the execution of the insn.  When it
928     is merged with another insn, all bets are off.  If they are, in fact,
929     needed and aren't also supplied in I3, they may be added by
930     recog_for_combine.  Otherwise, it won't match.
931
932     We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
933     note.
934
935     Get the source and destination of INSN.  If more than one, can't
936     combine.  */
937
938  if (GET_CODE (PATTERN (insn)) == SET)
939    set = PATTERN (insn);
940  else if (GET_CODE (PATTERN (insn)) == PARALLEL
941	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
942    {
943      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
944	{
945	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
946
947	  switch (GET_CODE (elt))
948	    {
949	    /* This is important to combine floating point insns
950	       for the SH4 port.  */
951	    case USE:
952	      /* Combining an isolated USE doesn't make sense.
953		 We depend here on combinable_i3pat to reject them.  */
954	      /* The code below this loop only verifies that the inputs of
955		 the SET in INSN do not change.  We call reg_set_between_p
956		 to verify that the REG in the USE does not change between
957		 I3 and INSN.
958		 If the USE in INSN was for a pseudo register, the matching
959		 insn pattern will likely match any register; combining this
960		 with any other USE would only be safe if we knew that the
961		 used registers have identical values, or if there was
962		 something to tell them apart, e.g. different modes.  For
963		 now, we forgo such complicated tests and simply disallow
964		 combining of USES of pseudo registers with any other USE.  */
965	      if (GET_CODE (XEXP (elt, 0)) == REG
966		  && GET_CODE (PATTERN (i3)) == PARALLEL)
967		{
968		  rtx i3pat = PATTERN (i3);
969		  int i = XVECLEN (i3pat, 0) - 1;
970		  unsigned int regno = REGNO (XEXP (elt, 0));
971
972		  do
973		    {
974		      rtx i3elt = XVECEXP (i3pat, 0, i);
975
976		      if (GET_CODE (i3elt) == USE
977			  && GET_CODE (XEXP (i3elt, 0)) == REG
978			  && (REGNO (XEXP (i3elt, 0)) == regno
979			      ? reg_set_between_p (XEXP (elt, 0),
980						   PREV_INSN (insn), i3)
981			      : regno >= FIRST_PSEUDO_REGISTER))
982			return 0;
983		    }
984		  while (--i >= 0);
985		}
986	      break;
987
988	      /* We can ignore CLOBBERs.  */
989	    case CLOBBER:
990	      break;
991
992	    case SET:
993	      /* Ignore SETs whose result isn't used but not those that
994		 have side-effects.  */
995	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
996		  && ! side_effects_p (elt))
997		break;
998
999	      /* If we have already found a SET, this is a second one and
1000		 so we cannot combine with this insn.  */
1001	      if (set)
1002		return 0;
1003
1004	      set = elt;
1005	      break;
1006
1007	    default:
1008	      /* Anything else means we can't combine.  */
1009	      return 0;
1010	    }
1011	}
1012
1013      if (set == 0
1014	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1015	     so don't do anything with it.  */
1016	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1017	return 0;
1018    }
1019  else
1020    return 0;
1021
1022  if (set == 0)
1023    return 0;
1024
1025  set = expand_field_assignment (set);
1026  src = SET_SRC (set), dest = SET_DEST (set);
1027
1028  /* Don't eliminate a store in the stack pointer.  */
1029  if (dest == stack_pointer_rtx
1030      /* If we couldn't eliminate a field assignment, we can't combine.  */
1031      || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1032      /* Don't combine with an insn that sets a register to itself if it has
1033	 a REG_EQUAL note.  This may be part of a REG_NO_CONFLICT sequence.  */
1034      || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1035      /* Can't merge an ASM_OPERANDS.  */
1036      || GET_CODE (src) == ASM_OPERANDS
1037      /* Can't merge a function call.  */
1038      || GET_CODE (src) == CALL
1039      /* Don't eliminate a function call argument.  */
1040      || (GET_CODE (i3) == CALL_INSN
1041	  && (find_reg_fusage (i3, USE, dest)
1042	      || (GET_CODE (dest) == REG
1043		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1044		  && global_regs[REGNO (dest)])))
1045      /* Don't substitute into an incremented register.  */
1046      || FIND_REG_INC_NOTE (i3, dest)
1047      || (succ && FIND_REG_INC_NOTE (succ, dest))
1048#if 0
1049      /* Don't combine the end of a libcall into anything.  */
1050      /* ??? This gives worse code, and appears to be unnecessary, since no
1051	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  Local-alloc does
1052	 use REG_RETVAL notes for noconflict blocks, but other code here
1053	 makes sure that those insns don't disappear.  */
1054      || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1055#endif
1056      /* Make sure that DEST is not used after SUCC but before I3.  */
1057      || (succ && ! all_adjacent
1058	  && reg_used_between_p (dest, succ, i3))
1059      /* Make sure that the value that is to be substituted for the register
1060	 does not use any registers whose values alter in between.  However,
1061	 If the insns are adjacent, a use can't cross a set even though we
1062	 think it might (this can happen for a sequence of insns each setting
1063	 the same destination; reg_last_set of that register might point to
1064	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
1065	 equivalent to the memory so the substitution is valid even if there
1066	 are intervening stores.  Also, don't move a volatile asm or
1067	 UNSPEC_VOLATILE across any other insns.  */
1068      || (! all_adjacent
1069	  && (((GET_CODE (src) != MEM
1070		|| ! find_reg_note (insn, REG_EQUIV, src))
1071	       && use_crosses_set_p (src, INSN_CUID (insn)))
1072	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1073	      || GET_CODE (src) == UNSPEC_VOLATILE))
1074      /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1075	 better register allocation by not doing the combine.  */
1076      || find_reg_note (i3, REG_NO_CONFLICT, dest)
1077      || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1078      /* Don't combine across a CALL_INSN, because that would possibly
1079	 change whether the life span of some REGs crosses calls or not,
1080	 and it is a pain to update that information.
1081	 Exception: if source is a constant, moving it later can't hurt.
1082	 Accept that special case, because it helps -fforce-addr a lot.  */
1083      || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1084    return 0;
1085
1086  /* DEST must either be a REG or CC0.  */
1087  if (GET_CODE (dest) == REG)
1088    {
1089      /* If register alignment is being enforced for multi-word items in all
1090	 cases except for parameters, it is possible to have a register copy
1091	 insn referencing a hard register that is not allowed to contain the
1092	 mode being copied and which would not be valid as an operand of most
1093	 insns.  Eliminate this problem by not combining with such an insn.
1094
1095	 Also, on some machines we don't want to extend the life of a hard
1096	 register.  */
1097
1098      if (GET_CODE (src) == REG
1099	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1100	       && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1101	      /* Don't extend the life of a hard register unless it is
1102		 user variable (if we have few registers) or it can't
1103		 fit into the desired register (meaning something special
1104		 is going on).
1105		 Also avoid substituting a return register into I3, because
1106		 reload can't handle a conflict with constraints of other
1107		 inputs.  */
1108	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
1109		  && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1110	return 0;
1111    }
1112  else if (GET_CODE (dest) != CC0)
1113    return 0;
1114
1115  /* Don't substitute for a register intended as a clobberable operand.
1116     Similarly, don't substitute an expression containing a register that
1117     will be clobbered in I3.  */
1118  if (GET_CODE (PATTERN (i3)) == PARALLEL)
1119    for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1120      if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1121	  && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1122				       src)
1123	      || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1124	return 0;
1125
1126  /* If INSN contains anything volatile, or is an `asm' (whether volatile
1127     or not), reject, unless nothing volatile comes between it and I3 */
1128
1129  if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1130    {
1131      /* Make sure succ doesn't contain a volatile reference.  */
1132      if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1133        return 0;
1134
1135      for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1136        if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1137	  return 0;
1138    }
1139
1140  /* If INSN is an asm, and DEST is a hard register, reject, since it has
1141     to be an explicit register variable, and was chosen for a reason.  */
1142
1143  if (GET_CODE (src) == ASM_OPERANDS
1144      && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1145    return 0;
1146
1147  /* If there are any volatile insns between INSN and I3, reject, because
1148     they might affect machine state.  */
1149
1150  for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1151    if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1152      return 0;
1153
1154  /* If INSN or I2 contains an autoincrement or autodecrement,
1155     make sure that register is not used between there and I3,
1156     and not already used in I3 either.
1157     Also insist that I3 not be a jump; if it were one
1158     and the incremented register were spilled, we would lose.  */
1159
1160#ifdef AUTO_INC_DEC
1161  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1162    if (REG_NOTE_KIND (link) == REG_INC
1163	&& (GET_CODE (i3) == JUMP_INSN
1164	    || reg_used_between_p (XEXP (link, 0), insn, i3)
1165	    || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1166      return 0;
1167#endif
1168
1169#ifdef HAVE_cc0
1170  /* Don't combine an insn that follows a CC0-setting insn.
1171     An insn that uses CC0 must not be separated from the one that sets it.
1172     We do, however, allow I2 to follow a CC0-setting insn if that insn
1173     is passed as I1; in that case it will be deleted also.
1174     We also allow combining in this case if all the insns are adjacent
1175     because that would leave the two CC0 insns adjacent as well.
1176     It would be more logical to test whether CC0 occurs inside I1 or I2,
1177     but that would be much slower, and this ought to be equivalent.  */
1178
1179  p = prev_nonnote_insn (insn);
1180  if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1181      && ! all_adjacent)
1182    return 0;
1183#endif
1184
1185  /* If we get here, we have passed all the tests and the combination is
1186     to be allowed.  */
1187
1188  *pdest = dest;
1189  *psrc = src;
1190
1191  return 1;
1192}
1193
1194/* Check if PAT is an insn - or a part of it - used to set up an
1195   argument for a function in a hard register.  */
1196
1197static int
1198sets_function_arg_p (pat)
1199     rtx pat;
1200{
1201  int i;
1202  rtx inner_dest;
1203
1204  switch (GET_CODE (pat))
1205    {
1206    case INSN:
1207      return sets_function_arg_p (PATTERN (pat));
1208
1209    case PARALLEL:
1210      for (i = XVECLEN (pat, 0); --i >= 0;)
1211	if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1212	  return 1;
1213
1214      break;
1215
1216    case SET:
1217      inner_dest = SET_DEST (pat);
1218      while (GET_CODE (inner_dest) == STRICT_LOW_PART
1219	     || GET_CODE (inner_dest) == SUBREG
1220	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
1221	inner_dest = XEXP (inner_dest, 0);
1222
1223      return (GET_CODE (inner_dest) == REG
1224	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1225	      && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1226
1227    default:
1228      break;
1229    }
1230
1231  return 0;
1232}
1233
1234/* LOC is the location within I3 that contains its pattern or the component
1235   of a PARALLEL of the pattern.  We validate that it is valid for combining.
1236
1237   One problem is if I3 modifies its output, as opposed to replacing it
1238   entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1239   so would produce an insn that is not equivalent to the original insns.
1240
1241   Consider:
1242
1243         (set (reg:DI 101) (reg:DI 100))
1244	 (set (subreg:SI (reg:DI 101) 0) <foo>)
1245
1246   This is NOT equivalent to:
1247
1248         (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1249		    (set (reg:DI 101) (reg:DI 100))])
1250
1251   Not only does this modify 100 (in which case it might still be valid
1252   if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1253
1254   We can also run into a problem if I2 sets a register that I1
1255   uses and I1 gets directly substituted into I3 (not via I2).  In that
1256   case, we would be getting the wrong value of I2DEST into I3, so we
1257   must reject the combination.  This case occurs when I2 and I1 both
1258   feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1259   If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1260   of a SET must prevent combination from occurring.
1261
1262   Before doing the above check, we first try to expand a field assignment
1263   into a set of logical operations.
1264
1265   If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1266   we place a register that is both set and used within I3.  If more than one
1267   such register is detected, we fail.
1268
1269   Return 1 if the combination is valid, zero otherwise.  */
1270
1271static int
1272combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1273     rtx i3;
1274     rtx *loc;
1275     rtx i2dest;
1276     rtx i1dest;
1277     int i1_not_in_src;
1278     rtx *pi3dest_killed;
1279{
1280  rtx x = *loc;
1281
1282  if (GET_CODE (x) == SET)
1283    {
1284      rtx set = expand_field_assignment (x);
1285      rtx dest = SET_DEST (set);
1286      rtx src = SET_SRC (set);
1287      rtx inner_dest = dest;
1288
1289#if 0
1290      rtx inner_src = src;
1291#endif
1292
1293      SUBST (*loc, set);
1294
1295      while (GET_CODE (inner_dest) == STRICT_LOW_PART
1296	     || GET_CODE (inner_dest) == SUBREG
1297	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
1298	inner_dest = XEXP (inner_dest, 0);
1299
1300  /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1301     was added.  */
1302#if 0
1303      while (GET_CODE (inner_src) == STRICT_LOW_PART
1304	     || GET_CODE (inner_src) == SUBREG
1305	     || GET_CODE (inner_src) == ZERO_EXTRACT)
1306	inner_src = XEXP (inner_src, 0);
1307
1308      /* If it is better that two different modes keep two different pseudos,
1309	 avoid combining them.  This avoids producing the following pattern
1310	 on a 386:
1311	  (set (subreg:SI (reg/v:QI 21) 0)
1312	       (lshiftrt:SI (reg/v:SI 20)
1313	           (const_int 24)))
1314	 If that were made, reload could not handle the pair of
1315	 reg 20/21, since it would try to get any GENERAL_REGS
1316	 but some of them don't handle QImode.  */
1317
1318      if (rtx_equal_p (inner_src, i2dest)
1319	  && GET_CODE (inner_dest) == REG
1320	  && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1321	return 0;
1322#endif
1323
1324      /* Check for the case where I3 modifies its output, as
1325	 discussed above.  */
1326      if ((inner_dest != dest
1327	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
1328	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1329
1330	  /* This is the same test done in can_combine_p except we can't test
1331	     all_adjacent; we don't have to, since this instruction will stay
1332	     in place, thus we are not considering increasing the lifetime of
1333	     INNER_DEST.
1334
1335	     Also, if this insn sets a function argument, combining it with
1336	     something that might need a spill could clobber a previous
1337	     function argument; the all_adjacent test in can_combine_p also
1338	     checks this; here, we do a more specific test for this case.  */
1339
1340	  || (GET_CODE (inner_dest) == REG
1341	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1342	      && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1343					GET_MODE (inner_dest))))
1344	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1345	return 0;
1346
1347      /* If DEST is used in I3, it is being killed in this insn,
1348	 so record that for later.
1349	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1350	 STACK_POINTER_REGNUM, since these are always considered to be
1351	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
1352      if (pi3dest_killed && GET_CODE (dest) == REG
1353	  && reg_referenced_p (dest, PATTERN (i3))
1354	  && REGNO (dest) != FRAME_POINTER_REGNUM
1355#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1356	  && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1357#endif
1358#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1359	  && (REGNO (dest) != ARG_POINTER_REGNUM
1360	      || ! fixed_regs [REGNO (dest)])
1361#endif
1362	  && REGNO (dest) != STACK_POINTER_REGNUM)
1363	{
1364	  if (*pi3dest_killed)
1365	    return 0;
1366
1367	  *pi3dest_killed = dest;
1368	}
1369    }
1370
1371  else if (GET_CODE (x) == PARALLEL)
1372    {
1373      int i;
1374
1375      for (i = 0; i < XVECLEN (x, 0); i++)
1376	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1377				i1_not_in_src, pi3dest_killed))
1378	  return 0;
1379    }
1380
1381  return 1;
1382}
1383
1384/* Return 1 if X is an arithmetic expression that contains a multiplication
1385   and division.  We don't count multiplications by powers of two here.  */
1386
1387static int
1388contains_muldiv (x)
1389     rtx x;
1390{
1391  switch (GET_CODE (x))
1392    {
1393    case MOD:  case DIV:  case UMOD:  case UDIV:
1394      return 1;
1395
1396    case MULT:
1397      return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1398		&& exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1399    default:
1400      switch (GET_RTX_CLASS (GET_CODE (x)))
1401	{
1402	case 'c':  case '<':  case '2':
1403	  return contains_muldiv (XEXP (x, 0))
1404	    || contains_muldiv (XEXP (x, 1));
1405
1406	case '1':
1407	  return contains_muldiv (XEXP (x, 0));
1408
1409	default:
1410	  return 0;
1411	}
1412    }
1413}
1414
1415/* Determine whether INSN can be used in a combination.  Return nonzero if
1416   not.  This is used in try_combine to detect early some cases where we
1417   can't perform combinations.  */
1418
1419static int
1420cant_combine_insn_p (insn)
1421     rtx insn;
1422{
1423  rtx set;
1424  rtx src, dest;
1425
1426  /* If this isn't really an insn, we can't do anything.
1427     This can occur when flow deletes an insn that it has merged into an
1428     auto-increment address.  */
1429  if (! INSN_P (insn))
1430    return 1;
1431
1432  /* Never combine loads and stores involving hard regs.  The register
1433     allocator can usually handle such reg-reg moves by tying.  If we allow
1434     the combiner to make substitutions of hard regs, we risk aborting in
1435     reload on machines that have SMALL_REGISTER_CLASSES.
1436     As an exception, we allow combinations involving fixed regs; these are
1437     not available to the register allocator so there's no risk involved.  */
1438
1439  set = single_set (insn);
1440  if (! set)
1441    return 0;
1442  src = SET_SRC (set);
1443  dest = SET_DEST (set);
1444  if (GET_CODE (src) == SUBREG)
1445    src = SUBREG_REG (src);
1446  if (GET_CODE (dest) == SUBREG)
1447    dest = SUBREG_REG (dest);
1448  if (REG_P (src) && REG_P (dest)
1449      && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1450	   && ! fixed_regs[REGNO (src)])
1451	  || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1452	      && ! fixed_regs[REGNO (dest)])))
1453    return 1;
1454
1455  return 0;
1456}
1457
1458/* Try to combine the insns I1 and I2 into I3.
1459   Here I1 and I2 appear earlier than I3.
1460   I1 can be zero; then we combine just I2 into I3.
1461
1462   If we are combining three insns and the resulting insn is not recognized,
1463   try splitting it into two insns.  If that happens, I2 and I3 are retained
1464   and I1 is pseudo-deleted by turning it into a NOTE.  Otherwise, I1 and I2
1465   are pseudo-deleted.
1466
1467   Return 0 if the combination does not work.  Then nothing is changed.
1468   If we did the combination, return the insn at which combine should
1469   resume scanning.
1470
1471   Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1472   new direct jump instruction.  */
1473
1474static rtx
1475try_combine (i3, i2, i1, new_direct_jump_p)
1476     rtx i3, i2, i1;
1477     int *new_direct_jump_p;
1478{
1479  /* New patterns for I3 and I2, respectively.  */
1480  rtx newpat, newi2pat = 0;
1481  /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead.  */
1482  int added_sets_1, added_sets_2;
1483  /* Total number of SETs to put into I3.  */
1484  int total_sets;
1485  /* Nonzero is I2's body now appears in I3.  */
1486  int i2_is_used;
1487  /* INSN_CODEs for new I3, new I2, and user of condition code.  */
1488  int insn_code_number, i2_code_number = 0, other_code_number = 0;
1489  /* Contains I3 if the destination of I3 is used in its source, which means
1490     that the old life of I3 is being killed.  If that usage is placed into
1491     I2 and not in I3, a REG_DEAD note must be made.  */
1492  rtx i3dest_killed = 0;
1493  /* SET_DEST and SET_SRC of I2 and I1.  */
1494  rtx i2dest, i2src, i1dest = 0, i1src = 0;
1495  /* PATTERN (I2), or a copy of it in certain cases.  */
1496  rtx i2pat;
1497  /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
1498  int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1499  int i1_feeds_i3 = 0;
1500  /* Notes that must be added to REG_NOTES in I3 and I2.  */
1501  rtx new_i3_notes, new_i2_notes;
1502  /* Notes that we substituted I3 into I2 instead of the normal case.  */
1503  int i3_subst_into_i2 = 0;
1504  /* Notes that I1, I2 or I3 is a MULT operation.  */
1505  int have_mult = 0;
1506
1507  int maxreg;
1508  rtx temp;
1509  rtx link;
1510  int i;
1511
1512  /* Exit early if one of the insns involved can't be used for
1513     combinations.  */
1514  if (cant_combine_insn_p (i3)
1515      || cant_combine_insn_p (i2)
1516      || (i1 && cant_combine_insn_p (i1))
1517      /* We also can't do anything if I3 has a
1518	 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1519	 libcall.  */
1520#if 0
1521      /* ??? This gives worse code, and appears to be unnecessary, since no
1522	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  */
1523      || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1524#endif
1525      )
1526    return 0;
1527
1528  combine_attempts++;
1529  undobuf.other_insn = 0;
1530
1531  /* Reset the hard register usage information.  */
1532  CLEAR_HARD_REG_SET (newpat_used_regs);
1533
1534  /* If I1 and I2 both feed I3, they can be in any order.  To simplify the
1535     code below, set I1 to be the earlier of the two insns.  */
1536  if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1537    temp = i1, i1 = i2, i2 = temp;
1538
1539  added_links_insn = 0;
1540
1541  /* First check for one important special-case that the code below will
1542     not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
1543     and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
1544     we may be able to replace that destination with the destination of I3.
1545     This occurs in the common code where we compute both a quotient and
1546     remainder into a structure, in which case we want to do the computation
1547     directly into the structure to avoid register-register copies.
1548
1549     Note that this case handles both multiple sets in I2 and also
1550     cases where I2 has a number of CLOBBER or PARALLELs.
1551
1552     We make very conservative checks below and only try to handle the
1553     most common cases of this.  For example, we only handle the case
1554     where I2 and I3 are adjacent to avoid making difficult register
1555     usage tests.  */
1556
1557  if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1558      && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1559      && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1560      && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1561      && GET_CODE (PATTERN (i2)) == PARALLEL
1562      && ! side_effects_p (SET_DEST (PATTERN (i3)))
1563      /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1564	 below would need to check what is inside (and reg_overlap_mentioned_p
1565	 doesn't support those codes anyway).  Don't allow those destinations;
1566	 the resulting insn isn't likely to be recognized anyway.  */
1567      && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1568      && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1569      && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1570				    SET_DEST (PATTERN (i3)))
1571      && next_real_insn (i2) == i3)
1572    {
1573      rtx p2 = PATTERN (i2);
1574
1575      /* Make sure that the destination of I3,
1576	 which we are going to substitute into one output of I2,
1577	 is not used within another output of I2.  We must avoid making this:
1578	 (parallel [(set (mem (reg 69)) ...)
1579		    (set (reg 69) ...)])
1580	 which is not well-defined as to order of actions.
1581	 (Besides, reload can't handle output reloads for this.)
1582
1583	 The problem can also happen if the dest of I3 is a memory ref,
1584	 if another dest in I2 is an indirect memory ref.  */
1585      for (i = 0; i < XVECLEN (p2, 0); i++)
1586	if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1587	     || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1588	    && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1589					SET_DEST (XVECEXP (p2, 0, i))))
1590	  break;
1591
1592      if (i == XVECLEN (p2, 0))
1593	for (i = 0; i < XVECLEN (p2, 0); i++)
1594	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1595	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1596	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1597	    {
1598	      combine_merges++;
1599
1600	      subst_insn = i3;
1601	      subst_low_cuid = INSN_CUID (i2);
1602
1603	      added_sets_2 = added_sets_1 = 0;
1604	      i2dest = SET_SRC (PATTERN (i3));
1605
1606	      /* Replace the dest in I2 with our dest and make the resulting
1607		 insn the new pattern for I3.  Then skip to where we
1608		 validate the pattern.  Everything was set up above.  */
1609	      SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1610		     SET_DEST (PATTERN (i3)));
1611
1612	      newpat = p2;
1613	      i3_subst_into_i2 = 1;
1614	      goto validate_replacement;
1615	    }
1616    }
1617
1618  /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1619     one of those words to another constant, merge them by making a new
1620     constant.  */
1621  if (i1 == 0
1622      && (temp = single_set (i2)) != 0
1623      && (GET_CODE (SET_SRC (temp)) == CONST_INT
1624	  || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1625      && GET_CODE (SET_DEST (temp)) == REG
1626      && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1627      && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1628      && GET_CODE (PATTERN (i3)) == SET
1629      && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1630      && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1631      && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1632      && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1633      && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1634    {
1635      HOST_WIDE_INT lo, hi;
1636
1637      if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1638	lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1639      else
1640	{
1641	  lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1642	  hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1643	}
1644
1645      if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1646	{
1647	  /* We don't handle the case of the target word being wider
1648	     than a host wide int.  */
1649	  if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1650	    abort ();
1651
1652	  lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1653	  lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1654		 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1655	}
1656      else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1657	hi = INTVAL (SET_SRC (PATTERN (i3)));
1658      else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1659	{
1660	  int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1661			     >> (HOST_BITS_PER_WIDE_INT - 1));
1662
1663	  lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1664		   (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1665	  lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1666		 (INTVAL (SET_SRC (PATTERN (i3)))));
1667	  if (hi == sign)
1668	    hi = lo < 0 ? -1 : 0;
1669	}
1670      else
1671	/* We don't handle the case of the higher word not fitting
1672	   entirely in either hi or lo.  */
1673	abort ();
1674
1675      combine_merges++;
1676      subst_insn = i3;
1677      subst_low_cuid = INSN_CUID (i2);
1678      added_sets_2 = added_sets_1 = 0;
1679      i2dest = SET_DEST (temp);
1680
1681      SUBST (SET_SRC (temp),
1682	     immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1683
1684      newpat = PATTERN (i2);
1685      goto validate_replacement;
1686    }
1687
1688#ifndef HAVE_cc0
1689  /* If we have no I1 and I2 looks like:
1690	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1691		   (set Y OP)])
1692     make up a dummy I1 that is
1693	(set Y OP)
1694     and change I2 to be
1695        (set (reg:CC X) (compare:CC Y (const_int 0)))
1696
1697     (We can ignore any trailing CLOBBERs.)
1698
1699     This undoes a previous combination and allows us to match a branch-and-
1700     decrement insn.  */
1701
1702  if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1703      && XVECLEN (PATTERN (i2), 0) >= 2
1704      && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1705      && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1706	  == MODE_CC)
1707      && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1708      && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1709      && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1710      && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1711      && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1712		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1713    {
1714      for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1715	if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1716	  break;
1717
1718      if (i == 1)
1719	{
1720	  /* We make I1 with the same INSN_UID as I2.  This gives it
1721	     the same INSN_CUID for value tracking.  Our fake I1 will
1722	     never appear in the insn stream so giving it the same INSN_UID
1723	     as I2 will not cause a problem.  */
1724
1725	  subst_prev_insn = i1
1726	    = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1727			    XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1728			    NULL_RTX);
1729
1730	  SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1731	  SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1732		 SET_DEST (PATTERN (i1)));
1733	}
1734    }
1735#endif
1736
1737  /* Verify that I2 and I1 are valid for combining.  */
1738  if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1739      || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1740    {
1741      undo_all ();
1742      return 0;
1743    }
1744
1745  /* Record whether I2DEST is used in I2SRC and similarly for the other
1746     cases.  Knowing this will help in register status updating below.  */
1747  i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1748  i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1749  i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1750
1751  /* See if I1 directly feeds into I3.  It does if I1DEST is not used
1752     in I2SRC.  */
1753  i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1754
1755  /* Ensure that I3's pattern can be the destination of combines.  */
1756  if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1757			  i1 && i2dest_in_i1src && i1_feeds_i3,
1758			  &i3dest_killed))
1759    {
1760      undo_all ();
1761      return 0;
1762    }
1763
1764  /* See if any of the insns is a MULT operation.  Unless one is, we will
1765     reject a combination that is, since it must be slower.  Be conservative
1766     here.  */
1767  if (GET_CODE (i2src) == MULT
1768      || (i1 != 0 && GET_CODE (i1src) == MULT)
1769      || (GET_CODE (PATTERN (i3)) == SET
1770	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1771    have_mult = 1;
1772
1773  /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1774     We used to do this EXCEPT in one case: I3 has a post-inc in an
1775     output operand.  However, that exception can give rise to insns like
1776	mov r3,(r3)+
1777     which is a famous insn on the PDP-11 where the value of r3 used as the
1778     source was model-dependent.  Avoid this sort of thing.  */
1779
1780#if 0
1781  if (!(GET_CODE (PATTERN (i3)) == SET
1782	&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
1783	&& GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1784	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1785	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1786    /* It's not the exception.  */
1787#endif
1788#ifdef AUTO_INC_DEC
1789    for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1790      if (REG_NOTE_KIND (link) == REG_INC
1791	  && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1792	      || (i1 != 0
1793		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1794	{
1795	  undo_all ();
1796	  return 0;
1797	}
1798#endif
1799
1800  /* See if the SETs in I1 or I2 need to be kept around in the merged
1801     instruction: whenever the value set there is still needed past I3.
1802     For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1803
1804     For the SET in I1, we have two cases:  If I1 and I2 independently
1805     feed into I3, the set in I1 needs to be kept around if I1DEST dies
1806     or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
1807     in I1 needs to be kept around unless I1DEST dies or is set in either
1808     I2 or I3.  We can distinguish these cases by seeing if I2SRC mentions
1809     I1DEST.  If so, we know I1 feeds into I2.  */
1810
1811  added_sets_2 = ! dead_or_set_p (i3, i2dest);
1812
1813  added_sets_1
1814    = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1815	       : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1816
1817  /* If the set in I2 needs to be kept around, we must make a copy of
1818     PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1819     PATTERN (I2), we are only substituting for the original I1DEST, not into
1820     an already-substituted copy.  This also prevents making self-referential
1821     rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1822     I2DEST.  */
1823
1824  i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1825	   ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1826	   : PATTERN (i2));
1827
1828  if (added_sets_2)
1829    i2pat = copy_rtx (i2pat);
1830
1831  combine_merges++;
1832
1833  /* Substitute in the latest insn for the regs set by the earlier ones.  */
1834
1835  maxreg = max_reg_num ();
1836
1837  subst_insn = i3;
1838
1839  /* It is possible that the source of I2 or I1 may be performing an
1840     unneeded operation, such as a ZERO_EXTEND of something that is known
1841     to have the high part zero.  Handle that case by letting subst look at
1842     the innermost one of them.
1843
1844     Another way to do this would be to have a function that tries to
1845     simplify a single insn instead of merging two or more insns.  We don't
1846     do this because of the potential of infinite loops and because
1847     of the potential extra memory required.  However, doing it the way
1848     we are is a bit of a kludge and doesn't catch all cases.
1849
1850     But only do this if -fexpensive-optimizations since it slows things down
1851     and doesn't usually win.  */
1852
1853  if (flag_expensive_optimizations)
1854    {
1855      /* Pass pc_rtx so no substitutions are done, just simplifications.
1856	 The cases that we are interested in here do not involve the few
1857	 cases were is_replaced is checked.  */
1858      if (i1)
1859	{
1860	  subst_low_cuid = INSN_CUID (i1);
1861	  i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1862	}
1863      else
1864	{
1865	  subst_low_cuid = INSN_CUID (i2);
1866	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1867	}
1868    }
1869
1870#ifndef HAVE_cc0
1871  /* Many machines that don't use CC0 have insns that can both perform an
1872     arithmetic operation and set the condition code.  These operations will
1873     be represented as a PARALLEL with the first element of the vector
1874     being a COMPARE of an arithmetic operation with the constant zero.
1875     The second element of the vector will set some pseudo to the result
1876     of the same arithmetic operation.  If we simplify the COMPARE, we won't
1877     match such a pattern and so will generate an extra insn.   Here we test
1878     for this case, where both the comparison and the operation result are
1879     needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1880     I2SRC.  Later we will make the PARALLEL that contains I2.  */
1881
1882  if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1883      && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1884      && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1885      && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1886    {
1887#ifdef EXTRA_CC_MODES
1888      rtx *cc_use;
1889      enum machine_mode compare_mode;
1890#endif
1891
1892      newpat = PATTERN (i3);
1893      SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1894
1895      i2_is_used = 1;
1896
1897#ifdef EXTRA_CC_MODES
1898      /* See if a COMPARE with the operand we substituted in should be done
1899	 with the mode that is currently being used.  If not, do the same
1900	 processing we do in `subst' for a SET; namely, if the destination
1901	 is used only once, try to replace it with a register of the proper
1902	 mode and also replace the COMPARE.  */
1903      if (undobuf.other_insn == 0
1904	  && (cc_use = find_single_use (SET_DEST (newpat), i3,
1905					&undobuf.other_insn))
1906	  && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1907					      i2src, const0_rtx))
1908	      != GET_MODE (SET_DEST (newpat))))
1909	{
1910	  unsigned int regno = REGNO (SET_DEST (newpat));
1911	  rtx new_dest = gen_rtx_REG (compare_mode, regno);
1912
1913	  if (regno < FIRST_PSEUDO_REGISTER
1914	      || (REG_N_SETS (regno) == 1 && ! added_sets_2
1915		  && ! REG_USERVAR_P (SET_DEST (newpat))))
1916	    {
1917	      if (regno >= FIRST_PSEUDO_REGISTER)
1918		SUBST (regno_reg_rtx[regno], new_dest);
1919
1920	      SUBST (SET_DEST (newpat), new_dest);
1921	      SUBST (XEXP (*cc_use, 0), new_dest);
1922	      SUBST (SET_SRC (newpat),
1923		     gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1924	    }
1925	  else
1926	    undobuf.other_insn = 0;
1927	}
1928#endif
1929    }
1930  else
1931#endif
1932    {
1933      n_occurrences = 0;		/* `subst' counts here */
1934
1935      /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1936	 need to make a unique copy of I2SRC each time we substitute it
1937	 to avoid self-referential rtl.  */
1938
1939      subst_low_cuid = INSN_CUID (i2);
1940      newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1941		      ! i1_feeds_i3 && i1dest_in_i1src);
1942
1943      /* Record whether i2's body now appears within i3's body.  */
1944      i2_is_used = n_occurrences;
1945    }
1946
1947  /* If we already got a failure, don't try to do more.  Otherwise,
1948     try to substitute in I1 if we have it.  */
1949
1950  if (i1 && GET_CODE (newpat) != CLOBBER)
1951    {
1952      /* Before we can do this substitution, we must redo the test done
1953	 above (see detailed comments there) that ensures  that I1DEST
1954	 isn't mentioned in any SETs in NEWPAT that are field assignments.  */
1955
1956      if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1957			      0, (rtx*) 0))
1958	{
1959	  undo_all ();
1960	  return 0;
1961	}
1962
1963      n_occurrences = 0;
1964      subst_low_cuid = INSN_CUID (i1);
1965      newpat = subst (newpat, i1dest, i1src, 0, 0);
1966    }
1967
1968  /* Fail if an autoincrement side-effect has been duplicated.  Be careful
1969     to count all the ways that I2SRC and I1SRC can be used.  */
1970  if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1971       && i2_is_used + added_sets_2 > 1)
1972      || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1973	  && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1974	      > 1))
1975      /* Fail if we tried to make a new register (we used to abort, but there's
1976	 really no reason to).  */
1977      || max_reg_num () != maxreg
1978      /* Fail if we couldn't do something and have a CLOBBER.  */
1979      || GET_CODE (newpat) == CLOBBER
1980      /* Fail if this new pattern is a MULT and we didn't have one before
1981	 at the outer level.  */
1982      || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1983	  && ! have_mult))
1984    {
1985      undo_all ();
1986      return 0;
1987    }
1988
1989  /* If the actions of the earlier insns must be kept
1990     in addition to substituting them into the latest one,
1991     we must make a new PARALLEL for the latest insn
1992     to hold additional the SETs.  */
1993
1994  if (added_sets_1 || added_sets_2)
1995    {
1996      combine_extras++;
1997
1998      if (GET_CODE (newpat) == PARALLEL)
1999	{
2000	  rtvec old = XVEC (newpat, 0);
2001	  total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2002	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2003	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2004		  sizeof (old->elem[0]) * old->num_elem);
2005	}
2006      else
2007	{
2008	  rtx old = newpat;
2009	  total_sets = 1 + added_sets_1 + added_sets_2;
2010	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2011	  XVECEXP (newpat, 0, 0) = old;
2012	}
2013
2014      if (added_sets_1)
2015	XVECEXP (newpat, 0, --total_sets)
2016	  = (GET_CODE (PATTERN (i1)) == PARALLEL
2017	     ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2018
2019      if (added_sets_2)
2020	{
2021	  /* If there is no I1, use I2's body as is.  We used to also not do
2022	     the subst call below if I2 was substituted into I3,
2023	     but that could lose a simplification.  */
2024	  if (i1 == 0)
2025	    XVECEXP (newpat, 0, --total_sets) = i2pat;
2026	  else
2027	    /* See comment where i2pat is assigned.  */
2028	    XVECEXP (newpat, 0, --total_sets)
2029	      = subst (i2pat, i1dest, i1src, 0, 0);
2030	}
2031    }
2032
2033  /* We come here when we are replacing a destination in I2 with the
2034     destination of I3.  */
2035 validate_replacement:
2036
2037  /* Note which hard regs this insn has as inputs.  */
2038  mark_used_regs_combine (newpat);
2039
2040  /* Is the result of combination a valid instruction?  */
2041  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2042
2043  /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2044     the second SET's destination is a register that is unused.  In that case,
2045     we just need the first SET.   This can occur when simplifying a divmod
2046     insn.  We *must* test for this case here because the code below that
2047     splits two independent SETs doesn't handle this case correctly when it
2048     updates the register status.  Also check the case where the first
2049     SET's destination is unused.  That would not cause incorrect code, but
2050     does cause an unneeded insn to remain.  */
2051
2052  if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2053      && XVECLEN (newpat, 0) == 2
2054      && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2055      && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2056      && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2057      && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2058      && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2059      && asm_noperands (newpat) < 0)
2060    {
2061      newpat = XVECEXP (newpat, 0, 0);
2062      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2063    }
2064
2065  else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2066	   && XVECLEN (newpat, 0) == 2
2067	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2068	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2069	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2070	   && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2071	   && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2072	   && asm_noperands (newpat) < 0)
2073    {
2074      newpat = XVECEXP (newpat, 0, 1);
2075      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2076    }
2077
2078  /* If we were combining three insns and the result is a simple SET
2079     with no ASM_OPERANDS that wasn't recognized, try to split it into two
2080     insns.  There are two ways to do this.  It can be split using a
2081     machine-specific method (like when you have an addition of a large
2082     constant) or by combine in the function find_split_point.  */
2083
2084  if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2085      && asm_noperands (newpat) < 0)
2086    {
2087      rtx m_split, *split;
2088      rtx ni2dest = i2dest;
2089
2090      /* See if the MD file can split NEWPAT.  If it can't, see if letting it
2091	 use I2DEST as a scratch register will help.  In the latter case,
2092	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
2093
2094      m_split = split_insns (newpat, i3);
2095
2096      /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2097	 inputs of NEWPAT.  */
2098
2099      /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2100	 possible to try that as a scratch reg.  This would require adding
2101	 more code to make it work though.  */
2102
2103      if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2104	{
2105	  /* If I2DEST is a hard register or the only use of a pseudo,
2106	     we can change its mode.  */
2107	  if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2108	      && GET_MODE (SET_DEST (newpat)) != VOIDmode
2109	      && GET_CODE (i2dest) == REG
2110	      && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2111		  || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2112		      && ! REG_USERVAR_P (i2dest))))
2113	    ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2114				   REGNO (i2dest));
2115
2116	  m_split = split_insns (gen_rtx_PARALLEL
2117				 (VOIDmode,
2118				  gen_rtvec (2, newpat,
2119					     gen_rtx_CLOBBER (VOIDmode,
2120							      ni2dest))),
2121				 i3);
2122	  /* If the split with the mode-changed register didn't work, try
2123	     the original register.  */
2124	  if (! m_split && ni2dest != i2dest)
2125	    {
2126	      ni2dest = i2dest;
2127	      m_split = split_insns (gen_rtx_PARALLEL
2128				     (VOIDmode,
2129				      gen_rtvec (2, newpat,
2130						 gen_rtx_CLOBBER (VOIDmode,
2131								  i2dest))),
2132				     i3);
2133	    }
2134	}
2135
2136      /* If we've split a jump pattern, we'll wind up with a sequence even
2137	 with one instruction.  We can handle that below, so extract it.  */
2138      if (m_split && GET_CODE (m_split) == SEQUENCE
2139	  && XVECLEN (m_split, 0) == 1)
2140	m_split = PATTERN (XVECEXP (m_split, 0, 0));
2141
2142      if (m_split && GET_CODE (m_split) != SEQUENCE)
2143	{
2144	  insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2145	  if (insn_code_number >= 0)
2146	    newpat = m_split;
2147	}
2148      else if (m_split && GET_CODE (m_split) == SEQUENCE
2149	       && XVECLEN (m_split, 0) == 2
2150	       && (next_real_insn (i2) == i3
2151		   || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2152					   INSN_CUID (i2))))
2153	{
2154	  rtx i2set, i3set;
2155	  rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2156	  newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2157
2158	  i3set = single_set (XVECEXP (m_split, 0, 1));
2159	  i2set = single_set (XVECEXP (m_split, 0, 0));
2160
2161	  /* In case we changed the mode of I2DEST, replace it in the
2162	     pseudo-register table here.  We can't do it above in case this
2163	     code doesn't get executed and we do a split the other way.  */
2164
2165	  if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2166	    SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2167
2168	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2169
2170	  /* If I2 or I3 has multiple SETs, we won't know how to track
2171	     register status, so don't use these insns.  If I2's destination
2172	     is used between I2 and I3, we also can't use these insns.  */
2173
2174	  if (i2_code_number >= 0 && i2set && i3set
2175	      && (next_real_insn (i2) == i3
2176		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2177	    insn_code_number = recog_for_combine (&newi3pat, i3,
2178						  &new_i3_notes);
2179	  if (insn_code_number >= 0)
2180	    newpat = newi3pat;
2181
2182	  /* It is possible that both insns now set the destination of I3.
2183	     If so, we must show an extra use of it.  */
2184
2185	  if (insn_code_number >= 0)
2186	    {
2187	      rtx new_i3_dest = SET_DEST (i3set);
2188	      rtx new_i2_dest = SET_DEST (i2set);
2189
2190	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2191		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2192		     || GET_CODE (new_i3_dest) == SUBREG)
2193		new_i3_dest = XEXP (new_i3_dest, 0);
2194
2195	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2196		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2197		     || GET_CODE (new_i2_dest) == SUBREG)
2198		new_i2_dest = XEXP (new_i2_dest, 0);
2199
2200	      if (GET_CODE (new_i3_dest) == REG
2201		  && GET_CODE (new_i2_dest) == REG
2202		  && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2203		REG_N_SETS (REGNO (new_i2_dest))++;
2204	    }
2205	}
2206
2207      /* If we can split it and use I2DEST, go ahead and see if that
2208	 helps things be recognized.  Verify that none of the registers
2209	 are set between I2 and I3.  */
2210      if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2211#ifdef HAVE_cc0
2212	  && GET_CODE (i2dest) == REG
2213#endif
2214	  /* We need I2DEST in the proper mode.  If it is a hard register
2215	     or the only use of a pseudo, we can change its mode.  */
2216	  && (GET_MODE (*split) == GET_MODE (i2dest)
2217	      || GET_MODE (*split) == VOIDmode
2218	      || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2219	      || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2220		  && ! REG_USERVAR_P (i2dest)))
2221	  && (next_real_insn (i2) == i3
2222	      || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2223	  /* We can't overwrite I2DEST if its value is still used by
2224	     NEWPAT.  */
2225	  && ! reg_referenced_p (i2dest, newpat))
2226	{
2227	  rtx newdest = i2dest;
2228	  enum rtx_code split_code = GET_CODE (*split);
2229	  enum machine_mode split_mode = GET_MODE (*split);
2230
2231	  /* Get NEWDEST as a register in the proper mode.  We have already
2232	     validated that we can do this.  */
2233	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2234	    {
2235	      newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2236
2237	      if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2238		SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2239	    }
2240
2241	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2242	     an ASHIFT.  This can occur if it was inside a PLUS and hence
2243	     appeared to be a memory address.  This is a kludge.  */
2244	  if (split_code == MULT
2245	      && GET_CODE (XEXP (*split, 1)) == CONST_INT
2246	      && INTVAL (XEXP (*split, 1)) > 0
2247	      && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2248	    {
2249	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
2250					     XEXP (*split, 0), GEN_INT (i)));
2251	      /* Update split_code because we may not have a multiply
2252		 anymore.  */
2253	      split_code = GET_CODE (*split);
2254	    }
2255
2256#ifdef INSN_SCHEDULING
2257	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2258	     be written as a ZERO_EXTEND.  */
2259	  if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2260	    SUBST (*split, gen_rtx_ZERO_EXTEND  (split_mode,
2261						 SUBREG_REG (*split)));
2262#endif
2263
2264	  newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2265	  SUBST (*split, newdest);
2266	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2267
2268	  /* If the split point was a MULT and we didn't have one before,
2269	     don't use one now.  */
2270	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2271	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2272	}
2273    }
2274
2275  /* Check for a case where we loaded from memory in a narrow mode and
2276     then sign extended it, but we need both registers.  In that case,
2277     we have a PARALLEL with both loads from the same memory location.
2278     We can split this into a load from memory followed by a register-register
2279     copy.  This saves at least one insn, more if register allocation can
2280     eliminate the copy.
2281
2282     We cannot do this if the destination of the second assignment is
2283     a register that we have already assumed is zero-extended.  Similarly
2284     for a SUBREG of such a register.  */
2285
2286  else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2287	   && GET_CODE (newpat) == PARALLEL
2288	   && XVECLEN (newpat, 0) == 2
2289	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2290	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2291	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2292	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2293			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2294	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2295				   INSN_CUID (i2))
2296	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2297	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2298	   && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2299		 (GET_CODE (temp) == REG
2300		  && reg_nonzero_bits[REGNO (temp)] != 0
2301		  && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2302		  && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2303		  && (reg_nonzero_bits[REGNO (temp)]
2304		      != GET_MODE_MASK (word_mode))))
2305	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2306		 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2307		     (GET_CODE (temp) == REG
2308		      && reg_nonzero_bits[REGNO (temp)] != 0
2309		      && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2310		      && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2311		      && (reg_nonzero_bits[REGNO (temp)]
2312			  != GET_MODE_MASK (word_mode)))))
2313	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2314					 SET_SRC (XVECEXP (newpat, 0, 1)))
2315	   && ! find_reg_note (i3, REG_UNUSED,
2316			       SET_DEST (XVECEXP (newpat, 0, 0))))
2317    {
2318      rtx ni2dest;
2319
2320      newi2pat = XVECEXP (newpat, 0, 0);
2321      ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2322      newpat = XVECEXP (newpat, 0, 1);
2323      SUBST (SET_SRC (newpat),
2324	     gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2325      i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2326
2327      if (i2_code_number >= 0)
2328	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2329
2330      if (insn_code_number >= 0)
2331	{
2332	  rtx insn;
2333	  rtx link;
2334
2335	  /* If we will be able to accept this, we have made a change to the
2336	     destination of I3.  This can invalidate a LOG_LINKS pointing
2337	     to I3.  No other part of combine.c makes such a transformation.
2338
2339	     The new I3 will have a destination that was previously the
2340	     destination of I1 or I2 and which was used in i2 or I3.  Call
2341	     distribute_links to make a LOG_LINK from the next use of
2342	     that destination.  */
2343
2344	  PATTERN (i3) = newpat;
2345	  distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2346
2347	  /* I3 now uses what used to be its destination and which is
2348	     now I2's destination.  That means we need a LOG_LINK from
2349	     I3 to I2.  But we used to have one, so we still will.
2350
2351	     However, some later insn might be using I2's dest and have
2352	     a LOG_LINK pointing at I3.  We must remove this link.
2353	     The simplest way to remove the link is to point it at I1,
2354	     which we know will be a NOTE.  */
2355
2356	  for (insn = NEXT_INSN (i3);
2357	       insn && (this_basic_block == n_basic_blocks - 1
2358			|| insn != BLOCK_HEAD (this_basic_block + 1));
2359	       insn = NEXT_INSN (insn))
2360	    {
2361	      if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2362		{
2363		  for (link = LOG_LINKS (insn); link;
2364		       link = XEXP (link, 1))
2365		    if (XEXP (link, 0) == i3)
2366		      XEXP (link, 0) = i1;
2367
2368		  break;
2369		}
2370	    }
2371	}
2372    }
2373
2374  /* Similarly, check for a case where we have a PARALLEL of two independent
2375     SETs but we started with three insns.  In this case, we can do the sets
2376     as two separate insns.  This case occurs when some SET allows two
2377     other insns to combine, but the destination of that SET is still live.  */
2378
2379  else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2380	   && GET_CODE (newpat) == PARALLEL
2381	   && XVECLEN (newpat, 0) == 2
2382	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2383	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2384	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2385	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2386	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2387	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2388	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2389				   INSN_CUID (i2))
2390	   /* Don't pass sets with (USE (MEM ...)) dests to the following.  */
2391	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2392	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2393	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2394				  XVECEXP (newpat, 0, 0))
2395	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2396				  XVECEXP (newpat, 0, 1))
2397	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2398		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2399    {
2400      /* Normally, it doesn't matter which of the two is done first,
2401	 but it does if one references cc0.  In that case, it has to
2402	 be first.  */
2403#ifdef HAVE_cc0
2404      if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2405	{
2406	  newi2pat = XVECEXP (newpat, 0, 0);
2407	  newpat = XVECEXP (newpat, 0, 1);
2408	}
2409      else
2410#endif
2411	{
2412	  newi2pat = XVECEXP (newpat, 0, 1);
2413	  newpat = XVECEXP (newpat, 0, 0);
2414	}
2415
2416      i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2417
2418      if (i2_code_number >= 0)
2419	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2420    }
2421
2422  /* If it still isn't recognized, fail and change things back the way they
2423     were.  */
2424  if ((insn_code_number < 0
2425       /* Is the result a reasonable ASM_OPERANDS?  */
2426       && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2427    {
2428      undo_all ();
2429      return 0;
2430    }
2431
2432  /* If we had to change another insn, make sure it is valid also.  */
2433  if (undobuf.other_insn)
2434    {
2435      rtx other_pat = PATTERN (undobuf.other_insn);
2436      rtx new_other_notes;
2437      rtx note, next;
2438
2439      CLEAR_HARD_REG_SET (newpat_used_regs);
2440
2441      other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2442					     &new_other_notes);
2443
2444      if (other_code_number < 0 && ! check_asm_operands (other_pat))
2445	{
2446	  undo_all ();
2447	  return 0;
2448	}
2449
2450      PATTERN (undobuf.other_insn) = other_pat;
2451
2452      /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2453	 are still valid.  Then add any non-duplicate notes added by
2454	 recog_for_combine.  */
2455      for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2456	{
2457	  next = XEXP (note, 1);
2458
2459	  if (REG_NOTE_KIND (note) == REG_UNUSED
2460	      && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2461	    {
2462	      if (GET_CODE (XEXP (note, 0)) == REG)
2463		REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2464
2465	      remove_note (undobuf.other_insn, note);
2466	    }
2467	}
2468
2469      for (note = new_other_notes; note; note = XEXP (note, 1))
2470	if (GET_CODE (XEXP (note, 0)) == REG)
2471	  REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2472
2473      distribute_notes (new_other_notes, undobuf.other_insn,
2474			undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2475    }
2476#ifdef HAVE_cc0
2477  /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2478     they are adjacent to each other or not.  */
2479  {
2480    rtx p = prev_nonnote_insn (i3);
2481    if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2482	&& sets_cc0_p (newi2pat))
2483      {
2484	undo_all ();
2485	return 0;
2486      }
2487  }
2488#endif
2489
2490  /* We now know that we can do this combination.  Merge the insns and
2491     update the status of registers and LOG_LINKS.  */
2492
2493  {
2494    rtx i3notes, i2notes, i1notes = 0;
2495    rtx i3links, i2links, i1links = 0;
2496    rtx midnotes = 0;
2497    unsigned int regno;
2498    /* Compute which registers we expect to eliminate.  newi2pat may be setting
2499       either i3dest or i2dest, so we must check it.  Also, i1dest may be the
2500       same as i3dest, in which case newi2pat may be setting i1dest.  */
2501    rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2502		   || i2dest_in_i2src || i2dest_in_i1src
2503		   ? 0 : i2dest);
2504    rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2505		   || (newi2pat && reg_set_p (i1dest, newi2pat))
2506		   ? 0 : i1dest);
2507
2508    /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2509       clear them.  */
2510    i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2511    i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2512    if (i1)
2513      i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2514
2515    /* Ensure that we do not have something that should not be shared but
2516       occurs multiple times in the new insns.  Check this by first
2517       resetting all the `used' flags and then copying anything is shared.  */
2518
2519    reset_used_flags (i3notes);
2520    reset_used_flags (i2notes);
2521    reset_used_flags (i1notes);
2522    reset_used_flags (newpat);
2523    reset_used_flags (newi2pat);
2524    if (undobuf.other_insn)
2525      reset_used_flags (PATTERN (undobuf.other_insn));
2526
2527    i3notes = copy_rtx_if_shared (i3notes);
2528    i2notes = copy_rtx_if_shared (i2notes);
2529    i1notes = copy_rtx_if_shared (i1notes);
2530    newpat = copy_rtx_if_shared (newpat);
2531    newi2pat = copy_rtx_if_shared (newi2pat);
2532    if (undobuf.other_insn)
2533      reset_used_flags (PATTERN (undobuf.other_insn));
2534
2535    INSN_CODE (i3) = insn_code_number;
2536    PATTERN (i3) = newpat;
2537    if (undobuf.other_insn)
2538      INSN_CODE (undobuf.other_insn) = other_code_number;
2539
2540    /* We had one special case above where I2 had more than one set and
2541       we replaced a destination of one of those sets with the destination
2542       of I3.  In that case, we have to update LOG_LINKS of insns later
2543       in this basic block.  Note that this (expensive) case is rare.
2544
2545       Also, in this case, we must pretend that all REG_NOTEs for I2
2546       actually came from I3, so that REG_UNUSED notes from I2 will be
2547       properly handled.  */
2548
2549    if (i3_subst_into_i2)
2550      {
2551	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2552	  if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2553	      && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2554	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2555	      && ! find_reg_note (i2, REG_UNUSED,
2556				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2557	    for (temp = NEXT_INSN (i2);
2558		 temp && (this_basic_block == n_basic_blocks - 1
2559			  || BLOCK_HEAD (this_basic_block) != temp);
2560		 temp = NEXT_INSN (temp))
2561	      if (temp != i3 && INSN_P (temp))
2562		for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2563		  if (XEXP (link, 0) == i2)
2564		    XEXP (link, 0) = i3;
2565
2566	if (i3notes)
2567	  {
2568	    rtx link = i3notes;
2569	    while (XEXP (link, 1))
2570	      link = XEXP (link, 1);
2571	    XEXP (link, 1) = i2notes;
2572	  }
2573	else
2574	  i3notes = i2notes;
2575	i2notes = 0;
2576      }
2577
2578    LOG_LINKS (i3) = 0;
2579    REG_NOTES (i3) = 0;
2580    LOG_LINKS (i2) = 0;
2581    REG_NOTES (i2) = 0;
2582
2583    if (newi2pat)
2584      {
2585	INSN_CODE (i2) = i2_code_number;
2586	PATTERN (i2) = newi2pat;
2587      }
2588    else
2589      {
2590	PUT_CODE (i2, NOTE);
2591	NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2592	NOTE_SOURCE_FILE (i2) = 0;
2593      }
2594
2595    if (i1)
2596      {
2597	LOG_LINKS (i1) = 0;
2598	REG_NOTES (i1) = 0;
2599	PUT_CODE (i1, NOTE);
2600	NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2601	NOTE_SOURCE_FILE (i1) = 0;
2602      }
2603
2604    /* Get death notes for everything that is now used in either I3 or
2605       I2 and used to die in a previous insn.  If we built two new
2606       patterns, move from I1 to I2 then I2 to I3 so that we get the
2607       proper movement on registers that I2 modifies.  */
2608
2609    if (newi2pat)
2610      {
2611	move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2612	move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2613      }
2614    else
2615      move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2616		   i3, &midnotes);
2617
2618    /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
2619    if (i3notes)
2620      distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2621			elim_i2, elim_i1);
2622    if (i2notes)
2623      distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2624			elim_i2, elim_i1);
2625    if (i1notes)
2626      distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2627			elim_i2, elim_i1);
2628    if (midnotes)
2629      distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2630			elim_i2, elim_i1);
2631
2632    /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
2633       know these are REG_UNUSED and want them to go to the desired insn,
2634       so we always pass it as i3.  We have not counted the notes in
2635       reg_n_deaths yet, so we need to do so now.  */
2636
2637    if (newi2pat && new_i2_notes)
2638      {
2639	for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2640	  if (GET_CODE (XEXP (temp, 0)) == REG)
2641	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2642
2643	distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2644      }
2645
2646    if (new_i3_notes)
2647      {
2648	for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2649	  if (GET_CODE (XEXP (temp, 0)) == REG)
2650	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2651
2652	distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2653      }
2654
2655    /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
2656       put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
2657       I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
2658       in that case, it might delete I2.  Similarly for I2 and I1.
2659       Show an additional death due to the REG_DEAD note we make here.  If
2660       we discard it in distribute_notes, we will decrement it again.  */
2661
2662    if (i3dest_killed)
2663      {
2664	if (GET_CODE (i3dest_killed) == REG)
2665	  REG_N_DEATHS (REGNO (i3dest_killed))++;
2666
2667	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2668	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2669					       NULL_RTX),
2670			    NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2671	else
2672	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2673					       NULL_RTX),
2674			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2675			    elim_i2, elim_i1);
2676      }
2677
2678    if (i2dest_in_i2src)
2679      {
2680	if (GET_CODE (i2dest) == REG)
2681	  REG_N_DEATHS (REGNO (i2dest))++;
2682
2683	if (newi2pat && reg_set_p (i2dest, newi2pat))
2684	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2685			    NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2686	else
2687	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2688			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2689			    NULL_RTX, NULL_RTX);
2690      }
2691
2692    if (i1dest_in_i1src)
2693      {
2694	if (GET_CODE (i1dest) == REG)
2695	  REG_N_DEATHS (REGNO (i1dest))++;
2696
2697	if (newi2pat && reg_set_p (i1dest, newi2pat))
2698	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2699			    NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2700	else
2701	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2702			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2703			    NULL_RTX, NULL_RTX);
2704      }
2705
2706    distribute_links (i3links);
2707    distribute_links (i2links);
2708    distribute_links (i1links);
2709
2710    if (GET_CODE (i2dest) == REG)
2711      {
2712	rtx link;
2713	rtx i2_insn = 0, i2_val = 0, set;
2714
2715	/* The insn that used to set this register doesn't exist, and
2716	   this life of the register may not exist either.  See if one of
2717	   I3's links points to an insn that sets I2DEST.  If it does,
2718	   that is now the last known value for I2DEST. If we don't update
2719	   this and I2 set the register to a value that depended on its old
2720	   contents, we will get confused.  If this insn is used, thing
2721	   will be set correctly in combine_instructions.  */
2722
2723	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2724	  if ((set = single_set (XEXP (link, 0))) != 0
2725	      && rtx_equal_p (i2dest, SET_DEST (set)))
2726	    i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2727
2728	record_value_for_reg (i2dest, i2_insn, i2_val);
2729
2730	/* If the reg formerly set in I2 died only once and that was in I3,
2731	   zero its use count so it won't make `reload' do any work.  */
2732	if (! added_sets_2
2733	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2734	    && ! i2dest_in_i2src)
2735	  {
2736	    regno = REGNO (i2dest);
2737	    REG_N_SETS (regno)--;
2738	  }
2739      }
2740
2741    if (i1 && GET_CODE (i1dest) == REG)
2742      {
2743	rtx link;
2744	rtx i1_insn = 0, i1_val = 0, set;
2745
2746	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2747	  if ((set = single_set (XEXP (link, 0))) != 0
2748	      && rtx_equal_p (i1dest, SET_DEST (set)))
2749	    i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2750
2751	record_value_for_reg (i1dest, i1_insn, i1_val);
2752
2753	regno = REGNO (i1dest);
2754	if (! added_sets_1 && ! i1dest_in_i1src)
2755	  REG_N_SETS (regno)--;
2756      }
2757
2758    /* Update reg_nonzero_bits et al for any changes that may have been made
2759       to this insn.  The order of set_nonzero_bits_and_sign_copies() is
2760       important.  Because newi2pat can affect nonzero_bits of newpat */
2761    if (newi2pat)
2762      note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2763    note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2764
2765    /* Set new_direct_jump_p if a new return or simple jump instruction
2766       has been created.
2767
2768       If I3 is now an unconditional jump, ensure that it has a
2769       BARRIER following it since it may have initially been a
2770       conditional jump.  It may also be the last nonnote insn.  */
2771
2772    if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2773      {
2774	*new_direct_jump_p = 1;
2775
2776	if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2777	    || GET_CODE (temp) != BARRIER)
2778	  emit_barrier_after (i3);
2779      }
2780    /* An NOOP jump does not need barrier, but it does need cleaning up
2781       of CFG.  */
2782    if (GET_CODE (newpat) == SET
2783	&& SET_SRC (newpat) == pc_rtx
2784	&& SET_DEST (newpat) == pc_rtx)
2785      *new_direct_jump_p = 1;
2786  }
2787
2788  combine_successes++;
2789  undo_commit ();
2790
2791  /* Clear this here, so that subsequent get_last_value calls are not
2792     affected.  */
2793  subst_prev_insn = NULL_RTX;
2794
2795  if (added_links_insn
2796      && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2797      && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2798    return added_links_insn;
2799  else
2800    return newi2pat ? i2 : i3;
2801}
2802
2803/* Undo all the modifications recorded in undobuf.  */
2804
2805static void
2806undo_all ()
2807{
2808  struct undo *undo, *next;
2809
2810  for (undo = undobuf.undos; undo; undo = next)
2811    {
2812      next = undo->next;
2813      if (undo->is_int)
2814	*undo->where.i = undo->old_contents.i;
2815      else
2816	*undo->where.r = undo->old_contents.r;
2817
2818      undo->next = undobuf.frees;
2819      undobuf.frees = undo;
2820    }
2821
2822  undobuf.undos = 0;
2823
2824  /* Clear this here, so that subsequent get_last_value calls are not
2825     affected.  */
2826  subst_prev_insn = NULL_RTX;
2827}
2828
2829/* We've committed to accepting the changes we made.  Move all
2830   of the undos to the free list.  */
2831
2832static void
2833undo_commit ()
2834{
2835  struct undo *undo, *next;
2836
2837  for (undo = undobuf.undos; undo; undo = next)
2838    {
2839      next = undo->next;
2840      undo->next = undobuf.frees;
2841      undobuf.frees = undo;
2842    }
2843  undobuf.undos = 0;
2844}
2845
2846
2847/* Find the innermost point within the rtx at LOC, possibly LOC itself,
2848   where we have an arithmetic expression and return that point.  LOC will
2849   be inside INSN.
2850
2851   try_combine will call this function to see if an insn can be split into
2852   two insns.  */
2853
2854static rtx *
2855find_split_point (loc, insn)
2856     rtx *loc;
2857     rtx insn;
2858{
2859  rtx x = *loc;
2860  enum rtx_code code = GET_CODE (x);
2861  rtx *split;
2862  unsigned HOST_WIDE_INT len = 0;
2863  HOST_WIDE_INT pos = 0;
2864  int unsignedp = 0;
2865  rtx inner = NULL_RTX;
2866
2867  /* First special-case some codes.  */
2868  switch (code)
2869    {
2870    case SUBREG:
2871#ifdef INSN_SCHEDULING
2872      /* If we are making a paradoxical SUBREG invalid, it becomes a split
2873	 point.  */
2874      if (GET_CODE (SUBREG_REG (x)) == MEM)
2875	return loc;
2876#endif
2877      return find_split_point (&SUBREG_REG (x), insn);
2878
2879    case MEM:
2880#ifdef HAVE_lo_sum
2881      /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2882	 using LO_SUM and HIGH.  */
2883      if (GET_CODE (XEXP (x, 0)) == CONST
2884	  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2885	{
2886	  SUBST (XEXP (x, 0),
2887		 gen_rtx_LO_SUM (Pmode,
2888				 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2889				 XEXP (x, 0)));
2890	  return &XEXP (XEXP (x, 0), 0);
2891	}
2892#endif
2893
2894      /* If we have a PLUS whose second operand is a constant and the
2895	 address is not valid, perhaps will can split it up using
2896	 the machine-specific way to split large constants.  We use
2897	 the first pseudo-reg (one of the virtual regs) as a placeholder;
2898	 it will not remain in the result.  */
2899      if (GET_CODE (XEXP (x, 0)) == PLUS
2900	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2901	  && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2902	{
2903	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2904	  rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2905				 subst_insn);
2906
2907	  /* This should have produced two insns, each of which sets our
2908	     placeholder.  If the source of the second is a valid address,
2909	     we can make put both sources together and make a split point
2910	     in the middle.  */
2911
2912	  if (seq && XVECLEN (seq, 0) == 2
2913	      && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2914	      && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2915	      && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2916	      && ! reg_mentioned_p (reg,
2917				    SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2918	      && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2919	      && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2920	      && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2921	      && memory_address_p (GET_MODE (x),
2922				   SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2923	    {
2924	      rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2925	      rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2926
2927	      /* Replace the placeholder in SRC2 with SRC1.  If we can
2928		 find where in SRC2 it was placed, that can become our
2929		 split point and we can replace this address with SRC2.
2930		 Just try two obvious places.  */
2931
2932	      src2 = replace_rtx (src2, reg, src1);
2933	      split = 0;
2934	      if (XEXP (src2, 0) == src1)
2935		split = &XEXP (src2, 0);
2936	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2937		       && XEXP (XEXP (src2, 0), 0) == src1)
2938		split = &XEXP (XEXP (src2, 0), 0);
2939
2940	      if (split)
2941		{
2942		  SUBST (XEXP (x, 0), src2);
2943		  return split;
2944		}
2945	    }
2946
2947	  /* If that didn't work, perhaps the first operand is complex and
2948	     needs to be computed separately, so make a split point there.
2949	     This will occur on machines that just support REG + CONST
2950	     and have a constant moved through some previous computation.  */
2951
2952	  else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2953		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2954			 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2955			     == 'o')))
2956	    return &XEXP (XEXP (x, 0), 0);
2957	}
2958      break;
2959
2960    case SET:
2961#ifdef HAVE_cc0
2962      /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2963	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2964	 we need to put the operand into a register.  So split at that
2965	 point.  */
2966
2967      if (SET_DEST (x) == cc0_rtx
2968	  && GET_CODE (SET_SRC (x)) != COMPARE
2969	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2970	  && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2971	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
2972		&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2973	return &SET_SRC (x);
2974#endif
2975
2976      /* See if we can split SET_SRC as it stands.  */
2977      split = find_split_point (&SET_SRC (x), insn);
2978      if (split && split != &SET_SRC (x))
2979	return split;
2980
2981      /* See if we can split SET_DEST as it stands.  */
2982      split = find_split_point (&SET_DEST (x), insn);
2983      if (split && split != &SET_DEST (x))
2984	return split;
2985
2986      /* See if this is a bitfield assignment with everything constant.  If
2987	 so, this is an IOR of an AND, so split it into that.  */
2988      if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2989	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2990	      <= HOST_BITS_PER_WIDE_INT)
2991	  && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2992	  && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2993	  && GET_CODE (SET_SRC (x)) == CONST_INT
2994	  && ((INTVAL (XEXP (SET_DEST (x), 1))
2995	       + INTVAL (XEXP (SET_DEST (x), 2)))
2996	      <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2997	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2998	{
2999	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3000	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3001	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3002	  rtx dest = XEXP (SET_DEST (x), 0);
3003	  enum machine_mode mode = GET_MODE (dest);
3004	  unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3005
3006	  if (BITS_BIG_ENDIAN)
3007	    pos = GET_MODE_BITSIZE (mode) - len - pos;
3008
3009	  if (src == mask)
3010	    SUBST (SET_SRC (x),
3011		   gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3012	  else
3013	    SUBST (SET_SRC (x),
3014		   gen_binary (IOR, mode,
3015			       gen_binary (AND, mode, dest,
3016					   GEN_INT (~(mask << pos)
3017						    & GET_MODE_MASK (mode))),
3018			       GEN_INT (src << pos)));
3019
3020	  SUBST (SET_DEST (x), dest);
3021
3022	  split = find_split_point (&SET_SRC (x), insn);
3023	  if (split && split != &SET_SRC (x))
3024	    return split;
3025	}
3026
3027      /* Otherwise, see if this is an operation that we can split into two.
3028	 If so, try to split that.  */
3029      code = GET_CODE (SET_SRC (x));
3030
3031      switch (code)
3032	{
3033	case AND:
3034	  /* If we are AND'ing with a large constant that is only a single
3035	     bit and the result is only being used in a context where we
3036	     need to know if it is zero or non-zero, replace it with a bit
3037	     extraction.  This will avoid the large constant, which might
3038	     have taken more than one insn to make.  If the constant were
3039	     not a valid argument to the AND but took only one insn to make,
3040	     this is no worse, but if it took more than one insn, it will
3041	     be better.  */
3042
3043	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3044	      && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3045	      && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3046	      && GET_CODE (SET_DEST (x)) == REG
3047	      && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3048	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3049	      && XEXP (*split, 0) == SET_DEST (x)
3050	      && XEXP (*split, 1) == const0_rtx)
3051	    {
3052	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3053						XEXP (SET_SRC (x), 0),
3054						pos, NULL_RTX, 1, 1, 0, 0);
3055	      if (extraction != 0)
3056		{
3057		  SUBST (SET_SRC (x), extraction);
3058		  return find_split_point (loc, insn);
3059		}
3060	    }
3061	  break;
3062
3063	case NE:
3064	  /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3065	     is known to be on, this can be converted into a NEG of a shift.  */
3066	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3067	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3068	      && 1 <= (pos = exact_log2
3069		       (nonzero_bits (XEXP (SET_SRC (x), 0),
3070				      GET_MODE (XEXP (SET_SRC (x), 0))))))
3071	    {
3072	      enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3073
3074	      SUBST (SET_SRC (x),
3075		     gen_rtx_NEG (mode,
3076				  gen_rtx_LSHIFTRT (mode,
3077						    XEXP (SET_SRC (x), 0),
3078						    GEN_INT (pos))));
3079
3080	      split = find_split_point (&SET_SRC (x), insn);
3081	      if (split && split != &SET_SRC (x))
3082		return split;
3083	    }
3084	  break;
3085
3086	case SIGN_EXTEND:
3087	  inner = XEXP (SET_SRC (x), 0);
3088
3089	  /* We can't optimize if either mode is a partial integer
3090	     mode as we don't know how many bits are significant
3091	     in those modes.  */
3092	  if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3093	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3094	    break;
3095
3096	  pos = 0;
3097	  len = GET_MODE_BITSIZE (GET_MODE (inner));
3098	  unsignedp = 0;
3099	  break;
3100
3101	case SIGN_EXTRACT:
3102	case ZERO_EXTRACT:
3103	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3104	      && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3105	    {
3106	      inner = XEXP (SET_SRC (x), 0);
3107	      len = INTVAL (XEXP (SET_SRC (x), 1));
3108	      pos = INTVAL (XEXP (SET_SRC (x), 2));
3109
3110	      if (BITS_BIG_ENDIAN)
3111		pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3112	      unsignedp = (code == ZERO_EXTRACT);
3113	    }
3114	  break;
3115
3116	default:
3117	  break;
3118	}
3119
3120      if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3121	{
3122	  enum machine_mode mode = GET_MODE (SET_SRC (x));
3123
3124	  /* For unsigned, we have a choice of a shift followed by an
3125	     AND or two shifts.  Use two shifts for field sizes where the
3126	     constant might be too large.  We assume here that we can
3127	     always at least get 8-bit constants in an AND insn, which is
3128	     true for every current RISC.  */
3129
3130	  if (unsignedp && len <= 8)
3131	    {
3132	      SUBST (SET_SRC (x),
3133		     gen_rtx_AND (mode,
3134				  gen_rtx_LSHIFTRT
3135				  (mode, gen_lowpart_for_combine (mode, inner),
3136				   GEN_INT (pos)),
3137				  GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3138
3139	      split = find_split_point (&SET_SRC (x), insn);
3140	      if (split && split != &SET_SRC (x))
3141		return split;
3142	    }
3143	  else
3144	    {
3145	      SUBST (SET_SRC (x),
3146		     gen_rtx_fmt_ee
3147		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3148		      gen_rtx_ASHIFT (mode,
3149				      gen_lowpart_for_combine (mode, inner),
3150				      GEN_INT (GET_MODE_BITSIZE (mode)
3151					       - len - pos)),
3152		      GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3153
3154	      split = find_split_point (&SET_SRC (x), insn);
3155	      if (split && split != &SET_SRC (x))
3156		return split;
3157	    }
3158	}
3159
3160      /* See if this is a simple operation with a constant as the second
3161	 operand.  It might be that this constant is out of range and hence
3162	 could be used as a split point.  */
3163      if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3164	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3165	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3166	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
3167	  && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3168	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3169		  && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3170		      == 'o'))))
3171	return &XEXP (SET_SRC (x), 1);
3172
3173      /* Finally, see if this is a simple operation with its first operand
3174	 not in a register.  The operation might require this operand in a
3175	 register, so return it as a split point.  We can always do this
3176	 because if the first operand were another operation, we would have
3177	 already found it as a split point.  */
3178      if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3179	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3180	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3181	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3182	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3183	return &XEXP (SET_SRC (x), 0);
3184
3185      return 0;
3186
3187    case AND:
3188    case IOR:
3189      /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3190	 it is better to write this as (not (ior A B)) so we can split it.
3191	 Similarly for IOR.  */
3192      if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3193	{
3194	  SUBST (*loc,
3195		 gen_rtx_NOT (GET_MODE (x),
3196			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3197					      GET_MODE (x),
3198					      XEXP (XEXP (x, 0), 0),
3199					      XEXP (XEXP (x, 1), 0))));
3200	  return find_split_point (loc, insn);
3201	}
3202
3203      /* Many RISC machines have a large set of logical insns.  If the
3204	 second operand is a NOT, put it first so we will try to split the
3205	 other operand first.  */
3206      if (GET_CODE (XEXP (x, 1)) == NOT)
3207	{
3208	  rtx tem = XEXP (x, 0);
3209	  SUBST (XEXP (x, 0), XEXP (x, 1));
3210	  SUBST (XEXP (x, 1), tem);
3211	}
3212      break;
3213
3214    default:
3215      break;
3216    }
3217
3218  /* Otherwise, select our actions depending on our rtx class.  */
3219  switch (GET_RTX_CLASS (code))
3220    {
3221    case 'b':			/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
3222    case '3':
3223      split = find_split_point (&XEXP (x, 2), insn);
3224      if (split)
3225	return split;
3226      /* ... fall through ...  */
3227    case '2':
3228    case 'c':
3229    case '<':
3230      split = find_split_point (&XEXP (x, 1), insn);
3231      if (split)
3232	return split;
3233      /* ... fall through ...  */
3234    case '1':
3235      /* Some machines have (and (shift ...) ...) insns.  If X is not
3236	 an AND, but XEXP (X, 0) is, use it as our split point.  */
3237      if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3238	return &XEXP (x, 0);
3239
3240      split = find_split_point (&XEXP (x, 0), insn);
3241      if (split)
3242	return split;
3243      return loc;
3244    }
3245
3246  /* Otherwise, we don't have a split point.  */
3247  return 0;
3248}
3249
3250/* Throughout X, replace FROM with TO, and return the result.
3251   The result is TO if X is FROM;
3252   otherwise the result is X, but its contents may have been modified.
3253   If they were modified, a record was made in undobuf so that
3254   undo_all will (among other things) return X to its original state.
3255
3256   If the number of changes necessary is too much to record to undo,
3257   the excess changes are not made, so the result is invalid.
3258   The changes already made can still be undone.
3259   undobuf.num_undo is incremented for such changes, so by testing that
3260   the caller can tell whether the result is valid.
3261
3262   `n_occurrences' is incremented each time FROM is replaced.
3263
3264   IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3265
3266   UNIQUE_COPY is non-zero if each substitution must be unique.  We do this
3267   by copying if `n_occurrences' is non-zero.  */
3268
3269static rtx
3270subst (x, from, to, in_dest, unique_copy)
3271     rtx x, from, to;
3272     int in_dest;
3273     int unique_copy;
3274{
3275  enum rtx_code code = GET_CODE (x);
3276  enum machine_mode op0_mode = VOIDmode;
3277  const char *fmt;
3278  int len, i;
3279  rtx new;
3280
3281/* Two expressions are equal if they are identical copies of a shared
3282   RTX or if they are both registers with the same register number
3283   and mode.  */
3284
3285#define COMBINE_RTX_EQUAL_P(X,Y)			\
3286  ((X) == (Y)						\
3287   || (GET_CODE (X) == REG && GET_CODE (Y) == REG	\
3288       && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3289
3290  if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3291    {
3292      n_occurrences++;
3293      return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3294    }
3295
3296  /* If X and FROM are the same register but different modes, they will
3297     not have been seen as equal above.  However, flow.c will make a
3298     LOG_LINKS entry for that case.  If we do nothing, we will try to
3299     rerecognize our original insn and, when it succeeds, we will
3300     delete the feeding insn, which is incorrect.
3301
3302     So force this insn not to match in this (rare) case.  */
3303  if (! in_dest && code == REG && GET_CODE (from) == REG
3304      && REGNO (x) == REGNO (from))
3305    return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3306
3307  /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3308     of which may contain things that can be combined.  */
3309  if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3310    return x;
3311
3312  /* It is possible to have a subexpression appear twice in the insn.
3313     Suppose that FROM is a register that appears within TO.
3314     Then, after that subexpression has been scanned once by `subst',
3315     the second time it is scanned, TO may be found.  If we were
3316     to scan TO here, we would find FROM within it and create a
3317     self-referent rtl structure which is completely wrong.  */
3318  if (COMBINE_RTX_EQUAL_P (x, to))
3319    return to;
3320
3321  /* Parallel asm_operands need special attention because all of the
3322     inputs are shared across the arms.  Furthermore, unsharing the
3323     rtl results in recognition failures.  Failure to handle this case
3324     specially can result in circular rtl.
3325
3326     Solve this by doing a normal pass across the first entry of the
3327     parallel, and only processing the SET_DESTs of the subsequent
3328     entries.  Ug.  */
3329
3330  if (code == PARALLEL
3331      && GET_CODE (XVECEXP (x, 0, 0)) == SET
3332      && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3333    {
3334      new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3335
3336      /* If this substitution failed, this whole thing fails.  */
3337      if (GET_CODE (new) == CLOBBER
3338	  && XEXP (new, 0) == const0_rtx)
3339	return new;
3340
3341      SUBST (XVECEXP (x, 0, 0), new);
3342
3343      for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3344	{
3345	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
3346
3347	  if (GET_CODE (dest) != REG
3348	      && GET_CODE (dest) != CC0
3349	      && GET_CODE (dest) != PC)
3350	    {
3351	      new = subst (dest, from, to, 0, unique_copy);
3352
3353	      /* If this substitution failed, this whole thing fails.  */
3354	      if (GET_CODE (new) == CLOBBER
3355		  && XEXP (new, 0) == const0_rtx)
3356		return new;
3357
3358	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3359	    }
3360	}
3361    }
3362  else
3363    {
3364      len = GET_RTX_LENGTH (code);
3365      fmt = GET_RTX_FORMAT (code);
3366
3367      /* We don't need to process a SET_DEST that is a register, CC0,
3368	 or PC, so set up to skip this common case.  All other cases
3369	 where we want to suppress replacing something inside a
3370	 SET_SRC are handled via the IN_DEST operand.  */
3371      if (code == SET
3372	  && (GET_CODE (SET_DEST (x)) == REG
3373	      || GET_CODE (SET_DEST (x)) == CC0
3374	      || GET_CODE (SET_DEST (x)) == PC))
3375	fmt = "ie";
3376
3377      /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3378	 constant.  */
3379      if (fmt[0] == 'e')
3380	op0_mode = GET_MODE (XEXP (x, 0));
3381
3382      for (i = 0; i < len; i++)
3383	{
3384	  if (fmt[i] == 'E')
3385	    {
3386	      int j;
3387	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3388		{
3389		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3390		    {
3391		      new = (unique_copy && n_occurrences
3392			     ? copy_rtx (to) : to);
3393		      n_occurrences++;
3394		    }
3395		  else
3396		    {
3397		      new = subst (XVECEXP (x, i, j), from, to, 0,
3398				   unique_copy);
3399
3400		      /* If this substitution failed, this whole thing
3401			 fails.  */
3402		      if (GET_CODE (new) == CLOBBER
3403			  && XEXP (new, 0) == const0_rtx)
3404			return new;
3405		    }
3406
3407		  SUBST (XVECEXP (x, i, j), new);
3408		}
3409	    }
3410	  else if (fmt[i] == 'e')
3411	    {
3412	      /* If this is a register being set, ignore it.  */
3413	      new = XEXP (x, i);
3414	      if (in_dest
3415		  && (code == SUBREG || code == STRICT_LOW_PART
3416		      || code == ZERO_EXTRACT)
3417		  && i == 0
3418		  && GET_CODE (new) == REG)
3419		;
3420
3421	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3422		{
3423		  /* In general, don't install a subreg involving two
3424		     modes not tieable.  It can worsen register
3425		     allocation, and can even make invalid reload
3426		     insns, since the reg inside may need to be copied
3427		     from in the outside mode, and that may be invalid
3428		     if it is an fp reg copied in integer mode.
3429
3430		     We allow two exceptions to this: It is valid if
3431		     it is inside another SUBREG and the mode of that
3432		     SUBREG and the mode of the inside of TO is
3433		     tieable and it is valid if X is a SET that copies
3434		     FROM to CC0.  */
3435
3436		  if (GET_CODE (to) == SUBREG
3437		      && ! MODES_TIEABLE_P (GET_MODE (to),
3438					    GET_MODE (SUBREG_REG (to)))
3439		      && ! (code == SUBREG
3440			    && MODES_TIEABLE_P (GET_MODE (x),
3441						GET_MODE (SUBREG_REG (to))))
3442#ifdef HAVE_cc0
3443		      && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3444#endif
3445		      )
3446		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3447
3448#ifdef CLASS_CANNOT_CHANGE_MODE
3449		  if (code == SUBREG
3450		      && GET_CODE (to) == REG
3451		      && REGNO (to) < FIRST_PSEUDO_REGISTER
3452		      && (TEST_HARD_REG_BIT
3453			  (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3454			   REGNO (to)))
3455		      && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3456						     GET_MODE (x)))
3457		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3458#endif
3459
3460		  new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3461		  n_occurrences++;
3462		}
3463	      else
3464		/* If we are in a SET_DEST, suppress most cases unless we
3465		   have gone inside a MEM, in which case we want to
3466		   simplify the address.  We assume here that things that
3467		   are actually part of the destination have their inner
3468		   parts in the first expression.  This is true for SUBREG,
3469		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3470		   things aside from REG and MEM that should appear in a
3471		   SET_DEST.  */
3472		new = subst (XEXP (x, i), from, to,
3473			     (((in_dest
3474				&& (code == SUBREG || code == STRICT_LOW_PART
3475				    || code == ZERO_EXTRACT))
3476			       || code == SET)
3477			      && i == 0), unique_copy);
3478
3479	      /* If we found that we will have to reject this combination,
3480		 indicate that by returning the CLOBBER ourselves, rather than
3481		 an expression containing it.  This will speed things up as
3482		 well as prevent accidents where two CLOBBERs are considered
3483		 to be equal, thus producing an incorrect simplification.  */
3484
3485	      if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3486		return new;
3487
3488	      SUBST (XEXP (x, i), new);
3489	    }
3490	}
3491    }
3492
3493  /* Try to simplify X.  If the simplification changed the code, it is likely
3494     that further simplification will help, so loop, but limit the number
3495     of repetitions that will be performed.  */
3496
3497  for (i = 0; i < 4; i++)
3498    {
3499      /* If X is sufficiently simple, don't bother trying to do anything
3500	 with it.  */
3501      if (code != CONST_INT && code != REG && code != CLOBBER)
3502	x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3503
3504      if (GET_CODE (x) == code)
3505	break;
3506
3507      code = GET_CODE (x);
3508
3509      /* We no longer know the original mode of operand 0 since we
3510	 have changed the form of X)  */
3511      op0_mode = VOIDmode;
3512    }
3513
3514  return x;
3515}
3516
3517/* Simplify X, a piece of RTL.  We just operate on the expression at the
3518   outer level; call `subst' to simplify recursively.  Return the new
3519   expression.
3520
3521   OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3522   will be the iteration even if an expression with a code different from
3523   X is returned; IN_DEST is nonzero if we are inside a SET_DEST.  */
3524
3525static rtx
3526combine_simplify_rtx (x, op0_mode, last, in_dest)
3527     rtx x;
3528     enum machine_mode op0_mode;
3529     int last;
3530     int in_dest;
3531{
3532  enum rtx_code code = GET_CODE (x);
3533  enum machine_mode mode = GET_MODE (x);
3534  rtx temp;
3535  rtx reversed;
3536  int i;
3537
3538  /* If this is a commutative operation, put a constant last and a complex
3539     expression first.  We don't need to do this for comparisons here.  */
3540  if (GET_RTX_CLASS (code) == 'c'
3541      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3542    {
3543      temp = XEXP (x, 0);
3544      SUBST (XEXP (x, 0), XEXP (x, 1));
3545      SUBST (XEXP (x, 1), temp);
3546    }
3547
3548  /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3549     sign extension of a PLUS with a constant, reverse the order of the sign
3550     extension and the addition. Note that this not the same as the original
3551     code, but overflow is undefined for signed values.  Also note that the
3552     PLUS will have been partially moved "inside" the sign-extension, so that
3553     the first operand of X will really look like:
3554         (ashiftrt (plus (ashift A C4) C5) C4).
3555     We convert this to
3556         (plus (ashiftrt (ashift A C4) C2) C4)
3557     and replace the first operand of X with that expression.  Later parts
3558     of this function may simplify the expression further.
3559
3560     For example, if we start with (mult (sign_extend (plus A C1)) C2),
3561     we swap the SIGN_EXTEND and PLUS.  Later code will apply the
3562     distributive law to produce (plus (mult (sign_extend X) C1) C3).
3563
3564     We do this to simplify address expressions.  */
3565
3566  if ((code == PLUS || code == MINUS || code == MULT)
3567      && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3568      && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3569      && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3570      && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3571      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3572      && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3573      && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3574      && (temp = simplify_binary_operation (ASHIFTRT, mode,
3575					    XEXP (XEXP (XEXP (x, 0), 0), 1),
3576					    XEXP (XEXP (x, 0), 1))) != 0)
3577    {
3578      rtx new
3579	= simplify_shift_const (NULL_RTX, ASHIFT, mode,
3580				XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3581				INTVAL (XEXP (XEXP (x, 0), 1)));
3582
3583      new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3584				  INTVAL (XEXP (XEXP (x, 0), 1)));
3585
3586      SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3587    }
3588
3589  /* If this is a simple operation applied to an IF_THEN_ELSE, try
3590     applying it to the arms of the IF_THEN_ELSE.  This often simplifies
3591     things.  Check for cases where both arms are testing the same
3592     condition.
3593
3594     Don't do anything if all operands are very simple.  */
3595
3596  if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3597	|| GET_RTX_CLASS (code) == '<')
3598       && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3599	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3600		  && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3601		      == 'o')))
3602	   || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3603	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3604		     && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3605			 == 'o')))))
3606      || (GET_RTX_CLASS (code) == '1'
3607	  && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3608	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3609		     && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3610			 == 'o'))))))
3611    {
3612      rtx cond, true_rtx, false_rtx;
3613
3614      cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3615      if (cond != 0
3616	  /* If everything is a comparison, what we have is highly unlikely
3617	     to be simpler, so don't use it.  */
3618	  && ! (GET_RTX_CLASS (code) == '<'
3619		&& (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3620		    || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3621	{
3622	  rtx cop1 = const0_rtx;
3623	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3624
3625	  if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3626	    return x;
3627
3628	  /* Simplify the alternative arms; this may collapse the true and
3629	     false arms to store-flag values.  */
3630	  true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3631	  false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3632
3633	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
3634	     is unlikely to be simpler.  */
3635	  if (general_operand (true_rtx, VOIDmode)
3636	      && general_operand (false_rtx, VOIDmode))
3637	    {
3638	      /* Restarting if we generate a store-flag expression will cause
3639		 us to loop.  Just drop through in this case.  */
3640
3641	      /* If the result values are STORE_FLAG_VALUE and zero, we can
3642		 just make the comparison operation.  */
3643	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3644		x = gen_binary (cond_code, mode, cond, cop1);
3645	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3646		       && reverse_condition (cond_code) != UNKNOWN)
3647		x = gen_binary (reverse_condition (cond_code),
3648				mode, cond, cop1);
3649
3650	      /* Likewise, we can make the negate of a comparison operation
3651		 if the result values are - STORE_FLAG_VALUE and zero.  */
3652	      else if (GET_CODE (true_rtx) == CONST_INT
3653		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3654		       && false_rtx == const0_rtx)
3655		x = simplify_gen_unary (NEG, mode,
3656					gen_binary (cond_code, mode, cond,
3657						    cop1),
3658					mode);
3659	      else if (GET_CODE (false_rtx) == CONST_INT
3660		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3661		       && true_rtx == const0_rtx)
3662		x = simplify_gen_unary (NEG, mode,
3663					gen_binary (reverse_condition
3664						    (cond_code),
3665						    mode, cond, cop1),
3666					mode);
3667	      else
3668		return gen_rtx_IF_THEN_ELSE (mode,
3669					     gen_binary (cond_code, VOIDmode,
3670							 cond, cop1),
3671					     true_rtx, false_rtx);
3672
3673	      code = GET_CODE (x);
3674	      op0_mode = VOIDmode;
3675	    }
3676	}
3677    }
3678
3679  /* Try to fold this expression in case we have constants that weren't
3680     present before.  */
3681  temp = 0;
3682  switch (GET_RTX_CLASS (code))
3683    {
3684    case '1':
3685      temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3686      break;
3687    case '<':
3688      {
3689	enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3690	if (cmp_mode == VOIDmode)
3691	  {
3692	    cmp_mode = GET_MODE (XEXP (x, 1));
3693	    if (cmp_mode == VOIDmode)
3694	      cmp_mode = op0_mode;
3695	  }
3696	temp = simplify_relational_operation (code, cmp_mode,
3697					      XEXP (x, 0), XEXP (x, 1));
3698      }
3699#ifdef FLOAT_STORE_FLAG_VALUE
3700      if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3701	{
3702	  if (temp == const0_rtx)
3703	    temp = CONST0_RTX (mode);
3704	  else
3705	    temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3706	}
3707#endif
3708      break;
3709    case 'c':
3710    case '2':
3711      temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3712      break;
3713    case 'b':
3714    case '3':
3715      temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3716					 XEXP (x, 1), XEXP (x, 2));
3717      break;
3718    }
3719
3720  if (temp)
3721    {
3722      x = temp;
3723      code = GET_CODE (temp);
3724      op0_mode = VOIDmode;
3725      mode = GET_MODE (temp);
3726    }
3727
3728  /* First see if we can apply the inverse distributive law.  */
3729  if (code == PLUS || code == MINUS
3730      || code == AND || code == IOR || code == XOR)
3731    {
3732      x = apply_distributive_law (x);
3733      code = GET_CODE (x);
3734      op0_mode = VOIDmode;
3735    }
3736
3737  /* If CODE is an associative operation not otherwise handled, see if we
3738     can associate some operands.  This can win if they are constants or
3739     if they are logically related (i.e. (a & b) & a).  */
3740  if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3741       || code == AND || code == IOR || code == XOR
3742       || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3743      && ((INTEGRAL_MODE_P (mode) && code != DIV)
3744	  || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3745    {
3746      if (GET_CODE (XEXP (x, 0)) == code)
3747	{
3748	  rtx other = XEXP (XEXP (x, 0), 0);
3749	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3750	  rtx inner_op1 = XEXP (x, 1);
3751	  rtx inner;
3752
3753	  /* Make sure we pass the constant operand if any as the second
3754	     one if this is a commutative operation.  */
3755	  if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3756	    {
3757	      rtx tem = inner_op0;
3758	      inner_op0 = inner_op1;
3759	      inner_op1 = tem;
3760	    }
3761	  inner = simplify_binary_operation (code == MINUS ? PLUS
3762					     : code == DIV ? MULT
3763					     : code,
3764					     mode, inner_op0, inner_op1);
3765
3766	  /* For commutative operations, try the other pair if that one
3767	     didn't simplify.  */
3768	  if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3769	    {
3770	      other = XEXP (XEXP (x, 0), 1);
3771	      inner = simplify_binary_operation (code, mode,
3772						 XEXP (XEXP (x, 0), 0),
3773						 XEXP (x, 1));
3774	    }
3775
3776	  if (inner)
3777	    return gen_binary (code, mode, other, inner);
3778	}
3779    }
3780
3781  /* A little bit of algebraic simplification here.  */
3782  switch (code)
3783    {
3784    case MEM:
3785      /* Ensure that our address has any ASHIFTs converted to MULT in case
3786	 address-recognizing predicates are called later.  */
3787      temp = make_compound_operation (XEXP (x, 0), MEM);
3788      SUBST (XEXP (x, 0), temp);
3789      break;
3790
3791    case SUBREG:
3792      if (op0_mode == VOIDmode)
3793	op0_mode = GET_MODE (SUBREG_REG (x));
3794
3795      /* simplify_subreg can't use gen_lowpart_for_combine.  */
3796      if (CONSTANT_P (SUBREG_REG (x))
3797	  && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3798	return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3799
3800      if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3801        break;
3802      {
3803	rtx temp;
3804	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3805				SUBREG_BYTE (x));
3806	if (temp)
3807	  return temp;
3808      }
3809
3810      /* Note that we cannot do any narrowing for non-constants since
3811	 we might have been counting on using the fact that some bits were
3812	 zero.  We now do this in the SET.  */
3813
3814      break;
3815
3816    case NOT:
3817      /* (not (plus X -1)) can become (neg X).  */
3818      if (GET_CODE (XEXP (x, 0)) == PLUS
3819	  && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3820	return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3821
3822      /* Similarly, (not (neg X)) is (plus X -1).  */
3823      if (GET_CODE (XEXP (x, 0)) == NEG)
3824	return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3825
3826      /* (not (xor X C)) for C constant is (xor X D) with D = ~C.  */
3827      if (GET_CODE (XEXP (x, 0)) == XOR
3828	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3829	  && (temp = simplify_unary_operation (NOT, mode,
3830					       XEXP (XEXP (x, 0), 1),
3831					       mode)) != 0)
3832	return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3833
3834      /* (not (ashift 1 X)) is (rotate ~1 X).  We used to do this for operands
3835	 other than 1, but that is not valid.  We could do a similar
3836	 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3837	 but this doesn't seem common enough to bother with.  */
3838      if (GET_CODE (XEXP (x, 0)) == ASHIFT
3839	  && XEXP (XEXP (x, 0), 0) == const1_rtx)
3840	return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3841							 const1_rtx, mode),
3842			       XEXP (XEXP (x, 0), 1));
3843
3844      if (GET_CODE (XEXP (x, 0)) == SUBREG
3845	  && subreg_lowpart_p (XEXP (x, 0))
3846	  && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3847	      < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3848	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3849	  && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3850	{
3851	  enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3852
3853	  x = gen_rtx_ROTATE (inner_mode,
3854			      simplify_gen_unary (NOT, inner_mode, const1_rtx,
3855						  inner_mode),
3856			      XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3857	  return gen_lowpart_for_combine (mode, x);
3858	}
3859
3860      /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3861	 reversing the comparison code if valid.  */
3862      if (STORE_FLAG_VALUE == -1
3863	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3864	  && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3865					      XEXP (XEXP (x, 0), 1))))
3866	return reversed;
3867
3868      /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3869	 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3870	 perform the above simplification.  */
3871
3872      if (STORE_FLAG_VALUE == -1
3873	  && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3874	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3875	  && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3876	return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3877
3878      /* Apply De Morgan's laws to reduce number of patterns for machines
3879	 with negating logical insns (and-not, nand, etc.).  If result has
3880	 only one NOT, put it first, since that is how the patterns are
3881	 coded.  */
3882
3883      if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3884	{
3885	  rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3886	  enum machine_mode op_mode;
3887
3888	  op_mode = GET_MODE (in1);
3889	  in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3890
3891	  op_mode = GET_MODE (in2);
3892	  if (op_mode == VOIDmode)
3893	    op_mode = mode;
3894	  in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3895
3896	  if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3897	    {
3898	      rtx tem = in2;
3899	      in2 = in1; in1 = tem;
3900	    }
3901
3902	  return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3903				 mode, in1, in2);
3904	}
3905      break;
3906
3907    case NEG:
3908      /* (neg (plus X 1)) can become (not X).  */
3909      if (GET_CODE (XEXP (x, 0)) == PLUS
3910	  && XEXP (XEXP (x, 0), 1) == const1_rtx)
3911	return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3912
3913      /* Similarly, (neg (not X)) is (plus X 1).  */
3914      if (GET_CODE (XEXP (x, 0)) == NOT)
3915	return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3916
3917      /* (neg (minus X Y)) can become (minus Y X).  */
3918      if (GET_CODE (XEXP (x, 0)) == MINUS
3919	  && (! FLOAT_MODE_P (mode)
3920	      /* x-y != -(y-x) with IEEE floating point.  */
3921	      || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3922	      || flag_unsafe_math_optimizations))
3923	return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3924			   XEXP (XEXP (x, 0), 0));
3925
3926      /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1.  */
3927      if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3928	  && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3929	return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3930
3931      /* NEG commutes with ASHIFT since it is multiplication.  Only do this
3932	 if we can then eliminate the NEG (e.g.,
3933	 if the operand is a constant).  */
3934
3935      if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3936	{
3937	  temp = simplify_unary_operation (NEG, mode,
3938					   XEXP (XEXP (x, 0), 0), mode);
3939	  if (temp)
3940	    return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3941	}
3942
3943      temp = expand_compound_operation (XEXP (x, 0));
3944
3945      /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3946	 replaced by (lshiftrt X C).  This will convert
3947	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
3948
3949      if (GET_CODE (temp) == ASHIFTRT
3950	  && GET_CODE (XEXP (temp, 1)) == CONST_INT
3951	  && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3952	return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3953				     INTVAL (XEXP (temp, 1)));
3954
3955      /* If X has only a single bit that might be nonzero, say, bit I, convert
3956	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3957	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
3958	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
3959	 or a SUBREG of one since we'd be making the expression more
3960	 complex if it was just a register.  */
3961
3962      if (GET_CODE (temp) != REG
3963	  && ! (GET_CODE (temp) == SUBREG
3964		&& GET_CODE (SUBREG_REG (temp)) == REG)
3965	  && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3966	{
3967	  rtx temp1 = simplify_shift_const
3968	    (NULL_RTX, ASHIFTRT, mode,
3969	     simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3970				   GET_MODE_BITSIZE (mode) - 1 - i),
3971	     GET_MODE_BITSIZE (mode) - 1 - i);
3972
3973	  /* If all we did was surround TEMP with the two shifts, we
3974	     haven't improved anything, so don't use it.  Otherwise,
3975	     we are better off with TEMP1.  */
3976	  if (GET_CODE (temp1) != ASHIFTRT
3977	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3978	      || XEXP (XEXP (temp1, 0), 0) != temp)
3979	    return temp1;
3980	}
3981      break;
3982
3983    case TRUNCATE:
3984      /* We can't handle truncation to a partial integer mode here
3985	 because we don't know the real bitsize of the partial
3986	 integer mode.  */
3987      if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3988	break;
3989
3990      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3991	  && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3992				    GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3993	SUBST (XEXP (x, 0),
3994	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3995			      GET_MODE_MASK (mode), NULL_RTX, 0));
3996
3997      /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI.  */
3998      if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3999	   || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4000	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4001	return XEXP (XEXP (x, 0), 0);
4002
4003      /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4004	 (OP:SI foo:SI) if OP is NEG or ABS.  */
4005      if ((GET_CODE (XEXP (x, 0)) == ABS
4006	   || GET_CODE (XEXP (x, 0)) == NEG)
4007	  && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4008	      || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4009	  && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4010	return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4011				   XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4012
4013      /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4014	 (truncate:SI x).  */
4015      if (GET_CODE (XEXP (x, 0)) == SUBREG
4016	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4017	  && subreg_lowpart_p (XEXP (x, 0)))
4018	return SUBREG_REG (XEXP (x, 0));
4019
4020      /* If we know that the value is already truncated, we can
4021         replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4022         is nonzero for the corresponding modes.  But don't do this
4023         for an (LSHIFTRT (MULT ...)) since this will cause problems
4024         with the umulXi3_highpart patterns.  */
4025      if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4026				 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4027	  && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4028	     >= GET_MODE_BITSIZE (mode) + 1
4029	  && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4030		&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4031	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4032
4033      /* A truncate of a comparison can be replaced with a subreg if
4034         STORE_FLAG_VALUE permits.  This is like the previous test,
4035         but it works even if the comparison is done in a mode larger
4036         than HOST_BITS_PER_WIDE_INT.  */
4037      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4038	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4039	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4040	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4041
4042      /* Similarly, a truncate of a register whose value is a
4043         comparison can be replaced with a subreg if STORE_FLAG_VALUE
4044         permits.  */
4045      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4046	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4047	  && (temp = get_last_value (XEXP (x, 0)))
4048	  && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4049	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4050
4051      break;
4052
4053    case FLOAT_TRUNCATE:
4054      /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF.  */
4055      if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4056	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4057	return XEXP (XEXP (x, 0), 0);
4058
4059      /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4060	 (OP:SF foo:SF) if OP is NEG or ABS.  */
4061      if ((GET_CODE (XEXP (x, 0)) == ABS
4062	   || GET_CODE (XEXP (x, 0)) == NEG)
4063	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4064	  && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4065	return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4066				   XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4067
4068      /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4069	 is (float_truncate:SF x).  */
4070      if (GET_CODE (XEXP (x, 0)) == SUBREG
4071	  && subreg_lowpart_p (XEXP (x, 0))
4072	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4073	return SUBREG_REG (XEXP (x, 0));
4074      break;
4075
4076#ifdef HAVE_cc0
4077    case COMPARE:
4078      /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4079	 using cc0, in which case we want to leave it as a COMPARE
4080	 so we can distinguish it from a register-register-copy.  */
4081      if (XEXP (x, 1) == const0_rtx)
4082	return XEXP (x, 0);
4083
4084      /* In IEEE floating point, x-0 is not the same as x.  */
4085      if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4086	   || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4087	   || flag_unsafe_math_optimizations)
4088	  && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4089	return XEXP (x, 0);
4090      break;
4091#endif
4092
4093    case CONST:
4094      /* (const (const X)) can become (const X).  Do it this way rather than
4095	 returning the inner CONST since CONST can be shared with a
4096	 REG_EQUAL note.  */
4097      if (GET_CODE (XEXP (x, 0)) == CONST)
4098	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4099      break;
4100
4101#ifdef HAVE_lo_sum
4102    case LO_SUM:
4103      /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
4104	 can add in an offset.  find_split_point will split this address up
4105	 again if it doesn't match.  */
4106      if (GET_CODE (XEXP (x, 0)) == HIGH
4107	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4108	return XEXP (x, 1);
4109      break;
4110#endif
4111
4112    case PLUS:
4113      /* If we have (plus (plus (A const) B)), associate it so that CONST is
4114	 outermost.  That's because that's the way indexed addresses are
4115	 supposed to appear.  This code used to check many more cases, but
4116	 they are now checked elsewhere.  */
4117      if (GET_CODE (XEXP (x, 0)) == PLUS
4118	  && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4119	return gen_binary (PLUS, mode,
4120			   gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4121				       XEXP (x, 1)),
4122			   XEXP (XEXP (x, 0), 1));
4123
4124      /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4125	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4126	 bit-field and can be replaced by either a sign_extend or a
4127	 sign_extract.  The `and' may be a zero_extend and the two
4128	 <c>, -<c> constants may be reversed.  */
4129      if (GET_CODE (XEXP (x, 0)) == XOR
4130	  && GET_CODE (XEXP (x, 1)) == CONST_INT
4131	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4132	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4133	  && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4134	      || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4135	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4136	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4137	       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4138	       && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4139		   == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4140	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4141		  && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4142		      == (unsigned int) i + 1))))
4143	return simplify_shift_const
4144	  (NULL_RTX, ASHIFTRT, mode,
4145	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
4146				 XEXP (XEXP (XEXP (x, 0), 0), 0),
4147				 GET_MODE_BITSIZE (mode) - (i + 1)),
4148	   GET_MODE_BITSIZE (mode) - (i + 1));
4149
4150      /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4151	 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4152	 is 1.  This produces better code than the alternative immediately
4153	 below.  */
4154      if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4155	  && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4156	      || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4157	  && (reversed = reversed_comparison (XEXP (x, 0), mode,
4158					      XEXP (XEXP (x, 0), 0),
4159					      XEXP (XEXP (x, 0), 1))))
4160	return
4161	  simplify_gen_unary (NEG, mode, reversed, mode);
4162
4163      /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4164	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4165	 the bitsize of the mode - 1.  This allows simplification of
4166	 "a = (b & 8) == 0;"  */
4167      if (XEXP (x, 1) == constm1_rtx
4168	  && GET_CODE (XEXP (x, 0)) != REG
4169	  && ! (GET_CODE (XEXP (x,0)) == SUBREG
4170		&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4171	  && nonzero_bits (XEXP (x, 0), mode) == 1)
4172	return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4173	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
4174				 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4175				 GET_MODE_BITSIZE (mode) - 1),
4176	   GET_MODE_BITSIZE (mode) - 1);
4177
4178      /* If we are adding two things that have no bits in common, convert
4179	 the addition into an IOR.  This will often be further simplified,
4180	 for example in cases like ((a & 1) + (a & 2)), which can
4181	 become a & 3.  */
4182
4183      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4184	  && (nonzero_bits (XEXP (x, 0), mode)
4185	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
4186	{
4187	  /* Try to simplify the expression further.  */
4188	  rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4189	  temp = combine_simplify_rtx (tor, mode, last, in_dest);
4190
4191	  /* If we could, great.  If not, do not go ahead with the IOR
4192	     replacement, since PLUS appears in many special purpose
4193	     address arithmetic instructions.  */
4194	  if (GET_CODE (temp) != CLOBBER && temp != tor)
4195	    return temp;
4196	}
4197      break;
4198
4199    case MINUS:
4200      /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4201	 by reversing the comparison code if valid.  */
4202      if (STORE_FLAG_VALUE == 1
4203	  && XEXP (x, 0) == const1_rtx
4204	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4205	  && (reversed = reversed_comparison (XEXP (x, 1), mode,
4206					      XEXP (XEXP (x, 1), 0),
4207					      XEXP (XEXP (x, 1), 1))))
4208	return reversed;
4209
4210      /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4211	 (and <foo> (const_int pow2-1))  */
4212      if (GET_CODE (XEXP (x, 1)) == AND
4213	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4214	  && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4215	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4216	return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4217				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4218
4219      /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4220	 integers.  */
4221      if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4222	return gen_binary (MINUS, mode,
4223			   gen_binary (MINUS, mode, XEXP (x, 0),
4224				       XEXP (XEXP (x, 1), 0)),
4225			   XEXP (XEXP (x, 1), 1));
4226      break;
4227
4228    case MULT:
4229      /* If we have (mult (plus A B) C), apply the distributive law and then
4230	 the inverse distributive law to see if things simplify.  This
4231	 occurs mostly in addresses, often when unrolling loops.  */
4232
4233      if (GET_CODE (XEXP (x, 0)) == PLUS)
4234	{
4235	  x = apply_distributive_law
4236	    (gen_binary (PLUS, mode,
4237			 gen_binary (MULT, mode,
4238				     XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4239			 gen_binary (MULT, mode,
4240				     XEXP (XEXP (x, 0), 1),
4241				     copy_rtx (XEXP (x, 1)))));
4242
4243	  if (GET_CODE (x) != MULT)
4244	    return x;
4245	}
4246      /* Try simplify a*(b/c) as (a*b)/c.  */
4247      if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4248	  && GET_CODE (XEXP (x, 0)) == DIV)
4249	{
4250	  rtx tem = simplify_binary_operation (MULT, mode,
4251					       XEXP (XEXP (x, 0), 0),
4252					       XEXP (x, 1));
4253	  if (tem)
4254	    return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4255	}
4256      break;
4257
4258    case UDIV:
4259      /* If this is a divide by a power of two, treat it as a shift if
4260	 its first operand is a shift.  */
4261      if (GET_CODE (XEXP (x, 1)) == CONST_INT
4262	  && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4263	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
4264	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4265	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4266	      || GET_CODE (XEXP (x, 0)) == ROTATE
4267	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
4268	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4269      break;
4270
4271    case EQ:  case NE:
4272    case GT:  case GTU:  case GE:  case GEU:
4273    case LT:  case LTU:  case LE:  case LEU:
4274    case UNEQ:  case LTGT:
4275    case UNGT:  case UNGE:
4276    case UNLT:  case UNLE:
4277    case UNORDERED: case ORDERED:
4278      /* If the first operand is a condition code, we can't do anything
4279	 with it.  */
4280      if (GET_CODE (XEXP (x, 0)) == COMPARE
4281	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4282#ifdef HAVE_cc0
4283	      && XEXP (x, 0) != cc0_rtx
4284#endif
4285	      ))
4286	{
4287	  rtx op0 = XEXP (x, 0);
4288	  rtx op1 = XEXP (x, 1);
4289	  enum rtx_code new_code;
4290
4291	  if (GET_CODE (op0) == COMPARE)
4292	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4293
4294	  /* Simplify our comparison, if possible.  */
4295	  new_code = simplify_comparison (code, &op0, &op1);
4296
4297	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4298	     if only the low-order bit is possibly nonzero in X (such as when
4299	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
4300	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
4301	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
4302	     (plus X 1).
4303
4304	     Remove any ZERO_EXTRACT we made when thinking this was a
4305	     comparison.  It may now be simpler to use, e.g., an AND.  If a
4306	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
4307	     the call to make_compound_operation in the SET case.  */
4308
4309	  if (STORE_FLAG_VALUE == 1
4310	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4311	      && op1 == const0_rtx
4312	      && mode == GET_MODE (op0)
4313	      && nonzero_bits (op0, mode) == 1)
4314	    return gen_lowpart_for_combine (mode,
4315					    expand_compound_operation (op0));
4316
4317	  else if (STORE_FLAG_VALUE == 1
4318		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4319		   && op1 == const0_rtx
4320		   && mode == GET_MODE (op0)
4321		   && (num_sign_bit_copies (op0, mode)
4322		       == GET_MODE_BITSIZE (mode)))
4323	    {
4324	      op0 = expand_compound_operation (op0);
4325	      return simplify_gen_unary (NEG, mode,
4326					 gen_lowpart_for_combine (mode, op0),
4327					 mode);
4328	    }
4329
4330	  else if (STORE_FLAG_VALUE == 1
4331		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4332		   && op1 == const0_rtx
4333		   && mode == GET_MODE (op0)
4334		   && nonzero_bits (op0, mode) == 1)
4335	    {
4336	      op0 = expand_compound_operation (op0);
4337	      return gen_binary (XOR, mode,
4338				 gen_lowpart_for_combine (mode, op0),
4339				 const1_rtx);
4340	    }
4341
4342	  else if (STORE_FLAG_VALUE == 1
4343		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4344		   && op1 == const0_rtx
4345		   && mode == GET_MODE (op0)
4346		   && (num_sign_bit_copies (op0, mode)
4347		       == GET_MODE_BITSIZE (mode)))
4348	    {
4349	      op0 = expand_compound_operation (op0);
4350	      return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4351	    }
4352
4353	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
4354	     those above.  */
4355	  if (STORE_FLAG_VALUE == -1
4356	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4357	      && op1 == const0_rtx
4358	      && (num_sign_bit_copies (op0, mode)
4359		  == GET_MODE_BITSIZE (mode)))
4360	    return gen_lowpart_for_combine (mode,
4361					    expand_compound_operation (op0));
4362
4363	  else if (STORE_FLAG_VALUE == -1
4364		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4365		   && op1 == const0_rtx
4366		   && mode == GET_MODE (op0)
4367		   && nonzero_bits (op0, mode) == 1)
4368	    {
4369	      op0 = expand_compound_operation (op0);
4370	      return simplify_gen_unary (NEG, mode,
4371					 gen_lowpart_for_combine (mode, op0),
4372					 mode);
4373	    }
4374
4375	  else if (STORE_FLAG_VALUE == -1
4376		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4377		   && op1 == const0_rtx
4378		   && mode == GET_MODE (op0)
4379		   && (num_sign_bit_copies (op0, mode)
4380		       == GET_MODE_BITSIZE (mode)))
4381	    {
4382	      op0 = expand_compound_operation (op0);
4383	      return simplify_gen_unary (NOT, mode,
4384					 gen_lowpart_for_combine (mode, op0),
4385					 mode);
4386	    }
4387
4388	  /* If X is 0/1, (eq X 0) is X-1.  */
4389	  else if (STORE_FLAG_VALUE == -1
4390		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4391		   && op1 == const0_rtx
4392		   && mode == GET_MODE (op0)
4393		   && nonzero_bits (op0, mode) == 1)
4394	    {
4395	      op0 = expand_compound_operation (op0);
4396	      return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4397	    }
4398
4399	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4400	     one bit that might be nonzero, we can convert (ne x 0) to
4401	     (ashift x c) where C puts the bit in the sign bit.  Remove any
4402	     AND with STORE_FLAG_VALUE when we are done, since we are only
4403	     going to test the sign bit.  */
4404	  if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4405	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4406	      && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4407		  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4408	      && op1 == const0_rtx
4409	      && mode == GET_MODE (op0)
4410	      && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4411	    {
4412	      x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4413					expand_compound_operation (op0),
4414					GET_MODE_BITSIZE (mode) - 1 - i);
4415	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4416		return XEXP (x, 0);
4417	      else
4418		return x;
4419	    }
4420
4421	  /* If the code changed, return a whole new comparison.  */
4422	  if (new_code != code)
4423	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4424
4425	  /* Otherwise, keep this operation, but maybe change its operands.
4426	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
4427	  SUBST (XEXP (x, 0), op0);
4428	  SUBST (XEXP (x, 1), op1);
4429	}
4430      break;
4431
4432    case IF_THEN_ELSE:
4433      return simplify_if_then_else (x);
4434
4435    case ZERO_EXTRACT:
4436    case SIGN_EXTRACT:
4437    case ZERO_EXTEND:
4438    case SIGN_EXTEND:
4439      /* If we are processing SET_DEST, we are done.  */
4440      if (in_dest)
4441	return x;
4442
4443      return expand_compound_operation (x);
4444
4445    case SET:
4446      return simplify_set (x);
4447
4448    case AND:
4449    case IOR:
4450    case XOR:
4451      return simplify_logical (x, last);
4452
4453    case ABS:
4454      /* (abs (neg <foo>)) -> (abs <foo>) */
4455      if (GET_CODE (XEXP (x, 0)) == NEG)
4456	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4457
4458      /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4459         do nothing.  */
4460      if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4461	break;
4462
4463      /* If operand is something known to be positive, ignore the ABS.  */
4464      if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4465	  || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4466	       <= HOST_BITS_PER_WIDE_INT)
4467	      && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4468		   & ((HOST_WIDE_INT) 1
4469		      << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4470		  == 0)))
4471	return XEXP (x, 0);
4472
4473      /* If operand is known to be only -1 or 0, convert ABS to NEG.  */
4474      if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4475	return gen_rtx_NEG (mode, XEXP (x, 0));
4476
4477      break;
4478
4479    case FFS:
4480      /* (ffs (*_extend <X>)) = (ffs <X>) */
4481      if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4482	  || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4483	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4484      break;
4485
4486    case FLOAT:
4487      /* (float (sign_extend <X>)) = (float <X>).  */
4488      if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4489	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4490      break;
4491
4492    case ASHIFT:
4493    case LSHIFTRT:
4494    case ASHIFTRT:
4495    case ROTATE:
4496    case ROTATERT:
4497      /* If this is a shift by a constant amount, simplify it.  */
4498      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4499	return simplify_shift_const (x, code, mode, XEXP (x, 0),
4500				     INTVAL (XEXP (x, 1)));
4501
4502#ifdef SHIFT_COUNT_TRUNCATED
4503      else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4504	SUBST (XEXP (x, 1),
4505	       force_to_mode (XEXP (x, 1), GET_MODE (x),
4506			      ((HOST_WIDE_INT) 1
4507			       << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4508			      - 1,
4509			      NULL_RTX, 0));
4510#endif
4511
4512      break;
4513
4514    case VEC_SELECT:
4515      {
4516	rtx op0 = XEXP (x, 0);
4517	rtx op1 = XEXP (x, 1);
4518	int len;
4519
4520	if (GET_CODE (op1) != PARALLEL)
4521	  abort ();
4522	len = XVECLEN (op1, 0);
4523	if (len == 1
4524	    && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4525	    && GET_CODE (op0) == VEC_CONCAT)
4526	  {
4527	    int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4528
4529	    /* Try to find the element in the VEC_CONCAT.  */
4530	    for (;;)
4531	      {
4532		if (GET_MODE (op0) == GET_MODE (x))
4533		  return op0;
4534		if (GET_CODE (op0) == VEC_CONCAT)
4535		  {
4536		    HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4537		    if (op0_size < offset)
4538		      op0 = XEXP (op0, 0);
4539		    else
4540		      {
4541			offset -= op0_size;
4542			op0 = XEXP (op0, 1);
4543		      }
4544		  }
4545		else
4546		  break;
4547	      }
4548	  }
4549      }
4550
4551      break;
4552
4553    default:
4554      break;
4555    }
4556
4557  return x;
4558}
4559
4560/* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
4561
4562static rtx
4563simplify_if_then_else (x)
4564     rtx x;
4565{
4566  enum machine_mode mode = GET_MODE (x);
4567  rtx cond = XEXP (x, 0);
4568  rtx true_rtx = XEXP (x, 1);
4569  rtx false_rtx = XEXP (x, 2);
4570  enum rtx_code true_code = GET_CODE (cond);
4571  int comparison_p = GET_RTX_CLASS (true_code) == '<';
4572  rtx temp;
4573  int i;
4574  enum rtx_code false_code;
4575  rtx reversed;
4576
4577  /* Simplify storing of the truth value.  */
4578  if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4579    return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4580
4581  /* Also when the truth value has to be reversed.  */
4582  if (comparison_p
4583      && true_rtx == const0_rtx && false_rtx == const_true_rtx
4584      && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4585					  XEXP (cond, 1))))
4586    return reversed;
4587
4588  /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4589     in it is being compared against certain values.  Get the true and false
4590     comparisons and see if that says anything about the value of each arm.  */
4591
4592  if (comparison_p
4593      && ((false_code = combine_reversed_comparison_code (cond))
4594	  != UNKNOWN)
4595      && GET_CODE (XEXP (cond, 0)) == REG)
4596    {
4597      HOST_WIDE_INT nzb;
4598      rtx from = XEXP (cond, 0);
4599      rtx true_val = XEXP (cond, 1);
4600      rtx false_val = true_val;
4601      int swapped = 0;
4602
4603      /* If FALSE_CODE is EQ, swap the codes and arms.  */
4604
4605      if (false_code == EQ)
4606	{
4607	  swapped = 1, true_code = EQ, false_code = NE;
4608	  temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4609	}
4610
4611      /* If we are comparing against zero and the expression being tested has
4612	 only a single bit that might be nonzero, that is its value when it is
4613	 not equal to zero.  Similarly if it is known to be -1 or 0.  */
4614
4615      if (true_code == EQ && true_val == const0_rtx
4616	  && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4617	false_code = EQ, false_val = GEN_INT (nzb);
4618      else if (true_code == EQ && true_val == const0_rtx
4619	       && (num_sign_bit_copies (from, GET_MODE (from))
4620		   == GET_MODE_BITSIZE (GET_MODE (from))))
4621	false_code = EQ, false_val = constm1_rtx;
4622
4623      /* Now simplify an arm if we know the value of the register in the
4624	 branch and it is used in the arm.  Be careful due to the potential
4625	 of locally-shared RTL.  */
4626
4627      if (reg_mentioned_p (from, true_rtx))
4628	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4629				      from, true_val),
4630		      pc_rtx, pc_rtx, 0, 0);
4631      if (reg_mentioned_p (from, false_rtx))
4632	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4633				   from, false_val),
4634		       pc_rtx, pc_rtx, 0, 0);
4635
4636      SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4637      SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4638
4639      true_rtx = XEXP (x, 1);
4640      false_rtx = XEXP (x, 2);
4641      true_code = GET_CODE (cond);
4642    }
4643
4644  /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4645     reversed, do so to avoid needing two sets of patterns for
4646     subtract-and-branch insns.  Similarly if we have a constant in the true
4647     arm, the false arm is the same as the first operand of the comparison, or
4648     the false arm is more complicated than the true arm.  */
4649
4650  if (comparison_p
4651      && combine_reversed_comparison_code (cond) != UNKNOWN
4652      && (true_rtx == pc_rtx
4653	  || (CONSTANT_P (true_rtx)
4654	      && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4655	  || true_rtx == const0_rtx
4656	  || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4657	      && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4658	  || (GET_CODE (true_rtx) == SUBREG
4659	      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4660	      && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4661	  || reg_mentioned_p (true_rtx, false_rtx)
4662	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4663    {
4664      true_code = reversed_comparison_code (cond, NULL);
4665      SUBST (XEXP (x, 0),
4666	     reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4667				  XEXP (cond, 1)));
4668
4669      SUBST (XEXP (x, 1), false_rtx);
4670      SUBST (XEXP (x, 2), true_rtx);
4671
4672      temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4673      cond = XEXP (x, 0);
4674
4675      /* It is possible that the conditional has been simplified out.  */
4676      true_code = GET_CODE (cond);
4677      comparison_p = GET_RTX_CLASS (true_code) == '<';
4678    }
4679
4680  /* If the two arms are identical, we don't need the comparison.  */
4681
4682  if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4683    return true_rtx;
4684
4685  /* Convert a == b ? b : a to "a".  */
4686  if (true_code == EQ && ! side_effects_p (cond)
4687      && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4688      && rtx_equal_p (XEXP (cond, 0), false_rtx)
4689      && rtx_equal_p (XEXP (cond, 1), true_rtx))
4690    return false_rtx;
4691  else if (true_code == NE && ! side_effects_p (cond)
4692	   && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4693	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
4694	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
4695    return true_rtx;
4696
4697  /* Look for cases where we have (abs x) or (neg (abs X)).  */
4698
4699  if (GET_MODE_CLASS (mode) == MODE_INT
4700      && GET_CODE (false_rtx) == NEG
4701      && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4702      && comparison_p
4703      && rtx_equal_p (true_rtx, XEXP (cond, 0))
4704      && ! side_effects_p (true_rtx))
4705    switch (true_code)
4706      {
4707      case GT:
4708      case GE:
4709	return simplify_gen_unary (ABS, mode, true_rtx, mode);
4710      case LT:
4711      case LE:
4712	return
4713	  simplify_gen_unary (NEG, mode,
4714			      simplify_gen_unary (ABS, mode, true_rtx, mode),
4715			      mode);
4716      default:
4717	break;
4718      }
4719
4720  /* Look for MIN or MAX.  */
4721
4722  if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4723      && comparison_p
4724      && rtx_equal_p (XEXP (cond, 0), true_rtx)
4725      && rtx_equal_p (XEXP (cond, 1), false_rtx)
4726      && ! side_effects_p (cond))
4727    switch (true_code)
4728      {
4729      case GE:
4730      case GT:
4731	return gen_binary (SMAX, mode, true_rtx, false_rtx);
4732      case LE:
4733      case LT:
4734	return gen_binary (SMIN, mode, true_rtx, false_rtx);
4735      case GEU:
4736      case GTU:
4737	return gen_binary (UMAX, mode, true_rtx, false_rtx);
4738      case LEU:
4739      case LTU:
4740	return gen_binary (UMIN, mode, true_rtx, false_rtx);
4741      default:
4742	break;
4743      }
4744
4745  /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4746     second operand is zero, this can be done as (OP Z (mult COND C2)) where
4747     C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4748     SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4749     We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4750     neither 1 or -1, but it isn't worth checking for.  */
4751
4752  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4753      && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4754    {
4755      rtx t = make_compound_operation (true_rtx, SET);
4756      rtx f = make_compound_operation (false_rtx, SET);
4757      rtx cond_op0 = XEXP (cond, 0);
4758      rtx cond_op1 = XEXP (cond, 1);
4759      enum rtx_code op = NIL, extend_op = NIL;
4760      enum machine_mode m = mode;
4761      rtx z = 0, c1 = NULL_RTX;
4762
4763      if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4764	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4765	   || GET_CODE (t) == ASHIFT
4766	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4767	  && rtx_equal_p (XEXP (t, 0), f))
4768	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4769
4770      /* If an identity-zero op is commutative, check whether there
4771	 would be a match if we swapped the operands.  */
4772      else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4773		|| GET_CODE (t) == XOR)
4774	       && rtx_equal_p (XEXP (t, 1), f))
4775	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4776      else if (GET_CODE (t) == SIGN_EXTEND
4777	       && (GET_CODE (XEXP (t, 0)) == PLUS
4778		   || GET_CODE (XEXP (t, 0)) == MINUS
4779		   || GET_CODE (XEXP (t, 0)) == IOR
4780		   || GET_CODE (XEXP (t, 0)) == XOR
4781		   || GET_CODE (XEXP (t, 0)) == ASHIFT
4782		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4783		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4784	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4785	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4786	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4787	       && (num_sign_bit_copies (f, GET_MODE (f))
4788		   > (GET_MODE_BITSIZE (mode)
4789		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4790	{
4791	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4792	  extend_op = SIGN_EXTEND;
4793	  m = GET_MODE (XEXP (t, 0));
4794	}
4795      else if (GET_CODE (t) == SIGN_EXTEND
4796	       && (GET_CODE (XEXP (t, 0)) == PLUS
4797		   || GET_CODE (XEXP (t, 0)) == IOR
4798		   || GET_CODE (XEXP (t, 0)) == XOR)
4799	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4800	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4801	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4802	       && (num_sign_bit_copies (f, GET_MODE (f))
4803		   > (GET_MODE_BITSIZE (mode)
4804		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4805	{
4806	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4807	  extend_op = SIGN_EXTEND;
4808	  m = GET_MODE (XEXP (t, 0));
4809	}
4810      else if (GET_CODE (t) == ZERO_EXTEND
4811	       && (GET_CODE (XEXP (t, 0)) == PLUS
4812		   || GET_CODE (XEXP (t, 0)) == MINUS
4813		   || GET_CODE (XEXP (t, 0)) == IOR
4814		   || GET_CODE (XEXP (t, 0)) == XOR
4815		   || GET_CODE (XEXP (t, 0)) == ASHIFT
4816		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4817		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4818	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4819	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4820	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4821	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4822	       && ((nonzero_bits (f, GET_MODE (f))
4823		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4824		   == 0))
4825	{
4826	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4827	  extend_op = ZERO_EXTEND;
4828	  m = GET_MODE (XEXP (t, 0));
4829	}
4830      else if (GET_CODE (t) == ZERO_EXTEND
4831	       && (GET_CODE (XEXP (t, 0)) == PLUS
4832		   || GET_CODE (XEXP (t, 0)) == IOR
4833		   || GET_CODE (XEXP (t, 0)) == XOR)
4834	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4835	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4836	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4837	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4838	       && ((nonzero_bits (f, GET_MODE (f))
4839		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4840		   == 0))
4841	{
4842	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4843	  extend_op = ZERO_EXTEND;
4844	  m = GET_MODE (XEXP (t, 0));
4845	}
4846
4847      if (z)
4848	{
4849	  temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4850			pc_rtx, pc_rtx, 0, 0);
4851	  temp = gen_binary (MULT, m, temp,
4852			     gen_binary (MULT, m, c1, const_true_rtx));
4853	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4854	  temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4855
4856	  if (extend_op != NIL)
4857	    temp = simplify_gen_unary (extend_op, mode, temp, m);
4858
4859	  return temp;
4860	}
4861    }
4862
4863  /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4864     1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4865     negation of a single bit, we can convert this operation to a shift.  We
4866     can actually do this more generally, but it doesn't seem worth it.  */
4867
4868  if (true_code == NE && XEXP (cond, 1) == const0_rtx
4869      && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4870      && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4871	   && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4872	  || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4873	       == GET_MODE_BITSIZE (mode))
4874	      && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4875    return
4876      simplify_shift_const (NULL_RTX, ASHIFT, mode,
4877			    gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4878
4879  return x;
4880}
4881
4882/* Simplify X, a SET expression.  Return the new expression.  */
4883
4884static rtx
4885simplify_set (x)
4886     rtx x;
4887{
4888  rtx src = SET_SRC (x);
4889  rtx dest = SET_DEST (x);
4890  enum machine_mode mode
4891    = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4892  rtx other_insn;
4893  rtx *cc_use;
4894
4895  /* (set (pc) (return)) gets written as (return).  */
4896  if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4897    return src;
4898
4899  /* Now that we know for sure which bits of SRC we are using, see if we can
4900     simplify the expression for the object knowing that we only need the
4901     low-order bits.  */
4902
4903  if (GET_MODE_CLASS (mode) == MODE_INT)
4904    {
4905      src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4906      SUBST (SET_SRC (x), src);
4907    }
4908
4909  /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4910     the comparison result and try to simplify it unless we already have used
4911     undobuf.other_insn.  */
4912  if ((GET_CODE (src) == COMPARE
4913#ifdef HAVE_cc0
4914       || dest == cc0_rtx
4915#endif
4916       )
4917      && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4918      && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4919      && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4920      && rtx_equal_p (XEXP (*cc_use, 0), dest))
4921    {
4922      enum rtx_code old_code = GET_CODE (*cc_use);
4923      enum rtx_code new_code;
4924      rtx op0, op1;
4925      int other_changed = 0;
4926      enum machine_mode compare_mode = GET_MODE (dest);
4927
4928      if (GET_CODE (src) == COMPARE)
4929	op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4930      else
4931	op0 = src, op1 = const0_rtx;
4932
4933      /* Simplify our comparison, if possible.  */
4934      new_code = simplify_comparison (old_code, &op0, &op1);
4935
4936#ifdef EXTRA_CC_MODES
4937      /* If this machine has CC modes other than CCmode, check to see if we
4938	 need to use a different CC mode here.  */
4939      compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4940#endif /* EXTRA_CC_MODES */
4941
4942#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4943      /* If the mode changed, we have to change SET_DEST, the mode in the
4944	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
4945	 a hard register, just build new versions with the proper mode.  If it
4946	 is a pseudo, we lose unless it is only time we set the pseudo, in
4947	 which case we can safely change its mode.  */
4948      if (compare_mode != GET_MODE (dest))
4949	{
4950	  unsigned int regno = REGNO (dest);
4951	  rtx new_dest = gen_rtx_REG (compare_mode, regno);
4952
4953	  if (regno < FIRST_PSEUDO_REGISTER
4954	      || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4955	    {
4956	      if (regno >= FIRST_PSEUDO_REGISTER)
4957		SUBST (regno_reg_rtx[regno], new_dest);
4958
4959	      SUBST (SET_DEST (x), new_dest);
4960	      SUBST (XEXP (*cc_use, 0), new_dest);
4961	      other_changed = 1;
4962
4963	      dest = new_dest;
4964	    }
4965	}
4966#endif
4967
4968      /* If the code changed, we have to build a new comparison in
4969	 undobuf.other_insn.  */
4970      if (new_code != old_code)
4971	{
4972	  unsigned HOST_WIDE_INT mask;
4973
4974	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
4975					  dest, const0_rtx));
4976
4977	  /* If the only change we made was to change an EQ into an NE or
4978	     vice versa, OP0 has only one bit that might be nonzero, and OP1
4979	     is zero, check if changing the user of the condition code will
4980	     produce a valid insn.  If it won't, we can keep the original code
4981	     in that insn by surrounding our operation with an XOR.  */
4982
4983	  if (((old_code == NE && new_code == EQ)
4984	       || (old_code == EQ && new_code == NE))
4985	      && ! other_changed && op1 == const0_rtx
4986	      && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4987	      && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4988	    {
4989	      rtx pat = PATTERN (other_insn), note = 0;
4990
4991	      if ((recog_for_combine (&pat, other_insn, &note) < 0
4992		   && ! check_asm_operands (pat)))
4993		{
4994		  PUT_CODE (*cc_use, old_code);
4995		  other_insn = 0;
4996
4997		  op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4998		}
4999	    }
5000
5001	  other_changed = 1;
5002	}
5003
5004      if (other_changed)
5005	undobuf.other_insn = other_insn;
5006
5007#ifdef HAVE_cc0
5008      /* If we are now comparing against zero, change our source if
5009	 needed.  If we do not use cc0, we always have a COMPARE.  */
5010      if (op1 == const0_rtx && dest == cc0_rtx)
5011	{
5012	  SUBST (SET_SRC (x), op0);
5013	  src = op0;
5014	}
5015      else
5016#endif
5017
5018      /* Otherwise, if we didn't previously have a COMPARE in the
5019	 correct mode, we need one.  */
5020      if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5021	{
5022	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5023	  src = SET_SRC (x);
5024	}
5025      else
5026	{
5027	  /* Otherwise, update the COMPARE if needed.  */
5028	  SUBST (XEXP (src, 0), op0);
5029	  SUBST (XEXP (src, 1), op1);
5030	}
5031    }
5032  else
5033    {
5034      /* Get SET_SRC in a form where we have placed back any
5035	 compound expressions.  Then do the checks below.  */
5036      src = make_compound_operation (src, SET);
5037      SUBST (SET_SRC (x), src);
5038    }
5039
5040  /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5041     and X being a REG or (subreg (reg)), we may be able to convert this to
5042     (set (subreg:m2 x) (op)).
5043
5044     We can always do this if M1 is narrower than M2 because that means that
5045     we only care about the low bits of the result.
5046
5047     However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5048     perform a narrower operation than requested since the high-order bits will
5049     be undefined.  On machine where it is defined, this transformation is safe
5050     as long as M1 and M2 have the same number of words.  */
5051
5052  if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5053      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5054      && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5055	   / UNITS_PER_WORD)
5056	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5057	       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5058#ifndef WORD_REGISTER_OPERATIONS
5059      && (GET_MODE_SIZE (GET_MODE (src))
5060	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5061#endif
5062#ifdef CLASS_CANNOT_CHANGE_MODE
5063      && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5064	    && (TEST_HARD_REG_BIT
5065		(reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5066		 REGNO (dest)))
5067	    && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5068					   GET_MODE (SUBREG_REG (src))))
5069#endif
5070      && (GET_CODE (dest) == REG
5071	  || (GET_CODE (dest) == SUBREG
5072	      && GET_CODE (SUBREG_REG (dest)) == REG)))
5073    {
5074      SUBST (SET_DEST (x),
5075	     gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5076				      dest));
5077      SUBST (SET_SRC (x), SUBREG_REG (src));
5078
5079      src = SET_SRC (x), dest = SET_DEST (x);
5080    }
5081
5082#ifdef LOAD_EXTEND_OP
5083  /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5084     would require a paradoxical subreg.  Replace the subreg with a
5085     zero_extend to avoid the reload that would otherwise be required.  */
5086
5087  if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5088      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5089      && SUBREG_BYTE (src) == 0
5090      && (GET_MODE_SIZE (GET_MODE (src))
5091	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5092      && GET_CODE (SUBREG_REG (src)) == MEM)
5093    {
5094      SUBST (SET_SRC (x),
5095	     gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5096		      GET_MODE (src), SUBREG_REG (src)));
5097
5098      src = SET_SRC (x);
5099    }
5100#endif
5101
5102  /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5103     are comparing an item known to be 0 or -1 against 0, use a logical
5104     operation instead. Check for one of the arms being an IOR of the other
5105     arm with some value.  We compute three terms to be IOR'ed together.  In
5106     practice, at most two will be nonzero.  Then we do the IOR's.  */
5107
5108  if (GET_CODE (dest) != PC
5109      && GET_CODE (src) == IF_THEN_ELSE
5110      && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5111      && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5112      && XEXP (XEXP (src, 0), 1) == const0_rtx
5113      && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5114#ifdef HAVE_conditional_move
5115      && ! can_conditionally_move_p (GET_MODE (src))
5116#endif
5117      && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5118			       GET_MODE (XEXP (XEXP (src, 0), 0)))
5119	  == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5120      && ! side_effects_p (src))
5121    {
5122      rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5123		      ? XEXP (src, 1) : XEXP (src, 2));
5124      rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5125		   ? XEXP (src, 2) : XEXP (src, 1));
5126      rtx term1 = const0_rtx, term2, term3;
5127
5128      if (GET_CODE (true_rtx) == IOR
5129	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5130	term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5131      else if (GET_CODE (true_rtx) == IOR
5132	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5133	term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5134      else if (GET_CODE (false_rtx) == IOR
5135	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5136	term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5137      else if (GET_CODE (false_rtx) == IOR
5138	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5139	term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5140
5141      term2 = gen_binary (AND, GET_MODE (src),
5142			  XEXP (XEXP (src, 0), 0), true_rtx);
5143      term3 = gen_binary (AND, GET_MODE (src),
5144			  simplify_gen_unary (NOT, GET_MODE (src),
5145					      XEXP (XEXP (src, 0), 0),
5146					      GET_MODE (src)),
5147			  false_rtx);
5148
5149      SUBST (SET_SRC (x),
5150	     gen_binary (IOR, GET_MODE (src),
5151			 gen_binary (IOR, GET_MODE (src), term1, term2),
5152			 term3));
5153
5154      src = SET_SRC (x);
5155    }
5156
5157  /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5158     whole thing fail.  */
5159  if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5160    return src;
5161  else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5162    return dest;
5163  else
5164    /* Convert this into a field assignment operation, if possible.  */
5165    return make_field_assignment (x);
5166}
5167
5168/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5169   result.  LAST is nonzero if this is the last retry.  */
5170
5171static rtx
5172simplify_logical (x, last)
5173     rtx x;
5174     int last;
5175{
5176  enum machine_mode mode = GET_MODE (x);
5177  rtx op0 = XEXP (x, 0);
5178  rtx op1 = XEXP (x, 1);
5179  rtx reversed;
5180
5181  switch (GET_CODE (x))
5182    {
5183    case AND:
5184      /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5185	 insn (and may simplify more).  */
5186      if (GET_CODE (op0) == XOR
5187	  && rtx_equal_p (XEXP (op0, 0), op1)
5188	  && ! side_effects_p (op1))
5189	x = gen_binary (AND, mode,
5190			simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5191			op1);
5192
5193      if (GET_CODE (op0) == XOR
5194	  && rtx_equal_p (XEXP (op0, 1), op1)
5195	  && ! side_effects_p (op1))
5196	x = gen_binary (AND, mode,
5197			simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5198			op1);
5199
5200      /* Similarly for (~(A ^ B)) & A.  */
5201      if (GET_CODE (op0) == NOT
5202	  && GET_CODE (XEXP (op0, 0)) == XOR
5203	  && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5204	  && ! side_effects_p (op1))
5205	x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5206
5207      if (GET_CODE (op0) == NOT
5208	  && GET_CODE (XEXP (op0, 0)) == XOR
5209	  && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5210	  && ! side_effects_p (op1))
5211	x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5212
5213      /* We can call simplify_and_const_int only if we don't lose
5214	 any (sign) bits when converting INTVAL (op1) to
5215	 "unsigned HOST_WIDE_INT".  */
5216      if (GET_CODE (op1) == CONST_INT
5217	  && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5218	      || INTVAL (op1) > 0))
5219	{
5220	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5221
5222	  /* If we have (ior (and (X C1) C2)) and the next restart would be
5223	     the last, simplify this by making C1 as small as possible
5224	     and then exit.  */
5225	  if (last
5226	      && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5227	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
5228	      && GET_CODE (op1) == CONST_INT)
5229	    return gen_binary (IOR, mode,
5230			       gen_binary (AND, mode, XEXP (op0, 0),
5231					   GEN_INT (INTVAL (XEXP (op0, 1))
5232						    & ~INTVAL (op1))), op1);
5233
5234	  if (GET_CODE (x) != AND)
5235	    return x;
5236
5237	  if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5238	      || GET_RTX_CLASS (GET_CODE (x)) == '2')
5239	    op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5240	}
5241
5242      /* Convert (A | B) & A to A.  */
5243      if (GET_CODE (op0) == IOR
5244	  && (rtx_equal_p (XEXP (op0, 0), op1)
5245	      || rtx_equal_p (XEXP (op0, 1), op1))
5246	  && ! side_effects_p (XEXP (op0, 0))
5247	  && ! side_effects_p (XEXP (op0, 1)))
5248	return op1;
5249
5250      /* In the following group of tests (and those in case IOR below),
5251	 we start with some combination of logical operations and apply
5252	 the distributive law followed by the inverse distributive law.
5253	 Most of the time, this results in no change.  However, if some of
5254	 the operands are the same or inverses of each other, simplifications
5255	 will result.
5256
5257	 For example, (and (ior A B) (not B)) can occur as the result of
5258	 expanding a bit field assignment.  When we apply the distributive
5259	 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5260	 which then simplifies to (and (A (not B))).
5261
5262	 If we have (and (ior A B) C), apply the distributive law and then
5263	 the inverse distributive law to see if things simplify.  */
5264
5265      if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5266	{
5267	  x = apply_distributive_law
5268	    (gen_binary (GET_CODE (op0), mode,
5269			 gen_binary (AND, mode, XEXP (op0, 0), op1),
5270			 gen_binary (AND, mode, XEXP (op0, 1),
5271				     copy_rtx (op1))));
5272	  if (GET_CODE (x) != AND)
5273	    return x;
5274	}
5275
5276      if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5277	return apply_distributive_law
5278	  (gen_binary (GET_CODE (op1), mode,
5279		       gen_binary (AND, mode, XEXP (op1, 0), op0),
5280		       gen_binary (AND, mode, XEXP (op1, 1),
5281				   copy_rtx (op0))));
5282
5283      /* Similarly, taking advantage of the fact that
5284	 (and (not A) (xor B C)) == (xor (ior A B) (ior A C))  */
5285
5286      if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5287	return apply_distributive_law
5288	  (gen_binary (XOR, mode,
5289		       gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5290		       gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5291				   XEXP (op1, 1))));
5292
5293      else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5294	return apply_distributive_law
5295	  (gen_binary (XOR, mode,
5296		       gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5297		       gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5298      break;
5299
5300    case IOR:
5301      /* (ior A C) is C if all bits of A that might be nonzero are on in C.  */
5302      if (GET_CODE (op1) == CONST_INT
5303	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5304	  && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5305	return op1;
5306
5307      /* Convert (A & B) | A to A.  */
5308      if (GET_CODE (op0) == AND
5309	  && (rtx_equal_p (XEXP (op0, 0), op1)
5310	      || rtx_equal_p (XEXP (op0, 1), op1))
5311	  && ! side_effects_p (XEXP (op0, 0))
5312	  && ! side_effects_p (XEXP (op0, 1)))
5313	return op1;
5314
5315      /* If we have (ior (and A B) C), apply the distributive law and then
5316	 the inverse distributive law to see if things simplify.  */
5317
5318      if (GET_CODE (op0) == AND)
5319	{
5320	  x = apply_distributive_law
5321	    (gen_binary (AND, mode,
5322			 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5323			 gen_binary (IOR, mode, XEXP (op0, 1),
5324				     copy_rtx (op1))));
5325
5326	  if (GET_CODE (x) != IOR)
5327	    return x;
5328	}
5329
5330      if (GET_CODE (op1) == AND)
5331	{
5332	  x = apply_distributive_law
5333	    (gen_binary (AND, mode,
5334			 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5335			 gen_binary (IOR, mode, XEXP (op1, 1),
5336				     copy_rtx (op0))));
5337
5338	  if (GET_CODE (x) != IOR)
5339	    return x;
5340	}
5341
5342      /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5343	 mode size to (rotate A CX).  */
5344
5345      if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5346	   || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5347	  && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5348	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5349	  && GET_CODE (XEXP (op1, 1)) == CONST_INT
5350	  && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5351	      == GET_MODE_BITSIZE (mode)))
5352	return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5353			       (GET_CODE (op0) == ASHIFT
5354				? XEXP (op0, 1) : XEXP (op1, 1)));
5355
5356      /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5357	 a (sign_extend (plus ...)).  If so, OP1 is a CONST_INT, and the PLUS
5358	 does not affect any of the bits in OP1, it can really be done
5359	 as a PLUS and we can associate.  We do this by seeing if OP1
5360	 can be safely shifted left C bits.  */
5361      if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5362	  && GET_CODE (XEXP (op0, 0)) == PLUS
5363	  && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5364	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5365	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5366	{
5367	  int count = INTVAL (XEXP (op0, 1));
5368	  HOST_WIDE_INT mask = INTVAL (op1) << count;
5369
5370	  if (mask >> count == INTVAL (op1)
5371	      && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5372	    {
5373	      SUBST (XEXP (XEXP (op0, 0), 1),
5374		     GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5375	      return op0;
5376	    }
5377	}
5378      break;
5379
5380    case XOR:
5381      /* If we are XORing two things that have no bits in common,
5382	 convert them into an IOR.  This helps to detect rotation encoded
5383	 using those methods and possibly other simplifications.  */
5384
5385      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5386	  && (nonzero_bits (op0, mode)
5387	      & nonzero_bits (op1, mode)) == 0)
5388	return (gen_binary (IOR, mode, op0, op1));
5389
5390      /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5391	 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5392	 (NOT y).  */
5393      {
5394	int num_negated = 0;
5395
5396	if (GET_CODE (op0) == NOT)
5397	  num_negated++, op0 = XEXP (op0, 0);
5398	if (GET_CODE (op1) == NOT)
5399	  num_negated++, op1 = XEXP (op1, 0);
5400
5401	if (num_negated == 2)
5402	  {
5403	    SUBST (XEXP (x, 0), op0);
5404	    SUBST (XEXP (x, 1), op1);
5405	  }
5406	else if (num_negated == 1)
5407	  return
5408	    simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5409				mode);
5410      }
5411
5412      /* Convert (xor (and A B) B) to (and (not A) B).  The latter may
5413	 correspond to a machine insn or result in further simplifications
5414	 if B is a constant.  */
5415
5416      if (GET_CODE (op0) == AND
5417	  && rtx_equal_p (XEXP (op0, 1), op1)
5418	  && ! side_effects_p (op1))
5419	return gen_binary (AND, mode,
5420			   simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5421			   op1);
5422
5423      else if (GET_CODE (op0) == AND
5424	       && rtx_equal_p (XEXP (op0, 0), op1)
5425	       && ! side_effects_p (op1))
5426	return gen_binary (AND, mode,
5427			   simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5428			   op1);
5429
5430      /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5431	 comparison if STORE_FLAG_VALUE is 1.  */
5432      if (STORE_FLAG_VALUE == 1
5433	  && op1 == const1_rtx
5434	  && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5435	  && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5436					      XEXP (op0, 1))))
5437	return reversed;
5438
5439      /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5440	 is (lt foo (const_int 0)), so we can perform the above
5441	 simplification if STORE_FLAG_VALUE is 1.  */
5442
5443      if (STORE_FLAG_VALUE == 1
5444	  && op1 == const1_rtx
5445	  && GET_CODE (op0) == LSHIFTRT
5446	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5447	  && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5448	return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5449
5450      /* (xor (comparison foo bar) (const_int sign-bit))
5451	 when STORE_FLAG_VALUE is the sign bit.  */
5452      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5453	  && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5454	      == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5455	  && op1 == const_true_rtx
5456	  && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5457	  && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5458					      XEXP (op0, 1))))
5459	return reversed;
5460
5461      break;
5462
5463    default:
5464      abort ();
5465    }
5466
5467  return x;
5468}
5469
5470/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5471   operations" because they can be replaced with two more basic operations.
5472   ZERO_EXTEND is also considered "compound" because it can be replaced with
5473   an AND operation, which is simpler, though only one operation.
5474
5475   The function expand_compound_operation is called with an rtx expression
5476   and will convert it to the appropriate shifts and AND operations,
5477   simplifying at each stage.
5478
5479   The function make_compound_operation is called to convert an expression
5480   consisting of shifts and ANDs into the equivalent compound expression.
5481   It is the inverse of this function, loosely speaking.  */
5482
5483static rtx
5484expand_compound_operation (x)
5485     rtx x;
5486{
5487  unsigned HOST_WIDE_INT pos = 0, len;
5488  int unsignedp = 0;
5489  unsigned int modewidth;
5490  rtx tem;
5491
5492  switch (GET_CODE (x))
5493    {
5494    case ZERO_EXTEND:
5495      unsignedp = 1;
5496    case SIGN_EXTEND:
5497      /* We can't necessarily use a const_int for a multiword mode;
5498	 it depends on implicitly extending the value.
5499	 Since we don't know the right way to extend it,
5500	 we can't tell whether the implicit way is right.
5501
5502	 Even for a mode that is no wider than a const_int,
5503	 we can't win, because we need to sign extend one of its bits through
5504	 the rest of it, and we don't know which bit.  */
5505      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5506	return x;
5507
5508      /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5509	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
5510	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5511	 reloaded. If not for that, MEM's would very rarely be safe.
5512
5513	 Reject MODEs bigger than a word, because we might not be able
5514	 to reference a two-register group starting with an arbitrary register
5515	 (and currently gen_lowpart might crash for a SUBREG).  */
5516
5517      if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5518	return x;
5519
5520      len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5521      /* If the inner object has VOIDmode (the only way this can happen
5522	 is if it is a ASM_OPERANDS), we can't do anything since we don't
5523	 know how much masking to do.  */
5524      if (len == 0)
5525	return x;
5526
5527      break;
5528
5529    case ZERO_EXTRACT:
5530      unsignedp = 1;
5531    case SIGN_EXTRACT:
5532      /* If the operand is a CLOBBER, just return it.  */
5533      if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5534	return XEXP (x, 0);
5535
5536      if (GET_CODE (XEXP (x, 1)) != CONST_INT
5537	  || GET_CODE (XEXP (x, 2)) != CONST_INT
5538	  || GET_MODE (XEXP (x, 0)) == VOIDmode)
5539	return x;
5540
5541      len = INTVAL (XEXP (x, 1));
5542      pos = INTVAL (XEXP (x, 2));
5543
5544      /* If this goes outside the object being extracted, replace the object
5545	 with a (use (mem ...)) construct that only combine understands
5546	 and is used only for this purpose.  */
5547      if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5548	SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5549
5550      if (BITS_BIG_ENDIAN)
5551	pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5552
5553      break;
5554
5555    default:
5556      return x;
5557    }
5558  /* Convert sign extension to zero extension, if we know that the high
5559     bit is not set, as this is easier to optimize.  It will be converted
5560     back to cheaper alternative in make_extraction.  */
5561  if (GET_CODE (x) == SIGN_EXTEND
5562      && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5563	  && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5564		& ~(((unsigned HOST_WIDE_INT)
5565		      GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5566		     >> 1))
5567	       == 0)))
5568    {
5569      rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5570      return expand_compound_operation (temp);
5571    }
5572
5573  /* We can optimize some special cases of ZERO_EXTEND.  */
5574  if (GET_CODE (x) == ZERO_EXTEND)
5575    {
5576      /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5577         know that the last value didn't have any inappropriate bits
5578         set.  */
5579      if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5580	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5581	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5582	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5583	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5584	return XEXP (XEXP (x, 0), 0);
5585
5586      /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5587      if (GET_CODE (XEXP (x, 0)) == SUBREG
5588	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5589	  && subreg_lowpart_p (XEXP (x, 0))
5590	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5591	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5592	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5593	return SUBREG_REG (XEXP (x, 0));
5594
5595      /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5596         is a comparison and STORE_FLAG_VALUE permits.  This is like
5597         the first case, but it works even when GET_MODE (x) is larger
5598         than HOST_WIDE_INT.  */
5599      if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5600	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5601	  && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5602	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5603	      <= HOST_BITS_PER_WIDE_INT)
5604	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5605	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5606	return XEXP (XEXP (x, 0), 0);
5607
5608      /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5609      if (GET_CODE (XEXP (x, 0)) == SUBREG
5610	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5611	  && subreg_lowpart_p (XEXP (x, 0))
5612	  && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5613	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5614	      <= HOST_BITS_PER_WIDE_INT)
5615	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5616	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5617	return SUBREG_REG (XEXP (x, 0));
5618
5619    }
5620
5621  /* If we reach here, we want to return a pair of shifts.  The inner
5622     shift is a left shift of BITSIZE - POS - LEN bits.  The outer
5623     shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
5624     logical depending on the value of UNSIGNEDP.
5625
5626     If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5627     converted into an AND of a shift.
5628
5629     We must check for the case where the left shift would have a negative
5630     count.  This can happen in a case like (x >> 31) & 255 on machines
5631     that can't shift by a constant.  On those machines, we would first
5632     combine the shift with the AND to produce a variable-position
5633     extraction.  Then the constant of 31 would be substituted in to produce
5634     a such a position.  */
5635
5636  modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5637  if (modewidth + len >= pos)
5638    tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5639				GET_MODE (x),
5640				simplify_shift_const (NULL_RTX, ASHIFT,
5641						      GET_MODE (x),
5642						      XEXP (x, 0),
5643						      modewidth - pos - len),
5644				modewidth - len);
5645
5646  else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5647    tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5648				  simplify_shift_const (NULL_RTX, LSHIFTRT,
5649							GET_MODE (x),
5650							XEXP (x, 0), pos),
5651				  ((HOST_WIDE_INT) 1 << len) - 1);
5652  else
5653    /* Any other cases we can't handle.  */
5654    return x;
5655
5656  /* If we couldn't do this for some reason, return the original
5657     expression.  */
5658  if (GET_CODE (tem) == CLOBBER)
5659    return x;
5660
5661  return tem;
5662}
5663
5664/* X is a SET which contains an assignment of one object into
5665   a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5666   or certain SUBREGS). If possible, convert it into a series of
5667   logical operations.
5668
5669   We half-heartedly support variable positions, but do not at all
5670   support variable lengths.  */
5671
5672static rtx
5673expand_field_assignment (x)
5674     rtx x;
5675{
5676  rtx inner;
5677  rtx pos;			/* Always counts from low bit.  */
5678  int len;
5679  rtx mask;
5680  enum machine_mode compute_mode;
5681
5682  /* Loop until we find something we can't simplify.  */
5683  while (1)
5684    {
5685      if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5686	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5687	{
5688	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5689	  len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5690	  pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5691	}
5692      else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5693	       && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5694	{
5695	  inner = XEXP (SET_DEST (x), 0);
5696	  len = INTVAL (XEXP (SET_DEST (x), 1));
5697	  pos = XEXP (SET_DEST (x), 2);
5698
5699	  /* If the position is constant and spans the width of INNER,
5700	     surround INNER  with a USE to indicate this.  */
5701	  if (GET_CODE (pos) == CONST_INT
5702	      && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5703	    inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5704
5705	  if (BITS_BIG_ENDIAN)
5706	    {
5707	      if (GET_CODE (pos) == CONST_INT)
5708		pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5709			       - INTVAL (pos));
5710	      else if (GET_CODE (pos) == MINUS
5711		       && GET_CODE (XEXP (pos, 1)) == CONST_INT
5712		       && (INTVAL (XEXP (pos, 1))
5713			   == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5714		/* If position is ADJUST - X, new position is X.  */
5715		pos = XEXP (pos, 0);
5716	      else
5717		pos = gen_binary (MINUS, GET_MODE (pos),
5718				  GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5719					   - len),
5720				  pos);
5721	    }
5722	}
5723
5724      /* A SUBREG between two modes that occupy the same numbers of words
5725	 can be done by moving the SUBREG to the source.  */
5726      else if (GET_CODE (SET_DEST (x)) == SUBREG
5727	       /* We need SUBREGs to compute nonzero_bits properly.  */
5728	       && nonzero_sign_valid
5729	       && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5730		     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5731		   == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5732			+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5733	{
5734	  x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5735			   gen_lowpart_for_combine
5736			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
5737			    SET_SRC (x)));
5738	  continue;
5739	}
5740      else
5741	break;
5742
5743      while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5744	inner = SUBREG_REG (inner);
5745
5746      compute_mode = GET_MODE (inner);
5747
5748      /* Don't attempt bitwise arithmetic on non-integral modes.  */
5749      if (! INTEGRAL_MODE_P (compute_mode))
5750	{
5751	  enum machine_mode imode;
5752
5753	  /* Something is probably seriously wrong if this matches.  */
5754	  if (! FLOAT_MODE_P (compute_mode))
5755	    break;
5756
5757	  /* Try to find an integral mode to pun with.  */
5758	  imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5759	  if (imode == BLKmode)
5760	    break;
5761
5762	  compute_mode = imode;
5763	  inner = gen_lowpart_for_combine (imode, inner);
5764	}
5765
5766      /* Compute a mask of LEN bits, if we can do this on the host machine.  */
5767      if (len < HOST_BITS_PER_WIDE_INT)
5768	mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5769      else
5770	break;
5771
5772      /* Now compute the equivalent expression.  Make a copy of INNER
5773	 for the SET_DEST in case it is a MEM into which we will substitute;
5774	 we don't want shared RTL in that case.  */
5775      x = gen_rtx_SET
5776	(VOIDmode, copy_rtx (inner),
5777	 gen_binary (IOR, compute_mode,
5778		     gen_binary (AND, compute_mode,
5779				 simplify_gen_unary (NOT, compute_mode,
5780						     gen_binary (ASHIFT,
5781								 compute_mode,
5782								 mask, pos),
5783						     compute_mode),
5784				 inner),
5785		     gen_binary (ASHIFT, compute_mode,
5786				 gen_binary (AND, compute_mode,
5787					     gen_lowpart_for_combine
5788					     (compute_mode, SET_SRC (x)),
5789					     mask),
5790				 pos)));
5791    }
5792
5793  return x;
5794}
5795
5796/* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
5797   it is an RTX that represents a variable starting position; otherwise,
5798   POS is the (constant) starting bit position (counted from the LSB).
5799
5800   INNER may be a USE.  This will occur when we started with a bitfield
5801   that went outside the boundary of the object in memory, which is
5802   allowed on most machines.  To isolate this case, we produce a USE
5803   whose mode is wide enough and surround the MEM with it.  The only
5804   code that understands the USE is this routine.  If it is not removed,
5805   it will cause the resulting insn not to match.
5806
5807   UNSIGNEDP is non-zero for an unsigned reference and zero for a
5808   signed reference.
5809
5810   IN_DEST is non-zero if this is a reference in the destination of a
5811   SET.  This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If non-zero,
5812   a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5813   be used.
5814
5815   IN_COMPARE is non-zero if we are in a COMPARE.  This means that a
5816   ZERO_EXTRACT should be built even for bits starting at bit 0.
5817
5818   MODE is the desired mode of the result (if IN_DEST == 0).
5819
5820   The result is an RTX for the extraction or NULL_RTX if the target
5821   can't handle it.  */
5822
5823static rtx
5824make_extraction (mode, inner, pos, pos_rtx, len,
5825		 unsignedp, in_dest, in_compare)
5826     enum machine_mode mode;
5827     rtx inner;
5828     HOST_WIDE_INT pos;
5829     rtx pos_rtx;
5830     unsigned HOST_WIDE_INT len;
5831     int unsignedp;
5832     int in_dest, in_compare;
5833{
5834  /* This mode describes the size of the storage area
5835     to fetch the overall value from.  Within that, we
5836     ignore the POS lowest bits, etc.  */
5837  enum machine_mode is_mode = GET_MODE (inner);
5838  enum machine_mode inner_mode;
5839  enum machine_mode wanted_inner_mode = byte_mode;
5840  enum machine_mode wanted_inner_reg_mode = word_mode;
5841  enum machine_mode pos_mode = word_mode;
5842  enum machine_mode extraction_mode = word_mode;
5843  enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5844  int spans_byte = 0;
5845  rtx new = 0;
5846  rtx orig_pos_rtx = pos_rtx;
5847  HOST_WIDE_INT orig_pos;
5848
5849  /* Get some information about INNER and get the innermost object.  */
5850  if (GET_CODE (inner) == USE)
5851    /* (use:SI (mem:QI foo)) stands for (mem:SI foo).  */
5852    /* We don't need to adjust the position because we set up the USE
5853       to pretend that it was a full-word object.  */
5854    spans_byte = 1, inner = XEXP (inner, 0);
5855  else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5856    {
5857      /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5858	 consider just the QI as the memory to extract from.
5859	 The subreg adds or removes high bits; its mode is
5860	 irrelevant to the meaning of this extraction,
5861	 since POS and LEN count from the lsb.  */
5862      if (GET_CODE (SUBREG_REG (inner)) == MEM)
5863	is_mode = GET_MODE (SUBREG_REG (inner));
5864      inner = SUBREG_REG (inner);
5865    }
5866
5867  inner_mode = GET_MODE (inner);
5868
5869  if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5870    pos = INTVAL (pos_rtx), pos_rtx = 0;
5871
5872  /* See if this can be done without an extraction.  We never can if the
5873     width of the field is not the same as that of some integer mode. For
5874     registers, we can only avoid the extraction if the position is at the
5875     low-order bit and this is either not in the destination or we have the
5876     appropriate STRICT_LOW_PART operation available.
5877
5878     For MEM, we can avoid an extract if the field starts on an appropriate
5879     boundary and we can change the mode of the memory reference.  However,
5880     we cannot directly access the MEM if we have a USE and the underlying
5881     MEM is not TMODE.  This combination means that MEM was being used in a
5882     context where bits outside its mode were being referenced; that is only
5883     valid in bit-field insns.  */
5884
5885  if (tmode != BLKmode
5886      && ! (spans_byte && inner_mode != tmode)
5887      && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5888	   && GET_CODE (inner) != MEM
5889	   && (! in_dest
5890	       || (GET_CODE (inner) == REG
5891		   && have_insn_for (STRICT_LOW_PART, tmode))))
5892	  || (GET_CODE (inner) == MEM && pos_rtx == 0
5893	      && (pos
5894		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5895		     : BITS_PER_UNIT)) == 0
5896	      /* We can't do this if we are widening INNER_MODE (it
5897		 may not be aligned, for one thing).  */
5898	      && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5899	      && (inner_mode == tmode
5900		  || (! mode_dependent_address_p (XEXP (inner, 0))
5901		      && ! MEM_VOLATILE_P (inner))))))
5902    {
5903      /* If INNER is a MEM, make a new MEM that encompasses just the desired
5904	 field.  If the original and current mode are the same, we need not
5905	 adjust the offset.  Otherwise, we do if bytes big endian.
5906
5907	 If INNER is not a MEM, get a piece consisting of just the field
5908	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
5909
5910      if (GET_CODE (inner) == MEM)
5911	{
5912	  HOST_WIDE_INT offset;
5913
5914	  /* POS counts from lsb, but make OFFSET count in memory order.  */
5915	  if (BYTES_BIG_ENDIAN)
5916	    offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5917	  else
5918	    offset = pos / BITS_PER_UNIT;
5919
5920	  new = adjust_address_nv (inner, tmode, offset);
5921	}
5922      else if (GET_CODE (inner) == REG)
5923	{
5924	  /* We can't call gen_lowpart_for_combine here since we always want
5925	     a SUBREG and it would sometimes return a new hard register.  */
5926	  if (tmode != inner_mode)
5927	    {
5928	      HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
5929
5930	      if (WORDS_BIG_ENDIAN
5931		  && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
5932		final_word = ((GET_MODE_SIZE (inner_mode)
5933			       - GET_MODE_SIZE (tmode))
5934			      / UNITS_PER_WORD) - final_word;
5935
5936	      final_word *= UNITS_PER_WORD;
5937	      if (BYTES_BIG_ENDIAN &&
5938		  GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
5939		final_word += (GET_MODE_SIZE (inner_mode)
5940			       - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
5941
5942	      new = gen_rtx_SUBREG (tmode, inner, final_word);
5943	    }
5944	  else
5945	    new = inner;
5946	}
5947      else
5948	new = force_to_mode (inner, tmode,
5949			     len >= HOST_BITS_PER_WIDE_INT
5950			     ? ~(unsigned HOST_WIDE_INT) 0
5951			     : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5952			     NULL_RTX, 0);
5953
5954      /* If this extraction is going into the destination of a SET,
5955	 make a STRICT_LOW_PART unless we made a MEM.  */
5956
5957      if (in_dest)
5958	return (GET_CODE (new) == MEM ? new
5959		: (GET_CODE (new) != SUBREG
5960		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
5961		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
5962
5963      if (mode == tmode)
5964	return new;
5965
5966      /* If we know that no extraneous bits are set, and that the high
5967	 bit is not set, convert the extraction to the cheaper of
5968	 sign and zero extension, that are equivalent in these cases.  */
5969      if (flag_expensive_optimizations
5970	  && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5971	      && ((nonzero_bits (new, tmode)
5972		   & ~(((unsigned HOST_WIDE_INT)
5973			GET_MODE_MASK (tmode))
5974		       >> 1))
5975		  == 0)))
5976	{
5977	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
5978	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
5979
5980	  /* Prefer ZERO_EXTENSION, since it gives more information to
5981	     backends.  */
5982	  if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
5983	    return temp;
5984	  return temp1;
5985	}
5986
5987      /* Otherwise, sign- or zero-extend unless we already are in the
5988	 proper mode.  */
5989
5990      return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5991			     mode, new));
5992    }
5993
5994  /* Unless this is a COMPARE or we have a funny memory reference,
5995     don't do anything with zero-extending field extracts starting at
5996     the low-order bit since they are simple AND operations.  */
5997  if (pos_rtx == 0 && pos == 0 && ! in_dest
5998      && ! in_compare && ! spans_byte && unsignedp)
5999    return 0;
6000
6001  /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6002     we would be spanning bytes or if the position is not a constant and the
6003     length is not 1.  In all other cases, we would only be going outside
6004     our object in cases when an original shift would have been
6005     undefined.  */
6006  if (! spans_byte && GET_CODE (inner) == MEM
6007      && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6008	  || (pos_rtx != 0 && len != 1)))
6009    return 0;
6010
6011  /* Get the mode to use should INNER not be a MEM, the mode for the position,
6012     and the mode for the result.  */
6013  if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6014    {
6015      wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6016      pos_mode = mode_for_extraction (EP_insv, 2);
6017      extraction_mode = mode_for_extraction (EP_insv, 3);
6018    }
6019
6020  if (! in_dest && unsignedp
6021      && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6022    {
6023      wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6024      pos_mode = mode_for_extraction (EP_extzv, 3);
6025      extraction_mode = mode_for_extraction (EP_extzv, 0);
6026    }
6027
6028  if (! in_dest && ! unsignedp
6029      && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6030    {
6031      wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6032      pos_mode = mode_for_extraction (EP_extv, 3);
6033      extraction_mode = mode_for_extraction (EP_extv, 0);
6034    }
6035
6036  /* Never narrow an object, since that might not be safe.  */
6037
6038  if (mode != VOIDmode
6039      && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6040    extraction_mode = mode;
6041
6042  if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6043      && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6044    pos_mode = GET_MODE (pos_rtx);
6045
6046  /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6047     if we have to change the mode of memory and cannot, the desired mode is
6048     EXTRACTION_MODE.  */
6049  if (GET_CODE (inner) != MEM)
6050    wanted_inner_mode = wanted_inner_reg_mode;
6051  else if (inner_mode != wanted_inner_mode
6052	   && (mode_dependent_address_p (XEXP (inner, 0))
6053	       || MEM_VOLATILE_P (inner)))
6054    wanted_inner_mode = extraction_mode;
6055
6056  orig_pos = pos;
6057
6058  if (BITS_BIG_ENDIAN)
6059    {
6060      /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6061	 BITS_BIG_ENDIAN style.  If position is constant, compute new
6062	 position.  Otherwise, build subtraction.
6063	 Note that POS is relative to the mode of the original argument.
6064	 If it's a MEM we need to recompute POS relative to that.
6065	 However, if we're extracting from (or inserting into) a register,
6066	 we want to recompute POS relative to wanted_inner_mode.  */
6067      int width = (GET_CODE (inner) == MEM
6068		   ? GET_MODE_BITSIZE (is_mode)
6069		   : GET_MODE_BITSIZE (wanted_inner_mode));
6070
6071      if (pos_rtx == 0)
6072	pos = width - len - pos;
6073      else
6074	pos_rtx
6075	  = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6076      /* POS may be less than 0 now, but we check for that below.
6077	 Note that it can only be less than 0 if GET_CODE (inner) != MEM.  */
6078    }
6079
6080  /* If INNER has a wider mode, make it smaller.  If this is a constant
6081     extract, try to adjust the byte to point to the byte containing
6082     the value.  */
6083  if (wanted_inner_mode != VOIDmode
6084      && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6085      && ((GET_CODE (inner) == MEM
6086	   && (inner_mode == wanted_inner_mode
6087	       || (! mode_dependent_address_p (XEXP (inner, 0))
6088		   && ! MEM_VOLATILE_P (inner))))))
6089    {
6090      int offset = 0;
6091
6092      /* The computations below will be correct if the machine is big
6093	 endian in both bits and bytes or little endian in bits and bytes.
6094	 If it is mixed, we must adjust.  */
6095
6096      /* If bytes are big endian and we had a paradoxical SUBREG, we must
6097	 adjust OFFSET to compensate.  */
6098      if (BYTES_BIG_ENDIAN
6099	  && ! spans_byte
6100	  && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6101	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6102
6103      /* If this is a constant position, we can move to the desired byte.  */
6104      if (pos_rtx == 0)
6105	{
6106	  offset += pos / BITS_PER_UNIT;
6107	  pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6108	}
6109
6110      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6111	  && ! spans_byte
6112	  && is_mode != wanted_inner_mode)
6113	offset = (GET_MODE_SIZE (is_mode)
6114		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
6115
6116      if (offset != 0 || inner_mode != wanted_inner_mode)
6117	inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6118    }
6119
6120  /* If INNER is not memory, we can always get it into the proper mode.  If we
6121     are changing its mode, POS must be a constant and smaller than the size
6122     of the new mode.  */
6123  else if (GET_CODE (inner) != MEM)
6124    {
6125      if (GET_MODE (inner) != wanted_inner_mode
6126	  && (pos_rtx != 0
6127	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6128	return 0;
6129
6130      inner = force_to_mode (inner, wanted_inner_mode,
6131			     pos_rtx
6132			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6133			     ? ~(unsigned HOST_WIDE_INT) 0
6134			     : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6135				<< orig_pos),
6136			     NULL_RTX, 0);
6137    }
6138
6139  /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
6140     have to zero extend.  Otherwise, we can just use a SUBREG.  */
6141  if (pos_rtx != 0
6142      && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6143    {
6144      rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6145
6146      /* If we know that no extraneous bits are set, and that the high
6147	 bit is not set, convert extraction to cheaper one - either
6148	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6149	 cases.  */
6150      if (flag_expensive_optimizations
6151	  && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6152	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6153		   & ~(((unsigned HOST_WIDE_INT)
6154			GET_MODE_MASK (GET_MODE (pos_rtx)))
6155		       >> 1))
6156		  == 0)))
6157	{
6158	  rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6159
6160	  /* Prefer ZERO_EXTENSION, since it gives more information to
6161	     backends.  */
6162	  if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6163	    temp = temp1;
6164	}
6165      pos_rtx = temp;
6166    }
6167  else if (pos_rtx != 0
6168	   && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6169    pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6170
6171  /* Make POS_RTX unless we already have it and it is correct.  If we don't
6172     have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6173     be a CONST_INT.  */
6174  if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6175    pos_rtx = orig_pos_rtx;
6176
6177  else if (pos_rtx == 0)
6178    pos_rtx = GEN_INT (pos);
6179
6180  /* Make the required operation.  See if we can use existing rtx.  */
6181  new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6182			 extraction_mode, inner, GEN_INT (len), pos_rtx);
6183  if (! in_dest)
6184    new = gen_lowpart_for_combine (mode, new);
6185
6186  return new;
6187}
6188
6189/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6190   with any other operations in X.  Return X without that shift if so.  */
6191
6192static rtx
6193extract_left_shift (x, count)
6194     rtx x;
6195     int count;
6196{
6197  enum rtx_code code = GET_CODE (x);
6198  enum machine_mode mode = GET_MODE (x);
6199  rtx tem;
6200
6201  switch (code)
6202    {
6203    case ASHIFT:
6204      /* This is the shift itself.  If it is wide enough, we will return
6205	 either the value being shifted if the shift count is equal to
6206	 COUNT or a shift for the difference.  */
6207      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6208	  && INTVAL (XEXP (x, 1)) >= count)
6209	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6210				     INTVAL (XEXP (x, 1)) - count);
6211      break;
6212
6213    case NEG:  case NOT:
6214      if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6215	return simplify_gen_unary (code, mode, tem, mode);
6216
6217      break;
6218
6219    case PLUS:  case IOR:  case XOR:  case AND:
6220      /* If we can safely shift this constant and we find the inner shift,
6221	 make a new operation.  */
6222      if (GET_CODE (XEXP (x,1)) == CONST_INT
6223	  && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6224	  && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6225	return gen_binary (code, mode, tem,
6226			   GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6227
6228      break;
6229
6230    default:
6231      break;
6232    }
6233
6234  return 0;
6235}
6236
6237/* Look at the expression rooted at X.  Look for expressions
6238   equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6239   Form these expressions.
6240
6241   Return the new rtx, usually just X.
6242
6243   Also, for machines like the VAX that don't have logical shift insns,
6244   try to convert logical to arithmetic shift operations in cases where
6245   they are equivalent.  This undoes the canonicalizations to logical
6246   shifts done elsewhere.
6247
6248   We try, as much as possible, to re-use rtl expressions to save memory.
6249
6250   IN_CODE says what kind of expression we are processing.  Normally, it is
6251   SET.  In a memory address (inside a MEM, PLUS or minus, the latter two
6252   being kludges), it is MEM.  When processing the arguments of a comparison
6253   or a COMPARE against zero, it is COMPARE.  */
6254
6255static rtx
6256make_compound_operation (x, in_code)
6257     rtx x;
6258     enum rtx_code in_code;
6259{
6260  enum rtx_code code = GET_CODE (x);
6261  enum machine_mode mode = GET_MODE (x);
6262  int mode_width = GET_MODE_BITSIZE (mode);
6263  rtx rhs, lhs;
6264  enum rtx_code next_code;
6265  int i;
6266  rtx new = 0;
6267  rtx tem;
6268  const char *fmt;
6269
6270  /* Select the code to be used in recursive calls.  Once we are inside an
6271     address, we stay there.  If we have a comparison, set to COMPARE,
6272     but once inside, go back to our default of SET.  */
6273
6274  next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6275	       : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6276		  && XEXP (x, 1) == const0_rtx) ? COMPARE
6277	       : in_code == COMPARE ? SET : in_code);
6278
6279  /* Process depending on the code of this operation.  If NEW is set
6280     non-zero, it will be returned.  */
6281
6282  switch (code)
6283    {
6284    case ASHIFT:
6285      /* Convert shifts by constants into multiplications if inside
6286	 an address.  */
6287      if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6288	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6289	  && INTVAL (XEXP (x, 1)) >= 0)
6290	{
6291	  new = make_compound_operation (XEXP (x, 0), next_code);
6292	  new = gen_rtx_MULT (mode, new,
6293			      GEN_INT ((HOST_WIDE_INT) 1
6294				       << INTVAL (XEXP (x, 1))));
6295	}
6296      break;
6297
6298    case AND:
6299      /* If the second operand is not a constant, we can't do anything
6300	 with it.  */
6301      if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6302	break;
6303
6304      /* If the constant is a power of two minus one and the first operand
6305	 is a logical right shift, make an extraction.  */
6306      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6307	  && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6308	{
6309	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6310	  new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6311				 0, in_code == COMPARE);
6312	}
6313
6314      /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
6315      else if (GET_CODE (XEXP (x, 0)) == SUBREG
6316	       && subreg_lowpart_p (XEXP (x, 0))
6317	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6318	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6319	{
6320	  new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6321					 next_code);
6322	  new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6323				 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6324				 0, in_code == COMPARE);
6325	}
6326      /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
6327      else if ((GET_CODE (XEXP (x, 0)) == XOR
6328		|| GET_CODE (XEXP (x, 0)) == IOR)
6329	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6330	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6331	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6332	{
6333	  /* Apply the distributive law, and then try to make extractions.  */
6334	  new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6335				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6336					     XEXP (x, 1)),
6337				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6338					     XEXP (x, 1)));
6339	  new = make_compound_operation (new, in_code);
6340	}
6341
6342      /* If we are have (and (rotate X C) M) and C is larger than the number
6343	 of bits in M, this is an extraction.  */
6344
6345      else if (GET_CODE (XEXP (x, 0)) == ROTATE
6346	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6347	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6348	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6349	{
6350	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6351	  new = make_extraction (mode, new,
6352				 (GET_MODE_BITSIZE (mode)
6353				  - INTVAL (XEXP (XEXP (x, 0), 1))),
6354				 NULL_RTX, i, 1, 0, in_code == COMPARE);
6355	}
6356
6357      /* On machines without logical shifts, if the operand of the AND is
6358	 a logical shift and our mask turns off all the propagated sign
6359	 bits, we can replace the logical shift with an arithmetic shift.  */
6360      else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6361	       && !have_insn_for (LSHIFTRT, mode)
6362	       && have_insn_for (ASHIFTRT, mode)
6363	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6364	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6365	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6366	       && mode_width <= HOST_BITS_PER_WIDE_INT)
6367	{
6368	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6369
6370	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6371	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6372	    SUBST (XEXP (x, 0),
6373		   gen_rtx_ASHIFTRT (mode,
6374				     make_compound_operation
6375				     (XEXP (XEXP (x, 0), 0), next_code),
6376				     XEXP (XEXP (x, 0), 1)));
6377	}
6378
6379      /* If the constant is one less than a power of two, this might be
6380	 representable by an extraction even if no shift is present.
6381	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6382	 we are in a COMPARE.  */
6383      else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6384	new = make_extraction (mode,
6385			       make_compound_operation (XEXP (x, 0),
6386							next_code),
6387			       0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6388
6389      /* If we are in a comparison and this is an AND with a power of two,
6390	 convert this into the appropriate bit extract.  */
6391      else if (in_code == COMPARE
6392	       && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6393	new = make_extraction (mode,
6394			       make_compound_operation (XEXP (x, 0),
6395							next_code),
6396			       i, NULL_RTX, 1, 1, 0, 1);
6397
6398      break;
6399
6400    case LSHIFTRT:
6401      /* If the sign bit is known to be zero, replace this with an
6402	 arithmetic shift.  */
6403      if (have_insn_for (ASHIFTRT, mode)
6404	  && ! have_insn_for (LSHIFTRT, mode)
6405	  && mode_width <= HOST_BITS_PER_WIDE_INT
6406	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6407	{
6408	  new = gen_rtx_ASHIFTRT (mode,
6409				  make_compound_operation (XEXP (x, 0),
6410							   next_code),
6411				  XEXP (x, 1));
6412	  break;
6413	}
6414
6415      /* ... fall through ...  */
6416
6417    case ASHIFTRT:
6418      lhs = XEXP (x, 0);
6419      rhs = XEXP (x, 1);
6420
6421      /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6422	 this is a SIGN_EXTRACT.  */
6423      if (GET_CODE (rhs) == CONST_INT
6424	  && GET_CODE (lhs) == ASHIFT
6425	  && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6426	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6427	{
6428	  new = make_compound_operation (XEXP (lhs, 0), next_code);
6429	  new = make_extraction (mode, new,
6430				 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6431				 NULL_RTX, mode_width - INTVAL (rhs),
6432				 code == LSHIFTRT, 0, in_code == COMPARE);
6433	  break;
6434	}
6435
6436      /* See if we have operations between an ASHIFTRT and an ASHIFT.
6437	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
6438	 also do this for some cases of SIGN_EXTRACT, but it doesn't
6439	 seem worth the effort; the case checked for occurs on Alpha.  */
6440
6441      if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6442	  && ! (GET_CODE (lhs) == SUBREG
6443		&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6444	  && GET_CODE (rhs) == CONST_INT
6445	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6446	  && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6447	new = make_extraction (mode, make_compound_operation (new, next_code),
6448			       0, NULL_RTX, mode_width - INTVAL (rhs),
6449			       code == LSHIFTRT, 0, in_code == COMPARE);
6450
6451      break;
6452
6453    case SUBREG:
6454      /* Call ourselves recursively on the inner expression.  If we are
6455	 narrowing the object and it has a different RTL code from
6456	 what it originally did, do this SUBREG as a force_to_mode.  */
6457
6458      tem = make_compound_operation (SUBREG_REG (x), in_code);
6459      if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6460	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6461	  && subreg_lowpart_p (x))
6462	{
6463	  rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6464				     NULL_RTX, 0);
6465
6466	  /* If we have something other than a SUBREG, we might have
6467	     done an expansion, so rerun ourselves.  */
6468	  if (GET_CODE (newer) != SUBREG)
6469	    newer = make_compound_operation (newer, in_code);
6470
6471	  return newer;
6472	}
6473
6474      /* If this is a paradoxical subreg, and the new code is a sign or
6475	 zero extension, omit the subreg and widen the extension.  If it
6476	 is a regular subreg, we can still get rid of the subreg by not
6477	 widening so much, or in fact removing the extension entirely.  */
6478      if ((GET_CODE (tem) == SIGN_EXTEND
6479	   || GET_CODE (tem) == ZERO_EXTEND)
6480	  && subreg_lowpart_p (x))
6481	{
6482	  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6483	      || (GET_MODE_SIZE (mode) >
6484		  GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6485	    tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6486	  else
6487	    tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6488	  return tem;
6489	}
6490      break;
6491
6492    default:
6493      break;
6494    }
6495
6496  if (new)
6497    {
6498      x = gen_lowpart_for_combine (mode, new);
6499      code = GET_CODE (x);
6500    }
6501
6502  /* Now recursively process each operand of this operation.  */
6503  fmt = GET_RTX_FORMAT (code);
6504  for (i = 0; i < GET_RTX_LENGTH (code); i++)
6505    if (fmt[i] == 'e')
6506      {
6507	new = make_compound_operation (XEXP (x, i), next_code);
6508	SUBST (XEXP (x, i), new);
6509      }
6510
6511  return x;
6512}
6513
6514/* Given M see if it is a value that would select a field of bits
6515   within an item, but not the entire word.  Return -1 if not.
6516   Otherwise, return the starting position of the field, where 0 is the
6517   low-order bit.
6518
6519   *PLEN is set to the length of the field.  */
6520
6521static int
6522get_pos_from_mask (m, plen)
6523     unsigned HOST_WIDE_INT m;
6524     unsigned HOST_WIDE_INT *plen;
6525{
6526  /* Get the bit number of the first 1 bit from the right, -1 if none.  */
6527  int pos = exact_log2 (m & -m);
6528  int len;
6529
6530  if (pos < 0)
6531    return -1;
6532
6533  /* Now shift off the low-order zero bits and see if we have a power of
6534     two minus 1.  */
6535  len = exact_log2 ((m >> pos) + 1);
6536
6537  if (len <= 0)
6538    return -1;
6539
6540  *plen = len;
6541  return pos;
6542}
6543
6544/* See if X can be simplified knowing that we will only refer to it in
6545   MODE and will only refer to those bits that are nonzero in MASK.
6546   If other bits are being computed or if masking operations are done
6547   that select a superset of the bits in MASK, they can sometimes be
6548   ignored.
6549
6550   Return a possibly simplified expression, but always convert X to
6551   MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
6552
6553   Also, if REG is non-zero and X is a register equal in value to REG,
6554   replace X with REG.
6555
6556   If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6557   are all off in X.  This is used when X will be complemented, by either
6558   NOT, NEG, or XOR.  */
6559
6560static rtx
6561force_to_mode (x, mode, mask, reg, just_select)
6562     rtx x;
6563     enum machine_mode mode;
6564     unsigned HOST_WIDE_INT mask;
6565     rtx reg;
6566     int just_select;
6567{
6568  enum rtx_code code = GET_CODE (x);
6569  int next_select = just_select || code == XOR || code == NOT || code == NEG;
6570  enum machine_mode op_mode;
6571  unsigned HOST_WIDE_INT fuller_mask, nonzero;
6572  rtx op0, op1, temp;
6573
6574  /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
6575     code below will do the wrong thing since the mode of such an
6576     expression is VOIDmode.
6577
6578     Also do nothing if X is a CLOBBER; this can happen if X was
6579     the return value from a call to gen_lowpart_for_combine.  */
6580  if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6581    return x;
6582
6583  /* We want to perform the operation is its present mode unless we know
6584     that the operation is valid in MODE, in which case we do the operation
6585     in MODE.  */
6586  op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6587	      && have_insn_for (code, mode))
6588	     ? mode : GET_MODE (x));
6589
6590  /* It is not valid to do a right-shift in a narrower mode
6591     than the one it came in with.  */
6592  if ((code == LSHIFTRT || code == ASHIFTRT)
6593      && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6594    op_mode = GET_MODE (x);
6595
6596  /* Truncate MASK to fit OP_MODE.  */
6597  if (op_mode)
6598    mask &= GET_MODE_MASK (op_mode);
6599
6600  /* When we have an arithmetic operation, or a shift whose count we
6601     do not know, we need to assume that all bit the up to the highest-order
6602     bit in MASK will be needed.  This is how we form such a mask.  */
6603  if (op_mode)
6604    fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6605		   ? GET_MODE_MASK (op_mode)
6606		   : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6607		      - 1));
6608  else
6609    fuller_mask = ~(HOST_WIDE_INT) 0;
6610
6611  /* Determine what bits of X are guaranteed to be (non)zero.  */
6612  nonzero = nonzero_bits (x, mode);
6613
6614  /* If none of the bits in X are needed, return a zero.  */
6615  if (! just_select && (nonzero & mask) == 0)
6616    return const0_rtx;
6617
6618  /* If X is a CONST_INT, return a new one.  Do this here since the
6619     test below will fail.  */
6620  if (GET_CODE (x) == CONST_INT)
6621    {
6622      HOST_WIDE_INT cval = INTVAL (x) & mask;
6623      int width = GET_MODE_BITSIZE (mode);
6624
6625      /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6626	 number, sign extend it.  */
6627      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6628	  && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6629	cval |= (HOST_WIDE_INT) -1 << width;
6630
6631      return GEN_INT (cval);
6632    }
6633
6634  /* If X is narrower than MODE and we want all the bits in X's mode, just
6635     get X in the proper mode.  */
6636  if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6637      && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6638    return gen_lowpart_for_combine (mode, x);
6639
6640  /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6641     MASK are already known to be zero in X, we need not do anything.  */
6642  if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6643    return x;
6644
6645  switch (code)
6646    {
6647    case CLOBBER:
6648      /* If X is a (clobber (const_int)), return it since we know we are
6649	 generating something that won't match.  */
6650      return x;
6651
6652    case USE:
6653      /* X is a (use (mem ..)) that was made from a bit-field extraction that
6654	 spanned the boundary of the MEM.  If we are now masking so it is
6655	 within that boundary, we don't need the USE any more.  */
6656      if (! BITS_BIG_ENDIAN
6657	  && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6658	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6659      break;
6660
6661    case SIGN_EXTEND:
6662    case ZERO_EXTEND:
6663    case ZERO_EXTRACT:
6664    case SIGN_EXTRACT:
6665      x = expand_compound_operation (x);
6666      if (GET_CODE (x) != code)
6667	return force_to_mode (x, mode, mask, reg, next_select);
6668      break;
6669
6670    case REG:
6671      if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6672		       || rtx_equal_p (reg, get_last_value (x))))
6673	x = reg;
6674      break;
6675
6676    case SUBREG:
6677      if (subreg_lowpart_p (x)
6678	  /* We can ignore the effect of this SUBREG if it narrows the mode or
6679	     if the constant masks to zero all the bits the mode doesn't
6680	     have.  */
6681	  && ((GET_MODE_SIZE (GET_MODE (x))
6682	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6683	      || (0 == (mask
6684			& GET_MODE_MASK (GET_MODE (x))
6685			& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6686	return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6687      break;
6688
6689    case AND:
6690      /* If this is an AND with a constant, convert it into an AND
6691	 whose constant is the AND of that constant with MASK.  If it
6692	 remains an AND of MASK, delete it since it is redundant.  */
6693
6694      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6695	{
6696	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6697				      mask & INTVAL (XEXP (x, 1)));
6698
6699	  /* If X is still an AND, see if it is an AND with a mask that
6700	     is just some low-order bits.  If so, and it is MASK, we don't
6701	     need it.  */
6702
6703	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6704	      && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6705		  == (HOST_WIDE_INT) mask))
6706	    x = XEXP (x, 0);
6707
6708	  /* If it remains an AND, try making another AND with the bits
6709	     in the mode mask that aren't in MASK turned on.  If the
6710	     constant in the AND is wide enough, this might make a
6711	     cheaper constant.  */
6712
6713	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6714	      && GET_MODE_MASK (GET_MODE (x)) != mask
6715	      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6716	    {
6717	      HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6718				    | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6719	      int width = GET_MODE_BITSIZE (GET_MODE (x));
6720	      rtx y;
6721
6722	      /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6723		 number, sign extend it.  */
6724	      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6725		  && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6726		cval |= (HOST_WIDE_INT) -1 << width;
6727
6728	      y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6729	      if (rtx_cost (y, SET) < rtx_cost (x, SET))
6730		x = y;
6731	    }
6732
6733	  break;
6734	}
6735
6736      goto binop;
6737
6738    case PLUS:
6739      /* In (and (plus FOO C1) M), if M is a mask that just turns off
6740	 low-order bits (as in an alignment operation) and FOO is already
6741	 aligned to that boundary, mask C1 to that boundary as well.
6742	 This may eliminate that PLUS and, later, the AND.  */
6743
6744      {
6745	unsigned int width = GET_MODE_BITSIZE (mode);
6746	unsigned HOST_WIDE_INT smask = mask;
6747
6748	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6749	   number, sign extend it.  */
6750
6751	if (width < HOST_BITS_PER_WIDE_INT
6752	    && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6753	  smask |= (HOST_WIDE_INT) -1 << width;
6754
6755	if (GET_CODE (XEXP (x, 1)) == CONST_INT
6756	    && exact_log2 (- smask) >= 0)
6757	  {
6758#ifdef STACK_BIAS
6759	    if (STACK_BIAS
6760	        && (XEXP (x, 0) == stack_pointer_rtx
6761	            || XEXP (x, 0) == frame_pointer_rtx))
6762	      {
6763		int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6764		unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6765
6766		sp_mask &= ~(sp_alignment - 1);
6767		if ((sp_mask & ~smask) == 0
6768		    && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~smask) != 0)
6769		  return force_to_mode (plus_constant (XEXP (x, 0),
6770						       ((INTVAL (XEXP (x, 1)) -
6771							 STACK_BIAS) & smask)
6772						       + STACK_BIAS),
6773					mode, smask, reg, next_select);
6774	      }
6775#endif
6776	    if ((nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6777		&& (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6778	      return force_to_mode (plus_constant (XEXP (x, 0),
6779						   (INTVAL (XEXP (x, 1))
6780						    & smask)),
6781				    mode, smask, reg, next_select);
6782	  }
6783      }
6784
6785      /* ... fall through ...  */
6786
6787    case MULT:
6788      /* For PLUS, MINUS and MULT, we need any bits less significant than the
6789	 most significant bit in MASK since carries from those bits will
6790	 affect the bits we are interested in.  */
6791      mask = fuller_mask;
6792      goto binop;
6793
6794    case MINUS:
6795      /* If X is (minus C Y) where C's least set bit is larger than any bit
6796	 in the mask, then we may replace with (neg Y).  */
6797      if (GET_CODE (XEXP (x, 0)) == CONST_INT
6798	  && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6799					& -INTVAL (XEXP (x, 0))))
6800	      > mask))
6801	{
6802	  x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6803				  GET_MODE (x));
6804	  return force_to_mode (x, mode, mask, reg, next_select);
6805	}
6806
6807      /* Similarly, if C contains every bit in the mask, then we may
6808	 replace with (not Y).  */
6809      if (GET_CODE (XEXP (x, 0)) == CONST_INT
6810	  && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6811	      == INTVAL (XEXP (x, 0))))
6812	{
6813	  x = simplify_gen_unary (NOT, GET_MODE (x),
6814				  XEXP (x, 1), GET_MODE (x));
6815	  return force_to_mode (x, mode, mask, reg, next_select);
6816	}
6817
6818      mask = fuller_mask;
6819      goto binop;
6820
6821    case IOR:
6822    case XOR:
6823      /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6824	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6825	 operation which may be a bitfield extraction.  Ensure that the
6826	 constant we form is not wider than the mode of X.  */
6827
6828      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6829	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6830	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6831	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6832	  && GET_CODE (XEXP (x, 1)) == CONST_INT
6833	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
6834	       + floor_log2 (INTVAL (XEXP (x, 1))))
6835	      < GET_MODE_BITSIZE (GET_MODE (x)))
6836	  && (INTVAL (XEXP (x, 1))
6837	      & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6838	{
6839	  temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6840			  << INTVAL (XEXP (XEXP (x, 0), 1)));
6841	  temp = gen_binary (GET_CODE (x), GET_MODE (x),
6842			     XEXP (XEXP (x, 0), 0), temp);
6843	  x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6844			  XEXP (XEXP (x, 0), 1));
6845	  return force_to_mode (x, mode, mask, reg, next_select);
6846	}
6847
6848    binop:
6849      /* For most binary operations, just propagate into the operation and
6850	 change the mode if we have an operation of that mode.  */
6851
6852      op0 = gen_lowpart_for_combine (op_mode,
6853				     force_to_mode (XEXP (x, 0), mode, mask,
6854						    reg, next_select));
6855      op1 = gen_lowpart_for_combine (op_mode,
6856				     force_to_mode (XEXP (x, 1), mode, mask,
6857						    reg, next_select));
6858
6859      /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6860	 MASK since OP1 might have been sign-extended but we never want
6861	 to turn on extra bits, since combine might have previously relied
6862	 on them being off.  */
6863      if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6864	  && (INTVAL (op1) & mask) != 0)
6865	op1 = GEN_INT (INTVAL (op1) & mask);
6866
6867      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6868	x = gen_binary (code, op_mode, op0, op1);
6869      break;
6870
6871    case ASHIFT:
6872      /* For left shifts, do the same, but just for the first operand.
6873	 However, we cannot do anything with shifts where we cannot
6874	 guarantee that the counts are smaller than the size of the mode
6875	 because such a count will have a different meaning in a
6876	 wider mode.  */
6877
6878      if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6879	     && INTVAL (XEXP (x, 1)) >= 0
6880	     && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6881	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6882		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6883		    < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6884	break;
6885
6886      /* If the shift count is a constant and we can do arithmetic in
6887	 the mode of the shift, refine which bits we need.  Otherwise, use the
6888	 conservative form of the mask.  */
6889      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6890	  && INTVAL (XEXP (x, 1)) >= 0
6891	  && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6892	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6893	mask >>= INTVAL (XEXP (x, 1));
6894      else
6895	mask = fuller_mask;
6896
6897      op0 = gen_lowpart_for_combine (op_mode,
6898				     force_to_mode (XEXP (x, 0), op_mode,
6899						    mask, reg, next_select));
6900
6901      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6902	x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6903      break;
6904
6905    case LSHIFTRT:
6906      /* Here we can only do something if the shift count is a constant,
6907	 this shift constant is valid for the host, and we can do arithmetic
6908	 in OP_MODE.  */
6909
6910      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6911	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6912	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6913	{
6914	  rtx inner = XEXP (x, 0);
6915	  unsigned HOST_WIDE_INT inner_mask;
6916
6917	  /* Select the mask of the bits we need for the shift operand.  */
6918	  inner_mask = mask << INTVAL (XEXP (x, 1));
6919
6920	  /* We can only change the mode of the shift if we can do arithmetic
6921	     in the mode of the shift and INNER_MASK is no wider than the
6922	     width of OP_MODE.  */
6923	  if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6924	      || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6925	    op_mode = GET_MODE (x);
6926
6927	  inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6928
6929	  if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6930	    x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6931	}
6932
6933      /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6934	 shift and AND produces only copies of the sign bit (C2 is one less
6935	 than a power of two), we can do this with just a shift.  */
6936
6937      if (GET_CODE (x) == LSHIFTRT
6938	  && GET_CODE (XEXP (x, 1)) == CONST_INT
6939	  /* The shift puts one of the sign bit copies in the least significant
6940	     bit.  */
6941	  && ((INTVAL (XEXP (x, 1))
6942	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6943	      >= GET_MODE_BITSIZE (GET_MODE (x)))
6944	  && exact_log2 (mask + 1) >= 0
6945	  /* Number of bits left after the shift must be more than the mask
6946	     needs.  */
6947	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
6948	      <= GET_MODE_BITSIZE (GET_MODE (x)))
6949	  /* Must be more sign bit copies than the mask needs.  */
6950	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6951	      >= exact_log2 (mask + 1)))
6952	x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6953			GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6954				 - exact_log2 (mask + 1)));
6955
6956      goto shiftrt;
6957
6958    case ASHIFTRT:
6959      /* If we are just looking for the sign bit, we don't need this shift at
6960	 all, even if it has a variable count.  */
6961      if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6962	  && (mask == ((unsigned HOST_WIDE_INT) 1
6963		       << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6964	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6965
6966      /* If this is a shift by a constant, get a mask that contains those bits
6967	 that are not copies of the sign bit.  We then have two cases:  If
6968	 MASK only includes those bits, this can be a logical shift, which may
6969	 allow simplifications.  If MASK is a single-bit field not within
6970	 those bits, we are requesting a copy of the sign bit and hence can
6971	 shift the sign bit to the appropriate location.  */
6972
6973      if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6974	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6975	{
6976	  int i = -1;
6977
6978	  /* If the considered data is wider than HOST_WIDE_INT, we can't
6979	     represent a mask for all its bits in a single scalar.
6980	     But we only care about the lower bits, so calculate these.  */
6981
6982	  if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6983	    {
6984	      nonzero = ~(HOST_WIDE_INT) 0;
6985
6986	      /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6987		 is the number of bits a full-width mask would have set.
6988		 We need only shift if these are fewer than nonzero can
6989		 hold.  If not, we must keep all bits set in nonzero.  */
6990
6991	      if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6992		  < HOST_BITS_PER_WIDE_INT)
6993		nonzero >>= INTVAL (XEXP (x, 1))
6994			    + HOST_BITS_PER_WIDE_INT
6995			    - GET_MODE_BITSIZE (GET_MODE (x)) ;
6996	    }
6997	  else
6998	    {
6999	      nonzero = GET_MODE_MASK (GET_MODE (x));
7000	      nonzero >>= INTVAL (XEXP (x, 1));
7001	    }
7002
7003	  if ((mask & ~nonzero) == 0
7004	      || (i = exact_log2 (mask)) >= 0)
7005	    {
7006	      x = simplify_shift_const
7007		(x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7008		 i < 0 ? INTVAL (XEXP (x, 1))
7009		 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7010
7011	      if (GET_CODE (x) != ASHIFTRT)
7012		return force_to_mode (x, mode, mask, reg, next_select);
7013	    }
7014	}
7015
7016      /* If MASK is 1, convert this to a LSHIFTRT.  This can be done
7017	 even if the shift count isn't a constant.  */
7018      if (mask == 1)
7019	x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7020
7021    shiftrt:
7022
7023      /* If this is a zero- or sign-extension operation that just affects bits
7024	 we don't care about, remove it.  Be sure the call above returned
7025	 something that is still a shift.  */
7026
7027      if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7028	  && GET_CODE (XEXP (x, 1)) == CONST_INT
7029	  && INTVAL (XEXP (x, 1)) >= 0
7030	  && (INTVAL (XEXP (x, 1))
7031	      <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7032	  && GET_CODE (XEXP (x, 0)) == ASHIFT
7033	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7034	  && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7035	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7036			      reg, next_select);
7037
7038      break;
7039
7040    case ROTATE:
7041    case ROTATERT:
7042      /* If the shift count is constant and we can do computations
7043	 in the mode of X, compute where the bits we care about are.
7044	 Otherwise, we can't do anything.  Don't change the mode of
7045	 the shift or propagate MODE into the shift, though.  */
7046      if (GET_CODE (XEXP (x, 1)) == CONST_INT
7047	  && INTVAL (XEXP (x, 1)) >= 0)
7048	{
7049	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7050					    GET_MODE (x), GEN_INT (mask),
7051					    XEXP (x, 1));
7052	  if (temp && GET_CODE(temp) == CONST_INT)
7053	    SUBST (XEXP (x, 0),
7054		   force_to_mode (XEXP (x, 0), GET_MODE (x),
7055				  INTVAL (temp), reg, next_select));
7056	}
7057      break;
7058
7059    case NEG:
7060      /* If we just want the low-order bit, the NEG isn't needed since it
7061	 won't change the low-order bit.  */
7062      if (mask == 1)
7063	return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7064
7065      /* We need any bits less significant than the most significant bit in
7066	 MASK since carries from those bits will affect the bits we are
7067	 interested in.  */
7068      mask = fuller_mask;
7069      goto unop;
7070
7071    case NOT:
7072      /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7073	 same as the XOR case above.  Ensure that the constant we form is not
7074	 wider than the mode of X.  */
7075
7076      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7077	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7078	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7079	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7080	      < GET_MODE_BITSIZE (GET_MODE (x)))
7081	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7082	{
7083	  temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7084	  temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7085	  x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7086
7087	  return force_to_mode (x, mode, mask, reg, next_select);
7088	}
7089
7090      /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7091	 use the full mask inside the NOT.  */
7092      mask = fuller_mask;
7093
7094    unop:
7095      op0 = gen_lowpart_for_combine (op_mode,
7096				     force_to_mode (XEXP (x, 0), mode, mask,
7097						    reg, next_select));
7098      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7099	x = simplify_gen_unary (code, op_mode, op0, op_mode);
7100      break;
7101
7102    case NE:
7103      /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7104	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7105	 which is equal to STORE_FLAG_VALUE.  */
7106      if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7107	  && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7108	  && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7109	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7110
7111      break;
7112
7113    case IF_THEN_ELSE:
7114      /* We have no way of knowing if the IF_THEN_ELSE can itself be
7115	 written in a narrower mode.  We play it safe and do not do so.  */
7116
7117      SUBST (XEXP (x, 1),
7118	     gen_lowpart_for_combine (GET_MODE (x),
7119				      force_to_mode (XEXP (x, 1), mode,
7120						     mask, reg, next_select)));
7121      SUBST (XEXP (x, 2),
7122	     gen_lowpart_for_combine (GET_MODE (x),
7123				      force_to_mode (XEXP (x, 2), mode,
7124						     mask, reg,next_select)));
7125      break;
7126
7127    default:
7128      break;
7129    }
7130
7131  /* Ensure we return a value of the proper mode.  */
7132  return gen_lowpart_for_combine (mode, x);
7133}
7134
7135/* Return nonzero if X is an expression that has one of two values depending on
7136   whether some other value is zero or nonzero.  In that case, we return the
7137   value that is being tested, *PTRUE is set to the value if the rtx being
7138   returned has a nonzero value, and *PFALSE is set to the other alternative.
7139
7140   If we return zero, we set *PTRUE and *PFALSE to X.  */
7141
7142static rtx
7143if_then_else_cond (x, ptrue, pfalse)
7144     rtx x;
7145     rtx *ptrue, *pfalse;
7146{
7147  enum machine_mode mode = GET_MODE (x);
7148  enum rtx_code code = GET_CODE (x);
7149  rtx cond0, cond1, true0, true1, false0, false1;
7150  unsigned HOST_WIDE_INT nz;
7151
7152  /* If we are comparing a value against zero, we are done.  */
7153  if ((code == NE || code == EQ)
7154      && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7155    {
7156      *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7157      *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7158      return XEXP (x, 0);
7159    }
7160
7161  /* If this is a unary operation whose operand has one of two values, apply
7162     our opcode to compute those values.  */
7163  else if (GET_RTX_CLASS (code) == '1'
7164	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7165    {
7166      *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7167      *pfalse = simplify_gen_unary (code, mode, false0,
7168				    GET_MODE (XEXP (x, 0)));
7169      return cond0;
7170    }
7171
7172  /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7173     make can't possibly match and would suppress other optimizations.  */
7174  else if (code == COMPARE)
7175    ;
7176
7177  /* If this is a binary operation, see if either side has only one of two
7178     values.  If either one does or if both do and they are conditional on
7179     the same value, compute the new true and false values.  */
7180  else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7181	   || GET_RTX_CLASS (code) == '<')
7182    {
7183      cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7184      cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7185
7186      if ((cond0 != 0 || cond1 != 0)
7187	  && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7188	{
7189	  /* If if_then_else_cond returned zero, then true/false are the
7190	     same rtl.  We must copy one of them to prevent invalid rtl
7191	     sharing.  */
7192	  if (cond0 == 0)
7193	    true0 = copy_rtx (true0);
7194	  else if (cond1 == 0)
7195	    true1 = copy_rtx (true1);
7196
7197	  *ptrue = gen_binary (code, mode, true0, true1);
7198	  *pfalse = gen_binary (code, mode, false0, false1);
7199	  return cond0 ? cond0 : cond1;
7200	}
7201
7202      /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7203	 operands is zero when the other is non-zero, and vice-versa,
7204	 and STORE_FLAG_VALUE is 1 or -1.  */
7205
7206      if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7207	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
7208	      || code == UMAX)
7209	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7210	{
7211	  rtx op0 = XEXP (XEXP (x, 0), 1);
7212	  rtx op1 = XEXP (XEXP (x, 1), 1);
7213
7214	  cond0 = XEXP (XEXP (x, 0), 0);
7215	  cond1 = XEXP (XEXP (x, 1), 0);
7216
7217	  if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7218	      && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7219	      && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7220		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7221		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7222		  || ((swap_condition (GET_CODE (cond0))
7223		       == combine_reversed_comparison_code (cond1))
7224		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7225		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7226	      && ! side_effects_p (x))
7227	    {
7228	      *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7229	      *pfalse = gen_binary (MULT, mode,
7230				    (code == MINUS
7231				     ? simplify_gen_unary (NEG, mode, op1,
7232							   mode)
7233				     : op1),
7234				    const_true_rtx);
7235	      return cond0;
7236	    }
7237	}
7238
7239      /* Similarly for MULT, AND and UMIN, except that for these the result
7240	 is always zero.  */
7241      if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7242	  && (code == MULT || code == AND || code == UMIN)
7243	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7244	{
7245	  cond0 = XEXP (XEXP (x, 0), 0);
7246	  cond1 = XEXP (XEXP (x, 1), 0);
7247
7248	  if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7249	      && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7250	      && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7251		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7252		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7253		  || ((swap_condition (GET_CODE (cond0))
7254		       == combine_reversed_comparison_code (cond1))
7255		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7256		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7257	      && ! side_effects_p (x))
7258	    {
7259	      *ptrue = *pfalse = const0_rtx;
7260	      return cond0;
7261	    }
7262	}
7263    }
7264
7265  else if (code == IF_THEN_ELSE)
7266    {
7267      /* If we have IF_THEN_ELSE already, extract the condition and
7268	 canonicalize it if it is NE or EQ.  */
7269      cond0 = XEXP (x, 0);
7270      *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7271      if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7272	return XEXP (cond0, 0);
7273      else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7274	{
7275	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7276	  return XEXP (cond0, 0);
7277	}
7278      else
7279	return cond0;
7280    }
7281
7282  /* If X is a SUBREG, we can narrow both the true and false values
7283     if the inner expression, if there is a condition.  */
7284  else if (code == SUBREG
7285	   && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7286					       &true0, &false0)))
7287    {
7288      *ptrue = simplify_gen_subreg (mode, true0,
7289				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7290      *pfalse = simplify_gen_subreg (mode, false0,
7291				     GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7292
7293      return cond0;
7294    }
7295
7296  /* If X is a constant, this isn't special and will cause confusions
7297     if we treat it as such.  Likewise if it is equivalent to a constant.  */
7298  else if (CONSTANT_P (x)
7299	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7300    ;
7301
7302  /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7303     will be least confusing to the rest of the compiler.  */
7304  else if (mode == BImode)
7305    {
7306      *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7307      return x;
7308    }
7309
7310  /* If X is known to be either 0 or -1, those are the true and
7311     false values when testing X.  */
7312  else if (x == constm1_rtx || x == const0_rtx
7313	   || (mode != VOIDmode
7314	       && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7315    {
7316      *ptrue = constm1_rtx, *pfalse = const0_rtx;
7317      return x;
7318    }
7319
7320  /* Likewise for 0 or a single bit.  */
7321  else if (mode != VOIDmode
7322	   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7323	   && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7324    {
7325      *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7326      return x;
7327    }
7328
7329  /* Otherwise fail; show no condition with true and false values the same.  */
7330  *ptrue = *pfalse = x;
7331  return 0;
7332}
7333
7334/* Return the value of expression X given the fact that condition COND
7335   is known to be true when applied to REG as its first operand and VAL
7336   as its second.  X is known to not be shared and so can be modified in
7337   place.
7338
7339   We only handle the simplest cases, and specifically those cases that
7340   arise with IF_THEN_ELSE expressions.  */
7341
7342static rtx
7343known_cond (x, cond, reg, val)
7344     rtx x;
7345     enum rtx_code cond;
7346     rtx reg, val;
7347{
7348  enum rtx_code code = GET_CODE (x);
7349  rtx temp;
7350  const char *fmt;
7351  int i, j;
7352
7353  if (side_effects_p (x))
7354    return x;
7355
7356  /* If either operand of the condition is a floating point value,
7357     then we have to avoid collapsing an EQ comparison.  */
7358  if (cond == EQ
7359      && rtx_equal_p (x, reg)
7360      && ! FLOAT_MODE_P (GET_MODE (x))
7361      && ! FLOAT_MODE_P (GET_MODE (val)))
7362    return val;
7363
7364  if (cond == UNEQ && rtx_equal_p (x, reg))
7365    return val;
7366
7367  /* If X is (abs REG) and we know something about REG's relationship
7368     with zero, we may be able to simplify this.  */
7369
7370  if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7371    switch (cond)
7372      {
7373      case GE:  case GT:  case EQ:
7374	return XEXP (x, 0);
7375      case LT:  case LE:
7376	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7377				   XEXP (x, 0),
7378				   GET_MODE (XEXP (x, 0)));
7379      default:
7380	break;
7381      }
7382
7383  /* The only other cases we handle are MIN, MAX, and comparisons if the
7384     operands are the same as REG and VAL.  */
7385
7386  else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7387    {
7388      if (rtx_equal_p (XEXP (x, 0), val))
7389	cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7390
7391      if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7392	{
7393	  if (GET_RTX_CLASS (code) == '<')
7394	    {
7395	      if (comparison_dominates_p (cond, code))
7396		return const_true_rtx;
7397
7398	      code = combine_reversed_comparison_code (x);
7399	      if (code != UNKNOWN
7400		  && comparison_dominates_p (cond, code))
7401		return const0_rtx;
7402	      else
7403		return x;
7404	    }
7405	  else if (code == SMAX || code == SMIN
7406		   || code == UMIN || code == UMAX)
7407	    {
7408	      int unsignedp = (code == UMIN || code == UMAX);
7409
7410	      /* Do not reverse the condition when it is NE or EQ.
7411		 This is because we cannot conclude anything about
7412		 the value of 'SMAX (x, y)' when x is not equal to y,
7413		 but we can when x equals y.  */
7414	      if ((code == SMAX || code == UMAX)
7415		  && ! (cond == EQ || cond == NE))
7416		cond = reverse_condition (cond);
7417
7418	      switch (cond)
7419		{
7420		case GE:   case GT:
7421		  return unsignedp ? x : XEXP (x, 1);
7422		case LE:   case LT:
7423		  return unsignedp ? x : XEXP (x, 0);
7424		case GEU:  case GTU:
7425		  return unsignedp ? XEXP (x, 1) : x;
7426		case LEU:  case LTU:
7427		  return unsignedp ? XEXP (x, 0) : x;
7428		default:
7429		  break;
7430		}
7431	    }
7432	}
7433    }
7434
7435  fmt = GET_RTX_FORMAT (code);
7436  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7437    {
7438      if (fmt[i] == 'e')
7439	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7440      else if (fmt[i] == 'E')
7441	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7442	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7443						cond, reg, val));
7444    }
7445
7446  return x;
7447}
7448
7449/* See if X and Y are equal for the purposes of seeing if we can rewrite an
7450   assignment as a field assignment.  */
7451
7452static int
7453rtx_equal_for_field_assignment_p (x, y)
7454     rtx x;
7455     rtx y;
7456{
7457  if (x == y || rtx_equal_p (x, y))
7458    return 1;
7459
7460  if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7461    return 0;
7462
7463  /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7464     Note that all SUBREGs of MEM are paradoxical; otherwise they
7465     would have been rewritten.  */
7466  if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7467      && GET_CODE (SUBREG_REG (y)) == MEM
7468      && rtx_equal_p (SUBREG_REG (y),
7469		      gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7470    return 1;
7471
7472  if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7473      && GET_CODE (SUBREG_REG (x)) == MEM
7474      && rtx_equal_p (SUBREG_REG (x),
7475		      gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7476    return 1;
7477
7478  /* We used to see if get_last_value of X and Y were the same but that's
7479     not correct.  In one direction, we'll cause the assignment to have
7480     the wrong destination and in the case, we'll import a register into this
7481     insn that might have already have been dead.   So fail if none of the
7482     above cases are true.  */
7483  return 0;
7484}
7485
7486/* See if X, a SET operation, can be rewritten as a bit-field assignment.
7487   Return that assignment if so.
7488
7489   We only handle the most common cases.  */
7490
7491static rtx
7492make_field_assignment (x)
7493     rtx x;
7494{
7495  rtx dest = SET_DEST (x);
7496  rtx src = SET_SRC (x);
7497  rtx assign;
7498  rtx rhs, lhs;
7499  HOST_WIDE_INT c1;
7500  HOST_WIDE_INT pos;
7501  unsigned HOST_WIDE_INT len;
7502  rtx other;
7503  enum machine_mode mode;
7504
7505  /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7506     a clear of a one-bit field.  We will have changed it to
7507     (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
7508     for a SUBREG.  */
7509
7510  if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7511      && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7512      && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7513      && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7514    {
7515      assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7516				1, 1, 1, 0);
7517      if (assign != 0)
7518	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7519      return x;
7520    }
7521
7522  else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7523	   && subreg_lowpart_p (XEXP (src, 0))
7524	   && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7525	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7526	   && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7527	   && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7528	   && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7529    {
7530      assign = make_extraction (VOIDmode, dest, 0,
7531				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7532				1, 1, 1, 0);
7533      if (assign != 0)
7534	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7535      return x;
7536    }
7537
7538  /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7539     one-bit field.  */
7540  else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7541	   && XEXP (XEXP (src, 0), 0) == const1_rtx
7542	   && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7543    {
7544      assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7545				1, 1, 1, 0);
7546      if (assign != 0)
7547	return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7548      return x;
7549    }
7550
7551  /* The other case we handle is assignments into a constant-position
7552     field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
7553     a mask that has all one bits except for a group of zero bits and
7554     OTHER is known to have zeros where C1 has ones, this is such an
7555     assignment.  Compute the position and length from C1.  Shift OTHER
7556     to the appropriate position, force it to the required mode, and
7557     make the extraction.  Check for the AND in both operands.  */
7558
7559  if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7560    return x;
7561
7562  rhs = expand_compound_operation (XEXP (src, 0));
7563  lhs = expand_compound_operation (XEXP (src, 1));
7564
7565  if (GET_CODE (rhs) == AND
7566      && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7567      && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7568    c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7569  else if (GET_CODE (lhs) == AND
7570	   && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7571	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7572    c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7573  else
7574    return x;
7575
7576  pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7577  if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7578      || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7579      || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7580    return x;
7581
7582  assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7583  if (assign == 0)
7584    return x;
7585
7586  /* The mode to use for the source is the mode of the assignment, or of
7587     what is inside a possible STRICT_LOW_PART.  */
7588  mode = (GET_CODE (assign) == STRICT_LOW_PART
7589	  ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7590
7591  /* Shift OTHER right POS places and make it the source, restricting it
7592     to the proper length and mode.  */
7593
7594  src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7595					     GET_MODE (src), other, pos),
7596		       mode,
7597		       GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7598		       ? ~(unsigned HOST_WIDE_INT) 0
7599		       : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7600		       dest, 0);
7601
7602  return gen_rtx_SET (VOIDmode, assign, src);
7603}
7604
7605/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7606   if so.  */
7607
7608static rtx
7609apply_distributive_law (x)
7610     rtx x;
7611{
7612  enum rtx_code code = GET_CODE (x);
7613  rtx lhs, rhs, other;
7614  rtx tem;
7615  enum rtx_code inner_code;
7616
7617  /* Distributivity is not true for floating point.
7618     It can change the value.  So don't do it.
7619     -- rms and moshier@world.std.com.  */
7620  if (FLOAT_MODE_P (GET_MODE (x)))
7621    return x;
7622
7623  /* The outer operation can only be one of the following:  */
7624  if (code != IOR && code != AND && code != XOR
7625      && code != PLUS && code != MINUS)
7626    return x;
7627
7628  lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7629
7630  /* If either operand is a primitive we can't do anything, so get out
7631     fast.  */
7632  if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7633      || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7634    return x;
7635
7636  lhs = expand_compound_operation (lhs);
7637  rhs = expand_compound_operation (rhs);
7638  inner_code = GET_CODE (lhs);
7639  if (inner_code != GET_CODE (rhs))
7640    return x;
7641
7642  /* See if the inner and outer operations distribute.  */
7643  switch (inner_code)
7644    {
7645    case LSHIFTRT:
7646    case ASHIFTRT:
7647    case AND:
7648    case IOR:
7649      /* These all distribute except over PLUS.  */
7650      if (code == PLUS || code == MINUS)
7651	return x;
7652      break;
7653
7654    case MULT:
7655      if (code != PLUS && code != MINUS)
7656	return x;
7657      break;
7658
7659    case ASHIFT:
7660      /* This is also a multiply, so it distributes over everything.  */
7661      break;
7662
7663    case SUBREG:
7664      /* Non-paradoxical SUBREGs distributes over all operations, provided
7665	 the inner modes and byte offsets are the same, this is an extraction
7666	 of a low-order part, we don't convert an fp operation to int or
7667	 vice versa, and we would not be converting a single-word
7668	 operation into a multi-word operation.  The latter test is not
7669	 required, but it prevents generating unneeded multi-word operations.
7670	 Some of the previous tests are redundant given the latter test, but
7671	 are retained because they are required for correctness.
7672
7673	 We produce the result slightly differently in this case.  */
7674
7675      if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7676	  || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7677	  || ! subreg_lowpart_p (lhs)
7678	  || (GET_MODE_CLASS (GET_MODE (lhs))
7679	      != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7680	  || (GET_MODE_SIZE (GET_MODE (lhs))
7681	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7682	  || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7683	return x;
7684
7685      tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7686			SUBREG_REG (lhs), SUBREG_REG (rhs));
7687      return gen_lowpart_for_combine (GET_MODE (x), tem);
7688
7689    default:
7690      return x;
7691    }
7692
7693  /* Set LHS and RHS to the inner operands (A and B in the example
7694     above) and set OTHER to the common operand (C in the example).
7695     These is only one way to do this unless the inner operation is
7696     commutative.  */
7697  if (GET_RTX_CLASS (inner_code) == 'c'
7698      && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7699    other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7700  else if (GET_RTX_CLASS (inner_code) == 'c'
7701	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7702    other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7703  else if (GET_RTX_CLASS (inner_code) == 'c'
7704	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7705    other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7706  else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7707    other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7708  else
7709    return x;
7710
7711  /* Form the new inner operation, seeing if it simplifies first.  */
7712  tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7713
7714  /* There is one exception to the general way of distributing:
7715     (a ^ b) | (a ^ c) -> (~a) & (b ^ c)  */
7716  if (code == XOR && inner_code == IOR)
7717    {
7718      inner_code = AND;
7719      other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7720    }
7721
7722  /* We may be able to continuing distributing the result, so call
7723     ourselves recursively on the inner operation before forming the
7724     outer operation, which we return.  */
7725  return gen_binary (inner_code, GET_MODE (x),
7726		     apply_distributive_law (tem), other);
7727}
7728
7729/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7730   in MODE.
7731
7732   Return an equivalent form, if different from X.  Otherwise, return X.  If
7733   X is zero, we are to always construct the equivalent form.  */
7734
7735static rtx
7736simplify_and_const_int (x, mode, varop, constop)
7737     rtx x;
7738     enum machine_mode mode;
7739     rtx varop;
7740     unsigned HOST_WIDE_INT constop;
7741{
7742  unsigned HOST_WIDE_INT nonzero;
7743  int i;
7744
7745  /* Simplify VAROP knowing that we will be only looking at some of the
7746     bits in it.  */
7747  varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7748
7749  /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7750     CONST_INT, we are done.  */
7751  if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7752    return varop;
7753
7754  /* See what bits may be nonzero in VAROP.  Unlike the general case of
7755     a call to nonzero_bits, here we don't care about bits outside
7756     MODE.  */
7757
7758  nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7759
7760  /* Turn off all bits in the constant that are known to already be zero.
7761     Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7762     which is tested below.  */
7763
7764  constop &= nonzero;
7765
7766  /* If we don't have any bits left, return zero.  */
7767  if (constop == 0)
7768    return const0_rtx;
7769
7770  /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7771     a power of two, we can replace this with a ASHIFT.  */
7772  if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7773      && (i = exact_log2 (constop)) >= 0)
7774    return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7775
7776  /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7777     or XOR, then try to apply the distributive law.  This may eliminate
7778     operations if either branch can be simplified because of the AND.
7779     It may also make some cases more complex, but those cases probably
7780     won't match a pattern either with or without this.  */
7781
7782  if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7783    return
7784      gen_lowpart_for_combine
7785	(mode,
7786	 apply_distributive_law
7787	 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7788		      simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7789					      XEXP (varop, 0), constop),
7790		      simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7791					      XEXP (varop, 1), constop))));
7792
7793  /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7794     the AND and see if one of the operands simplifies to zero.  If so, we
7795     may eliminate it.  */
7796
7797  if (GET_CODE (varop) == PLUS
7798      && exact_log2 (constop + 1) >= 0)
7799    {
7800      rtx o0, o1;
7801
7802      o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7803      o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7804      if (o0 == const0_rtx)
7805	return o1;
7806      if (o1 == const0_rtx)
7807	return o0;
7808    }
7809
7810  /* Get VAROP in MODE.  Try to get a SUBREG if not.  Don't make a new SUBREG
7811     if we already had one (just check for the simplest cases).  */
7812  if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7813      && GET_MODE (XEXP (x, 0)) == mode
7814      && SUBREG_REG (XEXP (x, 0)) == varop)
7815    varop = XEXP (x, 0);
7816  else
7817    varop = gen_lowpart_for_combine (mode, varop);
7818
7819  /* If we can't make the SUBREG, try to return what we were given.  */
7820  if (GET_CODE (varop) == CLOBBER)
7821    return x ? x : varop;
7822
7823  /* If we are only masking insignificant bits, return VAROP.  */
7824  if (constop == nonzero)
7825    x = varop;
7826  else
7827    {
7828      /* Otherwise, return an AND.  */
7829      constop = trunc_int_for_mode (constop, mode);
7830      /* See how much, if any, of X we can use.  */
7831      if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7832	x = gen_binary (AND, mode, varop, GEN_INT (constop));
7833
7834      else
7835	{
7836	  if (GET_CODE (XEXP (x, 1)) != CONST_INT
7837	      || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7838	    SUBST (XEXP (x, 1), GEN_INT (constop));
7839
7840	  SUBST (XEXP (x, 0), varop);
7841	}
7842    }
7843
7844  return x;
7845}
7846
7847/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7848   We don't let nonzero_bits recur into num_sign_bit_copies, because that
7849   is less useful.  We can't allow both, because that results in exponential
7850   run time recursion.  There is a nullstone testcase that triggered
7851   this.  This macro avoids accidental uses of num_sign_bit_copies.  */
7852#define num_sign_bit_copies()
7853
7854/* Given an expression, X, compute which bits in X can be non-zero.
7855   We don't care about bits outside of those defined in MODE.
7856
7857   For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7858   a shift, AND, or zero_extract, we can do better.  */
7859
7860static unsigned HOST_WIDE_INT
7861nonzero_bits (x, mode)
7862     rtx x;
7863     enum machine_mode mode;
7864{
7865  unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7866  unsigned HOST_WIDE_INT inner_nz;
7867  enum rtx_code code;
7868  unsigned int mode_width = GET_MODE_BITSIZE (mode);
7869  rtx tem;
7870
7871  /* For floating-point values, assume all bits are needed.  */
7872  if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7873    return nonzero;
7874
7875  /* If X is wider than MODE, use its mode instead.  */
7876  if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7877    {
7878      mode = GET_MODE (x);
7879      nonzero = GET_MODE_MASK (mode);
7880      mode_width = GET_MODE_BITSIZE (mode);
7881    }
7882
7883  if (mode_width > HOST_BITS_PER_WIDE_INT)
7884    /* Our only callers in this case look for single bit values.  So
7885       just return the mode mask.  Those tests will then be false.  */
7886    return nonzero;
7887
7888#ifndef WORD_REGISTER_OPERATIONS
7889  /* If MODE is wider than X, but both are a single word for both the host
7890     and target machines, we can compute this from which bits of the
7891     object might be nonzero in its own mode, taking into account the fact
7892     that on many CISC machines, accessing an object in a wider mode
7893     causes the high-order bits to become undefined.  So they are
7894     not known to be zero.  */
7895
7896  if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7897      && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7898      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7899      && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7900    {
7901      nonzero &= nonzero_bits (x, GET_MODE (x));
7902      nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
7903      return nonzero;
7904    }
7905#endif
7906
7907  code = GET_CODE (x);
7908  switch (code)
7909    {
7910    case REG:
7911#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
7912      /* If pointers extend unsigned and this is a pointer in Pmode, say that
7913	 all the bits above ptr_mode are known to be zero.  */
7914      if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7915	  && REG_POINTER (x))
7916	nonzero &= GET_MODE_MASK (ptr_mode);
7917#endif
7918
7919#ifdef STACK_BOUNDARY
7920      /* If this is the stack pointer, we may know something about its
7921	 alignment.  If PUSH_ROUNDING is defined, it is possible for the
7922	 stack to be momentarily aligned only to that amount, so we pick
7923	 the least alignment.  */
7924
7925      /* We can't check for arg_pointer_rtx here, because it is not
7926	 guaranteed to have as much alignment as the stack pointer.
7927	 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7928	 alignment but the argument pointer has only 64 bit alignment.  */
7929
7930      if ((x == frame_pointer_rtx
7931	   || x == stack_pointer_rtx
7932	   || x == hard_frame_pointer_rtx
7933	   || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7934	       && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7935#ifdef STACK_BIAS
7936	  && !STACK_BIAS
7937#endif
7938	      )
7939	{
7940	  int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7941
7942#ifdef PUSH_ROUNDING
7943	  if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
7944	    sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7945#endif
7946
7947	  /* We must return here, otherwise we may get a worse result from
7948	     one of the choices below.  There is nothing useful below as
7949	     far as the stack pointer is concerned.  */
7950	  return nonzero &= ~(sp_alignment - 1);
7951	}
7952#endif
7953
7954      /* If X is a register whose nonzero bits value is current, use it.
7955	 Otherwise, if X is a register whose value we can find, use that
7956	 value.  Otherwise, use the previously-computed global nonzero bits
7957	 for this register.  */
7958
7959      if (reg_last_set_value[REGNO (x)] != 0
7960	  && reg_last_set_mode[REGNO (x)] == mode
7961	  && (reg_last_set_label[REGNO (x)] == label_tick
7962	      || (REGNO (x) >= FIRST_PSEUDO_REGISTER
7963		  && REG_N_SETS (REGNO (x)) == 1
7964		  && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
7965					REGNO (x))))
7966	  && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7967	return reg_last_set_nonzero_bits[REGNO (x)];
7968
7969      tem = get_last_value (x);
7970
7971      if (tem)
7972	{
7973#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7974	  /* If X is narrower than MODE and TEM is a non-negative
7975	     constant that would appear negative in the mode of X,
7976	     sign-extend it for use in reg_nonzero_bits because some
7977	     machines (maybe most) will actually do the sign-extension
7978	     and this is the conservative approach.
7979
7980	     ??? For 2.5, try to tighten up the MD files in this regard
7981	     instead of this kludge.  */
7982
7983	  if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7984	      && GET_CODE (tem) == CONST_INT
7985	      && INTVAL (tem) > 0
7986	      && 0 != (INTVAL (tem)
7987		       & ((HOST_WIDE_INT) 1
7988			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7989	    tem = GEN_INT (INTVAL (tem)
7990			   | ((HOST_WIDE_INT) (-1)
7991			      << GET_MODE_BITSIZE (GET_MODE (x))));
7992#endif
7993	  return nonzero_bits (tem, mode);
7994	}
7995      else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7996	{
7997	  unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
7998
7999	  if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8000	    /* We don't know anything about the upper bits.  */
8001	    mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8002	  return nonzero & mask;
8003	}
8004      else
8005	return nonzero;
8006
8007    case CONST_INT:
8008#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8009      /* If X is negative in MODE, sign-extend the value.  */
8010      if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8011	  && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8012	return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8013#endif
8014
8015      return INTVAL (x);
8016
8017    case MEM:
8018#ifdef LOAD_EXTEND_OP
8019      /* In many, if not most, RISC machines, reading a byte from memory
8020	 zeros the rest of the register.  Noticing that fact saves a lot
8021	 of extra zero-extends.  */
8022      if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8023	nonzero &= GET_MODE_MASK (GET_MODE (x));
8024#endif
8025      break;
8026
8027    case EQ:  case NE:
8028    case UNEQ:  case LTGT:
8029    case GT:  case GTU:  case UNGT:
8030    case LT:  case LTU:  case UNLT:
8031    case GE:  case GEU:  case UNGE:
8032    case LE:  case LEU:  case UNLE:
8033    case UNORDERED: case ORDERED:
8034
8035      /* If this produces an integer result, we know which bits are set.
8036	 Code here used to clear bits outside the mode of X, but that is
8037	 now done above.  */
8038
8039      if (GET_MODE_CLASS (mode) == MODE_INT
8040	  && mode_width <= HOST_BITS_PER_WIDE_INT)
8041	nonzero = STORE_FLAG_VALUE;
8042      break;
8043
8044    case NEG:
8045#if 0
8046      /* Disabled to avoid exponential mutual recursion between nonzero_bits
8047	 and num_sign_bit_copies.  */
8048      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8049	  == GET_MODE_BITSIZE (GET_MODE (x)))
8050	nonzero = 1;
8051#endif
8052
8053      if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8054	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8055      break;
8056
8057    case ABS:
8058#if 0
8059      /* Disabled to avoid exponential mutual recursion between nonzero_bits
8060	 and num_sign_bit_copies.  */
8061      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8062	  == GET_MODE_BITSIZE (GET_MODE (x)))
8063	nonzero = 1;
8064#endif
8065      break;
8066
8067    case TRUNCATE:
8068      nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8069      break;
8070
8071    case ZERO_EXTEND:
8072      nonzero &= nonzero_bits (XEXP (x, 0), mode);
8073      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8074	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8075      break;
8076
8077    case SIGN_EXTEND:
8078      /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8079	 Otherwise, show all the bits in the outer mode but not the inner
8080	 may be non-zero.  */
8081      inner_nz = nonzero_bits (XEXP (x, 0), mode);
8082      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8083	{
8084	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8085	  if (inner_nz
8086	      & (((HOST_WIDE_INT) 1
8087		  << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8088	    inner_nz |= (GET_MODE_MASK (mode)
8089			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8090	}
8091
8092      nonzero &= inner_nz;
8093      break;
8094
8095    case AND:
8096      nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8097		  & nonzero_bits (XEXP (x, 1), mode));
8098      break;
8099
8100    case XOR:   case IOR:
8101    case UMIN:  case UMAX:  case SMIN:  case SMAX:
8102      nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8103		  | nonzero_bits (XEXP (x, 1), mode));
8104      break;
8105
8106    case PLUS:  case MINUS:
8107    case MULT:
8108    case DIV:   case UDIV:
8109    case MOD:   case UMOD:
8110      /* We can apply the rules of arithmetic to compute the number of
8111	 high- and low-order zero bits of these operations.  We start by
8112	 computing the width (position of the highest-order non-zero bit)
8113	 and the number of low-order zero bits for each value.  */
8114      {
8115	unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8116	unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8117	int width0 = floor_log2 (nz0) + 1;
8118	int width1 = floor_log2 (nz1) + 1;
8119	int low0 = floor_log2 (nz0 & -nz0);
8120	int low1 = floor_log2 (nz1 & -nz1);
8121	HOST_WIDE_INT op0_maybe_minusp
8122	  = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8123	HOST_WIDE_INT op1_maybe_minusp
8124	  = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8125	unsigned int result_width = mode_width;
8126	int result_low = 0;
8127
8128	switch (code)
8129	  {
8130	  case PLUS:
8131#ifdef STACK_BIAS
8132	    if (STACK_BIAS
8133		&& (XEXP (x, 0) == stack_pointer_rtx
8134		    || XEXP (x, 0) == frame_pointer_rtx)
8135		&& GET_CODE (XEXP (x, 1)) == CONST_INT)
8136	      {
8137		int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8138
8139		nz0 = (GET_MODE_MASK (mode) & ~(sp_alignment - 1));
8140		nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8141		width0 = floor_log2 (nz0) + 1;
8142		width1 = floor_log2 (nz1) + 1;
8143		low0 = floor_log2 (nz0 & -nz0);
8144		low1 = floor_log2 (nz1 & -nz1);
8145	      }
8146#endif
8147	    result_width = MAX (width0, width1) + 1;
8148	    result_low = MIN (low0, low1);
8149	    break;
8150	  case MINUS:
8151	    result_low = MIN (low0, low1);
8152	    break;
8153	  case MULT:
8154	    result_width = width0 + width1;
8155	    result_low = low0 + low1;
8156	    break;
8157	  case DIV:
8158	    if (width1 == 0)
8159	      break;
8160	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
8161	      result_width = width0;
8162	    break;
8163	  case UDIV:
8164	    if (width1 == 0)
8165	      break;
8166	    result_width = width0;
8167	    break;
8168	  case MOD:
8169	    if (width1 == 0)
8170	      break;
8171	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
8172	      result_width = MIN (width0, width1);
8173	    result_low = MIN (low0, low1);
8174	    break;
8175	  case UMOD:
8176	    if (width1 == 0)
8177	      break;
8178	    result_width = MIN (width0, width1);
8179	    result_low = MIN (low0, low1);
8180	    break;
8181	  default:
8182	    abort ();
8183	  }
8184
8185	if (result_width < mode_width)
8186	  nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8187
8188	if (result_low > 0)
8189	  nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8190
8191#ifdef POINTERS_EXTEND_UNSIGNED
8192	/* If pointers extend unsigned and this is an addition or subtraction
8193	   to a pointer in Pmode, all the bits above ptr_mode are known to be
8194	   zero.  */
8195	if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8196	    && (code == PLUS || code == MINUS)
8197	    && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8198	  nonzero &= GET_MODE_MASK (ptr_mode);
8199#endif
8200      }
8201      break;
8202
8203    case ZERO_EXTRACT:
8204      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8205	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8206	nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8207      break;
8208
8209    case SUBREG:
8210      /* If this is a SUBREG formed for a promoted variable that has
8211	 been zero-extended, we know that at least the high-order bits
8212	 are zero, though others might be too.  */
8213
8214      if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8215	nonzero = (GET_MODE_MASK (GET_MODE (x))
8216		   & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8217
8218      /* If the inner mode is a single word for both the host and target
8219	 machines, we can compute this from which bits of the inner
8220	 object might be nonzero.  */
8221      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8222	  && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8223	      <= HOST_BITS_PER_WIDE_INT))
8224	{
8225	  nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8226
8227#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8228	  /* If this is a typical RISC machine, we only have to worry
8229	     about the way loads are extended.  */
8230	  if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8231	      ? (((nonzero
8232		   & (((unsigned HOST_WIDE_INT) 1
8233		       << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8234		  != 0))
8235	      : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8236#endif
8237	    {
8238	      /* On many CISC machines, accessing an object in a wider mode
8239		 causes the high-order bits to become undefined.  So they are
8240		 not known to be zero.  */
8241	      if (GET_MODE_SIZE (GET_MODE (x))
8242		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8243		nonzero |= (GET_MODE_MASK (GET_MODE (x))
8244			    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8245	    }
8246	}
8247      break;
8248
8249    case ASHIFTRT:
8250    case LSHIFTRT:
8251    case ASHIFT:
8252    case ROTATE:
8253      /* The nonzero bits are in two classes: any bits within MODE
8254	 that aren't in GET_MODE (x) are always significant.  The rest of the
8255	 nonzero bits are those that are significant in the operand of
8256	 the shift when shifted the appropriate number of bits.  This
8257	 shows that high-order bits are cleared by the right shift and
8258	 low-order bits by left shifts.  */
8259      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8260	  && INTVAL (XEXP (x, 1)) >= 0
8261	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8262	{
8263	  enum machine_mode inner_mode = GET_MODE (x);
8264	  unsigned int width = GET_MODE_BITSIZE (inner_mode);
8265	  int count = INTVAL (XEXP (x, 1));
8266	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8267	  unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8268	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8269	  unsigned HOST_WIDE_INT outer = 0;
8270
8271	  if (mode_width > width)
8272	    outer = (op_nonzero & nonzero & ~mode_mask);
8273
8274	  if (code == LSHIFTRT)
8275	    inner >>= count;
8276	  else if (code == ASHIFTRT)
8277	    {
8278	      inner >>= count;
8279
8280	      /* If the sign bit may have been nonzero before the shift, we
8281		 need to mark all the places it could have been copied to
8282		 by the shift as possibly nonzero.  */
8283	      if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8284		inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8285	    }
8286	  else if (code == ASHIFT)
8287	    inner <<= count;
8288	  else
8289	    inner = ((inner << (count % width)
8290		      | (inner >> (width - (count % width)))) & mode_mask);
8291
8292	  nonzero &= (outer | inner);
8293	}
8294      break;
8295
8296    case FFS:
8297      /* This is at most the number of bits in the mode.  */
8298      nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8299      break;
8300
8301    case IF_THEN_ELSE:
8302      nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8303		  | nonzero_bits (XEXP (x, 2), mode));
8304      break;
8305
8306    default:
8307      break;
8308    }
8309
8310  return nonzero;
8311}
8312
8313/* See the macro definition above.  */
8314#undef num_sign_bit_copies
8315
8316/* Return the number of bits at the high-order end of X that are known to
8317   be equal to the sign bit.  X will be used in mode MODE; if MODE is
8318   VOIDmode, X will be used in its own mode.  The returned value  will always
8319   be between 1 and the number of bits in MODE.  */
8320
8321static unsigned int
8322num_sign_bit_copies (x, mode)
8323     rtx x;
8324     enum machine_mode mode;
8325{
8326  enum rtx_code code = GET_CODE (x);
8327  unsigned int bitwidth;
8328  int num0, num1, result;
8329  unsigned HOST_WIDE_INT nonzero;
8330  rtx tem;
8331
8332  /* If we weren't given a mode, use the mode of X.  If the mode is still
8333     VOIDmode, we don't know anything.  Likewise if one of the modes is
8334     floating-point.  */
8335
8336  if (mode == VOIDmode)
8337    mode = GET_MODE (x);
8338
8339  if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8340    return 1;
8341
8342  bitwidth = GET_MODE_BITSIZE (mode);
8343
8344  /* For a smaller object, just ignore the high bits.  */
8345  if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8346    {
8347      num0 = num_sign_bit_copies (x, GET_MODE (x));
8348      return MAX (1,
8349		  num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8350    }
8351
8352  if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8353    {
8354#ifndef WORD_REGISTER_OPERATIONS
8355  /* If this machine does not do all register operations on the entire
8356     register and MODE is wider than the mode of X, we can say nothing
8357     at all about the high-order bits.  */
8358      return 1;
8359#else
8360      /* Likewise on machines that do, if the mode of the object is smaller
8361	 than a word and loads of that size don't sign extend, we can say
8362	 nothing about the high order bits.  */
8363      if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8364#ifdef LOAD_EXTEND_OP
8365	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8366#endif
8367	  )
8368	return 1;
8369#endif
8370    }
8371
8372  switch (code)
8373    {
8374    case REG:
8375
8376#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8377      /* If pointers extend signed and this is a pointer in Pmode, say that
8378	 all the bits above ptr_mode are known to be sign bit copies.  */
8379      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8380	  && REG_POINTER (x))
8381	return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8382#endif
8383
8384      if (reg_last_set_value[REGNO (x)] != 0
8385	  && reg_last_set_mode[REGNO (x)] == mode
8386	  && (reg_last_set_label[REGNO (x)] == label_tick
8387	      || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8388		  && REG_N_SETS (REGNO (x)) == 1
8389		  && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8390					REGNO (x))))
8391	  && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8392	return reg_last_set_sign_bit_copies[REGNO (x)];
8393
8394      tem = get_last_value (x);
8395      if (tem != 0)
8396	return num_sign_bit_copies (tem, mode);
8397
8398      if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8399	  && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8400	return reg_sign_bit_copies[REGNO (x)];
8401      break;
8402
8403    case MEM:
8404#ifdef LOAD_EXTEND_OP
8405      /* Some RISC machines sign-extend all loads of smaller than a word.  */
8406      if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8407	return MAX (1, ((int) bitwidth
8408			- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8409#endif
8410      break;
8411
8412    case CONST_INT:
8413      /* If the constant is negative, take its 1's complement and remask.
8414	 Then see how many zero bits we have.  */
8415      nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8416      if (bitwidth <= HOST_BITS_PER_WIDE_INT
8417	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8418	nonzero = (~nonzero) & GET_MODE_MASK (mode);
8419
8420      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8421
8422    case SUBREG:
8423      /* If this is a SUBREG for a promoted object that is sign-extended
8424	 and we are looking at it in a wider mode, we know that at least the
8425	 high-order bits are known to be sign bit copies.  */
8426
8427      if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8428	{
8429	  num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8430	  return MAX ((int) bitwidth
8431		      - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8432		      num0);
8433	}
8434
8435      /* For a smaller object, just ignore the high bits.  */
8436      if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8437	{
8438	  num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8439	  return MAX (1, (num0
8440			  - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8441				   - bitwidth)));
8442	}
8443
8444#ifdef WORD_REGISTER_OPERATIONS
8445#ifdef LOAD_EXTEND_OP
8446      /* For paradoxical SUBREGs on machines where all register operations
8447	 affect the entire register, just look inside.  Note that we are
8448	 passing MODE to the recursive call, so the number of sign bit copies
8449	 will remain relative to that mode, not the inner mode.  */
8450
8451      /* This works only if loads sign extend.  Otherwise, if we get a
8452	 reload for the inner part, it may be loaded from the stack, and
8453	 then we lose all sign bit copies that existed before the store
8454	 to the stack.  */
8455
8456      if ((GET_MODE_SIZE (GET_MODE (x))
8457	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8458	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8459	return num_sign_bit_copies (SUBREG_REG (x), mode);
8460#endif
8461#endif
8462      break;
8463
8464    case SIGN_EXTRACT:
8465      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8466	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8467      break;
8468
8469    case SIGN_EXTEND:
8470      return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8471	      + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8472
8473    case TRUNCATE:
8474      /* For a smaller object, just ignore the high bits.  */
8475      num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8476      return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8477				    - bitwidth)));
8478
8479    case NOT:
8480      return num_sign_bit_copies (XEXP (x, 0), mode);
8481
8482    case ROTATE:       case ROTATERT:
8483      /* If we are rotating left by a number of bits less than the number
8484	 of sign bit copies, we can just subtract that amount from the
8485	 number.  */
8486      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8487	  && INTVAL (XEXP (x, 1)) >= 0
8488	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8489	{
8490	  num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8491	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8492				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8493	}
8494      break;
8495
8496    case NEG:
8497      /* In general, this subtracts one sign bit copy.  But if the value
8498	 is known to be positive, the number of sign bit copies is the
8499	 same as that of the input.  Finally, if the input has just one bit
8500	 that might be nonzero, all the bits are copies of the sign bit.  */
8501      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8502      if (bitwidth > HOST_BITS_PER_WIDE_INT)
8503	return num0 > 1 ? num0 - 1 : 1;
8504
8505      nonzero = nonzero_bits (XEXP (x, 0), mode);
8506      if (nonzero == 1)
8507	return bitwidth;
8508
8509      if (num0 > 1
8510	  && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8511	num0--;
8512
8513      return num0;
8514
8515    case IOR:   case AND:   case XOR:
8516    case SMIN:  case SMAX:  case UMIN:  case UMAX:
8517      /* Logical operations will preserve the number of sign-bit copies.
8518	 MIN and MAX operations always return one of the operands.  */
8519      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8520      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8521      return MIN (num0, num1);
8522
8523    case PLUS:  case MINUS:
8524      /* For addition and subtraction, we can have a 1-bit carry.  However,
8525	 if we are subtracting 1 from a positive number, there will not
8526	 be such a carry.  Furthermore, if the positive number is known to
8527	 be 0 or 1, we know the result is either -1 or 0.  */
8528
8529      if (code == PLUS && XEXP (x, 1) == constm1_rtx
8530	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
8531	{
8532	  nonzero = nonzero_bits (XEXP (x, 0), mode);
8533	  if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8534	    return (nonzero == 1 || nonzero == 0 ? bitwidth
8535		    : bitwidth - floor_log2 (nonzero) - 1);
8536	}
8537
8538      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8539      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8540      result = MAX (1, MIN (num0, num1) - 1);
8541
8542#ifdef POINTERS_EXTEND_UNSIGNED
8543      /* If pointers extend signed and this is an addition or subtraction
8544	 to a pointer in Pmode, all the bits above ptr_mode are known to be
8545	 sign bit copies.  */
8546      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8547	  && (code == PLUS || code == MINUS)
8548	  && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8549	result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8550			     - GET_MODE_BITSIZE (ptr_mode) + 1),
8551		      result);
8552#endif
8553      return result;
8554
8555    case MULT:
8556      /* The number of bits of the product is the sum of the number of
8557	 bits of both terms.  However, unless one of the terms if known
8558	 to be positive, we must allow for an additional bit since negating
8559	 a negative number can remove one sign bit copy.  */
8560
8561      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8562      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8563
8564      result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8565      if (result > 0
8566	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8567	      || (((nonzero_bits (XEXP (x, 0), mode)
8568		    & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8569		  && ((nonzero_bits (XEXP (x, 1), mode)
8570		       & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8571	result--;
8572
8573      return MAX (1, result);
8574
8575    case UDIV:
8576      /* The result must be <= the first operand.  If the first operand
8577         has the high bit set, we know nothing about the number of sign
8578         bit copies.  */
8579      if (bitwidth > HOST_BITS_PER_WIDE_INT)
8580	return 1;
8581      else if ((nonzero_bits (XEXP (x, 0), mode)
8582		& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8583	return 1;
8584      else
8585	return num_sign_bit_copies (XEXP (x, 0), mode);
8586
8587    case UMOD:
8588      /* The result must be <= the second operand.  */
8589      return num_sign_bit_copies (XEXP (x, 1), mode);
8590
8591    case DIV:
8592      /* Similar to unsigned division, except that we have to worry about
8593	 the case where the divisor is negative, in which case we have
8594	 to add 1.  */
8595      result = num_sign_bit_copies (XEXP (x, 0), mode);
8596      if (result > 1
8597	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8598	      || (nonzero_bits (XEXP (x, 1), mode)
8599		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8600	result--;
8601
8602      return result;
8603
8604    case MOD:
8605      result = num_sign_bit_copies (XEXP (x, 1), mode);
8606      if (result > 1
8607	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8608	      || (nonzero_bits (XEXP (x, 1), mode)
8609		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8610	result--;
8611
8612      return result;
8613
8614    case ASHIFTRT:
8615      /* Shifts by a constant add to the number of bits equal to the
8616	 sign bit.  */
8617      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8618      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8619	  && INTVAL (XEXP (x, 1)) > 0)
8620	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8621
8622      return num0;
8623
8624    case ASHIFT:
8625      /* Left shifts destroy copies.  */
8626      if (GET_CODE (XEXP (x, 1)) != CONST_INT
8627	  || INTVAL (XEXP (x, 1)) < 0
8628	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8629	return 1;
8630
8631      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8632      return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8633
8634    case IF_THEN_ELSE:
8635      num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8636      num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8637      return MIN (num0, num1);
8638
8639    case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
8640    case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
8641    case GEU: case GTU: case LEU: case LTU:
8642    case UNORDERED: case ORDERED:
8643      /* If the constant is negative, take its 1's complement and remask.
8644	 Then see how many zero bits we have.  */
8645      nonzero = STORE_FLAG_VALUE;
8646      if (bitwidth <= HOST_BITS_PER_WIDE_INT
8647	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8648	nonzero = (~nonzero) & GET_MODE_MASK (mode);
8649
8650      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8651      break;
8652
8653    default:
8654      break;
8655    }
8656
8657  /* If we haven't been able to figure it out by one of the above rules,
8658     see if some of the high-order bits are known to be zero.  If so,
8659     count those bits and return one less than that amount.  If we can't
8660     safely compute the mask for this mode, always return BITWIDTH.  */
8661
8662  if (bitwidth > HOST_BITS_PER_WIDE_INT)
8663    return 1;
8664
8665  nonzero = nonzero_bits (x, mode);
8666  return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8667	  ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8668}
8669
8670/* Return the number of "extended" bits there are in X, when interpreted
8671   as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
8672   unsigned quantities, this is the number of high-order zero bits.
8673   For signed quantities, this is the number of copies of the sign bit
8674   minus 1.  In both case, this function returns the number of "spare"
8675   bits.  For example, if two quantities for which this function returns
8676   at least 1 are added, the addition is known not to overflow.
8677
8678   This function will always return 0 unless called during combine, which
8679   implies that it must be called from a define_split.  */
8680
8681unsigned int
8682extended_count (x, mode, unsignedp)
8683     rtx x;
8684     enum machine_mode mode;
8685     int unsignedp;
8686{
8687  if (nonzero_sign_valid == 0)
8688    return 0;
8689
8690  return (unsignedp
8691	  ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8692	     ? (GET_MODE_BITSIZE (mode) - 1
8693		- floor_log2 (nonzero_bits (x, mode)))
8694	     : 0)
8695	  : num_sign_bit_copies (x, mode) - 1);
8696}
8697
8698/* This function is called from `simplify_shift_const' to merge two
8699   outer operations.  Specifically, we have already found that we need
8700   to perform operation *POP0 with constant *PCONST0 at the outermost
8701   position.  We would now like to also perform OP1 with constant CONST1
8702   (with *POP0 being done last).
8703
8704   Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8705   the resulting operation.  *PCOMP_P is set to 1 if we would need to
8706   complement the innermost operand, otherwise it is unchanged.
8707
8708   MODE is the mode in which the operation will be done.  No bits outside
8709   the width of this mode matter.  It is assumed that the width of this mode
8710   is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8711
8712   If *POP0 or OP1 are NIL, it means no operation is required.  Only NEG, PLUS,
8713   IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
8714   result is simply *PCONST0.
8715
8716   If the resulting operation cannot be expressed as one operation, we
8717   return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
8718
8719static int
8720merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8721     enum rtx_code *pop0;
8722     HOST_WIDE_INT *pconst0;
8723     enum rtx_code op1;
8724     HOST_WIDE_INT const1;
8725     enum machine_mode mode;
8726     int *pcomp_p;
8727{
8728  enum rtx_code op0 = *pop0;
8729  HOST_WIDE_INT const0 = *pconst0;
8730
8731  const0 &= GET_MODE_MASK (mode);
8732  const1 &= GET_MODE_MASK (mode);
8733
8734  /* If OP0 is an AND, clear unimportant bits in CONST1.  */
8735  if (op0 == AND)
8736    const1 &= const0;
8737
8738  /* If OP0 or OP1 is NIL, this is easy.  Similarly if they are the same or
8739     if OP0 is SET.  */
8740
8741  if (op1 == NIL || op0 == SET)
8742    return 1;
8743
8744  else if (op0 == NIL)
8745    op0 = op1, const0 = const1;
8746
8747  else if (op0 == op1)
8748    {
8749      switch (op0)
8750	{
8751	case AND:
8752	  const0 &= const1;
8753	  break;
8754	case IOR:
8755	  const0 |= const1;
8756	  break;
8757	case XOR:
8758	  const0 ^= const1;
8759	  break;
8760	case PLUS:
8761	  const0 += const1;
8762	  break;
8763	case NEG:
8764	  op0 = NIL;
8765	  break;
8766	default:
8767	  break;
8768	}
8769    }
8770
8771  /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
8772  else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8773    return 0;
8774
8775  /* If the two constants aren't the same, we can't do anything.  The
8776     remaining six cases can all be done.  */
8777  else if (const0 != const1)
8778    return 0;
8779
8780  else
8781    switch (op0)
8782      {
8783      case IOR:
8784	if (op1 == AND)
8785	  /* (a & b) | b == b */
8786	  op0 = SET;
8787	else /* op1 == XOR */
8788	  /* (a ^ b) | b == a | b */
8789	  {;}
8790	break;
8791
8792      case XOR:
8793	if (op1 == AND)
8794	  /* (a & b) ^ b == (~a) & b */
8795	  op0 = AND, *pcomp_p = 1;
8796	else /* op1 == IOR */
8797	  /* (a | b) ^ b == a & ~b */
8798	  op0 = AND, *pconst0 = ~const0;
8799	break;
8800
8801      case AND:
8802	if (op1 == IOR)
8803	  /* (a | b) & b == b */
8804	op0 = SET;
8805	else /* op1 == XOR */
8806	  /* (a ^ b) & b) == (~a) & b */
8807	  *pcomp_p = 1;
8808	break;
8809      default:
8810	break;
8811      }
8812
8813  /* Check for NO-OP cases.  */
8814  const0 &= GET_MODE_MASK (mode);
8815  if (const0 == 0
8816      && (op0 == IOR || op0 == XOR || op0 == PLUS))
8817    op0 = NIL;
8818  else if (const0 == 0 && op0 == AND)
8819    op0 = SET;
8820  else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8821	   && op0 == AND)
8822    op0 = NIL;
8823
8824  /* ??? Slightly redundant with the above mask, but not entirely.
8825     Moving this above means we'd have to sign-extend the mode mask
8826     for the final test.  */
8827  const0 = trunc_int_for_mode (const0, mode);
8828
8829  *pop0 = op0;
8830  *pconst0 = const0;
8831
8832  return 1;
8833}
8834
8835/* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
8836   The result of the shift is RESULT_MODE.  X, if non-zero, is an expression
8837   that we started with.
8838
8839   The shift is normally computed in the widest mode we find in VAROP, as
8840   long as it isn't a different number of words than RESULT_MODE.  Exceptions
8841   are ASHIFTRT and ROTATE, which are always done in their original mode,  */
8842
8843static rtx
8844simplify_shift_const (x, code, result_mode, varop, orig_count)
8845     rtx x;
8846     enum rtx_code code;
8847     enum machine_mode result_mode;
8848     rtx varop;
8849     int orig_count;
8850{
8851  enum rtx_code orig_code = code;
8852  unsigned int count;
8853  int signed_count;
8854  enum machine_mode mode = result_mode;
8855  enum machine_mode shift_mode, tmode;
8856  unsigned int mode_words
8857    = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8858  /* We form (outer_op (code varop count) (outer_const)).  */
8859  enum rtx_code outer_op = NIL;
8860  HOST_WIDE_INT outer_const = 0;
8861  rtx const_rtx;
8862  int complement_p = 0;
8863  rtx new;
8864
8865  /* Make sure and truncate the "natural" shift on the way in.  We don't
8866     want to do this inside the loop as it makes it more difficult to
8867     combine shifts.  */
8868#ifdef SHIFT_COUNT_TRUNCATED
8869  if (SHIFT_COUNT_TRUNCATED)
8870    orig_count &= GET_MODE_BITSIZE (mode) - 1;
8871#endif
8872
8873  /* If we were given an invalid count, don't do anything except exactly
8874     what was requested.  */
8875
8876  if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8877    {
8878      if (x)
8879	return x;
8880
8881      return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8882    }
8883
8884  count = orig_count;
8885
8886  /* Unless one of the branches of the `if' in this loop does a `continue',
8887     we will `break' the loop after the `if'.  */
8888
8889  while (count != 0)
8890    {
8891      /* If we have an operand of (clobber (const_int 0)), just return that
8892	 value.  */
8893      if (GET_CODE (varop) == CLOBBER)
8894	return varop;
8895
8896      /* If we discovered we had to complement VAROP, leave.  Making a NOT
8897	 here would cause an infinite loop.  */
8898      if (complement_p)
8899	break;
8900
8901      /* Convert ROTATERT to ROTATE.  */
8902      if (code == ROTATERT)
8903	code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8904
8905      /* We need to determine what mode we will do the shift in.  If the
8906	 shift is a right shift or a ROTATE, we must always do it in the mode
8907	 it was originally done in.  Otherwise, we can do it in MODE, the
8908	 widest mode encountered.  */
8909      shift_mode
8910	= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8911	   ? result_mode : mode);
8912
8913      /* Handle cases where the count is greater than the size of the mode
8914	 minus 1.  For ASHIFT, use the size minus one as the count (this can
8915	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
8916	 take the count modulo the size.  For other shifts, the result is
8917	 zero.
8918
8919	 Since these shifts are being produced by the compiler by combining
8920	 multiple operations, each of which are defined, we know what the
8921	 result is supposed to be.  */
8922
8923      if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8924	{
8925	  if (code == ASHIFTRT)
8926	    count = GET_MODE_BITSIZE (shift_mode) - 1;
8927	  else if (code == ROTATE || code == ROTATERT)
8928	    count %= GET_MODE_BITSIZE (shift_mode);
8929	  else
8930	    {
8931	      /* We can't simply return zero because there may be an
8932		 outer op.  */
8933	      varop = const0_rtx;
8934	      count = 0;
8935	      break;
8936	    }
8937	}
8938
8939      /* An arithmetic right shift of a quantity known to be -1 or 0
8940	 is a no-op.  */
8941      if (code == ASHIFTRT
8942	  && (num_sign_bit_copies (varop, shift_mode)
8943	      == GET_MODE_BITSIZE (shift_mode)))
8944	{
8945	  count = 0;
8946	  break;
8947	}
8948
8949      /* If we are doing an arithmetic right shift and discarding all but
8950	 the sign bit copies, this is equivalent to doing a shift by the
8951	 bitsize minus one.  Convert it into that shift because it will often
8952	 allow other simplifications.  */
8953
8954      if (code == ASHIFTRT
8955	  && (count + num_sign_bit_copies (varop, shift_mode)
8956	      >= GET_MODE_BITSIZE (shift_mode)))
8957	count = GET_MODE_BITSIZE (shift_mode) - 1;
8958
8959      /* We simplify the tests below and elsewhere by converting
8960	 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8961	 `make_compound_operation' will convert it to a ASHIFTRT for
8962	 those machines (such as VAX) that don't have a LSHIFTRT.  */
8963      if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8964	  && code == ASHIFTRT
8965	  && ((nonzero_bits (varop, shift_mode)
8966	       & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8967	      == 0))
8968	code = LSHIFTRT;
8969
8970      switch (GET_CODE (varop))
8971	{
8972	case SIGN_EXTEND:
8973	case ZERO_EXTEND:
8974	case SIGN_EXTRACT:
8975	case ZERO_EXTRACT:
8976	  new = expand_compound_operation (varop);
8977	  if (new != varop)
8978	    {
8979	      varop = new;
8980	      continue;
8981	    }
8982	  break;
8983
8984	case MEM:
8985	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8986	     minus the width of a smaller mode, we can do this with a
8987	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
8988	  if ((code == ASHIFTRT || code == LSHIFTRT)
8989	      && ! mode_dependent_address_p (XEXP (varop, 0))
8990	      && ! MEM_VOLATILE_P (varop)
8991	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8992					 MODE_INT, 1)) != BLKmode)
8993	    {
8994	      new = adjust_address_nv (varop, tmode,
8995				       BYTES_BIG_ENDIAN ? 0
8996				       : count / BITS_PER_UNIT);
8997
8998	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8999				     : ZERO_EXTEND, mode, new);
9000	      count = 0;
9001	      continue;
9002	    }
9003	  break;
9004
9005	case USE:
9006	  /* Similar to the case above, except that we can only do this if
9007	     the resulting mode is the same as that of the underlying
9008	     MEM and adjust the address depending on the *bits* endianness
9009	     because of the way that bit-field extract insns are defined.  */
9010	  if ((code == ASHIFTRT || code == LSHIFTRT)
9011	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9012					 MODE_INT, 1)) != BLKmode
9013	      && tmode == GET_MODE (XEXP (varop, 0)))
9014	    {
9015	      if (BITS_BIG_ENDIAN)
9016		new = XEXP (varop, 0);
9017	      else
9018		{
9019		  new = copy_rtx (XEXP (varop, 0));
9020		  SUBST (XEXP (new, 0),
9021			 plus_constant (XEXP (new, 0),
9022					count / BITS_PER_UNIT));
9023		}
9024
9025	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9026				     : ZERO_EXTEND, mode, new);
9027	      count = 0;
9028	      continue;
9029	    }
9030	  break;
9031
9032	case SUBREG:
9033	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
9034	     the same number of words as what we've seen so far.  Then store
9035	     the widest mode in MODE.  */
9036	  if (subreg_lowpart_p (varop)
9037	      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9038		  > GET_MODE_SIZE (GET_MODE (varop)))
9039	      && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9040		    + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9041		  == mode_words))
9042	    {
9043	      varop = SUBREG_REG (varop);
9044	      if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9045		mode = GET_MODE (varop);
9046	      continue;
9047	    }
9048	  break;
9049
9050	case MULT:
9051	  /* Some machines use MULT instead of ASHIFT because MULT
9052	     is cheaper.  But it is still better on those machines to
9053	     merge two shifts into one.  */
9054	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9055	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9056	    {
9057	      varop
9058		= gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9059			      GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9060	      continue;
9061	    }
9062	  break;
9063
9064	case UDIV:
9065	  /* Similar, for when divides are cheaper.  */
9066	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9067	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9068	    {
9069	      varop
9070		= gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9071			      GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9072	      continue;
9073	    }
9074	  break;
9075
9076	case ASHIFTRT:
9077	  /* If we are extracting just the sign bit of an arithmetic
9078	     right shift, that shift is not needed.  However, the sign
9079	     bit of a wider mode may be different from what would be
9080	     interpreted as the sign bit in a narrower mode, so, if
9081	     the result is narrower, don't discard the shift.  */
9082	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9083	      && (GET_MODE_BITSIZE (result_mode)
9084		  >= GET_MODE_BITSIZE (GET_MODE (varop))))
9085	    {
9086	      varop = XEXP (varop, 0);
9087	      continue;
9088	    }
9089
9090	  /* ... fall through ...  */
9091
9092	case LSHIFTRT:
9093	case ASHIFT:
9094	case ROTATE:
9095	  /* Here we have two nested shifts.  The result is usually the
9096	     AND of a new shift with a mask.  We compute the result below.  */
9097	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9098	      && INTVAL (XEXP (varop, 1)) >= 0
9099	      && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9100	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9101	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9102	    {
9103	      enum rtx_code first_code = GET_CODE (varop);
9104	      unsigned int first_count = INTVAL (XEXP (varop, 1));
9105	      unsigned HOST_WIDE_INT mask;
9106	      rtx mask_rtx;
9107
9108	      /* We have one common special case.  We can't do any merging if
9109		 the inner code is an ASHIFTRT of a smaller mode.  However, if
9110		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9111		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9112		 we can convert it to
9113		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9114		 This simplifies certain SIGN_EXTEND operations.  */
9115	      if (code == ASHIFT && first_code == ASHIFTRT
9116		  && (GET_MODE_BITSIZE (result_mode)
9117		      - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9118		{
9119		  /* C3 has the low-order C1 bits zero.  */
9120
9121		  mask = (GET_MODE_MASK (mode)
9122			  & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9123
9124		  varop = simplify_and_const_int (NULL_RTX, result_mode,
9125						  XEXP (varop, 0), mask);
9126		  varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9127						varop, count);
9128		  count = first_count;
9129		  code = ASHIFTRT;
9130		  continue;
9131		}
9132
9133	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9134		 than C1 high-order bits equal to the sign bit, we can convert
9135		 this to either an ASHIFT or a ASHIFTRT depending on the
9136		 two counts.
9137
9138		 We cannot do this if VAROP's mode is not SHIFT_MODE.  */
9139
9140	      if (code == ASHIFTRT && first_code == ASHIFT
9141		  && GET_MODE (varop) == shift_mode
9142		  && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9143		      > first_count))
9144		{
9145		  varop = XEXP (varop, 0);
9146
9147		  signed_count = count - first_count;
9148		  if (signed_count < 0)
9149		    count = -signed_count, code = ASHIFT;
9150		  else
9151		    count = signed_count;
9152
9153		  continue;
9154		}
9155
9156	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
9157		 we can only do this if FIRST_CODE is also ASHIFTRT.
9158
9159		 We can't do the case when CODE is ROTATE and FIRST_CODE is
9160		 ASHIFTRT.
9161
9162		 If the mode of this shift is not the mode of the outer shift,
9163		 we can't do this if either shift is a right shift or ROTATE.
9164
9165		 Finally, we can't do any of these if the mode is too wide
9166		 unless the codes are the same.
9167
9168		 Handle the case where the shift codes are the same
9169		 first.  */
9170
9171	      if (code == first_code)
9172		{
9173		  if (GET_MODE (varop) != result_mode
9174		      && (code == ASHIFTRT || code == LSHIFTRT
9175			  || code == ROTATE))
9176		    break;
9177
9178		  count += first_count;
9179		  varop = XEXP (varop, 0);
9180		  continue;
9181		}
9182
9183	      if (code == ASHIFTRT
9184		  || (code == ROTATE && first_code == ASHIFTRT)
9185		  || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9186		  || (GET_MODE (varop) != result_mode
9187		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
9188			  || first_code == ROTATE
9189			  || code == ROTATE)))
9190		break;
9191
9192	      /* To compute the mask to apply after the shift, shift the
9193		 nonzero bits of the inner shift the same way the
9194		 outer shift will.  */
9195
9196	      mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9197
9198	      mask_rtx
9199		= simplify_binary_operation (code, result_mode, mask_rtx,
9200					     GEN_INT (count));
9201
9202	      /* Give up if we can't compute an outer operation to use.  */
9203	      if (mask_rtx == 0
9204		  || GET_CODE (mask_rtx) != CONST_INT
9205		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
9206					INTVAL (mask_rtx),
9207					result_mode, &complement_p))
9208		break;
9209
9210	      /* If the shifts are in the same direction, we add the
9211		 counts.  Otherwise, we subtract them.  */
9212	      signed_count = count;
9213	      if ((code == ASHIFTRT || code == LSHIFTRT)
9214		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9215		signed_count += first_count;
9216	      else
9217		signed_count -= first_count;
9218
9219	      /* If COUNT is positive, the new shift is usually CODE,
9220		 except for the two exceptions below, in which case it is
9221		 FIRST_CODE.  If the count is negative, FIRST_CODE should
9222		 always be used  */
9223	      if (signed_count > 0
9224		  && ((first_code == ROTATE && code == ASHIFT)
9225		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
9226		code = first_code, count = signed_count;
9227	      else if (signed_count < 0)
9228		code = first_code, count = -signed_count;
9229	      else
9230		count = signed_count;
9231
9232	      varop = XEXP (varop, 0);
9233	      continue;
9234	    }
9235
9236	  /* If we have (A << B << C) for any shift, we can convert this to
9237	     (A << C << B).  This wins if A is a constant.  Only try this if
9238	     B is not a constant.  */
9239
9240	  else if (GET_CODE (varop) == code
9241		   && GET_CODE (XEXP (varop, 1)) != CONST_INT
9242		   && 0 != (new
9243			    = simplify_binary_operation (code, mode,
9244							 XEXP (varop, 0),
9245							 GEN_INT (count))))
9246	    {
9247	      varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9248	      count = 0;
9249	      continue;
9250	    }
9251	  break;
9252
9253	case NOT:
9254	  /* Make this fit the case below.  */
9255	  varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9256			       GEN_INT (GET_MODE_MASK (mode)));
9257	  continue;
9258
9259	case IOR:
9260	case AND:
9261	case XOR:
9262	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9263	     with C the size of VAROP - 1 and the shift is logical if
9264	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9265	     we have an (le X 0) operation.   If we have an arithmetic shift
9266	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
9267	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
9268
9269	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9270	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9271	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9272	      && (code == LSHIFTRT || code == ASHIFTRT)
9273	      && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9274	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9275	    {
9276	      count = 0;
9277	      varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9278				  const0_rtx);
9279
9280	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9281		varop = gen_rtx_NEG (GET_MODE (varop), varop);
9282
9283	      continue;
9284	    }
9285
9286	  /* If we have (shift (logical)), move the logical to the outside
9287	     to allow it to possibly combine with another logical and the
9288	     shift to combine with another shift.  This also canonicalizes to
9289	     what a ZERO_EXTRACT looks like.  Also, some machines have
9290	     (and (shift)) insns.  */
9291
9292	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9293	      && (new = simplify_binary_operation (code, result_mode,
9294						   XEXP (varop, 1),
9295						   GEN_INT (count))) != 0
9296	      && GET_CODE (new) == CONST_INT
9297	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9298				  INTVAL (new), result_mode, &complement_p))
9299	    {
9300	      varop = XEXP (varop, 0);
9301	      continue;
9302	    }
9303
9304	  /* If we can't do that, try to simplify the shift in each arm of the
9305	     logical expression, make a new logical expression, and apply
9306	     the inverse distributive law.  */
9307	  {
9308	    rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9309					    XEXP (varop, 0), count);
9310	    rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9311					    XEXP (varop, 1), count);
9312
9313	    varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9314	    varop = apply_distributive_law (varop);
9315
9316	    count = 0;
9317	  }
9318	  break;
9319
9320	case EQ:
9321	  /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9322	     says that the sign bit can be tested, FOO has mode MODE, C is
9323	     GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9324	     that may be nonzero.  */
9325	  if (code == LSHIFTRT
9326	      && XEXP (varop, 1) == const0_rtx
9327	      && GET_MODE (XEXP (varop, 0)) == result_mode
9328	      && count == GET_MODE_BITSIZE (result_mode) - 1
9329	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9330	      && ((STORE_FLAG_VALUE
9331		   & ((HOST_WIDE_INT) 1
9332		      < (GET_MODE_BITSIZE (result_mode) - 1))))
9333	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9334	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9335				  (HOST_WIDE_INT) 1, result_mode,
9336				  &complement_p))
9337	    {
9338	      varop = XEXP (varop, 0);
9339	      count = 0;
9340	      continue;
9341	    }
9342	  break;
9343
9344	case NEG:
9345	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9346	     than the number of bits in the mode is equivalent to A.  */
9347	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9348	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9349	    {
9350	      varop = XEXP (varop, 0);
9351	      count = 0;
9352	      continue;
9353	    }
9354
9355	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
9356	     NEG outside to allow shifts to combine.  */
9357	  if (code == ASHIFT
9358	      && merge_outer_ops (&outer_op, &outer_const, NEG,
9359				  (HOST_WIDE_INT) 0, result_mode,
9360				  &complement_p))
9361	    {
9362	      varop = XEXP (varop, 0);
9363	      continue;
9364	    }
9365	  break;
9366
9367	case PLUS:
9368	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9369	     is one less than the number of bits in the mode is
9370	     equivalent to (xor A 1).  */
9371	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9372	      && XEXP (varop, 1) == constm1_rtx
9373	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9374	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9375				  (HOST_WIDE_INT) 1, result_mode,
9376				  &complement_p))
9377	    {
9378	      count = 0;
9379	      varop = XEXP (varop, 0);
9380	      continue;
9381	    }
9382
9383	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9384	     that might be nonzero in BAR are those being shifted out and those
9385	     bits are known zero in FOO, we can replace the PLUS with FOO.
9386	     Similarly in the other operand order.  This code occurs when
9387	     we are computing the size of a variable-size array.  */
9388
9389	  if ((code == ASHIFTRT || code == LSHIFTRT)
9390	      && count < HOST_BITS_PER_WIDE_INT
9391	      && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9392	      && (nonzero_bits (XEXP (varop, 1), result_mode)
9393		  & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9394	    {
9395	      varop = XEXP (varop, 0);
9396	      continue;
9397	    }
9398	  else if ((code == ASHIFTRT || code == LSHIFTRT)
9399		   && count < HOST_BITS_PER_WIDE_INT
9400		   && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9401		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9402			    >> count)
9403		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9404			    & nonzero_bits (XEXP (varop, 1),
9405						 result_mode)))
9406	    {
9407	      varop = XEXP (varop, 1);
9408	      continue;
9409	    }
9410
9411	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
9412	  if (code == ASHIFT
9413	      && GET_CODE (XEXP (varop, 1)) == CONST_INT
9414	      && (new = simplify_binary_operation (ASHIFT, result_mode,
9415						   XEXP (varop, 1),
9416						   GEN_INT (count))) != 0
9417	      && GET_CODE (new) == CONST_INT
9418	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
9419				  INTVAL (new), result_mode, &complement_p))
9420	    {
9421	      varop = XEXP (varop, 0);
9422	      continue;
9423	    }
9424	  break;
9425
9426	case MINUS:
9427	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9428	     with C the size of VAROP - 1 and the shift is logical if
9429	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9430	     we have a (gt X 0) operation.  If the shift is arithmetic with
9431	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9432	     we have a (neg (gt X 0)) operation.  */
9433
9434	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9435	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9436	      && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9437	      && (code == LSHIFTRT || code == ASHIFTRT)
9438	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9439	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9440	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9441	    {
9442	      count = 0;
9443	      varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9444				  const0_rtx);
9445
9446	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9447		varop = gen_rtx_NEG (GET_MODE (varop), varop);
9448
9449	      continue;
9450	    }
9451	  break;
9452
9453	case TRUNCATE:
9454	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9455	     if the truncate does not affect the value.  */
9456	  if (code == LSHIFTRT
9457	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9458	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9459	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
9460		  >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9461		      - GET_MODE_BITSIZE (GET_MODE (varop)))))
9462	    {
9463	      rtx varop_inner = XEXP (varop, 0);
9464
9465	      varop_inner
9466		= gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9467				    XEXP (varop_inner, 0),
9468				    GEN_INT
9469				    (count + INTVAL (XEXP (varop_inner, 1))));
9470	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9471	      count = 0;
9472	      continue;
9473	    }
9474	  break;
9475
9476	default:
9477	  break;
9478	}
9479
9480      break;
9481    }
9482
9483  /* We need to determine what mode to do the shift in.  If the shift is
9484     a right shift or ROTATE, we must always do it in the mode it was
9485     originally done in.  Otherwise, we can do it in MODE, the widest mode
9486     encountered.  The code we care about is that of the shift that will
9487     actually be done, not the shift that was originally requested.  */
9488  shift_mode
9489    = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9490       ? result_mode : mode);
9491
9492  /* We have now finished analyzing the shift.  The result should be
9493     a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
9494     OUTER_OP is non-NIL, it is an operation that needs to be applied
9495     to the result of the shift.  OUTER_CONST is the relevant constant,
9496     but we must turn off all bits turned off in the shift.
9497
9498     If we were passed a value for X, see if we can use any pieces of
9499     it.  If not, make new rtx.  */
9500
9501  if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9502      && GET_CODE (XEXP (x, 1)) == CONST_INT
9503      && INTVAL (XEXP (x, 1)) == count)
9504    const_rtx = XEXP (x, 1);
9505  else
9506    const_rtx = GEN_INT (count);
9507
9508  if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9509      && GET_MODE (XEXP (x, 0)) == shift_mode
9510      && SUBREG_REG (XEXP (x, 0)) == varop)
9511    varop = XEXP (x, 0);
9512  else if (GET_MODE (varop) != shift_mode)
9513    varop = gen_lowpart_for_combine (shift_mode, varop);
9514
9515  /* If we can't make the SUBREG, try to return what we were given.  */
9516  if (GET_CODE (varop) == CLOBBER)
9517    return x ? x : varop;
9518
9519  new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9520  if (new != 0)
9521    x = new;
9522  else
9523    x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9524
9525  /* If we have an outer operation and we just made a shift, it is
9526     possible that we could have simplified the shift were it not
9527     for the outer operation.  So try to do the simplification
9528     recursively.  */
9529
9530  if (outer_op != NIL && GET_CODE (x) == code
9531      && GET_CODE (XEXP (x, 1)) == CONST_INT)
9532    x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9533			      INTVAL (XEXP (x, 1)));
9534
9535  /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9536     turn off all the bits that the shift would have turned off.  */
9537  if (orig_code == LSHIFTRT && result_mode != shift_mode)
9538    x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9539				GET_MODE_MASK (result_mode) >> orig_count);
9540
9541  /* Do the remainder of the processing in RESULT_MODE.  */
9542  x = gen_lowpart_for_combine (result_mode, x);
9543
9544  /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9545     operation.  */
9546  if (complement_p)
9547    x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9548
9549  if (outer_op != NIL)
9550    {
9551      if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9552	outer_const = trunc_int_for_mode (outer_const, result_mode);
9553
9554      if (outer_op == AND)
9555	x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9556      else if (outer_op == SET)
9557	/* This means that we have determined that the result is
9558	   equivalent to a constant.  This should be rare.  */
9559	x = GEN_INT (outer_const);
9560      else if (GET_RTX_CLASS (outer_op) == '1')
9561	x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9562      else
9563	x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9564    }
9565
9566  return x;
9567}
9568
9569/* Like recog, but we receive the address of a pointer to a new pattern.
9570   We try to match the rtx that the pointer points to.
9571   If that fails, we may try to modify or replace the pattern,
9572   storing the replacement into the same pointer object.
9573
9574   Modifications include deletion or addition of CLOBBERs.
9575
9576   PNOTES is a pointer to a location where any REG_UNUSED notes added for
9577   the CLOBBERs are placed.
9578
9579   The value is the final insn code from the pattern ultimately matched,
9580   or -1.  */
9581
9582static int
9583recog_for_combine (pnewpat, insn, pnotes)
9584     rtx *pnewpat;
9585     rtx insn;
9586     rtx *pnotes;
9587{
9588  rtx pat = *pnewpat;
9589  int insn_code_number;
9590  int num_clobbers_to_add = 0;
9591  int i;
9592  rtx notes = 0;
9593  rtx old_notes;
9594
9595  /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9596     we use to indicate that something didn't match.  If we find such a
9597     thing, force rejection.  */
9598  if (GET_CODE (pat) == PARALLEL)
9599    for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9600      if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9601	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9602	return -1;
9603
9604  /* Remove the old notes prior to trying to recognize the new pattern.  */
9605  old_notes = REG_NOTES (insn);
9606  REG_NOTES (insn) = 0;
9607
9608  insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9609
9610  /* If it isn't, there is the possibility that we previously had an insn
9611     that clobbered some register as a side effect, but the combined
9612     insn doesn't need to do that.  So try once more without the clobbers
9613     unless this represents an ASM insn.  */
9614
9615  if (insn_code_number < 0 && ! check_asm_operands (pat)
9616      && GET_CODE (pat) == PARALLEL)
9617    {
9618      int pos;
9619
9620      for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9621	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9622	  {
9623	    if (i != pos)
9624	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9625	    pos++;
9626	  }
9627
9628      SUBST_INT (XVECLEN (pat, 0), pos);
9629
9630      if (pos == 1)
9631	pat = XVECEXP (pat, 0, 0);
9632
9633      insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9634    }
9635
9636  /* Recognize all noop sets, these will be killed by followup pass.  */
9637  if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9638    insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9639
9640  REG_NOTES (insn) = old_notes;
9641
9642  /* If we had any clobbers to add, make a new pattern than contains
9643     them.  Then check to make sure that all of them are dead.  */
9644  if (num_clobbers_to_add)
9645    {
9646      rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9647				     rtvec_alloc (GET_CODE (pat) == PARALLEL
9648						  ? (XVECLEN (pat, 0)
9649						     + num_clobbers_to_add)
9650						  : num_clobbers_to_add + 1));
9651
9652      if (GET_CODE (pat) == PARALLEL)
9653	for (i = 0; i < XVECLEN (pat, 0); i++)
9654	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9655      else
9656	XVECEXP (newpat, 0, 0) = pat;
9657
9658      add_clobbers (newpat, insn_code_number);
9659
9660      for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9661	   i < XVECLEN (newpat, 0); i++)
9662	{
9663	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9664	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9665	    return -1;
9666	  notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9667				     XEXP (XVECEXP (newpat, 0, i), 0), notes);
9668	}
9669      pat = newpat;
9670    }
9671
9672  *pnewpat = pat;
9673  *pnotes = notes;
9674
9675  return insn_code_number;
9676}
9677
9678/* Like gen_lowpart but for use by combine.  In combine it is not possible
9679   to create any new pseudoregs.  However, it is safe to create
9680   invalid memory addresses, because combine will try to recognize
9681   them and all they will do is make the combine attempt fail.
9682
9683   If for some reason this cannot do its job, an rtx
9684   (clobber (const_int 0)) is returned.
9685   An insn containing that will not be recognized.  */
9686
9687#undef gen_lowpart
9688
9689static rtx
9690gen_lowpart_for_combine (mode, x)
9691     enum machine_mode mode;
9692     rtx x;
9693{
9694  rtx result;
9695
9696  if (GET_MODE (x) == mode)
9697    return x;
9698
9699  /* We can only support MODE being wider than a word if X is a
9700     constant integer or has a mode the same size.  */
9701
9702  if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9703      && ! ((GET_MODE (x) == VOIDmode
9704	     && (GET_CODE (x) == CONST_INT
9705		 || GET_CODE (x) == CONST_DOUBLE))
9706	    || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9707    return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9708
9709  /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
9710     won't know what to do.  So we will strip off the SUBREG here and
9711     process normally.  */
9712  if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9713    {
9714      x = SUBREG_REG (x);
9715      if (GET_MODE (x) == mode)
9716	return x;
9717    }
9718
9719  result = gen_lowpart_common (mode, x);
9720#ifdef CLASS_CANNOT_CHANGE_MODE
9721  if (result != 0
9722      && GET_CODE (result) == SUBREG
9723      && GET_CODE (SUBREG_REG (result)) == REG
9724      && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9725      && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9726				     GET_MODE (SUBREG_REG (result))))
9727    REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9728#endif
9729
9730  if (result)
9731    return result;
9732
9733  if (GET_CODE (x) == MEM)
9734    {
9735      int offset = 0;
9736
9737      /* Refuse to work on a volatile memory ref or one with a mode-dependent
9738	 address.  */
9739      if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9740	return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9741
9742      /* If we want to refer to something bigger than the original memref,
9743	 generate a perverse subreg instead.  That will force a reload
9744	 of the original memref X.  */
9745      if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9746	return gen_rtx_SUBREG (mode, x, 0);
9747
9748      if (WORDS_BIG_ENDIAN)
9749	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9750		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9751
9752      if (BYTES_BIG_ENDIAN)
9753	{
9754	  /* Adjust the address so that the address-after-the-data is
9755	     unchanged.  */
9756	  offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9757		     - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9758	}
9759
9760      return adjust_address_nv (x, mode, offset);
9761    }
9762
9763  /* If X is a comparison operator, rewrite it in a new mode.  This
9764     probably won't match, but may allow further simplifications.  */
9765  else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9766    return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9767
9768  /* If we couldn't simplify X any other way, just enclose it in a
9769     SUBREG.  Normally, this SUBREG won't match, but some patterns may
9770     include an explicit SUBREG or we may simplify it further in combine.  */
9771  else
9772    {
9773      int offset = 0;
9774      rtx res;
9775
9776      offset = subreg_lowpart_offset (mode, GET_MODE (x));
9777      res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9778      if (res)
9779	return res;
9780      return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9781    }
9782}
9783
9784/* These routines make binary and unary operations by first seeing if they
9785   fold; if not, a new expression is allocated.  */
9786
9787static rtx
9788gen_binary (code, mode, op0, op1)
9789     enum rtx_code code;
9790     enum machine_mode mode;
9791     rtx op0, op1;
9792{
9793  rtx result;
9794  rtx tem;
9795
9796  if (GET_RTX_CLASS (code) == 'c'
9797      && swap_commutative_operands_p (op0, op1))
9798    tem = op0, op0 = op1, op1 = tem;
9799
9800  if (GET_RTX_CLASS (code) == '<')
9801    {
9802      enum machine_mode op_mode = GET_MODE (op0);
9803
9804      /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9805	 just (REL_OP X Y).  */
9806      if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9807	{
9808	  op1 = XEXP (op0, 1);
9809	  op0 = XEXP (op0, 0);
9810	  op_mode = GET_MODE (op0);
9811	}
9812
9813      if (op_mode == VOIDmode)
9814	op_mode = GET_MODE (op1);
9815      result = simplify_relational_operation (code, op_mode, op0, op1);
9816    }
9817  else
9818    result = simplify_binary_operation (code, mode, op0, op1);
9819
9820  if (result)
9821    return result;
9822
9823  /* Put complex operands first and constants second.  */
9824  if (GET_RTX_CLASS (code) == 'c'
9825      && swap_commutative_operands_p (op0, op1))
9826    return gen_rtx_fmt_ee (code, mode, op1, op0);
9827
9828  /* If we are turning off bits already known off in OP0, we need not do
9829     an AND.  */
9830  else if (code == AND && GET_CODE (op1) == CONST_INT
9831	   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9832	   && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9833    return op0;
9834
9835  return gen_rtx_fmt_ee (code, mode, op0, op1);
9836}
9837
9838/* Simplify a comparison between *POP0 and *POP1 where CODE is the
9839   comparison code that will be tested.
9840
9841   The result is a possibly different comparison code to use.  *POP0 and
9842   *POP1 may be updated.
9843
9844   It is possible that we might detect that a comparison is either always
9845   true or always false.  However, we do not perform general constant
9846   folding in combine, so this knowledge isn't useful.  Such tautologies
9847   should have been detected earlier.  Hence we ignore all such cases.  */
9848
9849static enum rtx_code
9850simplify_comparison (code, pop0, pop1)
9851     enum rtx_code code;
9852     rtx *pop0;
9853     rtx *pop1;
9854{
9855  rtx op0 = *pop0;
9856  rtx op1 = *pop1;
9857  rtx tem, tem1;
9858  int i;
9859  enum machine_mode mode, tmode;
9860
9861  /* Try a few ways of applying the same transformation to both operands.  */
9862  while (1)
9863    {
9864#ifndef WORD_REGISTER_OPERATIONS
9865      /* The test below this one won't handle SIGN_EXTENDs on these machines,
9866	 so check specially.  */
9867      if (code != GTU && code != GEU && code != LTU && code != LEU
9868	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9869	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
9870	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
9871	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9872	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9873	  && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9874	      == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9875	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
9876	  && GET_CODE (XEXP (op1, 1)) == CONST_INT
9877	  && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9878	  && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9879	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9880	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9881	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9882	  && (INTVAL (XEXP (op0, 1))
9883	      == (GET_MODE_BITSIZE (GET_MODE (op0))
9884		  - (GET_MODE_BITSIZE
9885		     (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9886	{
9887	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9888	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9889	}
9890#endif
9891
9892      /* If both operands are the same constant shift, see if we can ignore the
9893	 shift.  We can if the shift is a rotate or if the bits shifted out of
9894	 this shift are known to be zero for both inputs and if the type of
9895	 comparison is compatible with the shift.  */
9896      if (GET_CODE (op0) == GET_CODE (op1)
9897	  && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9898	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9899	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9900		  && (code != GT && code != LT && code != GE && code != LE))
9901	      || (GET_CODE (op0) == ASHIFTRT
9902		  && (code != GTU && code != LTU
9903		      && code != GEU && code != LEU)))
9904	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
9905	  && INTVAL (XEXP (op0, 1)) >= 0
9906	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9907	  && XEXP (op0, 1) == XEXP (op1, 1))
9908	{
9909	  enum machine_mode mode = GET_MODE (op0);
9910	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9911	  int shift_count = INTVAL (XEXP (op0, 1));
9912
9913	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9914	    mask &= (mask >> shift_count) << shift_count;
9915	  else if (GET_CODE (op0) == ASHIFT)
9916	    mask = (mask & (mask << shift_count)) >> shift_count;
9917
9918	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9919	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9920	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9921	  else
9922	    break;
9923	}
9924
9925      /* If both operands are AND's of a paradoxical SUBREG by constant, the
9926	 SUBREGs are of the same mode, and, in both cases, the AND would
9927	 be redundant if the comparison was done in the narrower mode,
9928	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9929	 and the operand's possibly nonzero bits are 0xffffff01; in that case
9930	 if we only care about QImode, we don't need the AND).  This case
9931	 occurs if the output mode of an scc insn is not SImode and
9932	 STORE_FLAG_VALUE == 1 (e.g., the 386).
9933
9934	 Similarly, check for a case where the AND's are ZERO_EXTEND
9935	 operations from some narrower mode even though a SUBREG is not
9936	 present.  */
9937
9938      else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9939	       && GET_CODE (XEXP (op0, 1)) == CONST_INT
9940	       && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9941	{
9942	  rtx inner_op0 = XEXP (op0, 0);
9943	  rtx inner_op1 = XEXP (op1, 0);
9944	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9945	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9946	  int changed = 0;
9947
9948	  if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9949	      && (GET_MODE_SIZE (GET_MODE (inner_op0))
9950		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9951	      && (GET_MODE (SUBREG_REG (inner_op0))
9952		  == GET_MODE (SUBREG_REG (inner_op1)))
9953	      && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9954		  <= HOST_BITS_PER_WIDE_INT)
9955	      && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9956					     GET_MODE (SUBREG_REG (inner_op0)))))
9957	      && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9958					     GET_MODE (SUBREG_REG (inner_op1))))))
9959	    {
9960	      op0 = SUBREG_REG (inner_op0);
9961	      op1 = SUBREG_REG (inner_op1);
9962
9963	      /* The resulting comparison is always unsigned since we masked
9964		 off the original sign bit.  */
9965	      code = unsigned_condition (code);
9966
9967	      changed = 1;
9968	    }
9969
9970	  else if (c0 == c1)
9971	    for (tmode = GET_CLASS_NARROWEST_MODE
9972		 (GET_MODE_CLASS (GET_MODE (op0)));
9973		 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9974	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9975		{
9976		  op0 = gen_lowpart_for_combine (tmode, inner_op0);
9977		  op1 = gen_lowpart_for_combine (tmode, inner_op1);
9978		  code = unsigned_condition (code);
9979		  changed = 1;
9980		  break;
9981		}
9982
9983	  if (! changed)
9984	    break;
9985	}
9986
9987      /* If both operands are NOT, we can strip off the outer operation
9988	 and adjust the comparison code for swapped operands; similarly for
9989	 NEG, except that this must be an equality comparison.  */
9990      else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9991	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9992		   && (code == EQ || code == NE)))
9993	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9994
9995      else
9996	break;
9997    }
9998
9999  /* If the first operand is a constant, swap the operands and adjust the
10000     comparison code appropriately, but don't do this if the second operand
10001     is already a constant integer.  */
10002  if (swap_commutative_operands_p (op0, op1))
10003    {
10004      tem = op0, op0 = op1, op1 = tem;
10005      code = swap_condition (code);
10006    }
10007
10008  /* We now enter a loop during which we will try to simplify the comparison.
10009     For the most part, we only are concerned with comparisons with zero,
10010     but some things may really be comparisons with zero but not start
10011     out looking that way.  */
10012
10013  while (GET_CODE (op1) == CONST_INT)
10014    {
10015      enum machine_mode mode = GET_MODE (op0);
10016      unsigned int mode_width = GET_MODE_BITSIZE (mode);
10017      unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10018      int equality_comparison_p;
10019      int sign_bit_comparison_p;
10020      int unsigned_comparison_p;
10021      HOST_WIDE_INT const_op;
10022
10023      /* We only want to handle integral modes.  This catches VOIDmode,
10024	 CCmode, and the floating-point modes.  An exception is that we
10025	 can handle VOIDmode if OP0 is a COMPARE or a comparison
10026	 operation.  */
10027
10028      if (GET_MODE_CLASS (mode) != MODE_INT
10029	  && ! (mode == VOIDmode
10030		&& (GET_CODE (op0) == COMPARE
10031		    || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10032	break;
10033
10034      /* Get the constant we are comparing against and turn off all bits
10035	 not on in our mode.  */
10036      const_op = trunc_int_for_mode (INTVAL (op1), mode);
10037      op1 = GEN_INT (const_op);
10038
10039      /* If we are comparing against a constant power of two and the value
10040	 being compared can only have that single bit nonzero (e.g., it was
10041	 `and'ed with that bit), we can replace this with a comparison
10042	 with zero.  */
10043      if (const_op
10044	  && (code == EQ || code == NE || code == GE || code == GEU
10045	      || code == LT || code == LTU)
10046	  && mode_width <= HOST_BITS_PER_WIDE_INT
10047	  && exact_log2 (const_op) >= 0
10048	  && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10049	{
10050	  code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10051	  op1 = const0_rtx, const_op = 0;
10052	}
10053
10054      /* Similarly, if we are comparing a value known to be either -1 or
10055	 0 with -1, change it to the opposite comparison against zero.  */
10056
10057      if (const_op == -1
10058	  && (code == EQ || code == NE || code == GT || code == LE
10059	      || code == GEU || code == LTU)
10060	  && num_sign_bit_copies (op0, mode) == mode_width)
10061	{
10062	  code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10063	  op1 = const0_rtx, const_op = 0;
10064	}
10065
10066      /* Do some canonicalizations based on the comparison code.  We prefer
10067	 comparisons against zero and then prefer equality comparisons.
10068	 If we can reduce the size of a constant, we will do that too.  */
10069
10070      switch (code)
10071	{
10072	case LT:
10073	  /* < C is equivalent to <= (C - 1) */
10074	  if (const_op > 0)
10075	    {
10076	      const_op -= 1;
10077	      op1 = GEN_INT (const_op);
10078	      code = LE;
10079	      /* ... fall through to LE case below.  */
10080	    }
10081	  else
10082	    break;
10083
10084	case LE:
10085	  /* <= C is equivalent to < (C + 1); we do this for C < 0  */
10086	  if (const_op < 0)
10087	    {
10088	      const_op += 1;
10089	      op1 = GEN_INT (const_op);
10090	      code = LT;
10091	    }
10092
10093	  /* If we are doing a <= 0 comparison on a value known to have
10094	     a zero sign bit, we can replace this with == 0.  */
10095	  else if (const_op == 0
10096		   && mode_width <= HOST_BITS_PER_WIDE_INT
10097		   && (nonzero_bits (op0, mode)
10098		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10099	    code = EQ;
10100	  break;
10101
10102	case GE:
10103	  /* >= C is equivalent to > (C - 1).  */
10104	  if (const_op > 0)
10105	    {
10106	      const_op -= 1;
10107	      op1 = GEN_INT (const_op);
10108	      code = GT;
10109	      /* ... fall through to GT below.  */
10110	    }
10111	  else
10112	    break;
10113
10114	case GT:
10115	  /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
10116	  if (const_op < 0)
10117	    {
10118	      const_op += 1;
10119	      op1 = GEN_INT (const_op);
10120	      code = GE;
10121	    }
10122
10123	  /* If we are doing a > 0 comparison on a value known to have
10124	     a zero sign bit, we can replace this with != 0.  */
10125	  else if (const_op == 0
10126		   && mode_width <= HOST_BITS_PER_WIDE_INT
10127		   && (nonzero_bits (op0, mode)
10128		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10129	    code = NE;
10130	  break;
10131
10132	case LTU:
10133	  /* < C is equivalent to <= (C - 1).  */
10134	  if (const_op > 0)
10135	    {
10136	      const_op -= 1;
10137	      op1 = GEN_INT (const_op);
10138	      code = LEU;
10139	      /* ... fall through ...  */
10140	    }
10141
10142	  /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
10143	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10144		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10145	    {
10146	      const_op = 0, op1 = const0_rtx;
10147	      code = GE;
10148	      break;
10149	    }
10150	  else
10151	    break;
10152
10153	case LEU:
10154	  /* unsigned <= 0 is equivalent to == 0 */
10155	  if (const_op == 0)
10156	    code = EQ;
10157
10158	  /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
10159	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10160		   && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10161	    {
10162	      const_op = 0, op1 = const0_rtx;
10163	      code = GE;
10164	    }
10165	  break;
10166
10167	case GEU:
10168	  /* >= C is equivalent to < (C - 1).  */
10169	  if (const_op > 1)
10170	    {
10171	      const_op -= 1;
10172	      op1 = GEN_INT (const_op);
10173	      code = GTU;
10174	      /* ... fall through ...  */
10175	    }
10176
10177	  /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
10178	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10179		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10180	    {
10181	      const_op = 0, op1 = const0_rtx;
10182	      code = LT;
10183	      break;
10184	    }
10185	  else
10186	    break;
10187
10188	case GTU:
10189	  /* unsigned > 0 is equivalent to != 0 */
10190	  if (const_op == 0)
10191	    code = NE;
10192
10193	  /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
10194	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10195		    && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10196	    {
10197	      const_op = 0, op1 = const0_rtx;
10198	      code = LT;
10199	    }
10200	  break;
10201
10202	default:
10203	  break;
10204	}
10205
10206      /* Compute some predicates to simplify code below.  */
10207
10208      equality_comparison_p = (code == EQ || code == NE);
10209      sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10210      unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10211			       || code == GEU);
10212
10213      /* If this is a sign bit comparison and we can do arithmetic in
10214	 MODE, say that we will only be needing the sign bit of OP0.  */
10215      if (sign_bit_comparison_p
10216	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10217	op0 = force_to_mode (op0, mode,
10218			     ((HOST_WIDE_INT) 1
10219			      << (GET_MODE_BITSIZE (mode) - 1)),
10220			     NULL_RTX, 0);
10221
10222      /* Now try cases based on the opcode of OP0.  If none of the cases
10223	 does a "continue", we exit this loop immediately after the
10224	 switch.  */
10225
10226      switch (GET_CODE (op0))
10227	{
10228	case ZERO_EXTRACT:
10229	  /* If we are extracting a single bit from a variable position in
10230	     a constant that has only a single bit set and are comparing it
10231	     with zero, we can convert this into an equality comparison
10232	     between the position and the location of the single bit.  */
10233
10234	  if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10235	      && XEXP (op0, 1) == const1_rtx
10236	      && equality_comparison_p && const_op == 0
10237	      && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10238	    {
10239	      if (BITS_BIG_ENDIAN)
10240		{
10241		  enum machine_mode new_mode
10242		    = mode_for_extraction (EP_extzv, 1);
10243		  if (new_mode == MAX_MACHINE_MODE)
10244		    i = BITS_PER_WORD - 1 - i;
10245		  else
10246		    {
10247		      mode = new_mode;
10248		      i = (GET_MODE_BITSIZE (mode) - 1 - i);
10249		    }
10250		}
10251
10252	      op0 = XEXP (op0, 2);
10253	      op1 = GEN_INT (i);
10254	      const_op = i;
10255
10256	      /* Result is nonzero iff shift count is equal to I.  */
10257	      code = reverse_condition (code);
10258	      continue;
10259	    }
10260
10261	  /* ... fall through ...  */
10262
10263	case SIGN_EXTRACT:
10264	  tem = expand_compound_operation (op0);
10265	  if (tem != op0)
10266	    {
10267	      op0 = tem;
10268	      continue;
10269	    }
10270	  break;
10271
10272	case NOT:
10273	  /* If testing for equality, we can take the NOT of the constant.  */
10274	  if (equality_comparison_p
10275	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10276	    {
10277	      op0 = XEXP (op0, 0);
10278	      op1 = tem;
10279	      continue;
10280	    }
10281
10282	  /* If just looking at the sign bit, reverse the sense of the
10283	     comparison.  */
10284	  if (sign_bit_comparison_p)
10285	    {
10286	      op0 = XEXP (op0, 0);
10287	      code = (code == GE ? LT : GE);
10288	      continue;
10289	    }
10290	  break;
10291
10292	case NEG:
10293	  /* If testing for equality, we can take the NEG of the constant.  */
10294	  if (equality_comparison_p
10295	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10296	    {
10297	      op0 = XEXP (op0, 0);
10298	      op1 = tem;
10299	      continue;
10300	    }
10301
10302	  /* The remaining cases only apply to comparisons with zero.  */
10303	  if (const_op != 0)
10304	    break;
10305
10306	  /* When X is ABS or is known positive,
10307	     (neg X) is < 0 if and only if X != 0.  */
10308
10309	  if (sign_bit_comparison_p
10310	      && (GET_CODE (XEXP (op0, 0)) == ABS
10311		  || (mode_width <= HOST_BITS_PER_WIDE_INT
10312		      && (nonzero_bits (XEXP (op0, 0), mode)
10313			  & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10314	    {
10315	      op0 = XEXP (op0, 0);
10316	      code = (code == LT ? NE : EQ);
10317	      continue;
10318	    }
10319
10320	  /* If we have NEG of something whose two high-order bits are the
10321	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
10322	  if (num_sign_bit_copies (op0, mode) >= 2)
10323	    {
10324	      op0 = XEXP (op0, 0);
10325	      code = swap_condition (code);
10326	      continue;
10327	    }
10328	  break;
10329
10330	case ROTATE:
10331	  /* If we are testing equality and our count is a constant, we
10332	     can perform the inverse operation on our RHS.  */
10333	  if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10334	      && (tem = simplify_binary_operation (ROTATERT, mode,
10335						   op1, XEXP (op0, 1))) != 0)
10336	    {
10337	      op0 = XEXP (op0, 0);
10338	      op1 = tem;
10339	      continue;
10340	    }
10341
10342	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10343	     a particular bit.  Convert it to an AND of a constant of that
10344	     bit.  This will be converted into a ZERO_EXTRACT.  */
10345	  if (const_op == 0 && sign_bit_comparison_p
10346	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10347	      && mode_width <= HOST_BITS_PER_WIDE_INT)
10348	    {
10349	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10350					    ((HOST_WIDE_INT) 1
10351					     << (mode_width - 1
10352						 - INTVAL (XEXP (op0, 1)))));
10353	      code = (code == LT ? NE : EQ);
10354	      continue;
10355	    }
10356
10357	  /* Fall through.  */
10358
10359	case ABS:
10360	  /* ABS is ignorable inside an equality comparison with zero.  */
10361	  if (const_op == 0 && equality_comparison_p)
10362	    {
10363	      op0 = XEXP (op0, 0);
10364	      continue;
10365	    }
10366	  break;
10367
10368	case SIGN_EXTEND:
10369	  /* Can simplify (compare (zero/sign_extend FOO) CONST)
10370	     to (compare FOO CONST) if CONST fits in FOO's mode and we
10371	     are either testing inequality or have an unsigned comparison
10372	     with ZERO_EXTEND or a signed comparison with SIGN_EXTEND.  */
10373	  if (! unsigned_comparison_p
10374	      && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10375		  <= HOST_BITS_PER_WIDE_INT)
10376	      && ((unsigned HOST_WIDE_INT) const_op
10377		  < (((unsigned HOST_WIDE_INT) 1
10378		      << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10379	    {
10380	      op0 = XEXP (op0, 0);
10381	      continue;
10382	    }
10383	  break;
10384
10385	case SUBREG:
10386	  /* Check for the case where we are comparing A - C1 with C2,
10387	     both constants are smaller than 1/2 the maximum positive
10388	     value in MODE, and the comparison is equality or unsigned.
10389	     In that case, if A is either zero-extended to MODE or has
10390	     sufficient sign bits so that the high-order bit in MODE
10391	     is a copy of the sign in the inner mode, we can prove that it is
10392	     safe to do the operation in the wider mode.  This simplifies
10393	     many range checks.  */
10394
10395	  if (mode_width <= HOST_BITS_PER_WIDE_INT
10396	      && subreg_lowpart_p (op0)
10397	      && GET_CODE (SUBREG_REG (op0)) == PLUS
10398	      && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10399	      && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10400	      && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10401		  < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10402	      && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10403	      && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10404				      GET_MODE (SUBREG_REG (op0)))
10405			& ~GET_MODE_MASK (mode))
10406		  || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10407					   GET_MODE (SUBREG_REG (op0)))
10408		      > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10409			 - GET_MODE_BITSIZE (mode)))))
10410	    {
10411	      op0 = SUBREG_REG (op0);
10412	      continue;
10413	    }
10414
10415	  /* If the inner mode is narrower and we are extracting the low part,
10416	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
10417	  if (subreg_lowpart_p (op0)
10418	      && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10419	    /* Fall through */ ;
10420	  else
10421	    break;
10422
10423	  /* ... fall through ...  */
10424
10425	case ZERO_EXTEND:
10426	  if ((unsigned_comparison_p || equality_comparison_p)
10427	      && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10428		  <= HOST_BITS_PER_WIDE_INT)
10429	      && ((unsigned HOST_WIDE_INT) const_op
10430		  < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10431	    {
10432	      op0 = XEXP (op0, 0);
10433	      continue;
10434	    }
10435	  break;
10436
10437	case PLUS:
10438	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
10439	     this for equality comparisons due to pathological cases involving
10440	     overflows.  */
10441	  if (equality_comparison_p
10442	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10443							op1, XEXP (op0, 1))))
10444	    {
10445	      op0 = XEXP (op0, 0);
10446	      op1 = tem;
10447	      continue;
10448	    }
10449
10450	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
10451	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10452	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10453	    {
10454	      op0 = XEXP (XEXP (op0, 0), 0);
10455	      code = (code == LT ? EQ : NE);
10456	      continue;
10457	    }
10458	  break;
10459
10460	case MINUS:
10461	  /* We used to optimize signed comparisons against zero, but that
10462	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
10463	     arrive here as equality comparisons, or (GEU, LTU) are
10464	     optimized away.  No need to special-case them.  */
10465
10466	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
10467	     (eq B (minus A C)), whichever simplifies.  We can only do
10468	     this for equality comparisons due to pathological cases involving
10469	     overflows.  */
10470	  if (equality_comparison_p
10471	      && 0 != (tem = simplify_binary_operation (PLUS, mode,
10472							XEXP (op0, 1), op1)))
10473	    {
10474	      op0 = XEXP (op0, 0);
10475	      op1 = tem;
10476	      continue;
10477	    }
10478
10479	  if (equality_comparison_p
10480	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10481							XEXP (op0, 0), op1)))
10482	    {
10483	      op0 = XEXP (op0, 1);
10484	      op1 = tem;
10485	      continue;
10486	    }
10487
10488	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10489	     of bits in X minus 1, is one iff X > 0.  */
10490	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10491	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10492	      && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10493	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10494	    {
10495	      op0 = XEXP (op0, 1);
10496	      code = (code == GE ? LE : GT);
10497	      continue;
10498	    }
10499	  break;
10500
10501	case XOR:
10502	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
10503	     if C is zero or B is a constant.  */
10504	  if (equality_comparison_p
10505	      && 0 != (tem = simplify_binary_operation (XOR, mode,
10506							XEXP (op0, 1), op1)))
10507	    {
10508	      op0 = XEXP (op0, 0);
10509	      op1 = tem;
10510	      continue;
10511	    }
10512	  break;
10513
10514	case EQ:  case NE:
10515	case UNEQ:  case LTGT:
10516	case LT:  case LTU:  case UNLT:  case LE:  case LEU:  case UNLE:
10517	case GT:  case GTU:  case UNGT:  case GE:  case GEU:  case UNGE:
10518        case UNORDERED: case ORDERED:
10519	  /* We can't do anything if OP0 is a condition code value, rather
10520	     than an actual data value.  */
10521	  if (const_op != 0
10522#ifdef HAVE_cc0
10523	      || XEXP (op0, 0) == cc0_rtx
10524#endif
10525	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10526	    break;
10527
10528	  /* Get the two operands being compared.  */
10529	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10530	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10531	  else
10532	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10533
10534	  /* Check for the cases where we simply want the result of the
10535	     earlier test or the opposite of that result.  */
10536	  if (code == NE || code == EQ
10537	      || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10538		  && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10539		  && (STORE_FLAG_VALUE
10540		      & (((HOST_WIDE_INT) 1
10541			  << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10542		  && (code == LT || code == GE)))
10543	    {
10544	      enum rtx_code new_code;
10545	      if (code == LT || code == NE)
10546		new_code = GET_CODE (op0);
10547	      else
10548		new_code = combine_reversed_comparison_code (op0);
10549
10550	      if (new_code != UNKNOWN)
10551		{
10552		  code = new_code;
10553		  op0 = tem;
10554		  op1 = tem1;
10555		  continue;
10556		}
10557	    }
10558	  break;
10559
10560	case IOR:
10561	  /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10562	     iff X <= 0.  */
10563	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10564	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10565	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10566	    {
10567	      op0 = XEXP (op0, 1);
10568	      code = (code == GE ? GT : LE);
10569	      continue;
10570	    }
10571	  break;
10572
10573	case AND:
10574	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
10575	     will be converted to a ZERO_EXTRACT later.  */
10576	  if (const_op == 0 && equality_comparison_p
10577	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10578	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10579	    {
10580	      op0 = simplify_and_const_int
10581		(op0, mode, gen_rtx_LSHIFTRT (mode,
10582					      XEXP (op0, 1),
10583					      XEXP (XEXP (op0, 0), 1)),
10584		 (HOST_WIDE_INT) 1);
10585	      continue;
10586	    }
10587
10588	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10589	     zero and X is a comparison and C1 and C2 describe only bits set
10590	     in STORE_FLAG_VALUE, we can compare with X.  */
10591	  if (const_op == 0 && equality_comparison_p
10592	      && mode_width <= HOST_BITS_PER_WIDE_INT
10593	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10594	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10595	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10596	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10597	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10598	    {
10599	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10600		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
10601	      if ((~STORE_FLAG_VALUE & mask) == 0
10602		  && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10603		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10604			  && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10605		{
10606		  op0 = XEXP (XEXP (op0, 0), 0);
10607		  continue;
10608		}
10609	    }
10610
10611	  /* If we are doing an equality comparison of an AND of a bit equal
10612	     to the sign bit, replace this with a LT or GE comparison of
10613	     the underlying value.  */
10614	  if (equality_comparison_p
10615	      && const_op == 0
10616	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10617	      && mode_width <= HOST_BITS_PER_WIDE_INT
10618	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10619		  == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10620	    {
10621	      op0 = XEXP (op0, 0);
10622	      code = (code == EQ ? GE : LT);
10623	      continue;
10624	    }
10625
10626	  /* If this AND operation is really a ZERO_EXTEND from a narrower
10627	     mode, the constant fits within that mode, and this is either an
10628	     equality or unsigned comparison, try to do this comparison in
10629	     the narrower mode.  */
10630	  if ((equality_comparison_p || unsigned_comparison_p)
10631	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10632	      && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10633				   & GET_MODE_MASK (mode))
10634				  + 1)) >= 0
10635	      && const_op >> i == 0
10636	      && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10637	    {
10638	      op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10639	      continue;
10640	    }
10641
10642	  /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10643	     in both M1 and M2 and the SUBREG is either paradoxical or
10644	     represents the low part, permute the SUBREG and the AND and
10645	     try again.  */
10646	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
10647	      && (0
10648#ifdef WORD_REGISTER_OPERATIONS
10649		  || ((mode_width
10650		       > (GET_MODE_BITSIZE
10651			   (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10652		      && mode_width <= BITS_PER_WORD)
10653#endif
10654		  || ((mode_width
10655		       <= (GET_MODE_BITSIZE
10656			   (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10657		      && subreg_lowpart_p (XEXP (op0, 0))))
10658#ifndef WORD_REGISTER_OPERATIONS
10659	      /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10660		 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10661		 As originally written the upper bits have a defined value
10662		 due to the AND operation.  However, if we commute the AND
10663		 inside the SUBREG then they no longer have defined values
10664		 and the meaning of the code has been changed.  */
10665	      && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10666		  <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10667#endif
10668	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10669	      && mode_width <= HOST_BITS_PER_WIDE_INT
10670	      && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10671		  <= HOST_BITS_PER_WIDE_INT)
10672	      && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10673	      && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10674		       & INTVAL (XEXP (op0, 1)))
10675	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10676	      && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10677		  != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10678
10679	    {
10680	      op0
10681		= gen_lowpart_for_combine
10682		  (mode,
10683		   gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10684			       SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10685	      continue;
10686	    }
10687
10688	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10689	     (eq (and (lshiftrt X) 1) 0).  */
10690	  if (const_op == 0 && equality_comparison_p
10691	      && XEXP (op0, 1) == const1_rtx
10692	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10693	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10694	    {
10695	      op0 = simplify_and_const_int
10696		(op0, mode,
10697		 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10698				   XEXP (XEXP (op0, 0), 1)),
10699		 (HOST_WIDE_INT) 1);
10700	      code = (code == NE ? EQ : NE);
10701	      continue;
10702	    }
10703	  break;
10704
10705	case ASHIFT:
10706	  /* If we have (compare (ashift FOO N) (const_int C)) and
10707	     the high order N bits of FOO (N+1 if an inequality comparison)
10708	     are known to be zero, we can do this by comparing FOO with C
10709	     shifted right N bits so long as the low-order N bits of C are
10710	     zero.  */
10711	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10712	      && INTVAL (XEXP (op0, 1)) >= 0
10713	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10714		  < HOST_BITS_PER_WIDE_INT)
10715	      && ((const_op
10716		   & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10717	      && mode_width <= HOST_BITS_PER_WIDE_INT
10718	      && (nonzero_bits (XEXP (op0, 0), mode)
10719		  & ~(mask >> (INTVAL (XEXP (op0, 1))
10720			       + ! equality_comparison_p))) == 0)
10721	    {
10722	      /* We must perform a logical shift, not an arithmetic one,
10723		 as we want the top N bits of C to be zero.  */
10724	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10725
10726	      temp >>= INTVAL (XEXP (op0, 1));
10727	      op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10728	      op0 = XEXP (op0, 0);
10729	      continue;
10730	    }
10731
10732	  /* If we are doing a sign bit comparison, it means we are testing
10733	     a particular bit.  Convert it to the appropriate AND.  */
10734	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10735	      && mode_width <= HOST_BITS_PER_WIDE_INT)
10736	    {
10737	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10738					    ((HOST_WIDE_INT) 1
10739					     << (mode_width - 1
10740						 - INTVAL (XEXP (op0, 1)))));
10741	      code = (code == LT ? NE : EQ);
10742	      continue;
10743	    }
10744
10745	  /* If this an equality comparison with zero and we are shifting
10746	     the low bit to the sign bit, we can convert this to an AND of the
10747	     low-order bit.  */
10748	  if (const_op == 0 && equality_comparison_p
10749	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10750	      && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10751	    {
10752	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10753					    (HOST_WIDE_INT) 1);
10754	      continue;
10755	    }
10756	  break;
10757
10758	case ASHIFTRT:
10759	  /* If this is an equality comparison with zero, we can do this
10760	     as a logical shift, which might be much simpler.  */
10761	  if (equality_comparison_p && const_op == 0
10762	      && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10763	    {
10764	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10765					  XEXP (op0, 0),
10766					  INTVAL (XEXP (op0, 1)));
10767	      continue;
10768	    }
10769
10770	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10771	     do the comparison in a narrower mode.  */
10772	  if (! unsigned_comparison_p
10773	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10774	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10775	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10776	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10777					 MODE_INT, 1)) != BLKmode
10778	      && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10779		  || ((unsigned HOST_WIDE_INT) -const_op
10780		      <= GET_MODE_MASK (tmode))))
10781	    {
10782	      op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10783	      continue;
10784	    }
10785
10786	  /* Likewise if OP0 is a PLUS of a sign extension with a
10787	     constant, which is usually represented with the PLUS
10788	     between the shifts.  */
10789	  if (! unsigned_comparison_p
10790	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10791	      && GET_CODE (XEXP (op0, 0)) == PLUS
10792	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10793	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10794	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10795	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10796					 MODE_INT, 1)) != BLKmode
10797	      && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10798		  || ((unsigned HOST_WIDE_INT) -const_op
10799		      <= GET_MODE_MASK (tmode))))
10800	    {
10801	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10802	      rtx add_const = XEXP (XEXP (op0, 0), 1);
10803	      rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10804					  XEXP (op0, 1));
10805
10806	      op0 = gen_binary (PLUS, tmode,
10807				gen_lowpart_for_combine (tmode, inner),
10808				new_const);
10809	      continue;
10810	    }
10811
10812	  /* ... fall through ...  */
10813	case LSHIFTRT:
10814	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10815	     the low order N bits of FOO are known to be zero, we can do this
10816	     by comparing FOO with C shifted left N bits so long as no
10817	     overflow occurs.  */
10818	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10819	      && INTVAL (XEXP (op0, 1)) >= 0
10820	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10821	      && mode_width <= HOST_BITS_PER_WIDE_INT
10822	      && (nonzero_bits (XEXP (op0, 0), mode)
10823		  & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10824	      && (const_op == 0
10825		  || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10826		      < mode_width)))
10827	    {
10828	      const_op <<= INTVAL (XEXP (op0, 1));
10829	      op1 = GEN_INT (const_op);
10830	      op0 = XEXP (op0, 0);
10831	      continue;
10832	    }
10833
10834	  /* If we are using this shift to extract just the sign bit, we
10835	     can replace this with an LT or GE comparison.  */
10836	  if (const_op == 0
10837	      && (equality_comparison_p || sign_bit_comparison_p)
10838	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10839	      && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10840	    {
10841	      op0 = XEXP (op0, 0);
10842	      code = (code == NE || code == GT ? LT : GE);
10843	      continue;
10844	    }
10845	  break;
10846
10847	default:
10848	  break;
10849	}
10850
10851      break;
10852    }
10853
10854  /* Now make any compound operations involved in this comparison.  Then,
10855     check for an outmost SUBREG on OP0 that is not doing anything or is
10856     paradoxical.  The latter case can only occur when it is known that the
10857     "extra" bits will be zero.  Therefore, it is safe to remove the SUBREG.
10858     We can never remove a SUBREG for a non-equality comparison because the
10859     sign bit is in a different place in the underlying object.  */
10860
10861  op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10862  op1 = make_compound_operation (op1, SET);
10863
10864  if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10865      && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10866      && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10867      && (code == NE || code == EQ)
10868      && ((GET_MODE_SIZE (GET_MODE (op0))
10869	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10870    {
10871      op0 = SUBREG_REG (op0);
10872      op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10873    }
10874
10875  else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10876	   && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10877	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10878	   && (code == NE || code == EQ)
10879	   && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10880	       <= HOST_BITS_PER_WIDE_INT)
10881	   && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10882	       & ~GET_MODE_MASK (GET_MODE (op0))) == 0
10883	   && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10884					      op1),
10885	       (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10886		& ~GET_MODE_MASK (GET_MODE (op0))) == 0))
10887    op0 = SUBREG_REG (op0), op1 = tem;
10888
10889  /* We now do the opposite procedure: Some machines don't have compare
10890     insns in all modes.  If OP0's mode is an integer mode smaller than a
10891     word and we can't do a compare in that mode, see if there is a larger
10892     mode for which we can do the compare.  There are a number of cases in
10893     which we can use the wider mode.  */
10894
10895  mode = GET_MODE (op0);
10896  if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10897      && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10898      && ! have_insn_for (COMPARE, mode))
10899    for (tmode = GET_MODE_WIDER_MODE (mode);
10900	 (tmode != VOIDmode
10901	  && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10902	 tmode = GET_MODE_WIDER_MODE (tmode))
10903      if (have_insn_for (COMPARE, tmode))
10904	{
10905	  /* If the only nonzero bits in OP0 and OP1 are those in the
10906	     narrower mode and this is an equality or unsigned comparison,
10907	     we can use the wider mode.  Similarly for sign-extended
10908	     values, in which case it is true for all comparisons.  */
10909	  if (((code == EQ || code == NE
10910		|| code == GEU || code == GTU || code == LEU || code == LTU)
10911	       && (nonzero_bits (op0, tmode) & ~GET_MODE_MASK (mode)) == 0
10912	       && (nonzero_bits (op1, tmode) & ~GET_MODE_MASK (mode)) == 0)
10913	      || ((num_sign_bit_copies (op0, tmode)
10914		   > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10915		  && (num_sign_bit_copies (op1, tmode)
10916		      > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10917	    {
10918	      /* If OP0 is an AND and we don't have an AND in MODE either,
10919		 make a new AND in the proper mode.  */
10920	      if (GET_CODE (op0) == AND
10921		  && !have_insn_for (AND, mode))
10922		op0 = gen_binary (AND, tmode,
10923				  gen_lowpart_for_combine (tmode,
10924							   XEXP (op0, 0)),
10925				  gen_lowpart_for_combine (tmode,
10926							   XEXP (op0, 1)));
10927
10928	      op0 = gen_lowpart_for_combine (tmode, op0);
10929	      op1 = gen_lowpart_for_combine (tmode, op1);
10930	      break;
10931	    }
10932
10933	  /* If this is a test for negative, we can make an explicit
10934	     test of the sign bit.  */
10935
10936	  if (op1 == const0_rtx && (code == LT || code == GE)
10937	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10938	    {
10939	      op0 = gen_binary (AND, tmode,
10940				gen_lowpart_for_combine (tmode, op0),
10941				GEN_INT ((HOST_WIDE_INT) 1
10942					 << (GET_MODE_BITSIZE (mode) - 1)));
10943	      code = (code == LT) ? NE : EQ;
10944	      break;
10945	    }
10946	}
10947
10948#ifdef CANONICALIZE_COMPARISON
10949  /* If this machine only supports a subset of valid comparisons, see if we
10950     can convert an unsupported one into a supported one.  */
10951  CANONICALIZE_COMPARISON (code, op0, op1);
10952#endif
10953
10954  *pop0 = op0;
10955  *pop1 = op1;
10956
10957  return code;
10958}
10959
10960/* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10961   searching backward.  */
10962static enum rtx_code
10963combine_reversed_comparison_code (exp)
10964     rtx exp;
10965{
10966  enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10967  rtx x;
10968
10969  if (code1 != UNKNOWN
10970      || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10971    return code1;
10972  /* Otherwise try and find where the condition codes were last set and
10973     use that.  */
10974  x = get_last_value (XEXP (exp, 0));
10975  if (!x || GET_CODE (x) != COMPARE)
10976    return UNKNOWN;
10977  return reversed_comparison_code_parts (GET_CODE (exp),
10978					 XEXP (x, 0), XEXP (x, 1), NULL);
10979}
10980/* Return comparison with reversed code of EXP and operands OP0 and OP1.
10981   Return NULL_RTX in case we fail to do the reversal.  */
10982static rtx
10983reversed_comparison (exp, mode, op0, op1)
10984     rtx exp, op0, op1;
10985     enum machine_mode mode;
10986{
10987  enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10988  if (reversed_code == UNKNOWN)
10989    return NULL_RTX;
10990  else
10991    return gen_binary (reversed_code, mode, op0, op1);
10992}
10993
10994/* Utility function for following routine.  Called when X is part of a value
10995   being stored into reg_last_set_value.  Sets reg_last_set_table_tick
10996   for each register mentioned.  Similar to mention_regs in cse.c  */
10997
10998static void
10999update_table_tick (x)
11000     rtx x;
11001{
11002  enum rtx_code code = GET_CODE (x);
11003  const char *fmt = GET_RTX_FORMAT (code);
11004  int i;
11005
11006  if (code == REG)
11007    {
11008      unsigned int regno = REGNO (x);
11009      unsigned int endregno
11010	= regno + (regno < FIRST_PSEUDO_REGISTER
11011		   ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11012      unsigned int r;
11013
11014      for (r = regno; r < endregno; r++)
11015	reg_last_set_table_tick[r] = label_tick;
11016
11017      return;
11018    }
11019
11020  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11021    /* Note that we can't have an "E" in values stored; see
11022       get_last_value_validate.  */
11023    if (fmt[i] == 'e')
11024      update_table_tick (XEXP (x, i));
11025}
11026
11027/* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
11028   are saying that the register is clobbered and we no longer know its
11029   value.  If INSN is zero, don't update reg_last_set; this is only permitted
11030   with VALUE also zero and is used to invalidate the register.  */
11031
11032static void
11033record_value_for_reg (reg, insn, value)
11034     rtx reg;
11035     rtx insn;
11036     rtx value;
11037{
11038  unsigned int regno = REGNO (reg);
11039  unsigned int endregno
11040    = regno + (regno < FIRST_PSEUDO_REGISTER
11041	       ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11042  unsigned int i;
11043
11044  /* If VALUE contains REG and we have a previous value for REG, substitute
11045     the previous value.  */
11046  if (value && insn && reg_overlap_mentioned_p (reg, value))
11047    {
11048      rtx tem;
11049
11050      /* Set things up so get_last_value is allowed to see anything set up to
11051	 our insn.  */
11052      subst_low_cuid = INSN_CUID (insn);
11053      tem = get_last_value (reg);
11054
11055      /* If TEM is simply a binary operation with two CLOBBERs as operands,
11056	 it isn't going to be useful and will take a lot of time to process,
11057	 so just use the CLOBBER.  */
11058
11059      if (tem)
11060	{
11061	  if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11062	       || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11063	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
11064	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11065	    tem = XEXP (tem, 0);
11066
11067	  value = replace_rtx (copy_rtx (value), reg, tem);
11068	}
11069    }
11070
11071  /* For each register modified, show we don't know its value, that
11072     we don't know about its bitwise content, that its value has been
11073     updated, and that we don't know the location of the death of the
11074     register.  */
11075  for (i = regno; i < endregno; i++)
11076    {
11077      if (insn)
11078	reg_last_set[i] = insn;
11079
11080      reg_last_set_value[i] = 0;
11081      reg_last_set_mode[i] = 0;
11082      reg_last_set_nonzero_bits[i] = 0;
11083      reg_last_set_sign_bit_copies[i] = 0;
11084      reg_last_death[i] = 0;
11085    }
11086
11087  /* Mark registers that are being referenced in this value.  */
11088  if (value)
11089    update_table_tick (value);
11090
11091  /* Now update the status of each register being set.
11092     If someone is using this register in this block, set this register
11093     to invalid since we will get confused between the two lives in this
11094     basic block.  This makes using this register always invalid.  In cse, we
11095     scan the table to invalidate all entries using this register, but this
11096     is too much work for us.  */
11097
11098  for (i = regno; i < endregno; i++)
11099    {
11100      reg_last_set_label[i] = label_tick;
11101      if (value && reg_last_set_table_tick[i] == label_tick)
11102	reg_last_set_invalid[i] = 1;
11103      else
11104	reg_last_set_invalid[i] = 0;
11105    }
11106
11107  /* The value being assigned might refer to X (like in "x++;").  In that
11108     case, we must replace it with (clobber (const_int 0)) to prevent
11109     infinite loops.  */
11110  if (value && ! get_last_value_validate (&value, insn,
11111					  reg_last_set_label[regno], 0))
11112    {
11113      value = copy_rtx (value);
11114      if (! get_last_value_validate (&value, insn,
11115				     reg_last_set_label[regno], 1))
11116	value = 0;
11117    }
11118
11119  /* For the main register being modified, update the value, the mode, the
11120     nonzero bits, and the number of sign bit copies.  */
11121
11122  reg_last_set_value[regno] = value;
11123
11124  if (value)
11125    {
11126      subst_low_cuid = INSN_CUID (insn);
11127      reg_last_set_mode[regno] = GET_MODE (reg);
11128      reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11129      reg_last_set_sign_bit_copies[regno]
11130	= num_sign_bit_copies (value, GET_MODE (reg));
11131    }
11132}
11133
11134/* Called via note_stores from record_dead_and_set_regs to handle one
11135   SET or CLOBBER in an insn.  DATA is the instruction in which the
11136   set is occurring.  */
11137
11138static void
11139record_dead_and_set_regs_1 (dest, setter, data)
11140     rtx dest, setter;
11141     void *data;
11142{
11143  rtx record_dead_insn = (rtx) data;
11144
11145  if (GET_CODE (dest) == SUBREG)
11146    dest = SUBREG_REG (dest);
11147
11148  if (GET_CODE (dest) == REG)
11149    {
11150      /* If we are setting the whole register, we know its value.  Otherwise
11151	 show that we don't know the value.  We can handle SUBREG in
11152	 some cases.  */
11153      if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11154	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11155      else if (GET_CODE (setter) == SET
11156	       && GET_CODE (SET_DEST (setter)) == SUBREG
11157	       && SUBREG_REG (SET_DEST (setter)) == dest
11158	       && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11159	       && subreg_lowpart_p (SET_DEST (setter)))
11160	record_value_for_reg (dest, record_dead_insn,
11161			      gen_lowpart_for_combine (GET_MODE (dest),
11162						       SET_SRC (setter)));
11163      else
11164	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11165    }
11166  else if (GET_CODE (dest) == MEM
11167	   /* Ignore pushes, they clobber nothing.  */
11168	   && ! push_operand (dest, GET_MODE (dest)))
11169    mem_last_set = INSN_CUID (record_dead_insn);
11170}
11171
11172/* Update the records of when each REG was most recently set or killed
11173   for the things done by INSN.  This is the last thing done in processing
11174   INSN in the combiner loop.
11175
11176   We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11177   reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11178   and also the similar information mem_last_set (which insn most recently
11179   modified memory) and last_call_cuid (which insn was the most recent
11180   subroutine call).  */
11181
11182static void
11183record_dead_and_set_regs (insn)
11184     rtx insn;
11185{
11186  rtx link;
11187  unsigned int i;
11188
11189  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11190    {
11191      if (REG_NOTE_KIND (link) == REG_DEAD
11192	  && GET_CODE (XEXP (link, 0)) == REG)
11193	{
11194	  unsigned int regno = REGNO (XEXP (link, 0));
11195	  unsigned int endregno
11196	    = regno + (regno < FIRST_PSEUDO_REGISTER
11197		       ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11198		       : 1);
11199
11200	  for (i = regno; i < endregno; i++)
11201	    reg_last_death[i] = insn;
11202	}
11203      else if (REG_NOTE_KIND (link) == REG_INC)
11204	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11205    }
11206
11207  if (GET_CODE (insn) == CALL_INSN)
11208    {
11209      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11210	if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11211	  {
11212	    reg_last_set_value[i] = 0;
11213	    reg_last_set_mode[i] = 0;
11214	    reg_last_set_nonzero_bits[i] = 0;
11215	    reg_last_set_sign_bit_copies[i] = 0;
11216	    reg_last_death[i] = 0;
11217	  }
11218
11219      last_call_cuid = mem_last_set = INSN_CUID (insn);
11220
11221      /* Don't bother recording what this insn does.  It might set the
11222	 return value register, but we can't combine into a call
11223	 pattern anyway, so there's no point trying (and it may cause
11224	 a crash, if e.g. we wind up asking for last_set_value of a
11225	 SUBREG of the return value register).  */
11226      return;
11227    }
11228
11229  note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11230}
11231
11232/* If a SUBREG has the promoted bit set, it is in fact a property of the
11233   register present in the SUBREG, so for each such SUBREG go back and
11234   adjust nonzero and sign bit information of the registers that are
11235   known to have some zero/sign bits set.
11236
11237   This is needed because when combine blows the SUBREGs away, the
11238   information on zero/sign bits is lost and further combines can be
11239   missed because of that.  */
11240
11241static void
11242record_promoted_value (insn, subreg)
11243     rtx insn;
11244     rtx subreg;
11245{
11246  rtx links, set;
11247  unsigned int regno = REGNO (SUBREG_REG (subreg));
11248  enum machine_mode mode = GET_MODE (subreg);
11249
11250  if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11251    return;
11252
11253  for (links = LOG_LINKS (insn); links;)
11254    {
11255      insn = XEXP (links, 0);
11256      set = single_set (insn);
11257
11258      if (! set || GET_CODE (SET_DEST (set)) != REG
11259	  || REGNO (SET_DEST (set)) != regno
11260	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11261	{
11262	  links = XEXP (links, 1);
11263	  continue;
11264	}
11265
11266      if (reg_last_set[regno] == insn)
11267	{
11268	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11269	    reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11270	}
11271
11272      if (GET_CODE (SET_SRC (set)) == REG)
11273	{
11274	  regno = REGNO (SET_SRC (set));
11275	  links = LOG_LINKS (insn);
11276	}
11277      else
11278	break;
11279    }
11280}
11281
11282/* Scan X for promoted SUBREGs.  For each one found,
11283   note what it implies to the registers used in it.  */
11284
11285static void
11286check_promoted_subreg (insn, x)
11287     rtx insn;
11288     rtx x;
11289{
11290  if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11291      && GET_CODE (SUBREG_REG (x)) == REG)
11292    record_promoted_value (insn, x);
11293  else
11294    {
11295      const char *format = GET_RTX_FORMAT (GET_CODE (x));
11296      int i, j;
11297
11298      for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11299	switch (format[i])
11300	  {
11301	  case 'e':
11302	    check_promoted_subreg (insn, XEXP (x, i));
11303	    break;
11304	  case 'V':
11305	  case 'E':
11306	    if (XVEC (x, i) != 0)
11307	      for (j = 0; j < XVECLEN (x, i); j++)
11308		check_promoted_subreg (insn, XVECEXP (x, i, j));
11309	    break;
11310	  }
11311    }
11312}
11313
11314/* Utility routine for the following function.  Verify that all the registers
11315   mentioned in *LOC are valid when *LOC was part of a value set when
11316   label_tick == TICK.  Return 0 if some are not.
11317
11318   If REPLACE is non-zero, replace the invalid reference with
11319   (clobber (const_int 0)) and return 1.  This replacement is useful because
11320   we often can get useful information about the form of a value (e.g., if
11321   it was produced by a shift that always produces -1 or 0) even though
11322   we don't know exactly what registers it was produced from.  */
11323
11324static int
11325get_last_value_validate (loc, insn, tick, replace)
11326     rtx *loc;
11327     rtx insn;
11328     int tick;
11329     int replace;
11330{
11331  rtx x = *loc;
11332  const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11333  int len = GET_RTX_LENGTH (GET_CODE (x));
11334  int i;
11335
11336  if (GET_CODE (x) == REG)
11337    {
11338      unsigned int regno = REGNO (x);
11339      unsigned int endregno
11340	= regno + (regno < FIRST_PSEUDO_REGISTER
11341		   ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11342      unsigned int j;
11343
11344      for (j = regno; j < endregno; j++)
11345	if (reg_last_set_invalid[j]
11346	    /* If this is a pseudo-register that was only set once and not
11347	       live at the beginning of the function, it is always valid.  */
11348	    || (! (regno >= FIRST_PSEUDO_REGISTER
11349		   && REG_N_SETS (regno) == 1
11350		   && (! REGNO_REG_SET_P
11351		       (BASIC_BLOCK (0)->global_live_at_start, regno)))
11352		&& reg_last_set_label[j] > tick))
11353	  {
11354	    if (replace)
11355	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11356	    return replace;
11357	  }
11358
11359      return 1;
11360    }
11361  /* If this is a memory reference, make sure that there were
11362     no stores after it that might have clobbered the value.  We don't
11363     have alias info, so we assume any store invalidates it.  */
11364  else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11365	   && INSN_CUID (insn) <= mem_last_set)
11366    {
11367      if (replace)
11368	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11369      return replace;
11370    }
11371
11372  for (i = 0; i < len; i++)
11373    if ((fmt[i] == 'e'
11374	 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11375	/* Don't bother with these.  They shouldn't occur anyway.  */
11376	|| fmt[i] == 'E')
11377      return 0;
11378
11379  /* If we haven't found a reason for it to be invalid, it is valid.  */
11380  return 1;
11381}
11382
11383/* Get the last value assigned to X, if known.  Some registers
11384   in the value may be replaced with (clobber (const_int 0)) if their value
11385   is known longer known reliably.  */
11386
11387static rtx
11388get_last_value (x)
11389     rtx x;
11390{
11391  unsigned int regno;
11392  rtx value;
11393
11394  /* If this is a non-paradoxical SUBREG, get the value of its operand and
11395     then convert it to the desired mode.  If this is a paradoxical SUBREG,
11396     we cannot predict what values the "extra" bits might have.  */
11397  if (GET_CODE (x) == SUBREG
11398      && subreg_lowpart_p (x)
11399      && (GET_MODE_SIZE (GET_MODE (x))
11400	  <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11401      && (value = get_last_value (SUBREG_REG (x))) != 0)
11402    return gen_lowpart_for_combine (GET_MODE (x), value);
11403
11404  if (GET_CODE (x) != REG)
11405    return 0;
11406
11407  regno = REGNO (x);
11408  value = reg_last_set_value[regno];
11409
11410  /* If we don't have a value, or if it isn't for this basic block and
11411     it's either a hard register, set more than once, or it's a live
11412     at the beginning of the function, return 0.
11413
11414     Because if it's not live at the beginning of the function then the reg
11415     is always set before being used (is never used without being set).
11416     And, if it's set only once, and it's always set before use, then all
11417     uses must have the same last value, even if it's not from this basic
11418     block.  */
11419
11420  if (value == 0
11421      || (reg_last_set_label[regno] != label_tick
11422	  && (regno < FIRST_PSEUDO_REGISTER
11423	      || REG_N_SETS (regno) != 1
11424	      || (REGNO_REG_SET_P
11425		  (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11426    return 0;
11427
11428  /* If the value was set in a later insn than the ones we are processing,
11429     we can't use it even if the register was only set once.  */
11430  if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11431    return 0;
11432
11433  /* If the value has all its registers valid, return it.  */
11434  if (get_last_value_validate (&value, reg_last_set[regno],
11435			       reg_last_set_label[regno], 0))
11436    return value;
11437
11438  /* Otherwise, make a copy and replace any invalid register with
11439     (clobber (const_int 0)).  If that fails for some reason, return 0.  */
11440
11441  value = copy_rtx (value);
11442  if (get_last_value_validate (&value, reg_last_set[regno],
11443			       reg_last_set_label[regno], 1))
11444    return value;
11445
11446  return 0;
11447}
11448
11449/* Return nonzero if expression X refers to a REG or to memory
11450   that is set in an instruction more recent than FROM_CUID.  */
11451
11452static int
11453use_crosses_set_p (x, from_cuid)
11454     rtx x;
11455     int from_cuid;
11456{
11457  const char *fmt;
11458  int i;
11459  enum rtx_code code = GET_CODE (x);
11460
11461  if (code == REG)
11462    {
11463      unsigned int regno = REGNO (x);
11464      unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11465				 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11466
11467#ifdef PUSH_ROUNDING
11468      /* Don't allow uses of the stack pointer to be moved,
11469	 because we don't know whether the move crosses a push insn.  */
11470      if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11471	return 1;
11472#endif
11473      for (; regno < endreg; regno++)
11474	if (reg_last_set[regno]
11475	    && INSN_CUID (reg_last_set[regno]) > from_cuid)
11476	  return 1;
11477      return 0;
11478    }
11479
11480  if (code == MEM && mem_last_set > from_cuid)
11481    return 1;
11482
11483  fmt = GET_RTX_FORMAT (code);
11484
11485  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11486    {
11487      if (fmt[i] == 'E')
11488	{
11489	  int j;
11490	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11491	    if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11492	      return 1;
11493	}
11494      else if (fmt[i] == 'e'
11495	       && use_crosses_set_p (XEXP (x, i), from_cuid))
11496	return 1;
11497    }
11498  return 0;
11499}
11500
11501/* Define three variables used for communication between the following
11502   routines.  */
11503
11504static unsigned int reg_dead_regno, reg_dead_endregno;
11505static int reg_dead_flag;
11506
11507/* Function called via note_stores from reg_dead_at_p.
11508
11509   If DEST is within [reg_dead_regno, reg_dead_endregno), set
11510   reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
11511
11512static void
11513reg_dead_at_p_1 (dest, x, data)
11514     rtx dest;
11515     rtx x;
11516     void *data ATTRIBUTE_UNUSED;
11517{
11518  unsigned int regno, endregno;
11519
11520  if (GET_CODE (dest) != REG)
11521    return;
11522
11523  regno = REGNO (dest);
11524  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11525		      ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11526
11527  if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11528    reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11529}
11530
11531/* Return non-zero if REG is known to be dead at INSN.
11532
11533   We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
11534   referencing REG, it is dead.  If we hit a SET referencing REG, it is
11535   live.  Otherwise, see if it is live or dead at the start of the basic
11536   block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
11537   must be assumed to be always live.  */
11538
11539static int
11540reg_dead_at_p (reg, insn)
11541     rtx reg;
11542     rtx insn;
11543{
11544  int block;
11545  unsigned int i;
11546
11547  /* Set variables for reg_dead_at_p_1.  */
11548  reg_dead_regno = REGNO (reg);
11549  reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11550					? HARD_REGNO_NREGS (reg_dead_regno,
11551							    GET_MODE (reg))
11552					: 1);
11553
11554  reg_dead_flag = 0;
11555
11556  /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  */
11557  if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11558    {
11559      for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11560	if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11561	  return 0;
11562    }
11563
11564  /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11565     beginning of function.  */
11566  for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11567       insn = prev_nonnote_insn (insn))
11568    {
11569      note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11570      if (reg_dead_flag)
11571	return reg_dead_flag == 1 ? 1 : 0;
11572
11573      if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11574	return 1;
11575    }
11576
11577  /* Get the basic block number that we were in.  */
11578  if (insn == 0)
11579    block = 0;
11580  else
11581    {
11582      for (block = 0; block < n_basic_blocks; block++)
11583	if (insn == BLOCK_HEAD (block))
11584	  break;
11585
11586      if (block == n_basic_blocks)
11587	return 0;
11588    }
11589
11590  for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11591    if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11592      return 0;
11593
11594  return 1;
11595}
11596
11597/* Note hard registers in X that are used.  This code is similar to
11598   that in flow.c, but much simpler since we don't care about pseudos.  */
11599
11600static void
11601mark_used_regs_combine (x)
11602     rtx x;
11603{
11604  RTX_CODE code = GET_CODE (x);
11605  unsigned int regno;
11606  int i;
11607
11608  switch (code)
11609    {
11610    case LABEL_REF:
11611    case SYMBOL_REF:
11612    case CONST_INT:
11613    case CONST:
11614    case CONST_DOUBLE:
11615    case PC:
11616    case ADDR_VEC:
11617    case ADDR_DIFF_VEC:
11618    case ASM_INPUT:
11619#ifdef HAVE_cc0
11620    /* CC0 must die in the insn after it is set, so we don't need to take
11621       special note of it here.  */
11622    case CC0:
11623#endif
11624      return;
11625
11626    case CLOBBER:
11627      /* If we are clobbering a MEM, mark any hard registers inside the
11628	 address as used.  */
11629      if (GET_CODE (XEXP (x, 0)) == MEM)
11630	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11631      return;
11632
11633    case REG:
11634      regno = REGNO (x);
11635      /* A hard reg in a wide mode may really be multiple registers.
11636	 If so, mark all of them just like the first.  */
11637      if (regno < FIRST_PSEUDO_REGISTER)
11638	{
11639	  unsigned int endregno, r;
11640
11641	  /* None of this applies to the stack, frame or arg pointers */
11642	  if (regno == STACK_POINTER_REGNUM
11643#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11644	      || regno == HARD_FRAME_POINTER_REGNUM
11645#endif
11646#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11647	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11648#endif
11649	      || regno == FRAME_POINTER_REGNUM)
11650	    return;
11651
11652	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11653	  for (r = regno; r < endregno; r++)
11654	    SET_HARD_REG_BIT (newpat_used_regs, r);
11655	}
11656      return;
11657
11658    case SET:
11659      {
11660	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11661	   the address.  */
11662	rtx testreg = SET_DEST (x);
11663
11664	while (GET_CODE (testreg) == SUBREG
11665	       || GET_CODE (testreg) == ZERO_EXTRACT
11666	       || GET_CODE (testreg) == SIGN_EXTRACT
11667	       || GET_CODE (testreg) == STRICT_LOW_PART)
11668	  testreg = XEXP (testreg, 0);
11669
11670	if (GET_CODE (testreg) == MEM)
11671	  mark_used_regs_combine (XEXP (testreg, 0));
11672
11673	mark_used_regs_combine (SET_SRC (x));
11674      }
11675      return;
11676
11677    default:
11678      break;
11679    }
11680
11681  /* Recursively scan the operands of this expression.  */
11682
11683  {
11684    const char *fmt = GET_RTX_FORMAT (code);
11685
11686    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11687      {
11688	if (fmt[i] == 'e')
11689	  mark_used_regs_combine (XEXP (x, i));
11690	else if (fmt[i] == 'E')
11691	  {
11692	    int j;
11693
11694	    for (j = 0; j < XVECLEN (x, i); j++)
11695	      mark_used_regs_combine (XVECEXP (x, i, j));
11696	  }
11697      }
11698  }
11699}
11700
11701/* Remove register number REGNO from the dead registers list of INSN.
11702
11703   Return the note used to record the death, if there was one.  */
11704
11705rtx
11706remove_death (regno, insn)
11707     unsigned int regno;
11708     rtx insn;
11709{
11710  rtx note = find_regno_note (insn, REG_DEAD, regno);
11711
11712  if (note)
11713    {
11714      REG_N_DEATHS (regno)--;
11715      remove_note (insn, note);
11716    }
11717
11718  return note;
11719}
11720
11721/* For each register (hardware or pseudo) used within expression X, if its
11722   death is in an instruction with cuid between FROM_CUID (inclusive) and
11723   TO_INSN (exclusive), put a REG_DEAD note for that register in the
11724   list headed by PNOTES.
11725
11726   That said, don't move registers killed by maybe_kill_insn.
11727
11728   This is done when X is being merged by combination into TO_INSN.  These
11729   notes will then be distributed as needed.  */
11730
11731static void
11732move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11733     rtx x;
11734     rtx maybe_kill_insn;
11735     int from_cuid;
11736     rtx to_insn;
11737     rtx *pnotes;
11738{
11739  const char *fmt;
11740  int len, i;
11741  enum rtx_code code = GET_CODE (x);
11742
11743  if (code == REG)
11744    {
11745      unsigned int regno = REGNO (x);
11746      rtx where_dead = reg_last_death[regno];
11747      rtx before_dead, after_dead;
11748
11749      /* Don't move the register if it gets killed in between from and to */
11750      if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11751	  && ! reg_referenced_p (x, maybe_kill_insn))
11752	return;
11753
11754      /* WHERE_DEAD could be a USE insn made by combine, so first we
11755	 make sure that we have insns with valid INSN_CUID values.  */
11756      before_dead = where_dead;
11757      while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11758	before_dead = PREV_INSN (before_dead);
11759
11760      after_dead = where_dead;
11761      while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11762	after_dead = NEXT_INSN (after_dead);
11763
11764      if (before_dead && after_dead
11765	  && INSN_CUID (before_dead) >= from_cuid
11766	  && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11767	      || (where_dead != after_dead
11768		  && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11769	{
11770	  rtx note = remove_death (regno, where_dead);
11771
11772	  /* It is possible for the call above to return 0.  This can occur
11773	     when reg_last_death points to I2 or I1 that we combined with.
11774	     In that case make a new note.
11775
11776	     We must also check for the case where X is a hard register
11777	     and NOTE is a death note for a range of hard registers
11778	     including X.  In that case, we must put REG_DEAD notes for
11779	     the remaining registers in place of NOTE.  */
11780
11781	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11782	      && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11783		  > GET_MODE_SIZE (GET_MODE (x))))
11784	    {
11785	      unsigned int deadregno = REGNO (XEXP (note, 0));
11786	      unsigned int deadend
11787		= (deadregno + HARD_REGNO_NREGS (deadregno,
11788						 GET_MODE (XEXP (note, 0))));
11789	      unsigned int ourend
11790		= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11791	      unsigned int i;
11792
11793	      for (i = deadregno; i < deadend; i++)
11794		if (i < regno || i >= ourend)
11795		  REG_NOTES (where_dead)
11796		    = gen_rtx_EXPR_LIST (REG_DEAD,
11797					 gen_rtx_REG (reg_raw_mode[i], i),
11798					 REG_NOTES (where_dead));
11799	    }
11800
11801	  /* If we didn't find any note, or if we found a REG_DEAD note that
11802	     covers only part of the given reg, and we have a multi-reg hard
11803	     register, then to be safe we must check for REG_DEAD notes
11804	     for each register other than the first.  They could have
11805	     their own REG_DEAD notes lying around.  */
11806	  else if ((note == 0
11807		    || (note != 0
11808			&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11809			    < GET_MODE_SIZE (GET_MODE (x)))))
11810		   && regno < FIRST_PSEUDO_REGISTER
11811		   && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11812	    {
11813	      unsigned int ourend
11814		= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11815	      unsigned int i, offset;
11816	      rtx oldnotes = 0;
11817
11818	      if (note)
11819		offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11820	      else
11821		offset = 1;
11822
11823	      for (i = regno + offset; i < ourend; i++)
11824		move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11825			     maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11826	    }
11827
11828	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11829	    {
11830	      XEXP (note, 1) = *pnotes;
11831	      *pnotes = note;
11832	    }
11833	  else
11834	    *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11835
11836	  REG_N_DEATHS (regno)++;
11837	}
11838
11839      return;
11840    }
11841
11842  else if (GET_CODE (x) == SET)
11843    {
11844      rtx dest = SET_DEST (x);
11845
11846      move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11847
11848      /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11849	 that accesses one word of a multi-word item, some
11850	 piece of everything register in the expression is used by
11851	 this insn, so remove any old death.  */
11852      /* ??? So why do we test for equality of the sizes?  */
11853
11854      if (GET_CODE (dest) == ZERO_EXTRACT
11855	  || GET_CODE (dest) == STRICT_LOW_PART
11856	  || (GET_CODE (dest) == SUBREG
11857	      && (((GET_MODE_SIZE (GET_MODE (dest))
11858		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11859		  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11860		       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11861	{
11862	  move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11863	  return;
11864	}
11865
11866      /* If this is some other SUBREG, we know it replaces the entire
11867	 value, so use that as the destination.  */
11868      if (GET_CODE (dest) == SUBREG)
11869	dest = SUBREG_REG (dest);
11870
11871      /* If this is a MEM, adjust deaths of anything used in the address.
11872	 For a REG (the only other possibility), the entire value is
11873	 being replaced so the old value is not used in this insn.  */
11874
11875      if (GET_CODE (dest) == MEM)
11876	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11877		     to_insn, pnotes);
11878      return;
11879    }
11880
11881  else if (GET_CODE (x) == CLOBBER)
11882    return;
11883
11884  len = GET_RTX_LENGTH (code);
11885  fmt = GET_RTX_FORMAT (code);
11886
11887  for (i = 0; i < len; i++)
11888    {
11889      if (fmt[i] == 'E')
11890	{
11891	  int j;
11892	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11893	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11894			 to_insn, pnotes);
11895	}
11896      else if (fmt[i] == 'e')
11897	move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11898    }
11899}
11900
11901/* Return 1 if X is the target of a bit-field assignment in BODY, the
11902   pattern of an insn.  X must be a REG.  */
11903
11904static int
11905reg_bitfield_target_p (x, body)
11906     rtx x;
11907     rtx body;
11908{
11909  int i;
11910
11911  if (GET_CODE (body) == SET)
11912    {
11913      rtx dest = SET_DEST (body);
11914      rtx target;
11915      unsigned int regno, tregno, endregno, endtregno;
11916
11917      if (GET_CODE (dest) == ZERO_EXTRACT)
11918	target = XEXP (dest, 0);
11919      else if (GET_CODE (dest) == STRICT_LOW_PART)
11920	target = SUBREG_REG (XEXP (dest, 0));
11921      else
11922	return 0;
11923
11924      if (GET_CODE (target) == SUBREG)
11925	target = SUBREG_REG (target);
11926
11927      if (GET_CODE (target) != REG)
11928	return 0;
11929
11930      tregno = REGNO (target), regno = REGNO (x);
11931      if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11932	return target == x;
11933
11934      endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11935      endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11936
11937      return endregno > tregno && regno < endtregno;
11938    }
11939
11940  else if (GET_CODE (body) == PARALLEL)
11941    for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11942      if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11943	return 1;
11944
11945  return 0;
11946}
11947
11948/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11949   as appropriate.  I3 and I2 are the insns resulting from the combination
11950   insns including FROM (I2 may be zero).
11951
11952   ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11953   not need REG_DEAD notes because they are being substituted for.  This
11954   saves searching in the most common cases.
11955
11956   Each note in the list is either ignored or placed on some insns, depending
11957   on the type of note.  */
11958
11959static void
11960distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11961     rtx notes;
11962     rtx from_insn;
11963     rtx i3, i2;
11964     rtx elim_i2, elim_i1;
11965{
11966  rtx note, next_note;
11967  rtx tem;
11968
11969  for (note = notes; note; note = next_note)
11970    {
11971      rtx place = 0, place2 = 0;
11972
11973      /* If this NOTE references a pseudo register, ensure it references
11974	 the latest copy of that register.  */
11975      if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11976	  && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11977	XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11978
11979      next_note = XEXP (note, 1);
11980      switch (REG_NOTE_KIND (note))
11981	{
11982	case REG_BR_PROB:
11983	case REG_BR_PRED:
11984	case REG_EXEC_COUNT:
11985	  /* Doesn't matter much where we put this, as long as it's somewhere.
11986	     It is preferable to keep these notes on branches, which is most
11987	     likely to be i3.  */
11988	  place = i3;
11989	  break;
11990
11991	case REG_VTABLE_REF:
11992	  /* ??? Should remain with *a particular* memory load.  Given the
11993	     nature of vtable data, the last insn seems relatively safe.  */
11994	  place = i3;
11995	  break;
11996
11997	case REG_NON_LOCAL_GOTO:
11998	  if (GET_CODE (i3) == JUMP_INSN)
11999	    place = i3;
12000	  else if (i2 && GET_CODE (i2) == JUMP_INSN)
12001	    place = i2;
12002	  else
12003	    abort ();
12004	  break;
12005
12006	case REG_EH_REGION:
12007	  /* These notes must remain with the call or trapping instruction.  */
12008	  if (GET_CODE (i3) == CALL_INSN)
12009	    place = i3;
12010	  else if (i2 && GET_CODE (i2) == CALL_INSN)
12011	    place = i2;
12012	  else if (flag_non_call_exceptions)
12013	    {
12014	      if (may_trap_p (i3))
12015		place = i3;
12016	      else if (i2 && may_trap_p (i2))
12017		place = i2;
12018	      /* ??? Otherwise assume we've combined things such that we
12019		 can now prove that the instructions can't trap.  Drop the
12020		 note in this case.  */
12021	    }
12022	  else
12023	    abort ();
12024	  break;
12025
12026	case REG_NORETURN:
12027	case REG_SETJMP:
12028	  /* These notes must remain with the call.  It should not be
12029	     possible for both I2 and I3 to be a call.  */
12030	  if (GET_CODE (i3) == CALL_INSN)
12031	    place = i3;
12032	  else if (i2 && GET_CODE (i2) == CALL_INSN)
12033	    place = i2;
12034	  else
12035	    abort ();
12036	  break;
12037
12038	case REG_UNUSED:
12039	  /* Any clobbers for i3 may still exist, and so we must process
12040	     REG_UNUSED notes from that insn.
12041
12042	     Any clobbers from i2 or i1 can only exist if they were added by
12043	     recog_for_combine.  In that case, recog_for_combine created the
12044	     necessary REG_UNUSED notes.  Trying to keep any original
12045	     REG_UNUSED notes from these insns can cause incorrect output
12046	     if it is for the same register as the original i3 dest.
12047	     In that case, we will notice that the register is set in i3,
12048	     and then add a REG_UNUSED note for the destination of i3, which
12049	     is wrong.  However, it is possible to have REG_UNUSED notes from
12050	     i2 or i1 for register which were both used and clobbered, so
12051	     we keep notes from i2 or i1 if they will turn into REG_DEAD
12052	     notes.  */
12053
12054	  /* If this register is set or clobbered in I3, put the note there
12055	     unless there is one already.  */
12056	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12057	    {
12058	      if (from_insn != i3)
12059		break;
12060
12061	      if (! (GET_CODE (XEXP (note, 0)) == REG
12062		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12063		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12064		place = i3;
12065	    }
12066	  /* Otherwise, if this register is used by I3, then this register
12067	     now dies here, so we must put a REG_DEAD note here unless there
12068	     is one already.  */
12069	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12070		   && ! (GET_CODE (XEXP (note, 0)) == REG
12071			 ? find_regno_note (i3, REG_DEAD,
12072					    REGNO (XEXP (note, 0)))
12073			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12074	    {
12075	      PUT_REG_NOTE_KIND (note, REG_DEAD);
12076	      place = i3;
12077	    }
12078	  break;
12079
12080	case REG_EQUAL:
12081	case REG_EQUIV:
12082	case REG_NOALIAS:
12083	  /* These notes say something about results of an insn.  We can
12084	     only support them if they used to be on I3 in which case they
12085	     remain on I3.  Otherwise they are ignored.
12086
12087	     If the note refers to an expression that is not a constant, we
12088	     must also ignore the note since we cannot tell whether the
12089	     equivalence is still true.  It might be possible to do
12090	     slightly better than this (we only have a problem if I2DEST
12091	     or I1DEST is present in the expression), but it doesn't
12092	     seem worth the trouble.  */
12093
12094	  if (from_insn == i3
12095	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12096	    place = i3;
12097	  break;
12098
12099	case REG_INC:
12100	case REG_NO_CONFLICT:
12101	  /* These notes say something about how a register is used.  They must
12102	     be present on any use of the register in I2 or I3.  */
12103	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12104	    place = i3;
12105
12106	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12107	    {
12108	      if (place)
12109		place2 = i2;
12110	      else
12111		place = i2;
12112	    }
12113	  break;
12114
12115	case REG_LABEL:
12116	  /* This can show up in several ways -- either directly in the
12117	     pattern, or hidden off in the constant pool with (or without?)
12118	     a REG_EQUAL note.  */
12119	  /* ??? Ignore the without-reg_equal-note problem for now.  */
12120	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12121	      || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12122		  && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12123		  && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12124	    place = i3;
12125
12126	  if (i2
12127	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12128		  || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12129		      && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12130		      && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12131	    {
12132	      if (place)
12133		place2 = i2;
12134	      else
12135		place = i2;
12136	    }
12137
12138	  /* Don't attach REG_LABEL note to a JUMP_INSN which has
12139	     JUMP_LABEL already.  Instead, decrement LABEL_NUSES.  */
12140	  if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12141	    {
12142	      if (JUMP_LABEL (place) != XEXP (note, 0))
12143		abort ();
12144	      if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12145		LABEL_NUSES (JUMP_LABEL (place))--;
12146	      place = 0;
12147	    }
12148	  if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12149	    {
12150	      if (JUMP_LABEL (place2) != XEXP (note, 0))
12151		abort ();
12152	      if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12153		LABEL_NUSES (JUMP_LABEL (place2))--;
12154	      place2 = 0;
12155	    }
12156	  break;
12157
12158	case REG_NONNEG:
12159	case REG_WAS_0:
12160	  /* These notes say something about the value of a register prior
12161	     to the execution of an insn.  It is too much trouble to see
12162	     if the note is still correct in all situations.  It is better
12163	     to simply delete it.  */
12164	  break;
12165
12166	case REG_RETVAL:
12167	  /* If the insn previously containing this note still exists,
12168	     put it back where it was.  Otherwise move it to the previous
12169	     insn.  Adjust the corresponding REG_LIBCALL note.  */
12170	  if (GET_CODE (from_insn) != NOTE)
12171	    place = from_insn;
12172	  else
12173	    {
12174	      tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12175	      place = prev_real_insn (from_insn);
12176	      if (tem && place)
12177		XEXP (tem, 0) = place;
12178	      /* If we're deleting the last remaining instruction of a
12179		 libcall sequence, don't add the notes.  */
12180	      else if (XEXP (note, 0) == from_insn)
12181		tem = place = 0;
12182	    }
12183	  break;
12184
12185	case REG_LIBCALL:
12186	  /* This is handled similarly to REG_RETVAL.  */
12187	  if (GET_CODE (from_insn) != NOTE)
12188	    place = from_insn;
12189	  else
12190	    {
12191	      tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12192	      place = next_real_insn (from_insn);
12193	      if (tem && place)
12194		XEXP (tem, 0) = place;
12195	      /* If we're deleting the last remaining instruction of a
12196		 libcall sequence, don't add the notes.  */
12197	      else if (XEXP (note, 0) == from_insn)
12198		tem = place = 0;
12199	    }
12200	  break;
12201
12202	case REG_DEAD:
12203	  /* If the register is used as an input in I3, it dies there.
12204	     Similarly for I2, if it is non-zero and adjacent to I3.
12205
12206	     If the register is not used as an input in either I3 or I2
12207	     and it is not one of the registers we were supposed to eliminate,
12208	     there are two possibilities.  We might have a non-adjacent I2
12209	     or we might have somehow eliminated an additional register
12210	     from a computation.  For example, we might have had A & B where
12211	     we discover that B will always be zero.  In this case we will
12212	     eliminate the reference to A.
12213
12214	     In both cases, we must search to see if we can find a previous
12215	     use of A and put the death note there.  */
12216
12217	  if (from_insn
12218	      && GET_CODE (from_insn) == CALL_INSN
12219	      && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12220	    place = from_insn;
12221	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12222	    place = i3;
12223	  else if (i2 != 0 && next_nonnote_insn (i2) == i3
12224		   && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12225	    place = i2;
12226
12227	  if (rtx_equal_p (XEXP (note, 0), elim_i2)
12228	      || rtx_equal_p (XEXP (note, 0), elim_i1))
12229	    break;
12230
12231	  if (place == 0)
12232	    {
12233	      basic_block bb = BASIC_BLOCK (this_basic_block);
12234
12235	      for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12236		{
12237		  if (! INSN_P (tem))
12238		    {
12239		      if (tem == bb->head)
12240			break;
12241		      continue;
12242		    }
12243
12244		  /* If the register is being set at TEM, see if that is all
12245		     TEM is doing.  If so, delete TEM.  Otherwise, make this
12246		     into a REG_UNUSED note instead.  */
12247		  if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12248		    {
12249		      rtx set = single_set (tem);
12250		      rtx inner_dest = 0;
12251#ifdef HAVE_cc0
12252		      rtx cc0_setter = NULL_RTX;
12253#endif
12254
12255		      if (set != 0)
12256			for (inner_dest = SET_DEST (set);
12257			     (GET_CODE (inner_dest) == STRICT_LOW_PART
12258			      || GET_CODE (inner_dest) == SUBREG
12259			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
12260			     inner_dest = XEXP (inner_dest, 0))
12261			  ;
12262
12263		      /* Verify that it was the set, and not a clobber that
12264			 modified the register.
12265
12266			 CC0 targets must be careful to maintain setter/user
12267			 pairs.  If we cannot delete the setter due to side
12268			 effects, mark the user with an UNUSED note instead
12269			 of deleting it.  */
12270
12271		      if (set != 0 && ! side_effects_p (SET_SRC (set))
12272			  && rtx_equal_p (XEXP (note, 0), inner_dest)
12273#ifdef HAVE_cc0
12274			  && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12275			      || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12276				  && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12277#endif
12278			  )
12279			{
12280			  /* Move the notes and links of TEM elsewhere.
12281			     This might delete other dead insns recursively.
12282			     First set the pattern to something that won't use
12283			     any register.  */
12284
12285			  PATTERN (tem) = pc_rtx;
12286
12287			  distribute_notes (REG_NOTES (tem), tem, tem,
12288					    NULL_RTX, NULL_RTX, NULL_RTX);
12289			  distribute_links (LOG_LINKS (tem));
12290
12291			  PUT_CODE (tem, NOTE);
12292			  NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12293			  NOTE_SOURCE_FILE (tem) = 0;
12294
12295#ifdef HAVE_cc0
12296			  /* Delete the setter too.  */
12297			  if (cc0_setter)
12298			    {
12299			      PATTERN (cc0_setter) = pc_rtx;
12300
12301			      distribute_notes (REG_NOTES (cc0_setter),
12302						cc0_setter, cc0_setter,
12303						NULL_RTX, NULL_RTX, NULL_RTX);
12304			      distribute_links (LOG_LINKS (cc0_setter));
12305
12306			      PUT_CODE (cc0_setter, NOTE);
12307			      NOTE_LINE_NUMBER (cc0_setter)
12308				= NOTE_INSN_DELETED;
12309			      NOTE_SOURCE_FILE (cc0_setter) = 0;
12310			    }
12311#endif
12312			}
12313		      /* If the register is both set and used here, put the
12314			 REG_DEAD note here, but place a REG_UNUSED note
12315			 here too unless there already is one.  */
12316		      else if (reg_referenced_p (XEXP (note, 0),
12317						 PATTERN (tem)))
12318			{
12319			  place = tem;
12320
12321			  if (! find_regno_note (tem, REG_UNUSED,
12322						 REGNO (XEXP (note, 0))))
12323			    REG_NOTES (tem)
12324			      = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12325						   REG_NOTES (tem));
12326			}
12327		      else
12328			{
12329			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
12330
12331			  /*  If there isn't already a REG_UNUSED note, put one
12332			      here.  */
12333			  if (! find_regno_note (tem, REG_UNUSED,
12334						 REGNO (XEXP (note, 0))))
12335			    place = tem;
12336			  break;
12337			}
12338		    }
12339		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12340			   || (GET_CODE (tem) == CALL_INSN
12341			       && find_reg_fusage (tem, USE, XEXP (note, 0))))
12342		    {
12343		      place = tem;
12344
12345		      /* If we are doing a 3->2 combination, and we have a
12346			 register which formerly died in i3 and was not used
12347			 by i2, which now no longer dies in i3 and is used in
12348			 i2 but does not die in i2, and place is between i2
12349			 and i3, then we may need to move a link from place to
12350			 i2.  */
12351		      if (i2 && INSN_UID (place) <= max_uid_cuid
12352			  && INSN_CUID (place) > INSN_CUID (i2)
12353			  && from_insn
12354			  && INSN_CUID (from_insn) > INSN_CUID (i2)
12355			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12356			{
12357			  rtx links = LOG_LINKS (place);
12358			  LOG_LINKS (place) = 0;
12359			  distribute_links (links);
12360			}
12361		      break;
12362		    }
12363
12364		  if (tem == bb->head)
12365		    break;
12366		}
12367
12368	      /* We haven't found an insn for the death note and it
12369		 is still a REG_DEAD note, but we have hit the beginning
12370		 of the block.  If the existing life info says the reg
12371		 was dead, there's nothing left to do.  Otherwise, we'll
12372		 need to do a global life update after combine.  */
12373	      if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12374		  && REGNO_REG_SET_P (bb->global_live_at_start,
12375				      REGNO (XEXP (note, 0))))
12376		{
12377		  SET_BIT (refresh_blocks, this_basic_block);
12378		  need_refresh = 1;
12379		}
12380	    }
12381
12382	  /* If the register is set or already dead at PLACE, we needn't do
12383	     anything with this note if it is still a REG_DEAD note.
12384	     We can here if it is set at all, not if is it totally replace,
12385	     which is what `dead_or_set_p' checks, so also check for it being
12386	     set partially.  */
12387
12388	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
12389	    {
12390	      unsigned int regno = REGNO (XEXP (note, 0));
12391
12392	      /* Similarly, if the instruction on which we want to place
12393		 the note is a noop, we'll need do a global live update
12394		 after we remove them in delete_noop_moves.  */
12395	      if (noop_move_p (place))
12396		{
12397		  SET_BIT (refresh_blocks, this_basic_block);
12398		  need_refresh = 1;
12399		}
12400
12401	      if (dead_or_set_p (place, XEXP (note, 0))
12402		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12403		{
12404		  /* Unless the register previously died in PLACE, clear
12405		     reg_last_death.  [I no longer understand why this is
12406		     being done.] */
12407		  if (reg_last_death[regno] != place)
12408		    reg_last_death[regno] = 0;
12409		  place = 0;
12410		}
12411	      else
12412		reg_last_death[regno] = place;
12413
12414	      /* If this is a death note for a hard reg that is occupying
12415		 multiple registers, ensure that we are still using all
12416		 parts of the object.  If we find a piece of the object
12417		 that is unused, we must arrange for an appropriate REG_DEAD
12418		 note to be added for it.  However, we can't just emit a USE
12419		 and tag the note to it, since the register might actually
12420		 be dead; so we recourse, and the recursive call then finds
12421		 the previous insn that used this register.  */
12422
12423	      if (place && regno < FIRST_PSEUDO_REGISTER
12424		  && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12425		{
12426		  unsigned int endregno
12427		    = regno + HARD_REGNO_NREGS (regno,
12428						GET_MODE (XEXP (note, 0)));
12429		  int all_used = 1;
12430		  unsigned int i;
12431
12432		  for (i = regno; i < endregno; i++)
12433		    if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12434			 && ! find_regno_fusage (place, USE, i))
12435			|| dead_or_set_regno_p (place, i))
12436		      all_used = 0;
12437
12438		  if (! all_used)
12439		    {
12440		      /* Put only REG_DEAD notes for pieces that are
12441			 not already dead or set.  */
12442
12443		      for (i = regno; i < endregno;
12444			   i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12445			{
12446			  rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12447			  basic_block bb = BASIC_BLOCK (this_basic_block);
12448
12449			  if (! dead_or_set_p (place, piece)
12450			      && ! reg_bitfield_target_p (piece,
12451							  PATTERN (place)))
12452			    {
12453			      rtx new_note
12454				= gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12455
12456			      distribute_notes (new_note, place, place,
12457						NULL_RTX, NULL_RTX, NULL_RTX);
12458			    }
12459			  else if (! refers_to_regno_p (i, i + 1,
12460							PATTERN (place), 0)
12461				   && ! find_regno_fusage (place, USE, i))
12462			    for (tem = PREV_INSN (place); ;
12463				 tem = PREV_INSN (tem))
12464			      {
12465				if (! INSN_P (tem))
12466				  {
12467				    if (tem == bb->head)
12468				      {
12469					SET_BIT (refresh_blocks,
12470						 this_basic_block);
12471					need_refresh = 1;
12472					break;
12473				      }
12474				    continue;
12475				  }
12476				if (dead_or_set_p (tem, piece)
12477				    || reg_bitfield_target_p (piece,
12478							      PATTERN (tem)))
12479				  {
12480				    REG_NOTES (tem)
12481				      = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12482							   REG_NOTES (tem));
12483				    break;
12484				  }
12485			      }
12486
12487			}
12488
12489		      place = 0;
12490		    }
12491		}
12492	    }
12493	  break;
12494
12495	default:
12496	  /* Any other notes should not be present at this point in the
12497	     compilation.  */
12498	  abort ();
12499	}
12500
12501      if (place)
12502	{
12503	  XEXP (note, 1) = REG_NOTES (place);
12504	  REG_NOTES (place) = note;
12505	}
12506      else if ((REG_NOTE_KIND (note) == REG_DEAD
12507		|| REG_NOTE_KIND (note) == REG_UNUSED)
12508	       && GET_CODE (XEXP (note, 0)) == REG)
12509	REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12510
12511      if (place2)
12512	{
12513	  if ((REG_NOTE_KIND (note) == REG_DEAD
12514	       || REG_NOTE_KIND (note) == REG_UNUSED)
12515	      && GET_CODE (XEXP (note, 0)) == REG)
12516	    REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12517
12518	  REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12519					       REG_NOTE_KIND (note),
12520					       XEXP (note, 0),
12521					       REG_NOTES (place2));
12522	}
12523    }
12524}
12525
12526/* Similarly to above, distribute the LOG_LINKS that used to be present on
12527   I3, I2, and I1 to new locations.  This is also called in one case to
12528   add a link pointing at I3 when I3's destination is changed.  */
12529
12530static void
12531distribute_links (links)
12532     rtx links;
12533{
12534  rtx link, next_link;
12535
12536  for (link = links; link; link = next_link)
12537    {
12538      rtx place = 0;
12539      rtx insn;
12540      rtx set, reg;
12541
12542      next_link = XEXP (link, 1);
12543
12544      /* If the insn that this link points to is a NOTE or isn't a single
12545	 set, ignore it.  In the latter case, it isn't clear what we
12546	 can do other than ignore the link, since we can't tell which
12547	 register it was for.  Such links wouldn't be used by combine
12548	 anyway.
12549
12550	 It is not possible for the destination of the target of the link to
12551	 have been changed by combine.  The only potential of this is if we
12552	 replace I3, I2, and I1 by I3 and I2.  But in that case the
12553	 destination of I2 also remains unchanged.  */
12554
12555      if (GET_CODE (XEXP (link, 0)) == NOTE
12556	  || (set = single_set (XEXP (link, 0))) == 0)
12557	continue;
12558
12559      reg = SET_DEST (set);
12560      while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12561	     || GET_CODE (reg) == SIGN_EXTRACT
12562	     || GET_CODE (reg) == STRICT_LOW_PART)
12563	reg = XEXP (reg, 0);
12564
12565      /* A LOG_LINK is defined as being placed on the first insn that uses
12566	 a register and points to the insn that sets the register.  Start
12567	 searching at the next insn after the target of the link and stop
12568	 when we reach a set of the register or the end of the basic block.
12569
12570	 Note that this correctly handles the link that used to point from
12571	 I3 to I2.  Also note that not much searching is typically done here
12572	 since most links don't point very far away.  */
12573
12574      for (insn = NEXT_INSN (XEXP (link, 0));
12575	   (insn && (this_basic_block == n_basic_blocks - 1
12576		     || BLOCK_HEAD (this_basic_block + 1) != insn));
12577	   insn = NEXT_INSN (insn))
12578	if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12579	  {
12580	    if (reg_referenced_p (reg, PATTERN (insn)))
12581	      place = insn;
12582	    break;
12583	  }
12584	else if (GET_CODE (insn) == CALL_INSN
12585		 && find_reg_fusage (insn, USE, reg))
12586	  {
12587	    place = insn;
12588	    break;
12589	  }
12590
12591      /* If we found a place to put the link, place it there unless there
12592	 is already a link to the same insn as LINK at that point.  */
12593
12594      if (place)
12595	{
12596	  rtx link2;
12597
12598	  for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12599	    if (XEXP (link2, 0) == XEXP (link, 0))
12600	      break;
12601
12602	  if (link2 == 0)
12603	    {
12604	      XEXP (link, 1) = LOG_LINKS (place);
12605	      LOG_LINKS (place) = link;
12606
12607	      /* Set added_links_insn to the earliest insn we added a
12608		 link to.  */
12609	      if (added_links_insn == 0
12610		  || INSN_CUID (added_links_insn) > INSN_CUID (place))
12611		added_links_insn = place;
12612	    }
12613	}
12614    }
12615}
12616
12617/* Compute INSN_CUID for INSN, which is an insn made by combine.  */
12618
12619static int
12620insn_cuid (insn)
12621     rtx insn;
12622{
12623  while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12624	 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12625    insn = NEXT_INSN (insn);
12626
12627  if (INSN_UID (insn) > max_uid_cuid)
12628    abort ();
12629
12630  return INSN_CUID (insn);
12631}
12632
12633void
12634dump_combine_stats (file)
12635     FILE *file;
12636{
12637  fnotice
12638    (file,
12639     ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12640     combine_attempts, combine_merges, combine_extras, combine_successes);
12641}
12642
12643void
12644dump_combine_total_stats (file)
12645     FILE *file;
12646{
12647  fnotice
12648    (file,
12649     "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12650     total_attempts, total_merges, total_extras, total_successes);
12651}
12652