combine.c revision 52284
1/* Optimize by combining instructions for GNU compiler.
2   Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING.  If not, write to
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA.  */
20
21
22/* This module is essentially the "combiner" phase of the U. of Arizona
23   Portable Optimizer, but redone to work on our list-structured
24   representation for RTL instead of their string representation.
25
26   The LOG_LINKS of each insn identify the most recent assignment
27   to each REG used in the insn.  It is a list of previous insns,
28   each of which contains a SET for a REG that is used in this insn
29   and not used or set in between.  LOG_LINKs never cross basic blocks.
30   They were set up by the preceding pass (lifetime analysis).
31
32   We try to combine each pair of insns joined by a logical link.
33   We also try to combine triples of insns A, B and C when
34   C has a link back to B and B has a link back to A.
35
36   LOG_LINKS does not have links for use of the CC0.  They don't
37   need to, because the insn that sets the CC0 is always immediately
38   before the insn that tests it.  So we always regard a branch
39   insn as having a logical link to the preceding insn.  The same is true
40   for an insn explicitly using CC0.
41
42   We check (with use_crosses_set_p) to avoid combining in such a way
43   as to move a computation to a place where its value would be different.
44
45   Combination is done by mathematically substituting the previous
46   insn(s) values for the regs they set into the expressions in
47   the later insns that refer to these regs.  If the result is a valid insn
48   for our target machine, according to the machine description,
49   we install it, delete the earlier insns, and update the data flow
50   information (LOG_LINKS and REG_NOTES) for what we did.
51
52   There are a few exceptions where the dataflow information created by
53   flow.c aren't completely updated:
54
55   - reg_live_length is not updated
56   - reg_n_refs is not adjusted in the rare case when a register is
57     no longer required in a computation
58   - there are extremely rare cases (see distribute_regnotes) when a
59     REG_DEAD note is lost
60   - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61     removed because there is no way to know which register it was
62     linking
63
64   To simplify substitution, we combine only when the earlier insn(s)
65   consist of only a single assignment.  To simplify updating afterward,
66   we never combine when a subroutine call appears in the middle.
67
68   Since we do not represent assignments to CC0 explicitly except when that
69   is all an insn does, there is no LOG_LINKS entry in an insn that uses
70   the condition code for the insn that set the condition code.
71   Fortunately, these two insns must be consecutive.
72   Therefore, every JUMP_INSN is taken to have an implicit logical link
73   to the preceding insn.  This is not quite right, since non-jumps can
74   also use the condition code; but in practice such insns would not
75   combine anyway.  */
76
77#include "config.h"
78#include "system.h"
79#include "rtl.h" /* stdio.h must precede rtl.h for FFS.  */
80#include "flags.h"
81#include "regs.h"
82#include "hard-reg-set.h"
83#include "basic-block.h"
84#include "insn-config.h"
85/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
86#include "expr.h"
87#include "insn-flags.h"
88#include "insn-codes.h"
89#include "insn-attr.h"
90#include "recog.h"
91#include "real.h"
92#include "toplev.h"
93
94/* It is not safe to use ordinary gen_lowpart in combine.
95   Use gen_lowpart_for_combine instead.  See comments there.  */
96#define gen_lowpart dont_use_gen_lowpart_you_dummy
97
98/* Number of attempts to combine instructions in this function.  */
99
100static int combine_attempts;
101
102/* Number of attempts that got as far as substitution in this function.  */
103
104static int combine_merges;
105
106/* Number of instructions combined with added SETs in this function.  */
107
108static int combine_extras;
109
110/* Number of instructions combined in this function.  */
111
112static int combine_successes;
113
114/* Totals over entire compilation.  */
115
116static int total_attempts, total_merges, total_extras, total_successes;
117
118/* Define a default value for REVERSIBLE_CC_MODE.
119   We can never assume that a condition code mode is safe to reverse unless
120   the md tells us so.  */
121#ifndef REVERSIBLE_CC_MODE
122#define REVERSIBLE_CC_MODE(MODE) 0
123#endif
124
125/* Vector mapping INSN_UIDs to cuids.
126   The cuids are like uids but increase monotonically always.
127   Combine always uses cuids so that it can compare them.
128   But actually renumbering the uids, which we used to do,
129   proves to be a bad idea because it makes it hard to compare
130   the dumps produced by earlier passes with those from later passes.  */
131
132static int *uid_cuid;
133static int max_uid_cuid;
134
135/* Get the cuid of an insn.  */
136
137#define INSN_CUID(INSN) \
138(INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
139
140/* Maximum register number, which is the size of the tables below.  */
141
142static int combine_max_regno;
143
144/* Record last point of death of (hard or pseudo) register n.  */
145
146static rtx *reg_last_death;
147
148/* Record last point of modification of (hard or pseudo) register n.  */
149
150static rtx *reg_last_set;
151
152/* Record the cuid of the last insn that invalidated memory
153   (anything that writes memory, and subroutine calls, but not pushes).  */
154
155static int mem_last_set;
156
157/* Record the cuid of the last CALL_INSN
158   so we can tell whether a potential combination crosses any calls.  */
159
160static int last_call_cuid;
161
162/* When `subst' is called, this is the insn that is being modified
163   (by combining in a previous insn).  The PATTERN of this insn
164   is still the old pattern partially modified and it should not be
165   looked at, but this may be used to examine the successors of the insn
166   to judge whether a simplification is valid.  */
167
168static rtx subst_insn;
169
170/* This is an insn that belongs before subst_insn, but is not currently
171   on the insn chain.  */
172
173static rtx subst_prev_insn;
174
175/* This is the lowest CUID that `subst' is currently dealing with.
176   get_last_value will not return a value if the register was set at or
177   after this CUID.  If not for this mechanism, we could get confused if
178   I2 or I1 in try_combine were an insn that used the old value of a register
179   to obtain a new value.  In that case, we might erroneously get the
180   new value of the register when we wanted the old one.  */
181
182static int subst_low_cuid;
183
184/* This contains any hard registers that are used in newpat; reg_dead_at_p
185   must consider all these registers to be always live.  */
186
187static HARD_REG_SET newpat_used_regs;
188
189/* This is an insn to which a LOG_LINKS entry has been added.  If this
190   insn is the earlier than I2 or I3, combine should rescan starting at
191   that location.  */
192
193static rtx added_links_insn;
194
195/* Basic block number of the block in which we are performing combines.  */
196static int this_basic_block;
197
198/* The next group of arrays allows the recording of the last value assigned
199   to (hard or pseudo) register n.  We use this information to see if a
200   operation being processed is redundant given a prior operation performed
201   on the register.  For example, an `and' with a constant is redundant if
202   all the zero bits are already known to be turned off.
203
204   We use an approach similar to that used by cse, but change it in the
205   following ways:
206
207   (1) We do not want to reinitialize at each label.
208   (2) It is useful, but not critical, to know the actual value assigned
209       to a register.  Often just its form is helpful.
210
211   Therefore, we maintain the following arrays:
212
213   reg_last_set_value		the last value assigned
214   reg_last_set_label		records the value of label_tick when the
215				register was assigned
216   reg_last_set_table_tick	records the value of label_tick when a
217				value using the register is assigned
218   reg_last_set_invalid		set to non-zero when it is not valid
219				to use the value of this register in some
220				register's value
221
222   To understand the usage of these tables, it is important to understand
223   the distinction between the value in reg_last_set_value being valid
224   and the register being validly contained in some other expression in the
225   table.
226
227   Entry I in reg_last_set_value is valid if it is non-zero, and either
228   reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
229
230   Register I may validly appear in any expression returned for the value
231   of another register if reg_n_sets[i] is 1.  It may also appear in the
232   value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
233   reg_last_set_invalid[j] is zero.
234
235   If an expression is found in the table containing a register which may
236   not validly appear in an expression, the register is replaced by
237   something that won't match, (clobber (const_int 0)).
238
239   reg_last_set_invalid[i] is set non-zero when register I is being assigned
240   to and reg_last_set_table_tick[i] == label_tick.  */
241
242/* Record last value assigned to (hard or pseudo) register n.  */
243
244static rtx *reg_last_set_value;
245
246/* Record the value of label_tick when the value for register n is placed in
247   reg_last_set_value[n].  */
248
249static int *reg_last_set_label;
250
251/* Record the value of label_tick when an expression involving register n
252   is placed in reg_last_set_value.  */
253
254static int *reg_last_set_table_tick;
255
256/* Set non-zero if references to register n in expressions should not be
257   used.  */
258
259static char *reg_last_set_invalid;
260
261/* Incremented for each label.  */
262
263static int label_tick;
264
265/* Some registers that are set more than once and used in more than one
266   basic block are nevertheless always set in similar ways.  For example,
267   a QImode register may be loaded from memory in two places on a machine
268   where byte loads zero extend.
269
270   We record in the following array what we know about the nonzero
271   bits of a register, specifically which bits are known to be zero.
272
273   If an entry is zero, it means that we don't know anything special.  */
274
275static unsigned HOST_WIDE_INT *reg_nonzero_bits;
276
277/* Mode used to compute significance in reg_nonzero_bits.  It is the largest
278   integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
279
280static enum machine_mode nonzero_bits_mode;
281
282/* Nonzero if we know that a register has some leading bits that are always
283   equal to the sign bit.  */
284
285static char *reg_sign_bit_copies;
286
287/* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
288   It is zero while computing them and after combine has completed.  This
289   former test prevents propagating values based on previously set values,
290   which can be incorrect if a variable is modified in a loop.  */
291
292static int nonzero_sign_valid;
293
294/* These arrays are maintained in parallel with reg_last_set_value
295   and are used to store the mode in which the register was last set,
296   the bits that were known to be zero when it was last set, and the
297   number of sign bits copies it was known to have when it was last set.  */
298
299static enum machine_mode *reg_last_set_mode;
300static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
301static char *reg_last_set_sign_bit_copies;
302
303/* Record one modification to rtl structure
304   to be undone by storing old_contents into *where.
305   is_int is 1 if the contents are an int.  */
306
307struct undo
308{
309  struct undo *next;
310  int is_int;
311  union {rtx r; int i;} old_contents;
312  union {rtx *r; int *i;} where;
313};
314
315/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
316   num_undo says how many are currently recorded.
317
318   storage is nonzero if we must undo the allocation of new storage.
319   The value of storage is what to pass to obfree.
320
321   other_insn is nonzero if we have modified some other insn in the process
322   of working on subst_insn.  It must be verified too.
323
324   previous_undos is the value of undobuf.undos when we started processing
325   this substitution.  This will prevent gen_rtx_combine from re-used a piece
326   from the previous expression.  Doing so can produce circular rtl
327   structures.  */
328
329struct undobuf
330{
331  char *storage;
332  struct undo *undos;
333  struct undo *frees;
334  struct undo *previous_undos;
335  rtx other_insn;
336};
337
338static struct undobuf undobuf;
339
340/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
341   insn.  The substitution can be undone by undo_all.  If INTO is already
342   set to NEWVAL, do not record this change.  Because computing NEWVAL might
343   also call SUBST, we have to compute it before we put anything into
344   the undo table.  */
345
346#define SUBST(INTO, NEWVAL)  \
347 do { rtx _new = (NEWVAL);					\
348      struct undo *_buf;					\
349								\
350      if (undobuf.frees)					\
351	_buf = undobuf.frees, undobuf.frees = _buf->next;	\
352      else							\
353	_buf = (struct undo *) xmalloc (sizeof (struct undo));	\
354								\
355      _buf->is_int = 0;						\
356      _buf->where.r = &INTO;					\
357      _buf->old_contents.r = INTO;				\
358      INTO = _new;						\
359      if (_buf->old_contents.r == INTO)				\
360	_buf->next = undobuf.frees, undobuf.frees = _buf;	\
361      else							\
362	_buf->next = undobuf.undos, undobuf.undos = _buf;	\
363    } while (0)
364
365/* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
366   for the value of a HOST_WIDE_INT value (including CONST_INT) is
367   not safe.  */
368
369#define SUBST_INT(INTO, NEWVAL)  \
370 do { struct undo *_buf;					\
371								\
372      if (undobuf.frees)					\
373	_buf = undobuf.frees, undobuf.frees = _buf->next;	\
374      else							\
375	_buf = (struct undo *) xmalloc (sizeof (struct undo));	\
376								\
377      _buf->is_int = 1;						\
378      _buf->where.i = (int *) &INTO;				\
379      _buf->old_contents.i = INTO;				\
380      INTO = NEWVAL;						\
381      if (_buf->old_contents.i == INTO)				\
382	_buf->next = undobuf.frees, undobuf.frees = _buf;	\
383      else							\
384	_buf->next = undobuf.undos, undobuf.undos = _buf;	\
385     } while (0)
386
387/* Number of times the pseudo being substituted for
388   was found and replaced.  */
389
390static int n_occurrences;
391
392static void init_reg_last_arrays	PROTO((void));
393static void setup_incoming_promotions   PROTO((void));
394static void set_nonzero_bits_and_sign_copies  PROTO((rtx, rtx));
395static int can_combine_p	PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
396static int sets_function_arg_p	PROTO((rtx));
397static int combinable_i3pat	PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
398static rtx try_combine		PROTO((rtx, rtx, rtx));
399static void undo_all		PROTO((void));
400static rtx *find_split_point	PROTO((rtx *, rtx));
401static rtx subst		PROTO((rtx, rtx, rtx, int, int));
402static rtx simplify_rtx		PROTO((rtx, enum machine_mode, int, int));
403static rtx simplify_if_then_else  PROTO((rtx));
404static rtx simplify_set		PROTO((rtx));
405static rtx simplify_logical	PROTO((rtx, int));
406static rtx expand_compound_operation  PROTO((rtx));
407static rtx expand_field_assignment  PROTO((rtx));
408static rtx make_extraction	PROTO((enum machine_mode, rtx, int, rtx, int,
409				       int, int, int));
410static rtx extract_left_shift	PROTO((rtx, int));
411static rtx make_compound_operation  PROTO((rtx, enum rtx_code));
412static int get_pos_from_mask	PROTO((unsigned HOST_WIDE_INT, int *));
413static rtx force_to_mode	PROTO((rtx, enum machine_mode,
414				       unsigned HOST_WIDE_INT, rtx, int));
415static rtx if_then_else_cond	PROTO((rtx, rtx *, rtx *));
416static rtx known_cond		PROTO((rtx, enum rtx_code, rtx, rtx));
417static int rtx_equal_for_field_assignment_p PROTO((rtx, rtx));
418static rtx make_field_assignment  PROTO((rtx));
419static rtx apply_distributive_law  PROTO((rtx));
420static rtx simplify_and_const_int  PROTO((rtx, enum machine_mode, rtx,
421					  unsigned HOST_WIDE_INT));
422static unsigned HOST_WIDE_INT nonzero_bits  PROTO((rtx, enum machine_mode));
423static int num_sign_bit_copies  PROTO((rtx, enum machine_mode));
424static int merge_outer_ops	PROTO((enum rtx_code *, HOST_WIDE_INT *,
425				       enum rtx_code, HOST_WIDE_INT,
426				       enum machine_mode, int *));
427static rtx simplify_shift_const	PROTO((rtx, enum rtx_code, enum machine_mode,
428				       rtx, int));
429static int recog_for_combine	PROTO((rtx *, rtx, rtx *));
430static rtx gen_lowpart_for_combine  PROTO((enum machine_mode, rtx));
431static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
432				  ...));
433static rtx gen_binary		PROTO((enum rtx_code, enum machine_mode,
434				       rtx, rtx));
435static rtx gen_unary		PROTO((enum rtx_code, enum machine_mode,
436				       enum machine_mode, rtx));
437static enum rtx_code simplify_comparison  PROTO((enum rtx_code, rtx *, rtx *));
438static int reversible_comparison_p  PROTO((rtx));
439static void update_table_tick	PROTO((rtx));
440static void record_value_for_reg  PROTO((rtx, rtx, rtx));
441static void record_dead_and_set_regs_1  PROTO((rtx, rtx));
442static void record_dead_and_set_regs  PROTO((rtx));
443static int get_last_value_validate  PROTO((rtx *, rtx, int, int));
444static rtx get_last_value	PROTO((rtx));
445static int use_crosses_set_p	PROTO((rtx, int));
446static void reg_dead_at_p_1	PROTO((rtx, rtx));
447static int reg_dead_at_p	PROTO((rtx, rtx));
448static void move_deaths		PROTO((rtx, rtx, int, rtx, rtx *));
449static int reg_bitfield_target_p  PROTO((rtx, rtx));
450static void distribute_notes	PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
451static void distribute_links	PROTO((rtx));
452static void mark_used_regs_combine PROTO((rtx));
453static int insn_cuid		PROTO((rtx));
454
455/* Main entry point for combiner.  F is the first insn of the function.
456   NREGS is the first unused pseudo-reg number.  */
457
458void
459combine_instructions (f, nregs)
460     rtx f;
461     int nregs;
462{
463  register rtx insn, next;
464#ifdef HAVE_cc0
465  register rtx prev;
466#endif
467  register int i;
468  register rtx links, nextlinks;
469
470  combine_attempts = 0;
471  combine_merges = 0;
472  combine_extras = 0;
473  combine_successes = 0;
474  undobuf.undos = undobuf.previous_undos = 0;
475
476  combine_max_regno = nregs;
477
478  reg_nonzero_bits
479    = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
480  reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
481
482  bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
483  bzero (reg_sign_bit_copies, nregs * sizeof (char));
484
485  reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
486  reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
487  reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
488  reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
489  reg_last_set_label = (int *) alloca (nregs * sizeof (int));
490  reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
491  reg_last_set_mode
492    = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
493  reg_last_set_nonzero_bits
494    = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
495  reg_last_set_sign_bit_copies
496    = (char *) alloca (nregs * sizeof (char));
497
498  init_reg_last_arrays ();
499
500  init_recog_no_volatile ();
501
502  /* Compute maximum uid value so uid_cuid can be allocated.  */
503
504  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
505    if (INSN_UID (insn) > i)
506      i = INSN_UID (insn);
507
508  uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
509  max_uid_cuid = i;
510
511  nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
512
513  /* Don't use reg_nonzero_bits when computing it.  This can cause problems
514     when, for example, we have j <<= 1 in a loop.  */
515
516  nonzero_sign_valid = 0;
517
518  /* Compute the mapping from uids to cuids.
519     Cuids are numbers assigned to insns, like uids,
520     except that cuids increase monotonically through the code.
521
522     Scan all SETs and see if we can deduce anything about what
523     bits are known to be zero for some registers and how many copies
524     of the sign bit are known to exist for those registers.
525
526     Also set any known values so that we can use it while searching
527     for what bits are known to be set.  */
528
529  label_tick = 1;
530
531  /* We need to initialize it here, because record_dead_and_set_regs may call
532     get_last_value.  */
533  subst_prev_insn = NULL_RTX;
534
535  setup_incoming_promotions ();
536
537  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
538    {
539      uid_cuid[INSN_UID (insn)] = ++i;
540      subst_low_cuid = i;
541      subst_insn = insn;
542
543      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
544	{
545	  note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
546	  record_dead_and_set_regs (insn);
547
548#ifdef AUTO_INC_DEC
549	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
550	    if (REG_NOTE_KIND (links) == REG_INC)
551	      set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX);
552#endif
553	}
554
555      if (GET_CODE (insn) == CODE_LABEL)
556	label_tick++;
557    }
558
559  nonzero_sign_valid = 1;
560
561  /* Now scan all the insns in forward order.  */
562
563  this_basic_block = -1;
564  label_tick = 1;
565  last_call_cuid = 0;
566  mem_last_set = 0;
567  init_reg_last_arrays ();
568  setup_incoming_promotions ();
569
570  for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
571    {
572      next = 0;
573
574      /* If INSN starts a new basic block, update our basic block number.  */
575      if (this_basic_block + 1 < n_basic_blocks
576	  && BLOCK_HEAD (this_basic_block + 1) == insn)
577	this_basic_block++;
578
579      if (GET_CODE (insn) == CODE_LABEL)
580	label_tick++;
581
582      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
583	{
584	  /* Try this insn with each insn it links back to.  */
585
586	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
587	    if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
588	      goto retry;
589
590	  /* Try each sequence of three linked insns ending with this one.  */
591
592	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
593	    for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
594		 nextlinks = XEXP (nextlinks, 1))
595	      if ((next = try_combine (insn, XEXP (links, 0),
596				       XEXP (nextlinks, 0))) != 0)
597		goto retry;
598
599#ifdef HAVE_cc0
600	  /* Try to combine a jump insn that uses CC0
601	     with a preceding insn that sets CC0, and maybe with its
602	     logical predecessor as well.
603	     This is how we make decrement-and-branch insns.
604	     We need this special code because data flow connections
605	     via CC0 do not get entered in LOG_LINKS.  */
606
607	  if (GET_CODE (insn) == JUMP_INSN
608	      && (prev = prev_nonnote_insn (insn)) != 0
609	      && GET_CODE (prev) == INSN
610	      && sets_cc0_p (PATTERN (prev)))
611	    {
612	      if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
613		goto retry;
614
615	      for (nextlinks = LOG_LINKS (prev); nextlinks;
616		   nextlinks = XEXP (nextlinks, 1))
617		if ((next = try_combine (insn, prev,
618					 XEXP (nextlinks, 0))) != 0)
619		  goto retry;
620	    }
621
622	  /* Do the same for an insn that explicitly references CC0.  */
623	  if (GET_CODE (insn) == INSN
624	      && (prev = prev_nonnote_insn (insn)) != 0
625	      && GET_CODE (prev) == INSN
626	      && sets_cc0_p (PATTERN (prev))
627	      && GET_CODE (PATTERN (insn)) == SET
628	      && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
629	    {
630	      if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
631		goto retry;
632
633	      for (nextlinks = LOG_LINKS (prev); nextlinks;
634		   nextlinks = XEXP (nextlinks, 1))
635		if ((next = try_combine (insn, prev,
636					 XEXP (nextlinks, 0))) != 0)
637		  goto retry;
638	    }
639
640	  /* Finally, see if any of the insns that this insn links to
641	     explicitly references CC0.  If so, try this insn, that insn,
642	     and its predecessor if it sets CC0.  */
643	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
644	    if (GET_CODE (XEXP (links, 0)) == INSN
645		&& GET_CODE (PATTERN (XEXP (links, 0))) == SET
646		&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
647		&& (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
648		&& GET_CODE (prev) == INSN
649		&& sets_cc0_p (PATTERN (prev))
650		&& (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
651	      goto retry;
652#endif
653
654	  /* Try combining an insn with two different insns whose results it
655	     uses.  */
656	  for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
657	    for (nextlinks = XEXP (links, 1); nextlinks;
658		 nextlinks = XEXP (nextlinks, 1))
659	      if ((next = try_combine (insn, XEXP (links, 0),
660				       XEXP (nextlinks, 0))) != 0)
661		goto retry;
662
663	  if (GET_CODE (insn) != NOTE)
664	    record_dead_and_set_regs (insn);
665
666	retry:
667	  ;
668	}
669    }
670
671  total_attempts += combine_attempts;
672  total_merges += combine_merges;
673  total_extras += combine_extras;
674  total_successes += combine_successes;
675
676  nonzero_sign_valid = 0;
677
678  /* Make recognizer allow volatile MEMs again.  */
679  init_recog ();
680}
681
682/* Wipe the reg_last_xxx arrays in preparation for another pass.  */
683
684static void
685init_reg_last_arrays ()
686{
687  int nregs = combine_max_regno;
688
689  bzero ((char *) reg_last_death, nregs * sizeof (rtx));
690  bzero ((char *) reg_last_set, nregs * sizeof (rtx));
691  bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
692  bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
693  bzero ((char *) reg_last_set_label, nregs * sizeof (int));
694  bzero (reg_last_set_invalid, nregs * sizeof (char));
695  bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
696  bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
697  bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
698}
699
700/* Set up any promoted values for incoming argument registers.  */
701
702static void
703setup_incoming_promotions ()
704{
705#ifdef PROMOTE_FUNCTION_ARGS
706  int regno;
707  rtx reg;
708  enum machine_mode mode;
709  int unsignedp;
710  rtx first = get_insns ();
711
712  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
713    if (FUNCTION_ARG_REGNO_P (regno)
714	&& (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
715      {
716	record_value_for_reg
717	  (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
718				       : SIGN_EXTEND),
719				      GET_MODE (reg),
720				      gen_rtx_CLOBBER (mode, const0_rtx)));
721      }
722#endif
723}
724
725/* Called via note_stores.  If X is a pseudo that is narrower than
726   HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
727
728   If we are setting only a portion of X and we can't figure out what
729   portion, assume all bits will be used since we don't know what will
730   be happening.
731
732   Similarly, set how many bits of X are known to be copies of the sign bit
733   at all locations in the function.  This is the smallest number implied
734   by any set of X.  */
735
736static void
737set_nonzero_bits_and_sign_copies (x, set)
738     rtx x;
739     rtx set;
740{
741  int num;
742
743  if (GET_CODE (x) == REG
744      && REGNO (x) >= FIRST_PSEUDO_REGISTER
745      /* If this register is undefined at the start of the file, we can't
746	 say what its contents were.  */
747      && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
748      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
749    {
750      if (set == 0 || GET_CODE (set) == CLOBBER)
751	{
752	  reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
753	  reg_sign_bit_copies[REGNO (x)] = 1;
754	  return;
755	}
756
757      /* If this is a complex assignment, see if we can convert it into a
758	 simple assignment.  */
759      set = expand_field_assignment (set);
760
761      /* If this is a simple assignment, or we have a paradoxical SUBREG,
762	 set what we know about X.  */
763
764      if (SET_DEST (set) == x
765	  || (GET_CODE (SET_DEST (set)) == SUBREG
766	      && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
767		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
768	      && SUBREG_REG (SET_DEST (set)) == x))
769	{
770	  rtx src = SET_SRC (set);
771
772#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
773	  /* If X is narrower than a word and SRC is a non-negative
774	     constant that would appear negative in the mode of X,
775	     sign-extend it for use in reg_nonzero_bits because some
776	     machines (maybe most) will actually do the sign-extension
777	     and this is the conservative approach.
778
779	     ??? For 2.5, try to tighten up the MD files in this regard
780	     instead of this kludge.  */
781
782	  if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
783	      && GET_CODE (src) == CONST_INT
784	      && INTVAL (src) > 0
785	      && 0 != (INTVAL (src)
786		       & ((HOST_WIDE_INT) 1
787			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
788	    src = GEN_INT (INTVAL (src)
789			   | ((HOST_WIDE_INT) (-1)
790			      << GET_MODE_BITSIZE (GET_MODE (x))));
791#endif
792
793	  reg_nonzero_bits[REGNO (x)]
794	    |= nonzero_bits (src, nonzero_bits_mode);
795	  num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
796	  if (reg_sign_bit_copies[REGNO (x)] == 0
797	      || reg_sign_bit_copies[REGNO (x)] > num)
798	    reg_sign_bit_copies[REGNO (x)] = num;
799	}
800      else
801	{
802	  reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
803	  reg_sign_bit_copies[REGNO (x)] = 1;
804	}
805    }
806}
807
808/* See if INSN can be combined into I3.  PRED and SUCC are optionally
809   insns that were previously combined into I3 or that will be combined
810   into the merger of INSN and I3.
811
812   Return 0 if the combination is not allowed for any reason.
813
814   If the combination is allowed, *PDEST will be set to the single
815   destination of INSN and *PSRC to the single source, and this function
816   will return 1.  */
817
818static int
819can_combine_p (insn, i3, pred, succ, pdest, psrc)
820     rtx insn;
821     rtx i3;
822     rtx pred ATTRIBUTE_UNUSED;
823     rtx succ;
824     rtx *pdest, *psrc;
825{
826  int i;
827  rtx set = 0, src, dest;
828  rtx p;
829#ifdef AUTO_INC_DEC
830  rtx link;
831#endif
832  int all_adjacent = (succ ? (next_active_insn (insn) == succ
833			      && next_active_insn (succ) == i3)
834		      : next_active_insn (insn) == i3);
835
836  /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
837     or a PARALLEL consisting of such a SET and CLOBBERs.
838
839     If INSN has CLOBBER parallel parts, ignore them for our processing.
840     By definition, these happen during the execution of the insn.  When it
841     is merged with another insn, all bets are off.  If they are, in fact,
842     needed and aren't also supplied in I3, they may be added by
843     recog_for_combine.  Otherwise, it won't match.
844
845     We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
846     note.
847
848     Get the source and destination of INSN.  If more than one, can't
849     combine.  */
850
851  if (GET_CODE (PATTERN (insn)) == SET)
852    set = PATTERN (insn);
853  else if (GET_CODE (PATTERN (insn)) == PARALLEL
854	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
855    {
856      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
857	{
858	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
859
860	  switch (GET_CODE (elt))
861	    {
862	    /* This is important to combine floating point insns
863	       for the SH4 port.  */
864	    case USE:
865	      /* Combining an isolated USE doesn't make sense.
866		 We depend here on combinable_i3_pat to reject them.  */
867	      /* The code below this loop only verifies that the inputs of
868		 the SET in INSN do not change.  We call reg_set_between_p
869		 to verify that the REG in the USE does not change betweeen
870		 I3 and INSN.
871		 If the USE in INSN was for a pseudo register, the matching
872		 insn pattern will likely match any register; combining this
873		 with any other USE would only be safe if we knew that the
874		 used registers have identical values, or if there was
875		 something to tell them apart, e.g. different modes.  For
876		 now, we forgo such compilcated tests and simply disallow
877		 combining of USES of pseudo registers with any other USE.  */
878	      if (GET_CODE (XEXP (elt, 0)) == REG
879		  && GET_CODE (PATTERN (i3)) == PARALLEL)
880		{
881		  rtx i3pat = PATTERN (i3);
882		  int i = XVECLEN (i3pat, 0) - 1;
883		  int regno = REGNO (XEXP (elt, 0));
884		  do
885		    {
886		      rtx i3elt = XVECEXP (i3pat, 0, i);
887		      if (GET_CODE (i3elt) == USE
888			  && GET_CODE (XEXP (i3elt, 0)) == REG
889			  && (REGNO (XEXP (i3elt, 0)) == regno
890			      ? reg_set_between_p (XEXP (elt, 0),
891						   PREV_INSN (insn), i3)
892			      : regno >= FIRST_PSEUDO_REGISTER))
893			return 0;
894		    }
895		  while (--i >= 0);
896		}
897	      break;
898
899	      /* We can ignore CLOBBERs.  */
900	    case CLOBBER:
901	      break;
902
903	    case SET:
904	      /* Ignore SETs whose result isn't used but not those that
905		 have side-effects.  */
906	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
907		  && ! side_effects_p (elt))
908		break;
909
910	      /* If we have already found a SET, this is a second one and
911		 so we cannot combine with this insn.  */
912	      if (set)
913		return 0;
914
915	      set = elt;
916	      break;
917
918	    default:
919	      /* Anything else means we can't combine.  */
920	      return 0;
921	    }
922	}
923
924      if (set == 0
925	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
926	     so don't do anything with it.  */
927	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
928	return 0;
929    }
930  else
931    return 0;
932
933  if (set == 0)
934    return 0;
935
936  set = expand_field_assignment (set);
937  src = SET_SRC (set), dest = SET_DEST (set);
938
939  /* Don't eliminate a store in the stack pointer.  */
940  if (dest == stack_pointer_rtx
941      /* If we couldn't eliminate a field assignment, we can't combine.  */
942      || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
943      /* Don't combine with an insn that sets a register to itself if it has
944	 a REG_EQUAL note.  This may be part of a REG_NO_CONFLICT sequence.  */
945      || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
946      /* Can't merge a function call.  */
947      || GET_CODE (src) == CALL
948      /* Don't eliminate a function call argument.  */
949      || (GET_CODE (i3) == CALL_INSN
950	  && (find_reg_fusage (i3, USE, dest)
951	      || (GET_CODE (dest) == REG
952		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
953		  && global_regs[REGNO (dest)])))
954      /* Don't substitute into an incremented register.  */
955      || FIND_REG_INC_NOTE (i3, dest)
956      || (succ && FIND_REG_INC_NOTE (succ, dest))
957#if 0
958      /* Don't combine the end of a libcall into anything.  */
959      /* ??? This gives worse code, and appears to be unnecessary, since no
960	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  Local-alloc does
961	 use REG_RETVAL notes for noconflict blocks, but other code here
962	 makes sure that those insns don't disappear.  */
963      || find_reg_note (insn, REG_RETVAL, NULL_RTX)
964#endif
965      /* Make sure that DEST is not used after SUCC but before I3.  */
966      || (succ && ! all_adjacent
967	  && reg_used_between_p (dest, succ, i3))
968      /* Make sure that the value that is to be substituted for the register
969	 does not use any registers whose values alter in between.  However,
970	 If the insns are adjacent, a use can't cross a set even though we
971	 think it might (this can happen for a sequence of insns each setting
972	 the same destination; reg_last_set of that register might point to
973	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
974	 equivalent to the memory so the substitution is valid even if there
975	 are intervening stores.  Also, don't move a volatile asm or
976	 UNSPEC_VOLATILE across any other insns.  */
977      || (! all_adjacent
978	  && (((GET_CODE (src) != MEM
979		|| ! find_reg_note (insn, REG_EQUIV, src))
980	       && use_crosses_set_p (src, INSN_CUID (insn)))
981	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
982	      || GET_CODE (src) == UNSPEC_VOLATILE))
983      /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
984	 better register allocation by not doing the combine.  */
985      || find_reg_note (i3, REG_NO_CONFLICT, dest)
986      || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
987      /* Don't combine across a CALL_INSN, because that would possibly
988	 change whether the life span of some REGs crosses calls or not,
989	 and it is a pain to update that information.
990	 Exception: if source is a constant, moving it later can't hurt.
991	 Accept that special case, because it helps -fforce-addr a lot.  */
992      || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
993    return 0;
994
995  /* DEST must either be a REG or CC0.  */
996  if (GET_CODE (dest) == REG)
997    {
998      /* If register alignment is being enforced for multi-word items in all
999	 cases except for parameters, it is possible to have a register copy
1000	 insn referencing a hard register that is not allowed to contain the
1001	 mode being copied and which would not be valid as an operand of most
1002	 insns.  Eliminate this problem by not combining with such an insn.
1003
1004	 Also, on some machines we don't want to extend the life of a hard
1005	 register.
1006
1007	 This is the same test done in can_combine except that we don't test
1008	 if SRC is a CALL operation to permit a hard register with
1009	 SMALL_REGISTER_CLASSES, and that we have to take all_adjacent
1010	 into account.  */
1011
1012      if (GET_CODE (src) == REG
1013	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1014	       && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1015	      /* Don't extend the life of a hard register unless it is
1016		 user variable (if we have few registers) or it can't
1017		 fit into the desired register (meaning something special
1018		 is going on).
1019		 Also avoid substituting a return register into I3, because
1020		 reload can't handle a conflict with constraints of other
1021		 inputs.  */
1022	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
1023		  && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
1024		      || (SMALL_REGISTER_CLASSES
1025			  && ((! all_adjacent && ! REG_USERVAR_P (src))
1026			      || (FUNCTION_VALUE_REGNO_P (REGNO (src))
1027				  && ! REG_USERVAR_P (src))))))))
1028	return 0;
1029    }
1030  else if (GET_CODE (dest) != CC0)
1031    return 0;
1032
1033  /* Don't substitute for a register intended as a clobberable operand.
1034     Similarly, don't substitute an expression containing a register that
1035     will be clobbered in I3.  */
1036  if (GET_CODE (PATTERN (i3)) == PARALLEL)
1037    for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1038      if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1039	  && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1040				       src)
1041	      || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1042	return 0;
1043
1044  /* If INSN contains anything volatile, or is an `asm' (whether volatile
1045     or not), reject, unless nothing volatile comes between it and I3 */
1046
1047  if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1048    {
1049      /* Make sure succ doesn't contain a volatile reference.  */
1050      if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1051        return 0;
1052
1053      for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1054        if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1055  	  && p != succ && volatile_refs_p (PATTERN (p)))
1056  	return 0;
1057    }
1058
1059  /* If INSN is an asm, and DEST is a hard register, reject, since it has
1060     to be an explicit register variable, and was chosen for a reason.  */
1061
1062  if (GET_CODE (src) == ASM_OPERANDS
1063      && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1064    return 0;
1065
1066  /* If there are any volatile insns between INSN and I3, reject, because
1067     they might affect machine state.  */
1068
1069  for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1070    if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1071	&& p != succ && volatile_insn_p (PATTERN (p)))
1072      return 0;
1073
1074  /* If INSN or I2 contains an autoincrement or autodecrement,
1075     make sure that register is not used between there and I3,
1076     and not already used in I3 either.
1077     Also insist that I3 not be a jump; if it were one
1078     and the incremented register were spilled, we would lose.  */
1079
1080#ifdef AUTO_INC_DEC
1081  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1082    if (REG_NOTE_KIND (link) == REG_INC
1083	&& (GET_CODE (i3) == JUMP_INSN
1084	    || reg_used_between_p (XEXP (link, 0), insn, i3)
1085	    || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1086      return 0;
1087#endif
1088
1089#ifdef HAVE_cc0
1090  /* Don't combine an insn that follows a CC0-setting insn.
1091     An insn that uses CC0 must not be separated from the one that sets it.
1092     We do, however, allow I2 to follow a CC0-setting insn if that insn
1093     is passed as I1; in that case it will be deleted also.
1094     We also allow combining in this case if all the insns are adjacent
1095     because that would leave the two CC0 insns adjacent as well.
1096     It would be more logical to test whether CC0 occurs inside I1 or I2,
1097     but that would be much slower, and this ought to be equivalent.  */
1098
1099  p = prev_nonnote_insn (insn);
1100  if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1101      && ! all_adjacent)
1102    return 0;
1103#endif
1104
1105  /* If we get here, we have passed all the tests and the combination is
1106     to be allowed.  */
1107
1108  *pdest = dest;
1109  *psrc = src;
1110
1111  return 1;
1112}
1113
1114/* Check if PAT is an insn - or a part of it - used to set up an
1115   argument for a function in a hard register.  */
1116
1117static int
1118sets_function_arg_p (pat)
1119     rtx pat;
1120{
1121  int i;
1122  rtx inner_dest;
1123
1124  switch (GET_CODE (pat))
1125    {
1126    case INSN:
1127      return sets_function_arg_p (PATTERN (pat));
1128
1129    case PARALLEL:
1130      for (i = XVECLEN (pat, 0); --i >= 0;)
1131	if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1132	  return 1;
1133
1134      break;
1135
1136    case SET:
1137      inner_dest = SET_DEST (pat);
1138      while (GET_CODE (inner_dest) == STRICT_LOW_PART
1139	     || GET_CODE (inner_dest) == SUBREG
1140	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
1141	inner_dest = XEXP (inner_dest, 0);
1142
1143      return (GET_CODE (inner_dest) == REG
1144	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1145	      && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1146
1147    default:
1148      break;
1149    }
1150
1151  return 0;
1152}
1153
1154/* LOC is the location within I3 that contains its pattern or the component
1155   of a PARALLEL of the pattern.  We validate that it is valid for combining.
1156
1157   One problem is if I3 modifies its output, as opposed to replacing it
1158   entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1159   so would produce an insn that is not equivalent to the original insns.
1160
1161   Consider:
1162
1163         (set (reg:DI 101) (reg:DI 100))
1164	 (set (subreg:SI (reg:DI 101) 0) <foo>)
1165
1166   This is NOT equivalent to:
1167
1168         (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1169	 	    (set (reg:DI 101) (reg:DI 100))])
1170
1171   Not only does this modify 100 (in which case it might still be valid
1172   if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1173
1174   We can also run into a problem if I2 sets a register that I1
1175   uses and I1 gets directly substituted into I3 (not via I2).  In that
1176   case, we would be getting the wrong value of I2DEST into I3, so we
1177   must reject the combination.  This case occurs when I2 and I1 both
1178   feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1179   If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1180   of a SET must prevent combination from occurring.
1181
1182   On machines where SMALL_REGISTER_CLASSES is non-zero, we don't combine
1183   if the destination of a SET is a hard register that isn't a user
1184   variable.
1185
1186   Before doing the above check, we first try to expand a field assignment
1187   into a set of logical operations.
1188
1189   If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1190   we place a register that is both set and used within I3.  If more than one
1191   such register is detected, we fail.
1192
1193   Return 1 if the combination is valid, zero otherwise.  */
1194
1195static int
1196combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1197     rtx i3;
1198     rtx *loc;
1199     rtx i2dest;
1200     rtx i1dest;
1201     int i1_not_in_src;
1202     rtx *pi3dest_killed;
1203{
1204  rtx x = *loc;
1205
1206  if (GET_CODE (x) == SET)
1207    {
1208      rtx set = expand_field_assignment (x);
1209      rtx dest = SET_DEST (set);
1210      rtx src = SET_SRC (set);
1211      rtx inner_dest = dest;
1212
1213#if 0
1214      rtx inner_src = src;
1215#endif
1216
1217      SUBST (*loc, set);
1218
1219      while (GET_CODE (inner_dest) == STRICT_LOW_PART
1220	     || GET_CODE (inner_dest) == SUBREG
1221	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
1222	inner_dest = XEXP (inner_dest, 0);
1223
1224  /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1225     was added.  */
1226#if 0
1227      while (GET_CODE (inner_src) == STRICT_LOW_PART
1228	     || GET_CODE (inner_src) == SUBREG
1229	     || GET_CODE (inner_src) == ZERO_EXTRACT)
1230	inner_src = XEXP (inner_src, 0);
1231
1232      /* If it is better that two different modes keep two different pseudos,
1233	 avoid combining them.  This avoids producing the following pattern
1234	 on a 386:
1235	  (set (subreg:SI (reg/v:QI 21) 0)
1236	       (lshiftrt:SI (reg/v:SI 20)
1237	           (const_int 24)))
1238	 If that were made, reload could not handle the pair of
1239	 reg 20/21, since it would try to get any GENERAL_REGS
1240	 but some of them don't handle QImode.  */
1241
1242      if (rtx_equal_p (inner_src, i2dest)
1243	  && GET_CODE (inner_dest) == REG
1244	  && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1245	return 0;
1246#endif
1247
1248      /* Check for the case where I3 modifies its output, as
1249	 discussed above.  */
1250      if ((inner_dest != dest
1251	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
1252	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1253
1254	  /* This is the same test done in can_combine_p except that we
1255	     allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1256	     CALL operation. Moreover, we can't test all_adjacent; we don't
1257	     have to, since this instruction will stay in place, thus we are
1258	     not considering increasing the lifetime of INNER_DEST.
1259
1260	     Also, if this insn sets a function argument, combining it with
1261	     something that might need a spill could clobber a previous
1262	     function argument; the all_adjacent test in can_combine_p also
1263	     checks this; here, we do a more specific test for this case.  */
1264
1265	  || (GET_CODE (inner_dest) == REG
1266	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1267	      && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1268					GET_MODE (inner_dest))
1269		 || (SMALL_REGISTER_CLASSES && GET_CODE (src) != CALL
1270		     && ! REG_USERVAR_P (inner_dest)
1271		     && (FUNCTION_VALUE_REGNO_P (REGNO (inner_dest))
1272			 || (FUNCTION_ARG_REGNO_P (REGNO (inner_dest))
1273			     && i3 != 0
1274			     && sets_function_arg_p (prev_nonnote_insn (i3)))))))
1275	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1276	return 0;
1277
1278      /* If DEST is used in I3, it is being killed in this insn,
1279	 so record that for later.
1280	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1281	 STACK_POINTER_REGNUM, since these are always considered to be
1282	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
1283      if (pi3dest_killed && GET_CODE (dest) == REG
1284	  && reg_referenced_p (dest, PATTERN (i3))
1285	  && REGNO (dest) != FRAME_POINTER_REGNUM
1286#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1287	  && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1288#endif
1289#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1290	  && (REGNO (dest) != ARG_POINTER_REGNUM
1291	      || ! fixed_regs [REGNO (dest)])
1292#endif
1293	  && REGNO (dest) != STACK_POINTER_REGNUM)
1294	{
1295	  if (*pi3dest_killed)
1296	    return 0;
1297
1298	  *pi3dest_killed = dest;
1299	}
1300    }
1301
1302  else if (GET_CODE (x) == PARALLEL)
1303    {
1304      int i;
1305
1306      for (i = 0; i < XVECLEN (x, 0); i++)
1307	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1308				i1_not_in_src, pi3dest_killed))
1309	  return 0;
1310    }
1311
1312  return 1;
1313}
1314
1315/* Try to combine the insns I1 and I2 into I3.
1316   Here I1 and I2 appear earlier than I3.
1317   I1 can be zero; then we combine just I2 into I3.
1318
1319   It we are combining three insns and the resulting insn is not recognized,
1320   try splitting it into two insns.  If that happens, I2 and I3 are retained
1321   and I1 is pseudo-deleted by turning it into a NOTE.  Otherwise, I1 and I2
1322   are pseudo-deleted.
1323
1324   Return 0 if the combination does not work.  Then nothing is changed.
1325   If we did the combination, return the insn at which combine should
1326   resume scanning.  */
1327
1328static rtx
1329try_combine (i3, i2, i1)
1330     register rtx i3, i2, i1;
1331{
1332  /* New patterns for I3 and I3, respectively.  */
1333  rtx newpat, newi2pat = 0;
1334  /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead.  */
1335  int added_sets_1, added_sets_2;
1336  /* Total number of SETs to put into I3.  */
1337  int total_sets;
1338  /* Nonzero is I2's body now appears in I3.  */
1339  int i2_is_used;
1340  /* INSN_CODEs for new I3, new I2, and user of condition code.  */
1341  int insn_code_number, i2_code_number, other_code_number;
1342  /* Contains I3 if the destination of I3 is used in its source, which means
1343     that the old life of I3 is being killed.  If that usage is placed into
1344     I2 and not in I3, a REG_DEAD note must be made.  */
1345  rtx i3dest_killed = 0;
1346  /* SET_DEST and SET_SRC of I2 and I1.  */
1347  rtx i2dest, i2src, i1dest = 0, i1src = 0;
1348  /* PATTERN (I2), or a copy of it in certain cases.  */
1349  rtx i2pat;
1350  /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
1351  int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1352  int i1_feeds_i3 = 0;
1353  /* Notes that must be added to REG_NOTES in I3 and I2.  */
1354  rtx new_i3_notes, new_i2_notes;
1355  /* Notes that we substituted I3 into I2 instead of the normal case.  */
1356  int i3_subst_into_i2 = 0;
1357  /* Notes that I1, I2 or I3 is a MULT operation.  */
1358  int have_mult = 0;
1359
1360  int maxreg;
1361  rtx temp;
1362  register rtx link;
1363  int i;
1364
1365  /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1366     This can occur when flow deletes an insn that it has merged into an
1367     auto-increment address.  We also can't do anything if I3 has a
1368     REG_LIBCALL note since we don't want to disrupt the contiguity of a
1369     libcall.  */
1370
1371  if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1372      || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1373      || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1374#if 0
1375      /* ??? This gives worse code, and appears to be unnecessary, since no
1376	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  */
1377      || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1378#endif
1379)
1380    return 0;
1381
1382  combine_attempts++;
1383
1384  undobuf.undos = undobuf.previous_undos = 0;
1385  undobuf.other_insn = 0;
1386
1387  /* Save the current high-water-mark so we can free storage if we didn't
1388     accept this combination.  */
1389  undobuf.storage = (char *) oballoc (0);
1390
1391  /* Reset the hard register usage information.  */
1392  CLEAR_HARD_REG_SET (newpat_used_regs);
1393
1394  /* If I1 and I2 both feed I3, they can be in any order.  To simplify the
1395     code below, set I1 to be the earlier of the two insns.  */
1396  if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1397    temp = i1, i1 = i2, i2 = temp;
1398
1399  added_links_insn = 0;
1400
1401  /* First check for one important special-case that the code below will
1402     not handle.  Namely, the case where I1 is zero, I2 has multiple sets,
1403     and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
1404     we may be able to replace that destination with the destination of I3.
1405     This occurs in the common code where we compute both a quotient and
1406     remainder into a structure, in which case we want to do the computation
1407     directly into the structure to avoid register-register copies.
1408
1409     We make very conservative checks below and only try to handle the
1410     most common cases of this.  For example, we only handle the case
1411     where I2 and I3 are adjacent to avoid making difficult register
1412     usage tests.  */
1413
1414  if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1415      && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1416      && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1417      && (! SMALL_REGISTER_CLASSES
1418	  || (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1419	      || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1420	      || REG_USERVAR_P (SET_DEST (PATTERN (i3)))))
1421      && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1422      && GET_CODE (PATTERN (i2)) == PARALLEL
1423      && ! side_effects_p (SET_DEST (PATTERN (i3)))
1424      /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1425	 below would need to check what is inside (and reg_overlap_mentioned_p
1426	 doesn't support those codes anyway).  Don't allow those destinations;
1427	 the resulting insn isn't likely to be recognized anyway.  */
1428      && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1429      && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1430      && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1431				    SET_DEST (PATTERN (i3)))
1432      && next_real_insn (i2) == i3)
1433    {
1434      rtx p2 = PATTERN (i2);
1435
1436      /* Make sure that the destination of I3,
1437	 which we are going to substitute into one output of I2,
1438	 is not used within another output of I2.  We must avoid making this:
1439	 (parallel [(set (mem (reg 69)) ...)
1440		    (set (reg 69) ...)])
1441	 which is not well-defined as to order of actions.
1442	 (Besides, reload can't handle output reloads for this.)
1443
1444	 The problem can also happen if the dest of I3 is a memory ref,
1445	 if another dest in I2 is an indirect memory ref.  */
1446      for (i = 0; i < XVECLEN (p2, 0); i++)
1447	if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1448	     || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1449	    && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1450					SET_DEST (XVECEXP (p2, 0, i))))
1451	  break;
1452
1453      if (i == XVECLEN (p2, 0))
1454	for (i = 0; i < XVECLEN (p2, 0); i++)
1455	  if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1456	    {
1457	      combine_merges++;
1458
1459	      subst_insn = i3;
1460	      subst_low_cuid = INSN_CUID (i2);
1461
1462	      added_sets_2 = added_sets_1 = 0;
1463	      i2dest = SET_SRC (PATTERN (i3));
1464
1465	      /* Replace the dest in I2 with our dest and make the resulting
1466		 insn the new pattern for I3.  Then skip to where we
1467		 validate the pattern.  Everything was set up above.  */
1468	      SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1469		     SET_DEST (PATTERN (i3)));
1470
1471	      newpat = p2;
1472	      i3_subst_into_i2 = 1;
1473	      goto validate_replacement;
1474	    }
1475    }
1476
1477#ifndef HAVE_cc0
1478  /* If we have no I1 and I2 looks like:
1479	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1480		   (set Y OP)])
1481     make up a dummy I1 that is
1482	(set Y OP)
1483     and change I2 to be
1484        (set (reg:CC X) (compare:CC Y (const_int 0)))
1485
1486     (We can ignore any trailing CLOBBERs.)
1487
1488     This undoes a previous combination and allows us to match a branch-and-
1489     decrement insn.  */
1490
1491  if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1492      && XVECLEN (PATTERN (i2), 0) >= 2
1493      && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1494      && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1495	  == MODE_CC)
1496      && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1497      && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1498      && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1499      && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1500      && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1501		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1502    {
1503      for (i =  XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1504	if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1505	  break;
1506
1507      if (i == 1)
1508	{
1509	  /* We make I1 with the same INSN_UID as I2.  This gives it
1510	     the same INSN_CUID for value tracking.  Our fake I1 will
1511	     never appear in the insn stream so giving it the same INSN_UID
1512	     as I2 will not cause a problem.  */
1513
1514	  subst_prev_insn = i1
1515	    = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1516			    XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1517			    NULL_RTX);
1518
1519	  SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1520	  SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1521		 SET_DEST (PATTERN (i1)));
1522	}
1523    }
1524#endif
1525
1526  /* Verify that I2 and I1 are valid for combining.  */
1527  if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1528      || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1529    {
1530      undo_all ();
1531      return 0;
1532    }
1533
1534  /* Record whether I2DEST is used in I2SRC and similarly for the other
1535     cases.  Knowing this will help in register status updating below.  */
1536  i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1537  i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1538  i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1539
1540  /* See if I1 directly feeds into I3.  It does if I1DEST is not used
1541     in I2SRC.  */
1542  i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1543
1544  /* Ensure that I3's pattern can be the destination of combines.  */
1545  if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1546			  i1 && i2dest_in_i1src && i1_feeds_i3,
1547			  &i3dest_killed))
1548    {
1549      undo_all ();
1550      return 0;
1551    }
1552
1553  /* See if any of the insns is a MULT operation.  Unless one is, we will
1554     reject a combination that is, since it must be slower.  Be conservative
1555     here.  */
1556  if (GET_CODE (i2src) == MULT
1557      || (i1 != 0 && GET_CODE (i1src) == MULT)
1558      || (GET_CODE (PATTERN (i3)) == SET
1559	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1560    have_mult = 1;
1561
1562  /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1563     We used to do this EXCEPT in one case: I3 has a post-inc in an
1564     output operand.  However, that exception can give rise to insns like
1565     	mov r3,(r3)+
1566     which is a famous insn on the PDP-11 where the value of r3 used as the
1567     source was model-dependent.  Avoid this sort of thing.  */
1568
1569#if 0
1570  if (!(GET_CODE (PATTERN (i3)) == SET
1571	&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
1572	&& GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1573	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1574	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1575    /* It's not the exception.  */
1576#endif
1577#ifdef AUTO_INC_DEC
1578    for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1579      if (REG_NOTE_KIND (link) == REG_INC
1580	  && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1581	      || (i1 != 0
1582		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1583	{
1584	  undo_all ();
1585	  return 0;
1586	}
1587#endif
1588
1589  /* See if the SETs in I1 or I2 need to be kept around in the merged
1590     instruction: whenever the value set there is still needed past I3.
1591     For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1592
1593     For the SET in I1, we have two cases:  If I1 and I2 independently
1594     feed into I3, the set in I1 needs to be kept around if I1DEST dies
1595     or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
1596     in I1 needs to be kept around unless I1DEST dies or is set in either
1597     I2 or I3.  We can distinguish these cases by seeing if I2SRC mentions
1598     I1DEST.  If so, we know I1 feeds into I2.  */
1599
1600  added_sets_2 = ! dead_or_set_p (i3, i2dest);
1601
1602  added_sets_1
1603    = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1604	       : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1605
1606  /* If the set in I2 needs to be kept around, we must make a copy of
1607     PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1608     PATTERN (I2), we are only substituting for the original I1DEST, not into
1609     an already-substituted copy.  This also prevents making self-referential
1610     rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1611     I2DEST.  */
1612
1613  i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1614	   ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1615	   : PATTERN (i2));
1616
1617  if (added_sets_2)
1618    i2pat = copy_rtx (i2pat);
1619
1620  combine_merges++;
1621
1622  /* Substitute in the latest insn for the regs set by the earlier ones.  */
1623
1624  maxreg = max_reg_num ();
1625
1626  subst_insn = i3;
1627
1628  /* It is possible that the source of I2 or I1 may be performing an
1629     unneeded operation, such as a ZERO_EXTEND of something that is known
1630     to have the high part zero.  Handle that case by letting subst look at
1631     the innermost one of them.
1632
1633     Another way to do this would be to have a function that tries to
1634     simplify a single insn instead of merging two or more insns.  We don't
1635     do this because of the potential of infinite loops and because
1636     of the potential extra memory required.  However, doing it the way
1637     we are is a bit of a kludge and doesn't catch all cases.
1638
1639     But only do this if -fexpensive-optimizations since it slows things down
1640     and doesn't usually win.  */
1641
1642  if (flag_expensive_optimizations)
1643    {
1644      /* Pass pc_rtx so no substitutions are done, just simplifications.
1645	 The cases that we are interested in here do not involve the few
1646	 cases were is_replaced is checked.  */
1647      if (i1)
1648	{
1649	  subst_low_cuid = INSN_CUID (i1);
1650	  i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1651	}
1652      else
1653	{
1654	  subst_low_cuid = INSN_CUID (i2);
1655	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1656	}
1657
1658      undobuf.previous_undos = undobuf.undos;
1659    }
1660
1661#ifndef HAVE_cc0
1662  /* Many machines that don't use CC0 have insns that can both perform an
1663     arithmetic operation and set the condition code.  These operations will
1664     be represented as a PARALLEL with the first element of the vector
1665     being a COMPARE of an arithmetic operation with the constant zero.
1666     The second element of the vector will set some pseudo to the result
1667     of the same arithmetic operation.  If we simplify the COMPARE, we won't
1668     match such a pattern and so will generate an extra insn.   Here we test
1669     for this case, where both the comparison and the operation result are
1670     needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1671     I2SRC.  Later we will make the PARALLEL that contains I2.  */
1672
1673  if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1674      && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1675      && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1676      && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1677    {
1678#ifdef EXTRA_CC_MODES
1679      rtx *cc_use;
1680      enum machine_mode compare_mode;
1681#endif
1682
1683      newpat = PATTERN (i3);
1684      SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1685
1686      i2_is_used = 1;
1687
1688#ifdef EXTRA_CC_MODES
1689      /* See if a COMPARE with the operand we substituted in should be done
1690	 with the mode that is currently being used.  If not, do the same
1691	 processing we do in `subst' for a SET; namely, if the destination
1692	 is used only once, try to replace it with a register of the proper
1693	 mode and also replace the COMPARE.  */
1694      if (undobuf.other_insn == 0
1695	  && (cc_use = find_single_use (SET_DEST (newpat), i3,
1696					&undobuf.other_insn))
1697	  && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1698					      i2src, const0_rtx))
1699	      != GET_MODE (SET_DEST (newpat))))
1700	{
1701	  int regno = REGNO (SET_DEST (newpat));
1702	  rtx new_dest = gen_rtx_REG (compare_mode, regno);
1703
1704	  if (regno < FIRST_PSEUDO_REGISTER
1705	      || (REG_N_SETS (regno) == 1 && ! added_sets_2
1706		  && ! REG_USERVAR_P (SET_DEST (newpat))))
1707	    {
1708	      if (regno >= FIRST_PSEUDO_REGISTER)
1709		SUBST (regno_reg_rtx[regno], new_dest);
1710
1711	      SUBST (SET_DEST (newpat), new_dest);
1712	      SUBST (XEXP (*cc_use, 0), new_dest);
1713	      SUBST (SET_SRC (newpat),
1714		     gen_rtx_combine (COMPARE, compare_mode,
1715				      i2src, const0_rtx));
1716	    }
1717	  else
1718	    undobuf.other_insn = 0;
1719	}
1720#endif
1721    }
1722  else
1723#endif
1724    {
1725      n_occurrences = 0;		/* `subst' counts here */
1726
1727      /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1728	 need to make a unique copy of I2SRC each time we substitute it
1729	 to avoid self-referential rtl.  */
1730
1731      subst_low_cuid = INSN_CUID (i2);
1732      newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1733		      ! i1_feeds_i3 && i1dest_in_i1src);
1734      undobuf.previous_undos = undobuf.undos;
1735
1736      /* Record whether i2's body now appears within i3's body.  */
1737      i2_is_used = n_occurrences;
1738    }
1739
1740  /* If we already got a failure, don't try to do more.  Otherwise,
1741     try to substitute in I1 if we have it.  */
1742
1743  if (i1 && GET_CODE (newpat) != CLOBBER)
1744    {
1745      /* Before we can do this substitution, we must redo the test done
1746	 above (see detailed comments there) that ensures  that I1DEST
1747	 isn't mentioned in any SETs in NEWPAT that are field assignments.  */
1748
1749      if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1750			      0, NULL_PTR))
1751	{
1752	  undo_all ();
1753	  return 0;
1754	}
1755
1756      n_occurrences = 0;
1757      subst_low_cuid = INSN_CUID (i1);
1758      newpat = subst (newpat, i1dest, i1src, 0, 0);
1759      undobuf.previous_undos = undobuf.undos;
1760    }
1761
1762  /* Fail if an autoincrement side-effect has been duplicated.  Be careful
1763     to count all the ways that I2SRC and I1SRC can be used.  */
1764  if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1765       && i2_is_used + added_sets_2 > 1)
1766      || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1767	  && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1768	      > 1))
1769      /* Fail if we tried to make a new register (we used to abort, but there's
1770	 really no reason to).  */
1771      || max_reg_num () != maxreg
1772      /* Fail if we couldn't do something and have a CLOBBER.  */
1773      || GET_CODE (newpat) == CLOBBER
1774      /* Fail if this new pattern is a MULT and we didn't have one before
1775	 at the outer level.  */
1776      || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1777	  && ! have_mult))
1778    {
1779      undo_all ();
1780      return 0;
1781    }
1782
1783  /* If the actions of the earlier insns must be kept
1784     in addition to substituting them into the latest one,
1785     we must make a new PARALLEL for the latest insn
1786     to hold additional the SETs.  */
1787
1788  if (added_sets_1 || added_sets_2)
1789    {
1790      combine_extras++;
1791
1792      if (GET_CODE (newpat) == PARALLEL)
1793	{
1794	  rtvec old = XVEC (newpat, 0);
1795	  total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1796	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1797	  bcopy ((char *) &old->elem[0], (char *) XVEC (newpat, 0)->elem,
1798		 sizeof (old->elem[0]) * old->num_elem);
1799	}
1800      else
1801	{
1802	  rtx old = newpat;
1803	  total_sets = 1 + added_sets_1 + added_sets_2;
1804	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1805	  XVECEXP (newpat, 0, 0) = old;
1806	}
1807
1808     if (added_sets_1)
1809       XVECEXP (newpat, 0, --total_sets)
1810	 = (GET_CODE (PATTERN (i1)) == PARALLEL
1811	    ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1812
1813     if (added_sets_2)
1814	{
1815	  /* If there is no I1, use I2's body as is.  We used to also not do
1816	     the subst call below if I2 was substituted into I3,
1817	     but that could lose a simplification.  */
1818	  if (i1 == 0)
1819	    XVECEXP (newpat, 0, --total_sets) = i2pat;
1820	  else
1821	    /* See comment where i2pat is assigned.  */
1822	    XVECEXP (newpat, 0, --total_sets)
1823	      = subst (i2pat, i1dest, i1src, 0, 0);
1824	}
1825    }
1826
1827  /* We come here when we are replacing a destination in I2 with the
1828     destination of I3.  */
1829 validate_replacement:
1830
1831  /* Note which hard regs this insn has as inputs.  */
1832  mark_used_regs_combine (newpat);
1833
1834  /* Is the result of combination a valid instruction?  */
1835  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1836
1837  /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1838     the second SET's destination is a register that is unused.  In that case,
1839     we just need the first SET.   This can occur when simplifying a divmod
1840     insn.  We *must* test for this case here because the code below that
1841     splits two independent SETs doesn't handle this case correctly when it
1842     updates the register status.  Also check the case where the first
1843     SET's destination is unused.  That would not cause incorrect code, but
1844     does cause an unneeded insn to remain.  */
1845
1846  if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1847      && XVECLEN (newpat, 0) == 2
1848      && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1849      && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1850      && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
1851      && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
1852      && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
1853      && asm_noperands (newpat) < 0)
1854    {
1855      newpat = XVECEXP (newpat, 0, 0);
1856      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1857    }
1858
1859  else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1860	   && XVECLEN (newpat, 0) == 2
1861	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1862	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1863	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
1864	   && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
1865	   && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
1866	   && asm_noperands (newpat) < 0)
1867    {
1868      newpat = XVECEXP (newpat, 0, 1);
1869      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1870    }
1871
1872  /* If we were combining three insns and the result is a simple SET
1873     with no ASM_OPERANDS that wasn't recognized, try to split it into two
1874     insns.  There are two ways to do this.  It can be split using a
1875     machine-specific method (like when you have an addition of a large
1876     constant) or by combine in the function find_split_point.  */
1877
1878  if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
1879      && asm_noperands (newpat) < 0)
1880    {
1881      rtx m_split, *split;
1882      rtx ni2dest = i2dest;
1883
1884      /* See if the MD file can split NEWPAT.  If it can't, see if letting it
1885	 use I2DEST as a scratch register will help.  In the latter case,
1886	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
1887
1888      m_split = split_insns (newpat, i3);
1889
1890      /* We can only use I2DEST as a scratch reg if it doesn't overlap any
1891	 inputs of NEWPAT.  */
1892
1893      /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
1894	 possible to try that as a scratch reg.  This would require adding
1895	 more code to make it work though.  */
1896
1897      if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
1898	{
1899	  /* If I2DEST is a hard register or the only use of a pseudo,
1900	     we can change its mode.  */
1901	  if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
1902	      && GET_MODE (SET_DEST (newpat)) != VOIDmode
1903	      && GET_CODE (i2dest) == REG
1904	      && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1905		  || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
1906		      && ! REG_USERVAR_P (i2dest))))
1907	    ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
1908			       REGNO (i2dest));
1909
1910	  m_split = split_insns
1911	    (gen_rtx_PARALLEL (VOIDmode,
1912			       gen_rtvec (2, newpat,
1913					  gen_rtx_CLOBBER (VOIDmode,
1914							   ni2dest))),
1915	     i3);
1916	}
1917
1918      if (m_split && GET_CODE (m_split) == SEQUENCE
1919	  && XVECLEN (m_split, 0) == 2
1920	  && (next_real_insn (i2) == i3
1921	      || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
1922				      INSN_CUID (i2))))
1923	{
1924	  rtx i2set, i3set;
1925	  rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
1926	  newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
1927
1928	  i3set = single_set (XVECEXP (m_split, 0, 1));
1929	  i2set = single_set (XVECEXP (m_split, 0, 0));
1930
1931	  /* In case we changed the mode of I2DEST, replace it in the
1932	     pseudo-register table here.  We can't do it above in case this
1933	     code doesn't get executed and we do a split the other way.  */
1934
1935	  if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1936	    SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
1937
1938	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1939
1940	  /* If I2 or I3 has multiple SETs, we won't know how to track
1941	     register status, so don't use these insns.  If I2's destination
1942	     is used between I2 and I3, we also can't use these insns.  */
1943
1944	  if (i2_code_number >= 0 && i2set && i3set
1945	      && (next_real_insn (i2) == i3
1946		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
1947	    insn_code_number = recog_for_combine (&newi3pat, i3,
1948						  &new_i3_notes);
1949	  if (insn_code_number >= 0)
1950	    newpat = newi3pat;
1951
1952	  /* It is possible that both insns now set the destination of I3.
1953	     If so, we must show an extra use of it.  */
1954
1955	  if (insn_code_number >= 0)
1956	    {
1957	      rtx new_i3_dest = SET_DEST (i3set);
1958	      rtx new_i2_dest = SET_DEST (i2set);
1959
1960	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
1961		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
1962		     || GET_CODE (new_i3_dest) == SUBREG)
1963		new_i3_dest = XEXP (new_i3_dest, 0);
1964
1965	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
1966		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
1967		     || GET_CODE (new_i2_dest) == SUBREG)
1968		new_i2_dest = XEXP (new_i2_dest, 0);
1969
1970	      if (GET_CODE (new_i3_dest) == REG
1971		  && GET_CODE (new_i2_dest) == REG
1972		  && REGNO (new_i3_dest) == REGNO (new_i2_dest))
1973		REG_N_SETS (REGNO (new_i2_dest))++;
1974	    }
1975	}
1976
1977      /* If we can split it and use I2DEST, go ahead and see if that
1978	 helps things be recognized.  Verify that none of the registers
1979	 are set between I2 and I3.  */
1980      if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
1981#ifdef HAVE_cc0
1982	  && GET_CODE (i2dest) == REG
1983#endif
1984	  /* We need I2DEST in the proper mode.  If it is a hard register
1985	     or the only use of a pseudo, we can change its mode.  */
1986	  && (GET_MODE (*split) == GET_MODE (i2dest)
1987	      || GET_MODE (*split) == VOIDmode
1988	      || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1989	      || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
1990		  && ! REG_USERVAR_P (i2dest)))
1991	  && (next_real_insn (i2) == i3
1992	      || ! use_crosses_set_p (*split, INSN_CUID (i2)))
1993	  /* We can't overwrite I2DEST if its value is still used by
1994	     NEWPAT.  */
1995	  && ! reg_referenced_p (i2dest, newpat))
1996	{
1997	  rtx newdest = i2dest;
1998	  enum rtx_code split_code = GET_CODE (*split);
1999	  enum machine_mode split_mode = GET_MODE (*split);
2000
2001	  /* Get NEWDEST as a register in the proper mode.  We have already
2002	     validated that we can do this.  */
2003	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2004	    {
2005	      newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2006
2007	      if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2008		SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2009	    }
2010
2011	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2012	     an ASHIFT.  This can occur if it was inside a PLUS and hence
2013	     appeared to be a memory address.  This is a kludge.  */
2014	  if (split_code == MULT
2015	      && GET_CODE (XEXP (*split, 1)) == CONST_INT
2016	      && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2017	    {
2018	      SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
2019					      XEXP (*split, 0), GEN_INT (i)));
2020	      /* Update split_code because we may not have a multiply
2021		 anymore.  */
2022	      split_code = GET_CODE (*split);
2023	    }
2024
2025#ifdef INSN_SCHEDULING
2026	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2027	     be written as a ZERO_EXTEND.  */
2028	  if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2029	    SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
2030					    XEXP (*split, 0)));
2031#endif
2032
2033	  newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
2034	  SUBST (*split, newdest);
2035	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2036
2037	  /* If the split point was a MULT and we didn't have one before,
2038	     don't use one now.  */
2039	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2040	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2041	}
2042    }
2043
2044  /* Check for a case where we loaded from memory in a narrow mode and
2045     then sign extended it, but we need both registers.  In that case,
2046     we have a PARALLEL with both loads from the same memory location.
2047     We can split this into a load from memory followed by a register-register
2048     copy.  This saves at least one insn, more if register allocation can
2049     eliminate the copy.
2050
2051     We cannot do this if the destination of the second assignment is
2052     a register that we have already assumed is zero-extended.  Similarly
2053     for a SUBREG of such a register.  */
2054
2055  else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2056	   && GET_CODE (newpat) == PARALLEL
2057	   && XVECLEN (newpat, 0) == 2
2058	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2059	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2060	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2061	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2062			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2063	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2064				   INSN_CUID (i2))
2065	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2066	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2067	   && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2068		 (GET_CODE (temp) == REG
2069		  && reg_nonzero_bits[REGNO (temp)] != 0
2070		  && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2071		  && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2072		  && (reg_nonzero_bits[REGNO (temp)]
2073		      != GET_MODE_MASK (word_mode))))
2074	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2075		 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2076		     (GET_CODE (temp) == REG
2077		      && reg_nonzero_bits[REGNO (temp)] != 0
2078		      && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2079		      && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2080		      && (reg_nonzero_bits[REGNO (temp)]
2081			  != GET_MODE_MASK (word_mode)))))
2082	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2083					 SET_SRC (XVECEXP (newpat, 0, 1)))
2084	   && ! find_reg_note (i3, REG_UNUSED,
2085			       SET_DEST (XVECEXP (newpat, 0, 0))))
2086    {
2087      rtx ni2dest;
2088
2089      newi2pat = XVECEXP (newpat, 0, 0);
2090      ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2091      newpat = XVECEXP (newpat, 0, 1);
2092      SUBST (SET_SRC (newpat),
2093	     gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2094      i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2095
2096      if (i2_code_number >= 0)
2097	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2098
2099      if (insn_code_number >= 0)
2100	{
2101	  rtx insn;
2102	  rtx link;
2103
2104	  /* If we will be able to accept this, we have made a change to the
2105	     destination of I3.  This can invalidate a LOG_LINKS pointing
2106	     to I3.  No other part of combine.c makes such a transformation.
2107
2108	     The new I3 will have a destination that was previously the
2109	     destination of I1 or I2 and which was used in i2 or I3.  Call
2110	     distribute_links to make a LOG_LINK from the next use of
2111	     that destination.  */
2112
2113	  PATTERN (i3) = newpat;
2114	  distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2115
2116	  /* I3 now uses what used to be its destination and which is
2117	     now I2's destination.  That means we need a LOG_LINK from
2118	     I3 to I2.  But we used to have one, so we still will.
2119
2120	     However, some later insn might be using I2's dest and have
2121	     a LOG_LINK pointing at I3.  We must remove this link.
2122	     The simplest way to remove the link is to point it at I1,
2123	     which we know will be a NOTE.  */
2124
2125	  for (insn = NEXT_INSN (i3);
2126	       insn && (this_basic_block == n_basic_blocks - 1
2127			|| insn != BLOCK_HEAD (this_basic_block + 1));
2128	       insn = NEXT_INSN (insn))
2129	    {
2130	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2131		  && reg_referenced_p (ni2dest, PATTERN (insn)))
2132		{
2133		  for (link = LOG_LINKS (insn); link;
2134		       link = XEXP (link, 1))
2135		    if (XEXP (link, 0) == i3)
2136		      XEXP (link, 0) = i1;
2137
2138		  break;
2139		}
2140	    }
2141	}
2142    }
2143
2144  /* Similarly, check for a case where we have a PARALLEL of two independent
2145     SETs but we started with three insns.  In this case, we can do the sets
2146     as two separate insns.  This case occurs when some SET allows two
2147     other insns to combine, but the destination of that SET is still live.  */
2148
2149  else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2150	   && GET_CODE (newpat) == PARALLEL
2151	   && XVECLEN (newpat, 0) == 2
2152	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2153	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2154	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2155	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2156	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2157	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2158	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2159				   INSN_CUID (i2))
2160	   /* Don't pass sets with (USE (MEM ...)) dests to the following.  */
2161	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2162	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2163	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2164				  XVECEXP (newpat, 0, 0))
2165	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2166				  XVECEXP (newpat, 0, 1)))
2167    {
2168      /* Normally, it doesn't matter which of the two is done first,
2169	 but it does if one references cc0.  In that case, it has to
2170	 be first.  */
2171#ifdef HAVE_cc0
2172      if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2173	{
2174	  newi2pat = XVECEXP (newpat, 0, 0);
2175	  newpat = XVECEXP (newpat, 0, 1);
2176	}
2177      else
2178#endif
2179	{
2180	  newi2pat = XVECEXP (newpat, 0, 1);
2181	  newpat = XVECEXP (newpat, 0, 0);
2182	}
2183
2184      i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2185
2186      if (i2_code_number >= 0)
2187	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2188    }
2189
2190  /* If it still isn't recognized, fail and change things back the way they
2191     were.  */
2192  if ((insn_code_number < 0
2193       /* Is the result a reasonable ASM_OPERANDS?  */
2194       && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2195    {
2196      undo_all ();
2197      return 0;
2198    }
2199
2200  /* If we had to change another insn, make sure it is valid also.  */
2201  if (undobuf.other_insn)
2202    {
2203      rtx other_pat = PATTERN (undobuf.other_insn);
2204      rtx new_other_notes;
2205      rtx note, next;
2206
2207      CLEAR_HARD_REG_SET (newpat_used_regs);
2208
2209      other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2210					     &new_other_notes);
2211
2212      if (other_code_number < 0 && ! check_asm_operands (other_pat))
2213	{
2214	  undo_all ();
2215	  return 0;
2216	}
2217
2218      PATTERN (undobuf.other_insn) = other_pat;
2219
2220      /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2221	 are still valid.  Then add any non-duplicate notes added by
2222	 recog_for_combine.  */
2223      for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2224	{
2225	  next = XEXP (note, 1);
2226
2227	  if (REG_NOTE_KIND (note) == REG_UNUSED
2228	      && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2229	    {
2230	      if (GET_CODE (XEXP (note, 0)) == REG)
2231		REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2232
2233	      remove_note (undobuf.other_insn, note);
2234	    }
2235	}
2236
2237      for (note = new_other_notes; note; note = XEXP (note, 1))
2238	if (GET_CODE (XEXP (note, 0)) == REG)
2239	  REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2240
2241      distribute_notes (new_other_notes, undobuf.other_insn,
2242			undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2243    }
2244
2245  /* We now know that we can do this combination.  Merge the insns and
2246     update the status of registers and LOG_LINKS.  */
2247
2248  {
2249    rtx i3notes, i2notes, i1notes = 0;
2250    rtx i3links, i2links, i1links = 0;
2251    rtx midnotes = 0;
2252    register int regno;
2253    /* Compute which registers we expect to eliminate.  newi2pat may be setting
2254       either i3dest or i2dest, so we must check it.  Also, i1dest may be the
2255       same as i3dest, in which case newi2pat may be setting i1dest.  */
2256    rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2257		   || i2dest_in_i2src || i2dest_in_i1src
2258		   ? 0 : i2dest);
2259    rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2260		   || (newi2pat && reg_set_p (i1dest, newi2pat))
2261		   ? 0 : i1dest);
2262
2263    /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2264       clear them.  */
2265    i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2266    i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2267    if (i1)
2268      i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2269
2270    /* Ensure that we do not have something that should not be shared but
2271       occurs multiple times in the new insns.  Check this by first
2272       resetting all the `used' flags and then copying anything is shared.  */
2273
2274    reset_used_flags (i3notes);
2275    reset_used_flags (i2notes);
2276    reset_used_flags (i1notes);
2277    reset_used_flags (newpat);
2278    reset_used_flags (newi2pat);
2279    if (undobuf.other_insn)
2280      reset_used_flags (PATTERN (undobuf.other_insn));
2281
2282    i3notes = copy_rtx_if_shared (i3notes);
2283    i2notes = copy_rtx_if_shared (i2notes);
2284    i1notes = copy_rtx_if_shared (i1notes);
2285    newpat = copy_rtx_if_shared (newpat);
2286    newi2pat = copy_rtx_if_shared (newi2pat);
2287    if (undobuf.other_insn)
2288      reset_used_flags (PATTERN (undobuf.other_insn));
2289
2290    INSN_CODE (i3) = insn_code_number;
2291    PATTERN (i3) = newpat;
2292    if (undobuf.other_insn)
2293      INSN_CODE (undobuf.other_insn) = other_code_number;
2294
2295    /* We had one special case above where I2 had more than one set and
2296       we replaced a destination of one of those sets with the destination
2297       of I3.  In that case, we have to update LOG_LINKS of insns later
2298       in this basic block.  Note that this (expensive) case is rare.
2299
2300       Also, in this case, we must pretend that all REG_NOTEs for I2
2301       actually came from I3, so that REG_UNUSED notes from I2 will be
2302       properly handled.  */
2303
2304    if (i3_subst_into_i2)
2305      {
2306	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2307	  if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2308	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2309	      && ! find_reg_note (i2, REG_UNUSED,
2310				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2311	    for (temp = NEXT_INSN (i2);
2312		 temp && (this_basic_block == n_basic_blocks - 1
2313			  || BLOCK_HEAD (this_basic_block) != temp);
2314		 temp = NEXT_INSN (temp))
2315	      if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
2316		for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2317		  if (XEXP (link, 0) == i2)
2318		    XEXP (link, 0) = i3;
2319
2320	if (i3notes)
2321	  {
2322	    rtx link = i3notes;
2323	    while (XEXP (link, 1))
2324	      link = XEXP (link, 1);
2325	    XEXP (link, 1) = i2notes;
2326	  }
2327	else
2328	  i3notes = i2notes;
2329	i2notes = 0;
2330      }
2331
2332    LOG_LINKS (i3) = 0;
2333    REG_NOTES (i3) = 0;
2334    LOG_LINKS (i2) = 0;
2335    REG_NOTES (i2) = 0;
2336
2337    if (newi2pat)
2338      {
2339	INSN_CODE (i2) = i2_code_number;
2340	PATTERN (i2) = newi2pat;
2341      }
2342    else
2343      {
2344	PUT_CODE (i2, NOTE);
2345	NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2346	NOTE_SOURCE_FILE (i2) = 0;
2347      }
2348
2349    if (i1)
2350      {
2351	LOG_LINKS (i1) = 0;
2352	REG_NOTES (i1) = 0;
2353	PUT_CODE (i1, NOTE);
2354	NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2355	NOTE_SOURCE_FILE (i1) = 0;
2356      }
2357
2358    /* Get death notes for everything that is now used in either I3 or
2359       I2 and used to die in a previous insn.  If we built two new
2360       patterns, move from I1 to I2 then I2 to I3 so that we get the
2361       proper movement on registers that I2 modifies.  */
2362
2363    if (newi2pat)
2364      {
2365	move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2366	move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2367      }
2368    else
2369      move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2370		   i3, &midnotes);
2371
2372    /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
2373    if (i3notes)
2374      distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2375			elim_i2, elim_i1);
2376    if (i2notes)
2377      distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2378			elim_i2, elim_i1);
2379    if (i1notes)
2380      distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2381			elim_i2, elim_i1);
2382    if (midnotes)
2383      distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2384			elim_i2, elim_i1);
2385
2386    /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
2387       know these are REG_UNUSED and want them to go to the desired insn,
2388       so we always pass it as i3.  We have not counted the notes in
2389       reg_n_deaths yet, so we need to do so now.  */
2390
2391    if (newi2pat && new_i2_notes)
2392      {
2393	for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2394	  if (GET_CODE (XEXP (temp, 0)) == REG)
2395	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2396
2397	distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2398      }
2399
2400    if (new_i3_notes)
2401      {
2402	for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2403	  if (GET_CODE (XEXP (temp, 0)) == REG)
2404	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2405
2406	distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2407      }
2408
2409    /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
2410       put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
2411       I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
2412       in that case, it might delete I2.  Similarly for I2 and I1.
2413       Show an additional death due to the REG_DEAD note we make here.  If
2414       we discard it in distribute_notes, we will decrement it again.  */
2415
2416    if (i3dest_killed)
2417      {
2418	if (GET_CODE (i3dest_killed) == REG)
2419	  REG_N_DEATHS (REGNO (i3dest_killed))++;
2420
2421	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2422	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2423					       NULL_RTX),
2424			    NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2425	else
2426	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2427					       NULL_RTX),
2428			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2429			    elim_i2, elim_i1);
2430      }
2431
2432    if (i2dest_in_i2src)
2433      {
2434	if (GET_CODE (i2dest) == REG)
2435	  REG_N_DEATHS (REGNO (i2dest))++;
2436
2437	if (newi2pat && reg_set_p (i2dest, newi2pat))
2438	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2439			    NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2440	else
2441	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2442			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2443			    NULL_RTX, NULL_RTX);
2444      }
2445
2446    if (i1dest_in_i1src)
2447      {
2448	if (GET_CODE (i1dest) == REG)
2449	  REG_N_DEATHS (REGNO (i1dest))++;
2450
2451	if (newi2pat && reg_set_p (i1dest, newi2pat))
2452	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2453			    NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2454	else
2455	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2456			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2457			    NULL_RTX, NULL_RTX);
2458      }
2459
2460    distribute_links (i3links);
2461    distribute_links (i2links);
2462    distribute_links (i1links);
2463
2464    if (GET_CODE (i2dest) == REG)
2465      {
2466	rtx link;
2467	rtx i2_insn = 0, i2_val = 0, set;
2468
2469	/* The insn that used to set this register doesn't exist, and
2470	   this life of the register may not exist either.  See if one of
2471	   I3's links points to an insn that sets I2DEST.  If it does,
2472	   that is now the last known value for I2DEST. If we don't update
2473	   this and I2 set the register to a value that depended on its old
2474	   contents, we will get confused.  If this insn is used, thing
2475	   will be set correctly in combine_instructions.  */
2476
2477	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2478	  if ((set = single_set (XEXP (link, 0))) != 0
2479	      && rtx_equal_p (i2dest, SET_DEST (set)))
2480	    i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2481
2482	record_value_for_reg (i2dest, i2_insn, i2_val);
2483
2484	/* If the reg formerly set in I2 died only once and that was in I3,
2485	   zero its use count so it won't make `reload' do any work.  */
2486	if (! added_sets_2
2487	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2488	    && ! i2dest_in_i2src)
2489	  {
2490	    regno = REGNO (i2dest);
2491	    REG_N_SETS (regno)--;
2492	    if (REG_N_SETS (regno) == 0
2493		&& ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
2494				      regno))
2495	      REG_N_REFS (regno) = 0;
2496	  }
2497      }
2498
2499    if (i1 && GET_CODE (i1dest) == REG)
2500      {
2501	rtx link;
2502	rtx i1_insn = 0, i1_val = 0, set;
2503
2504	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2505	  if ((set = single_set (XEXP (link, 0))) != 0
2506	      && rtx_equal_p (i1dest, SET_DEST (set)))
2507	    i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2508
2509	record_value_for_reg (i1dest, i1_insn, i1_val);
2510
2511	regno = REGNO (i1dest);
2512	if (! added_sets_1 && ! i1dest_in_i1src)
2513	  {
2514	    REG_N_SETS (regno)--;
2515	    if (REG_N_SETS (regno) == 0
2516		&& ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
2517				      regno))
2518	      REG_N_REFS (regno) = 0;
2519	  }
2520      }
2521
2522    /* Update reg_nonzero_bits et al for any changes that may have been made
2523       to this insn.  */
2524
2525    note_stores (newpat, set_nonzero_bits_and_sign_copies);
2526    if (newi2pat)
2527      note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
2528
2529    /* If I3 is now an unconditional jump, ensure that it has a
2530       BARRIER following it since it may have initially been a
2531       conditional jump.  It may also be the last nonnote insn.  */
2532
2533    if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
2534	&& ((temp = next_nonnote_insn (i3)) == NULL_RTX
2535	    || GET_CODE (temp) != BARRIER))
2536      emit_barrier_after (i3);
2537  }
2538
2539  combine_successes++;
2540
2541  /* Clear this here, so that subsequent get_last_value calls are not
2542     affected.  */
2543  subst_prev_insn = NULL_RTX;
2544
2545  if (added_links_insn
2546      && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2547      && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2548    return added_links_insn;
2549  else
2550    return newi2pat ? i2 : i3;
2551}
2552
2553/* Undo all the modifications recorded in undobuf.  */
2554
2555static void
2556undo_all ()
2557{
2558  struct undo *undo, *next;
2559
2560  for (undo = undobuf.undos; undo; undo = next)
2561    {
2562      next = undo->next;
2563      if (undo->is_int)
2564	*undo->where.i = undo->old_contents.i;
2565      else
2566	*undo->where.r = undo->old_contents.r;
2567
2568      undo->next = undobuf.frees;
2569      undobuf.frees = undo;
2570    }
2571
2572  obfree (undobuf.storage);
2573  undobuf.undos = undobuf.previous_undos = 0;
2574
2575  /* Clear this here, so that subsequent get_last_value calls are not
2576     affected.  */
2577  subst_prev_insn = NULL_RTX;
2578}
2579
2580/* Find the innermost point within the rtx at LOC, possibly LOC itself,
2581   where we have an arithmetic expression and return that point.  LOC will
2582   be inside INSN.
2583
2584   try_combine will call this function to see if an insn can be split into
2585   two insns.  */
2586
2587static rtx *
2588find_split_point (loc, insn)
2589     rtx *loc;
2590     rtx insn;
2591{
2592  rtx x = *loc;
2593  enum rtx_code code = GET_CODE (x);
2594  rtx *split;
2595  int len = 0, pos, unsignedp;
2596  rtx inner;
2597
2598  /* First special-case some codes.  */
2599  switch (code)
2600    {
2601    case SUBREG:
2602#ifdef INSN_SCHEDULING
2603      /* If we are making a paradoxical SUBREG invalid, it becomes a split
2604	 point.  */
2605      if (GET_CODE (SUBREG_REG (x)) == MEM)
2606	return loc;
2607#endif
2608      return find_split_point (&SUBREG_REG (x), insn);
2609
2610    case MEM:
2611#ifdef HAVE_lo_sum
2612      /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2613	 using LO_SUM and HIGH.  */
2614      if (GET_CODE (XEXP (x, 0)) == CONST
2615	  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2616	{
2617	  SUBST (XEXP (x, 0),
2618		 gen_rtx_combine (LO_SUM, Pmode,
2619				  gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2620				  XEXP (x, 0)));
2621	  return &XEXP (XEXP (x, 0), 0);
2622	}
2623#endif
2624
2625      /* If we have a PLUS whose second operand is a constant and the
2626	 address is not valid, perhaps will can split it up using
2627	 the machine-specific way to split large constants.  We use
2628	 the first pseudo-reg (one of the virtual regs) as a placeholder;
2629	 it will not remain in the result.  */
2630      if (GET_CODE (XEXP (x, 0)) == PLUS
2631	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2632	  && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2633	{
2634	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2635	  rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2636				 subst_insn);
2637
2638	  /* This should have produced two insns, each of which sets our
2639	     placeholder.  If the source of the second is a valid address,
2640	     we can make put both sources together and make a split point
2641	     in the middle.  */
2642
2643	  if (seq && XVECLEN (seq, 0) == 2
2644	      && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2645	      && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2646	      && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2647	      && ! reg_mentioned_p (reg,
2648				    SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2649	      && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2650	      && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2651	      && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2652	      && memory_address_p (GET_MODE (x),
2653				   SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2654	    {
2655	      rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2656	      rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2657
2658	      /* Replace the placeholder in SRC2 with SRC1.  If we can
2659		 find where in SRC2 it was placed, that can become our
2660		 split point and we can replace this address with SRC2.
2661		 Just try two obvious places.  */
2662
2663	      src2 = replace_rtx (src2, reg, src1);
2664	      split = 0;
2665	      if (XEXP (src2, 0) == src1)
2666		split = &XEXP (src2, 0);
2667	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2668		       && XEXP (XEXP (src2, 0), 0) == src1)
2669		split = &XEXP (XEXP (src2, 0), 0);
2670
2671	      if (split)
2672		{
2673		  SUBST (XEXP (x, 0), src2);
2674		  return split;
2675		}
2676	    }
2677
2678	  /* If that didn't work, perhaps the first operand is complex and
2679	     needs to be computed separately, so make a split point there.
2680	     This will occur on machines that just support REG + CONST
2681	     and have a constant moved through some previous computation.  */
2682
2683	  else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2684		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2685			 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2686			     == 'o')))
2687	    return &XEXP (XEXP (x, 0), 0);
2688	}
2689      break;
2690
2691    case SET:
2692#ifdef HAVE_cc0
2693      /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2694	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2695	 we need to put the operand into a register.  So split at that
2696	 point.  */
2697
2698      if (SET_DEST (x) == cc0_rtx
2699	  && GET_CODE (SET_SRC (x)) != COMPARE
2700	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2701	  && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2702	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
2703		&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2704	return &SET_SRC (x);
2705#endif
2706
2707      /* See if we can split SET_SRC as it stands.  */
2708      split = find_split_point (&SET_SRC (x), insn);
2709      if (split && split != &SET_SRC (x))
2710	return split;
2711
2712      /* See if we can split SET_DEST as it stands.  */
2713      split = find_split_point (&SET_DEST (x), insn);
2714      if (split && split != &SET_DEST (x))
2715	return split;
2716
2717      /* See if this is a bitfield assignment with everything constant.  If
2718	 so, this is an IOR of an AND, so split it into that.  */
2719      if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2720	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2721	      <= HOST_BITS_PER_WIDE_INT)
2722	  && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2723	  && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2724	  && GET_CODE (SET_SRC (x)) == CONST_INT
2725	  && ((INTVAL (XEXP (SET_DEST (x), 1))
2726	      + INTVAL (XEXP (SET_DEST (x), 2)))
2727	      <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2728	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2729	{
2730	  int pos = INTVAL (XEXP (SET_DEST (x), 2));
2731	  int len = INTVAL (XEXP (SET_DEST (x), 1));
2732	  int src = INTVAL (SET_SRC (x));
2733	  rtx dest = XEXP (SET_DEST (x), 0);
2734	  enum machine_mode mode = GET_MODE (dest);
2735	  unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2736
2737	  if (BITS_BIG_ENDIAN)
2738	    pos = GET_MODE_BITSIZE (mode) - len - pos;
2739
2740	  if ((unsigned HOST_WIDE_INT) src == mask)
2741	    SUBST (SET_SRC (x),
2742		   gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2743	  else
2744	    SUBST (SET_SRC (x),
2745		   gen_binary (IOR, mode,
2746			       gen_binary (AND, mode, dest,
2747					   GEN_INT (~ (mask << pos)
2748						    & GET_MODE_MASK (mode))),
2749			       GEN_INT (src << pos)));
2750
2751	  SUBST (SET_DEST (x), dest);
2752
2753	  split = find_split_point (&SET_SRC (x), insn);
2754	  if (split && split != &SET_SRC (x))
2755	    return split;
2756	}
2757
2758      /* Otherwise, see if this is an operation that we can split into two.
2759	 If so, try to split that.  */
2760      code = GET_CODE (SET_SRC (x));
2761
2762      switch (code)
2763	{
2764	case AND:
2765	  /* If we are AND'ing with a large constant that is only a single
2766	     bit and the result is only being used in a context where we
2767	     need to know if it is zero or non-zero, replace it with a bit
2768	     extraction.  This will avoid the large constant, which might
2769	     have taken more than one insn to make.  If the constant were
2770	     not a valid argument to the AND but took only one insn to make,
2771	     this is no worse, but if it took more than one insn, it will
2772	     be better.  */
2773
2774	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2775	      && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2776	      && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
2777	      && GET_CODE (SET_DEST (x)) == REG
2778	      && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
2779	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
2780	      && XEXP (*split, 0) == SET_DEST (x)
2781	      && XEXP (*split, 1) == const0_rtx)
2782	    {
2783	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
2784						XEXP (SET_SRC (x), 0),
2785						pos, NULL_RTX, 1, 1, 0, 0);
2786	      if (extraction != 0)
2787		{
2788		  SUBST (SET_SRC (x), extraction);
2789		  return find_split_point (loc, insn);
2790		}
2791	    }
2792	  break;
2793
2794	case NE:
2795	  /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
2796	     is known to be on, this can be converted into a NEG of a shift. */
2797	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
2798	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
2799	      && 1 <= (pos = exact_log2
2800		       (nonzero_bits (XEXP (SET_SRC (x), 0),
2801				      GET_MODE (XEXP (SET_SRC (x), 0))))))
2802	    {
2803	      enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
2804
2805	      SUBST (SET_SRC (x),
2806		     gen_rtx_combine (NEG, mode,
2807				      gen_rtx_combine (LSHIFTRT, mode,
2808						       XEXP (SET_SRC (x), 0),
2809						       GEN_INT (pos))));
2810
2811	      split = find_split_point (&SET_SRC (x), insn);
2812	      if (split && split != &SET_SRC (x))
2813		return split;
2814	    }
2815	  break;
2816
2817	case SIGN_EXTEND:
2818	  inner = XEXP (SET_SRC (x), 0);
2819
2820	  /* We can't optimize if either mode is a partial integer
2821	     mode as we don't know how many bits are significant
2822	     in those modes.  */
2823	  if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
2824	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
2825	    break;
2826
2827	  pos = 0;
2828	  len = GET_MODE_BITSIZE (GET_MODE (inner));
2829	  unsignedp = 0;
2830	  break;
2831
2832	case SIGN_EXTRACT:
2833	case ZERO_EXTRACT:
2834	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2835	      && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
2836	    {
2837	      inner = XEXP (SET_SRC (x), 0);
2838	      len = INTVAL (XEXP (SET_SRC (x), 1));
2839	      pos = INTVAL (XEXP (SET_SRC (x), 2));
2840
2841	      if (BITS_BIG_ENDIAN)
2842		pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
2843	      unsignedp = (code == ZERO_EXTRACT);
2844	    }
2845	  break;
2846
2847	default:
2848	  break;
2849	}
2850
2851      if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
2852	{
2853	  enum machine_mode mode = GET_MODE (SET_SRC (x));
2854
2855	  /* For unsigned, we have a choice of a shift followed by an
2856	     AND or two shifts.  Use two shifts for field sizes where the
2857	     constant might be too large.  We assume here that we can
2858	     always at least get 8-bit constants in an AND insn, which is
2859	     true for every current RISC.  */
2860
2861	  if (unsignedp && len <= 8)
2862	    {
2863	      SUBST (SET_SRC (x),
2864		     gen_rtx_combine
2865		     (AND, mode,
2866		      gen_rtx_combine (LSHIFTRT, mode,
2867				       gen_lowpart_for_combine (mode, inner),
2868				       GEN_INT (pos)),
2869		      GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
2870
2871	      split = find_split_point (&SET_SRC (x), insn);
2872	      if (split && split != &SET_SRC (x))
2873		return split;
2874	    }
2875	  else
2876	    {
2877	      SUBST (SET_SRC (x),
2878		     gen_rtx_combine
2879		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
2880		      gen_rtx_combine (ASHIFT, mode,
2881				       gen_lowpart_for_combine (mode, inner),
2882				       GEN_INT (GET_MODE_BITSIZE (mode)
2883						- len - pos)),
2884		      GEN_INT (GET_MODE_BITSIZE (mode) - len)));
2885
2886	      split = find_split_point (&SET_SRC (x), insn);
2887	      if (split && split != &SET_SRC (x))
2888		return split;
2889	    }
2890	}
2891
2892      /* See if this is a simple operation with a constant as the second
2893	 operand.  It might be that this constant is out of range and hence
2894	 could be used as a split point.  */
2895      if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2896	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2897	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
2898	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
2899	  && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
2900	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
2901		  && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
2902		      == 'o'))))
2903	return &XEXP (SET_SRC (x), 1);
2904
2905      /* Finally, see if this is a simple operation with its first operand
2906	 not in a register.  The operation might require this operand in a
2907	 register, so return it as a split point.  We can always do this
2908	 because if the first operand were another operation, we would have
2909	 already found it as a split point.  */
2910      if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2911	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2912	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
2913	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
2914	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
2915	return &XEXP (SET_SRC (x), 0);
2916
2917      return 0;
2918
2919    case AND:
2920    case IOR:
2921      /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
2922	 it is better to write this as (not (ior A B)) so we can split it.
2923	 Similarly for IOR.  */
2924      if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
2925	{
2926	  SUBST (*loc,
2927		 gen_rtx_combine (NOT, GET_MODE (x),
2928				  gen_rtx_combine (code == IOR ? AND : IOR,
2929						   GET_MODE (x),
2930						   XEXP (XEXP (x, 0), 0),
2931						   XEXP (XEXP (x, 1), 0))));
2932	  return find_split_point (loc, insn);
2933	}
2934
2935      /* Many RISC machines have a large set of logical insns.  If the
2936	 second operand is a NOT, put it first so we will try to split the
2937	 other operand first.  */
2938      if (GET_CODE (XEXP (x, 1)) == NOT)
2939	{
2940	  rtx tem = XEXP (x, 0);
2941	  SUBST (XEXP (x, 0), XEXP (x, 1));
2942	  SUBST (XEXP (x, 1), tem);
2943	}
2944      break;
2945
2946    default:
2947      break;
2948    }
2949
2950  /* Otherwise, select our actions depending on our rtx class.  */
2951  switch (GET_RTX_CLASS (code))
2952    {
2953    case 'b':			/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
2954    case '3':
2955      split = find_split_point (&XEXP (x, 2), insn);
2956      if (split)
2957	return split;
2958      /* ... fall through ...  */
2959    case '2':
2960    case 'c':
2961    case '<':
2962      split = find_split_point (&XEXP (x, 1), insn);
2963      if (split)
2964	return split;
2965      /* ... fall through ...  */
2966    case '1':
2967      /* Some machines have (and (shift ...) ...) insns.  If X is not
2968	 an AND, but XEXP (X, 0) is, use it as our split point.  */
2969      if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
2970	return &XEXP (x, 0);
2971
2972      split = find_split_point (&XEXP (x, 0), insn);
2973      if (split)
2974	return split;
2975      return loc;
2976    }
2977
2978  /* Otherwise, we don't have a split point.  */
2979  return 0;
2980}
2981
2982/* Throughout X, replace FROM with TO, and return the result.
2983   The result is TO if X is FROM;
2984   otherwise the result is X, but its contents may have been modified.
2985   If they were modified, a record was made in undobuf so that
2986   undo_all will (among other things) return X to its original state.
2987
2988   If the number of changes necessary is too much to record to undo,
2989   the excess changes are not made, so the result is invalid.
2990   The changes already made can still be undone.
2991   undobuf.num_undo is incremented for such changes, so by testing that
2992   the caller can tell whether the result is valid.
2993
2994   `n_occurrences' is incremented each time FROM is replaced.
2995
2996   IN_DEST is non-zero if we are processing the SET_DEST of a SET.
2997
2998   UNIQUE_COPY is non-zero if each substitution must be unique.  We do this
2999   by copying if `n_occurrences' is non-zero.  */
3000
3001static rtx
3002subst (x, from, to, in_dest, unique_copy)
3003     register rtx x, from, to;
3004     int in_dest;
3005     int unique_copy;
3006{
3007  register enum rtx_code code = GET_CODE (x);
3008  enum machine_mode op0_mode = VOIDmode;
3009  register char *fmt;
3010  register int len, i;
3011  rtx new;
3012
3013/* Two expressions are equal if they are identical copies of a shared
3014   RTX or if they are both registers with the same register number
3015   and mode.  */
3016
3017#define COMBINE_RTX_EQUAL_P(X,Y)			\
3018  ((X) == (Y)						\
3019   || (GET_CODE (X) == REG && GET_CODE (Y) == REG	\
3020       && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3021
3022  if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3023    {
3024      n_occurrences++;
3025      return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3026    }
3027
3028  /* If X and FROM are the same register but different modes, they will
3029     not have been seen as equal above.  However, flow.c will make a
3030     LOG_LINKS entry for that case.  If we do nothing, we will try to
3031     rerecognize our original insn and, when it succeeds, we will
3032     delete the feeding insn, which is incorrect.
3033
3034     So force this insn not to match in this (rare) case.  */
3035  if (! in_dest && code == REG && GET_CODE (from) == REG
3036      && REGNO (x) == REGNO (from))
3037    return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3038
3039  /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3040     of which may contain things that can be combined.  */
3041  if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3042    return x;
3043
3044  /* It is possible to have a subexpression appear twice in the insn.
3045     Suppose that FROM is a register that appears within TO.
3046     Then, after that subexpression has been scanned once by `subst',
3047     the second time it is scanned, TO may be found.  If we were
3048     to scan TO here, we would find FROM within it and create a
3049     self-referent rtl structure which is completely wrong.  */
3050  if (COMBINE_RTX_EQUAL_P (x, to))
3051    return to;
3052
3053  /* Parallel asm_operands need special attention because all of the
3054     inputs are shared across the arms.  Furthermore, unsharing the
3055     rtl results in recognition failures.  Failure to handle this case
3056     specially can result in circular rtl.
3057
3058     Solve this by doing a normal pass across the first entry of the
3059     parallel, and only processing the SET_DESTs of the subsequent
3060     entries.  Ug.  */
3061
3062  if (code == PARALLEL
3063      && GET_CODE (XVECEXP (x, 0, 0)) == SET
3064      && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3065    {
3066      new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3067
3068      /* If this substitution failed, this whole thing fails.  */
3069      if (GET_CODE (new) == CLOBBER
3070	  && XEXP (new, 0) == const0_rtx)
3071	return new;
3072
3073      SUBST (XVECEXP (x, 0, 0), new);
3074
3075      for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3076	{
3077	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
3078
3079	  if (GET_CODE (dest) != REG
3080	      && GET_CODE (dest) != CC0
3081	      && GET_CODE (dest) != PC)
3082	    {
3083	      new = subst (dest, from, to, 0, unique_copy);
3084
3085	      /* If this substitution failed, this whole thing fails.  */
3086	      if (GET_CODE (new) == CLOBBER
3087		  && XEXP (new, 0) == const0_rtx)
3088		return new;
3089
3090	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3091	    }
3092	}
3093    }
3094  else
3095    {
3096      len = GET_RTX_LENGTH (code);
3097      fmt = GET_RTX_FORMAT (code);
3098
3099      /* We don't need to process a SET_DEST that is a register, CC0,
3100	 or PC, so set up to skip this common case.  All other cases
3101	 where we want to suppress replacing something inside a
3102	 SET_SRC are handled via the IN_DEST operand.  */
3103      if (code == SET
3104	  && (GET_CODE (SET_DEST (x)) == REG
3105	      || GET_CODE (SET_DEST (x)) == CC0
3106	      || GET_CODE (SET_DEST (x)) == PC))
3107	fmt = "ie";
3108
3109      /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3110	 constant.  */
3111      if (fmt[0] == 'e')
3112	op0_mode = GET_MODE (XEXP (x, 0));
3113
3114      for (i = 0; i < len; i++)
3115	{
3116	  if (fmt[i] == 'E')
3117	    {
3118	      register int j;
3119	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3120		{
3121		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3122		    {
3123		      new = (unique_copy && n_occurrences
3124			     ? copy_rtx (to) : to);
3125		      n_occurrences++;
3126		    }
3127		  else
3128		    {
3129		      new = subst (XVECEXP (x, i, j), from, to, 0,
3130				   unique_copy);
3131
3132		      /* If this substitution failed, this whole thing
3133			 fails.  */
3134		      if (GET_CODE (new) == CLOBBER
3135			  && XEXP (new, 0) == const0_rtx)
3136			return new;
3137		    }
3138
3139		  SUBST (XVECEXP (x, i, j), new);
3140		}
3141	    }
3142	  else if (fmt[i] == 'e')
3143	    {
3144	      if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3145		{
3146		  /* In general, don't install a subreg involving two
3147		     modes not tieable.  It can worsen register
3148		     allocation, and can even make invalid reload
3149		     insns, since the reg inside may need to be copied
3150		     from in the outside mode, and that may be invalid
3151		     if it is an fp reg copied in integer mode.
3152
3153		     We allow two exceptions to this: It is valid if
3154		     it is inside another SUBREG and the mode of that
3155		     SUBREG and the mode of the inside of TO is
3156		     tieable and it is valid if X is a SET that copies
3157		     FROM to CC0.  */
3158
3159		  if (GET_CODE (to) == SUBREG
3160		      && ! MODES_TIEABLE_P (GET_MODE (to),
3161					    GET_MODE (SUBREG_REG (to)))
3162		      && ! (code == SUBREG
3163			    && MODES_TIEABLE_P (GET_MODE (x),
3164						GET_MODE (SUBREG_REG (to))))
3165#ifdef HAVE_cc0
3166		      && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3167#endif
3168		      )
3169		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3170
3171		  new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3172		  n_occurrences++;
3173		}
3174	      else
3175		/* If we are in a SET_DEST, suppress most cases unless we
3176		   have gone inside a MEM, in which case we want to
3177		   simplify the address.  We assume here that things that
3178		   are actually part of the destination have their inner
3179		   parts in the first expression.  This is true for SUBREG,
3180		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3181		   things aside from REG and MEM that should appear in a
3182		   SET_DEST.  */
3183		new = subst (XEXP (x, i), from, to,
3184			     (((in_dest
3185				&& (code == SUBREG || code == STRICT_LOW_PART
3186				    || code == ZERO_EXTRACT))
3187			       || code == SET)
3188			      && i == 0), unique_copy);
3189
3190	      /* If we found that we will have to reject this combination,
3191		 indicate that by returning the CLOBBER ourselves, rather than
3192		 an expression containing it.  This will speed things up as
3193		 well as prevent accidents where two CLOBBERs are considered
3194		 to be equal, thus producing an incorrect simplification.  */
3195
3196	      if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3197		return new;
3198
3199	      SUBST (XEXP (x, i), new);
3200	    }
3201	}
3202    }
3203
3204  /* Try to simplify X.  If the simplification changed the code, it is likely
3205     that further simplification will help, so loop, but limit the number
3206     of repetitions that will be performed.  */
3207
3208  for (i = 0; i < 4; i++)
3209    {
3210      /* If X is sufficiently simple, don't bother trying to do anything
3211	 with it.  */
3212      if (code != CONST_INT && code != REG && code != CLOBBER)
3213	x = simplify_rtx (x, op0_mode, i == 3, in_dest);
3214
3215      if (GET_CODE (x) == code)
3216	break;
3217
3218      code = GET_CODE (x);
3219
3220      /* We no longer know the original mode of operand 0 since we
3221	 have changed the form of X)  */
3222      op0_mode = VOIDmode;
3223    }
3224
3225  return x;
3226}
3227
3228/* Simplify X, a piece of RTL.  We just operate on the expression at the
3229   outer level; call `subst' to simplify recursively.  Return the new
3230   expression.
3231
3232   OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3233   will be the iteration even if an expression with a code different from
3234   X is returned; IN_DEST is nonzero if we are inside a SET_DEST.  */
3235
3236static rtx
3237simplify_rtx (x, op0_mode, last, in_dest)
3238     rtx x;
3239     enum machine_mode op0_mode;
3240     int last;
3241     int in_dest;
3242{
3243  enum rtx_code code = GET_CODE (x);
3244  enum machine_mode mode = GET_MODE (x);
3245  rtx temp;
3246  int i;
3247
3248  /* If this is a commutative operation, put a constant last and a complex
3249     expression first.  We don't need to do this for comparisons here.  */
3250  if (GET_RTX_CLASS (code) == 'c'
3251      && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
3252	  || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
3253	      && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
3254	  || (GET_CODE (XEXP (x, 0)) == SUBREG
3255	      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
3256	      && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
3257    {
3258      temp = XEXP (x, 0);
3259      SUBST (XEXP (x, 0), XEXP (x, 1));
3260      SUBST (XEXP (x, 1), temp);
3261    }
3262
3263  /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3264     sign extension of a PLUS with a constant, reverse the order of the sign
3265     extension and the addition. Note that this not the same as the original
3266     code, but overflow is undefined for signed values.  Also note that the
3267     PLUS will have been partially moved "inside" the sign-extension, so that
3268     the first operand of X will really look like:
3269         (ashiftrt (plus (ashift A C4) C5) C4).
3270     We convert this to
3271         (plus (ashiftrt (ashift A C4) C2) C4)
3272     and replace the first operand of X with that expression.  Later parts
3273     of this function may simplify the expression further.
3274
3275     For example, if we start with (mult (sign_extend (plus A C1)) C2),
3276     we swap the SIGN_EXTEND and PLUS.  Later code will apply the
3277     distributive law to produce (plus (mult (sign_extend X) C1) C3).
3278
3279     We do this to simplify address expressions.  */
3280
3281  if ((code == PLUS || code == MINUS || code == MULT)
3282      && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3283      && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3284      && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3285      && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3286      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3287      && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3288      && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3289      && (temp = simplify_binary_operation (ASHIFTRT, mode,
3290					    XEXP (XEXP (XEXP (x, 0), 0), 1),
3291					    XEXP (XEXP (x, 0), 1))) != 0)
3292    {
3293      rtx new
3294	= simplify_shift_const (NULL_RTX, ASHIFT, mode,
3295				XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3296				INTVAL (XEXP (XEXP (x, 0), 1)));
3297
3298      new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3299				  INTVAL (XEXP (XEXP (x, 0), 1)));
3300
3301      SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3302    }
3303
3304  /* If this is a simple operation applied to an IF_THEN_ELSE, try
3305     applying it to the arms of the IF_THEN_ELSE.  This often simplifies
3306     things.  Check for cases where both arms are testing the same
3307     condition.
3308
3309     Don't do anything if all operands are very simple.  */
3310
3311  if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3312	|| GET_RTX_CLASS (code) == '<')
3313       && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3314	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3315		  && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3316		      == 'o')))
3317	   || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3318	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3319		     && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3320			 == 'o')))))
3321      || (GET_RTX_CLASS (code) == '1'
3322	  && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3323	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3324		     && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3325			 == 'o'))))))
3326    {
3327      rtx cond, true, false;
3328
3329      cond = if_then_else_cond (x, &true, &false);
3330      if (cond != 0
3331	  /* If everything is a comparison, what we have is highly unlikely
3332	     to be simpler, so don't use it.  */
3333	  && ! (GET_RTX_CLASS (code) == '<'
3334		&& (GET_RTX_CLASS (GET_CODE (true)) == '<'
3335		    || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3336	{
3337	  rtx cop1 = const0_rtx;
3338	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3339
3340	  if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3341	    return x;
3342
3343	  /* Simplify the alternative arms; this may collapse the true and
3344	     false arms to store-flag values.  */
3345	  true = subst (true, pc_rtx, pc_rtx, 0, 0);
3346	  false = subst (false, pc_rtx, pc_rtx, 0, 0);
3347
3348	  /* Restarting if we generate a store-flag expression will cause
3349	     us to loop.  Just drop through in this case.  */
3350
3351	  /* If the result values are STORE_FLAG_VALUE and zero, we can
3352	     just make the comparison operation.  */
3353	  if (true == const_true_rtx && false == const0_rtx)
3354	    x = gen_binary (cond_code, mode, cond, cop1);
3355	  else if (true == const0_rtx && false == const_true_rtx)
3356	    x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
3357
3358	  /* Likewise, we can make the negate of a comparison operation
3359	     if the result values are - STORE_FLAG_VALUE and zero.  */
3360	  else if (GET_CODE (true) == CONST_INT
3361		   && INTVAL (true) == - STORE_FLAG_VALUE
3362		   && false == const0_rtx)
3363	    x = gen_unary (NEG, mode, mode,
3364			   gen_binary (cond_code, mode, cond, cop1));
3365	  else if (GET_CODE (false) == CONST_INT
3366		   && INTVAL (false) == - STORE_FLAG_VALUE
3367		   && true == const0_rtx)
3368	    x = gen_unary (NEG, mode, mode,
3369			   gen_binary (reverse_condition (cond_code),
3370				       mode, cond, cop1));
3371	  else
3372	    return gen_rtx_IF_THEN_ELSE (mode,
3373					 gen_binary (cond_code, VOIDmode,
3374						     cond, cop1),
3375					 true, false);
3376
3377	  code = GET_CODE (x);
3378	  op0_mode = VOIDmode;
3379	}
3380    }
3381
3382  /* Try to fold this expression in case we have constants that weren't
3383     present before.  */
3384  temp = 0;
3385  switch (GET_RTX_CLASS (code))
3386    {
3387    case '1':
3388      temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3389      break;
3390    case '<':
3391      temp = simplify_relational_operation (code, op0_mode,
3392					    XEXP (x, 0), XEXP (x, 1));
3393#ifdef FLOAT_STORE_FLAG_VALUE
3394      if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
3395	temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
3396		: immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
3397#endif
3398      break;
3399    case 'c':
3400    case '2':
3401      temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3402      break;
3403    case 'b':
3404    case '3':
3405      temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3406					 XEXP (x, 1), XEXP (x, 2));
3407      break;
3408    }
3409
3410  if (temp)
3411    x = temp, code = GET_CODE (temp);
3412
3413  /* First see if we can apply the inverse distributive law.  */
3414  if (code == PLUS || code == MINUS
3415      || code == AND || code == IOR || code == XOR)
3416    {
3417      x = apply_distributive_law (x);
3418      code = GET_CODE (x);
3419    }
3420
3421  /* If CODE is an associative operation not otherwise handled, see if we
3422     can associate some operands.  This can win if they are constants or
3423     if they are logically related (i.e. (a & b) & a.  */
3424  if ((code == PLUS || code == MINUS
3425       || code == MULT || code == AND || code == IOR || code == XOR
3426       || code == DIV || code == UDIV
3427       || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3428      && INTEGRAL_MODE_P (mode))
3429    {
3430      if (GET_CODE (XEXP (x, 0)) == code)
3431	{
3432	  rtx other = XEXP (XEXP (x, 0), 0);
3433	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3434	  rtx inner_op1 = XEXP (x, 1);
3435	  rtx inner;
3436
3437	  /* Make sure we pass the constant operand if any as the second
3438	     one if this is a commutative operation.  */
3439	  if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3440	    {
3441	      rtx tem = inner_op0;
3442	      inner_op0 = inner_op1;
3443	      inner_op1 = tem;
3444	    }
3445	  inner = simplify_binary_operation (code == MINUS ? PLUS
3446					     : code == DIV ? MULT
3447					     : code == UDIV ? MULT
3448					     : code,
3449					     mode, inner_op0, inner_op1);
3450
3451	  /* For commutative operations, try the other pair if that one
3452	     didn't simplify.  */
3453	  if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3454	    {
3455	      other = XEXP (XEXP (x, 0), 1);
3456	      inner = simplify_binary_operation (code, mode,
3457						 XEXP (XEXP (x, 0), 0),
3458						 XEXP (x, 1));
3459	    }
3460
3461	  if (inner)
3462	    return gen_binary (code, mode, other, inner);
3463	}
3464    }
3465
3466  /* A little bit of algebraic simplification here.  */
3467  switch (code)
3468    {
3469    case MEM:
3470      /* Ensure that our address has any ASHIFTs converted to MULT in case
3471	 address-recognizing predicates are called later.  */
3472      temp = make_compound_operation (XEXP (x, 0), MEM);
3473      SUBST (XEXP (x, 0), temp);
3474      break;
3475
3476    case SUBREG:
3477      /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3478	 is paradoxical.  If we can't do that safely, then it becomes
3479	 something nonsensical so that this combination won't take place.  */
3480
3481      if (GET_CODE (SUBREG_REG (x)) == MEM
3482	  && (GET_MODE_SIZE (mode)
3483	      <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3484	{
3485	  rtx inner = SUBREG_REG (x);
3486	  int endian_offset = 0;
3487	  /* Don't change the mode of the MEM
3488	     if that would change the meaning of the address.  */
3489	  if (MEM_VOLATILE_P (SUBREG_REG (x))
3490	      || mode_dependent_address_p (XEXP (inner, 0)))
3491	    return gen_rtx_CLOBBER (mode, const0_rtx);
3492
3493	  if (BYTES_BIG_ENDIAN)
3494	    {
3495	      if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3496		endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3497	      if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3498		endian_offset -= (UNITS_PER_WORD
3499				  - GET_MODE_SIZE (GET_MODE (inner)));
3500	    }
3501	  /* Note if the plus_constant doesn't make a valid address
3502	     then this combination won't be accepted.  */
3503	  x = gen_rtx_MEM (mode,
3504			   plus_constant (XEXP (inner, 0),
3505					  (SUBREG_WORD (x) * UNITS_PER_WORD
3506					   + endian_offset)));
3507	  RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
3508	  MEM_COPY_ATTRIBUTES (x, inner);
3509	  return x;
3510	}
3511
3512      /* If we are in a SET_DEST, these other cases can't apply.  */
3513      if (in_dest)
3514	return x;
3515
3516      /* Changing mode twice with SUBREG => just change it once,
3517	 or not at all if changing back to starting mode.  */
3518      if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3519	{
3520	  if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3521	      && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3522	    return SUBREG_REG (SUBREG_REG (x));
3523
3524	  SUBST_INT (SUBREG_WORD (x),
3525		     SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3526	  SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3527	}
3528
3529      /* SUBREG of a hard register => just change the register number
3530	 and/or mode.  If the hard register is not valid in that mode,
3531	 suppress this combination.  If the hard register is the stack,
3532	 frame, or argument pointer, leave this as a SUBREG.  */
3533
3534      if (GET_CODE (SUBREG_REG (x)) == REG
3535	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3536	  && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3537#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3538	  && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3539#endif
3540#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3541	  && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3542#endif
3543	  && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3544	{
3545	  if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3546				  mode))
3547	    return gen_rtx_REG (mode,
3548				REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3549	  else
3550	    return gen_rtx_CLOBBER (mode, const0_rtx);
3551	}
3552
3553      /* For a constant, try to pick up the part we want.  Handle a full
3554	 word and low-order part.  Only do this if we are narrowing
3555	 the constant; if it is being widened, we have no idea what
3556	 the extra bits will have been set to.  */
3557
3558      if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3559	  && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3560	  && GET_MODE_SIZE (op0_mode) > UNITS_PER_WORD
3561	  && GET_MODE_CLASS (mode) == MODE_INT)
3562	{
3563	  temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3564				  0, op0_mode);
3565	  if (temp)
3566	    return temp;
3567	}
3568
3569      /* If we want a subreg of a constant, at offset 0,
3570	 take the low bits.  On a little-endian machine, that's
3571	 always valid.  On a big-endian machine, it's valid
3572	 only if the constant's mode fits in one word.   Note that we
3573	 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode.  */
3574      if (CONSTANT_P (SUBREG_REG (x))
3575	  && ((GET_MODE_SIZE (op0_mode) <= UNITS_PER_WORD
3576	      || ! WORDS_BIG_ENDIAN)
3577	      ? SUBREG_WORD (x) == 0
3578	      : (SUBREG_WORD (x)
3579		 == ((GET_MODE_SIZE (op0_mode)
3580		      - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
3581		     / UNITS_PER_WORD)))
3582	  && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (op0_mode)
3583	  && (! WORDS_BIG_ENDIAN
3584	      || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3585	return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3586
3587      /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3588	 since we are saying that the high bits don't matter.  */
3589      if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3590	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3591	return SUBREG_REG (x);
3592
3593      /* Note that we cannot do any narrowing for non-constants since
3594	 we might have been counting on using the fact that some bits were
3595	 zero.  We now do this in the SET.  */
3596
3597      break;
3598
3599    case NOT:
3600      /* (not (plus X -1)) can become (neg X).  */
3601      if (GET_CODE (XEXP (x, 0)) == PLUS
3602	  && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3603	return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3604
3605      /* Similarly, (not (neg X)) is (plus X -1).  */
3606      if (GET_CODE (XEXP (x, 0)) == NEG)
3607	return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3608				constm1_rtx);
3609
3610      /* (not (xor X C)) for C constant is (xor X D) with D = ~ C.  */
3611      if (GET_CODE (XEXP (x, 0)) == XOR
3612	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3613	  && (temp = simplify_unary_operation (NOT, mode,
3614					       XEXP (XEXP (x, 0), 1),
3615					       mode)) != 0)
3616	return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3617
3618      /* (not (ashift 1 X)) is (rotate ~1 X).  We used to do this for operands
3619	 other than 1, but that is not valid.  We could do a similar
3620	 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3621	 but this doesn't seem common enough to bother with.  */
3622      if (GET_CODE (XEXP (x, 0)) == ASHIFT
3623	  && XEXP (XEXP (x, 0), 0) == const1_rtx)
3624	return gen_rtx_ROTATE (mode, gen_unary (NOT, mode, mode, const1_rtx),
3625			       XEXP (XEXP (x, 0), 1));
3626
3627      if (GET_CODE (XEXP (x, 0)) == SUBREG
3628	  && subreg_lowpart_p (XEXP (x, 0))
3629	  && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3630	      < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3631	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3632	  && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3633	{
3634	  enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3635
3636	  x = gen_rtx_ROTATE (inner_mode,
3637			      gen_unary (NOT, inner_mode, inner_mode,
3638					 const1_rtx),
3639			      XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3640	  return gen_lowpart_for_combine (mode, x);
3641	}
3642
3643      /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3644	 reversing the comparison code if valid.  */
3645      if (STORE_FLAG_VALUE == -1
3646	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3647	  && reversible_comparison_p (XEXP (x, 0)))
3648	return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3649				mode, XEXP (XEXP (x, 0), 0),
3650				XEXP (XEXP (x, 0), 1));
3651
3652      /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3653	 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3654	 perform the above simplification.  */
3655
3656      if (STORE_FLAG_VALUE == -1
3657	  && XEXP (x, 1) == const1_rtx
3658	  && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3659	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3660	  && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3661	return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3662
3663      /* Apply De Morgan's laws to reduce number of patterns for machines
3664 	 with negating logical insns (and-not, nand, etc.).  If result has
3665 	 only one NOT, put it first, since that is how the patterns are
3666 	 coded.  */
3667
3668      if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3669 	{
3670 	 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3671
3672	 if (GET_CODE (in1) == NOT)
3673	   in1 = XEXP (in1, 0);
3674 	 else
3675	   in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
3676
3677	 if (GET_CODE (in2) == NOT)
3678	   in2 = XEXP (in2, 0);
3679 	 else if (GET_CODE (in2) == CONST_INT
3680		  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3681	   in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
3682	 else
3683	   in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
3684
3685	 if (GET_CODE (in2) == NOT)
3686	   {
3687	     rtx tem = in2;
3688	     in2 = in1; in1 = tem;
3689	   }
3690
3691	 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3692				 mode, in1, in2);
3693       }
3694      break;
3695
3696    case NEG:
3697      /* (neg (plus X 1)) can become (not X).  */
3698      if (GET_CODE (XEXP (x, 0)) == PLUS
3699	  && XEXP (XEXP (x, 0), 1) == const1_rtx)
3700	return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3701
3702      /* Similarly, (neg (not X)) is (plus X 1).  */
3703      if (GET_CODE (XEXP (x, 0)) == NOT)
3704	return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3705
3706      /* (neg (minus X Y)) can become (minus Y X).  */
3707      if (GET_CODE (XEXP (x, 0)) == MINUS
3708	  && (! FLOAT_MODE_P (mode)
3709	      /* x-y != -(y-x) with IEEE floating point.  */
3710	      || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3711	      || flag_fast_math))
3712	return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3713			   XEXP (XEXP (x, 0), 0));
3714
3715      /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1.  */
3716      if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3717	  && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3718	return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3719
3720      /* NEG commutes with ASHIFT since it is multiplication.  Only do this
3721	 if we can then eliminate the NEG (e.g.,
3722	 if the operand is a constant).  */
3723
3724      if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3725	{
3726	  temp = simplify_unary_operation (NEG, mode,
3727					   XEXP (XEXP (x, 0), 0), mode);
3728	  if (temp)
3729	    {
3730	      SUBST (XEXP (XEXP (x, 0), 0), temp);
3731	      return XEXP (x, 0);
3732	    }
3733	}
3734
3735      temp = expand_compound_operation (XEXP (x, 0));
3736
3737      /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3738 	 replaced by (lshiftrt X C).  This will convert
3739	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
3740
3741      if (GET_CODE (temp) == ASHIFTRT
3742	  && GET_CODE (XEXP (temp, 1)) == CONST_INT
3743	  && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3744	return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3745				     INTVAL (XEXP (temp, 1)));
3746
3747      /* If X has only a single bit that might be nonzero, say, bit I, convert
3748	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3749	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
3750	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
3751	 or a SUBREG of one since we'd be making the expression more
3752	 complex if it was just a register.  */
3753
3754      if (GET_CODE (temp) != REG
3755	  && ! (GET_CODE (temp) == SUBREG
3756		&& GET_CODE (SUBREG_REG (temp)) == REG)
3757	  && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3758	{
3759	  rtx temp1 = simplify_shift_const
3760	    (NULL_RTX, ASHIFTRT, mode,
3761	     simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3762				   GET_MODE_BITSIZE (mode) - 1 - i),
3763	     GET_MODE_BITSIZE (mode) - 1 - i);
3764
3765	  /* If all we did was surround TEMP with the two shifts, we
3766	     haven't improved anything, so don't use it.  Otherwise,
3767	     we are better off with TEMP1.  */
3768	  if (GET_CODE (temp1) != ASHIFTRT
3769	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3770	      || XEXP (XEXP (temp1, 0), 0) != temp)
3771	    return temp1;
3772	}
3773      break;
3774
3775    case TRUNCATE:
3776      /* We can't handle truncation to a partial integer mode here
3777	 because we don't know the real bitsize of the partial
3778	 integer mode.  */
3779      if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3780	break;
3781
3782      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3783	  && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3784				    GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3785	SUBST (XEXP (x, 0),
3786	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3787			      GET_MODE_MASK (mode), NULL_RTX, 0));
3788
3789      /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI.  */
3790      if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3791	   || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3792	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3793	return XEXP (XEXP (x, 0), 0);
3794
3795      /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3796	 (OP:SI foo:SI) if OP is NEG or ABS.  */
3797      if ((GET_CODE (XEXP (x, 0)) == ABS
3798	   || GET_CODE (XEXP (x, 0)) == NEG)
3799	  && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3800	      || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3801	  && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3802	return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3803			  XEXP (XEXP (XEXP (x, 0), 0), 0));
3804
3805      /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3806	 (truncate:SI x).  */
3807      if (GET_CODE (XEXP (x, 0)) == SUBREG
3808	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3809	  && subreg_lowpart_p (XEXP (x, 0)))
3810	return SUBREG_REG (XEXP (x, 0));
3811
3812      /* If we know that the value is already truncated, we can
3813         replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION is
3814	 nonzero for the corresponding modes.  */
3815      if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3816				 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3817	  && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3818	     >= GET_MODE_BITSIZE (mode) + 1)
3819	return gen_lowpart_for_combine (mode, XEXP (x, 0));
3820
3821      /* A truncate of a comparison can be replaced with a subreg if
3822         STORE_FLAG_VALUE permits.  This is like the previous test,
3823         but it works even if the comparison is done in a mode larger
3824         than HOST_BITS_PER_WIDE_INT.  */
3825      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3826	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3827	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0)
3828	return gen_lowpart_for_combine (mode, XEXP (x, 0));
3829
3830      /* Similarly, a truncate of a register whose value is a
3831         comparison can be replaced with a subreg if STORE_FLAG_VALUE
3832         permits.  */
3833      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3834	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0
3835	  && (temp = get_last_value (XEXP (x, 0)))
3836	  && GET_RTX_CLASS (GET_CODE (temp)) == '<')
3837	return gen_lowpart_for_combine (mode, XEXP (x, 0));
3838
3839      break;
3840
3841    case FLOAT_TRUNCATE:
3842      /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF.  */
3843      if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
3844	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3845 	return XEXP (XEXP (x, 0), 0);
3846
3847      /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
3848	 (OP:SF foo:SF) if OP is NEG or ABS.  */
3849      if ((GET_CODE (XEXP (x, 0)) == ABS
3850	   || GET_CODE (XEXP (x, 0)) == NEG)
3851	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
3852	  && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3853	return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3854			  XEXP (XEXP (XEXP (x, 0), 0), 0));
3855
3856      /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
3857	 is (float_truncate:SF x).  */
3858      if (GET_CODE (XEXP (x, 0)) == SUBREG
3859	  && subreg_lowpart_p (XEXP (x, 0))
3860	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
3861	return SUBREG_REG (XEXP (x, 0));
3862      break;
3863
3864#ifdef HAVE_cc0
3865    case COMPARE:
3866      /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3867	 using cc0, in which case we want to leave it as a COMPARE
3868	 so we can distinguish it from a register-register-copy.  */
3869      if (XEXP (x, 1) == const0_rtx)
3870	return XEXP (x, 0);
3871
3872      /* In IEEE floating point, x-0 is not the same as x.  */
3873      if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3874	   || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
3875	   || flag_fast_math)
3876	  && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
3877	return XEXP (x, 0);
3878      break;
3879#endif
3880
3881    case CONST:
3882      /* (const (const X)) can become (const X).  Do it this way rather than
3883	 returning the inner CONST since CONST can be shared with a
3884	 REG_EQUAL note.  */
3885      if (GET_CODE (XEXP (x, 0)) == CONST)
3886	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3887      break;
3888
3889#ifdef HAVE_lo_sum
3890    case LO_SUM:
3891      /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
3892	 can add in an offset.  find_split_point will split this address up
3893	 again if it doesn't match.  */
3894      if (GET_CODE (XEXP (x, 0)) == HIGH
3895	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
3896	return XEXP (x, 1);
3897      break;
3898#endif
3899
3900    case PLUS:
3901      /* If we have (plus (plus (A const) B)), associate it so that CONST is
3902	 outermost.  That's because that's the way indexed addresses are
3903	 supposed to appear.  This code used to check many more cases, but
3904	 they are now checked elsewhere.  */
3905      if (GET_CODE (XEXP (x, 0)) == PLUS
3906	  && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
3907	return gen_binary (PLUS, mode,
3908			   gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
3909				       XEXP (x, 1)),
3910			   XEXP (XEXP (x, 0), 1));
3911
3912      /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
3913	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
3914	 bit-field and can be replaced by either a sign_extend or a
3915	 sign_extract.  The `and' may be a zero_extend.  */
3916      if (GET_CODE (XEXP (x, 0)) == XOR
3917	  && GET_CODE (XEXP (x, 1)) == CONST_INT
3918	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3919	  && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
3920	  && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
3921	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3922	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
3923	       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3924	       && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
3925		   == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
3926	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
3927		  && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
3928		      == i + 1))))
3929	return simplify_shift_const
3930	  (NULL_RTX, ASHIFTRT, mode,
3931	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
3932				 XEXP (XEXP (XEXP (x, 0), 0), 0),
3933				 GET_MODE_BITSIZE (mode) - (i + 1)),
3934	   GET_MODE_BITSIZE (mode) - (i + 1));
3935
3936      /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
3937	 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
3938	 is 1.  This produces better code than the alternative immediately
3939	 below.  */
3940      if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3941	  && reversible_comparison_p (XEXP (x, 0))
3942	  && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
3943	      || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
3944	return
3945	  gen_unary (NEG, mode, mode,
3946		     gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
3947				 mode, XEXP (XEXP (x, 0), 0),
3948				 XEXP (XEXP (x, 0), 1)));
3949
3950      /* If only the low-order bit of X is possibly nonzero, (plus x -1)
3951	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
3952	 the bitsize of the mode - 1.  This allows simplification of
3953	 "a = (b & 8) == 0;"  */
3954      if (XEXP (x, 1) == constm1_rtx
3955	  && GET_CODE (XEXP (x, 0)) != REG
3956	  && ! (GET_CODE (XEXP (x,0)) == SUBREG
3957		&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
3958	  && nonzero_bits (XEXP (x, 0), mode) == 1)
3959	return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
3960	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
3961				 gen_rtx_combine (XOR, mode,
3962						  XEXP (x, 0), const1_rtx),
3963				 GET_MODE_BITSIZE (mode) - 1),
3964	   GET_MODE_BITSIZE (mode) - 1);
3965
3966      /* If we are adding two things that have no bits in common, convert
3967	 the addition into an IOR.  This will often be further simplified,
3968	 for example in cases like ((a & 1) + (a & 2)), which can
3969	 become a & 3.  */
3970
3971      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3972	  && (nonzero_bits (XEXP (x, 0), mode)
3973	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
3974	return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
3975      break;
3976
3977    case MINUS:
3978      /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
3979	 by reversing the comparison code if valid.  */
3980      if (STORE_FLAG_VALUE == 1
3981	  && XEXP (x, 0) == const1_rtx
3982	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
3983	  && reversible_comparison_p (XEXP (x, 1)))
3984	return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
3985			   mode, XEXP (XEXP (x, 1), 0),
3986				XEXP (XEXP (x, 1), 1));
3987
3988      /* (minus <foo> (and <foo> (const_int -pow2))) becomes
3989	 (and <foo> (const_int pow2-1))  */
3990      if (GET_CODE (XEXP (x, 1)) == AND
3991	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3992	  && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
3993	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3994	return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
3995				       - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
3996
3997      /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
3998	 integers.  */
3999      if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4000	return gen_binary (MINUS, mode,
4001			   gen_binary (MINUS, mode, XEXP (x, 0),
4002				       XEXP (XEXP (x, 1), 0)),
4003			   XEXP (XEXP (x, 1), 1));
4004      break;
4005
4006    case MULT:
4007      /* If we have (mult (plus A B) C), apply the distributive law and then
4008	 the inverse distributive law to see if things simplify.  This
4009	 occurs mostly in addresses, often when unrolling loops.  */
4010
4011      if (GET_CODE (XEXP (x, 0)) == PLUS)
4012	{
4013	  x = apply_distributive_law
4014	    (gen_binary (PLUS, mode,
4015			 gen_binary (MULT, mode,
4016				     XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4017			 gen_binary (MULT, mode,
4018				     XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
4019
4020	  if (GET_CODE (x) != MULT)
4021	    return x;
4022	}
4023      break;
4024
4025    case UDIV:
4026      /* If this is a divide by a power of two, treat it as a shift if
4027	 its first operand is a shift.  */
4028      if (GET_CODE (XEXP (x, 1)) == CONST_INT
4029	  && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4030	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
4031	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4032	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4033	      || GET_CODE (XEXP (x, 0)) == ROTATE
4034	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
4035	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4036      break;
4037
4038    case EQ:  case NE:
4039    case GT:  case GTU:  case GE:  case GEU:
4040    case LT:  case LTU:  case LE:  case LEU:
4041      /* If the first operand is a condition code, we can't do anything
4042	 with it.  */
4043      if (GET_CODE (XEXP (x, 0)) == COMPARE
4044	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4045#ifdef HAVE_cc0
4046	      && XEXP (x, 0) != cc0_rtx
4047#endif
4048	       ))
4049	{
4050	  rtx op0 = XEXP (x, 0);
4051	  rtx op1 = XEXP (x, 1);
4052	  enum rtx_code new_code;
4053
4054	  if (GET_CODE (op0) == COMPARE)
4055	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4056
4057	  /* Simplify our comparison, if possible.  */
4058	  new_code = simplify_comparison (code, &op0, &op1);
4059
4060	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4061	     if only the low-order bit is possibly nonzero in X (such as when
4062	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
4063	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
4064	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
4065	     (plus X 1).
4066
4067	     Remove any ZERO_EXTRACT we made when thinking this was a
4068	     comparison.  It may now be simpler to use, e.g., an AND.  If a
4069	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
4070	     the call to make_compound_operation in the SET case.  */
4071
4072	  if (STORE_FLAG_VALUE == 1
4073	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4074	      && op1 == const0_rtx && nonzero_bits (op0, mode) == 1)
4075	    return gen_lowpart_for_combine (mode,
4076					    expand_compound_operation (op0));
4077
4078	  else if (STORE_FLAG_VALUE == 1
4079		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4080		   && op1 == const0_rtx
4081		   && (num_sign_bit_copies (op0, mode)
4082		       == GET_MODE_BITSIZE (mode)))
4083	    {
4084	      op0 = expand_compound_operation (op0);
4085	      return gen_unary (NEG, mode, mode,
4086				gen_lowpart_for_combine (mode, op0));
4087	    }
4088
4089	  else if (STORE_FLAG_VALUE == 1
4090		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4091		   && op1 == const0_rtx
4092		   && nonzero_bits (op0, mode) == 1)
4093	    {
4094	      op0 = expand_compound_operation (op0);
4095	      return gen_binary (XOR, mode,
4096				 gen_lowpart_for_combine (mode, op0),
4097				 const1_rtx);
4098	    }
4099
4100	  else if (STORE_FLAG_VALUE == 1
4101		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4102		   && op1 == const0_rtx
4103		   && (num_sign_bit_copies (op0, mode)
4104		       == GET_MODE_BITSIZE (mode)))
4105	    {
4106	      op0 = expand_compound_operation (op0);
4107	      return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4108	    }
4109
4110	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
4111	     those above.  */
4112	  if (STORE_FLAG_VALUE == -1
4113	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4114	      && op1 == const0_rtx
4115	      && (num_sign_bit_copies (op0, mode)
4116		  == GET_MODE_BITSIZE (mode)))
4117	    return gen_lowpart_for_combine (mode,
4118					    expand_compound_operation (op0));
4119
4120	  else if (STORE_FLAG_VALUE == -1
4121		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4122		   && op1 == const0_rtx
4123		   && nonzero_bits (op0, mode) == 1)
4124	    {
4125	      op0 = expand_compound_operation (op0);
4126	      return gen_unary (NEG, mode, mode,
4127				gen_lowpart_for_combine (mode, op0));
4128	    }
4129
4130	  else if (STORE_FLAG_VALUE == -1
4131		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4132		   && op1 == const0_rtx
4133		   && (num_sign_bit_copies (op0, mode)
4134		       == GET_MODE_BITSIZE (mode)))
4135	    {
4136	      op0 = expand_compound_operation (op0);
4137	      return gen_unary (NOT, mode, mode,
4138				gen_lowpart_for_combine (mode, op0));
4139	    }
4140
4141	  /* If X is 0/1, (eq X 0) is X-1.  */
4142	  else if (STORE_FLAG_VALUE == -1
4143		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4144		   && op1 == const0_rtx
4145		   && nonzero_bits (op0, mode) == 1)
4146	    {
4147	      op0 = expand_compound_operation (op0);
4148	      return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4149	    }
4150
4151	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4152	     one bit that might be nonzero, we can convert (ne x 0) to
4153	     (ashift x c) where C puts the bit in the sign bit.  Remove any
4154	     AND with STORE_FLAG_VALUE when we are done, since we are only
4155	     going to test the sign bit.  */
4156	  if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4157	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4158	      && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4159		  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4160	      && op1 == const0_rtx
4161	      && mode == GET_MODE (op0)
4162	      && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4163	    {
4164	      x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4165					expand_compound_operation (op0),
4166					GET_MODE_BITSIZE (mode) - 1 - i);
4167	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4168		return XEXP (x, 0);
4169	      else
4170		return x;
4171	    }
4172
4173	  /* If the code changed, return a whole new comparison.  */
4174	  if (new_code != code)
4175	    return gen_rtx_combine (new_code, mode, op0, op1);
4176
4177	  /* Otherwise, keep this operation, but maybe change its operands.
4178	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
4179	  SUBST (XEXP (x, 0), op0);
4180	  SUBST (XEXP (x, 1), op1);
4181	}
4182      break;
4183
4184    case IF_THEN_ELSE:
4185      return simplify_if_then_else (x);
4186
4187    case ZERO_EXTRACT:
4188    case SIGN_EXTRACT:
4189    case ZERO_EXTEND:
4190    case SIGN_EXTEND:
4191      /* If we are processing SET_DEST, we are done.  */
4192      if (in_dest)
4193	return x;
4194
4195      return expand_compound_operation (x);
4196
4197    case SET:
4198      return simplify_set (x);
4199
4200    case AND:
4201    case IOR:
4202    case XOR:
4203      return simplify_logical (x, last);
4204
4205    case ABS:
4206      /* (abs (neg <foo>)) -> (abs <foo>) */
4207      if (GET_CODE (XEXP (x, 0)) == NEG)
4208	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4209
4210      /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4211         do nothing.  */
4212      if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4213	break;
4214
4215      /* If operand is something known to be positive, ignore the ABS.  */
4216      if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4217	  || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4218	       <= HOST_BITS_PER_WIDE_INT)
4219	      && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4220		   & ((HOST_WIDE_INT) 1
4221		      << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4222		  == 0)))
4223	return XEXP (x, 0);
4224
4225
4226      /* If operand is known to be only -1 or 0, convert ABS to NEG.  */
4227      if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4228	return gen_rtx_combine (NEG, mode, XEXP (x, 0));
4229
4230      break;
4231
4232    case FFS:
4233      /* (ffs (*_extend <X>)) = (ffs <X>) */
4234      if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4235	  || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4236	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4237      break;
4238
4239    case FLOAT:
4240      /* (float (sign_extend <X>)) = (float <X>).  */
4241      if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4242	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4243      break;
4244
4245    case ASHIFT:
4246    case LSHIFTRT:
4247    case ASHIFTRT:
4248    case ROTATE:
4249    case ROTATERT:
4250      /* If this is a shift by a constant amount, simplify it.  */
4251      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4252	return simplify_shift_const (x, code, mode, XEXP (x, 0),
4253				     INTVAL (XEXP (x, 1)));
4254
4255#ifdef SHIFT_COUNT_TRUNCATED
4256      else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4257	SUBST (XEXP (x, 1),
4258	       force_to_mode (XEXP (x, 1), GET_MODE (x),
4259			      ((HOST_WIDE_INT) 1
4260			       << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4261			      - 1,
4262			      NULL_RTX, 0));
4263#endif
4264
4265      break;
4266
4267    default:
4268      break;
4269    }
4270
4271  return x;
4272}
4273
4274/* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
4275
4276static rtx
4277simplify_if_then_else (x)
4278     rtx x;
4279{
4280  enum machine_mode mode = GET_MODE (x);
4281  rtx cond = XEXP (x, 0);
4282  rtx true = XEXP (x, 1);
4283  rtx false = XEXP (x, 2);
4284  enum rtx_code true_code = GET_CODE (cond);
4285  int comparison_p = GET_RTX_CLASS (true_code) == '<';
4286  rtx temp;
4287  int i;
4288
4289  /* Simplify storing of the truth value.  */
4290  if (comparison_p && true == const_true_rtx && false == const0_rtx)
4291    return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4292
4293  /* Also when the truth value has to be reversed.  */
4294  if (comparison_p && reversible_comparison_p (cond)
4295      && true == const0_rtx && false == const_true_rtx)
4296    return gen_binary (reverse_condition (true_code),
4297		       mode, XEXP (cond, 0), XEXP (cond, 1));
4298
4299  /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4300     in it is being compared against certain values.  Get the true and false
4301     comparisons and see if that says anything about the value of each arm.  */
4302
4303  if (comparison_p && reversible_comparison_p (cond)
4304      && GET_CODE (XEXP (cond, 0)) == REG)
4305    {
4306      HOST_WIDE_INT nzb;
4307      rtx from = XEXP (cond, 0);
4308      enum rtx_code false_code = reverse_condition (true_code);
4309      rtx true_val = XEXP (cond, 1);
4310      rtx false_val = true_val;
4311      int swapped = 0;
4312
4313      /* If FALSE_CODE is EQ, swap the codes and arms.  */
4314
4315      if (false_code == EQ)
4316	{
4317	  swapped = 1, true_code = EQ, false_code = NE;
4318	  temp = true, true = false, false = temp;
4319	}
4320
4321      /* If we are comparing against zero and the expression being tested has
4322	 only a single bit that might be nonzero, that is its value when it is
4323	 not equal to zero.  Similarly if it is known to be -1 or 0.  */
4324
4325      if (true_code == EQ && true_val == const0_rtx
4326	  && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4327	false_code = EQ, false_val = GEN_INT (nzb);
4328      else if (true_code == EQ && true_val == const0_rtx
4329	       && (num_sign_bit_copies (from, GET_MODE (from))
4330		   == GET_MODE_BITSIZE (GET_MODE (from))))
4331	false_code = EQ, false_val = constm1_rtx;
4332
4333      /* Now simplify an arm if we know the value of the register in the
4334	 branch and it is used in the arm.  Be careful due to the potential
4335	 of locally-shared RTL.  */
4336
4337      if (reg_mentioned_p (from, true))
4338	true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
4339		      pc_rtx, pc_rtx, 0, 0);
4340      if (reg_mentioned_p (from, false))
4341	false = subst (known_cond (copy_rtx (false), false_code,
4342				   from, false_val),
4343		       pc_rtx, pc_rtx, 0, 0);
4344
4345      SUBST (XEXP (x, 1), swapped ? false : true);
4346      SUBST (XEXP (x, 2), swapped ? true : false);
4347
4348      true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
4349    }
4350
4351  /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4352     reversed, do so to avoid needing two sets of patterns for
4353     subtract-and-branch insns.  Similarly if we have a constant in the true
4354     arm, the false arm is the same as the first operand of the comparison, or
4355     the false arm is more complicated than the true arm.  */
4356
4357  if (comparison_p && reversible_comparison_p (cond)
4358      && (true == pc_rtx
4359	  || (CONSTANT_P (true)
4360	      && GET_CODE (false) != CONST_INT && false != pc_rtx)
4361	  || true == const0_rtx
4362	  || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4363	      && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4364	  || (GET_CODE (true) == SUBREG
4365	      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4366	      && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4367	  || reg_mentioned_p (true, false)
4368	  || rtx_equal_p (false, XEXP (cond, 0))))
4369    {
4370      true_code = reverse_condition (true_code);
4371      SUBST (XEXP (x, 0),
4372	     gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
4373			 XEXP (cond, 1)));
4374
4375      SUBST (XEXP (x, 1), false);
4376      SUBST (XEXP (x, 2), true);
4377
4378      temp = true, true = false, false = temp, cond = XEXP (x, 0);
4379
4380      /* It is possible that the conditional has been simplified out.  */
4381      true_code = GET_CODE (cond);
4382      comparison_p = GET_RTX_CLASS (true_code) == '<';
4383    }
4384
4385  /* If the two arms are identical, we don't need the comparison.  */
4386
4387  if (rtx_equal_p (true, false) && ! side_effects_p (cond))
4388    return true;
4389
4390  /* Convert a == b ? b : a to "a".  */
4391  if (true_code == EQ && ! side_effects_p (cond)
4392      && rtx_equal_p (XEXP (cond, 0), false)
4393      && rtx_equal_p (XEXP (cond, 1), true))
4394    return false;
4395  else if (true_code == NE && ! side_effects_p (cond)
4396	   && rtx_equal_p (XEXP (cond, 0), true)
4397	   && rtx_equal_p (XEXP (cond, 1), false))
4398    return true;
4399
4400  /* Look for cases where we have (abs x) or (neg (abs X)).  */
4401
4402  if (GET_MODE_CLASS (mode) == MODE_INT
4403      && GET_CODE (false) == NEG
4404      && rtx_equal_p (true, XEXP (false, 0))
4405      && comparison_p
4406      && rtx_equal_p (true, XEXP (cond, 0))
4407      && ! side_effects_p (true))
4408    switch (true_code)
4409      {
4410      case GT:
4411      case GE:
4412	return gen_unary (ABS, mode, mode, true);
4413      case LT:
4414      case LE:
4415	return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
4416    default:
4417      break;
4418      }
4419
4420  /* Look for MIN or MAX.  */
4421
4422  if ((! FLOAT_MODE_P (mode) || flag_fast_math)
4423      && comparison_p
4424      && rtx_equal_p (XEXP (cond, 0), true)
4425      && rtx_equal_p (XEXP (cond, 1), false)
4426      && ! side_effects_p (cond))
4427    switch (true_code)
4428      {
4429      case GE:
4430      case GT:
4431	return gen_binary (SMAX, mode, true, false);
4432      case LE:
4433      case LT:
4434	return gen_binary (SMIN, mode, true, false);
4435      case GEU:
4436      case GTU:
4437	return gen_binary (UMAX, mode, true, false);
4438      case LEU:
4439      case LTU:
4440	return gen_binary (UMIN, mode, true, false);
4441      default:
4442	break;
4443      }
4444
4445  /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4446     second operand is zero, this can be done as (OP Z (mult COND C2)) where
4447     C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4448     SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4449     We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4450     neither 1 or -1, but it isn't worth checking for.  */
4451
4452  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4453      && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4454    {
4455      rtx t = make_compound_operation (true, SET);
4456      rtx f = make_compound_operation (false, SET);
4457      rtx cond_op0 = XEXP (cond, 0);
4458      rtx cond_op1 = XEXP (cond, 1);
4459      enum rtx_code op, extend_op = NIL;
4460      enum machine_mode m = mode;
4461      rtx z = 0, c1;
4462
4463      if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4464	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4465	   || GET_CODE (t) == ASHIFT
4466	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4467	  && rtx_equal_p (XEXP (t, 0), f))
4468	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4469
4470      /* If an identity-zero op is commutative, check whether there
4471	 would be a match if we swapped the operands.  */
4472      else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4473		|| GET_CODE (t) == XOR)
4474	       && rtx_equal_p (XEXP (t, 1), f))
4475	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4476      else if (GET_CODE (t) == SIGN_EXTEND
4477	       && (GET_CODE (XEXP (t, 0)) == PLUS
4478		   || GET_CODE (XEXP (t, 0)) == MINUS
4479		   || GET_CODE (XEXP (t, 0)) == IOR
4480		   || GET_CODE (XEXP (t, 0)) == XOR
4481		   || GET_CODE (XEXP (t, 0)) == ASHIFT
4482		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4483		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4484	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4485	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4486	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4487	       && (num_sign_bit_copies (f, GET_MODE (f))
4488		   > (GET_MODE_BITSIZE (mode)
4489		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4490	{
4491	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4492	  extend_op = SIGN_EXTEND;
4493	  m = GET_MODE (XEXP (t, 0));
4494	}
4495      else if (GET_CODE (t) == SIGN_EXTEND
4496	       && (GET_CODE (XEXP (t, 0)) == PLUS
4497		   || GET_CODE (XEXP (t, 0)) == IOR
4498		   || GET_CODE (XEXP (t, 0)) == XOR)
4499	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4500	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4501	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4502	       && (num_sign_bit_copies (f, GET_MODE (f))
4503		   > (GET_MODE_BITSIZE (mode)
4504		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4505	{
4506	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4507	  extend_op = SIGN_EXTEND;
4508	  m = GET_MODE (XEXP (t, 0));
4509	}
4510      else if (GET_CODE (t) == ZERO_EXTEND
4511	       && (GET_CODE (XEXP (t, 0)) == PLUS
4512		   || GET_CODE (XEXP (t, 0)) == MINUS
4513		   || GET_CODE (XEXP (t, 0)) == IOR
4514		   || GET_CODE (XEXP (t, 0)) == XOR
4515		   || GET_CODE (XEXP (t, 0)) == ASHIFT
4516		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4517		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4518	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4519	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4520	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4521	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4522	       && ((nonzero_bits (f, GET_MODE (f))
4523		    & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4524		   == 0))
4525	{
4526	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4527	  extend_op = ZERO_EXTEND;
4528	  m = GET_MODE (XEXP (t, 0));
4529	}
4530      else if (GET_CODE (t) == ZERO_EXTEND
4531	       && (GET_CODE (XEXP (t, 0)) == PLUS
4532		   || GET_CODE (XEXP (t, 0)) == IOR
4533		   || GET_CODE (XEXP (t, 0)) == XOR)
4534	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4535	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4536	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4537	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4538	       && ((nonzero_bits (f, GET_MODE (f))
4539		    & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4540		   == 0))
4541	{
4542	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4543	  extend_op = ZERO_EXTEND;
4544	  m = GET_MODE (XEXP (t, 0));
4545	}
4546
4547      if (z)
4548	{
4549	  temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4550			pc_rtx, pc_rtx, 0, 0);
4551	  temp = gen_binary (MULT, m, temp,
4552			     gen_binary (MULT, m, c1, const_true_rtx));
4553	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4554	  temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4555
4556	  if (extend_op != NIL)
4557	    temp = gen_unary (extend_op, mode, m, temp);
4558
4559	  return temp;
4560	}
4561    }
4562
4563  /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4564     1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4565     negation of a single bit, we can convert this operation to a shift.  We
4566     can actually do this more generally, but it doesn't seem worth it.  */
4567
4568  if (true_code == NE && XEXP (cond, 1) == const0_rtx
4569      && false == const0_rtx && GET_CODE (true) == CONST_INT
4570      && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4571	   && (i = exact_log2 (INTVAL (true))) >= 0)
4572	  || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4573	       == GET_MODE_BITSIZE (mode))
4574	      && (i = exact_log2 (- INTVAL (true))) >= 0)))
4575    return
4576      simplify_shift_const (NULL_RTX, ASHIFT, mode,
4577			    gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4578
4579  return x;
4580}
4581
4582/* Simplify X, a SET expression.  Return the new expression.  */
4583
4584static rtx
4585simplify_set (x)
4586     rtx x;
4587{
4588  rtx src = SET_SRC (x);
4589  rtx dest = SET_DEST (x);
4590  enum machine_mode mode
4591    = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4592  rtx other_insn;
4593  rtx *cc_use;
4594
4595  /* (set (pc) (return)) gets written as (return).  */
4596  if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4597    return src;
4598
4599  /* Now that we know for sure which bits of SRC we are using, see if we can
4600     simplify the expression for the object knowing that we only need the
4601     low-order bits.  */
4602
4603  if (GET_MODE_CLASS (mode) == MODE_INT)
4604    src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
4605
4606  /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4607     the comparison result and try to simplify it unless we already have used
4608     undobuf.other_insn.  */
4609  if ((GET_CODE (src) == COMPARE
4610#ifdef HAVE_cc0
4611       || dest == cc0_rtx
4612#endif
4613       )
4614      && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4615      && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4616      && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4617      && rtx_equal_p (XEXP (*cc_use, 0), dest))
4618    {
4619      enum rtx_code old_code = GET_CODE (*cc_use);
4620      enum rtx_code new_code;
4621      rtx op0, op1;
4622      int other_changed = 0;
4623      enum machine_mode compare_mode = GET_MODE (dest);
4624
4625      if (GET_CODE (src) == COMPARE)
4626	op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4627      else
4628	op0 = src, op1 = const0_rtx;
4629
4630      /* Simplify our comparison, if possible.  */
4631      new_code = simplify_comparison (old_code, &op0, &op1);
4632
4633#ifdef EXTRA_CC_MODES
4634      /* If this machine has CC modes other than CCmode, check to see if we
4635	 need to use a different CC mode here.  */
4636      compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4637#endif /* EXTRA_CC_MODES */
4638
4639#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4640      /* If the mode changed, we have to change SET_DEST, the mode in the
4641	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
4642	 a hard register, just build new versions with the proper mode.  If it
4643	 is a pseudo, we lose unless it is only time we set the pseudo, in
4644	 which case we can safely change its mode.  */
4645      if (compare_mode != GET_MODE (dest))
4646	{
4647	  int regno = REGNO (dest);
4648	  rtx new_dest = gen_rtx_REG (compare_mode, regno);
4649
4650	  if (regno < FIRST_PSEUDO_REGISTER
4651	      || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4652	    {
4653	      if (regno >= FIRST_PSEUDO_REGISTER)
4654		SUBST (regno_reg_rtx[regno], new_dest);
4655
4656	      SUBST (SET_DEST (x), new_dest);
4657	      SUBST (XEXP (*cc_use, 0), new_dest);
4658	      other_changed = 1;
4659
4660	      dest = new_dest;
4661	    }
4662	}
4663#endif
4664
4665      /* If the code changed, we have to build a new comparison in
4666	 undobuf.other_insn.  */
4667      if (new_code != old_code)
4668	{
4669	  unsigned HOST_WIDE_INT mask;
4670
4671	  SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
4672					   dest, const0_rtx));
4673
4674	  /* If the only change we made was to change an EQ into an NE or
4675	     vice versa, OP0 has only one bit that might be nonzero, and OP1
4676	     is zero, check if changing the user of the condition code will
4677	     produce a valid insn.  If it won't, we can keep the original code
4678	     in that insn by surrounding our operation with an XOR.  */
4679
4680	  if (((old_code == NE && new_code == EQ)
4681	       || (old_code == EQ && new_code == NE))
4682	      && ! other_changed && op1 == const0_rtx
4683	      && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4684	      && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4685	    {
4686	      rtx pat = PATTERN (other_insn), note = 0;
4687
4688	      if ((recog_for_combine (&pat, other_insn, &note) < 0
4689		   && ! check_asm_operands (pat)))
4690		{
4691		  PUT_CODE (*cc_use, old_code);
4692		  other_insn = 0;
4693
4694		  op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4695		}
4696	    }
4697
4698	  other_changed = 1;
4699	}
4700
4701      if (other_changed)
4702	undobuf.other_insn = other_insn;
4703
4704#ifdef HAVE_cc0
4705      /* If we are now comparing against zero, change our source if
4706	 needed.  If we do not use cc0, we always have a COMPARE.  */
4707      if (op1 == const0_rtx && dest == cc0_rtx)
4708	{
4709	  SUBST (SET_SRC (x), op0);
4710	  src = op0;
4711	}
4712      else
4713#endif
4714
4715      /* Otherwise, if we didn't previously have a COMPARE in the
4716	 correct mode, we need one.  */
4717      if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
4718	{
4719	  SUBST (SET_SRC (x),
4720		 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
4721	  src = SET_SRC (x);
4722	}
4723      else
4724	{
4725	  /* Otherwise, update the COMPARE if needed.  */
4726	  SUBST (XEXP (src, 0), op0);
4727	  SUBST (XEXP (src, 1), op1);
4728	}
4729    }
4730  else
4731    {
4732      /* Get SET_SRC in a form where we have placed back any
4733	 compound expressions.  Then do the checks below.  */
4734      src = make_compound_operation (src, SET);
4735      SUBST (SET_SRC (x), src);
4736    }
4737
4738  /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
4739     and X being a REG or (subreg (reg)), we may be able to convert this to
4740     (set (subreg:m2 x) (op)).
4741
4742     We can always do this if M1 is narrower than M2 because that means that
4743     we only care about the low bits of the result.
4744
4745     However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
4746     perform a narrower operation than requested since the high-order bits will
4747     be undefined.  On machine where it is defined, this transformation is safe
4748     as long as M1 and M2 have the same number of words.  */
4749
4750  if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4751      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
4752      && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
4753	   / UNITS_PER_WORD)
4754	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4755	       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
4756#ifndef WORD_REGISTER_OPERATIONS
4757      && (GET_MODE_SIZE (GET_MODE (src))
4758	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4759#endif
4760#ifdef CLASS_CANNOT_CHANGE_SIZE
4761      && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
4762	    && (TEST_HARD_REG_BIT
4763		(reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
4764		 REGNO (dest)))
4765	    && (GET_MODE_SIZE (GET_MODE (src))
4766		!= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4767#endif
4768      && (GET_CODE (dest) == REG
4769	  || (GET_CODE (dest) == SUBREG
4770	      && GET_CODE (SUBREG_REG (dest)) == REG)))
4771    {
4772      SUBST (SET_DEST (x),
4773	     gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
4774				      dest));
4775      SUBST (SET_SRC (x), SUBREG_REG (src));
4776
4777      src = SET_SRC (x), dest = SET_DEST (x);
4778    }
4779
4780#ifdef LOAD_EXTEND_OP
4781  /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
4782     would require a paradoxical subreg.  Replace the subreg with a
4783     zero_extend to avoid the reload that would otherwise be required.  */
4784
4785  if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4786      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
4787      && SUBREG_WORD (src) == 0
4788      && (GET_MODE_SIZE (GET_MODE (src))
4789	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4790      && GET_CODE (SUBREG_REG (src)) == MEM)
4791    {
4792      SUBST (SET_SRC (x),
4793	     gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
4794			      GET_MODE (src), XEXP (src, 0)));
4795
4796      src = SET_SRC (x);
4797    }
4798#endif
4799
4800  /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
4801     are comparing an item known to be 0 or -1 against 0, use a logical
4802     operation instead. Check for one of the arms being an IOR of the other
4803     arm with some value.  We compute three terms to be IOR'ed together.  In
4804     practice, at most two will be nonzero.  Then we do the IOR's.  */
4805
4806  if (GET_CODE (dest) != PC
4807      && GET_CODE (src) == IF_THEN_ELSE
4808      && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
4809      && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
4810      && XEXP (XEXP (src, 0), 1) == const0_rtx
4811      && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
4812#ifdef HAVE_conditional_move
4813      && ! can_conditionally_move_p (GET_MODE (src))
4814#endif
4815      && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
4816			       GET_MODE (XEXP (XEXP (src, 0), 0)))
4817	  == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
4818      && ! side_effects_p (src))
4819    {
4820      rtx true = (GET_CODE (XEXP (src, 0)) == NE
4821		      ? XEXP (src, 1) : XEXP (src, 2));
4822      rtx false = (GET_CODE (XEXP (src, 0)) == NE
4823		   ? XEXP (src, 2) : XEXP (src, 1));
4824      rtx term1 = const0_rtx, term2, term3;
4825
4826      if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
4827	term1 = false, true = XEXP (true, 1), false = const0_rtx;
4828      else if (GET_CODE (true) == IOR
4829	       && rtx_equal_p (XEXP (true, 1), false))
4830	term1 = false, true = XEXP (true, 0), false = const0_rtx;
4831      else if (GET_CODE (false) == IOR
4832	       && rtx_equal_p (XEXP (false, 0), true))
4833	term1 = true, false = XEXP (false, 1), true = const0_rtx;
4834      else if (GET_CODE (false) == IOR
4835	       && rtx_equal_p (XEXP (false, 1), true))
4836	term1 = true, false = XEXP (false, 0), true = const0_rtx;
4837
4838      term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
4839      term3 = gen_binary (AND, GET_MODE (src),
4840			  gen_unary (NOT, GET_MODE (src), GET_MODE (src),
4841				     XEXP (XEXP (src, 0), 0)),
4842			  false);
4843
4844      SUBST (SET_SRC (x),
4845	     gen_binary (IOR, GET_MODE (src),
4846			 gen_binary (IOR, GET_MODE (src), term1, term2),
4847			 term3));
4848
4849      src = SET_SRC (x);
4850    }
4851
4852  /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
4853     whole thing fail.  */
4854  if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
4855    return src;
4856  else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
4857    return dest;
4858  else
4859    /* Convert this into a field assignment operation, if possible.  */
4860    return make_field_assignment (x);
4861}
4862
4863/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
4864   result.  LAST is nonzero if this is the last retry.  */
4865
4866static rtx
4867simplify_logical (x, last)
4868     rtx x;
4869     int last;
4870{
4871  enum machine_mode mode = GET_MODE (x);
4872  rtx op0 = XEXP (x, 0);
4873  rtx op1 = XEXP (x, 1);
4874
4875  switch (GET_CODE (x))
4876    {
4877    case AND:
4878      /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
4879	 insn (and may simplify more).  */
4880      if (GET_CODE (op0) == XOR
4881	  && rtx_equal_p (XEXP (op0, 0), op1)
4882	  && ! side_effects_p (op1))
4883	x = gen_binary (AND, mode,
4884			gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
4885
4886      if (GET_CODE (op0) == XOR
4887	  && rtx_equal_p (XEXP (op0, 1), op1)
4888	  && ! side_effects_p (op1))
4889	x = gen_binary (AND, mode,
4890			gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
4891
4892      /* Similarly for (~ (A ^ B)) & A.  */
4893      if (GET_CODE (op0) == NOT
4894	  && GET_CODE (XEXP (op0, 0)) == XOR
4895	  && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
4896	  && ! side_effects_p (op1))
4897	x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
4898
4899      if (GET_CODE (op0) == NOT
4900	  && GET_CODE (XEXP (op0, 0)) == XOR
4901	  && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
4902	  && ! side_effects_p (op1))
4903	x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
4904
4905      if (GET_CODE (op1) == CONST_INT)
4906	{
4907	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
4908
4909	  /* If we have (ior (and (X C1) C2)) and the next restart would be
4910	     the last, simplify this by making C1 as small as possible
4911	     and then exit.  */
4912	  if (last
4913	      && GET_CODE (x) == IOR && GET_CODE (op0) == AND
4914	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
4915	      && GET_CODE (op1) == CONST_INT)
4916	    return gen_binary (IOR, mode,
4917			       gen_binary (AND, mode, XEXP (op0, 0),
4918					   GEN_INT (INTVAL (XEXP (op0, 1))
4919						    & ~ INTVAL (op1))), op1);
4920
4921	  if (GET_CODE (x) != AND)
4922	    return x;
4923
4924	  if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
4925	      || GET_RTX_CLASS (GET_CODE (x)) == '2')
4926	    op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4927	}
4928
4929      /* Convert (A | B) & A to A.  */
4930      if (GET_CODE (op0) == IOR
4931	  && (rtx_equal_p (XEXP (op0, 0), op1)
4932	      || rtx_equal_p (XEXP (op0, 1), op1))
4933	  && ! side_effects_p (XEXP (op0, 0))
4934	  && ! side_effects_p (XEXP (op0, 1)))
4935	return op1;
4936
4937      /* In the following group of tests (and those in case IOR below),
4938	 we start with some combination of logical operations and apply
4939	 the distributive law followed by the inverse distributive law.
4940	 Most of the time, this results in no change.  However, if some of
4941	 the operands are the same or inverses of each other, simplifications
4942	 will result.
4943
4944	 For example, (and (ior A B) (not B)) can occur as the result of
4945	 expanding a bit field assignment.  When we apply the distributive
4946	 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
4947	 which then simplifies to (and (A (not B))).
4948
4949	 If we have (and (ior A B) C), apply the distributive law and then
4950	 the inverse distributive law to see if things simplify.  */
4951
4952      if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
4953	{
4954	  x = apply_distributive_law
4955	    (gen_binary (GET_CODE (op0), mode,
4956			 gen_binary (AND, mode, XEXP (op0, 0), op1),
4957			 gen_binary (AND, mode, XEXP (op0, 1), op1)));
4958	  if (GET_CODE (x) != AND)
4959	    return x;
4960	}
4961
4962      if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
4963	return apply_distributive_law
4964	  (gen_binary (GET_CODE (op1), mode,
4965		       gen_binary (AND, mode, XEXP (op1, 0), op0),
4966		       gen_binary (AND, mode, XEXP (op1, 1), op0)));
4967
4968      /* Similarly, taking advantage of the fact that
4969	 (and (not A) (xor B C)) == (xor (ior A B) (ior A C))  */
4970
4971      if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
4972	return apply_distributive_law
4973	  (gen_binary (XOR, mode,
4974		       gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
4975		       gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
4976
4977      else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
4978	return apply_distributive_law
4979	  (gen_binary (XOR, mode,
4980		       gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
4981		       gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
4982      break;
4983
4984    case IOR:
4985      /* (ior A C) is C if all bits of A that might be nonzero are on in C.  */
4986      if (GET_CODE (op1) == CONST_INT
4987	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4988	  && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
4989	return op1;
4990
4991      /* Convert (A & B) | A to A.  */
4992      if (GET_CODE (op0) == AND
4993	  && (rtx_equal_p (XEXP (op0, 0), op1)
4994	      || rtx_equal_p (XEXP (op0, 1), op1))
4995	  && ! side_effects_p (XEXP (op0, 0))
4996	  && ! side_effects_p (XEXP (op0, 1)))
4997	return op1;
4998
4999      /* If we have (ior (and A B) C), apply the distributive law and then
5000	 the inverse distributive law to see if things simplify.  */
5001
5002      if (GET_CODE (op0) == AND)
5003	{
5004	  x = apply_distributive_law
5005	    (gen_binary (AND, mode,
5006			 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5007			 gen_binary (IOR, mode, XEXP (op0, 1), op1)));
5008
5009	  if (GET_CODE (x) != IOR)
5010	    return x;
5011	}
5012
5013      if (GET_CODE (op1) == AND)
5014	{
5015	  x = apply_distributive_law
5016	    (gen_binary (AND, mode,
5017			 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5018			 gen_binary (IOR, mode, XEXP (op1, 1), op0)));
5019
5020	  if (GET_CODE (x) != IOR)
5021	    return x;
5022	}
5023
5024      /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5025	 mode size to (rotate A CX).  */
5026
5027      if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5028	   || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5029	  && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5030	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5031	  && GET_CODE (XEXP (op1, 1)) == CONST_INT
5032	  && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5033	      == GET_MODE_BITSIZE (mode)))
5034	return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5035			       (GET_CODE (op0) == ASHIFT
5036				? XEXP (op0, 1) : XEXP (op1, 1)));
5037
5038      /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5039	 a (sign_extend (plus ...)).  If so, OP1 is a CONST_INT, and the PLUS
5040	 does not affect any of the bits in OP1, it can really be done
5041	 as a PLUS and we can associate.  We do this by seeing if OP1
5042	 can be safely shifted left C bits.  */
5043      if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5044	  && GET_CODE (XEXP (op0, 0)) == PLUS
5045	  && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5046	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5047	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5048	{
5049	  int count = INTVAL (XEXP (op0, 1));
5050	  HOST_WIDE_INT mask = INTVAL (op1) << count;
5051
5052	  if (mask >> count == INTVAL (op1)
5053	      && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5054	    {
5055	      SUBST (XEXP (XEXP (op0, 0), 1),
5056		     GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5057	      return op0;
5058	    }
5059	}
5060      break;
5061
5062    case XOR:
5063      /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5064	 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5065	 (NOT y).  */
5066      {
5067	int num_negated = 0;
5068
5069	if (GET_CODE (op0) == NOT)
5070	  num_negated++, op0 = XEXP (op0, 0);
5071	if (GET_CODE (op1) == NOT)
5072	  num_negated++, op1 = XEXP (op1, 0);
5073
5074	if (num_negated == 2)
5075	  {
5076	    SUBST (XEXP (x, 0), op0);
5077	    SUBST (XEXP (x, 1), op1);
5078	  }
5079	else if (num_negated == 1)
5080	  return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
5081      }
5082
5083      /* Convert (xor (and A B) B) to (and (not A) B).  The latter may
5084	 correspond to a machine insn or result in further simplifications
5085	 if B is a constant.  */
5086
5087      if (GET_CODE (op0) == AND
5088	  && rtx_equal_p (XEXP (op0, 1), op1)
5089	  && ! side_effects_p (op1))
5090	return gen_binary (AND, mode,
5091			   gen_unary (NOT, mode, mode, XEXP (op0, 0)),
5092			   op1);
5093
5094      else if (GET_CODE (op0) == AND
5095	       && rtx_equal_p (XEXP (op0, 0), op1)
5096	       && ! side_effects_p (op1))
5097	return gen_binary (AND, mode,
5098			   gen_unary (NOT, mode, mode, XEXP (op0, 1)),
5099			   op1);
5100
5101      /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5102	 comparison if STORE_FLAG_VALUE is 1.  */
5103      if (STORE_FLAG_VALUE == 1
5104	  && op1 == const1_rtx
5105	  && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5106	  && reversible_comparison_p (op0))
5107	return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5108				mode, XEXP (op0, 0), XEXP (op0, 1));
5109
5110      /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5111	 is (lt foo (const_int 0)), so we can perform the above
5112	 simplification if STORE_FLAG_VALUE is 1.  */
5113
5114      if (STORE_FLAG_VALUE == 1
5115	  && op1 == const1_rtx
5116	  && GET_CODE (op0) == LSHIFTRT
5117	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5118	  && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5119	return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
5120
5121      /* (xor (comparison foo bar) (const_int sign-bit))
5122	 when STORE_FLAG_VALUE is the sign bit.  */
5123      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5124	  && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5125	      == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5126	  && op1 == const_true_rtx
5127	  && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5128	  && reversible_comparison_p (op0))
5129	return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5130				mode, XEXP (op0, 0), XEXP (op0, 1));
5131      break;
5132
5133    default:
5134      abort ();
5135    }
5136
5137  return x;
5138}
5139
5140/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5141   operations" because they can be replaced with two more basic operations.
5142   ZERO_EXTEND is also considered "compound" because it can be replaced with
5143   an AND operation, which is simpler, though only one operation.
5144
5145   The function expand_compound_operation is called with an rtx expression
5146   and will convert it to the appropriate shifts and AND operations,
5147   simplifying at each stage.
5148
5149   The function make_compound_operation is called to convert an expression
5150   consisting of shifts and ANDs into the equivalent compound expression.
5151   It is the inverse of this function, loosely speaking.  */
5152
5153static rtx
5154expand_compound_operation (x)
5155     rtx x;
5156{
5157  int pos = 0, len;
5158  int unsignedp = 0;
5159  int modewidth;
5160  rtx tem;
5161
5162  switch (GET_CODE (x))
5163    {
5164    case ZERO_EXTEND:
5165      unsignedp = 1;
5166    case SIGN_EXTEND:
5167      /* We can't necessarily use a const_int for a multiword mode;
5168	 it depends on implicitly extending the value.
5169	 Since we don't know the right way to extend it,
5170	 we can't tell whether the implicit way is right.
5171
5172	 Even for a mode that is no wider than a const_int,
5173	 we can't win, because we need to sign extend one of its bits through
5174	 the rest of it, and we don't know which bit.  */
5175      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5176	return x;
5177
5178      /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5179	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
5180	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5181	 reloaded. If not for that, MEM's would very rarely be safe.
5182
5183	 Reject MODEs bigger than a word, because we might not be able
5184	 to reference a two-register group starting with an arbitrary register
5185	 (and currently gen_lowpart might crash for a SUBREG).  */
5186
5187      if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5188	return x;
5189
5190      len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5191      /* If the inner object has VOIDmode (the only way this can happen
5192	 is if it is a ASM_OPERANDS), we can't do anything since we don't
5193	 know how much masking to do.  */
5194      if (len == 0)
5195	return x;
5196
5197      break;
5198
5199    case ZERO_EXTRACT:
5200      unsignedp = 1;
5201    case SIGN_EXTRACT:
5202      /* If the operand is a CLOBBER, just return it.  */
5203      if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5204	return XEXP (x, 0);
5205
5206      if (GET_CODE (XEXP (x, 1)) != CONST_INT
5207	  || GET_CODE (XEXP (x, 2)) != CONST_INT
5208	  || GET_MODE (XEXP (x, 0)) == VOIDmode)
5209	return x;
5210
5211      len = INTVAL (XEXP (x, 1));
5212      pos = INTVAL (XEXP (x, 2));
5213
5214      /* If this goes outside the object being extracted, replace the object
5215	 with a (use (mem ...)) construct that only combine understands
5216	 and is used only for this purpose.  */
5217      if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5218	SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5219
5220      if (BITS_BIG_ENDIAN)
5221	pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5222
5223      break;
5224
5225    default:
5226      return x;
5227    }
5228
5229  /* We can optimize some special cases of ZERO_EXTEND.  */
5230  if (GET_CODE (x) == ZERO_EXTEND)
5231    {
5232      /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5233         know that the last value didn't have any inappropriate bits
5234         set.  */
5235      if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5236	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5237	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5238	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5239	      & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5240	return XEXP (XEXP (x, 0), 0);
5241
5242      /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5243      if (GET_CODE (XEXP (x, 0)) == SUBREG
5244	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5245	  && subreg_lowpart_p (XEXP (x, 0))
5246	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5247	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5248	      & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5249	return SUBREG_REG (XEXP (x, 0));
5250
5251      /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5252         is a comparison and STORE_FLAG_VALUE permits.  This is like
5253         the first case, but it works even when GET_MODE (x) is larger
5254         than HOST_WIDE_INT.  */
5255      if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5256	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5257	  && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5258	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5259	      <= HOST_BITS_PER_WIDE_INT)
5260 	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5261	      & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5262	return XEXP (XEXP (x, 0), 0);
5263
5264      /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5265      if (GET_CODE (XEXP (x, 0)) == SUBREG
5266	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5267	  && subreg_lowpart_p (XEXP (x, 0))
5268	  && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5269	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5270	      <= HOST_BITS_PER_WIDE_INT)
5271	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5272	      & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5273	return SUBREG_REG (XEXP (x, 0));
5274
5275      /* If sign extension is cheaper than zero extension, then use it
5276	 if we know that no extraneous bits are set, and that the high
5277	 bit is not set.  */
5278      if (flag_expensive_optimizations
5279	  && ((GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5280	       && ((nonzero_bits (XEXP (x, 0), GET_MODE (x))
5281		    & ~ (((unsigned HOST_WIDE_INT)
5282			  GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5283			 >> 1))
5284		   == 0))
5285	      || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
5286		  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5287		      <= HOST_BITS_PER_WIDE_INT)
5288		  && (((HOST_WIDE_INT) STORE_FLAG_VALUE
5289		       & ~ (((unsigned HOST_WIDE_INT)
5290			     GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5291			    >> 1))
5292		      == 0))))
5293	{
5294	  rtx temp = gen_rtx_SIGN_EXTEND (GET_MODE (x), XEXP (x, 0));
5295
5296	  if (rtx_cost (temp, SET) < rtx_cost (x, SET))
5297	    return expand_compound_operation (temp);
5298	}
5299    }
5300
5301  /* If we reach here, we want to return a pair of shifts.  The inner
5302     shift is a left shift of BITSIZE - POS - LEN bits.  The outer
5303     shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
5304     logical depending on the value of UNSIGNEDP.
5305
5306     If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5307     converted into an AND of a shift.
5308
5309     We must check for the case where the left shift would have a negative
5310     count.  This can happen in a case like (x >> 31) & 255 on machines
5311     that can't shift by a constant.  On those machines, we would first
5312     combine the shift with the AND to produce a variable-position
5313     extraction.  Then the constant of 31 would be substituted in to produce
5314     a such a position.  */
5315
5316  modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5317  if (modewidth >= pos - len)
5318    tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5319				GET_MODE (x),
5320				simplify_shift_const (NULL_RTX, ASHIFT,
5321						      GET_MODE (x),
5322						      XEXP (x, 0),
5323						      modewidth - pos - len),
5324				modewidth - len);
5325
5326  else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5327    tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5328				  simplify_shift_const (NULL_RTX, LSHIFTRT,
5329							GET_MODE (x),
5330							XEXP (x, 0), pos),
5331				  ((HOST_WIDE_INT) 1 << len) - 1);
5332  else
5333    /* Any other cases we can't handle.  */
5334    return x;
5335
5336
5337  /* If we couldn't do this for some reason, return the original
5338     expression.  */
5339  if (GET_CODE (tem) == CLOBBER)
5340    return x;
5341
5342  return tem;
5343}
5344
5345/* X is a SET which contains an assignment of one object into
5346   a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5347   or certain SUBREGS). If possible, convert it into a series of
5348   logical operations.
5349
5350   We half-heartedly support variable positions, but do not at all
5351   support variable lengths.  */
5352
5353static rtx
5354expand_field_assignment (x)
5355     rtx x;
5356{
5357  rtx inner;
5358  rtx pos;			/* Always counts from low bit.  */
5359  int len;
5360  rtx mask;
5361  enum machine_mode compute_mode;
5362
5363  /* Loop until we find something we can't simplify.  */
5364  while (1)
5365    {
5366      if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5367	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5368	{
5369	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5370	  len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5371	  pos = GEN_INT (BITS_PER_WORD * SUBREG_WORD (XEXP (SET_DEST (x), 0)));
5372	}
5373      else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5374	       && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5375	{
5376	  inner = XEXP (SET_DEST (x), 0);
5377	  len = INTVAL (XEXP (SET_DEST (x), 1));
5378	  pos = XEXP (SET_DEST (x), 2);
5379
5380	  /* If the position is constant and spans the width of INNER,
5381	     surround INNER  with a USE to indicate this.  */
5382	  if (GET_CODE (pos) == CONST_INT
5383	      && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5384	    inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5385
5386	  if (BITS_BIG_ENDIAN)
5387	    {
5388	      if (GET_CODE (pos) == CONST_INT)
5389		pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5390			       - INTVAL (pos));
5391	      else if (GET_CODE (pos) == MINUS
5392		       && GET_CODE (XEXP (pos, 1)) == CONST_INT
5393		       && (INTVAL (XEXP (pos, 1))
5394			   == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5395		/* If position is ADJUST - X, new position is X.  */
5396		pos = XEXP (pos, 0);
5397	      else
5398		pos = gen_binary (MINUS, GET_MODE (pos),
5399				  GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5400					   - len),
5401				  pos);
5402	    }
5403	}
5404
5405      /* A SUBREG between two modes that occupy the same numbers of words
5406	 can be done by moving the SUBREG to the source.  */
5407      else if (GET_CODE (SET_DEST (x)) == SUBREG
5408	       && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5409		     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5410		   == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5411			+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5412	{
5413	  x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5414			   gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
5415						    SET_SRC (x)));
5416	  continue;
5417	}
5418      else
5419	break;
5420
5421      while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5422	inner = SUBREG_REG (inner);
5423
5424      compute_mode = GET_MODE (inner);
5425
5426      /* Don't attempt bitwise arithmetic on non-integral modes.  */
5427      if (! INTEGRAL_MODE_P (compute_mode))
5428	{
5429	  enum machine_mode imode;
5430
5431	  /* Something is probably seriously wrong if this matches.  */
5432	  if (! FLOAT_MODE_P (compute_mode))
5433	    break;
5434
5435	  /* Try to find an integral mode to pun with.  */
5436	  imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5437	  if (imode == BLKmode)
5438	    break;
5439
5440	  compute_mode = imode;
5441	  inner = gen_lowpart_for_combine (imode, inner);
5442	}
5443
5444      /* Compute a mask of LEN bits, if we can do this on the host machine.  */
5445      if (len < HOST_BITS_PER_WIDE_INT)
5446	mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5447      else
5448	break;
5449
5450      /* Now compute the equivalent expression.  Make a copy of INNER
5451	 for the SET_DEST in case it is a MEM into which we will substitute;
5452	 we don't want shared RTL in that case.  */
5453      x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5454		       gen_binary (IOR, compute_mode,
5455				   gen_binary (AND, compute_mode,
5456					       gen_unary (NOT, compute_mode,
5457							  compute_mode,
5458							  gen_binary (ASHIFT,
5459								      compute_mode,
5460								      mask, pos)),
5461					       inner),
5462				   gen_binary (ASHIFT, compute_mode,
5463					       gen_binary (AND, compute_mode,
5464							   gen_lowpart_for_combine
5465							   (compute_mode,
5466							    SET_SRC (x)),
5467							   mask),
5468					       pos)));
5469    }
5470
5471  return x;
5472}
5473
5474/* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
5475   it is an RTX that represents a variable starting position; otherwise,
5476   POS is the (constant) starting bit position (counted from the LSB).
5477
5478   INNER may be a USE.  This will occur when we started with a bitfield
5479   that went outside the boundary of the object in memory, which is
5480   allowed on most machines.  To isolate this case, we produce a USE
5481   whose mode is wide enough and surround the MEM with it.  The only
5482   code that understands the USE is this routine.  If it is not removed,
5483   it will cause the resulting insn not to match.
5484
5485   UNSIGNEDP is non-zero for an unsigned reference and zero for a
5486   signed reference.
5487
5488   IN_DEST is non-zero if this is a reference in the destination of a
5489   SET.  This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If non-zero,
5490   a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5491   be used.
5492
5493   IN_COMPARE is non-zero if we are in a COMPARE.  This means that a
5494   ZERO_EXTRACT should be built even for bits starting at bit 0.
5495
5496   MODE is the desired mode of the result (if IN_DEST == 0).
5497
5498   The result is an RTX for the extraction or NULL_RTX if the target
5499   can't handle it.  */
5500
5501static rtx
5502make_extraction (mode, inner, pos, pos_rtx, len,
5503		 unsignedp, in_dest, in_compare)
5504     enum machine_mode mode;
5505     rtx inner;
5506     int pos;
5507     rtx pos_rtx;
5508     int len;
5509     int unsignedp;
5510     int in_dest, in_compare;
5511{
5512  /* This mode describes the size of the storage area
5513     to fetch the overall value from.  Within that, we
5514     ignore the POS lowest bits, etc.  */
5515  enum machine_mode is_mode = GET_MODE (inner);
5516  enum machine_mode inner_mode;
5517  enum machine_mode wanted_inner_mode = byte_mode;
5518  enum machine_mode wanted_inner_reg_mode = word_mode;
5519  enum machine_mode pos_mode = word_mode;
5520  enum machine_mode extraction_mode = word_mode;
5521  enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5522  int spans_byte = 0;
5523  rtx new = 0;
5524  rtx orig_pos_rtx = pos_rtx;
5525  int orig_pos;
5526
5527  /* Get some information about INNER and get the innermost object.  */
5528  if (GET_CODE (inner) == USE)
5529    /* (use:SI (mem:QI foo)) stands for (mem:SI foo).  */
5530    /* We don't need to adjust the position because we set up the USE
5531       to pretend that it was a full-word object.  */
5532    spans_byte = 1, inner = XEXP (inner, 0);
5533  else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5534    {
5535      /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5536	 consider just the QI as the memory to extract from.
5537	 The subreg adds or removes high bits; its mode is
5538	 irrelevant to the meaning of this extraction,
5539	 since POS and LEN count from the lsb.  */
5540      if (GET_CODE (SUBREG_REG (inner)) == MEM)
5541	is_mode = GET_MODE (SUBREG_REG (inner));
5542      inner = SUBREG_REG (inner);
5543    }
5544
5545  inner_mode = GET_MODE (inner);
5546
5547  if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5548    pos = INTVAL (pos_rtx), pos_rtx = 0;
5549
5550  /* See if this can be done without an extraction.  We never can if the
5551     width of the field is not the same as that of some integer mode. For
5552     registers, we can only avoid the extraction if the position is at the
5553     low-order bit and this is either not in the destination or we have the
5554     appropriate STRICT_LOW_PART operation available.
5555
5556     For MEM, we can avoid an extract if the field starts on an appropriate
5557     boundary and we can change the mode of the memory reference.  However,
5558     we cannot directly access the MEM if we have a USE and the underlying
5559     MEM is not TMODE.  This combination means that MEM was being used in a
5560     context where bits outside its mode were being referenced; that is only
5561     valid in bit-field insns.  */
5562
5563  if (tmode != BLKmode
5564      && ! (spans_byte && inner_mode != tmode)
5565      && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5566	   && GET_CODE (inner) != MEM
5567	   && (! in_dest
5568	       || (GET_CODE (inner) == REG
5569		   && (movstrict_optab->handlers[(int) tmode].insn_code
5570		       != CODE_FOR_nothing))))
5571	  || (GET_CODE (inner) == MEM && pos_rtx == 0
5572	      && (pos
5573		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5574		     : BITS_PER_UNIT)) == 0
5575	      /* We can't do this if we are widening INNER_MODE (it
5576		 may not be aligned, for one thing).  */
5577	      && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5578	      && (inner_mode == tmode
5579		  || (! mode_dependent_address_p (XEXP (inner, 0))
5580		      && ! MEM_VOLATILE_P (inner))))))
5581    {
5582      /* If INNER is a MEM, make a new MEM that encompasses just the desired
5583	 field.  If the original and current mode are the same, we need not
5584	 adjust the offset.  Otherwise, we do if bytes big endian.
5585
5586	 If INNER is not a MEM, get a piece consisting of just the field
5587	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
5588
5589      if (GET_CODE (inner) == MEM)
5590	{
5591	  int offset;
5592	  /* POS counts from lsb, but make OFFSET count in memory order.  */
5593	  if (BYTES_BIG_ENDIAN)
5594	    offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5595	  else
5596	    offset = pos / BITS_PER_UNIT;
5597
5598	  new = gen_rtx_MEM (tmode, plus_constant (XEXP (inner, 0), offset));
5599	  RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
5600	  MEM_COPY_ATTRIBUTES (new, inner);
5601	}
5602      else if (GET_CODE (inner) == REG)
5603	{
5604	  /* We can't call gen_lowpart_for_combine here since we always want
5605	     a SUBREG and it would sometimes return a new hard register.  */
5606	  if (tmode != inner_mode)
5607	    new = gen_rtx_SUBREG (tmode, inner,
5608				  (WORDS_BIG_ENDIAN
5609				   && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
5610				   ? (((GET_MODE_SIZE (inner_mode)
5611					- GET_MODE_SIZE (tmode))
5612				       / UNITS_PER_WORD)
5613				      - pos / BITS_PER_WORD)
5614				   : pos / BITS_PER_WORD));
5615	  else
5616	    new = inner;
5617	}
5618      else
5619	new = force_to_mode (inner, tmode,
5620			     len >= HOST_BITS_PER_WIDE_INT
5621			     ? GET_MODE_MASK (tmode)
5622			     : ((HOST_WIDE_INT) 1 << len) - 1,
5623			     NULL_RTX, 0);
5624
5625      /* If this extraction is going into the destination of a SET,
5626	 make a STRICT_LOW_PART unless we made a MEM.  */
5627
5628      if (in_dest)
5629	return (GET_CODE (new) == MEM ? new
5630		: (GET_CODE (new) != SUBREG
5631		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
5632		   : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
5633
5634      /* Otherwise, sign- or zero-extend unless we already are in the
5635	 proper mode.  */
5636
5637      return (mode == tmode ? new
5638	      : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5639				 mode, new));
5640    }
5641
5642  /* Unless this is a COMPARE or we have a funny memory reference,
5643     don't do anything with zero-extending field extracts starting at
5644     the low-order bit since they are simple AND operations.  */
5645  if (pos_rtx == 0 && pos == 0 && ! in_dest
5646      && ! in_compare && ! spans_byte && unsignedp)
5647    return 0;
5648
5649  /* Unless we are allowed to span bytes, reject this if we would be
5650     spanning bytes or if the position is not a constant and the length
5651     is not 1.  In all other cases, we would only be going outside
5652     out object in cases when an original shift would have been
5653     undefined.  */
5654  if (! spans_byte
5655      && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
5656	  || (pos_rtx != 0 && len != 1)))
5657    return 0;
5658
5659  /* Get the mode to use should INNER not be a MEM, the mode for the position,
5660     and the mode for the result.  */
5661#ifdef HAVE_insv
5662  if (in_dest)
5663    {
5664      wanted_inner_reg_mode
5665	= (insn_operand_mode[(int) CODE_FOR_insv][0] == VOIDmode
5666	   ? word_mode
5667	   : insn_operand_mode[(int) CODE_FOR_insv][0]);
5668      pos_mode = (insn_operand_mode[(int) CODE_FOR_insv][2] == VOIDmode
5669		  ? word_mode : insn_operand_mode[(int) CODE_FOR_insv][2]);
5670      extraction_mode = (insn_operand_mode[(int) CODE_FOR_insv][3] == VOIDmode
5671			 ? word_mode
5672			 : insn_operand_mode[(int) CODE_FOR_insv][3]);
5673    }
5674#endif
5675
5676#ifdef HAVE_extzv
5677  if (! in_dest && unsignedp)
5678    {
5679      wanted_inner_reg_mode
5680	= (insn_operand_mode[(int) CODE_FOR_extzv][1] == VOIDmode
5681	   ? word_mode
5682	   : insn_operand_mode[(int) CODE_FOR_extzv][1]);
5683      pos_mode = (insn_operand_mode[(int) CODE_FOR_extzv][3] == VOIDmode
5684		  ? word_mode : insn_operand_mode[(int) CODE_FOR_extzv][3]);
5685      extraction_mode = (insn_operand_mode[(int) CODE_FOR_extzv][0] == VOIDmode
5686			 ? word_mode
5687			 : insn_operand_mode[(int) CODE_FOR_extzv][0]);
5688    }
5689#endif
5690
5691#ifdef HAVE_extv
5692  if (! in_dest && ! unsignedp)
5693    {
5694      wanted_inner_reg_mode
5695	= (insn_operand_mode[(int) CODE_FOR_extv][1] == VOIDmode
5696	   ? word_mode
5697	   : insn_operand_mode[(int) CODE_FOR_extv][1]);
5698      pos_mode = (insn_operand_mode[(int) CODE_FOR_extv][3] == VOIDmode
5699		  ? word_mode : insn_operand_mode[(int) CODE_FOR_extv][3]);
5700      extraction_mode = (insn_operand_mode[(int) CODE_FOR_extv][0] == VOIDmode
5701			 ? word_mode
5702			 : insn_operand_mode[(int) CODE_FOR_extv][0]);
5703    }
5704#endif
5705
5706  /* Never narrow an object, since that might not be safe.  */
5707
5708  if (mode != VOIDmode
5709      && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
5710    extraction_mode = mode;
5711
5712  if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
5713      && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5714    pos_mode = GET_MODE (pos_rtx);
5715
5716  /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
5717     if we have to change the mode of memory and cannot, the desired mode is
5718     EXTRACTION_MODE.  */
5719  if (GET_CODE (inner) != MEM)
5720    wanted_inner_mode = wanted_inner_reg_mode;
5721  else if (inner_mode != wanted_inner_mode
5722	   && (mode_dependent_address_p (XEXP (inner, 0))
5723	       || MEM_VOLATILE_P (inner)))
5724    wanted_inner_mode = extraction_mode;
5725
5726  orig_pos = pos;
5727
5728  if (BITS_BIG_ENDIAN)
5729    {
5730      /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
5731	 BITS_BIG_ENDIAN style.  If position is constant, compute new
5732	 position.  Otherwise, build subtraction.
5733	 Note that POS is relative to the mode of the original argument.
5734	 If it's a MEM we need to recompute POS relative to that.
5735	 However, if we're extracting from (or inserting into) a register,
5736	 we want to recompute POS relative to wanted_inner_mode.  */
5737      int width = (GET_CODE (inner) == MEM
5738		   ? GET_MODE_BITSIZE (is_mode)
5739		   : GET_MODE_BITSIZE (wanted_inner_mode));
5740
5741      if (pos_rtx == 0)
5742	pos = width - len - pos;
5743      else
5744	pos_rtx
5745	  = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
5746			     GEN_INT (width - len), pos_rtx);
5747      /* POS may be less than 0 now, but we check for that below.
5748	 Note that it can only be less than 0 if GET_CODE (inner) != MEM.  */
5749    }
5750
5751  /* If INNER has a wider mode, make it smaller.  If this is a constant
5752     extract, try to adjust the byte to point to the byte containing
5753     the value.  */
5754  if (wanted_inner_mode != VOIDmode
5755      && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
5756      && ((GET_CODE (inner) == MEM
5757	   && (inner_mode == wanted_inner_mode
5758	       || (! mode_dependent_address_p (XEXP (inner, 0))
5759		   && ! MEM_VOLATILE_P (inner))))))
5760    {
5761      int offset = 0;
5762
5763      /* The computations below will be correct if the machine is big
5764	 endian in both bits and bytes or little endian in bits and bytes.
5765	 If it is mixed, we must adjust.  */
5766
5767      /* If bytes are big endian and we had a paradoxical SUBREG, we must
5768	 adjust OFFSET to compensate.  */
5769      if (BYTES_BIG_ENDIAN
5770	  && ! spans_byte
5771	  && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
5772	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
5773
5774      /* If this is a constant position, we can move to the desired byte.  */
5775      if (pos_rtx == 0)
5776	{
5777	  offset += pos / BITS_PER_UNIT;
5778	  pos %= GET_MODE_BITSIZE (wanted_inner_mode);
5779	}
5780
5781      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
5782	  && ! spans_byte
5783	  && is_mode != wanted_inner_mode)
5784	offset = (GET_MODE_SIZE (is_mode)
5785		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
5786
5787      if (offset != 0 || inner_mode != wanted_inner_mode)
5788	{
5789	  rtx newmem = gen_rtx_MEM (wanted_inner_mode,
5790				    plus_constant (XEXP (inner, 0), offset));
5791	  RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
5792	  MEM_COPY_ATTRIBUTES (newmem, inner);
5793	  inner = newmem;
5794	}
5795    }
5796
5797  /* If INNER is not memory, we can always get it into the proper mode.  If we
5798     are changing its mode, POS must be a constant and smaller than the size
5799     of the new mode.  */
5800  else if (GET_CODE (inner) != MEM)
5801    {
5802      if (GET_MODE (inner) != wanted_inner_mode
5803	  && (pos_rtx != 0
5804	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
5805	return 0;
5806
5807      inner = force_to_mode (inner, wanted_inner_mode,
5808			     pos_rtx
5809			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
5810			     ? GET_MODE_MASK (wanted_inner_mode)
5811			     : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
5812			     NULL_RTX, 0);
5813    }
5814
5815  /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
5816     have to zero extend.  Otherwise, we can just use a SUBREG.  */
5817  if (pos_rtx != 0
5818      && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
5819    pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
5820  else if (pos_rtx != 0
5821	   && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5822    pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
5823
5824  /* Make POS_RTX unless we already have it and it is correct.  If we don't
5825     have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
5826     be a CONST_INT.  */
5827  if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
5828    pos_rtx = orig_pos_rtx;
5829
5830  else if (pos_rtx == 0)
5831    pos_rtx = GEN_INT (pos);
5832
5833  /* Make the required operation.  See if we can use existing rtx.  */
5834  new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
5835			 extraction_mode, inner, GEN_INT (len), pos_rtx);
5836  if (! in_dest)
5837    new = gen_lowpart_for_combine (mode, new);
5838
5839  return new;
5840}
5841
5842/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
5843   with any other operations in X.  Return X without that shift if so.  */
5844
5845static rtx
5846extract_left_shift (x, count)
5847     rtx x;
5848     int count;
5849{
5850  enum rtx_code code = GET_CODE (x);
5851  enum machine_mode mode = GET_MODE (x);
5852  rtx tem;
5853
5854  switch (code)
5855    {
5856    case ASHIFT:
5857      /* This is the shift itself.  If it is wide enough, we will return
5858	 either the value being shifted if the shift count is equal to
5859	 COUNT or a shift for the difference.  */
5860      if (GET_CODE (XEXP (x, 1)) == CONST_INT
5861	  && INTVAL (XEXP (x, 1)) >= count)
5862	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
5863				     INTVAL (XEXP (x, 1)) - count);
5864      break;
5865
5866    case NEG:  case NOT:
5867      if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5868	return gen_unary (code, mode, mode, tem);
5869
5870      break;
5871
5872    case PLUS:  case IOR:  case XOR:  case AND:
5873      /* If we can safely shift this constant and we find the inner shift,
5874	 make a new operation.  */
5875      if (GET_CODE (XEXP (x,1)) == CONST_INT
5876	  && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
5877	  && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5878	return gen_binary (code, mode, tem,
5879			   GEN_INT (INTVAL (XEXP (x, 1)) >> count));
5880
5881      break;
5882
5883    default:
5884      break;
5885    }
5886
5887  return 0;
5888}
5889
5890/* Look at the expression rooted at X.  Look for expressions
5891   equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
5892   Form these expressions.
5893
5894   Return the new rtx, usually just X.
5895
5896   Also, for machines like the Vax that don't have logical shift insns,
5897   try to convert logical to arithmetic shift operations in cases where
5898   they are equivalent.  This undoes the canonicalizations to logical
5899   shifts done elsewhere.
5900
5901   We try, as much as possible, to re-use rtl expressions to save memory.
5902
5903   IN_CODE says what kind of expression we are processing.  Normally, it is
5904   SET.  In a memory address (inside a MEM, PLUS or minus, the latter two
5905   being kludges), it is MEM.  When processing the arguments of a comparison
5906   or a COMPARE against zero, it is COMPARE.  */
5907
5908static rtx
5909make_compound_operation (x, in_code)
5910     rtx x;
5911     enum rtx_code in_code;
5912{
5913  enum rtx_code code = GET_CODE (x);
5914  enum machine_mode mode = GET_MODE (x);
5915  int mode_width = GET_MODE_BITSIZE (mode);
5916  rtx rhs, lhs;
5917  enum rtx_code next_code;
5918  int i;
5919  rtx new = 0;
5920  rtx tem;
5921  char *fmt;
5922
5923  /* Select the code to be used in recursive calls.  Once we are inside an
5924     address, we stay there.  If we have a comparison, set to COMPARE,
5925     but once inside, go back to our default of SET.  */
5926
5927  next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
5928	       : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
5929		  && XEXP (x, 1) == const0_rtx) ? COMPARE
5930	       : in_code == COMPARE ? SET : in_code);
5931
5932  /* Process depending on the code of this operation.  If NEW is set
5933     non-zero, it will be returned.  */
5934
5935  switch (code)
5936    {
5937    case ASHIFT:
5938      /* Convert shifts by constants into multiplications if inside
5939	 an address.  */
5940      if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
5941	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5942	  && INTVAL (XEXP (x, 1)) >= 0)
5943	{
5944	  new = make_compound_operation (XEXP (x, 0), next_code);
5945	  new = gen_rtx_combine (MULT, mode, new,
5946				 GEN_INT ((HOST_WIDE_INT) 1
5947					  << INTVAL (XEXP (x, 1))));
5948	}
5949      break;
5950
5951    case AND:
5952      /* If the second operand is not a constant, we can't do anything
5953	 with it.  */
5954      if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5955	break;
5956
5957      /* If the constant is a power of two minus one and the first operand
5958	 is a logical right shift, make an extraction.  */
5959      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
5960	  && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5961	{
5962	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5963	  new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
5964				 0, in_code == COMPARE);
5965	}
5966
5967      /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
5968      else if (GET_CODE (XEXP (x, 0)) == SUBREG
5969	       && subreg_lowpart_p (XEXP (x, 0))
5970	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
5971	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5972	{
5973	  new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
5974					 next_code);
5975	  new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
5976				 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
5977				 0, in_code == COMPARE);
5978	}
5979      /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
5980      else if ((GET_CODE (XEXP (x, 0)) == XOR
5981		|| GET_CODE (XEXP (x, 0)) == IOR)
5982	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
5983	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
5984	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5985	{
5986	  /* Apply the distributive law, and then try to make extractions.  */
5987	  new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
5988				 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
5989					      XEXP (x, 1)),
5990				 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
5991					      XEXP (x, 1)));
5992	  new = make_compound_operation (new, in_code);
5993	}
5994
5995      /* If we are have (and (rotate X C) M) and C is larger than the number
5996	 of bits in M, this is an extraction.  */
5997
5998      else if (GET_CODE (XEXP (x, 0)) == ROTATE
5999	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6000	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6001	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6002	{
6003	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6004	  new = make_extraction (mode, new,
6005				 (GET_MODE_BITSIZE (mode)
6006				  - INTVAL (XEXP (XEXP (x, 0), 1))),
6007				 NULL_RTX, i, 1, 0, in_code == COMPARE);
6008	}
6009
6010      /* On machines without logical shifts, if the operand of the AND is
6011	 a logical shift and our mask turns off all the propagated sign
6012	 bits, we can replace the logical shift with an arithmetic shift.  */
6013      else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6014	       && (lshr_optab->handlers[(int) mode].insn_code
6015		   == CODE_FOR_nothing)
6016	       && GET_CODE (XEXP (x, 0)) == LSHIFTRT
6017	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6018	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6019	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6020	       && mode_width <= HOST_BITS_PER_WIDE_INT)
6021	{
6022	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6023
6024	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6025	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6026	    SUBST (XEXP (x, 0),
6027		   gen_rtx_combine (ASHIFTRT, mode,
6028				    make_compound_operation (XEXP (XEXP (x, 0), 0),
6029							     next_code),
6030				    XEXP (XEXP (x, 0), 1)));
6031	}
6032
6033      /* If the constant is one less than a power of two, this might be
6034	 representable by an extraction even if no shift is present.
6035	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6036	 we are in a COMPARE.  */
6037      else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6038	new = make_extraction (mode,
6039			       make_compound_operation (XEXP (x, 0),
6040							next_code),
6041			       0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6042
6043      /* If we are in a comparison and this is an AND with a power of two,
6044	 convert this into the appropriate bit extract.  */
6045      else if (in_code == COMPARE
6046	       && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6047	new = make_extraction (mode,
6048			       make_compound_operation (XEXP (x, 0),
6049							next_code),
6050			       i, NULL_RTX, 1, 1, 0, 1);
6051
6052      break;
6053
6054    case LSHIFTRT:
6055      /* If the sign bit is known to be zero, replace this with an
6056	 arithmetic shift.  */
6057      if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
6058	  && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6059	  && mode_width <= HOST_BITS_PER_WIDE_INT
6060	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6061	{
6062	  new = gen_rtx_combine (ASHIFTRT, mode,
6063				 make_compound_operation (XEXP (x, 0),
6064							  next_code),
6065				 XEXP (x, 1));
6066	  break;
6067	}
6068
6069      /* ... fall through ...  */
6070
6071    case ASHIFTRT:
6072      lhs = XEXP (x, 0);
6073      rhs = XEXP (x, 1);
6074
6075      /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6076	 this is a SIGN_EXTRACT.  */
6077      if (GET_CODE (rhs) == CONST_INT
6078	  && GET_CODE (lhs) == ASHIFT
6079	  && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6080	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6081	{
6082	  new = make_compound_operation (XEXP (lhs, 0), next_code);
6083	  new = make_extraction (mode, new,
6084				 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6085				 NULL_RTX, mode_width - INTVAL (rhs),
6086				 code == LSHIFTRT, 0, in_code == COMPARE);
6087	}
6088
6089      /* See if we have operations between an ASHIFTRT and an ASHIFT.
6090	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
6091	 also do this for some cases of SIGN_EXTRACT, but it doesn't
6092	 seem worth the effort; the case checked for occurs on Alpha.  */
6093
6094      if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6095	  && ! (GET_CODE (lhs) == SUBREG
6096		&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6097	  && GET_CODE (rhs) == CONST_INT
6098	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6099	  && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6100	new = make_extraction (mode, make_compound_operation (new, next_code),
6101			       0, NULL_RTX, mode_width - INTVAL (rhs),
6102			       code == LSHIFTRT, 0, in_code == COMPARE);
6103
6104      break;
6105
6106    case SUBREG:
6107      /* Call ourselves recursively on the inner expression.  If we are
6108	 narrowing the object and it has a different RTL code from
6109	 what it originally did, do this SUBREG as a force_to_mode.  */
6110
6111      tem = make_compound_operation (SUBREG_REG (x), in_code);
6112      if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6113	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6114	  && subreg_lowpart_p (x))
6115	{
6116	  rtx newer = force_to_mode (tem, mode,
6117				     GET_MODE_MASK (mode), NULL_RTX, 0);
6118
6119	  /* If we have something other than a SUBREG, we might have
6120	     done an expansion, so rerun outselves.  */
6121	  if (GET_CODE (newer) != SUBREG)
6122	    newer = make_compound_operation (newer, in_code);
6123
6124	  return newer;
6125	}
6126
6127      /* If this is a paradoxical subreg, and the new code is a sign or
6128	 zero extension, omit the subreg and widen the extension.  If it
6129	 is a regular subreg, we can still get rid of the subreg by not
6130	 widening so much, or in fact removing the extension entirely.  */
6131      if ((GET_CODE (tem) == SIGN_EXTEND
6132	   || GET_CODE (tem) == ZERO_EXTEND)
6133	  && subreg_lowpart_p (x))
6134	{
6135	  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6136	      || (GET_MODE_SIZE (mode) >
6137		  GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6138	    tem = gen_rtx_combine (GET_CODE (tem), mode, XEXP (tem, 0));
6139	  else
6140	    tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6141	  return tem;
6142	}
6143      break;
6144
6145    default:
6146      break;
6147    }
6148
6149  if (new)
6150    {
6151      x = gen_lowpart_for_combine (mode, new);
6152      code = GET_CODE (x);
6153    }
6154
6155  /* Now recursively process each operand of this operation.  */
6156  fmt = GET_RTX_FORMAT (code);
6157  for (i = 0; i < GET_RTX_LENGTH (code); i++)
6158    if (fmt[i] == 'e')
6159      {
6160	new = make_compound_operation (XEXP (x, i), next_code);
6161	SUBST (XEXP (x, i), new);
6162      }
6163
6164  return x;
6165}
6166
6167/* Given M see if it is a value that would select a field of bits
6168    within an item, but not the entire word.  Return -1 if not.
6169    Otherwise, return the starting position of the field, where 0 is the
6170    low-order bit.
6171
6172   *PLEN is set to the length of the field.  */
6173
6174static int
6175get_pos_from_mask (m, plen)
6176     unsigned HOST_WIDE_INT m;
6177     int *plen;
6178{
6179  /* Get the bit number of the first 1 bit from the right, -1 if none.  */
6180  int pos = exact_log2 (m & - m);
6181
6182  if (pos < 0)
6183    return -1;
6184
6185  /* Now shift off the low-order zero bits and see if we have a power of
6186     two minus 1.  */
6187  *plen = exact_log2 ((m >> pos) + 1);
6188
6189  if (*plen <= 0)
6190    return -1;
6191
6192  return pos;
6193}
6194
6195/* See if X can be simplified knowing that we will only refer to it in
6196   MODE and will only refer to those bits that are nonzero in MASK.
6197   If other bits are being computed or if masking operations are done
6198   that select a superset of the bits in MASK, they can sometimes be
6199   ignored.
6200
6201   Return a possibly simplified expression, but always convert X to
6202   MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
6203
6204   Also, if REG is non-zero and X is a register equal in value to REG,
6205   replace X with REG.
6206
6207   If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6208   are all off in X.  This is used when X will be complemented, by either
6209   NOT, NEG, or XOR.  */
6210
6211static rtx
6212force_to_mode (x, mode, mask, reg, just_select)
6213     rtx x;
6214     enum machine_mode mode;
6215     unsigned HOST_WIDE_INT mask;
6216     rtx reg;
6217     int just_select;
6218{
6219  enum rtx_code code = GET_CODE (x);
6220  int next_select = just_select || code == XOR || code == NOT || code == NEG;
6221  enum machine_mode op_mode;
6222  unsigned HOST_WIDE_INT fuller_mask, nonzero;
6223  rtx op0, op1, temp;
6224
6225  /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
6226     code below will do the wrong thing since the mode of such an
6227     expression is VOIDmode.
6228
6229     Also do nothing if X is a CLOBBER; this can happen if X was
6230     the return value from a call to gen_lowpart_for_combine.  */
6231  if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6232    return x;
6233
6234  /* We want to perform the operation is its present mode unless we know
6235     that the operation is valid in MODE, in which case we do the operation
6236     in MODE.  */
6237  op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6238	      && code_to_optab[(int) code] != 0
6239	      && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
6240		  != CODE_FOR_nothing))
6241	     ? mode : GET_MODE (x));
6242
6243  /* It is not valid to do a right-shift in a narrower mode
6244     than the one it came in with.  */
6245  if ((code == LSHIFTRT || code == ASHIFTRT)
6246      && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6247    op_mode = GET_MODE (x);
6248
6249  /* Truncate MASK to fit OP_MODE.  */
6250  if (op_mode)
6251    mask &= GET_MODE_MASK (op_mode);
6252
6253  /* When we have an arithmetic operation, or a shift whose count we
6254     do not know, we need to assume that all bit the up to the highest-order
6255     bit in MASK will be needed.  This is how we form such a mask.  */
6256  if (op_mode)
6257    fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6258		   ? GET_MODE_MASK (op_mode)
6259		   : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
6260  else
6261    fuller_mask = ~ (HOST_WIDE_INT) 0;
6262
6263  /* Determine what bits of X are guaranteed to be (non)zero.  */
6264  nonzero = nonzero_bits (x, mode);
6265
6266  /* If none of the bits in X are needed, return a zero.  */
6267  if (! just_select && (nonzero & mask) == 0)
6268    return const0_rtx;
6269
6270  /* If X is a CONST_INT, return a new one.  Do this here since the
6271     test below will fail.  */
6272  if (GET_CODE (x) == CONST_INT)
6273    {
6274      HOST_WIDE_INT cval = INTVAL (x) & mask;
6275      int width = GET_MODE_BITSIZE (mode);
6276
6277      /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6278	 number, sign extend it.  */
6279      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6280	  && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6281	cval |= (HOST_WIDE_INT) -1 << width;
6282
6283      return GEN_INT (cval);
6284    }
6285
6286  /* If X is narrower than MODE and we want all the bits in X's mode, just
6287     get X in the proper mode.  */
6288  if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6289      && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
6290    return gen_lowpart_for_combine (mode, x);
6291
6292  /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6293     MASK are already known to be zero in X, we need not do anything.  */
6294  if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
6295    return x;
6296
6297  switch (code)
6298    {
6299    case CLOBBER:
6300      /* If X is a (clobber (const_int)), return it since we know we are
6301	 generating something that won't match.  */
6302      return x;
6303
6304    case USE:
6305      /* X is a (use (mem ..)) that was made from a bit-field extraction that
6306	 spanned the boundary of the MEM.  If we are now masking so it is
6307	 within that boundary, we don't need the USE any more.  */
6308      if (! BITS_BIG_ENDIAN
6309	  && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6310	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6311      break;
6312
6313    case SIGN_EXTEND:
6314    case ZERO_EXTEND:
6315    case ZERO_EXTRACT:
6316    case SIGN_EXTRACT:
6317      x = expand_compound_operation (x);
6318      if (GET_CODE (x) != code)
6319	return force_to_mode (x, mode, mask, reg, next_select);
6320      break;
6321
6322    case REG:
6323      if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6324		       || rtx_equal_p (reg, get_last_value (x))))
6325	x = reg;
6326      break;
6327
6328    case SUBREG:
6329      if (subreg_lowpart_p (x)
6330	  /* We can ignore the effect of this SUBREG if it narrows the mode or
6331	     if the constant masks to zero all the bits the mode doesn't
6332	     have.  */
6333	  && ((GET_MODE_SIZE (GET_MODE (x))
6334	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6335	      || (0 == (mask
6336			& GET_MODE_MASK (GET_MODE (x))
6337			& ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6338	return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6339      break;
6340
6341    case AND:
6342      /* If this is an AND with a constant, convert it into an AND
6343	 whose constant is the AND of that constant with MASK.  If it
6344	 remains an AND of MASK, delete it since it is redundant.  */
6345
6346      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6347	{
6348	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6349				      mask & INTVAL (XEXP (x, 1)));
6350
6351	  /* If X is still an AND, see if it is an AND with a mask that
6352	     is just some low-order bits.  If so, and it is MASK, we don't
6353	     need it.  */
6354
6355	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6356	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6357	    x = XEXP (x, 0);
6358
6359	  /* If it remains an AND, try making another AND with the bits
6360	     in the mode mask that aren't in MASK turned on.  If the
6361	     constant in the AND is wide enough, this might make a
6362	     cheaper constant.  */
6363
6364	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6365	      && GET_MODE_MASK (GET_MODE (x)) != mask
6366	      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6367	    {
6368	      HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6369				    | (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
6370	      int width = GET_MODE_BITSIZE (GET_MODE (x));
6371	      rtx y;
6372
6373	      /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6374		 number, sign extend it.  */
6375	      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6376		  && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6377		cval |= (HOST_WIDE_INT) -1 << width;
6378
6379	      y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6380	      if (rtx_cost (y, SET) < rtx_cost (x, SET))
6381		x = y;
6382	    }
6383
6384	  break;
6385	}
6386
6387      goto binop;
6388
6389    case PLUS:
6390      /* In (and (plus FOO C1) M), if M is a mask that just turns off
6391	 low-order bits (as in an alignment operation) and FOO is already
6392	 aligned to that boundary, mask C1 to that boundary as well.
6393	 This may eliminate that PLUS and, later, the AND.  */
6394
6395      {
6396	int width = GET_MODE_BITSIZE (mode);
6397	unsigned HOST_WIDE_INT smask = mask;
6398
6399	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6400	   number, sign extend it.  */
6401
6402	if (width < HOST_BITS_PER_WIDE_INT
6403	    && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6404	  smask |= (HOST_WIDE_INT) -1 << width;
6405
6406	if (GET_CODE (XEXP (x, 1)) == CONST_INT
6407	    && exact_log2 (- smask) >= 0)
6408	  {
6409#ifdef STACK_BIAS
6410	    if (STACK_BIAS
6411	        && (XEXP (x, 0) == stack_pointer_rtx
6412	            || XEXP (x, 0) == frame_pointer_rtx))
6413	      {
6414                int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6415                unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6416
6417		sp_mask &= ~ (sp_alignment - 1);
6418		if ((sp_mask & ~ smask) == 0
6419		    && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~ smask) != 0)
6420		  return force_to_mode (plus_constant (XEXP (x, 0),
6421		  				       ((INTVAL (XEXP (x, 1)) -
6422							 STACK_BIAS) & smask)
6423						       + STACK_BIAS),
6424		 			mode, smask, reg, next_select);
6425              }
6426#endif
6427	    if ((nonzero_bits (XEXP (x, 0), mode) & ~ smask) == 0
6428	        && (INTVAL (XEXP (x, 1)) & ~ smask) != 0)
6429	      return force_to_mode (plus_constant (XEXP (x, 0),
6430					           (INTVAL (XEXP (x, 1))
6431						    & smask)),
6432				    mode, smask, reg, next_select);
6433	  }
6434      }
6435
6436      /* ... fall through ...  */
6437
6438    case MINUS:
6439    case MULT:
6440      /* For PLUS, MINUS and MULT, we need any bits less significant than the
6441	 most significant bit in MASK since carries from those bits will
6442	 affect the bits we are interested in.  */
6443      mask = fuller_mask;
6444      goto binop;
6445
6446    case IOR:
6447    case XOR:
6448      /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6449	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6450	 operation which may be a bitfield extraction.  Ensure that the
6451	 constant we form is not wider than the mode of X.  */
6452
6453      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6454	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6455	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6456	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6457	  && GET_CODE (XEXP (x, 1)) == CONST_INT
6458	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
6459	       + floor_log2 (INTVAL (XEXP (x, 1))))
6460	      < GET_MODE_BITSIZE (GET_MODE (x)))
6461	  && (INTVAL (XEXP (x, 1))
6462	      & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6463	{
6464	  temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6465			      << INTVAL (XEXP (XEXP (x, 0), 1)));
6466	  temp = gen_binary (GET_CODE (x), GET_MODE (x),
6467			     XEXP (XEXP (x, 0), 0), temp);
6468	  x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6469			  XEXP (XEXP (x, 0), 1));
6470	  return force_to_mode (x, mode, mask, reg, next_select);
6471	}
6472
6473    binop:
6474      /* For most binary operations, just propagate into the operation and
6475	 change the mode if we have an operation of that mode.   */
6476
6477      op0 = gen_lowpart_for_combine (op_mode,
6478				     force_to_mode (XEXP (x, 0), mode, mask,
6479						    reg, next_select));
6480      op1 = gen_lowpart_for_combine (op_mode,
6481				     force_to_mode (XEXP (x, 1), mode, mask,
6482						    reg, next_select));
6483
6484      /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6485	 MASK since OP1 might have been sign-extended but we never want
6486	 to turn on extra bits, since combine might have previously relied
6487	 on them being off.  */
6488      if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6489	  && (INTVAL (op1) & mask) != 0)
6490	op1 = GEN_INT (INTVAL (op1) & mask);
6491
6492      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6493	x = gen_binary (code, op_mode, op0, op1);
6494      break;
6495
6496    case ASHIFT:
6497      /* For left shifts, do the same, but just for the first operand.
6498	 However, we cannot do anything with shifts where we cannot
6499	 guarantee that the counts are smaller than the size of the mode
6500	 because such a count will have a different meaning in a
6501	 wider mode.  */
6502
6503      if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6504	     && INTVAL (XEXP (x, 1)) >= 0
6505	     && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6506	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6507		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6508		    < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6509	break;
6510
6511      /* If the shift count is a constant and we can do arithmetic in
6512	 the mode of the shift, refine which bits we need.  Otherwise, use the
6513	 conservative form of the mask.  */
6514      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6515	  && INTVAL (XEXP (x, 1)) >= 0
6516	  && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6517	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6518	mask >>= INTVAL (XEXP (x, 1));
6519      else
6520	mask = fuller_mask;
6521
6522      op0 = gen_lowpart_for_combine (op_mode,
6523				     force_to_mode (XEXP (x, 0), op_mode,
6524						    mask, reg, next_select));
6525
6526      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6527	x =  gen_binary (code, op_mode, op0, XEXP (x, 1));
6528      break;
6529
6530    case LSHIFTRT:
6531      /* Here we can only do something if the shift count is a constant,
6532	 this shift constant is valid for the host, and we can do arithmetic
6533	 in OP_MODE.  */
6534
6535      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6536	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6537	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6538	{
6539	  rtx inner = XEXP (x, 0);
6540
6541	  /* Select the mask of the bits we need for the shift operand.  */
6542	  mask <<= INTVAL (XEXP (x, 1));
6543
6544	  /* We can only change the mode of the shift if we can do arithmetic
6545	     in the mode of the shift and MASK is no wider than the width of
6546	     OP_MODE.  */
6547	  if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6548	      || (mask & ~ GET_MODE_MASK (op_mode)) != 0)
6549	    op_mode = GET_MODE (x);
6550
6551	  inner = force_to_mode (inner, op_mode, mask, reg, next_select);
6552
6553	  if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6554	    x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6555	}
6556
6557      /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6558	 shift and AND produces only copies of the sign bit (C2 is one less
6559	 than a power of two), we can do this with just a shift.  */
6560
6561      if (GET_CODE (x) == LSHIFTRT
6562	  && GET_CODE (XEXP (x, 1)) == CONST_INT
6563	  && ((INTVAL (XEXP (x, 1))
6564	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6565	      >= GET_MODE_BITSIZE (GET_MODE (x)))
6566	  && exact_log2 (mask + 1) >= 0
6567	  && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6568	      >= exact_log2 (mask + 1)))
6569	x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6570			GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6571				 - exact_log2 (mask + 1)));
6572      break;
6573
6574    case ASHIFTRT:
6575      /* If we are just looking for the sign bit, we don't need this shift at
6576	 all, even if it has a variable count.  */
6577      if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6578	  && (mask == ((unsigned HOST_WIDE_INT) 1
6579		       << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6580	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6581
6582      /* If this is a shift by a constant, get a mask that contains those bits
6583	 that are not copies of the sign bit.  We then have two cases:  If
6584	 MASK only includes those bits, this can be a logical shift, which may
6585	 allow simplifications.  If MASK is a single-bit field not within
6586	 those bits, we are requesting a copy of the sign bit and hence can
6587	 shift the sign bit to the appropriate location.  */
6588
6589      if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6590	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6591	{
6592	  int i = -1;
6593
6594	  /* If the considered data is wider then HOST_WIDE_INT, we can't
6595	     represent a mask for all its bits in a single scalar.
6596	     But we only care about the lower bits, so calculate these.  */
6597
6598	  if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6599	    {
6600	      nonzero = ~ (HOST_WIDE_INT) 0;
6601
6602	      /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6603		 is the number of bits a full-width mask would have set.
6604		 We need only shift if these are fewer than nonzero can
6605		 hold.  If not, we must keep all bits set in nonzero.  */
6606
6607	      if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6608		  < HOST_BITS_PER_WIDE_INT)
6609		nonzero >>= INTVAL (XEXP (x, 1))
6610			    + HOST_BITS_PER_WIDE_INT
6611			    - GET_MODE_BITSIZE (GET_MODE (x)) ;
6612	    }
6613	  else
6614	    {
6615	      nonzero = GET_MODE_MASK (GET_MODE (x));
6616	      nonzero >>= INTVAL (XEXP (x, 1));
6617	    }
6618
6619	  if ((mask & ~ nonzero) == 0
6620	      || (i = exact_log2 (mask)) >= 0)
6621	    {
6622	      x = simplify_shift_const
6623		(x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6624		 i < 0 ? INTVAL (XEXP (x, 1))
6625		 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
6626
6627	      if (GET_CODE (x) != ASHIFTRT)
6628		return force_to_mode (x, mode, mask, reg, next_select);
6629	    }
6630	}
6631
6632      /* If MASK is 1, convert this to a LSHIFTRT.  This can be done
6633	 even if the shift count isn't a constant.  */
6634      if (mask == 1)
6635	x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
6636
6637      /* If this is a sign-extension operation that just affects bits
6638	 we don't care about, remove it.  Be sure the call above returned
6639	 something that is still a shift.  */
6640
6641      if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
6642	  && GET_CODE (XEXP (x, 1)) == CONST_INT
6643	  && INTVAL (XEXP (x, 1)) >= 0
6644	  && (INTVAL (XEXP (x, 1))
6645	      <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
6646	  && GET_CODE (XEXP (x, 0)) == ASHIFT
6647	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6648	  && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
6649	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
6650			      reg, next_select);
6651
6652      break;
6653
6654    case ROTATE:
6655    case ROTATERT:
6656      /* If the shift count is constant and we can do computations
6657	 in the mode of X, compute where the bits we care about are.
6658	 Otherwise, we can't do anything.  Don't change the mode of
6659	 the shift or propagate MODE into the shift, though.  */
6660      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6661	  && INTVAL (XEXP (x, 1)) >= 0)
6662	{
6663	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
6664					    GET_MODE (x), GEN_INT (mask),
6665					    XEXP (x, 1));
6666	  if (temp && GET_CODE(temp) == CONST_INT)
6667	    SUBST (XEXP (x, 0),
6668		   force_to_mode (XEXP (x, 0), GET_MODE (x),
6669				  INTVAL (temp), reg, next_select));
6670	}
6671      break;
6672
6673    case NEG:
6674      /* If we just want the low-order bit, the NEG isn't needed since it
6675	 won't change the low-order bit.    */
6676      if (mask == 1)
6677	return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
6678
6679      /* We need any bits less significant than the most significant bit in
6680	 MASK since carries from those bits will affect the bits we are
6681	 interested in.  */
6682      mask = fuller_mask;
6683      goto unop;
6684
6685    case NOT:
6686      /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
6687	 same as the XOR case above.  Ensure that the constant we form is not
6688	 wider than the mode of X.  */
6689
6690      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6691	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6692	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6693	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
6694	      < GET_MODE_BITSIZE (GET_MODE (x)))
6695	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
6696	{
6697	  temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
6698	  temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
6699	  x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
6700
6701	  return force_to_mode (x, mode, mask, reg, next_select);
6702	}
6703
6704      /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
6705	 use the full mask inside the NOT.  */
6706      mask = fuller_mask;
6707
6708    unop:
6709      op0 = gen_lowpart_for_combine (op_mode,
6710				     force_to_mode (XEXP (x, 0), mode, mask,
6711						    reg, next_select));
6712      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6713	x = gen_unary (code, op_mode, op_mode, op0);
6714      break;
6715
6716    case NE:
6717      /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
6718	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
6719	 which is equal to STORE_FLAG_VALUE.  */
6720      if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
6721	  && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
6722	  && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
6723	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6724
6725      break;
6726
6727    case IF_THEN_ELSE:
6728      /* We have no way of knowing if the IF_THEN_ELSE can itself be
6729	 written in a narrower mode.  We play it safe and do not do so.  */
6730
6731      SUBST (XEXP (x, 1),
6732	     gen_lowpart_for_combine (GET_MODE (x),
6733				      force_to_mode (XEXP (x, 1), mode,
6734						     mask, reg, next_select)));
6735      SUBST (XEXP (x, 2),
6736	     gen_lowpart_for_combine (GET_MODE (x),
6737				      force_to_mode (XEXP (x, 2), mode,
6738						     mask, reg,next_select)));
6739      break;
6740
6741    default:
6742      break;
6743    }
6744
6745  /* Ensure we return a value of the proper mode.  */
6746  return gen_lowpart_for_combine (mode, x);
6747}
6748
6749/* Return nonzero if X is an expression that has one of two values depending on
6750   whether some other value is zero or nonzero.  In that case, we return the
6751   value that is being tested, *PTRUE is set to the value if the rtx being
6752   returned has a nonzero value, and *PFALSE is set to the other alternative.
6753
6754   If we return zero, we set *PTRUE and *PFALSE to X.  */
6755
6756static rtx
6757if_then_else_cond (x, ptrue, pfalse)
6758     rtx x;
6759     rtx *ptrue, *pfalse;
6760{
6761  enum machine_mode mode = GET_MODE (x);
6762  enum rtx_code code = GET_CODE (x);
6763  int size = GET_MODE_BITSIZE (mode);
6764  rtx cond0, cond1, true0, true1, false0, false1;
6765  unsigned HOST_WIDE_INT nz;
6766
6767  /* If this is a unary operation whose operand has one of two values, apply
6768     our opcode to compute those values.  */
6769  if (GET_RTX_CLASS (code) == '1'
6770      && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
6771    {
6772      *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
6773      *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
6774      return cond0;
6775    }
6776
6777  /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
6778     make can't possibly match and would suppress other optimizations.  */
6779  else if (code == COMPARE)
6780    ;
6781
6782  /* If this is a binary operation, see if either side has only one of two
6783     values.  If either one does or if both do and they are conditional on
6784     the same value, compute the new true and false values.  */
6785  else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
6786	   || GET_RTX_CLASS (code) == '<')
6787    {
6788      cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
6789      cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
6790
6791      if ((cond0 != 0 || cond1 != 0)
6792	  && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
6793	{
6794	  /* If if_then_else_cond returned zero, then true/false are the
6795	     same rtl.  We must copy one of them to prevent invalid rtl
6796	     sharing.  */
6797	  if (cond0 == 0)
6798	    true0 = copy_rtx (true0);
6799	  else if (cond1 == 0)
6800	    true1 = copy_rtx (true1);
6801
6802	  *ptrue = gen_binary (code, mode, true0, true1);
6803	  *pfalse = gen_binary (code, mode, false0, false1);
6804	  return cond0 ? cond0 : cond1;
6805	}
6806
6807      /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
6808	 operands is zero when the other is non-zero, and vice-versa,
6809	 and STORE_FLAG_VALUE is 1 or -1.  */
6810
6811      if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6812	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
6813	   || code == UMAX)
6814	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6815	{
6816	  rtx op0 = XEXP (XEXP (x, 0), 1);
6817	  rtx op1 = XEXP (XEXP (x, 1), 1);
6818
6819	  cond0 = XEXP (XEXP (x, 0), 0);
6820	  cond1 = XEXP (XEXP (x, 1), 0);
6821
6822	  if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6823	      && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6824	      && reversible_comparison_p (cond1)
6825	      && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6826		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6827		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6828		  || ((swap_condition (GET_CODE (cond0))
6829		       == reverse_condition (GET_CODE (cond1)))
6830		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6831		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6832	      && ! side_effects_p (x))
6833	    {
6834	      *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
6835	      *pfalse = gen_binary (MULT, mode,
6836				    (code == MINUS
6837				     ? gen_unary (NEG, mode, mode, op1) : op1),
6838				    const_true_rtx);
6839	      return cond0;
6840	    }
6841	}
6842
6843      /* Similarly for MULT, AND and UMIN, execpt that for these the result
6844	 is always zero.  */
6845      if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6846	  && (code == MULT || code == AND || code == UMIN)
6847	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6848	{
6849	  cond0 = XEXP (XEXP (x, 0), 0);
6850	  cond1 = XEXP (XEXP (x, 1), 0);
6851
6852	  if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6853	      && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6854	      && reversible_comparison_p (cond1)
6855	      && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6856		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6857		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6858		  || ((swap_condition (GET_CODE (cond0))
6859		       == reverse_condition (GET_CODE (cond1)))
6860		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6861		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6862	      && ! side_effects_p (x))
6863	    {
6864	      *ptrue = *pfalse = const0_rtx;
6865	      return cond0;
6866	    }
6867	}
6868    }
6869
6870  else if (code == IF_THEN_ELSE)
6871    {
6872      /* If we have IF_THEN_ELSE already, extract the condition and
6873	 canonicalize it if it is NE or EQ.  */
6874      cond0 = XEXP (x, 0);
6875      *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
6876      if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
6877	return XEXP (cond0, 0);
6878      else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
6879	{
6880	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
6881	  return XEXP (cond0, 0);
6882	}
6883      else
6884	return cond0;
6885    }
6886
6887  /* If X is a normal SUBREG with both inner and outer modes integral,
6888     we can narrow both the true and false values of the inner expression,
6889     if there is a condition.  */
6890  else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
6891	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
6892	   && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
6893	   && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
6894					       &true0, &false0)))
6895    {
6896      *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6897      *pfalse
6898	= force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6899
6900      return cond0;
6901    }
6902
6903  /* If X is a constant, this isn't special and will cause confusions
6904     if we treat it as such.  Likewise if it is equivalent to a constant.  */
6905  else if (CONSTANT_P (x)
6906	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
6907    ;
6908
6909  /* If X is known to be either 0 or -1, those are the true and
6910     false values when testing X.  */
6911  else if (num_sign_bit_copies (x, mode) == size)
6912    {
6913      *ptrue = constm1_rtx, *pfalse = const0_rtx;
6914      return x;
6915    }
6916
6917  /* Likewise for 0 or a single bit.  */
6918  else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
6919    {
6920      *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
6921      return x;
6922    }
6923
6924  /* Otherwise fail; show no condition with true and false values the same.  */
6925  *ptrue = *pfalse = x;
6926  return 0;
6927}
6928
6929/* Return the value of expression X given the fact that condition COND
6930   is known to be true when applied to REG as its first operand and VAL
6931   as its second.  X is known to not be shared and so can be modified in
6932   place.
6933
6934   We only handle the simplest cases, and specifically those cases that
6935   arise with IF_THEN_ELSE expressions.  */
6936
6937static rtx
6938known_cond (x, cond, reg, val)
6939     rtx x;
6940     enum rtx_code cond;
6941     rtx reg, val;
6942{
6943  enum rtx_code code = GET_CODE (x);
6944  rtx temp;
6945  char *fmt;
6946  int i, j;
6947
6948  if (side_effects_p (x))
6949    return x;
6950
6951  if (cond == EQ && rtx_equal_p (x, reg))
6952    return val;
6953
6954  /* If X is (abs REG) and we know something about REG's relationship
6955     with zero, we may be able to simplify this.  */
6956
6957  if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
6958    switch (cond)
6959      {
6960      case GE:  case GT:  case EQ:
6961	return XEXP (x, 0);
6962      case LT:  case LE:
6963	return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
6964			  XEXP (x, 0));
6965      default:
6966	break;
6967      }
6968
6969  /* The only other cases we handle are MIN, MAX, and comparisons if the
6970     operands are the same as REG and VAL.  */
6971
6972  else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
6973    {
6974      if (rtx_equal_p (XEXP (x, 0), val))
6975	cond = swap_condition (cond), temp = val, val = reg, reg = temp;
6976
6977      if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
6978	{
6979	  if (GET_RTX_CLASS (code) == '<')
6980	    return (comparison_dominates_p (cond, code) ? const_true_rtx
6981		    : (comparison_dominates_p (cond,
6982					       reverse_condition (code))
6983		       ? const0_rtx : x));
6984
6985	  else if (code == SMAX || code == SMIN
6986		   || code == UMIN || code == UMAX)
6987	    {
6988	      int unsignedp = (code == UMIN || code == UMAX);
6989
6990	      if (code == SMAX || code == UMAX)
6991		cond = reverse_condition (cond);
6992
6993	      switch (cond)
6994		{
6995		case GE:   case GT:
6996		  return unsignedp ? x : XEXP (x, 1);
6997		case LE:   case LT:
6998		  return unsignedp ? x : XEXP (x, 0);
6999		case GEU:  case GTU:
7000		  return unsignedp ? XEXP (x, 1) : x;
7001		case LEU:  case LTU:
7002		  return unsignedp ? XEXP (x, 0) : x;
7003		default:
7004		  break;
7005		}
7006	    }
7007	}
7008    }
7009
7010  fmt = GET_RTX_FORMAT (code);
7011  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7012    {
7013      if (fmt[i] == 'e')
7014	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7015      else if (fmt[i] == 'E')
7016	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7017	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7018						cond, reg, val));
7019    }
7020
7021  return x;
7022}
7023
7024/* See if X and Y are equal for the purposes of seeing if we can rewrite an
7025   assignment as a field assignment.  */
7026
7027static int
7028rtx_equal_for_field_assignment_p (x, y)
7029     rtx x;
7030     rtx y;
7031{
7032  if (x == y || rtx_equal_p (x, y))
7033    return 1;
7034
7035  if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7036    return 0;
7037
7038  /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7039     Note that all SUBREGs of MEM are paradoxical; otherwise they
7040     would have been rewritten.  */
7041  if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7042      && GET_CODE (SUBREG_REG (y)) == MEM
7043      && rtx_equal_p (SUBREG_REG (y),
7044		      gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7045    return 1;
7046
7047  if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7048      && GET_CODE (SUBREG_REG (x)) == MEM
7049      && rtx_equal_p (SUBREG_REG (x),
7050		      gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7051    return 1;
7052
7053  /* We used to see if get_last_value of X and Y were the same but that's
7054     not correct.  In one direction, we'll cause the assignment to have
7055     the wrong destination and in the case, we'll import a register into this
7056     insn that might have already have been dead.   So fail if none of the
7057     above cases are true.  */
7058  return 0;
7059}
7060
7061/* See if X, a SET operation, can be rewritten as a bit-field assignment.
7062   Return that assignment if so.
7063
7064   We only handle the most common cases.  */
7065
7066static rtx
7067make_field_assignment (x)
7068     rtx x;
7069{
7070  rtx dest = SET_DEST (x);
7071  rtx src = SET_SRC (x);
7072  rtx assign;
7073  rtx rhs, lhs;
7074  HOST_WIDE_INT c1;
7075  int pos, len;
7076  rtx other;
7077  enum machine_mode mode;
7078
7079  /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7080     a clear of a one-bit field.  We will have changed it to
7081     (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
7082     for a SUBREG.  */
7083
7084  if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7085      && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7086      && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7087      && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7088    {
7089      assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7090				1, 1, 1, 0);
7091      if (assign != 0)
7092	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7093      return x;
7094    }
7095
7096  else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7097	   && subreg_lowpart_p (XEXP (src, 0))
7098	   && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7099	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7100	   && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7101	   && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7102	   && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7103    {
7104      assign = make_extraction (VOIDmode, dest, 0,
7105				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7106				1, 1, 1, 0);
7107      if (assign != 0)
7108	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7109      return x;
7110    }
7111
7112  /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7113     one-bit field.  */
7114  else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7115	   && XEXP (XEXP (src, 0), 0) == const1_rtx
7116	   && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7117    {
7118      assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7119				1, 1, 1, 0);
7120      if (assign != 0)
7121	return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7122      return x;
7123    }
7124
7125  /* The other case we handle is assignments into a constant-position
7126     field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
7127     a mask that has all one bits except for a group of zero bits and
7128     OTHER is known to have zeros where C1 has ones, this is such an
7129     assignment.  Compute the position and length from C1.  Shift OTHER
7130     to the appropriate position, force it to the required mode, and
7131     make the extraction.  Check for the AND in both operands.  */
7132
7133  if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7134    return x;
7135
7136  rhs = expand_compound_operation (XEXP (src, 0));
7137  lhs = expand_compound_operation (XEXP (src, 1));
7138
7139  if (GET_CODE (rhs) == AND
7140      && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7141      && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7142    c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7143  else if (GET_CODE (lhs) == AND
7144	   && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7145	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7146    c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7147  else
7148    return x;
7149
7150  pos = get_pos_from_mask ((~ c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7151  if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7152      || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7153      || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7154    return x;
7155
7156  assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7157  if (assign == 0)
7158    return x;
7159
7160  /* The mode to use for the source is the mode of the assignment, or of
7161     what is inside a possible STRICT_LOW_PART.  */
7162  mode = (GET_CODE (assign) == STRICT_LOW_PART
7163	  ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7164
7165  /* Shift OTHER right POS places and make it the source, restricting it
7166     to the proper length and mode.  */
7167
7168  src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7169					     GET_MODE (src), other, pos),
7170		       mode,
7171		       GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7172		       ? GET_MODE_MASK (mode)
7173		       : ((HOST_WIDE_INT) 1 << len) - 1,
7174		       dest, 0);
7175
7176  return gen_rtx_combine (SET, VOIDmode, assign, src);
7177}
7178
7179/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7180   if so.  */
7181
7182static rtx
7183apply_distributive_law (x)
7184     rtx x;
7185{
7186  enum rtx_code code = GET_CODE (x);
7187  rtx lhs, rhs, other;
7188  rtx tem;
7189  enum rtx_code inner_code;
7190
7191  /* Distributivity is not true for floating point.
7192     It can change the value.  So don't do it.
7193     -- rms and moshier@world.std.com.  */
7194  if (FLOAT_MODE_P (GET_MODE (x)))
7195    return x;
7196
7197  /* The outer operation can only be one of the following:  */
7198  if (code != IOR && code != AND && code != XOR
7199      && code != PLUS && code != MINUS)
7200    return x;
7201
7202  lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7203
7204  /* If either operand is a primitive we can't do anything, so get out
7205     fast.  */
7206  if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7207      || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7208    return x;
7209
7210  lhs = expand_compound_operation (lhs);
7211  rhs = expand_compound_operation (rhs);
7212  inner_code = GET_CODE (lhs);
7213  if (inner_code != GET_CODE (rhs))
7214    return x;
7215
7216  /* See if the inner and outer operations distribute.  */
7217  switch (inner_code)
7218    {
7219    case LSHIFTRT:
7220    case ASHIFTRT:
7221    case AND:
7222    case IOR:
7223      /* These all distribute except over PLUS.  */
7224      if (code == PLUS || code == MINUS)
7225	return x;
7226      break;
7227
7228    case MULT:
7229      if (code != PLUS && code != MINUS)
7230	return x;
7231      break;
7232
7233    case ASHIFT:
7234      /* This is also a multiply, so it distributes over everything.  */
7235      break;
7236
7237    case SUBREG:
7238      /* Non-paradoxical SUBREGs distributes over all operations, provided
7239	 the inner modes and word numbers are the same, this is an extraction
7240	 of a low-order part, we don't convert an fp operation to int or
7241	 vice versa, and we would not be converting a single-word
7242	 operation into a multi-word operation.  The latter test is not
7243	 required, but it prevents generating unneeded multi-word operations.
7244	 Some of the previous tests are redundant given the latter test, but
7245	 are retained because they are required for correctness.
7246
7247	 We produce the result slightly differently in this case.  */
7248
7249      if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7250	  || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
7251	  || ! subreg_lowpart_p (lhs)
7252	  || (GET_MODE_CLASS (GET_MODE (lhs))
7253	      != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7254	  || (GET_MODE_SIZE (GET_MODE (lhs))
7255	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7256	  || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7257	return x;
7258
7259      tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7260			SUBREG_REG (lhs), SUBREG_REG (rhs));
7261      return gen_lowpart_for_combine (GET_MODE (x), tem);
7262
7263    default:
7264      return x;
7265    }
7266
7267  /* Set LHS and RHS to the inner operands (A and B in the example
7268     above) and set OTHER to the common operand (C in the example).
7269     These is only one way to do this unless the inner operation is
7270     commutative.  */
7271  if (GET_RTX_CLASS (inner_code) == 'c'
7272      && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7273    other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7274  else if (GET_RTX_CLASS (inner_code) == 'c'
7275	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7276    other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7277  else if (GET_RTX_CLASS (inner_code) == 'c'
7278	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7279    other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7280  else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7281    other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7282  else
7283    return x;
7284
7285  /* Form the new inner operation, seeing if it simplifies first.  */
7286  tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7287
7288  /* There is one exception to the general way of distributing:
7289     (a ^ b) | (a ^ c) -> (~a) & (b ^ c)  */
7290  if (code == XOR && inner_code == IOR)
7291    {
7292      inner_code = AND;
7293      other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
7294    }
7295
7296  /* We may be able to continuing distributing the result, so call
7297     ourselves recursively on the inner operation before forming the
7298     outer operation, which we return.  */
7299  return gen_binary (inner_code, GET_MODE (x),
7300		     apply_distributive_law (tem), other);
7301}
7302
7303/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7304   in MODE.
7305
7306   Return an equivalent form, if different from X.  Otherwise, return X.  If
7307   X is zero, we are to always construct the equivalent form.  */
7308
7309static rtx
7310simplify_and_const_int (x, mode, varop, constop)
7311     rtx x;
7312     enum machine_mode mode;
7313     rtx varop;
7314     unsigned HOST_WIDE_INT constop;
7315{
7316  unsigned HOST_WIDE_INT nonzero;
7317  int width = GET_MODE_BITSIZE (mode);
7318  int i;
7319
7320  /* Simplify VAROP knowing that we will be only looking at some of the
7321     bits in it.  */
7322  varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7323
7324  /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7325     CONST_INT, we are done.  */
7326  if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7327    return varop;
7328
7329  /* See what bits may be nonzero in VAROP.  Unlike the general case of
7330     a call to nonzero_bits, here we don't care about bits outside
7331     MODE.  */
7332
7333  nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7334
7335  /* If this would be an entire word for the target, but is not for
7336     the host, then sign-extend on the host so that the number will look
7337     the same way on the host that it would on the target.
7338
7339     For example, when building a 64 bit alpha hosted 32 bit sparc
7340     targeted compiler, then we want the 32 bit unsigned value -1 to be
7341     represented as a 64 bit value -1, and not as 0x00000000ffffffff.
7342     The later confuses the sparc backend.  */
7343
7344  if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
7345      && (nonzero & ((HOST_WIDE_INT) 1 << (width - 1))))
7346    nonzero |= ((HOST_WIDE_INT) (-1) << width);
7347
7348  /* Turn off all bits in the constant that are known to already be zero.
7349     Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7350     which is tested below.  */
7351
7352  constop &= nonzero;
7353
7354  /* If we don't have any bits left, return zero.  */
7355  if (constop == 0)
7356    return const0_rtx;
7357
7358  /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7359     a power of two, we can replace this with a ASHIFT.  */
7360  if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7361      && (i = exact_log2 (constop)) >= 0)
7362    return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7363
7364  /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7365     or XOR, then try to apply the distributive law.  This may eliminate
7366     operations if either branch can be simplified because of the AND.
7367     It may also make some cases more complex, but those cases probably
7368     won't match a pattern either with or without this.  */
7369
7370  if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7371    return
7372      gen_lowpart_for_combine
7373	(mode,
7374	 apply_distributive_law
7375	 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7376		      simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7377					      XEXP (varop, 0), constop),
7378		      simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7379					      XEXP (varop, 1), constop))));
7380
7381  /* Get VAROP in MODE.  Try to get a SUBREG if not.  Don't make a new SUBREG
7382     if we already had one (just check for the simplest cases).  */
7383  if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7384      && GET_MODE (XEXP (x, 0)) == mode
7385      && SUBREG_REG (XEXP (x, 0)) == varop)
7386    varop = XEXP (x, 0);
7387  else
7388    varop = gen_lowpart_for_combine (mode, varop);
7389
7390  /* If we can't make the SUBREG, try to return what we were given.  */
7391  if (GET_CODE (varop) == CLOBBER)
7392    return x ? x : varop;
7393
7394  /* If we are only masking insignificant bits, return VAROP.  */
7395  if (constop == nonzero)
7396    x = varop;
7397
7398  /* Otherwise, return an AND.  See how much, if any, of X we can use.  */
7399  else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7400    x = gen_binary (AND, mode, varop, GEN_INT (constop));
7401
7402  else
7403    {
7404      if (GET_CODE (XEXP (x, 1)) != CONST_INT
7405	  || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7406	SUBST (XEXP (x, 1), GEN_INT (constop));
7407
7408      SUBST (XEXP (x, 0), varop);
7409    }
7410
7411  return x;
7412}
7413
7414/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7415   We don't let nonzero_bits recur into num_sign_bit_copies, because that
7416   is less useful.  We can't allow both, because that results in exponential
7417   run time recursion.  There is a nullstone testcase that triggered
7418   this.  This macro avoids accidental uses of num_sign_bit_copies.  */
7419#define num_sign_bit_copies()
7420
7421/* Given an expression, X, compute which bits in X can be non-zero.
7422   We don't care about bits outside of those defined in MODE.
7423
7424   For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7425   a shift, AND, or zero_extract, we can do better.  */
7426
7427static unsigned HOST_WIDE_INT
7428nonzero_bits (x, mode)
7429     rtx x;
7430     enum machine_mode mode;
7431{
7432  unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7433  unsigned HOST_WIDE_INT inner_nz;
7434  enum rtx_code code;
7435  int mode_width = GET_MODE_BITSIZE (mode);
7436  rtx tem;
7437
7438  /* For floating-point values, assume all bits are needed.  */
7439  if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7440    return nonzero;
7441
7442  /* If X is wider than MODE, use its mode instead.  */
7443  if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7444    {
7445      mode = GET_MODE (x);
7446      nonzero = GET_MODE_MASK (mode);
7447      mode_width = GET_MODE_BITSIZE (mode);
7448    }
7449
7450  if (mode_width > HOST_BITS_PER_WIDE_INT)
7451    /* Our only callers in this case look for single bit values.  So
7452       just return the mode mask.  Those tests will then be false.  */
7453    return nonzero;
7454
7455#ifndef WORD_REGISTER_OPERATIONS
7456  /* If MODE is wider than X, but both are a single word for both the host
7457     and target machines, we can compute this from which bits of the
7458     object might be nonzero in its own mode, taking into account the fact
7459     that on many CISC machines, accessing an object in a wider mode
7460     causes the high-order bits to become undefined.  So they are
7461     not known to be zero.  */
7462
7463  if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7464      && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7465      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7466      && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7467    {
7468      nonzero &= nonzero_bits (x, GET_MODE (x));
7469      nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
7470      return nonzero;
7471    }
7472#endif
7473
7474  code = GET_CODE (x);
7475  switch (code)
7476    {
7477    case REG:
7478#ifdef POINTERS_EXTEND_UNSIGNED
7479      /* If pointers extend unsigned and this is a pointer in Pmode, say that
7480	 all the bits above ptr_mode are known to be zero.  */
7481      if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7482	  && REGNO_POINTER_FLAG (REGNO (x)))
7483	nonzero &= GET_MODE_MASK (ptr_mode);
7484#endif
7485
7486#ifdef STACK_BOUNDARY
7487      /* If this is the stack pointer, we may know something about its
7488	 alignment.  If PUSH_ROUNDING is defined, it is possible for the
7489	 stack to be momentarily aligned only to that amount, so we pick
7490	 the least alignment.  */
7491
7492      /* We can't check for arg_pointer_rtx here, because it is not
7493	 guaranteed to have as much alignment as the stack pointer.
7494	 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7495	 alignment but the argument pointer has only 64 bit alignment.  */
7496
7497      if ((x == frame_pointer_rtx
7498	   || x == stack_pointer_rtx
7499	   || x == hard_frame_pointer_rtx
7500	   || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7501	       && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7502#ifdef STACK_BIAS
7503	  && !STACK_BIAS
7504#endif
7505	      )
7506	{
7507	  int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7508
7509#ifdef PUSH_ROUNDING
7510	  if (REGNO (x) == STACK_POINTER_REGNUM)
7511	    sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7512#endif
7513
7514	  /* We must return here, otherwise we may get a worse result from
7515	     one of the choices below.  There is nothing useful below as
7516	     far as the stack pointer is concerned.  */
7517	  return nonzero &= ~ (sp_alignment - 1);
7518	}
7519#endif
7520
7521      /* If X is a register whose nonzero bits value is current, use it.
7522	 Otherwise, if X is a register whose value we can find, use that
7523	 value.  Otherwise, use the previously-computed global nonzero bits
7524	 for this register.  */
7525
7526      if (reg_last_set_value[REGNO (x)] != 0
7527	  && reg_last_set_mode[REGNO (x)] == mode
7528	  && (REG_N_SETS (REGNO (x)) == 1
7529	      || reg_last_set_label[REGNO (x)] == label_tick)
7530	  && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7531	return reg_last_set_nonzero_bits[REGNO (x)];
7532
7533      tem = get_last_value (x);
7534
7535      if (tem)
7536	{
7537#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7538	  /* If X is narrower than MODE and TEM is a non-negative
7539	     constant that would appear negative in the mode of X,
7540	     sign-extend it for use in reg_nonzero_bits because some
7541	     machines (maybe most) will actually do the sign-extension
7542	     and this is the conservative approach.
7543
7544	     ??? For 2.5, try to tighten up the MD files in this regard
7545	     instead of this kludge.  */
7546
7547	  if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7548	      && GET_CODE (tem) == CONST_INT
7549	      && INTVAL (tem) > 0
7550	      && 0 != (INTVAL (tem)
7551		       & ((HOST_WIDE_INT) 1
7552			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7553	    tem = GEN_INT (INTVAL (tem)
7554			   | ((HOST_WIDE_INT) (-1)
7555			      << GET_MODE_BITSIZE (GET_MODE (x))));
7556#endif
7557	  return nonzero_bits (tem, mode);
7558	}
7559      else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7560	return reg_nonzero_bits[REGNO (x)] & nonzero;
7561      else
7562	return nonzero;
7563
7564    case CONST_INT:
7565#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7566      /* If X is negative in MODE, sign-extend the value.  */
7567      if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
7568	  && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
7569	return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
7570#endif
7571
7572      return INTVAL (x);
7573
7574    case MEM:
7575#ifdef LOAD_EXTEND_OP
7576      /* In many, if not most, RISC machines, reading a byte from memory
7577	 zeros the rest of the register.  Noticing that fact saves a lot
7578	 of extra zero-extends.  */
7579      if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
7580	nonzero &= GET_MODE_MASK (GET_MODE (x));
7581#endif
7582      break;
7583
7584    case EQ:  case NE:
7585    case GT:  case GTU:
7586    case LT:  case LTU:
7587    case GE:  case GEU:
7588    case LE:  case LEU:
7589
7590      /* If this produces an integer result, we know which bits are set.
7591	 Code here used to clear bits outside the mode of X, but that is
7592	 now done above.  */
7593
7594      if (GET_MODE_CLASS (mode) == MODE_INT
7595	  && mode_width <= HOST_BITS_PER_WIDE_INT)
7596	nonzero = STORE_FLAG_VALUE;
7597      break;
7598
7599    case NEG:
7600#if 0
7601      /* Disabled to avoid exponential mutual recursion between nonzero_bits
7602	 and num_sign_bit_copies.  */
7603      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7604	  == GET_MODE_BITSIZE (GET_MODE (x)))
7605	nonzero = 1;
7606#endif
7607
7608      if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
7609	nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
7610      break;
7611
7612    case ABS:
7613#if 0
7614      /* Disabled to avoid exponential mutual recursion between nonzero_bits
7615	 and num_sign_bit_copies.  */
7616      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7617	  == GET_MODE_BITSIZE (GET_MODE (x)))
7618	nonzero = 1;
7619#endif
7620      break;
7621
7622    case TRUNCATE:
7623      nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
7624      break;
7625
7626    case ZERO_EXTEND:
7627      nonzero &= nonzero_bits (XEXP (x, 0), mode);
7628      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7629	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7630      break;
7631
7632    case SIGN_EXTEND:
7633      /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
7634	 Otherwise, show all the bits in the outer mode but not the inner
7635	 may be non-zero.  */
7636      inner_nz = nonzero_bits (XEXP (x, 0), mode);
7637      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7638	{
7639	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7640	  if (inner_nz
7641	      & (((HOST_WIDE_INT) 1
7642		  << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
7643	    inner_nz |= (GET_MODE_MASK (mode)
7644			  & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
7645	}
7646
7647      nonzero &= inner_nz;
7648      break;
7649
7650    case AND:
7651      nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7652		  & nonzero_bits (XEXP (x, 1), mode));
7653      break;
7654
7655    case XOR:   case IOR:
7656    case UMIN:  case UMAX:  case SMIN:  case SMAX:
7657      nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7658		  | nonzero_bits (XEXP (x, 1), mode));
7659      break;
7660
7661    case PLUS:  case MINUS:
7662    case MULT:
7663    case DIV:   case UDIV:
7664    case MOD:   case UMOD:
7665      /* We can apply the rules of arithmetic to compute the number of
7666	 high- and low-order zero bits of these operations.  We start by
7667	 computing the width (position of the highest-order non-zero bit)
7668	 and the number of low-order zero bits for each value.  */
7669      {
7670	unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
7671	unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
7672	int width0 = floor_log2 (nz0) + 1;
7673	int width1 = floor_log2 (nz1) + 1;
7674	int low0 = floor_log2 (nz0 & -nz0);
7675	int low1 = floor_log2 (nz1 & -nz1);
7676	HOST_WIDE_INT op0_maybe_minusp
7677	  = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7678	HOST_WIDE_INT op1_maybe_minusp
7679	  = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7680	int result_width = mode_width;
7681	int result_low = 0;
7682
7683	switch (code)
7684	  {
7685	  case PLUS:
7686#ifdef STACK_BIAS
7687	    if (STACK_BIAS
7688	        && (XEXP (x, 0) == stack_pointer_rtx
7689	            || XEXP (x, 0) == frame_pointer_rtx)
7690	        && GET_CODE (XEXP (x, 1)) == CONST_INT)
7691	      {
7692		int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7693
7694	        nz0 = (GET_MODE_MASK (mode) & ~ (sp_alignment - 1));
7695	        nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
7696	        width0 = floor_log2 (nz0) + 1;
7697	        width1 = floor_log2 (nz1) + 1;
7698	        low0 = floor_log2 (nz0 & -nz0);
7699	        low1 = floor_log2 (nz1 & -nz1);
7700	      }
7701#endif
7702	    result_width = MAX (width0, width1) + 1;
7703	    result_low = MIN (low0, low1);
7704	    break;
7705	  case MINUS:
7706	    result_low = MIN (low0, low1);
7707	    break;
7708	  case MULT:
7709	    result_width = width0 + width1;
7710	    result_low = low0 + low1;
7711	    break;
7712	  case DIV:
7713	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
7714	      result_width = width0;
7715	    break;
7716	  case UDIV:
7717	    result_width = width0;
7718	    break;
7719	  case MOD:
7720	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
7721	      result_width = MIN (width0, width1);
7722	    result_low = MIN (low0, low1);
7723	    break;
7724	  case UMOD:
7725	    result_width = MIN (width0, width1);
7726	    result_low = MIN (low0, low1);
7727	    break;
7728	  default:
7729	    abort ();
7730	  }
7731
7732	if (result_width < mode_width)
7733	  nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
7734
7735	if (result_low > 0)
7736	  nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
7737      }
7738      break;
7739
7740    case ZERO_EXTRACT:
7741      if (GET_CODE (XEXP (x, 1)) == CONST_INT
7742	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7743	nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
7744      break;
7745
7746    case SUBREG:
7747      /* If this is a SUBREG formed for a promoted variable that has
7748	 been zero-extended, we know that at least the high-order bits
7749	 are zero, though others might be too.  */
7750
7751      if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
7752	nonzero = (GET_MODE_MASK (GET_MODE (x))
7753		   & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
7754
7755      /* If the inner mode is a single word for both the host and target
7756	 machines, we can compute this from which bits of the inner
7757	 object might be nonzero.  */
7758      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
7759	  && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7760	      <= HOST_BITS_PER_WIDE_INT))
7761	{
7762	  nonzero &= nonzero_bits (SUBREG_REG (x), mode);
7763
7764#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
7765	  /* If this is a typical RISC machine, we only have to worry
7766	     about the way loads are extended.  */
7767	  if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
7768	      ? (nonzero
7769		 & (1L << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1)))
7770	      : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
7771#endif
7772	    {
7773	      /* On many CISC machines, accessing an object in a wider mode
7774		 causes the high-order bits to become undefined.  So they are
7775		 not known to be zero.  */
7776	      if (GET_MODE_SIZE (GET_MODE (x))
7777		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7778		nonzero |= (GET_MODE_MASK (GET_MODE (x))
7779			    & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
7780	    }
7781	}
7782      break;
7783
7784    case ASHIFTRT:
7785    case LSHIFTRT:
7786    case ASHIFT:
7787    case ROTATE:
7788      /* The nonzero bits are in two classes: any bits within MODE
7789	 that aren't in GET_MODE (x) are always significant.  The rest of the
7790	 nonzero bits are those that are significant in the operand of
7791	 the shift when shifted the appropriate number of bits.  This
7792	 shows that high-order bits are cleared by the right shift and
7793	 low-order bits by left shifts.  */
7794      if (GET_CODE (XEXP (x, 1)) == CONST_INT
7795	  && INTVAL (XEXP (x, 1)) >= 0
7796	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7797	{
7798	  enum machine_mode inner_mode = GET_MODE (x);
7799	  int width = GET_MODE_BITSIZE (inner_mode);
7800	  int count = INTVAL (XEXP (x, 1));
7801	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
7802	  unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
7803	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
7804	  unsigned HOST_WIDE_INT outer = 0;
7805
7806	  if (mode_width > width)
7807	    outer = (op_nonzero & nonzero & ~ mode_mask);
7808
7809	  if (code == LSHIFTRT)
7810	    inner >>= count;
7811	  else if (code == ASHIFTRT)
7812	    {
7813	      inner >>= count;
7814
7815	      /* If the sign bit may have been nonzero before the shift, we
7816		 need to mark all the places it could have been copied to
7817		 by the shift as possibly nonzero.  */
7818	      if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
7819		inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
7820	    }
7821	  else if (code == ASHIFT)
7822	    inner <<= count;
7823	  else
7824	    inner = ((inner << (count % width)
7825		      | (inner >> (width - (count % width)))) & mode_mask);
7826
7827	  nonzero &= (outer | inner);
7828	}
7829      break;
7830
7831    case FFS:
7832      /* This is at most the number of bits in the mode.  */
7833      nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
7834      break;
7835
7836    case IF_THEN_ELSE:
7837      nonzero &= (nonzero_bits (XEXP (x, 1), mode)
7838		  | nonzero_bits (XEXP (x, 2), mode));
7839      break;
7840
7841    default:
7842      break;
7843    }
7844
7845  return nonzero;
7846}
7847
7848/* See the macro definition above.  */
7849#undef num_sign_bit_copies
7850
7851/* Return the number of bits at the high-order end of X that are known to
7852   be equal to the sign bit.  X will be used in mode MODE; if MODE is
7853   VOIDmode, X will be used in its own mode.  The returned value  will always
7854   be between 1 and the number of bits in MODE.  */
7855
7856static int
7857num_sign_bit_copies (x, mode)
7858     rtx x;
7859     enum machine_mode mode;
7860{
7861  enum rtx_code code = GET_CODE (x);
7862  int bitwidth;
7863  int num0, num1, result;
7864  unsigned HOST_WIDE_INT nonzero;
7865  rtx tem;
7866
7867  /* If we weren't given a mode, use the mode of X.  If the mode is still
7868     VOIDmode, we don't know anything.  Likewise if one of the modes is
7869     floating-point.  */
7870
7871  if (mode == VOIDmode)
7872    mode = GET_MODE (x);
7873
7874  if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
7875    return 1;
7876
7877  bitwidth = GET_MODE_BITSIZE (mode);
7878
7879  /* For a smaller object, just ignore the high bits.  */
7880  if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
7881    return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
7882		    - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
7883
7884  if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
7885    {
7886#ifndef WORD_REGISTER_OPERATIONS
7887  /* If this machine does not do all register operations on the entire
7888     register and MODE is wider than the mode of X, we can say nothing
7889     at all about the high-order bits.  */
7890      return 1;
7891#else
7892      /* Likewise on machines that do, if the mode of the object is smaller
7893	 than a word and loads of that size don't sign extend, we can say
7894	 nothing about the high order bits.  */
7895      if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
7896#ifdef LOAD_EXTEND_OP
7897	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
7898#endif
7899	  )
7900	return 1;
7901#endif
7902    }
7903
7904  switch (code)
7905    {
7906    case REG:
7907
7908#ifdef POINTERS_EXTEND_UNSIGNED
7909      /* If pointers extend signed and this is a pointer in Pmode, say that
7910	 all the bits above ptr_mode are known to be sign bit copies.  */
7911      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
7912	  && REGNO_POINTER_FLAG (REGNO (x)))
7913	return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
7914#endif
7915
7916      if (reg_last_set_value[REGNO (x)] != 0
7917	  && reg_last_set_mode[REGNO (x)] == mode
7918	  && (REG_N_SETS (REGNO (x)) == 1
7919	      || reg_last_set_label[REGNO (x)] == label_tick)
7920	  && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7921	return reg_last_set_sign_bit_copies[REGNO (x)];
7922
7923      tem =  get_last_value (x);
7924      if (tem != 0)
7925	return num_sign_bit_copies (tem, mode);
7926
7927      if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
7928	return reg_sign_bit_copies[REGNO (x)];
7929      break;
7930
7931    case MEM:
7932#ifdef LOAD_EXTEND_OP
7933      /* Some RISC machines sign-extend all loads of smaller than a word.  */
7934      if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
7935	return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
7936#endif
7937      break;
7938
7939    case CONST_INT:
7940      /* If the constant is negative, take its 1's complement and remask.
7941	 Then see how many zero bits we have.  */
7942      nonzero = INTVAL (x) & GET_MODE_MASK (mode);
7943      if (bitwidth <= HOST_BITS_PER_WIDE_INT
7944	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7945	nonzero = (~ nonzero) & GET_MODE_MASK (mode);
7946
7947      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
7948
7949    case SUBREG:
7950      /* If this is a SUBREG for a promoted object that is sign-extended
7951	 and we are looking at it in a wider mode, we know that at least the
7952	 high-order bits are known to be sign bit copies.  */
7953
7954      if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
7955	return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
7956		    num_sign_bit_copies (SUBREG_REG (x), mode));
7957
7958      /* For a smaller object, just ignore the high bits.  */
7959      if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
7960	{
7961	  num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
7962	  return MAX (1, (num0
7963			  - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7964			     - bitwidth)));
7965	}
7966
7967#ifdef WORD_REGISTER_OPERATIONS
7968#ifdef LOAD_EXTEND_OP
7969      /* For paradoxical SUBREGs on machines where all register operations
7970	 affect the entire register, just look inside.  Note that we are
7971	 passing MODE to the recursive call, so the number of sign bit copies
7972	 will remain relative to that mode, not the inner mode.  */
7973
7974      /* This works only if loads sign extend.  Otherwise, if we get a
7975	 reload for the inner part, it may be loaded from the stack, and
7976	 then we lose all sign bit copies that existed before the store
7977	 to the stack.  */
7978
7979      if ((GET_MODE_SIZE (GET_MODE (x))
7980	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7981	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
7982	return num_sign_bit_copies (SUBREG_REG (x), mode);
7983#endif
7984#endif
7985      break;
7986
7987    case SIGN_EXTRACT:
7988      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7989	return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
7990      break;
7991
7992    case SIGN_EXTEND:
7993      return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7994	      + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
7995
7996    case TRUNCATE:
7997      /* For a smaller object, just ignore the high bits.  */
7998      num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
7999      return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8000			      - bitwidth)));
8001
8002    case NOT:
8003      return num_sign_bit_copies (XEXP (x, 0), mode);
8004
8005    case ROTATE:       case ROTATERT:
8006      /* If we are rotating left by a number of bits less than the number
8007	 of sign bit copies, we can just subtract that amount from the
8008	 number.  */
8009      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8010	  && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
8011	{
8012	  num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8013	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8014				 : bitwidth - INTVAL (XEXP (x, 1))));
8015	}
8016      break;
8017
8018    case NEG:
8019      /* In general, this subtracts one sign bit copy.  But if the value
8020	 is known to be positive, the number of sign bit copies is the
8021	 same as that of the input.  Finally, if the input has just one bit
8022	 that might be nonzero, all the bits are copies of the sign bit.  */
8023      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8024      if (bitwidth > HOST_BITS_PER_WIDE_INT)
8025	return num0 > 1 ? num0 - 1 : 1;
8026
8027      nonzero = nonzero_bits (XEXP (x, 0), mode);
8028      if (nonzero == 1)
8029	return bitwidth;
8030
8031      if (num0 > 1
8032	  && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8033	num0--;
8034
8035      return num0;
8036
8037    case IOR:   case AND:   case XOR:
8038    case SMIN:  case SMAX:  case UMIN:  case UMAX:
8039      /* Logical operations will preserve the number of sign-bit copies.
8040	 MIN and MAX operations always return one of the operands.  */
8041      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8042      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8043      return MIN (num0, num1);
8044
8045    case PLUS:  case MINUS:
8046      /* For addition and subtraction, we can have a 1-bit carry.  However,
8047	 if we are subtracting 1 from a positive number, there will not
8048	 be such a carry.  Furthermore, if the positive number is known to
8049	 be 0 or 1, we know the result is either -1 or 0.  */
8050
8051      if (code == PLUS && XEXP (x, 1) == constm1_rtx
8052	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
8053	{
8054	  nonzero = nonzero_bits (XEXP (x, 0), mode);
8055	  if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8056	    return (nonzero == 1 || nonzero == 0 ? bitwidth
8057		    : bitwidth - floor_log2 (nonzero) - 1);
8058	}
8059
8060      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8061      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8062      return MAX (1, MIN (num0, num1) - 1);
8063
8064    case MULT:
8065      /* The number of bits of the product is the sum of the number of
8066	 bits of both terms.  However, unless one of the terms if known
8067	 to be positive, we must allow for an additional bit since negating
8068	 a negative number can remove one sign bit copy.  */
8069
8070      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8071      num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8072
8073      result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8074      if (result > 0
8075	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8076	      || (((nonzero_bits (XEXP (x, 0), mode)
8077		    & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8078		  && ((nonzero_bits (XEXP (x, 1), mode)
8079		       & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8080	result--;
8081
8082      return MAX (1, result);
8083
8084    case UDIV:
8085      /* The result must be <= the first operand.  If the first operand
8086         has the high bit set, we know nothing about the number of sign
8087         bit copies.  */
8088      if (bitwidth > HOST_BITS_PER_WIDE_INT)
8089	return 1;
8090      else if ((nonzero_bits (XEXP (x, 0), mode)
8091		& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8092	return 1;
8093      else
8094	return num_sign_bit_copies (XEXP (x, 0), mode);
8095
8096    case UMOD:
8097      /* The result must be <= the scond operand.  */
8098      return num_sign_bit_copies (XEXP (x, 1), mode);
8099
8100    case DIV:
8101      /* Similar to unsigned division, except that we have to worry about
8102	 the case where the divisor is negative, in which case we have
8103	 to add 1.  */
8104      result = num_sign_bit_copies (XEXP (x, 0), mode);
8105      if (result > 1
8106	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8107	      || (nonzero_bits (XEXP (x, 1), mode)
8108		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8109	result--;
8110
8111      return result;
8112
8113    case MOD:
8114      result = num_sign_bit_copies (XEXP (x, 1), mode);
8115      if (result > 1
8116	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8117	      || (nonzero_bits (XEXP (x, 1), mode)
8118		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8119	result--;
8120
8121      return result;
8122
8123    case ASHIFTRT:
8124      /* Shifts by a constant add to the number of bits equal to the
8125	 sign bit.  */
8126      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8127      if (GET_CODE (XEXP (x, 1)) == CONST_INT
8128	  && INTVAL (XEXP (x, 1)) > 0)
8129	num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
8130
8131      return num0;
8132
8133    case ASHIFT:
8134      /* Left shifts destroy copies.  */
8135      if (GET_CODE (XEXP (x, 1)) != CONST_INT
8136	  || INTVAL (XEXP (x, 1)) < 0
8137	  || INTVAL (XEXP (x, 1)) >= bitwidth)
8138	return 1;
8139
8140      num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8141      return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8142
8143    case IF_THEN_ELSE:
8144      num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8145      num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8146      return MIN (num0, num1);
8147
8148    case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
8149    case GEU: case GTU: case LEU: case LTU:
8150      if (STORE_FLAG_VALUE == -1)
8151	return bitwidth;
8152      break;
8153
8154    default:
8155      break;
8156    }
8157
8158  /* If we haven't been able to figure it out by one of the above rules,
8159     see if some of the high-order bits are known to be zero.  If so,
8160     count those bits and return one less than that amount.  If we can't
8161     safely compute the mask for this mode, always return BITWIDTH.  */
8162
8163  if (bitwidth > HOST_BITS_PER_WIDE_INT)
8164    return 1;
8165
8166  nonzero = nonzero_bits (x, mode);
8167  return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8168	  ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8169}
8170
8171/* Return the number of "extended" bits there are in X, when interpreted
8172   as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
8173   unsigned quantities, this is the number of high-order zero bits.
8174   For signed quantities, this is the number of copies of the sign bit
8175   minus 1.  In both case, this function returns the number of "spare"
8176   bits.  For example, if two quantities for which this function returns
8177   at least 1 are added, the addition is known not to overflow.
8178
8179   This function will always return 0 unless called during combine, which
8180   implies that it must be called from a define_split.  */
8181
8182int
8183extended_count (x, mode, unsignedp)
8184     rtx x;
8185     enum machine_mode mode;
8186     int unsignedp;
8187{
8188  if (nonzero_sign_valid == 0)
8189    return 0;
8190
8191  return (unsignedp
8192	  ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8193	     && (GET_MODE_BITSIZE (mode) - 1
8194		 - floor_log2 (nonzero_bits (x, mode))))
8195	  : num_sign_bit_copies (x, mode) - 1);
8196}
8197
8198/* This function is called from `simplify_shift_const' to merge two
8199   outer operations.  Specifically, we have already found that we need
8200   to perform operation *POP0 with constant *PCONST0 at the outermost
8201   position.  We would now like to also perform OP1 with constant CONST1
8202   (with *POP0 being done last).
8203
8204   Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8205   the resulting operation.  *PCOMP_P is set to 1 if we would need to
8206   complement the innermost operand, otherwise it is unchanged.
8207
8208   MODE is the mode in which the operation will be done.  No bits outside
8209   the width of this mode matter.  It is assumed that the width of this mode
8210   is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8211
8212   If *POP0 or OP1 are NIL, it means no operation is required.  Only NEG, PLUS,
8213   IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
8214   result is simply *PCONST0.
8215
8216   If the resulting operation cannot be expressed as one operation, we
8217   return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
8218
8219static int
8220merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8221     enum rtx_code *pop0;
8222     HOST_WIDE_INT *pconst0;
8223     enum rtx_code op1;
8224     HOST_WIDE_INT const1;
8225     enum machine_mode mode;
8226     int *pcomp_p;
8227{
8228  enum rtx_code op0 = *pop0;
8229  HOST_WIDE_INT const0 = *pconst0;
8230  int width = GET_MODE_BITSIZE (mode);
8231
8232  const0 &= GET_MODE_MASK (mode);
8233  const1 &= GET_MODE_MASK (mode);
8234
8235  /* If OP0 is an AND, clear unimportant bits in CONST1.  */
8236  if (op0 == AND)
8237    const1 &= const0;
8238
8239  /* If OP0 or OP1 is NIL, this is easy.  Similarly if they are the same or
8240     if OP0 is SET.  */
8241
8242  if (op1 == NIL || op0 == SET)
8243    return 1;
8244
8245  else if (op0 == NIL)
8246    op0 = op1, const0 = const1;
8247
8248  else if (op0 == op1)
8249    {
8250      switch (op0)
8251	{
8252	case AND:
8253	  const0 &= const1;
8254	  break;
8255	case IOR:
8256	  const0 |= const1;
8257	  break;
8258	case XOR:
8259	  const0 ^= const1;
8260	  break;
8261	case PLUS:
8262	  const0 += const1;
8263	  break;
8264	case NEG:
8265	  op0 = NIL;
8266	  break;
8267	default:
8268	  break;
8269	}
8270    }
8271
8272  /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
8273  else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8274    return 0;
8275
8276  /* If the two constants aren't the same, we can't do anything.  The
8277     remaining six cases can all be done.  */
8278  else if (const0 != const1)
8279    return 0;
8280
8281  else
8282    switch (op0)
8283      {
8284      case IOR:
8285	if (op1 == AND)
8286	  /* (a & b) | b == b */
8287	  op0 = SET;
8288	else /* op1 == XOR */
8289	  /* (a ^ b) | b == a | b */
8290	  {;}
8291	break;
8292
8293      case XOR:
8294	if (op1 == AND)
8295	  /* (a & b) ^ b == (~a) & b */
8296	  op0 = AND, *pcomp_p = 1;
8297	else /* op1 == IOR */
8298	  /* (a | b) ^ b == a & ~b */
8299	  op0 = AND, *pconst0 = ~ const0;
8300	break;
8301
8302      case AND:
8303	if (op1 == IOR)
8304	  /* (a | b) & b == b */
8305	op0 = SET;
8306	else /* op1 == XOR */
8307	  /* (a ^ b) & b) == (~a) & b */
8308	  *pcomp_p = 1;
8309	break;
8310      default:
8311	break;
8312      }
8313
8314  /* Check for NO-OP cases.  */
8315  const0 &= GET_MODE_MASK (mode);
8316  if (const0 == 0
8317      && (op0 == IOR || op0 == XOR || op0 == PLUS))
8318    op0 = NIL;
8319  else if (const0 == 0 && op0 == AND)
8320    op0 = SET;
8321  else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8322	   && op0 == AND)
8323    op0 = NIL;
8324
8325  /* If this would be an entire word for the target, but is not for
8326     the host, then sign-extend on the host so that the number will look
8327     the same way on the host that it would on the target.
8328
8329     For example, when building a 64 bit alpha hosted 32 bit sparc
8330     targeted compiler, then we want the 32 bit unsigned value -1 to be
8331     represented as a 64 bit value -1, and not as 0x00000000ffffffff.
8332     The later confuses the sparc backend.  */
8333
8334  if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
8335      && (const0 & ((HOST_WIDE_INT) 1 << (width - 1))))
8336    const0 |= ((HOST_WIDE_INT) (-1) << width);
8337
8338  *pop0 = op0;
8339  *pconst0 = const0;
8340
8341  return 1;
8342}
8343
8344/* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
8345   The result of the shift is RESULT_MODE.  X, if non-zero, is an expression
8346   that we started with.
8347
8348   The shift is normally computed in the widest mode we find in VAROP, as
8349   long as it isn't a different number of words than RESULT_MODE.  Exceptions
8350   are ASHIFTRT and ROTATE, which are always done in their original mode,  */
8351
8352static rtx
8353simplify_shift_const (x, code, result_mode, varop, count)
8354     rtx x;
8355     enum rtx_code code;
8356     enum machine_mode result_mode;
8357     rtx varop;
8358     int count;
8359{
8360  enum rtx_code orig_code = code;
8361  int orig_count = count;
8362  enum machine_mode mode = result_mode;
8363  enum machine_mode shift_mode, tmode;
8364  int mode_words
8365    = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8366  /* We form (outer_op (code varop count) (outer_const)).  */
8367  enum rtx_code outer_op = NIL;
8368  HOST_WIDE_INT outer_const = 0;
8369  rtx const_rtx;
8370  int complement_p = 0;
8371  rtx new;
8372
8373  /* If we were given an invalid count, don't do anything except exactly
8374     what was requested.  */
8375
8376  if (count < 0 || count > GET_MODE_BITSIZE (mode))
8377    {
8378      if (x)
8379	return x;
8380
8381      return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (count));
8382    }
8383
8384  /* Unless one of the branches of the `if' in this loop does a `continue',
8385     we will `break' the loop after the `if'.  */
8386
8387  while (count != 0)
8388    {
8389      /* If we have an operand of (clobber (const_int 0)), just return that
8390	 value.  */
8391      if (GET_CODE (varop) == CLOBBER)
8392	return varop;
8393
8394      /* If we discovered we had to complement VAROP, leave.  Making a NOT
8395	 here would cause an infinite loop.  */
8396      if (complement_p)
8397	break;
8398
8399      /* Convert ROTATERT to ROTATE.  */
8400      if (code == ROTATERT)
8401	code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8402
8403      /* We need to determine what mode we will do the shift in.  If the
8404	 shift is a right shift or a ROTATE, we must always do it in the mode
8405	 it was originally done in.  Otherwise, we can do it in MODE, the
8406	 widest mode encountered.  */
8407      shift_mode
8408	= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8409	   ? result_mode : mode);
8410
8411      /* Handle cases where the count is greater than the size of the mode
8412	 minus 1.  For ASHIFT, use the size minus one as the count (this can
8413	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
8414	 take the count modulo the size.  For other shifts, the result is
8415	 zero.
8416
8417	 Since these shifts are being produced by the compiler by combining
8418	 multiple operations, each of which are defined, we know what the
8419	 result is supposed to be.  */
8420
8421      if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8422	{
8423	  if (code == ASHIFTRT)
8424	    count = GET_MODE_BITSIZE (shift_mode) - 1;
8425	  else if (code == ROTATE || code == ROTATERT)
8426	    count %= GET_MODE_BITSIZE (shift_mode);
8427	  else
8428	    {
8429	      /* We can't simply return zero because there may be an
8430		 outer op.  */
8431	      varop = const0_rtx;
8432	      count = 0;
8433	      break;
8434	    }
8435	}
8436
8437      /* Negative counts are invalid and should not have been made (a
8438	 programmer-specified negative count should have been handled
8439	 above).  */
8440      else if (count < 0)
8441	abort ();
8442
8443      /* An arithmetic right shift of a quantity known to be -1 or 0
8444	 is a no-op.  */
8445      if (code == ASHIFTRT
8446	  && (num_sign_bit_copies (varop, shift_mode)
8447	      == GET_MODE_BITSIZE (shift_mode)))
8448	{
8449	  count = 0;
8450	  break;
8451	}
8452
8453      /* If we are doing an arithmetic right shift and discarding all but
8454	 the sign bit copies, this is equivalent to doing a shift by the
8455	 bitsize minus one.  Convert it into that shift because it will often
8456	 allow other simplifications.  */
8457
8458      if (code == ASHIFTRT
8459	  && (count + num_sign_bit_copies (varop, shift_mode)
8460	      >= GET_MODE_BITSIZE (shift_mode)))
8461	count = GET_MODE_BITSIZE (shift_mode) - 1;
8462
8463      /* We simplify the tests below and elsewhere by converting
8464	 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8465	 `make_compound_operation' will convert it to a ASHIFTRT for
8466	 those machines (such as Vax) that don't have a LSHIFTRT.  */
8467      if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8468	  && code == ASHIFTRT
8469	  && ((nonzero_bits (varop, shift_mode)
8470	       & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8471	      == 0))
8472	code = LSHIFTRT;
8473
8474      switch (GET_CODE (varop))
8475	{
8476	case SIGN_EXTEND:
8477	case ZERO_EXTEND:
8478	case SIGN_EXTRACT:
8479	case ZERO_EXTRACT:
8480	  new = expand_compound_operation (varop);
8481	  if (new != varop)
8482	    {
8483	      varop = new;
8484	      continue;
8485	    }
8486	  break;
8487
8488	case MEM:
8489	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8490	     minus the width of a smaller mode, we can do this with a
8491	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
8492	  if ((code == ASHIFTRT || code == LSHIFTRT)
8493	      && ! mode_dependent_address_p (XEXP (varop, 0))
8494	      && ! MEM_VOLATILE_P (varop)
8495	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8496					 MODE_INT, 1)) != BLKmode)
8497	    {
8498	      if (BYTES_BIG_ENDIAN)
8499		new = gen_rtx_MEM (tmode, XEXP (varop, 0));
8500	      else
8501		new = gen_rtx_MEM (tmode,
8502				   plus_constant (XEXP (varop, 0),
8503						  count / BITS_PER_UNIT));
8504	      RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
8505	      MEM_COPY_ATTRIBUTES (new, varop);
8506	      varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8507				       : ZERO_EXTEND, mode, new);
8508	      count = 0;
8509	      continue;
8510	    }
8511	  break;
8512
8513	case USE:
8514	  /* Similar to the case above, except that we can only do this if
8515	     the resulting mode is the same as that of the underlying
8516	     MEM and adjust the address depending on the *bits* endianness
8517	     because of the way that bit-field extract insns are defined.  */
8518	  if ((code == ASHIFTRT || code == LSHIFTRT)
8519	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8520					 MODE_INT, 1)) != BLKmode
8521	      && tmode == GET_MODE (XEXP (varop, 0)))
8522	    {
8523	      if (BITS_BIG_ENDIAN)
8524		new = XEXP (varop, 0);
8525	      else
8526		{
8527		  new = copy_rtx (XEXP (varop, 0));
8528		  SUBST (XEXP (new, 0),
8529			 plus_constant (XEXP (new, 0),
8530					count / BITS_PER_UNIT));
8531		}
8532
8533	      varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8534				       : ZERO_EXTEND, mode, new);
8535	      count = 0;
8536	      continue;
8537	    }
8538	  break;
8539
8540	case SUBREG:
8541	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
8542	     the same number of words as what we've seen so far.  Then store
8543	     the widest mode in MODE.  */
8544	  if (subreg_lowpart_p (varop)
8545	      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8546		  > GET_MODE_SIZE (GET_MODE (varop)))
8547	      && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8548		    + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8549		  == mode_words))
8550	    {
8551	      varop = SUBREG_REG (varop);
8552	      if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8553		mode = GET_MODE (varop);
8554	      continue;
8555	    }
8556	  break;
8557
8558	case MULT:
8559	  /* Some machines use MULT instead of ASHIFT because MULT
8560	     is cheaper.  But it is still better on those machines to
8561	     merge two shifts into one.  */
8562	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8563	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8564	    {
8565	      varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8566				  GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
8567	      continue;
8568	    }
8569	  break;
8570
8571	case UDIV:
8572	  /* Similar, for when divides are cheaper.  */
8573	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8574	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8575	    {
8576	      varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8577				  GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8578	      continue;
8579	    }
8580	  break;
8581
8582	case ASHIFTRT:
8583	  /* If we are extracting just the sign bit of an arithmetic right
8584	     shift, that shift is not needed.  */
8585	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
8586	    {
8587	      varop = XEXP (varop, 0);
8588	      continue;
8589	    }
8590
8591	  /* ... fall through ...  */
8592
8593	case LSHIFTRT:
8594	case ASHIFT:
8595	case ROTATE:
8596	  /* Here we have two nested shifts.  The result is usually the
8597	     AND of a new shift with a mask.  We compute the result below.  */
8598	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8599	      && INTVAL (XEXP (varop, 1)) >= 0
8600	      && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8601	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8602	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8603	    {
8604	      enum rtx_code first_code = GET_CODE (varop);
8605	      int first_count = INTVAL (XEXP (varop, 1));
8606	      unsigned HOST_WIDE_INT mask;
8607	      rtx mask_rtx;
8608
8609	      /* We have one common special case.  We can't do any merging if
8610		 the inner code is an ASHIFTRT of a smaller mode.  However, if
8611		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8612		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8613		 we can convert it to
8614		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8615		 This simplifies certain SIGN_EXTEND operations.  */
8616	      if (code == ASHIFT && first_code == ASHIFTRT
8617		  && (GET_MODE_BITSIZE (result_mode)
8618		      - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
8619		{
8620		  /* C3 has the low-order C1 bits zero.  */
8621
8622		  mask = (GET_MODE_MASK (mode)
8623			  & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
8624
8625		  varop = simplify_and_const_int (NULL_RTX, result_mode,
8626						  XEXP (varop, 0), mask);
8627		  varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8628						varop, count);
8629		  count = first_count;
8630		  code = ASHIFTRT;
8631		  continue;
8632		}
8633
8634	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8635		 than C1 high-order bits equal to the sign bit, we can convert
8636		 this to either an ASHIFT or a ASHIFTRT depending on the
8637		 two counts.
8638
8639		 We cannot do this if VAROP's mode is not SHIFT_MODE.  */
8640
8641	      if (code == ASHIFTRT && first_code == ASHIFT
8642		  && GET_MODE (varop) == shift_mode
8643		  && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8644		      > first_count))
8645		{
8646		  count -= first_count;
8647		  if (count < 0)
8648		    count = - count, code = ASHIFT;
8649		  varop = XEXP (varop, 0);
8650		  continue;
8651		}
8652
8653	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
8654		 we can only do this if FIRST_CODE is also ASHIFTRT.
8655
8656		 We can't do the case when CODE is ROTATE and FIRST_CODE is
8657		 ASHIFTRT.
8658
8659		 If the mode of this shift is not the mode of the outer shift,
8660		 we can't do this if either shift is a right shift or ROTATE.
8661
8662		 Finally, we can't do any of these if the mode is too wide
8663		 unless the codes are the same.
8664
8665		 Handle the case where the shift codes are the same
8666		 first.  */
8667
8668	      if (code == first_code)
8669		{
8670		  if (GET_MODE (varop) != result_mode
8671		      && (code == ASHIFTRT || code == LSHIFTRT
8672			  || code == ROTATE))
8673		    break;
8674
8675		  count += first_count;
8676		  varop = XEXP (varop, 0);
8677		  continue;
8678		}
8679
8680	      if (code == ASHIFTRT
8681		  || (code == ROTATE && first_code == ASHIFTRT)
8682		  || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8683		  || (GET_MODE (varop) != result_mode
8684		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
8685			  || first_code == ROTATE
8686			  || code == ROTATE)))
8687		break;
8688
8689	      /* To compute the mask to apply after the shift, shift the
8690		 nonzero bits of the inner shift the same way the
8691		 outer shift will.  */
8692
8693	      mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8694
8695	      mask_rtx
8696		= simplify_binary_operation (code, result_mode, mask_rtx,
8697					     GEN_INT (count));
8698
8699	      /* Give up if we can't compute an outer operation to use.  */
8700	      if (mask_rtx == 0
8701		  || GET_CODE (mask_rtx) != CONST_INT
8702		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
8703					INTVAL (mask_rtx),
8704					result_mode, &complement_p))
8705		break;
8706
8707	      /* If the shifts are in the same direction, we add the
8708		 counts.  Otherwise, we subtract them.  */
8709	      if ((code == ASHIFTRT || code == LSHIFTRT)
8710		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8711		count += first_count;
8712	      else
8713		count -= first_count;
8714
8715	      /* If COUNT is positive, the new shift is usually CODE,
8716		 except for the two exceptions below, in which case it is
8717		 FIRST_CODE.  If the count is negative, FIRST_CODE should
8718		 always be used  */
8719	      if (count > 0
8720		  && ((first_code == ROTATE && code == ASHIFT)
8721		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
8722		code = first_code;
8723	      else if (count < 0)
8724		code = first_code, count = - count;
8725
8726	      varop = XEXP (varop, 0);
8727	      continue;
8728	    }
8729
8730	  /* If we have (A << B << C) for any shift, we can convert this to
8731	     (A << C << B).  This wins if A is a constant.  Only try this if
8732	     B is not a constant.  */
8733
8734	  else if (GET_CODE (varop) == code
8735		   && GET_CODE (XEXP (varop, 1)) != CONST_INT
8736		   && 0 != (new
8737			    = simplify_binary_operation (code, mode,
8738							 XEXP (varop, 0),
8739							 GEN_INT (count))))
8740	    {
8741	      varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
8742	      count = 0;
8743	      continue;
8744	    }
8745	  break;
8746
8747	case NOT:
8748	  /* Make this fit the case below.  */
8749	  varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
8750				   GEN_INT (GET_MODE_MASK (mode)));
8751	  continue;
8752
8753	case IOR:
8754	case AND:
8755	case XOR:
8756	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8757	     with C the size of VAROP - 1 and the shift is logical if
8758	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8759	     we have an (le X 0) operation.   If we have an arithmetic shift
8760	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
8761	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
8762
8763	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8764	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8765	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8766	      && (code == LSHIFTRT || code == ASHIFTRT)
8767	      && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8768	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8769	    {
8770	      count = 0;
8771	      varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
8772				       const0_rtx);
8773
8774	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8775		varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8776
8777	      continue;
8778	    }
8779
8780	  /* If we have (shift (logical)), move the logical to the outside
8781	     to allow it to possibly combine with another logical and the
8782	     shift to combine with another shift.  This also canonicalizes to
8783	     what a ZERO_EXTRACT looks like.  Also, some machines have
8784	     (and (shift)) insns.  */
8785
8786	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8787	      && (new = simplify_binary_operation (code, result_mode,
8788						   XEXP (varop, 1),
8789						   GEN_INT (count))) != 0
8790	      && GET_CODE(new) == CONST_INT
8791	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8792				  INTVAL (new), result_mode, &complement_p))
8793	    {
8794	      varop = XEXP (varop, 0);
8795	      continue;
8796	    }
8797
8798	  /* If we can't do that, try to simplify the shift in each arm of the
8799	     logical expression, make a new logical expression, and apply
8800	     the inverse distributive law.  */
8801	  {
8802	    rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8803					    XEXP (varop, 0), count);
8804	    rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8805					    XEXP (varop, 1), count);
8806
8807	    varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8808	    varop = apply_distributive_law (varop);
8809
8810	    count = 0;
8811	  }
8812	  break;
8813
8814	case EQ:
8815	  /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8816	     says that the sign bit can be tested, FOO has mode MODE, C is
8817	     GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8818	     that may be nonzero.  */
8819	  if (code == LSHIFTRT
8820	      && XEXP (varop, 1) == const0_rtx
8821	      && GET_MODE (XEXP (varop, 0)) == result_mode
8822	      && count == GET_MODE_BITSIZE (result_mode) - 1
8823	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8824	      && ((STORE_FLAG_VALUE
8825		   & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
8826	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8827	      && merge_outer_ops (&outer_op, &outer_const, XOR,
8828				  (HOST_WIDE_INT) 1, result_mode,
8829				  &complement_p))
8830	    {
8831	      varop = XEXP (varop, 0);
8832	      count = 0;
8833	      continue;
8834	    }
8835	  break;
8836
8837	case NEG:
8838	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8839	     than the number of bits in the mode is equivalent to A.  */
8840	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8841	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8842	    {
8843	      varop = XEXP (varop, 0);
8844	      count = 0;
8845	      continue;
8846	    }
8847
8848	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
8849	     NEG outside to allow shifts to combine.  */
8850	  if (code == ASHIFT
8851	      && merge_outer_ops (&outer_op, &outer_const, NEG,
8852				  (HOST_WIDE_INT) 0, result_mode,
8853				  &complement_p))
8854	    {
8855	      varop = XEXP (varop, 0);
8856	      continue;
8857	    }
8858	  break;
8859
8860	case PLUS:
8861	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8862	     is one less than the number of bits in the mode is
8863	     equivalent to (xor A 1).  */
8864	  if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8865	      && XEXP (varop, 1) == constm1_rtx
8866	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8867	      && merge_outer_ops (&outer_op, &outer_const, XOR,
8868				  (HOST_WIDE_INT) 1, result_mode,
8869				  &complement_p))
8870	    {
8871	      count = 0;
8872	      varop = XEXP (varop, 0);
8873	      continue;
8874	    }
8875
8876	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8877	     that might be nonzero in BAR are those being shifted out and those
8878	     bits are known zero in FOO, we can replace the PLUS with FOO.
8879	     Similarly in the other operand order.  This code occurs when
8880	     we are computing the size of a variable-size array.  */
8881
8882	  if ((code == ASHIFTRT || code == LSHIFTRT)
8883	      && count < HOST_BITS_PER_WIDE_INT
8884	      && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8885	      && (nonzero_bits (XEXP (varop, 1), result_mode)
8886		  & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8887	    {
8888	      varop = XEXP (varop, 0);
8889	      continue;
8890	    }
8891	  else if ((code == ASHIFTRT || code == LSHIFTRT)
8892		   && count < HOST_BITS_PER_WIDE_INT
8893		   && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8894		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8895			    >> count)
8896		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8897			    & nonzero_bits (XEXP (varop, 1),
8898						 result_mode)))
8899	    {
8900	      varop = XEXP (varop, 1);
8901	      continue;
8902	    }
8903
8904	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
8905	  if (code == ASHIFT
8906	      && GET_CODE (XEXP (varop, 1)) == CONST_INT
8907	      && (new = simplify_binary_operation (ASHIFT, result_mode,
8908						   XEXP (varop, 1),
8909						   GEN_INT (count))) != 0
8910	      && GET_CODE(new) == CONST_INT
8911	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
8912				  INTVAL (new), result_mode, &complement_p))
8913	    {
8914	      varop = XEXP (varop, 0);
8915	      continue;
8916	    }
8917	  break;
8918
8919	case MINUS:
8920	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
8921	     with C the size of VAROP - 1 and the shift is logical if
8922	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8923	     we have a (gt X 0) operation.  If the shift is arithmetic with
8924	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
8925	     we have a (neg (gt X 0)) operation.  */
8926
8927	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8928	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
8929	      && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8930	      && (code == LSHIFTRT || code == ASHIFTRT)
8931	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8932	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
8933	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8934	    {
8935	      count = 0;
8936	      varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
8937				       const0_rtx);
8938
8939	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8940		varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8941
8942	      continue;
8943	    }
8944	  break;
8945
8946	case TRUNCATE:
8947	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
8948	     if the truncate does not affect the value.  */
8949	  if (code == LSHIFTRT
8950	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
8951	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8952	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
8953		  >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
8954		      - GET_MODE_BITSIZE (GET_MODE (varop)))))
8955	    {
8956	      rtx varop_inner = XEXP (varop, 0);
8957
8958	      varop_inner = gen_rtx_combine (LSHIFTRT,
8959					     GET_MODE (varop_inner),
8960					     XEXP (varop_inner, 0),
8961					     GEN_INT (count + INTVAL (XEXP (varop_inner, 1))));
8962	      varop = gen_rtx_combine (TRUNCATE, GET_MODE (varop),
8963				       varop_inner);
8964	      count = 0;
8965	      continue;
8966	    }
8967	  break;
8968
8969	default:
8970	  break;
8971	}
8972
8973      break;
8974    }
8975
8976  /* We need to determine what mode to do the shift in.  If the shift is
8977     a right shift or ROTATE, we must always do it in the mode it was
8978     originally done in.  Otherwise, we can do it in MODE, the widest mode
8979     encountered.  The code we care about is that of the shift that will
8980     actually be done, not the shift that was originally requested.  */
8981  shift_mode
8982    = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8983       ? result_mode : mode);
8984
8985  /* We have now finished analyzing the shift.  The result should be
8986     a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
8987     OUTER_OP is non-NIL, it is an operation that needs to be applied
8988     to the result of the shift.  OUTER_CONST is the relevant constant,
8989     but we must turn off all bits turned off in the shift.
8990
8991     If we were passed a value for X, see if we can use any pieces of
8992     it.  If not, make new rtx.  */
8993
8994  if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
8995      && GET_CODE (XEXP (x, 1)) == CONST_INT
8996      && INTVAL (XEXP (x, 1)) == count)
8997    const_rtx = XEXP (x, 1);
8998  else
8999    const_rtx = GEN_INT (count);
9000
9001  if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9002      && GET_MODE (XEXP (x, 0)) == shift_mode
9003      && SUBREG_REG (XEXP (x, 0)) == varop)
9004    varop = XEXP (x, 0);
9005  else if (GET_MODE (varop) != shift_mode)
9006    varop = gen_lowpart_for_combine (shift_mode, varop);
9007
9008  /* If we can't make the SUBREG, try to return what we were given.  */
9009  if (GET_CODE (varop) == CLOBBER)
9010    return x ? x : varop;
9011
9012  new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9013  if (new != 0)
9014    x = new;
9015  else
9016    {
9017      if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9018	x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
9019
9020      SUBST (XEXP (x, 0), varop);
9021      SUBST (XEXP (x, 1), const_rtx);
9022    }
9023
9024  /* If we have an outer operation and we just made a shift, it is
9025     possible that we could have simplified the shift were it not
9026     for the outer operation.  So try to do the simplification
9027     recursively.  */
9028
9029  if (outer_op != NIL && GET_CODE (x) == code
9030      && GET_CODE (XEXP (x, 1)) == CONST_INT)
9031    x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9032			      INTVAL (XEXP (x, 1)));
9033
9034  /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9035     turn off all the bits that the shift would have turned off.  */
9036  if (orig_code == LSHIFTRT && result_mode != shift_mode)
9037    x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9038				GET_MODE_MASK (result_mode) >> orig_count);
9039
9040  /* Do the remainder of the processing in RESULT_MODE.  */
9041  x = gen_lowpart_for_combine (result_mode, x);
9042
9043  /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9044     operation.  */
9045  if (complement_p)
9046    x = gen_unary (NOT, result_mode, result_mode, x);
9047
9048  if (outer_op != NIL)
9049    {
9050      if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9051	{
9052	  int width = GET_MODE_BITSIZE (result_mode);
9053
9054	  outer_const &= GET_MODE_MASK (result_mode);
9055
9056	  /* If this would be an entire word for the target, but is not for
9057	     the host, then sign-extend on the host so that the number will
9058	     look the same way on the host that it would on the target.
9059
9060	     For example, when building a 64 bit alpha hosted 32 bit sparc
9061	     targeted compiler, then we want the 32 bit unsigned value -1 to be
9062	     represented as a 64 bit value -1, and not as 0x00000000ffffffff.
9063	     The later confuses the sparc backend.  */
9064
9065	  if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
9066	      && (outer_const & ((HOST_WIDE_INT) 1 << (width - 1))))
9067	    outer_const |= ((HOST_WIDE_INT) (-1) << width);
9068	}
9069
9070      if (outer_op == AND)
9071	x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9072      else if (outer_op == SET)
9073	/* This means that we have determined that the result is
9074	   equivalent to a constant.  This should be rare.  */
9075	x = GEN_INT (outer_const);
9076      else if (GET_RTX_CLASS (outer_op) == '1')
9077	x = gen_unary (outer_op, result_mode, result_mode, x);
9078      else
9079	x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9080    }
9081
9082  return x;
9083}
9084
9085/* Like recog, but we receive the address of a pointer to a new pattern.
9086   We try to match the rtx that the pointer points to.
9087   If that fails, we may try to modify or replace the pattern,
9088   storing the replacement into the same pointer object.
9089
9090   Modifications include deletion or addition of CLOBBERs.
9091
9092   PNOTES is a pointer to a location where any REG_UNUSED notes added for
9093   the CLOBBERs are placed.
9094
9095   The value is the final insn code from the pattern ultimately matched,
9096   or -1.  */
9097
9098static int
9099recog_for_combine (pnewpat, insn, pnotes)
9100     rtx *pnewpat;
9101     rtx insn;
9102     rtx *pnotes;
9103{
9104  register rtx pat = *pnewpat;
9105  int insn_code_number;
9106  int num_clobbers_to_add = 0;
9107  int i;
9108  rtx notes = 0;
9109
9110  /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9111     we use to indicate that something didn't match.  If we find such a
9112     thing, force rejection.  */
9113  if (GET_CODE (pat) == PARALLEL)
9114    for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9115      if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9116	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9117	return -1;
9118
9119  /* Is the result of combination a valid instruction?  */
9120  insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9121
9122  /* If it isn't, there is the possibility that we previously had an insn
9123     that clobbered some register as a side effect, but the combined
9124     insn doesn't need to do that.  So try once more without the clobbers
9125     unless this represents an ASM insn.  */
9126
9127  if (insn_code_number < 0 && ! check_asm_operands (pat)
9128      && GET_CODE (pat) == PARALLEL)
9129    {
9130      int pos;
9131
9132      for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9133	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9134	  {
9135	    if (i != pos)
9136	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9137	    pos++;
9138	  }
9139
9140      SUBST_INT (XVECLEN (pat, 0), pos);
9141
9142      if (pos == 1)
9143	pat = XVECEXP (pat, 0, 0);
9144
9145      insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9146    }
9147
9148  /* If we had any clobbers to add, make a new pattern than contains
9149     them.  Then check to make sure that all of them are dead.  */
9150  if (num_clobbers_to_add)
9151    {
9152      rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9153				     gen_rtvec (GET_CODE (pat) == PARALLEL
9154						? XVECLEN (pat, 0) + num_clobbers_to_add
9155						: num_clobbers_to_add + 1));
9156
9157      if (GET_CODE (pat) == PARALLEL)
9158	for (i = 0; i < XVECLEN (pat, 0); i++)
9159	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9160      else
9161	XVECEXP (newpat, 0, 0) = pat;
9162
9163      add_clobbers (newpat, insn_code_number);
9164
9165      for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9166	   i < XVECLEN (newpat, 0); i++)
9167	{
9168	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9169	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9170	    return -1;
9171	  notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9172				     XEXP (XVECEXP (newpat, 0, i), 0), notes);
9173	}
9174      pat = newpat;
9175    }
9176
9177  *pnewpat = pat;
9178  *pnotes = notes;
9179
9180  return insn_code_number;
9181}
9182
9183/* Like gen_lowpart but for use by combine.  In combine it is not possible
9184   to create any new pseudoregs.  However, it is safe to create
9185   invalid memory addresses, because combine will try to recognize
9186   them and all they will do is make the combine attempt fail.
9187
9188   If for some reason this cannot do its job, an rtx
9189   (clobber (const_int 0)) is returned.
9190   An insn containing that will not be recognized.  */
9191
9192#undef gen_lowpart
9193
9194static rtx
9195gen_lowpart_for_combine (mode, x)
9196     enum machine_mode mode;
9197     register rtx x;
9198{
9199  rtx result;
9200
9201  if (GET_MODE (x) == mode)
9202    return x;
9203
9204  /* We can only support MODE being wider than a word if X is a
9205     constant integer or has a mode the same size.  */
9206
9207  if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9208      && ! ((GET_MODE (x) == VOIDmode
9209	     && (GET_CODE (x) == CONST_INT
9210		 || GET_CODE (x) == CONST_DOUBLE))
9211	    || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9212    return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9213
9214  /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
9215     won't know what to do.  So we will strip off the SUBREG here and
9216     process normally.  */
9217  if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9218    {
9219      x = SUBREG_REG (x);
9220      if (GET_MODE (x) == mode)
9221	return x;
9222    }
9223
9224  result = gen_lowpart_common (mode, x);
9225  if (result != 0
9226      && GET_CODE (result) == SUBREG
9227      && GET_CODE (SUBREG_REG (result)) == REG
9228      && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9229      && (GET_MODE_SIZE (GET_MODE (result))
9230	  != GET_MODE_SIZE (GET_MODE (SUBREG_REG (result)))))
9231    REG_CHANGES_SIZE (REGNO (SUBREG_REG (result))) = 1;
9232
9233  if (result)
9234    return result;
9235
9236  if (GET_CODE (x) == MEM)
9237    {
9238      register int offset = 0;
9239      rtx new;
9240
9241      /* Refuse to work on a volatile memory ref or one with a mode-dependent
9242	 address.  */
9243      if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9244	return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9245
9246      /* If we want to refer to something bigger than the original memref,
9247	 generate a perverse subreg instead.  That will force a reload
9248	 of the original memref X.  */
9249      if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9250	return gen_rtx_SUBREG (mode, x, 0);
9251
9252      if (WORDS_BIG_ENDIAN)
9253	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9254		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9255      if (BYTES_BIG_ENDIAN)
9256	{
9257	  /* Adjust the address so that the address-after-the-data is
9258	     unchanged.  */
9259	  offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9260		     - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9261	}
9262      new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
9263      RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
9264      MEM_COPY_ATTRIBUTES (new, x);
9265      return new;
9266    }
9267
9268  /* If X is a comparison operator, rewrite it in a new mode.  This
9269     probably won't match, but may allow further simplifications.  */
9270  else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9271    return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9272
9273  /* If we couldn't simplify X any other way, just enclose it in a
9274     SUBREG.  Normally, this SUBREG won't match, but some patterns may
9275     include an explicit SUBREG or we may simplify it further in combine.  */
9276  else
9277    {
9278      int word = 0;
9279
9280      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
9281	word = ((GET_MODE_SIZE (GET_MODE (x))
9282		 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
9283		/ UNITS_PER_WORD);
9284      return gen_rtx_SUBREG (mode, x, word);
9285    }
9286}
9287
9288/* Make an rtx expression.  This is a subset of gen_rtx and only supports
9289   expressions of 1, 2, or 3 operands, each of which are rtx expressions.
9290
9291   If the identical expression was previously in the insn (in the undobuf),
9292   it will be returned.  Only if it is not found will a new expression
9293   be made.  */
9294
9295/*VARARGS2*/
9296static rtx
9297gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
9298{
9299#ifndef ANSI_PROTOTYPES
9300  enum rtx_code code;
9301  enum machine_mode mode;
9302#endif
9303  va_list p;
9304  int n_args;
9305  rtx args[3];
9306  int j;
9307  char *fmt;
9308  rtx rt;
9309  struct undo *undo;
9310
9311  VA_START (p, mode);
9312
9313#ifndef ANSI_PROTOTYPES
9314  code = va_arg (p, enum rtx_code);
9315  mode = va_arg (p, enum machine_mode);
9316#endif
9317
9318  n_args = GET_RTX_LENGTH (code);
9319  fmt = GET_RTX_FORMAT (code);
9320
9321  if (n_args == 0 || n_args > 3)
9322    abort ();
9323
9324  /* Get each arg and verify that it is supposed to be an expression.  */
9325  for (j = 0; j < n_args; j++)
9326    {
9327      if (*fmt++ != 'e')
9328	abort ();
9329
9330      args[j] = va_arg (p, rtx);
9331    }
9332
9333  /* See if this is in undobuf.  Be sure we don't use objects that came
9334     from another insn; this could produce circular rtl structures.  */
9335
9336  for (undo = undobuf.undos; undo != undobuf.previous_undos; undo = undo->next)
9337    if (!undo->is_int
9338	&& GET_CODE (undo->old_contents.r) == code
9339	&& GET_MODE (undo->old_contents.r) == mode)
9340      {
9341	for (j = 0; j < n_args; j++)
9342	  if (XEXP (undo->old_contents.r, j) != args[j])
9343	    break;
9344
9345	if (j == n_args)
9346	  return undo->old_contents.r;
9347      }
9348
9349  /* Otherwise make a new rtx.  We know we have 1, 2, or 3 args.
9350     Use rtx_alloc instead of gen_rtx because it's faster on RISC.  */
9351  rt = rtx_alloc (code);
9352  PUT_MODE (rt, mode);
9353  XEXP (rt, 0) = args[0];
9354  if (n_args > 1)
9355    {
9356      XEXP (rt, 1) = args[1];
9357      if (n_args > 2)
9358	XEXP (rt, 2) = args[2];
9359    }
9360  return rt;
9361}
9362
9363/* These routines make binary and unary operations by first seeing if they
9364   fold; if not, a new expression is allocated.  */
9365
9366static rtx
9367gen_binary (code, mode, op0, op1)
9368     enum rtx_code code;
9369     enum machine_mode mode;
9370     rtx op0, op1;
9371{
9372  rtx result;
9373  rtx tem;
9374
9375  if (GET_RTX_CLASS (code) == 'c'
9376      && (GET_CODE (op0) == CONST_INT
9377	  || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
9378    tem = op0, op0 = op1, op1 = tem;
9379
9380  if (GET_RTX_CLASS (code) == '<')
9381    {
9382      enum machine_mode op_mode = GET_MODE (op0);
9383
9384      /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9385	 just (REL_OP X Y).  */
9386      if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9387	{
9388	  op1 = XEXP (op0, 1);
9389	  op0 = XEXP (op0, 0);
9390	  op_mode = GET_MODE (op0);
9391	}
9392
9393      if (op_mode == VOIDmode)
9394	op_mode = GET_MODE (op1);
9395      result = simplify_relational_operation (code, op_mode, op0, op1);
9396    }
9397  else
9398    result = simplify_binary_operation (code, mode, op0, op1);
9399
9400  if (result)
9401    return result;
9402
9403  /* Put complex operands first and constants second.  */
9404  if (GET_RTX_CLASS (code) == 'c'
9405      && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9406	  || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
9407	      && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
9408	  || (GET_CODE (op0) == SUBREG
9409	      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
9410	      && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
9411    return gen_rtx_combine (code, mode, op1, op0);
9412
9413  /* If we are turning off bits already known off in OP0, we need not do
9414     an AND.  */
9415  else if (code == AND && GET_CODE (op1) == CONST_INT
9416	   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9417	   && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
9418    return op0;
9419
9420  return gen_rtx_combine (code, mode, op0, op1);
9421}
9422
9423static rtx
9424gen_unary (code, mode, op0_mode, op0)
9425     enum rtx_code code;
9426     enum machine_mode mode, op0_mode;
9427     rtx op0;
9428{
9429  rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
9430
9431  if (result)
9432    return result;
9433
9434  return gen_rtx_combine (code, mode, op0);
9435}
9436
9437/* Simplify a comparison between *POP0 and *POP1 where CODE is the
9438   comparison code that will be tested.
9439
9440   The result is a possibly different comparison code to use.  *POP0 and
9441   *POP1 may be updated.
9442
9443   It is possible that we might detect that a comparison is either always
9444   true or always false.  However, we do not perform general constant
9445   folding in combine, so this knowledge isn't useful.  Such tautologies
9446   should have been detected earlier.  Hence we ignore all such cases.  */
9447
9448static enum rtx_code
9449simplify_comparison (code, pop0, pop1)
9450     enum rtx_code code;
9451     rtx *pop0;
9452     rtx *pop1;
9453{
9454  rtx op0 = *pop0;
9455  rtx op1 = *pop1;
9456  rtx tem, tem1;
9457  int i;
9458  enum machine_mode mode, tmode;
9459
9460  /* Try a few ways of applying the same transformation to both operands.  */
9461  while (1)
9462    {
9463#ifndef WORD_REGISTER_OPERATIONS
9464      /* The test below this one won't handle SIGN_EXTENDs on these machines,
9465	 so check specially.  */
9466      if (code != GTU && code != GEU && code != LTU && code != LEU
9467	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9468	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
9469	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
9470	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9471	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9472	  && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9473	      == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9474	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
9475	  && GET_CODE (XEXP (op1, 1)) == CONST_INT
9476	  && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9477	  && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9478	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9479	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9480	  && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9481	  && (INTVAL (XEXP (op0, 1))
9482	      == (GET_MODE_BITSIZE (GET_MODE (op0))
9483		  - (GET_MODE_BITSIZE
9484		     (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9485	{
9486	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9487	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9488	}
9489#endif
9490
9491      /* If both operands are the same constant shift, see if we can ignore the
9492	 shift.  We can if the shift is a rotate or if the bits shifted out of
9493	 this shift are known to be zero for both inputs and if the type of
9494	 comparison is compatible with the shift.  */
9495      if (GET_CODE (op0) == GET_CODE (op1)
9496	  && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9497	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9498	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9499		  && (code != GT && code != LT && code != GE && code != LE))
9500	      || (GET_CODE (op0) == ASHIFTRT
9501		  && (code != GTU && code != LTU
9502		      && code != GEU && code != GEU)))
9503	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
9504	  && INTVAL (XEXP (op0, 1)) >= 0
9505	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9506	  && XEXP (op0, 1) == XEXP (op1, 1))
9507	{
9508	  enum machine_mode mode = GET_MODE (op0);
9509	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9510	  int shift_count = INTVAL (XEXP (op0, 1));
9511
9512	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9513	    mask &= (mask >> shift_count) << shift_count;
9514	  else if (GET_CODE (op0) == ASHIFT)
9515	    mask = (mask & (mask << shift_count)) >> shift_count;
9516
9517	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
9518	      && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
9519	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9520	  else
9521	    break;
9522	}
9523
9524      /* If both operands are AND's of a paradoxical SUBREG by constant, the
9525	 SUBREGs are of the same mode, and, in both cases, the AND would
9526	 be redundant if the comparison was done in the narrower mode,
9527	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9528	 and the operand's possibly nonzero bits are 0xffffff01; in that case
9529	 if we only care about QImode, we don't need the AND).  This case
9530	 occurs if the output mode of an scc insn is not SImode and
9531	 STORE_FLAG_VALUE == 1 (e.g., the 386).
9532
9533	 Similarly, check for a case where the AND's are ZERO_EXTEND
9534	 operations from some narrower mode even though a SUBREG is not
9535	 present.  */
9536
9537      else if  (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9538		&& GET_CODE (XEXP (op0, 1)) == CONST_INT
9539		&& GET_CODE (XEXP (op1, 1)) == CONST_INT)
9540	{
9541	  rtx inner_op0 = XEXP (op0, 0);
9542	  rtx inner_op1 = XEXP (op1, 0);
9543	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9544	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9545	  int changed = 0;
9546
9547	  if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9548	      && (GET_MODE_SIZE (GET_MODE (inner_op0))
9549		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9550	      && (GET_MODE (SUBREG_REG (inner_op0))
9551		  == GET_MODE (SUBREG_REG (inner_op1)))
9552	      && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9553		  <= HOST_BITS_PER_WIDE_INT)
9554	      && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9555					     GET_MODE (SUBREG_REG (inner_op0)))))
9556	      && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9557					     GET_MODE (SUBREG_REG (inner_op1))))))
9558	    {
9559	      op0 = SUBREG_REG (inner_op0);
9560	      op1 = SUBREG_REG (inner_op1);
9561
9562	      /* The resulting comparison is always unsigned since we masked
9563		 off the original sign bit.  */
9564	      code = unsigned_condition (code);
9565
9566	      changed = 1;
9567	    }
9568
9569	  else if (c0 == c1)
9570	    for (tmode = GET_CLASS_NARROWEST_MODE
9571		 (GET_MODE_CLASS (GET_MODE (op0)));
9572		 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9573	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9574		{
9575		  op0 = gen_lowpart_for_combine (tmode, inner_op0);
9576		  op1 = gen_lowpart_for_combine (tmode, inner_op1);
9577		  code = unsigned_condition (code);
9578		  changed = 1;
9579		  break;
9580		}
9581
9582	  if (! changed)
9583	    break;
9584	}
9585
9586      /* If both operands are NOT, we can strip off the outer operation
9587	 and adjust the comparison code for swapped operands; similarly for
9588	 NEG, except that this must be an equality comparison.  */
9589      else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9590	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9591		   && (code == EQ || code == NE)))
9592	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9593
9594      else
9595	break;
9596    }
9597
9598  /* If the first operand is a constant, swap the operands and adjust the
9599     comparison code appropriately, but don't do this if the second operand
9600     is already a constant integer.  */
9601  if (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9602    {
9603      tem = op0, op0 = op1, op1 = tem;
9604      code = swap_condition (code);
9605    }
9606
9607  /* We now enter a loop during which we will try to simplify the comparison.
9608     For the most part, we only are concerned with comparisons with zero,
9609     but some things may really be comparisons with zero but not start
9610     out looking that way.  */
9611
9612  while (GET_CODE (op1) == CONST_INT)
9613    {
9614      enum machine_mode mode = GET_MODE (op0);
9615      int mode_width = GET_MODE_BITSIZE (mode);
9616      unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9617      int equality_comparison_p;
9618      int sign_bit_comparison_p;
9619      int unsigned_comparison_p;
9620      HOST_WIDE_INT const_op;
9621
9622      /* We only want to handle integral modes.  This catches VOIDmode,
9623	 CCmode, and the floating-point modes.  An exception is that we
9624	 can handle VOIDmode if OP0 is a COMPARE or a comparison
9625	 operation.  */
9626
9627      if (GET_MODE_CLASS (mode) != MODE_INT
9628	  && ! (mode == VOIDmode
9629		&& (GET_CODE (op0) == COMPARE
9630		    || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
9631	break;
9632
9633      /* Get the constant we are comparing against and turn off all bits
9634	 not on in our mode.  */
9635      const_op = INTVAL (op1);
9636      if (mode_width <= HOST_BITS_PER_WIDE_INT)
9637	const_op &= mask;
9638
9639      /* If we are comparing against a constant power of two and the value
9640	 being compared can only have that single bit nonzero (e.g., it was
9641	 `and'ed with that bit), we can replace this with a comparison
9642	 with zero.  */
9643      if (const_op
9644	  && (code == EQ || code == NE || code == GE || code == GEU
9645	      || code == LT || code == LTU)
9646	  && mode_width <= HOST_BITS_PER_WIDE_INT
9647	  && exact_log2 (const_op) >= 0
9648	  && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9649	{
9650	  code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9651	  op1 = const0_rtx, const_op = 0;
9652	}
9653
9654      /* Similarly, if we are comparing a value known to be either -1 or
9655	 0 with -1, change it to the opposite comparison against zero.  */
9656
9657      if (const_op == -1
9658	  && (code == EQ || code == NE || code == GT || code == LE
9659	      || code == GEU || code == LTU)
9660	  && num_sign_bit_copies (op0, mode) == mode_width)
9661	{
9662	  code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9663	  op1 = const0_rtx, const_op = 0;
9664	}
9665
9666      /* Do some canonicalizations based on the comparison code.  We prefer
9667	 comparisons against zero and then prefer equality comparisons.
9668	 If we can reduce the size of a constant, we will do that too.  */
9669
9670      switch (code)
9671	{
9672	case LT:
9673	  /* < C is equivalent to <= (C - 1) */
9674	  if (const_op > 0)
9675	    {
9676	      const_op -= 1;
9677	      op1 = GEN_INT (const_op);
9678	      code = LE;
9679	      /* ... fall through to LE case below.  */
9680	    }
9681	  else
9682	    break;
9683
9684	case LE:
9685	  /* <= C is equivalent to < (C + 1); we do this for C < 0  */
9686	  if (const_op < 0)
9687	    {
9688	      const_op += 1;
9689	      op1 = GEN_INT (const_op);
9690	      code = LT;
9691	    }
9692
9693	  /* If we are doing a <= 0 comparison on a value known to have
9694	     a zero sign bit, we can replace this with == 0.  */
9695	  else if (const_op == 0
9696		   && mode_width <= HOST_BITS_PER_WIDE_INT
9697		   && (nonzero_bits (op0, mode)
9698		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9699	    code = EQ;
9700	  break;
9701
9702	case GE:
9703	  /* >= C is equivalent to > (C - 1).  */
9704	  if (const_op > 0)
9705	    {
9706	      const_op -= 1;
9707	      op1 = GEN_INT (const_op);
9708	      code = GT;
9709	      /* ... fall through to GT below.  */
9710	    }
9711	  else
9712	    break;
9713
9714	case GT:
9715	  /* > C is equivalent to >= (C + 1); we do this for C < 0*/
9716	  if (const_op < 0)
9717	    {
9718	      const_op += 1;
9719	      op1 = GEN_INT (const_op);
9720	      code = GE;
9721	    }
9722
9723	  /* If we are doing a > 0 comparison on a value known to have
9724	     a zero sign bit, we can replace this with != 0.  */
9725	  else if (const_op == 0
9726		   && mode_width <= HOST_BITS_PER_WIDE_INT
9727		   && (nonzero_bits (op0, mode)
9728		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9729	    code = NE;
9730	  break;
9731
9732	case LTU:
9733	  /* < C is equivalent to <= (C - 1).  */
9734	  if (const_op > 0)
9735	    {
9736	      const_op -= 1;
9737	      op1 = GEN_INT (const_op);
9738	      code = LEU;
9739	      /* ... fall through ...  */
9740	    }
9741
9742	  /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
9743	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9744		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9745	    {
9746	      const_op = 0, op1 = const0_rtx;
9747	      code = GE;
9748	      break;
9749	    }
9750	  else
9751	    break;
9752
9753	case LEU:
9754	  /* unsigned <= 0 is equivalent to == 0 */
9755	  if (const_op == 0)
9756	    code = EQ;
9757
9758	  /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
9759	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9760		   && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9761	    {
9762	      const_op = 0, op1 = const0_rtx;
9763	      code = GE;
9764	    }
9765	  break;
9766
9767	case GEU:
9768	  /* >= C is equivalent to < (C - 1).  */
9769	  if (const_op > 1)
9770	    {
9771	      const_op -= 1;
9772	      op1 = GEN_INT (const_op);
9773	      code = GTU;
9774	      /* ... fall through ...  */
9775	    }
9776
9777	  /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
9778	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9779		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9780	    {
9781	      const_op = 0, op1 = const0_rtx;
9782	      code = LT;
9783	      break;
9784	    }
9785	  else
9786	    break;
9787
9788	case GTU:
9789	  /* unsigned > 0 is equivalent to != 0 */
9790	  if (const_op == 0)
9791	    code = NE;
9792
9793	  /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
9794	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9795		    && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9796	    {
9797	      const_op = 0, op1 = const0_rtx;
9798	      code = LT;
9799	    }
9800	  break;
9801
9802	default:
9803	  break;
9804	}
9805
9806      /* Compute some predicates to simplify code below.  */
9807
9808      equality_comparison_p = (code == EQ || code == NE);
9809      sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9810      unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9811			       || code == LEU);
9812
9813      /* If this is a sign bit comparison and we can do arithmetic in
9814	 MODE, say that we will only be needing the sign bit of OP0.  */
9815      if (sign_bit_comparison_p
9816	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9817	op0 = force_to_mode (op0, mode,
9818			     ((HOST_WIDE_INT) 1
9819			      << (GET_MODE_BITSIZE (mode) - 1)),
9820			     NULL_RTX, 0);
9821
9822      /* Now try cases based on the opcode of OP0.  If none of the cases
9823	 does a "continue", we exit this loop immediately after the
9824	 switch.  */
9825
9826      switch (GET_CODE (op0))
9827	{
9828	case ZERO_EXTRACT:
9829	  /* If we are extracting a single bit from a variable position in
9830	     a constant that has only a single bit set and are comparing it
9831	     with zero, we can convert this into an equality comparison
9832	     between the position and the location of the single bit.  */
9833
9834	  if (GET_CODE (XEXP (op0, 0)) == CONST_INT
9835	      && XEXP (op0, 1) == const1_rtx
9836	      && equality_comparison_p && const_op == 0
9837	      && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9838	    {
9839	      if (BITS_BIG_ENDIAN)
9840		{
9841#ifdef HAVE_extzv
9842		  mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
9843		  if (mode == VOIDmode)
9844		    mode = word_mode;
9845		  i = (GET_MODE_BITSIZE (mode) - 1 - i);
9846#else
9847	          i = BITS_PER_WORD - 1 - i;
9848#endif
9849		}
9850
9851	      op0 = XEXP (op0, 2);
9852	      op1 = GEN_INT (i);
9853	      const_op = i;
9854
9855	      /* Result is nonzero iff shift count is equal to I.  */
9856	      code = reverse_condition (code);
9857	      continue;
9858	    }
9859
9860	  /* ... fall through ...  */
9861
9862	case SIGN_EXTRACT:
9863	  tem = expand_compound_operation (op0);
9864	  if (tem != op0)
9865	    {
9866	      op0 = tem;
9867	      continue;
9868	    }
9869	  break;
9870
9871	case NOT:
9872	  /* If testing for equality, we can take the NOT of the constant.  */
9873	  if (equality_comparison_p
9874	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9875	    {
9876	      op0 = XEXP (op0, 0);
9877	      op1 = tem;
9878	      continue;
9879	    }
9880
9881	  /* If just looking at the sign bit, reverse the sense of the
9882	     comparison.  */
9883	  if (sign_bit_comparison_p)
9884	    {
9885	      op0 = XEXP (op0, 0);
9886	      code = (code == GE ? LT : GE);
9887	      continue;
9888	    }
9889	  break;
9890
9891	case NEG:
9892	  /* If testing for equality, we can take the NEG of the constant.  */
9893	  if (equality_comparison_p
9894	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9895	    {
9896	      op0 = XEXP (op0, 0);
9897	      op1 = tem;
9898	      continue;
9899	    }
9900
9901	  /* The remaining cases only apply to comparisons with zero.  */
9902	  if (const_op != 0)
9903	    break;
9904
9905	  /* When X is ABS or is known positive,
9906	     (neg X) is < 0 if and only if X != 0.  */
9907
9908	  if (sign_bit_comparison_p
9909	      && (GET_CODE (XEXP (op0, 0)) == ABS
9910		  || (mode_width <= HOST_BITS_PER_WIDE_INT
9911		      && (nonzero_bits (XEXP (op0, 0), mode)
9912			  & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9913	    {
9914	      op0 = XEXP (op0, 0);
9915	      code = (code == LT ? NE : EQ);
9916	      continue;
9917	    }
9918
9919	  /* If we have NEG of something whose two high-order bits are the
9920	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
9921	  if (num_sign_bit_copies (op0, mode) >= 2)
9922	    {
9923	      op0 = XEXP (op0, 0);
9924	      code = swap_condition (code);
9925	      continue;
9926	    }
9927	  break;
9928
9929	case ROTATE:
9930	  /* If we are testing equality and our count is a constant, we
9931	     can perform the inverse operation on our RHS.  */
9932	  if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9933	      && (tem = simplify_binary_operation (ROTATERT, mode,
9934						   op1, XEXP (op0, 1))) != 0)
9935	    {
9936	      op0 = XEXP (op0, 0);
9937	      op1 = tem;
9938	      continue;
9939	    }
9940
9941	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9942	     a particular bit.  Convert it to an AND of a constant of that
9943	     bit.  This will be converted into a ZERO_EXTRACT.  */
9944	  if (const_op == 0 && sign_bit_comparison_p
9945	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
9946	      && mode_width <= HOST_BITS_PER_WIDE_INT)
9947	    {
9948	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9949					    ((HOST_WIDE_INT) 1
9950					     << (mode_width - 1
9951						 - INTVAL (XEXP (op0, 1)))));
9952	      code = (code == LT ? NE : EQ);
9953	      continue;
9954	    }
9955
9956	  /* ... fall through ...  */
9957
9958	case ABS:
9959	  /* ABS is ignorable inside an equality comparison with zero.  */
9960	  if (const_op == 0 && equality_comparison_p)
9961	    {
9962	      op0 = XEXP (op0, 0);
9963	      continue;
9964	    }
9965	  break;
9966
9967
9968	case SIGN_EXTEND:
9969	  /* Can simplify (compare (zero/sign_extend FOO) CONST)
9970	     to (compare FOO CONST) if CONST fits in FOO's mode and we
9971	     are either testing inequality or have an unsigned comparison
9972	     with ZERO_EXTEND or a signed comparison with SIGN_EXTEND.  */
9973	  if (! unsigned_comparison_p
9974	      && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9975		  <= HOST_BITS_PER_WIDE_INT)
9976	      && ((unsigned HOST_WIDE_INT) const_op
9977		  < (((unsigned HOST_WIDE_INT) 1
9978		      << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9979	    {
9980	      op0 = XEXP (op0, 0);
9981	      continue;
9982	    }
9983	  break;
9984
9985	case SUBREG:
9986	  /* Check for the case where we are comparing A - C1 with C2,
9987	     both constants are smaller than 1/2 the maximum positive
9988	     value in MODE, and the comparison is equality or unsigned.
9989	     In that case, if A is either zero-extended to MODE or has
9990	     sufficient sign bits so that the high-order bit in MODE
9991	     is a copy of the sign in the inner mode, we can prove that it is
9992	     safe to do the operation in the wider mode.  This simplifies
9993	     many range checks.  */
9994
9995	  if (mode_width <= HOST_BITS_PER_WIDE_INT
9996	      && subreg_lowpart_p (op0)
9997	      && GET_CODE (SUBREG_REG (op0)) == PLUS
9998	      && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
9999	      && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10000	      && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
10001		  < (HOST_WIDE_INT)(GET_MODE_MASK (mode) / 2))
10002	      && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10003	      && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10004				      GET_MODE (SUBREG_REG (op0)))
10005			& ~ GET_MODE_MASK (mode))
10006		  || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10007					   GET_MODE (SUBREG_REG (op0)))
10008		      > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10009			 - GET_MODE_BITSIZE (mode)))))
10010	    {
10011	      op0 = SUBREG_REG (op0);
10012	      continue;
10013	    }
10014
10015	  /* If the inner mode is narrower and we are extracting the low part,
10016	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
10017	  if (subreg_lowpart_p (op0)
10018	      && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10019	    /* Fall through */ ;
10020	  else
10021	    break;
10022
10023	  /* ... fall through ...  */
10024
10025	case ZERO_EXTEND:
10026	  if ((unsigned_comparison_p || equality_comparison_p)
10027	      && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10028		  <= HOST_BITS_PER_WIDE_INT)
10029	      && ((unsigned HOST_WIDE_INT) const_op
10030		  < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10031	    {
10032	      op0 = XEXP (op0, 0);
10033	      continue;
10034	    }
10035	  break;
10036
10037	case PLUS:
10038	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
10039	     this for equality comparisons due to pathological cases involving
10040	     overflows.  */
10041	  if (equality_comparison_p
10042	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10043							op1, XEXP (op0, 1))))
10044	    {
10045	      op0 = XEXP (op0, 0);
10046	      op1 = tem;
10047	      continue;
10048	    }
10049
10050	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
10051	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10052	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10053	    {
10054	      op0 = XEXP (XEXP (op0, 0), 0);
10055	      code = (code == LT ? EQ : NE);
10056	      continue;
10057	    }
10058	  break;
10059
10060	case MINUS:
10061	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
10062	     (eq B (minus A C)), whichever simplifies.  We can only do
10063	     this for equality comparisons due to pathological cases involving
10064	     overflows.  */
10065	  if (equality_comparison_p
10066	      && 0 != (tem = simplify_binary_operation (PLUS, mode,
10067							XEXP (op0, 1), op1)))
10068	    {
10069	      op0 = XEXP (op0, 0);
10070	      op1 = tem;
10071	      continue;
10072	    }
10073
10074	  if (equality_comparison_p
10075	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10076							XEXP (op0, 0), op1)))
10077	    {
10078	      op0 = XEXP (op0, 1);
10079	      op1 = tem;
10080	      continue;
10081	    }
10082
10083	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10084	     of bits in X minus 1, is one iff X > 0.  */
10085	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10086	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10087	      && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10088	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10089	    {
10090	      op0 = XEXP (op0, 1);
10091	      code = (code == GE ? LE : GT);
10092	      continue;
10093	    }
10094	  break;
10095
10096	case XOR:
10097	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
10098	     if C is zero or B is a constant.  */
10099	  if (equality_comparison_p
10100	      && 0 != (tem = simplify_binary_operation (XOR, mode,
10101							XEXP (op0, 1), op1)))
10102	    {
10103	      op0 = XEXP (op0, 0);
10104	      op1 = tem;
10105	      continue;
10106	    }
10107	  break;
10108
10109	case EQ:  case NE:
10110	case LT:  case LTU:  case LE:  case LEU:
10111	case GT:  case GTU:  case GE:  case GEU:
10112	  /* We can't do anything if OP0 is a condition code value, rather
10113	     than an actual data value.  */
10114	  if (const_op != 0
10115#ifdef HAVE_cc0
10116	      || XEXP (op0, 0) == cc0_rtx
10117#endif
10118	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10119	    break;
10120
10121	  /* Get the two operands being compared.  */
10122	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10123	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10124	  else
10125	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10126
10127	  /* Check for the cases where we simply want the result of the
10128	     earlier test or the opposite of that result.  */
10129	  if (code == NE
10130	      || (code == EQ && reversible_comparison_p (op0))
10131	      || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10132		  && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10133		  && (STORE_FLAG_VALUE
10134		      & (((HOST_WIDE_INT) 1
10135			  << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10136		  && (code == LT
10137		      || (code == GE && reversible_comparison_p (op0)))))
10138	    {
10139	      code = (code == LT || code == NE
10140		      ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
10141	      op0 = tem, op1 = tem1;
10142	      continue;
10143	    }
10144	  break;
10145
10146	case IOR:
10147	  /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10148	     iff X <= 0.  */
10149	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10150	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10151	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10152	    {
10153	      op0 = XEXP (op0, 1);
10154	      code = (code == GE ? GT : LE);
10155	      continue;
10156	    }
10157	  break;
10158
10159	case AND:
10160	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
10161	     will be converted to a ZERO_EXTRACT later.  */
10162	  if (const_op == 0 && equality_comparison_p
10163	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10164	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10165	    {
10166	      op0 = simplify_and_const_int
10167		(op0, mode, gen_rtx_combine (LSHIFTRT, mode,
10168					     XEXP (op0, 1),
10169					     XEXP (XEXP (op0, 0), 1)),
10170		 (HOST_WIDE_INT) 1);
10171	      continue;
10172	    }
10173
10174	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10175	     zero and X is a comparison and C1 and C2 describe only bits set
10176	     in STORE_FLAG_VALUE, we can compare with X.  */
10177	  if (const_op == 0 && equality_comparison_p
10178	      && mode_width <= HOST_BITS_PER_WIDE_INT
10179	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10180	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10181	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10182	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10183	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10184	    {
10185	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10186		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
10187	      if ((~ STORE_FLAG_VALUE & mask) == 0
10188		  && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10189		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10190			  && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10191		{
10192		  op0 = XEXP (XEXP (op0, 0), 0);
10193		  continue;
10194		}
10195	    }
10196
10197	  /* If we are doing an equality comparison of an AND of a bit equal
10198	     to the sign bit, replace this with a LT or GE comparison of
10199	     the underlying value.  */
10200	  if (equality_comparison_p
10201	      && const_op == 0
10202	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10203	      && mode_width <= HOST_BITS_PER_WIDE_INT
10204	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10205		  == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10206	    {
10207	      op0 = XEXP (op0, 0);
10208	      code = (code == EQ ? GE : LT);
10209	      continue;
10210	    }
10211
10212	  /* If this AND operation is really a ZERO_EXTEND from a narrower
10213	     mode, the constant fits within that mode, and this is either an
10214	     equality or unsigned comparison, try to do this comparison in
10215	     the narrower mode.  */
10216	  if ((equality_comparison_p || unsigned_comparison_p)
10217	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10218	      && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10219				   & GET_MODE_MASK (mode))
10220				  + 1)) >= 0
10221	      && const_op >> i == 0
10222	      && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10223	    {
10224	      op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10225	      continue;
10226	    }
10227
10228	  /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10229	     in both M1 and M2 and the SUBREG is either paradoxical or
10230	     represents the low part, permute the SUBREG and the AND and
10231	     try again.  */
10232	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
10233	      && ((mode_width
10234		   >= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10235#ifdef WORD_REGISTER_OPERATIONS
10236		  || subreg_lowpart_p (XEXP (op0, 0))
10237#endif
10238		  )
10239#ifndef WORD_REGISTER_OPERATIONS
10240	      /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10241		 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10242		 As originally written the upper bits have a defined value
10243		 due to the AND operation.  However, if we commute the AND
10244		 inside the SUBREG then they no longer have defined values
10245		 and the meaning of the code has been changed.  */
10246	      && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10247		  <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10248#endif
10249	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10250	      && mode_width <= HOST_BITS_PER_WIDE_INT
10251	      && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10252		  <= HOST_BITS_PER_WIDE_INT)
10253	      && (INTVAL (XEXP (op0, 1)) & ~ mask) == 0
10254	      && 0 == (~ GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10255		       & INTVAL (XEXP (op0, 1)))
10256	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10257	      && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10258		  != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10259
10260	    {
10261	      op0
10262		= gen_lowpart_for_combine
10263		  (mode,
10264		   gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10265			       SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10266	      continue;
10267	    }
10268
10269	  break;
10270
10271	case ASHIFT:
10272	  /* If we have (compare (ashift FOO N) (const_int C)) and
10273	     the high order N bits of FOO (N+1 if an inequality comparison)
10274	     are known to be zero, we can do this by comparing FOO with C
10275	     shifted right N bits so long as the low-order N bits of C are
10276	     zero.  */
10277	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10278	      && INTVAL (XEXP (op0, 1)) >= 0
10279	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10280		  < HOST_BITS_PER_WIDE_INT)
10281	      && ((const_op
10282		   & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10283	      && mode_width <= HOST_BITS_PER_WIDE_INT
10284	      && (nonzero_bits (XEXP (op0, 0), mode)
10285		  & ~ (mask >> (INTVAL (XEXP (op0, 1))
10286				+ ! equality_comparison_p))) == 0)
10287	    {
10288	      const_op >>= INTVAL (XEXP (op0, 1));
10289	      op1 = GEN_INT (const_op);
10290	      op0 = XEXP (op0, 0);
10291	      continue;
10292	    }
10293
10294	  /* If we are doing a sign bit comparison, it means we are testing
10295	     a particular bit.  Convert it to the appropriate AND.  */
10296	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10297	      && mode_width <= HOST_BITS_PER_WIDE_INT)
10298	    {
10299	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10300					    ((HOST_WIDE_INT) 1
10301					     << (mode_width - 1
10302						 - INTVAL (XEXP (op0, 1)))));
10303	      code = (code == LT ? NE : EQ);
10304	      continue;
10305	    }
10306
10307	  /* If this an equality comparison with zero and we are shifting
10308	     the low bit to the sign bit, we can convert this to an AND of the
10309	     low-order bit.  */
10310	  if (const_op == 0 && equality_comparison_p
10311	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10312	      && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10313	    {
10314	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10315					    (HOST_WIDE_INT) 1);
10316	      continue;
10317	    }
10318	  break;
10319
10320	case ASHIFTRT:
10321	  /* If this is an equality comparison with zero, we can do this
10322	     as a logical shift, which might be much simpler.  */
10323	  if (equality_comparison_p && const_op == 0
10324	      && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10325	    {
10326	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10327					  XEXP (op0, 0),
10328					  INTVAL (XEXP (op0, 1)));
10329	      continue;
10330	    }
10331
10332	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10333	     do the comparison in a narrower mode.  */
10334	  if (! unsigned_comparison_p
10335	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10336	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10337	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10338	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10339					 MODE_INT, 1)) != BLKmode
10340	      && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10341		  || ((unsigned HOST_WIDE_INT) - const_op
10342		      <= GET_MODE_MASK (tmode))))
10343	    {
10344	      op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10345	      continue;
10346	    }
10347
10348	  /* ... fall through ...  */
10349	case LSHIFTRT:
10350	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10351	     the low order N bits of FOO are known to be zero, we can do this
10352	     by comparing FOO with C shifted left N bits so long as no
10353	     overflow occurs.  */
10354	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10355	      && INTVAL (XEXP (op0, 1)) >= 0
10356	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10357	      && mode_width <= HOST_BITS_PER_WIDE_INT
10358	      && (nonzero_bits (XEXP (op0, 0), mode)
10359		  & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10360	      && (const_op == 0
10361		  || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10362		      < mode_width)))
10363	    {
10364	      const_op <<= INTVAL (XEXP (op0, 1));
10365	      op1 = GEN_INT (const_op);
10366	      op0 = XEXP (op0, 0);
10367	      continue;
10368	    }
10369
10370	  /* If we are using this shift to extract just the sign bit, we
10371	     can replace this with an LT or GE comparison.  */
10372	  if (const_op == 0
10373	      && (equality_comparison_p || sign_bit_comparison_p)
10374	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10375	      && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10376	    {
10377	      op0 = XEXP (op0, 0);
10378	      code = (code == NE || code == GT ? LT : GE);
10379	      continue;
10380	    }
10381	  break;
10382
10383	default:
10384	  break;
10385	}
10386
10387      break;
10388    }
10389
10390  /* Now make any compound operations involved in this comparison.  Then,
10391     check for an outmost SUBREG on OP0 that is not doing anything or is
10392     paradoxical.  The latter case can only occur when it is known that the
10393     "extra" bits will be zero.  Therefore, it is safe to remove the SUBREG.
10394     We can never remove a SUBREG for a non-equality comparison because the
10395     sign bit is in a different place in the underlying object.  */
10396
10397  op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10398  op1 = make_compound_operation (op1, SET);
10399
10400  if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10401      && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10402      && (code == NE || code == EQ)
10403      && ((GET_MODE_SIZE (GET_MODE (op0))
10404	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10405    {
10406      op0 = SUBREG_REG (op0);
10407      op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10408    }
10409
10410  else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10411	   && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10412	   && (code == NE || code == EQ)
10413	   && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10414	       <= HOST_BITS_PER_WIDE_INT)
10415	   && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10416	       & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
10417	   && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10418					      op1),
10419	       (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10420		& ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
10421    op0 = SUBREG_REG (op0), op1 = tem;
10422
10423  /* We now do the opposite procedure: Some machines don't have compare
10424     insns in all modes.  If OP0's mode is an integer mode smaller than a
10425     word and we can't do a compare in that mode, see if there is a larger
10426     mode for which we can do the compare.  There are a number of cases in
10427     which we can use the wider mode.  */
10428
10429  mode = GET_MODE (op0);
10430  if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10431      && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10432      && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
10433    for (tmode = GET_MODE_WIDER_MODE (mode);
10434	 (tmode != VOIDmode
10435	  && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10436	 tmode = GET_MODE_WIDER_MODE (tmode))
10437      if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
10438	{
10439	  /* If the only nonzero bits in OP0 and OP1 are those in the
10440	     narrower mode and this is an equality or unsigned comparison,
10441	     we can use the wider mode.  Similarly for sign-extended
10442	     values, in which case it is true for all comparisons.  */
10443	  if (((code == EQ || code == NE
10444		|| code == GEU || code == GTU || code == LEU || code == LTU)
10445	       && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
10446	       && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
10447	      || ((num_sign_bit_copies (op0, tmode)
10448		   > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10449		  && (num_sign_bit_copies (op1, tmode)
10450		      > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10451	    {
10452	      op0 = gen_lowpart_for_combine (tmode, op0);
10453	      op1 = gen_lowpart_for_combine (tmode, op1);
10454	      break;
10455	    }
10456
10457	  /* If this is a test for negative, we can make an explicit
10458	     test of the sign bit.  */
10459
10460	  if (op1 == const0_rtx && (code == LT || code == GE)
10461	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10462	    {
10463	      op0 = gen_binary (AND, tmode,
10464				gen_lowpart_for_combine (tmode, op0),
10465				GEN_INT ((HOST_WIDE_INT) 1
10466					 << (GET_MODE_BITSIZE (mode) - 1)));
10467	      code = (code == LT) ? NE : EQ;
10468	      break;
10469	    }
10470	}
10471
10472#ifdef CANONICALIZE_COMPARISON
10473  /* If this machine only supports a subset of valid comparisons, see if we
10474     can convert an unsupported one into a supported one.  */
10475  CANONICALIZE_COMPARISON (code, op0, op1);
10476#endif
10477
10478  *pop0 = op0;
10479  *pop1 = op1;
10480
10481  return code;
10482}
10483
10484/* Return 1 if we know that X, a comparison operation, is not operating
10485   on a floating-point value or is EQ or NE, meaning that we can safely
10486   reverse it.  */
10487
10488static int
10489reversible_comparison_p (x)
10490     rtx x;
10491{
10492  if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
10493      || flag_fast_math
10494      || GET_CODE (x) == NE || GET_CODE (x) == EQ)
10495    return 1;
10496
10497  switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
10498    {
10499    case MODE_INT:
10500    case MODE_PARTIAL_INT:
10501    case MODE_COMPLEX_INT:
10502      return 1;
10503
10504    case MODE_CC:
10505      /* If the mode of the condition codes tells us that this is safe,
10506	 we need look no further.  */
10507      if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
10508	return 1;
10509
10510      /* Otherwise try and find where the condition codes were last set and
10511	 use that.  */
10512      x = get_last_value (XEXP (x, 0));
10513      return (x && GET_CODE (x) == COMPARE
10514	      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
10515
10516    default:
10517      return 0;
10518    }
10519}
10520
10521/* Utility function for following routine.  Called when X is part of a value
10522   being stored into reg_last_set_value.  Sets reg_last_set_table_tick
10523   for each register mentioned.  Similar to mention_regs in cse.c  */
10524
10525static void
10526update_table_tick (x)
10527     rtx x;
10528{
10529  register enum rtx_code code = GET_CODE (x);
10530  register char *fmt = GET_RTX_FORMAT (code);
10531  register int i;
10532
10533  if (code == REG)
10534    {
10535      int regno = REGNO (x);
10536      int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10537			      ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10538
10539      for (i = regno; i < endregno; i++)
10540	reg_last_set_table_tick[i] = label_tick;
10541
10542      return;
10543    }
10544
10545  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10546    /* Note that we can't have an "E" in values stored; see
10547       get_last_value_validate.  */
10548    if (fmt[i] == 'e')
10549      update_table_tick (XEXP (x, i));
10550}
10551
10552/* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
10553   are saying that the register is clobbered and we no longer know its
10554   value.  If INSN is zero, don't update reg_last_set; this is only permitted
10555   with VALUE also zero and is used to invalidate the register.  */
10556
10557static void
10558record_value_for_reg (reg, insn, value)
10559     rtx reg;
10560     rtx insn;
10561     rtx value;
10562{
10563  int regno = REGNO (reg);
10564  int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10565			  ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
10566  int i;
10567
10568  /* If VALUE contains REG and we have a previous value for REG, substitute
10569     the previous value.  */
10570  if (value && insn && reg_overlap_mentioned_p (reg, value))
10571    {
10572      rtx tem;
10573
10574      /* Set things up so get_last_value is allowed to see anything set up to
10575	 our insn.  */
10576      subst_low_cuid = INSN_CUID (insn);
10577      tem = get_last_value (reg);
10578
10579      if (tem)
10580	value = replace_rtx (copy_rtx (value), reg, tem);
10581    }
10582
10583  /* For each register modified, show we don't know its value, that
10584     we don't know about its bitwise content, that its value has been
10585     updated, and that we don't know the location of the death of the
10586     register.  */
10587  for (i = regno; i < endregno; i ++)
10588    {
10589      if (insn)
10590	reg_last_set[i] = insn;
10591      reg_last_set_value[i] = 0;
10592      reg_last_set_mode[i] = 0;
10593      reg_last_set_nonzero_bits[i] = 0;
10594      reg_last_set_sign_bit_copies[i] = 0;
10595      reg_last_death[i] = 0;
10596    }
10597
10598  /* Mark registers that are being referenced in this value.  */
10599  if (value)
10600    update_table_tick (value);
10601
10602  /* Now update the status of each register being set.
10603     If someone is using this register in this block, set this register
10604     to invalid since we will get confused between the two lives in this
10605     basic block.  This makes using this register always invalid.  In cse, we
10606     scan the table to invalidate all entries using this register, but this
10607     is too much work for us.  */
10608
10609  for (i = regno; i < endregno; i++)
10610    {
10611      reg_last_set_label[i] = label_tick;
10612      if (value && reg_last_set_table_tick[i] == label_tick)
10613	reg_last_set_invalid[i] = 1;
10614      else
10615	reg_last_set_invalid[i] = 0;
10616    }
10617
10618  /* The value being assigned might refer to X (like in "x++;").  In that
10619     case, we must replace it with (clobber (const_int 0)) to prevent
10620     infinite loops.  */
10621  if (value && ! get_last_value_validate (&value, insn,
10622					  reg_last_set_label[regno], 0))
10623    {
10624      value = copy_rtx (value);
10625      if (! get_last_value_validate (&value, insn,
10626				     reg_last_set_label[regno], 1))
10627	value = 0;
10628    }
10629
10630  /* For the main register being modified, update the value, the mode, the
10631     nonzero bits, and the number of sign bit copies.  */
10632
10633  reg_last_set_value[regno] = value;
10634
10635  if (value)
10636    {
10637      subst_low_cuid = INSN_CUID (insn);
10638      reg_last_set_mode[regno] = GET_MODE (reg);
10639      reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
10640      reg_last_set_sign_bit_copies[regno]
10641	= num_sign_bit_copies (value, GET_MODE (reg));
10642    }
10643}
10644
10645/* Used for communication between the following two routines.  */
10646static rtx record_dead_insn;
10647
10648/* Called via note_stores from record_dead_and_set_regs to handle one
10649   SET or CLOBBER in an insn.  */
10650
10651static void
10652record_dead_and_set_regs_1 (dest, setter)
10653     rtx dest, setter;
10654{
10655  if (GET_CODE (dest) == SUBREG)
10656    dest = SUBREG_REG (dest);
10657
10658  if (GET_CODE (dest) == REG)
10659    {
10660      /* If we are setting the whole register, we know its value.  Otherwise
10661	 show that we don't know the value.  We can handle SUBREG in
10662	 some cases.  */
10663      if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10664	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10665      else if (GET_CODE (setter) == SET
10666	       && GET_CODE (SET_DEST (setter)) == SUBREG
10667	       && SUBREG_REG (SET_DEST (setter)) == dest
10668	       && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10669	       && subreg_lowpart_p (SET_DEST (setter)))
10670	record_value_for_reg (dest, record_dead_insn,
10671			      gen_lowpart_for_combine (GET_MODE (dest),
10672						       SET_SRC (setter)));
10673      else
10674	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10675    }
10676  else if (GET_CODE (dest) == MEM
10677	   /* Ignore pushes, they clobber nothing.  */
10678	   && ! push_operand (dest, GET_MODE (dest)))
10679    mem_last_set = INSN_CUID (record_dead_insn);
10680}
10681
10682/* Update the records of when each REG was most recently set or killed
10683   for the things done by INSN.  This is the last thing done in processing
10684   INSN in the combiner loop.
10685
10686   We update reg_last_set, reg_last_set_value, reg_last_set_mode,
10687   reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
10688   and also the similar information mem_last_set (which insn most recently
10689   modified memory) and last_call_cuid (which insn was the most recent
10690   subroutine call).  */
10691
10692static void
10693record_dead_and_set_regs (insn)
10694     rtx insn;
10695{
10696  register rtx link;
10697  int i;
10698
10699  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10700    {
10701      if (REG_NOTE_KIND (link) == REG_DEAD
10702	  && GET_CODE (XEXP (link, 0)) == REG)
10703	{
10704	  int regno = REGNO (XEXP (link, 0));
10705	  int endregno
10706	    = regno + (regno < FIRST_PSEUDO_REGISTER
10707		       ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
10708		       : 1);
10709
10710	  for (i = regno; i < endregno; i++)
10711	    reg_last_death[i] = insn;
10712	}
10713      else if (REG_NOTE_KIND (link) == REG_INC)
10714	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10715    }
10716
10717  if (GET_CODE (insn) == CALL_INSN)
10718    {
10719      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10720	if (call_used_regs[i])
10721	  {
10722	    reg_last_set_value[i] = 0;
10723	    reg_last_set_mode[i] = 0;
10724	    reg_last_set_nonzero_bits[i] = 0;
10725	    reg_last_set_sign_bit_copies[i] = 0;
10726	    reg_last_death[i] = 0;
10727	  }
10728
10729      last_call_cuid = mem_last_set = INSN_CUID (insn);
10730    }
10731
10732  record_dead_insn = insn;
10733  note_stores (PATTERN (insn), record_dead_and_set_regs_1);
10734}
10735
10736/* Utility routine for the following function.  Verify that all the registers
10737   mentioned in *LOC are valid when *LOC was part of a value set when
10738   label_tick == TICK.  Return 0 if some are not.
10739
10740   If REPLACE is non-zero, replace the invalid reference with
10741   (clobber (const_int 0)) and return 1.  This replacement is useful because
10742   we often can get useful information about the form of a value (e.g., if
10743   it was produced by a shift that always produces -1 or 0) even though
10744   we don't know exactly what registers it was produced from.  */
10745
10746static int
10747get_last_value_validate (loc, insn, tick, replace)
10748     rtx *loc;
10749     rtx insn;
10750     int tick;
10751     int replace;
10752{
10753  rtx x = *loc;
10754  char *fmt = GET_RTX_FORMAT (GET_CODE (x));
10755  int len = GET_RTX_LENGTH (GET_CODE (x));
10756  int i;
10757
10758  if (GET_CODE (x) == REG)
10759    {
10760      int regno = REGNO (x);
10761      int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10762			      ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10763      int j;
10764
10765      for (j = regno; j < endregno; j++)
10766	if (reg_last_set_invalid[j]
10767	    /* If this is a pseudo-register that was only set once, it is
10768	       always valid.  */
10769	    || (! (regno >= FIRST_PSEUDO_REGISTER && REG_N_SETS (regno) == 1)
10770		&& reg_last_set_label[j] > tick))
10771	  {
10772	    if (replace)
10773	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10774	    return replace;
10775	  }
10776
10777      return 1;
10778    }
10779  /* If this is a memory reference, make sure that there were
10780     no stores after it that might have clobbered the value.  We don't
10781     have alias info, so we assume any store invalidates it.  */
10782  else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
10783	   && INSN_CUID (insn) <= mem_last_set)
10784    {
10785      if (replace)
10786	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10787      return replace;
10788    }
10789
10790  for (i = 0; i < len; i++)
10791    if ((fmt[i] == 'e'
10792	 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
10793	/* Don't bother with these.  They shouldn't occur anyway.  */
10794	|| fmt[i] == 'E')
10795      return 0;
10796
10797  /* If we haven't found a reason for it to be invalid, it is valid.  */
10798  return 1;
10799}
10800
10801/* Get the last value assigned to X, if known.  Some registers
10802   in the value may be replaced with (clobber (const_int 0)) if their value
10803   is known longer known reliably.  */
10804
10805static rtx
10806get_last_value (x)
10807     rtx x;
10808{
10809  int regno;
10810  rtx value;
10811
10812  /* If this is a non-paradoxical SUBREG, get the value of its operand and
10813     then convert it to the desired mode.  If this is a paradoxical SUBREG,
10814     we cannot predict what values the "extra" bits might have.  */
10815  if (GET_CODE (x) == SUBREG
10816      && subreg_lowpart_p (x)
10817      && (GET_MODE_SIZE (GET_MODE (x))
10818	  <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
10819      && (value = get_last_value (SUBREG_REG (x))) != 0)
10820    return gen_lowpart_for_combine (GET_MODE (x), value);
10821
10822  if (GET_CODE (x) != REG)
10823    return 0;
10824
10825  regno = REGNO (x);
10826  value = reg_last_set_value[regno];
10827
10828  /* If we don't have a value or if it isn't for this basic block,
10829     return 0.  */
10830
10831  if (value == 0
10832      || (REG_N_SETS (regno) != 1
10833	  && reg_last_set_label[regno] != label_tick))
10834    return 0;
10835
10836  /* If the value was set in a later insn than the ones we are processing,
10837     we can't use it even if the register was only set once, but make a quick
10838     check to see if the previous insn set it to something.  This is commonly
10839     the case when the same pseudo is used by repeated insns.
10840
10841     This does not work if there exists an instruction which is temporarily
10842     not on the insn chain.  */
10843
10844  if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
10845    {
10846      rtx insn, set;
10847
10848      /* We can not do anything useful in this case, because there is
10849	 an instruction which is not on the insn chain.  */
10850      if (subst_prev_insn)
10851	return 0;
10852
10853      /* Skip over USE insns.  They are not useful here, and they may have
10854	 been made by combine, in which case they do not have a INSN_CUID
10855	 value.  We can't use prev_real_insn, because that would incorrectly
10856	 take us backwards across labels.  Skip over BARRIERs also, since
10857	 they could have been made by combine.  If we see one, we must be
10858	 optimizing dead code, so it doesn't matter what we do.  */
10859      for (insn = prev_nonnote_insn (subst_insn);
10860	   insn && ((GET_CODE (insn) == INSN
10861		     && GET_CODE (PATTERN (insn)) == USE)
10862		    || GET_CODE (insn) == BARRIER
10863		    || INSN_CUID (insn) >= subst_low_cuid);
10864	   insn = prev_nonnote_insn (insn))
10865	;
10866
10867      if (insn
10868	  && (set = single_set (insn)) != 0
10869	  && rtx_equal_p (SET_DEST (set), x))
10870	{
10871	  value = SET_SRC (set);
10872
10873	  /* Make sure that VALUE doesn't reference X.  Replace any
10874	     explicit references with a CLOBBER.  If there are any remaining
10875	     references (rare), don't use the value.  */
10876
10877	  if (reg_mentioned_p (x, value))
10878	    value = replace_rtx (copy_rtx (value), x,
10879				 gen_rtx_CLOBBER (GET_MODE (x), const0_rtx));
10880
10881	  if (reg_overlap_mentioned_p (x, value))
10882	    return 0;
10883	}
10884      else
10885	return 0;
10886    }
10887
10888  /* If the value has all its registers valid, return it.  */
10889  if (get_last_value_validate (&value, reg_last_set[regno],
10890			       reg_last_set_label[regno], 0))
10891    return value;
10892
10893  /* Otherwise, make a copy and replace any invalid register with
10894     (clobber (const_int 0)).  If that fails for some reason, return 0.  */
10895
10896  value = copy_rtx (value);
10897  if (get_last_value_validate (&value, reg_last_set[regno],
10898			       reg_last_set_label[regno], 1))
10899    return value;
10900
10901  return 0;
10902}
10903
10904/* Return nonzero if expression X refers to a REG or to memory
10905   that is set in an instruction more recent than FROM_CUID.  */
10906
10907static int
10908use_crosses_set_p (x, from_cuid)
10909     register rtx x;
10910     int from_cuid;
10911{
10912  register char *fmt;
10913  register int i;
10914  register enum rtx_code code = GET_CODE (x);
10915
10916  if (code == REG)
10917    {
10918      register int regno = REGNO (x);
10919      int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
10920			    ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10921
10922#ifdef PUSH_ROUNDING
10923      /* Don't allow uses of the stack pointer to be moved,
10924	 because we don't know whether the move crosses a push insn.  */
10925      if (regno == STACK_POINTER_REGNUM)
10926	return 1;
10927#endif
10928      for (;regno < endreg; regno++)
10929	if (reg_last_set[regno]
10930	    && INSN_CUID (reg_last_set[regno]) > from_cuid)
10931	  return 1;
10932      return 0;
10933    }
10934
10935  if (code == MEM && mem_last_set > from_cuid)
10936    return 1;
10937
10938  fmt = GET_RTX_FORMAT (code);
10939
10940  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10941    {
10942      if (fmt[i] == 'E')
10943	{
10944	  register int j;
10945	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10946	    if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
10947	      return 1;
10948	}
10949      else if (fmt[i] == 'e'
10950	       && use_crosses_set_p (XEXP (x, i), from_cuid))
10951	return 1;
10952    }
10953  return 0;
10954}
10955
10956/* Define three variables used for communication between the following
10957   routines.  */
10958
10959static int reg_dead_regno, reg_dead_endregno;
10960static int reg_dead_flag;
10961
10962/* Function called via note_stores from reg_dead_at_p.
10963
10964   If DEST is within [reg_dead_regno, reg_dead_endregno), set
10965   reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
10966
10967static void
10968reg_dead_at_p_1 (dest, x)
10969     rtx dest;
10970     rtx x;
10971{
10972  int regno, endregno;
10973
10974  if (GET_CODE (dest) != REG)
10975    return;
10976
10977  regno = REGNO (dest);
10978  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10979		      ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
10980
10981  if (reg_dead_endregno > regno && reg_dead_regno < endregno)
10982    reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
10983}
10984
10985/* Return non-zero if REG is known to be dead at INSN.
10986
10987   We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
10988   referencing REG, it is dead.  If we hit a SET referencing REG, it is
10989   live.  Otherwise, see if it is live or dead at the start of the basic
10990   block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
10991   must be assumed to be always live.  */
10992
10993static int
10994reg_dead_at_p (reg, insn)
10995     rtx reg;
10996     rtx insn;
10997{
10998  int block, i;
10999
11000  /* Set variables for reg_dead_at_p_1.  */
11001  reg_dead_regno = REGNO (reg);
11002  reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11003					? HARD_REGNO_NREGS (reg_dead_regno,
11004							    GET_MODE (reg))
11005					: 1);
11006
11007  reg_dead_flag = 0;
11008
11009  /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  */
11010  if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11011    {
11012      for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11013	if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11014	  return 0;
11015    }
11016
11017  /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11018     beginning of function.  */
11019  for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11020       insn = prev_nonnote_insn (insn))
11021    {
11022      note_stores (PATTERN (insn), reg_dead_at_p_1);
11023      if (reg_dead_flag)
11024	return reg_dead_flag == 1 ? 1 : 0;
11025
11026      if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11027	return 1;
11028    }
11029
11030  /* Get the basic block number that we were in.  */
11031  if (insn == 0)
11032    block = 0;
11033  else
11034    {
11035      for (block = 0; block < n_basic_blocks; block++)
11036	if (insn == BLOCK_HEAD (block))
11037	  break;
11038
11039      if (block == n_basic_blocks)
11040	return 0;
11041    }
11042
11043  for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11044    if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11045      return 0;
11046
11047  return 1;
11048}
11049
11050/* Note hard registers in X that are used.  This code is similar to
11051   that in flow.c, but much simpler since we don't care about pseudos.  */
11052
11053static void
11054mark_used_regs_combine (x)
11055     rtx x;
11056{
11057  register RTX_CODE code = GET_CODE (x);
11058  register int regno;
11059  int i;
11060
11061  switch (code)
11062    {
11063    case LABEL_REF:
11064    case SYMBOL_REF:
11065    case CONST_INT:
11066    case CONST:
11067    case CONST_DOUBLE:
11068    case PC:
11069    case ADDR_VEC:
11070    case ADDR_DIFF_VEC:
11071    case ASM_INPUT:
11072#ifdef HAVE_cc0
11073    /* CC0 must die in the insn after it is set, so we don't need to take
11074       special note of it here.  */
11075    case CC0:
11076#endif
11077      return;
11078
11079    case CLOBBER:
11080      /* If we are clobbering a MEM, mark any hard registers inside the
11081	 address as used.  */
11082      if (GET_CODE (XEXP (x, 0)) == MEM)
11083	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11084      return;
11085
11086    case REG:
11087      regno = REGNO (x);
11088      /* A hard reg in a wide mode may really be multiple registers.
11089	 If so, mark all of them just like the first.  */
11090      if (regno < FIRST_PSEUDO_REGISTER)
11091	{
11092	  /* None of this applies to the stack, frame or arg pointers */
11093	  if (regno == STACK_POINTER_REGNUM
11094#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11095	      || regno == HARD_FRAME_POINTER_REGNUM
11096#endif
11097#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11098	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11099#endif
11100	      || regno == FRAME_POINTER_REGNUM)
11101	    return;
11102
11103	  i = HARD_REGNO_NREGS (regno, GET_MODE (x));
11104	  while (i-- > 0)
11105	    SET_HARD_REG_BIT (newpat_used_regs, regno + i);
11106	}
11107      return;
11108
11109    case SET:
11110      {
11111	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11112	   the address.  */
11113	register rtx testreg = SET_DEST (x);
11114
11115	while (GET_CODE (testreg) == SUBREG
11116	       || GET_CODE (testreg) == ZERO_EXTRACT
11117	       || GET_CODE (testreg) == SIGN_EXTRACT
11118	       || GET_CODE (testreg) == STRICT_LOW_PART)
11119	  testreg = XEXP (testreg, 0);
11120
11121	if (GET_CODE (testreg) == MEM)
11122	  mark_used_regs_combine (XEXP (testreg, 0));
11123
11124	mark_used_regs_combine (SET_SRC (x));
11125      }
11126      return;
11127
11128    default:
11129      break;
11130    }
11131
11132  /* Recursively scan the operands of this expression.  */
11133
11134  {
11135    register char *fmt = GET_RTX_FORMAT (code);
11136
11137    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11138      {
11139        if (fmt[i] == 'e')
11140	  mark_used_regs_combine (XEXP (x, i));
11141        else if (fmt[i] == 'E')
11142          {
11143            register int j;
11144
11145            for (j = 0; j < XVECLEN (x, i); j++)
11146              mark_used_regs_combine (XVECEXP (x, i, j));
11147          }
11148      }
11149  }
11150}
11151
11152
11153/* Remove register number REGNO from the dead registers list of INSN.
11154
11155   Return the note used to record the death, if there was one.  */
11156
11157rtx
11158remove_death (regno, insn)
11159     int regno;
11160     rtx insn;
11161{
11162  register rtx note = find_regno_note (insn, REG_DEAD, regno);
11163
11164  if (note)
11165    {
11166      REG_N_DEATHS (regno)--;
11167      remove_note (insn, note);
11168    }
11169
11170  return note;
11171}
11172
11173/* For each register (hardware or pseudo) used within expression X, if its
11174   death is in an instruction with cuid between FROM_CUID (inclusive) and
11175   TO_INSN (exclusive), put a REG_DEAD note for that register in the
11176   list headed by PNOTES.
11177
11178   That said, don't move registers killed by maybe_kill_insn.
11179
11180   This is done when X is being merged by combination into TO_INSN.  These
11181   notes will then be distributed as needed.  */
11182
11183static void
11184move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11185     rtx x;
11186     rtx maybe_kill_insn;
11187     int from_cuid;
11188     rtx to_insn;
11189     rtx *pnotes;
11190{
11191  register char *fmt;
11192  register int len, i;
11193  register enum rtx_code code = GET_CODE (x);
11194
11195  if (code == REG)
11196    {
11197      register int regno = REGNO (x);
11198      register rtx where_dead = reg_last_death[regno];
11199      register rtx before_dead, after_dead;
11200
11201      /* Don't move the register if it gets killed in between from and to */
11202      if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11203	  && !reg_referenced_p (x, maybe_kill_insn))
11204	return;
11205
11206      /* WHERE_DEAD could be a USE insn made by combine, so first we
11207	 make sure that we have insns with valid INSN_CUID values.  */
11208      before_dead = where_dead;
11209      while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11210	before_dead = PREV_INSN (before_dead);
11211      after_dead = where_dead;
11212      while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11213	after_dead = NEXT_INSN (after_dead);
11214
11215      if (before_dead && after_dead
11216	  && INSN_CUID (before_dead) >= from_cuid
11217	  && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11218	      || (where_dead != after_dead
11219		  && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11220	{
11221	  rtx note = remove_death (regno, where_dead);
11222
11223	  /* It is possible for the call above to return 0.  This can occur
11224	     when reg_last_death points to I2 or I1 that we combined with.
11225	     In that case make a new note.
11226
11227	     We must also check for the case where X is a hard register
11228	     and NOTE is a death note for a range of hard registers
11229	     including X.  In that case, we must put REG_DEAD notes for
11230	     the remaining registers in place of NOTE.  */
11231
11232	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11233	      && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11234		  > GET_MODE_SIZE (GET_MODE (x))))
11235	    {
11236	      int deadregno = REGNO (XEXP (note, 0));
11237	      int deadend
11238		= (deadregno + HARD_REGNO_NREGS (deadregno,
11239						 GET_MODE (XEXP (note, 0))));
11240	      int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11241	      int i;
11242
11243	      for (i = deadregno; i < deadend; i++)
11244		if (i < regno || i >= ourend)
11245		  REG_NOTES (where_dead)
11246		    = gen_rtx_EXPR_LIST (REG_DEAD,
11247					 gen_rtx_REG (reg_raw_mode[i], i),
11248					 REG_NOTES (where_dead));
11249	    }
11250	  /* If we didn't find any note, or if we found a REG_DEAD note that
11251	     covers only part of the given reg, and we have a multi-reg hard
11252	     register, then to be safe we must check for REG_DEAD notes
11253	     for each register other than the first.  They could have
11254	     their own REG_DEAD notes lying around.  */
11255	  else if ((note == 0
11256		    || (note != 0
11257			&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11258			    < GET_MODE_SIZE (GET_MODE (x)))))
11259		   && regno < FIRST_PSEUDO_REGISTER
11260		   && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11261	    {
11262	      int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11263	      int i, offset;
11264	      rtx oldnotes = 0;
11265
11266	      if (note)
11267		offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11268	      else
11269		offset = 1;
11270
11271	      for (i = regno + offset; i < ourend; i++)
11272		move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11273			     maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11274	    }
11275
11276	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11277	    {
11278	      XEXP (note, 1) = *pnotes;
11279	      *pnotes = note;
11280	    }
11281	  else
11282	    *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11283
11284	  REG_N_DEATHS (regno)++;
11285	}
11286
11287      return;
11288    }
11289
11290  else if (GET_CODE (x) == SET)
11291    {
11292      rtx dest = SET_DEST (x);
11293
11294      move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11295
11296      /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11297	 that accesses one word of a multi-word item, some
11298	 piece of everything register in the expression is used by
11299	 this insn, so remove any old death.  */
11300
11301      if (GET_CODE (dest) == ZERO_EXTRACT
11302	  || GET_CODE (dest) == STRICT_LOW_PART
11303	  || (GET_CODE (dest) == SUBREG
11304	      && (((GET_MODE_SIZE (GET_MODE (dest))
11305		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11306		  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11307		       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11308	{
11309	  move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11310	  return;
11311	}
11312
11313      /* If this is some other SUBREG, we know it replaces the entire
11314	 value, so use that as the destination.  */
11315      if (GET_CODE (dest) == SUBREG)
11316	dest = SUBREG_REG (dest);
11317
11318      /* If this is a MEM, adjust deaths of anything used in the address.
11319	 For a REG (the only other possibility), the entire value is
11320	 being replaced so the old value is not used in this insn.  */
11321
11322      if (GET_CODE (dest) == MEM)
11323	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11324		     to_insn, pnotes);
11325      return;
11326    }
11327
11328  else if (GET_CODE (x) == CLOBBER)
11329    return;
11330
11331  len = GET_RTX_LENGTH (code);
11332  fmt = GET_RTX_FORMAT (code);
11333
11334  for (i = 0; i < len; i++)
11335    {
11336      if (fmt[i] == 'E')
11337	{
11338	  register int j;
11339	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11340	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11341			 to_insn, pnotes);
11342	}
11343      else if (fmt[i] == 'e')
11344	move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11345    }
11346}
11347
11348/* Return 1 if X is the target of a bit-field assignment in BODY, the
11349   pattern of an insn.  X must be a REG.  */
11350
11351static int
11352reg_bitfield_target_p (x, body)
11353     rtx x;
11354     rtx body;
11355{
11356  int i;
11357
11358  if (GET_CODE (body) == SET)
11359    {
11360      rtx dest = SET_DEST (body);
11361      rtx target;
11362      int regno, tregno, endregno, endtregno;
11363
11364      if (GET_CODE (dest) == ZERO_EXTRACT)
11365	target = XEXP (dest, 0);
11366      else if (GET_CODE (dest) == STRICT_LOW_PART)
11367	target = SUBREG_REG (XEXP (dest, 0));
11368      else
11369	return 0;
11370
11371      if (GET_CODE (target) == SUBREG)
11372	target = SUBREG_REG (target);
11373
11374      if (GET_CODE (target) != REG)
11375	return 0;
11376
11377      tregno = REGNO (target), regno = REGNO (x);
11378      if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11379	return target == x;
11380
11381      endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11382      endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11383
11384      return endregno > tregno && regno < endtregno;
11385    }
11386
11387  else if (GET_CODE (body) == PARALLEL)
11388    for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11389      if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11390	return 1;
11391
11392  return 0;
11393}
11394
11395/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11396   as appropriate.  I3 and I2 are the insns resulting from the combination
11397   insns including FROM (I2 may be zero).
11398
11399   ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11400   not need REG_DEAD notes because they are being substituted for.  This
11401   saves searching in the most common cases.
11402
11403   Each note in the list is either ignored or placed on some insns, depending
11404   on the type of note.  */
11405
11406static void
11407distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11408     rtx notes;
11409     rtx from_insn;
11410     rtx i3, i2;
11411     rtx elim_i2, elim_i1;
11412{
11413  rtx note, next_note;
11414  rtx tem;
11415
11416  for (note = notes; note; note = next_note)
11417    {
11418      rtx place = 0, place2 = 0;
11419
11420      /* If this NOTE references a pseudo register, ensure it references
11421	 the latest copy of that register.  */
11422      if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11423	  && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11424	XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11425
11426      next_note = XEXP (note, 1);
11427      switch (REG_NOTE_KIND (note))
11428	{
11429	case REG_BR_PROB:
11430	case REG_EXEC_COUNT:
11431	  /* Doesn't matter much where we put this, as long as it's somewhere.
11432	     It is preferable to keep these notes on branches, which is most
11433	     likely to be i3.  */
11434	  place = i3;
11435	  break;
11436
11437	case REG_EH_REGION:
11438	  /* This note must remain with the call.  It should not be possible
11439	     for both I2 and I3 to be a call.  */
11440	  if (GET_CODE (i3) == CALL_INSN)
11441	    place = i3;
11442	  else if (i2 && GET_CODE (i2) == CALL_INSN)
11443	    place = i2;
11444	  else
11445	    abort ();
11446	  break;
11447
11448	case REG_UNUSED:
11449	  /* Any clobbers for i3 may still exist, and so we must process
11450	     REG_UNUSED notes from that insn.
11451
11452	     Any clobbers from i2 or i1 can only exist if they were added by
11453	     recog_for_combine.  In that case, recog_for_combine created the
11454	     necessary REG_UNUSED notes.  Trying to keep any original
11455	     REG_UNUSED notes from these insns can cause incorrect output
11456	     if it is for the same register as the original i3 dest.
11457	     In that case, we will notice that the register is set in i3,
11458	     and then add a REG_UNUSED note for the destination of i3, which
11459	     is wrong.  However, it is possible to have REG_UNUSED notes from
11460	     i2 or i1 for register which were both used and clobbered, so
11461	     we keep notes from i2 or i1 if they will turn into REG_DEAD
11462	     notes.  */
11463
11464	  /* If this register is set or clobbered in I3, put the note there
11465	     unless there is one already.  */
11466	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11467	    {
11468	      if (from_insn != i3)
11469		break;
11470
11471	      if (! (GET_CODE (XEXP (note, 0)) == REG
11472		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11473		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11474		place = i3;
11475	    }
11476	  /* Otherwise, if this register is used by I3, then this register
11477	     now dies here, so we must put a REG_DEAD note here unless there
11478	     is one already.  */
11479	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11480		   && ! (GET_CODE (XEXP (note, 0)) == REG
11481			 ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
11482			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11483	    {
11484	      PUT_REG_NOTE_KIND (note, REG_DEAD);
11485	      place = i3;
11486	    }
11487	  break;
11488
11489	case REG_EQUAL:
11490	case REG_EQUIV:
11491	case REG_NONNEG:
11492	case REG_NOALIAS:
11493	  /* These notes say something about results of an insn.  We can
11494	     only support them if they used to be on I3 in which case they
11495	     remain on I3.  Otherwise they are ignored.
11496
11497	     If the note refers to an expression that is not a constant, we
11498	     must also ignore the note since we cannot tell whether the
11499	     equivalence is still true.  It might be possible to do
11500	     slightly better than this (we only have a problem if I2DEST
11501	     or I1DEST is present in the expression), but it doesn't
11502	     seem worth the trouble.  */
11503
11504	  if (from_insn == i3
11505	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11506	    place = i3;
11507	  break;
11508
11509	case REG_INC:
11510	case REG_NO_CONFLICT:
11511	  /* These notes say something about how a register is used.  They must
11512	     be present on any use of the register in I2 or I3.  */
11513	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11514	    place = i3;
11515
11516	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11517	    {
11518	      if (place)
11519		place2 = i2;
11520	      else
11521		place = i2;
11522	    }
11523	  break;
11524
11525	case REG_LABEL:
11526	  /* This can show up in several ways -- either directly in the
11527	     pattern, or hidden off in the constant pool with (or without?)
11528	     a REG_EQUAL note.  */
11529	  /* ??? Ignore the without-reg_equal-note problem for now.  */
11530	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11531	      || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11532		  && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11533		  && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11534	    place = i3;
11535
11536	  if (i2
11537	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11538	          || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11539		      && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11540		      && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11541	    {
11542	      if (place)
11543		place2 = i2;
11544	      else
11545		place = i2;
11546	    }
11547	  break;
11548
11549	case REG_WAS_0:
11550	  /* It is too much trouble to try to see if this note is still
11551	     correct in all situations.  It is better to simply delete it.  */
11552	  break;
11553
11554	case REG_RETVAL:
11555	  /* If the insn previously containing this note still exists,
11556	     put it back where it was.  Otherwise move it to the previous
11557	     insn.  Adjust the corresponding REG_LIBCALL note.  */
11558	  if (GET_CODE (from_insn) != NOTE)
11559	    place = from_insn;
11560	  else
11561	    {
11562	      tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11563	      place = prev_real_insn (from_insn);
11564	      if (tem && place)
11565		XEXP (tem, 0) = place;
11566	    }
11567	  break;
11568
11569	case REG_LIBCALL:
11570	  /* This is handled similarly to REG_RETVAL.  */
11571	  if (GET_CODE (from_insn) != NOTE)
11572	    place = from_insn;
11573	  else
11574	    {
11575	      tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11576	      place = next_real_insn (from_insn);
11577	      if (tem && place)
11578		XEXP (tem, 0) = place;
11579	    }
11580	  break;
11581
11582	case REG_DEAD:
11583	  /* If the register is used as an input in I3, it dies there.
11584	     Similarly for I2, if it is non-zero and adjacent to I3.
11585
11586	     If the register is not used as an input in either I3 or I2
11587	     and it is not one of the registers we were supposed to eliminate,
11588	     there are two possibilities.  We might have a non-adjacent I2
11589	     or we might have somehow eliminated an additional register
11590	     from a computation.  For example, we might have had A & B where
11591	     we discover that B will always be zero.  In this case we will
11592	     eliminate the reference to A.
11593
11594	     In both cases, we must search to see if we can find a previous
11595	     use of A and put the death note there.  */
11596
11597	  if (from_insn
11598	      && GET_CODE (from_insn) == CALL_INSN
11599              && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11600	    place = from_insn;
11601	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11602	    place = i3;
11603	  else if (i2 != 0 && next_nonnote_insn (i2) == i3
11604		   && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11605	    place = i2;
11606
11607	  if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
11608	    break;
11609
11610	  /* If the register is used in both I2 and I3 and it dies in I3,
11611	     we might have added another reference to it.  If reg_n_refs
11612	     was 2, bump it to 3.  This has to be correct since the
11613	     register must have been set somewhere.  The reason this is
11614	     done is because local-alloc.c treats 2 references as a
11615	     special case.  */
11616
11617	  if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
11618	      && REG_N_REFS (REGNO (XEXP (note, 0)))== 2
11619	      && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11620	    REG_N_REFS (REGNO (XEXP (note, 0))) = 3;
11621
11622	  if (place == 0)
11623	    {
11624	      for (tem = prev_nonnote_insn (i3);
11625		   place == 0 && tem
11626		   && (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN);
11627		   tem = prev_nonnote_insn (tem))
11628		{
11629		  /* If the register is being set at TEM, see if that is all
11630		     TEM is doing.  If so, delete TEM.  Otherwise, make this
11631		     into a REG_UNUSED note instead.  */
11632		  if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
11633		    {
11634		      rtx set = single_set (tem);
11635		      rtx inner_dest = 0;
11636#ifdef HAVE_cc0
11637		      rtx cc0_setter = NULL_RTX;
11638#endif
11639
11640		      if (set != 0)
11641			for (inner_dest = SET_DEST (set);
11642			     GET_CODE (inner_dest) == STRICT_LOW_PART
11643			     || GET_CODE (inner_dest) == SUBREG
11644			     || GET_CODE (inner_dest) == ZERO_EXTRACT;
11645			     inner_dest = XEXP (inner_dest, 0))
11646			  ;
11647
11648		      /* Verify that it was the set, and not a clobber that
11649			 modified the register.
11650
11651			 CC0 targets must be careful to maintain setter/user
11652			 pairs.  If we cannot delete the setter due to side
11653			 effects, mark the user with an UNUSED note instead
11654			 of deleting it.  */
11655
11656		      if (set != 0 && ! side_effects_p (SET_SRC (set))
11657			  && rtx_equal_p (XEXP (note, 0), inner_dest)
11658#ifdef HAVE_cc0
11659			  && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
11660			      || ((cc0_setter = prev_cc0_setter (tem)) != NULL
11661				  && sets_cc0_p (PATTERN (cc0_setter)) > 0))
11662#endif
11663			  )
11664			{
11665			  /* Move the notes and links of TEM elsewhere.
11666			     This might delete other dead insns recursively.
11667			     First set the pattern to something that won't use
11668			     any register.  */
11669
11670			  PATTERN (tem) = pc_rtx;
11671
11672			  distribute_notes (REG_NOTES (tem), tem, tem,
11673					    NULL_RTX, NULL_RTX, NULL_RTX);
11674			  distribute_links (LOG_LINKS (tem));
11675
11676			  PUT_CODE (tem, NOTE);
11677			  NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
11678			  NOTE_SOURCE_FILE (tem) = 0;
11679
11680#ifdef HAVE_cc0
11681			  /* Delete the setter too.  */
11682			  if (cc0_setter)
11683			    {
11684			      PATTERN (cc0_setter) = pc_rtx;
11685
11686			      distribute_notes (REG_NOTES (cc0_setter),
11687						cc0_setter, cc0_setter,
11688						NULL_RTX, NULL_RTX, NULL_RTX);
11689			      distribute_links (LOG_LINKS (cc0_setter));
11690
11691			      PUT_CODE (cc0_setter, NOTE);
11692			      NOTE_LINE_NUMBER (cc0_setter) = NOTE_INSN_DELETED;
11693			      NOTE_SOURCE_FILE (cc0_setter) = 0;
11694			    }
11695#endif
11696			}
11697		      /* If the register is both set and used here, put the
11698			 REG_DEAD note here, but place a REG_UNUSED note
11699			 here too unless there already is one.  */
11700		      else if (reg_referenced_p (XEXP (note, 0),
11701						 PATTERN (tem)))
11702			{
11703			  place = tem;
11704
11705			  if (! find_regno_note (tem, REG_UNUSED,
11706						 REGNO (XEXP (note, 0))))
11707			    REG_NOTES (tem)
11708			      = gen_rtx_EXPR_LIST (REG_UNUSED,
11709						   XEXP (note, 0),
11710						   REG_NOTES (tem));
11711			}
11712		      else
11713			{
11714			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
11715
11716			  /*  If there isn't already a REG_UNUSED note, put one
11717			      here.  */
11718			  if (! find_regno_note (tem, REG_UNUSED,
11719						 REGNO (XEXP (note, 0))))
11720			    place = tem;
11721			  break;
11722		      }
11723		  }
11724		else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
11725			 || (GET_CODE (tem) == CALL_INSN
11726			     && find_reg_fusage (tem, USE, XEXP (note, 0))))
11727		  {
11728		    place = tem;
11729
11730		    /* If we are doing a 3->2 combination, and we have a
11731		       register which formerly died in i3 and was not used
11732		       by i2, which now no longer dies in i3 and is used in
11733		       i2 but does not die in i2, and place is between i2
11734		       and i3, then we may need to move a link from place to
11735		       i2.  */
11736		    if (i2 && INSN_UID (place) <= max_uid_cuid
11737			&& INSN_CUID (place) > INSN_CUID (i2)
11738			&& from_insn && INSN_CUID (from_insn) > INSN_CUID (i2)
11739			&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11740		      {
11741			rtx links = LOG_LINKS (place);
11742			LOG_LINKS (place) = 0;
11743			distribute_links (links);
11744		      }
11745		    break;
11746		  }
11747		}
11748
11749	      /* If we haven't found an insn for the death note and it
11750		 is still a REG_DEAD note, but we have hit a CODE_LABEL,
11751		 insert a USE insn for the register at that label and
11752		 put the death node there.  This prevents problems with
11753		 call-state tracking in caller-save.c.  */
11754	      if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0)
11755		{
11756		  place
11757		    = emit_insn_after (gen_rtx_USE (VOIDmode, XEXP (note, 0)),
11758				       tem);
11759
11760		  /* If this insn was emitted between blocks, then update
11761		     BLOCK_HEAD of the current block to include it.  */
11762		  if (BLOCK_END (this_basic_block - 1) == tem)
11763		    BLOCK_HEAD (this_basic_block) = place;
11764		}
11765	    }
11766
11767	  /* If the register is set or already dead at PLACE, we needn't do
11768	     anything with this note if it is still a REG_DEAD note.
11769	     We can here if it is set at all, not if is it totally replace,
11770	     which is what `dead_or_set_p' checks, so also check for it being
11771	     set partially.  */
11772
11773
11774	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
11775	    {
11776	      int regno = REGNO (XEXP (note, 0));
11777
11778	      if (dead_or_set_p (place, XEXP (note, 0))
11779		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
11780		{
11781		  /* Unless the register previously died in PLACE, clear
11782		     reg_last_death.  [I no longer understand why this is
11783		     being done.] */
11784		  if (reg_last_death[regno] != place)
11785		    reg_last_death[regno] = 0;
11786		  place = 0;
11787		}
11788	      else
11789		reg_last_death[regno] = place;
11790
11791	      /* If this is a death note for a hard reg that is occupying
11792		 multiple registers, ensure that we are still using all
11793		 parts of the object.  If we find a piece of the object
11794		 that is unused, we must add a USE for that piece before
11795		 PLACE and put the appropriate REG_DEAD note on it.
11796
11797		 An alternative would be to put a REG_UNUSED for the pieces
11798		 on the insn that set the register, but that can't be done if
11799		 it is not in the same block.  It is simpler, though less
11800		 efficient, to add the USE insns.  */
11801
11802	      if (place && regno < FIRST_PSEUDO_REGISTER
11803		  && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
11804		{
11805		  int endregno
11806		    = regno + HARD_REGNO_NREGS (regno,
11807						GET_MODE (XEXP (note, 0)));
11808		  int all_used = 1;
11809		  int i;
11810
11811		  for (i = regno; i < endregno; i++)
11812		    if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
11813			&& ! find_regno_fusage (place, USE, i))
11814		      {
11815			rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
11816			rtx p;
11817
11818			/* See if we already placed a USE note for this
11819			   register in front of PLACE.  */
11820			for (p = place;
11821			     GET_CODE (PREV_INSN (p)) == INSN
11822			     && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
11823			     p = PREV_INSN (p))
11824			  if (rtx_equal_p (piece,
11825					   XEXP (PATTERN (PREV_INSN (p)), 0)))
11826			    {
11827			      p = 0;
11828			      break;
11829			    }
11830
11831			if (p)
11832			  {
11833			    rtx use_insn
11834			      = emit_insn_before (gen_rtx_USE (VOIDmode,
11835							       piece),
11836						  p);
11837			    REG_NOTES (use_insn)
11838			      = gen_rtx_EXPR_LIST (REG_DEAD, piece,
11839						   REG_NOTES (use_insn));
11840			  }
11841
11842			all_used = 0;
11843		      }
11844
11845		  /* Check for the case where the register dying partially
11846		     overlaps the register set by this insn.  */
11847		  if (all_used)
11848		    for (i = regno; i < endregno; i++)
11849		      if (dead_or_set_regno_p (place, i))
11850			  {
11851			    all_used = 0;
11852			    break;
11853			  }
11854
11855		  if (! all_used)
11856		    {
11857		      /* Put only REG_DEAD notes for pieces that are
11858			 still used and that are not already dead or set.  */
11859
11860		      for (i = regno; i < endregno; i++)
11861			{
11862			  rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
11863
11864			  if ((reg_referenced_p (piece, PATTERN (place))
11865			       || (GET_CODE (place) == CALL_INSN
11866				   && find_reg_fusage (place, USE, piece)))
11867			      && ! dead_or_set_p (place, piece)
11868			      && ! reg_bitfield_target_p (piece,
11869							  PATTERN (place)))
11870			    REG_NOTES (place)
11871			      = gen_rtx_EXPR_LIST (REG_DEAD,
11872						   piece, REG_NOTES (place));
11873			}
11874
11875		      place = 0;
11876		    }
11877		}
11878	    }
11879	  break;
11880
11881	default:
11882	  /* Any other notes should not be present at this point in the
11883	     compilation.  */
11884	  abort ();
11885	}
11886
11887      if (place)
11888	{
11889	  XEXP (note, 1) = REG_NOTES (place);
11890	  REG_NOTES (place) = note;
11891	}
11892      else if ((REG_NOTE_KIND (note) == REG_DEAD
11893		|| REG_NOTE_KIND (note) == REG_UNUSED)
11894	       && GET_CODE (XEXP (note, 0)) == REG)
11895	REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
11896
11897      if (place2)
11898	{
11899	  if ((REG_NOTE_KIND (note) == REG_DEAD
11900	       || REG_NOTE_KIND (note) == REG_UNUSED)
11901	      && GET_CODE (XEXP (note, 0)) == REG)
11902	    REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
11903
11904	  REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
11905					       REG_NOTE_KIND (note),
11906					       XEXP (note, 0),
11907					       REG_NOTES (place2));
11908	}
11909    }
11910}
11911
11912/* Similarly to above, distribute the LOG_LINKS that used to be present on
11913   I3, I2, and I1 to new locations.  This is also called in one case to
11914   add a link pointing at I3 when I3's destination is changed.  */
11915
11916static void
11917distribute_links (links)
11918     rtx links;
11919{
11920  rtx link, next_link;
11921
11922  for (link = links; link; link = next_link)
11923    {
11924      rtx place = 0;
11925      rtx insn;
11926      rtx set, reg;
11927
11928      next_link = XEXP (link, 1);
11929
11930      /* If the insn that this link points to is a NOTE or isn't a single
11931	 set, ignore it.  In the latter case, it isn't clear what we
11932	 can do other than ignore the link, since we can't tell which
11933	 register it was for.  Such links wouldn't be used by combine
11934	 anyway.
11935
11936	 It is not possible for the destination of the target of the link to
11937	 have been changed by combine.  The only potential of this is if we
11938	 replace I3, I2, and I1 by I3 and I2.  But in that case the
11939	 destination of I2 also remains unchanged.  */
11940
11941      if (GET_CODE (XEXP (link, 0)) == NOTE
11942	  || (set = single_set (XEXP (link, 0))) == 0)
11943	continue;
11944
11945      reg = SET_DEST (set);
11946      while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
11947	     || GET_CODE (reg) == SIGN_EXTRACT
11948	     || GET_CODE (reg) == STRICT_LOW_PART)
11949	reg = XEXP (reg, 0);
11950
11951      /* A LOG_LINK is defined as being placed on the first insn that uses
11952	 a register and points to the insn that sets the register.  Start
11953	 searching at the next insn after the target of the link and stop
11954	 when we reach a set of the register or the end of the basic block.
11955
11956	 Note that this correctly handles the link that used to point from
11957	 I3 to I2.  Also note that not much searching is typically done here
11958	 since most links don't point very far away.  */
11959
11960      for (insn = NEXT_INSN (XEXP (link, 0));
11961	   (insn && (this_basic_block == n_basic_blocks - 1
11962		     || BLOCK_HEAD (this_basic_block + 1) != insn));
11963	   insn = NEXT_INSN (insn))
11964	if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
11965	    && reg_overlap_mentioned_p (reg, PATTERN (insn)))
11966	  {
11967	    if (reg_referenced_p (reg, PATTERN (insn)))
11968	      place = insn;
11969	    break;
11970	  }
11971	else if (GET_CODE (insn) == CALL_INSN
11972	      && find_reg_fusage (insn, USE, reg))
11973	  {
11974	    place = insn;
11975	    break;
11976	  }
11977
11978      /* If we found a place to put the link, place it there unless there
11979	 is already a link to the same insn as LINK at that point.  */
11980
11981      if (place)
11982	{
11983	  rtx link2;
11984
11985	  for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
11986	    if (XEXP (link2, 0) == XEXP (link, 0))
11987	      break;
11988
11989	  if (link2 == 0)
11990	    {
11991	      XEXP (link, 1) = LOG_LINKS (place);
11992	      LOG_LINKS (place) = link;
11993
11994	      /* Set added_links_insn to the earliest insn we added a
11995		 link to.  */
11996	      if (added_links_insn == 0
11997		  || INSN_CUID (added_links_insn) > INSN_CUID (place))
11998		added_links_insn = place;
11999	    }
12000	}
12001    }
12002}
12003
12004/* Compute INSN_CUID for INSN, which is an insn made by combine.  */
12005
12006static int
12007insn_cuid (insn)
12008     rtx insn;
12009{
12010  while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12011	 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12012    insn = NEXT_INSN (insn);
12013
12014  if (INSN_UID (insn) > max_uid_cuid)
12015    abort ();
12016
12017  return INSN_CUID (insn);
12018}
12019
12020void
12021dump_combine_stats (file)
12022     FILE *file;
12023{
12024  fnotice
12025    (file,
12026     ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12027     combine_attempts, combine_merges, combine_extras, combine_successes);
12028}
12029
12030void
12031dump_combine_total_stats (file)
12032     FILE *file;
12033{
12034  fnotice
12035    (file,
12036     "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12037     total_attempts, total_merges, total_extras, total_successes);
12038}
12039