1/* Extended regular expression matching and search library, version
2   0.12.  (Implements POSIX draft P10003.2/D11.2, except for
3   internationalization features.)
4
5   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2, or (at your option)
10   any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20   USA.	 */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24  #pragma alloca
25#endif
26
27#undef	_GNU_SOURCE
28#define _GNU_SOURCE
29
30#ifdef emacs
31/* Converts the pointer to the char to BEG-based offset from the start.	 */
32#define PTR_TO_OFFSET(d)						\
33	POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING			\
34			  ? (d) - string1 : (d) - (string2 - size1))
35#define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
36#else
37#define PTR_TO_OFFSET(d) 0
38#endif
39
40#ifdef HAVE_CONFIG_H
41#include <config.h>
42#endif
43
44/* We need this for `regex.h', and perhaps for the Emacs include files.	 */
45#include <sys/types.h>
46
47/* This is for other GNU distributions with internationalized messages.	 */
48#if HAVE_LIBINTL_H || defined (_LIBC)
49# include <libintl.h>
50#else
51# define gettext(msgid) (msgid)
52#endif
53
54#ifndef gettext_noop
55/* This define is so xgettext can find the internationalizable
56   strings.  */
57#define gettext_noop(String) String
58#endif
59
60/* The `emacs' switch turns on certain matching commands
61   that make sense only in Emacs. */
62#ifdef emacs
63
64#include "lisp.h"
65#include "buffer.h"
66
67/* Make syntax table lookup grant data in gl_state.  */
68#define SYNTAX_ENTRY_VIA_PROPERTY
69
70#include "syntax.h"
71#include "charset.h"
72#include "category.h"
73
74#define malloc xmalloc
75#define realloc xrealloc
76#define free xfree
77
78#else  /* not emacs */
79
80/* If we are not linking with Emacs proper,
81   we can't use the relocating allocator
82   even if config.h says that we can.  */
83#undef REL_ALLOC
84
85#if defined (STDC_HEADERS) || defined (_LIBC)
86#include <stdlib.h>
87#else
88char *malloc ();
89char *realloc ();
90#endif
91
92/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
93   If nothing else has been done, use the method below.	 */
94#ifdef INHIBIT_STRING_HEADER
95#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
96#if !defined (bzero) && !defined (bcopy)
97#undef INHIBIT_STRING_HEADER
98#endif
99#endif
100#endif
101
102/* This is the normal way of making sure we have a bcopy and a bzero.
103   This is used in most programs--a few other programs avoid this
104   by defining INHIBIT_STRING_HEADER.  */
105#ifndef INHIBIT_STRING_HEADER
106#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
107#include <string.h>
108#ifndef bcmp
109#define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
110#endif
111#ifndef bcopy
112#define bcopy(s, d, n)	memcpy ((d), (s), (n))
113#endif
114#ifndef bzero
115#define bzero(s, n)	memset ((s), 0, (n))
116#endif
117#else
118#include <strings.h>
119#endif
120#endif
121
122/* Define the syntax stuff for \<, \>, etc.  */
123
124/* This must be nonzero for the wordchar and notwordchar pattern
125   commands in re_match_2.  */
126#ifndef Sword
127#define Sword 1
128#endif
129
130#ifdef SWITCH_ENUM_BUG
131#define SWITCH_ENUM_CAST(x) ((int)(x))
132#else
133#define SWITCH_ENUM_CAST(x) (x)
134#endif
135
136#ifdef SYNTAX_TABLE
137
138extern char *re_syntax_table;
139
140#else /* not SYNTAX_TABLE */
141
142/* How many characters in the character set.  */
143#define CHAR_SET_SIZE 256
144
145static char re_syntax_table[CHAR_SET_SIZE];
146
147static void
148init_syntax_once ()
149{
150   register int c;
151   static int done = 0;
152
153   if (done)
154     return;
155
156   bzero (re_syntax_table, sizeof re_syntax_table);
157
158   for (c = 'a'; c <= 'z'; c++)
159     re_syntax_table[c] = Sword;
160
161   for (c = 'A'; c <= 'Z'; c++)
162     re_syntax_table[c] = Sword;
163
164   for (c = '0'; c <= '9'; c++)
165     re_syntax_table[c] = Sword;
166
167   re_syntax_table['_'] = Sword;
168
169   done = 1;
170}
171
172#endif /* not SYNTAX_TABLE */
173
174#define SYNTAX(c) re_syntax_table[c]
175
176/* Dummy macros for non-Emacs environments.  */
177#define BASE_LEADING_CODE_P(c) (0)
178#define WORD_BOUNDARY_P(c1, c2) (0)
179#define CHAR_HEAD_P(p) (1)
180#define SINGLE_BYTE_CHAR_P(c) (1)
181#define SAME_CHARSET_P(c1, c2) (1)
182#define MULTIBYTE_FORM_LENGTH(p, s) (1)
183#define STRING_CHAR(p, s) (*(p))
184#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
185#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
186  (c = ((p) == (end1) ? *(str2) : *(p)))
187#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
188  (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
189#endif /* not emacs */
190
191/* Get the interface, including the syntax bits.  */
192#include "regex.h"
193
194/* isalpha etc. are used for the character classes.  */
195#include <ctype.h>
196
197/* Jim Meyering writes:
198
199   "... Some ctype macros are valid only for character codes that
200   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
201   using /bin/cc or gcc but without giving an ansi option).  So, all
202   ctype uses should be through macros like ISPRINT...	If
203   STDC_HEADERS is defined, then autoconf has verified that the ctype
204   macros don't need to be guarded with references to isascii. ...
205   Defining isascii to 1 should let any compiler worth its salt
206   eliminate the && through constant folding."	*/
207
208#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
209#define ISASCII(c) 1
210#else
211#define ISASCII(c) isascii(c)
212#endif
213
214#ifdef isblank
215#define ISBLANK(c) (ISASCII (c) && isblank (c))
216#else
217#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
218#endif
219#ifdef isgraph
220#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
221#else
222#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
223#endif
224
225#define ISPRINT(c) (ISASCII (c) && isprint (c))
226#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
227#define ISALNUM(c) (ISASCII (c) && isalnum (c))
228#define ISALPHA(c) (ISASCII (c) && isalpha (c))
229#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
230#define ISLOWER(c) (ISASCII (c) && islower (c))
231#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
232#define ISSPACE(c) (ISASCII (c) && isspace (c))
233#define ISUPPER(c) (ISASCII (c) && isupper (c))
234#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
235
236#ifndef NULL
237#define NULL (void *)0
238#endif
239
240/* We remove any previous definition of `SIGN_EXTEND_CHAR',
241   since ours (we hope) works properly with all combinations of
242   machines, compilers, `char' and `unsigned char' argument types.
243   (Per Bothner suggested the basic approach.)	*/
244#undef SIGN_EXTEND_CHAR
245#if __STDC__
246#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
247#else  /* not __STDC__ */
248/* As in Harbison and Steele.  */
249#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
250#endif
251
252/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
253   use `alloca' instead of `malloc'.  This is because using malloc in
254   re_search* or re_match* could cause memory leaks when C-g is used in
255   Emacs; also, malloc is slower and causes storage fragmentation.  On
256   the other hand, malloc is more portable, and easier to debug.
257
258   Because we sometimes use alloca, some routines have to be macros,
259   not functions -- `alloca'-allocated space disappears at the end of the
260   function it is called in.  */
261
262#ifdef REGEX_MALLOC
263
264#define REGEX_ALLOCATE malloc
265#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
266#define REGEX_FREE free
267
268#else /* not REGEX_MALLOC  */
269
270/* Emacs already defines alloca, sometimes.  */
271#ifndef alloca
272
273/* Make alloca work the best possible way.  */
274#ifdef __GNUC__
275#define alloca __builtin_alloca
276#else /* not __GNUC__ */
277#if HAVE_ALLOCA_H
278#include <alloca.h>
279#else /* not __GNUC__ or HAVE_ALLOCA_H */
280#if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
281#ifndef _AIX /* Already did AIX, up at the top.	 */
282char *alloca ();
283#endif /* not _AIX */
284#endif
285#endif /* not HAVE_ALLOCA_H */
286#endif /* not __GNUC__ */
287
288#endif /* not alloca */
289
290#define REGEX_ALLOCATE alloca
291
292/* Assumes a `char *destination' variable.  */
293#define REGEX_REALLOCATE(source, osize, nsize)				\
294  (destination = (char *) alloca (nsize),				\
295   bcopy (source, destination, osize),					\
296   destination)
297
298/* No need to do anything to free, after alloca.  */
299#define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
300
301#endif /* not REGEX_MALLOC */
302
303/* Define how to allocate the failure stack.  */
304
305#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
306
307#define REGEX_ALLOCATE_STACK(size)				\
308  r_alloc (&failure_stack_ptr, (size))
309#define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
310  r_re_alloc (&failure_stack_ptr, (nsize))
311#define REGEX_FREE_STACK(ptr)					\
312  r_alloc_free (&failure_stack_ptr)
313
314#else /* not using relocating allocator */
315
316#ifdef REGEX_MALLOC
317
318#define REGEX_ALLOCATE_STACK malloc
319#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
320#define REGEX_FREE_STACK free
321
322#else /* not REGEX_MALLOC */
323
324#define REGEX_ALLOCATE_STACK alloca
325
326#define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
327   REGEX_REALLOCATE (source, osize, nsize)
328/* No need to explicitly free anything.	 */
329#define REGEX_FREE_STACK(arg)
330
331#endif /* not REGEX_MALLOC */
332#endif /* not using relocating allocator */
333
334
335/* True if `size1' is non-NULL and PTR is pointing anywhere inside
336   `string1' or just past its end.  This works if PTR is NULL, which is
337   a good thing.  */
338#define FIRST_STRING_P(ptr)					\
339  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
340
341/* (Re)Allocate N items of type T using malloc, or fail.  */
342#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
343#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
344#define RETALLOC_IF(addr, n, t) \
345  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
346#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
347
348#define BYTEWIDTH 8 /* In bits.	 */
349
350#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
351
352#undef MAX
353#undef MIN
354#define MAX(a, b) ((a) > (b) ? (a) : (b))
355#define MIN(a, b) ((a) < (b) ? (a) : (b))
356
357typedef char boolean;
358#define false 0
359#define true 1
360
361static int re_match_2_internal ();
362
363/* These are the command codes that appear in compiled regular
364   expressions.	 Some opcodes are followed by argument bytes.  A
365   command code can specify any interpretation whatsoever for its
366   arguments.  Zero bytes may appear in the compiled regular expression.  */
367
368typedef enum
369{
370  no_op = 0,
371
372  /* Succeed right away--no more backtracking.	*/
373  succeed,
374
375	/* Followed by one byte giving n, then by n literal bytes.  */
376  exactn,
377
378	/* Matches any (more or less) character.  */
379  anychar,
380
381	/* Matches any one char belonging to specified set.  First
382	   following byte is number of bitmap bytes.  Then come bytes
383	   for a bitmap saying which chars are in.  Bits in each byte
384	   are ordered low-bit-first.  A character is in the set if its
385	   bit is 1.  A character too large to have a bit in the map is
386	   automatically not in the set.  */
387  charset,
388
389	/* Same parameters as charset, but match any character that is
390	   not one of those specified.	*/
391  charset_not,
392
393	/* Start remembering the text that is matched, for storing in a
394	   register.  Followed by one byte with the register number, in
395	   the range 0 to one less than the pattern buffer's re_nsub
396	   field.  Then followed by one byte with the number of groups
397	   inner to this one.  (This last has to be part of the
398	   start_memory only because we need it in the on_failure_jump
399	   of re_match_2.)  */
400  start_memory,
401
402	/* Stop remembering the text that is matched and store it in a
403	   memory register.  Followed by one byte with the register
404	   number, in the range 0 to one less than `re_nsub' in the
405	   pattern buffer, and one byte with the number of inner groups,
406	   just like `start_memory'.  (We need the number of inner
407	   groups here because we don't have any easy way of finding the
408	   corresponding start_memory when we're at a stop_memory.)  */
409  stop_memory,
410
411	/* Match a duplicate of something remembered. Followed by one
412	   byte containing the register number.	 */
413  duplicate,
414
415	/* Fail unless at beginning of line.  */
416  begline,
417
418	/* Fail unless at end of line.	*/
419  endline,
420
421	/* Succeeds if at beginning of buffer (if emacs) or at beginning
422	   of string to be matched (if not).  */
423  begbuf,
424
425	/* Analogously, for end of buffer/string.  */
426  endbuf,
427
428	/* Followed by two byte relative address to which to jump.  */
429  jump,
430
431	/* Same as jump, but marks the end of an alternative.  */
432  jump_past_alt,
433
434	/* Followed by two-byte relative address of place to resume at
435	   in case of failure.	*/
436  on_failure_jump,
437
438	/* Like on_failure_jump, but pushes a placeholder instead of the
439	   current string position when executed.  */
440  on_failure_keep_string_jump,
441
442	/* Throw away latest failure point and then jump to following
443	   two-byte relative address.  */
444  pop_failure_jump,
445
446	/* Change to pop_failure_jump if know won't have to backtrack to
447	   match; otherwise change to jump.  This is used to jump
448	   back to the beginning of a repeat.  If what follows this jump
449	   clearly won't match what the repeat does, such that we can be
450	   sure that there is no use backtracking out of repetitions
451	   already matched, then we change it to a pop_failure_jump.
452	   Followed by two-byte address.  */
453  maybe_pop_jump,
454
455	/* Jump to following two-byte address, and push a dummy failure
456	   point. This failure point will be thrown away if an attempt
457	   is made to use it for a failure.  A `+' construct makes this
458	   before the first repeat.  Also used as an intermediary kind
459	   of jump when compiling an alternative.  */
460  dummy_failure_jump,
461
462	/* Push a dummy failure point and continue.  Used at the end of
463	   alternatives.  */
464  push_dummy_failure,
465
466	/* Followed by two-byte relative address and two-byte number n.
467	   After matching N times, jump to the address upon failure.  */
468  succeed_n,
469
470	/* Followed by two-byte relative address, and two-byte number n.
471	   Jump to the address N times, then fail.  */
472  jump_n,
473
474	/* Set the following two-byte relative address to the
475	   subsequent two-byte number.	The address *includes* the two
476	   bytes of number.  */
477  set_number_at,
478
479  wordchar,	/* Matches any word-constituent character.  */
480  notwordchar,	/* Matches any char that is not a word-constituent.  */
481
482  wordbeg,	/* Succeeds if at word beginning.  */
483  wordend,	/* Succeeds if at word end.  */
484
485  wordbound,	/* Succeeds if at a word boundary.  */
486  notwordbound	/* Succeeds if not at a word boundary.	*/
487
488#ifdef emacs
489  ,before_dot,	/* Succeeds if before point.  */
490  at_dot,	/* Succeeds if at point.  */
491  after_dot,	/* Succeeds if after point.  */
492
493	/* Matches any character whose syntax is specified.  Followed by
494	   a byte which contains a syntax code, e.g., Sword.  */
495  syntaxspec,
496
497	/* Matches any character whose syntax is not that specified.  */
498  notsyntaxspec,
499
500  /* Matches any character whose category-set contains the specified
501     category.	The operator is followed by a byte which contains a
502     category code (mnemonic ASCII character).	*/
503  categoryspec,
504
505  /* Matches any character whose category-set does not contain the
506     specified category.  The operator is followed by a byte which
507     contains the category code (mnemonic ASCII character).  */
508  notcategoryspec
509#endif /* emacs */
510} re_opcode_t;
511
512/* Common operations on the compiled pattern.  */
513
514/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
515
516#define STORE_NUMBER(destination, number)				\
517  do {									\
518    (destination)[0] = (number) & 0377;					\
519    (destination)[1] = (number) >> 8;					\
520  } while (0)
521
522/* Same as STORE_NUMBER, except increment DESTINATION to
523   the byte after where the number is stored.  Therefore, DESTINATION
524   must be an lvalue.  */
525
526#define STORE_NUMBER_AND_INCR(destination, number)			\
527  do {									\
528    STORE_NUMBER (destination, number);					\
529    (destination) += 2;							\
530  } while (0)
531
532/* Put into DESTINATION a number stored in two contiguous bytes starting
533   at SOURCE.  */
534
535#define EXTRACT_NUMBER(destination, source)				\
536  do {									\
537    (destination) = *(source) & 0377;					\
538    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
539  } while (0)
540
541#ifdef DEBUG
542static void
543extract_number (dest, source)
544    int *dest;
545    unsigned char *source;
546{
547  int temp = SIGN_EXTEND_CHAR (*(source + 1));
548  *dest = *source & 0377;
549  *dest += temp << 8;
550}
551
552#ifndef EXTRACT_MACROS /* To debug the macros.	*/
553#undef EXTRACT_NUMBER
554#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
555#endif /* not EXTRACT_MACROS */
556
557#endif /* DEBUG */
558
559/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
560   SOURCE must be an lvalue.  */
561
562#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
563  do {									\
564    EXTRACT_NUMBER (destination, source);				\
565    (source) += 2;							\
566  } while (0)
567
568#ifdef DEBUG
569static void
570extract_number_and_incr (destination, source)
571    int *destination;
572    unsigned char **source;
573{
574  extract_number (destination, *source);
575  *source += 2;
576}
577
578#ifndef EXTRACT_MACROS
579#undef EXTRACT_NUMBER_AND_INCR
580#define EXTRACT_NUMBER_AND_INCR(dest, src) \
581  extract_number_and_incr (&dest, &src)
582#endif /* not EXTRACT_MACROS */
583
584#endif /* DEBUG */
585
586/* Store a multibyte character in three contiguous bytes starting
587   DESTINATION, and increment DESTINATION to the byte after where the
588   character is stored.	 Therefore, DESTINATION must be an lvalue.  */
589
590#define STORE_CHARACTER_AND_INCR(destination, character)	\
591  do {								\
592    (destination)[0] = (character) & 0377;			\
593    (destination)[1] = ((character) >> 8) & 0377;		\
594    (destination)[2] = (character) >> 16;			\
595    (destination) += 3;						\
596  } while (0)
597
598/* Put into DESTINATION a character stored in three contiguous bytes
599   starting at SOURCE.	*/
600
601#define EXTRACT_CHARACTER(destination, source)	\
602  do {						\
603    (destination) = ((source)[0]		\
604		     | ((source)[1] << 8)	\
605		     | ((source)[2] << 16));	\
606  } while (0)
607
608
609/* Macros for charset. */
610
611/* Size of bitmap of charset P in bytes.  P is a start of charset,
612   i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not.  */
613#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
614
615/* Nonzero if charset P has range table.  */
616#define CHARSET_RANGE_TABLE_EXISTS_P(p)	 ((p)[1] & 0x80)
617
618/* Return the address of range table of charset P.  But not the start
619   of table itself, but the before where the number of ranges is
620   stored.  `2 +' means to skip re_opcode_t and size of bitmap.	 */
621#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
622
623/* Test if C is listed in the bitmap of charset P.  */
624#define CHARSET_LOOKUP_BITMAP(p, c)				\
625  ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH			\
626   && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
627
628/* Return the address of end of RANGE_TABLE.  COUNT is number of
629   ranges (which is a pair of (start, end)) in the RANGE_TABLE.	 `* 2'
630   is start of range and end of range.	`* 3' is size of each start
631   and end.  */
632#define CHARSET_RANGE_TABLE_END(range_table, count)	\
633  ((range_table) + (count) * 2 * 3)
634
635/* Test if C is in RANGE_TABLE.	 A flag NOT is negated if C is in.
636   COUNT is number of ranges in RANGE_TABLE.  */
637#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count)	\
638  do									\
639    {									\
640      int range_start, range_end;					\
641      unsigned char *p;							\
642      unsigned char *range_table_end					\
643	= CHARSET_RANGE_TABLE_END ((range_table), (count));		\
644									\
645      for (p = (range_table); p < range_table_end; p += 2 * 3)		\
646	{								\
647	  EXTRACT_CHARACTER (range_start, p);				\
648	  EXTRACT_CHARACTER (range_end, p + 3);				\
649									\
650	  if (range_start <= (c) && (c) <= range_end)			\
651	    {								\
652	      (not) = !(not);						\
653	      break;							\
654	    }								\
655	}								\
656    }									\
657  while (0)
658
659/* Test if C is in range table of CHARSET.  The flag NOT is negated if
660   C is listed in it.  */
661#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset)			\
662  do									\
663    {									\
664      /* Number of ranges in range table. */				\
665      int count;							\
666      unsigned char *range_table = CHARSET_RANGE_TABLE (charset);	\
667									\
668      EXTRACT_NUMBER_AND_INCR (count, range_table);			\
669      CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count);	\
670    }									\
671  while (0)
672
673/* If DEBUG is defined, Regex prints many voluminous messages about what
674   it is doing (if the variable `debug' is nonzero).  If linked with the
675   main program in `iregex.c', you can enter patterns and strings
676   interactively.  And if linked with the main program in `main.c' and
677   the other test files, you can run the already-written tests.	 */
678
679#ifdef DEBUG
680
681/* We use standard I/O for debugging.  */
682#include <stdio.h>
683
684/* It is useful to test things that ``must'' be true when debugging.  */
685#include <assert.h>
686
687static int debug = 0;
688
689#define DEBUG_STATEMENT(e) e
690#define DEBUG_PRINT1(x) if (debug) printf (x)
691#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
692#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
693#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
694#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)				\
695  if (debug) print_partial_compiled_pattern (s, e)
696#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
697  if (debug) print_double_string (w, s1, sz1, s2, sz2)
698
699
700/* Print the fastmap in human-readable form.  */
701
702void
703print_fastmap (fastmap)
704    char *fastmap;
705{
706  unsigned was_a_range = 0;
707  unsigned i = 0;
708
709  while (i < (1 << BYTEWIDTH))
710    {
711      if (fastmap[i++])
712	{
713	  was_a_range = 0;
714	  putchar (i - 1);
715	  while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
716	    {
717	      was_a_range = 1;
718	      i++;
719	    }
720	  if (was_a_range)
721	    {
722	      printf ("-");
723	      putchar (i - 1);
724	    }
725	}
726    }
727  putchar ('\n');
728}
729
730
731/* Print a compiled pattern string in human-readable form, starting at
732   the START pointer into it and ending just before the pointer END.  */
733
734void
735print_partial_compiled_pattern (start, end)
736    unsigned char *start;
737    unsigned char *end;
738{
739  int mcnt, mcnt2;
740  unsigned char *p = start;
741  unsigned char *pend = end;
742
743  if (start == NULL)
744    {
745      printf ("(null)\n");
746      return;
747    }
748
749  /* Loop over pattern commands.  */
750  while (p < pend)
751    {
752      printf ("%d:\t", p - start);
753
754      switch ((re_opcode_t) *p++)
755	{
756	case no_op:
757	  printf ("/no_op");
758	  break;
759
760	case exactn:
761	  mcnt = *p++;
762	  printf ("/exactn/%d", mcnt);
763	  do
764	    {
765	      putchar ('/');
766	      putchar (*p++);
767	    }
768	  while (--mcnt);
769	  break;
770
771	case start_memory:
772	  mcnt = *p++;
773	  printf ("/start_memory/%d/%d", mcnt, *p++);
774	  break;
775
776	case stop_memory:
777	  mcnt = *p++;
778	  printf ("/stop_memory/%d/%d", mcnt, *p++);
779	  break;
780
781	case duplicate:
782	  printf ("/duplicate/%d", *p++);
783	  break;
784
785	case anychar:
786	  printf ("/anychar");
787	  break;
788
789	case charset:
790	case charset_not:
791	  {
792	    register int c, last = -100;
793	    register int in_range = 0;
794
795	    printf ("/charset [%s",
796		    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
797
798	    assert (p + *p < pend);
799
800	    for (c = 0; c < 256; c++)
801	      if (c / 8 < *p
802		  && (p[1 + (c/8)] & (1 << (c % 8))))
803		{
804		  /* Are we starting a range?  */
805		  if (last + 1 == c && ! in_range)
806		    {
807		      putchar ('-');
808		      in_range = 1;
809		    }
810		  /* Have we broken a range?  */
811		  else if (last + 1 != c && in_range)
812	      {
813		      putchar (last);
814		      in_range = 0;
815		    }
816
817		  if (! in_range)
818		    putchar (c);
819
820		  last = c;
821	      }
822
823	    if (in_range)
824	      putchar (last);
825
826	    putchar (']');
827
828	    p += 1 + *p;
829	  }
830	  break;
831
832	case begline:
833	  printf ("/begline");
834	  break;
835
836	case endline:
837	  printf ("/endline");
838	  break;
839
840	case on_failure_jump:
841	  extract_number_and_incr (&mcnt, &p);
842	  printf ("/on_failure_jump to %d", p + mcnt - start);
843	  break;
844
845	case on_failure_keep_string_jump:
846	  extract_number_and_incr (&mcnt, &p);
847	  printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
848	  break;
849
850	case dummy_failure_jump:
851	  extract_number_and_incr (&mcnt, &p);
852	  printf ("/dummy_failure_jump to %d", p + mcnt - start);
853	  break;
854
855	case push_dummy_failure:
856	  printf ("/push_dummy_failure");
857	  break;
858
859	case maybe_pop_jump:
860	  extract_number_and_incr (&mcnt, &p);
861	  printf ("/maybe_pop_jump to %d", p + mcnt - start);
862	  break;
863
864	case pop_failure_jump:
865	  extract_number_and_incr (&mcnt, &p);
866	  printf ("/pop_failure_jump to %d", p + mcnt - start);
867	  break;
868
869	case jump_past_alt:
870	  extract_number_and_incr (&mcnt, &p);
871	  printf ("/jump_past_alt to %d", p + mcnt - start);
872	  break;
873
874	case jump:
875	  extract_number_and_incr (&mcnt, &p);
876	  printf ("/jump to %d", p + mcnt - start);
877	  break;
878
879	case succeed_n:
880	  extract_number_and_incr (&mcnt, &p);
881	  extract_number_and_incr (&mcnt2, &p);
882	  printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
883	  break;
884
885	case jump_n:
886	  extract_number_and_incr (&mcnt, &p);
887	  extract_number_and_incr (&mcnt2, &p);
888	  printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
889	  break;
890
891	case set_number_at:
892	  extract_number_and_incr (&mcnt, &p);
893	  extract_number_and_incr (&mcnt2, &p);
894	  printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
895	  break;
896
897	case wordbound:
898	  printf ("/wordbound");
899	  break;
900
901	case notwordbound:
902	  printf ("/notwordbound");
903	  break;
904
905	case wordbeg:
906	  printf ("/wordbeg");
907	  break;
908
909	case wordend:
910	  printf ("/wordend");
911
912#ifdef emacs
913	case before_dot:
914	  printf ("/before_dot");
915	  break;
916
917	case at_dot:
918	  printf ("/at_dot");
919	  break;
920
921	case after_dot:
922	  printf ("/after_dot");
923	  break;
924
925	case syntaxspec:
926	  printf ("/syntaxspec");
927	  mcnt = *p++;
928	  printf ("/%d", mcnt);
929	  break;
930
931	case notsyntaxspec:
932	  printf ("/notsyntaxspec");
933	  mcnt = *p++;
934	  printf ("/%d", mcnt);
935	  break;
936#endif /* emacs */
937
938	case wordchar:
939	  printf ("/wordchar");
940	  break;
941
942	case notwordchar:
943	  printf ("/notwordchar");
944	  break;
945
946	case begbuf:
947	  printf ("/begbuf");
948	  break;
949
950	case endbuf:
951	  printf ("/endbuf");
952	  break;
953
954	default:
955	  printf ("?%d", *(p-1));
956	}
957
958      putchar ('\n');
959    }
960
961  printf ("%d:\tend of pattern.\n", p - start);
962}
963
964
965void
966print_compiled_pattern (bufp)
967    struct re_pattern_buffer *bufp;
968{
969  unsigned char *buffer = bufp->buffer;
970
971  print_partial_compiled_pattern (buffer, buffer + bufp->used);
972  printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
973
974  if (bufp->fastmap_accurate && bufp->fastmap)
975    {
976      printf ("fastmap: ");
977      print_fastmap (bufp->fastmap);
978    }
979
980  printf ("re_nsub: %d\t", bufp->re_nsub);
981  printf ("regs_alloc: %d\t", bufp->regs_allocated);
982  printf ("can_be_null: %d\t", bufp->can_be_null);
983  printf ("newline_anchor: %d\n", bufp->newline_anchor);
984  printf ("no_sub: %d\t", bufp->no_sub);
985  printf ("not_bol: %d\t", bufp->not_bol);
986  printf ("not_eol: %d\t", bufp->not_eol);
987  printf ("syntax: %d\n", bufp->syntax);
988  /* Perhaps we should print the translate table?  */
989}
990
991
992void
993print_double_string (where, string1, size1, string2, size2)
994    const char *where;
995    const char *string1;
996    const char *string2;
997    int size1;
998    int size2;
999{
1000  unsigned this_char;
1001
1002  if (where == NULL)
1003    printf ("(null)");
1004  else
1005    {
1006      if (FIRST_STRING_P (where))
1007	{
1008	  for (this_char = where - string1; this_char < size1; this_char++)
1009	    putchar (string1[this_char]);
1010
1011	  where = string2;
1012	}
1013
1014      for (this_char = where - string2; this_char < size2; this_char++)
1015	putchar (string2[this_char]);
1016    }
1017}
1018
1019#else /* not DEBUG */
1020
1021#undef assert
1022#define assert(e)
1023
1024#define DEBUG_STATEMENT(e)
1025#define DEBUG_PRINT1(x)
1026#define DEBUG_PRINT2(x1, x2)
1027#define DEBUG_PRINT3(x1, x2, x3)
1028#define DEBUG_PRINT4(x1, x2, x3, x4)
1029#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1030#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1031
1032#endif /* not DEBUG */
1033
1034/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1035   also be assigned to arbitrarily: each pattern buffer stores its own
1036   syntax, so it can be changed between regex compilations.  */
1037/* This has no initializer because initialized variables in Emacs
1038   become read-only after dumping.  */
1039reg_syntax_t re_syntax_options;
1040
1041
1042/* Specify the precise syntax of regexps for compilation.  This provides
1043   for compatibility for various utilities which historically have
1044   different, incompatible syntaxes.
1045
1046   The argument SYNTAX is a bit mask comprised of the various bits
1047   defined in regex.h.	We return the old syntax.  */
1048
1049reg_syntax_t
1050re_set_syntax (syntax)
1051    reg_syntax_t syntax;
1052{
1053  reg_syntax_t ret = re_syntax_options;
1054
1055  re_syntax_options = syntax;
1056  return ret;
1057}
1058
1059/* This table gives an error message for each of the error codes listed
1060   in regex.h.	Obviously the order here has to be same as there.
1061   POSIX doesn't require that we do anything for REG_NOERROR,
1062   but why not be nice?	 */
1063
1064static const char *re_error_msgid[] =
1065  {
1066    gettext_noop ("Success"),	/* REG_NOERROR */
1067    gettext_noop ("No match"),	/* REG_NOMATCH */
1068    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1069    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1070    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1071    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1072    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1073    gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1074    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1075    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1076    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1077    gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1078    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1079    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1080    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1081    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1082    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1083  };
1084
1085/* Avoiding alloca during matching, to placate r_alloc.	 */
1086
1087/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1088   searching and matching functions should not call alloca.  On some
1089   systems, alloca is implemented in terms of malloc, and if we're
1090   using the relocating allocator routines, then malloc could cause a
1091   relocation, which might (if the strings being searched are in the
1092   ralloc heap) shift the data out from underneath the regexp
1093   routines.
1094
1095   Here's another reason to avoid allocation: Emacs
1096   processes input from X in a signal handler; processing X input may
1097   call malloc; if input arrives while a matching routine is calling
1098   malloc, then we're scrod.  But Emacs can't just block input while
1099   calling matching routines; then we don't notice interrupts when
1100   they come in.  So, Emacs blocks input around all regexp calls
1101   except the matching calls, which it leaves unprotected, in the
1102   faith that they will not malloc.  */
1103
1104/* Normally, this is fine.  */
1105#define MATCH_MAY_ALLOCATE
1106
1107/* When using GNU C, we are not REALLY using the C alloca, no matter
1108   what config.h may say.  So don't take precautions for it.  */
1109#ifdef __GNUC__
1110#undef C_ALLOCA
1111#endif
1112
1113/* The match routines may not allocate if (1) they would do it with malloc
1114   and (2) it's not safe for them to use malloc.
1115   Note that if REL_ALLOC is defined, matching would not use malloc for the
1116   failure stack, but we would still use it for the register vectors;
1117   so REL_ALLOC should not affect this.	 */
1118#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1119#undef MATCH_MAY_ALLOCATE
1120#endif
1121
1122
1123/* Failure stack declarations and macros; both re_compile_fastmap and
1124   re_match_2 use a failure stack.  These have to be macros because of
1125   REGEX_ALLOCATE_STACK.  */
1126
1127
1128/* Approximate number of failure points for which to initially allocate space
1129   when matching.  If this number is exceeded, we allocate more
1130   space, so it is not a hard limit.  */
1131#ifndef INIT_FAILURE_ALLOC
1132#define INIT_FAILURE_ALLOC 20
1133#endif
1134
1135/* Roughly the maximum number of failure points on the stack.  Would be
1136   exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1137   This is a variable only so users of regex can assign to it; we never
1138   change it ourselves.	 */
1139#if defined (MATCH_MAY_ALLOCATE)
1140/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1141   whose default stack limit is 2mb.  In order for a larger
1142   value to work reliably, you have to try to make it accord
1143   with the process stack limit.  */
1144int re_max_failures = 40000;
1145#else
1146int re_max_failures = 4000;
1147#endif
1148
1149union fail_stack_elt
1150{
1151  unsigned char *pointer;
1152  int integer;
1153};
1154
1155typedef union fail_stack_elt fail_stack_elt_t;
1156
1157typedef struct
1158{
1159  fail_stack_elt_t *stack;
1160  unsigned size;
1161  unsigned avail;			/* Offset of next open position.  */
1162} fail_stack_type;
1163
1164#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1165#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1166#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1167
1168
1169/* Define macros to initialize and free the failure stack.
1170   Do `return -2' if the alloc fails.  */
1171
1172#ifdef MATCH_MAY_ALLOCATE
1173#define INIT_FAIL_STACK()						\
1174  do {									\
1175    fail_stack.stack = (fail_stack_elt_t *)				\
1176      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE	\
1177			    * sizeof (fail_stack_elt_t));		\
1178									\
1179    if (fail_stack.stack == NULL)					\
1180      return -2;							\
1181									\
1182    fail_stack.size = INIT_FAILURE_ALLOC;				\
1183    fail_stack.avail = 0;						\
1184  } while (0)
1185
1186#define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1187#else
1188#define INIT_FAIL_STACK()						\
1189  do {									\
1190    fail_stack.avail = 0;						\
1191  } while (0)
1192
1193#define RESET_FAIL_STACK()
1194#endif
1195
1196
1197/* Double the size of FAIL_STACK, up to a limit
1198   which allows approximately `re_max_failures' items.
1199
1200   Return 1 if succeeds, and 0 if either ran out of memory
1201   allocating space for it or it was already too large.
1202
1203   REGEX_REALLOCATE_STACK requires `destination' be declared.	*/
1204
1205/* Factor to increase the failure stack size by
1206   when we increase it.
1207   This used to be 2, but 2 was too wasteful
1208   because the old discarded stacks added up to as much space
1209   were as ultimate, maximum-size stack.  */
1210#define FAIL_STACK_GROWTH_FACTOR 4
1211
1212#define GROW_FAIL_STACK(fail_stack)					\
1213  (((fail_stack).size * sizeof (fail_stack_elt_t)			\
1214    >= re_max_failures * TYPICAL_FAILURE_SIZE)				\
1215   ? 0									\
1216   : ((fail_stack).stack						\
1217      = (fail_stack_elt_t *)						\
1218	REGEX_REALLOCATE_STACK ((fail_stack).stack,			\
1219	  (fail_stack).size * sizeof (fail_stack_elt_t),		\
1220	  MIN (re_max_failures * TYPICAL_FAILURE_SIZE,			\
1221	       ((fail_stack).size * sizeof (fail_stack_elt_t)		\
1222		* FAIL_STACK_GROWTH_FACTOR))),				\
1223									\
1224      (fail_stack).stack == NULL					\
1225      ? 0								\
1226      : ((fail_stack).size						\
1227	 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE,		\
1228		 ((fail_stack).size * sizeof (fail_stack_elt_t)		\
1229		  * FAIL_STACK_GROWTH_FACTOR))				\
1230	    / sizeof (fail_stack_elt_t)),				\
1231	 1)))
1232
1233
1234/* Push pointer POINTER on FAIL_STACK.
1235   Return 1 if was able to do so and 0 if ran out of memory allocating
1236   space to do so.  */
1237#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1238  ((FAIL_STACK_FULL ()							\
1239    && !GROW_FAIL_STACK (FAIL_STACK))					\
1240   ? 0									\
1241   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1242      1))
1243
1244/* Push a pointer value onto the failure stack.
1245   Assumes the variable `fail_stack'.  Probably should only
1246   be called from within `PUSH_FAILURE_POINT'.	*/
1247#define PUSH_FAILURE_POINTER(item)					\
1248  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1249
1250/* This pushes an integer-valued item onto the failure stack.
1251   Assumes the variable `fail_stack'.  Probably should only
1252   be called from within `PUSH_FAILURE_POINT'.	*/
1253#define PUSH_FAILURE_INT(item)					\
1254  fail_stack.stack[fail_stack.avail++].integer = (item)
1255
1256/* Push a fail_stack_elt_t value onto the failure stack.
1257   Assumes the variable `fail_stack'.  Probably should only
1258   be called from within `PUSH_FAILURE_POINT'.	*/
1259#define PUSH_FAILURE_ELT(item)					\
1260  fail_stack.stack[fail_stack.avail++] =  (item)
1261
1262/* These three POP... operations complement the three PUSH... operations.
1263   All assume that `fail_stack' is nonempty.  */
1264#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1265#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1266#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1267
1268/* Used to omit pushing failure point id's when we're not debugging.  */
1269#ifdef DEBUG
1270#define DEBUG_PUSH PUSH_FAILURE_INT
1271#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1272#else
1273#define DEBUG_PUSH(item)
1274#define DEBUG_POP(item_addr)
1275#endif
1276
1277
1278/* Push the information about the state we will need
1279   if we ever fail back to it.
1280
1281   Requires variables fail_stack, regstart, regend, reg_info, and
1282   num_regs be declared.  GROW_FAIL_STACK requires `destination' be
1283   declared.
1284
1285   Does `return FAILURE_CODE' if runs out of memory.  */
1286
1287#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1288  do {									\
1289    char *destination;							\
1290    /* Must be int, so when we don't save any registers, the arithmetic	\
1291       of 0 + -1 isn't done as unsigned.  */				\
1292    int this_reg;							\
1293									\
1294    DEBUG_STATEMENT (failure_id++);					\
1295    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1296    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1297    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1298    DEBUG_PRINT2 ("			size: %d\n", (fail_stack).size);\
1299									\
1300    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
1301    DEBUG_PRINT2 ("	available: %d\n", REMAINING_AVAIL_SLOTS);	\
1302									\
1303    /* Ensure we have enough space allocated for what we will push.  */	\
1304    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1305      {									\
1306	if (!GROW_FAIL_STACK (fail_stack))				\
1307	  return failure_code;						\
1308									\
1309	DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1310		       (fail_stack).size);				\
1311	DEBUG_PRINT2 ("	 slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1312      }									\
1313									\
1314    /* Push the info, starting with the registers.  */			\
1315    DEBUG_PRINT1 ("\n");						\
1316									\
1317    if (1)								\
1318      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1319	   this_reg++)							\
1320	{								\
1321	  DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);		\
1322	  DEBUG_STATEMENT (num_regs_pushed++);				\
1323									\
1324	  DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);	\
1325	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1326									\
1327	  DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
1328	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1329									\
1330	  DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
1331	  DEBUG_PRINT2 (" match_null=%d",				\
1332			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1333	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1334	  DEBUG_PRINT2 (" matched_something=%d",			\
1335			MATCHED_SOMETHING (reg_info[this_reg]));	\
1336	  DEBUG_PRINT2 (" ever_matched=%d",				\
1337			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1338	  DEBUG_PRINT1 ("\n");						\
1339	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1340	}								\
1341									\
1342    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
1343    PUSH_FAILURE_INT (lowest_active_reg);				\
1344									\
1345    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
1346    PUSH_FAILURE_INT (highest_active_reg);				\
1347									\
1348    DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
1349    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1350    PUSH_FAILURE_POINTER (pattern_place);				\
1351									\
1352    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
1353    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,	\
1354				 size2);				\
1355    DEBUG_PRINT1 ("'\n");						\
1356    PUSH_FAILURE_POINTER (string_place);				\
1357									\
1358    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1359    DEBUG_PUSH (failure_id);						\
1360  } while (0)
1361
1362/* This is the number of items that are pushed and popped on the stack
1363   for each register.  */
1364#define NUM_REG_ITEMS  3
1365
1366/* Individual items aside from the registers.  */
1367#ifdef DEBUG
1368#define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1369#else
1370#define NUM_NONREG_ITEMS 4
1371#endif
1372
1373/* Estimate the size of data pushed by a typical failure stack entry.
1374   An estimate is all we need, because all we use this for
1375   is to choose a limit for how big to make the failure stack.  */
1376
1377#define TYPICAL_FAILURE_SIZE 20
1378
1379/* This is how many items we actually use for a failure point.
1380   It depends on the regexp.  */
1381#define NUM_FAILURE_ITEMS				\
1382  (((0							\
1383     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1384    * NUM_REG_ITEMS)					\
1385   + NUM_NONREG_ITEMS)
1386
1387/* How many items can still be added to the stack without overflowing it.  */
1388#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1389
1390
1391/* Pops what PUSH_FAIL_STACK pushes.
1392
1393   We restore into the parameters, all of which should be lvalues:
1394     STR -- the saved data position.
1395     PAT -- the saved pattern position.
1396     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1397     REGSTART, REGEND -- arrays of string positions.
1398     REG_INFO -- array of information about each subexpression.
1399
1400   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1401   `pend', `string1', `size1', `string2', and `size2'.	*/
1402
1403#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1404{									\
1405  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
1406  int this_reg;								\
1407  const unsigned char *string_temp;					\
1408									\
1409  assert (!FAIL_STACK_EMPTY ());					\
1410									\
1411  /* Remove failure points and point to how many regs pushed.  */	\
1412  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1413  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1414  DEBUG_PRINT2 ("		     size: %d\n", fail_stack.size);	\
1415									\
1416  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1417									\
1418  DEBUG_POP (&failure_id);						\
1419  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1420									\
1421  /* If the saved string location is NULL, it came from an		\
1422     on_failure_keep_string_jump opcode, and we want to throw away the	\
1423     saved NULL, thus retaining our current position in the string.  */	\
1424  string_temp = POP_FAILURE_POINTER ();					\
1425  if (string_temp != NULL)						\
1426    str = (const char *) string_temp;					\
1427									\
1428  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
1429  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1430  DEBUG_PRINT1 ("'\n");							\
1431									\
1432  pat = (unsigned char *) POP_FAILURE_POINTER ();			\
1433  DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
1434  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1435									\
1436  /* Restore register info.  */						\
1437  high_reg = (unsigned) POP_FAILURE_INT ();				\
1438  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
1439									\
1440  low_reg = (unsigned) POP_FAILURE_INT ();				\
1441  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
1442									\
1443  if (1)								\
1444    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1445      {									\
1446	DEBUG_PRINT2 ("	   Popping reg: %d\n", this_reg);		\
1447									\
1448	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1449	DEBUG_PRINT2 ("	     info: 0x%x\n", reg_info[this_reg]);	\
1450									\
1451	regend[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1452	DEBUG_PRINT2 ("	     end: 0x%x\n", regend[this_reg]);		\
1453									\
1454	regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1455	DEBUG_PRINT2 ("	     start: 0x%x\n", regstart[this_reg]);	\
1456      }									\
1457  else									\
1458    {									\
1459      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1460	{								\
1461	  reg_info[this_reg].word.integer = 0;				\
1462	  regend[this_reg] = 0;						\
1463	  regstart[this_reg] = 0;					\
1464	}								\
1465      highest_active_reg = high_reg;					\
1466    }									\
1467									\
1468  set_regs_matched_done = 0;						\
1469  DEBUG_STATEMENT (nfailure_points_popped++);				\
1470} /* POP_FAILURE_POINT */
1471
1472
1473
1474/* Structure for per-register (a.k.a. per-group) information.
1475   Other register information, such as the
1476   starting and ending positions (which are addresses), and the list of
1477   inner groups (which is a bits list) are maintained in separate
1478   variables.
1479
1480   We are making a (strictly speaking) nonportable assumption here: that
1481   the compiler will pack our bit fields into something that fits into
1482   the type of `word', i.e., is something that fits into one item on the
1483   failure stack.  */
1484
1485typedef union
1486{
1487  fail_stack_elt_t word;
1488  struct
1489  {
1490      /* This field is one if this group can match the empty string,
1491	 zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1492#define MATCH_NULL_UNSET_VALUE 3
1493    unsigned match_null_string_p : 2;
1494    unsigned is_active : 1;
1495    unsigned matched_something : 1;
1496    unsigned ever_matched_something : 1;
1497  } bits;
1498} register_info_type;
1499
1500#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1501#define IS_ACTIVE(R)  ((R).bits.is_active)
1502#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1503#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1504
1505
1506/* Call this when have matched a real character; it sets `matched' flags
1507   for the subexpressions which we are currently inside.  Also records
1508   that those subexprs have matched.  */
1509#define SET_REGS_MATCHED()						\
1510  do									\
1511    {									\
1512      if (!set_regs_matched_done)					\
1513	{								\
1514	  unsigned r;							\
1515	  set_regs_matched_done = 1;					\
1516	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1517	    {								\
1518	      MATCHED_SOMETHING (reg_info[r])				\
1519		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1520		= 1;							\
1521	    }								\
1522	}								\
1523    }									\
1524  while (0)
1525
1526/* Registers are set to a sentinel when they haven't yet matched.  */
1527static char reg_unset_dummy;
1528#define REG_UNSET_VALUE (&reg_unset_dummy)
1529#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1530
1531/* Subroutine declarations and macros for regex_compile.  */
1532
1533static void store_op1 (), store_op2 ();
1534static void insert_op1 (), insert_op2 ();
1535static boolean at_begline_loc_p (), at_endline_loc_p ();
1536static boolean group_in_compile_stack ();
1537
1538/* Fetch the next character in the uncompiled pattern---translating it
1539   if necessary.  Also cast from a signed character in the constant
1540   string passed to us by the user to an unsigned char that we can use
1541   as an array index (in, e.g., `translate').  */
1542#ifndef PATFETCH
1543#define PATFETCH(c)							\
1544  do {if (p == pend) return REG_EEND;					\
1545    c = (unsigned char) *p++;						\
1546    if (RE_TRANSLATE_P (translate)) c = RE_TRANSLATE (translate, c);	\
1547  } while (0)
1548#endif
1549
1550/* Fetch the next character in the uncompiled pattern, with no
1551   translation.	 */
1552#define PATFETCH_RAW(c)							\
1553  do {if (p == pend) return REG_EEND;					\
1554    c = (unsigned char) *p++;						\
1555  } while (0)
1556
1557/* Go backwards one character in the pattern.  */
1558#define PATUNFETCH p--
1559
1560
1561/* If `translate' is non-null, return translate[D], else just D.  We
1562   cast the subscript to translate because some data is declared as
1563   `char *', to avoid warnings when a string constant is passed.  But
1564   when we use a character as a subscript we must make it unsigned.  */
1565#ifndef TRANSLATE
1566#define TRANSLATE(d) \
1567  (RE_TRANSLATE_P (translate) \
1568   ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d)) : (d))
1569#endif
1570
1571
1572/* Macros for outputting the compiled pattern into `buffer'.  */
1573
1574/* If the buffer isn't allocated when it comes in, use this.  */
1575#define INIT_BUF_SIZE  32
1576
1577/* Make sure we have at least N more bytes of space in buffer.	*/
1578#define GET_BUFFER_SPACE(n)						\
1579    while (b - bufp->buffer + (n) > bufp->allocated)			\
1580      EXTEND_BUFFER ()
1581
1582/* Make sure we have one more byte of buffer space and then add C to it.  */
1583#define BUF_PUSH(c)							\
1584  do {									\
1585    GET_BUFFER_SPACE (1);						\
1586    *b++ = (unsigned char) (c);						\
1587  } while (0)
1588
1589
1590/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1591#define BUF_PUSH_2(c1, c2)						\
1592  do {									\
1593    GET_BUFFER_SPACE (2);						\
1594    *b++ = (unsigned char) (c1);					\
1595    *b++ = (unsigned char) (c2);					\
1596  } while (0)
1597
1598
1599/* As with BUF_PUSH_2, except for three bytes.	*/
1600#define BUF_PUSH_3(c1, c2, c3)						\
1601  do {									\
1602    GET_BUFFER_SPACE (3);						\
1603    *b++ = (unsigned char) (c1);					\
1604    *b++ = (unsigned char) (c2);					\
1605    *b++ = (unsigned char) (c3);					\
1606  } while (0)
1607
1608
1609/* Store a jump with opcode OP at LOC to location TO.  We store a
1610   relative address offset by the three bytes the jump itself occupies.	 */
1611#define STORE_JUMP(op, loc, to) \
1612  store_op1 (op, loc, (to) - (loc) - 3)
1613
1614/* Likewise, for a two-argument jump.  */
1615#define STORE_JUMP2(op, loc, to, arg) \
1616  store_op2 (op, loc, (to) - (loc) - 3, arg)
1617
1618/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.	 */
1619#define INSERT_JUMP(op, loc, to) \
1620  insert_op1 (op, loc, (to) - (loc) - 3, b)
1621
1622/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1623#define INSERT_JUMP2(op, loc, to, arg) \
1624  insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1625
1626
1627/* This is not an arbitrary limit: the arguments which represent offsets
1628   into the pattern are two bytes long.	 So if 2^16 bytes turns out to
1629   be too small, many things would have to change.  */
1630#define MAX_BUF_SIZE (1L << 16)
1631
1632
1633/* Extend the buffer by twice its current size via realloc and
1634   reset the pointers that pointed into the old block to point to the
1635   correct places in the new one.  If extending the buffer results in it
1636   being larger than MAX_BUF_SIZE, then flag memory exhausted.	*/
1637#define EXTEND_BUFFER()							\
1638  do {									\
1639    unsigned char *old_buffer = bufp->buffer;				\
1640    if (bufp->allocated == MAX_BUF_SIZE)				\
1641      return REG_ESIZE;							\
1642    bufp->allocated <<= 1;						\
1643    if (bufp->allocated > MAX_BUF_SIZE)					\
1644      bufp->allocated = MAX_BUF_SIZE;					\
1645    bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1646    if (bufp->buffer == NULL)						\
1647      return REG_ESPACE;						\
1648    /* If the buffer moved, move all the pointers into it.  */		\
1649    if (old_buffer != bufp->buffer)					\
1650      {									\
1651	b = (b - old_buffer) + bufp->buffer;				\
1652	begalt = (begalt - old_buffer) + bufp->buffer;			\
1653	if (fixup_alt_jump)						\
1654	  fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1655	if (laststart)							\
1656	  laststart = (laststart - old_buffer) + bufp->buffer;		\
1657	if (pending_exact)						\
1658	  pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
1659      }									\
1660  } while (0)
1661
1662
1663/* Since we have one byte reserved for the register number argument to
1664   {start,stop}_memory, the maximum number of groups we can report
1665   things about is what fits in that byte.  */
1666#define MAX_REGNUM 255
1667
1668/* But patterns can have more than `MAX_REGNUM' registers.  We just
1669   ignore the excess.  */
1670typedef unsigned regnum_t;
1671
1672
1673/* Macros for the compile stack.  */
1674
1675/* Since offsets can go either forwards or backwards, this type needs to
1676   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.	 */
1677typedef int pattern_offset_t;
1678
1679typedef struct
1680{
1681  pattern_offset_t begalt_offset;
1682  pattern_offset_t fixup_alt_jump;
1683  pattern_offset_t inner_group_offset;
1684  pattern_offset_t laststart_offset;
1685  regnum_t regnum;
1686} compile_stack_elt_t;
1687
1688
1689typedef struct
1690{
1691  compile_stack_elt_t *stack;
1692  unsigned size;
1693  unsigned avail;			/* Offset of next open position.  */
1694} compile_stack_type;
1695
1696
1697#define INIT_COMPILE_STACK_SIZE 32
1698
1699#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1700#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1701
1702/* The next available element.	*/
1703#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1704
1705
1706/* Structure to manage work area for range table.  */
1707struct range_table_work_area
1708{
1709  int *table;			/* actual work area.  */
1710  int allocated;		/* allocated size for work area in bytes.  */
1711  int used;			/* actually used size in words.	 */
1712};
1713
1714/* Make sure that WORK_AREA can hold more N multibyte characters.  */
1715#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n)			  \
1716  do {									  \
1717    if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated)  \
1718      {									  \
1719	(work_area).allocated += 16 * sizeof (int);			  \
1720	if ((work_area).table)						  \
1721	  (work_area).table						  \
1722	    = (int *) realloc ((work_area).table, (work_area).allocated); \
1723	else								  \
1724	  (work_area).table						  \
1725	    = (int *) malloc ((work_area).allocated);			  \
1726	if ((work_area).table == 0)					  \
1727	  FREE_STACK_RETURN (REG_ESPACE);				  \
1728      }									  \
1729  } while (0)
1730
1731/* Set a range (RANGE_START, RANGE_END) to WORK_AREA.  */
1732#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end)	\
1733  do {									\
1734    EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2);			\
1735    (work_area).table[(work_area).used++] = (range_start);		\
1736    (work_area).table[(work_area).used++] = (range_end);		\
1737  } while (0)
1738
1739/* Free allocated memory for WORK_AREA.	 */
1740#define FREE_RANGE_TABLE_WORK_AREA(work_area)	\
1741  do {						\
1742    if ((work_area).table)			\
1743      free ((work_area).table);			\
1744  } while (0)
1745
1746#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1747#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1748#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1749
1750
1751/* Set the bit for character C in a list.  */
1752#define SET_LIST_BIT(c)				      \
1753  (b[((unsigned char) (c)) / BYTEWIDTH]		      \
1754   |= 1 << (((unsigned char) c) % BYTEWIDTH))
1755
1756
1757/* Get the next unsigned number in the uncompiled pattern.  */
1758#define GET_UNSIGNED_NUMBER(num)					\
1759  { if (p != pend)							\
1760     {									\
1761       PATFETCH (c);							\
1762       while (ISDIGIT (c))						\
1763	 {								\
1764	   if (num < 0)							\
1765	      num = 0;							\
1766	   num = num * 10 + c - '0';					\
1767	   if (p == pend)						\
1768	      break;							\
1769	   PATFETCH (c);						\
1770	 }								\
1771       }								\
1772    }
1773
1774#define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1775
1776#define IS_CHAR_CLASS(string)						\
1777   (STREQ (string, "alpha") || STREQ (string, "upper")			\
1778    || STREQ (string, "lower") || STREQ (string, "digit")		\
1779    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1780    || STREQ (string, "space") || STREQ (string, "print")		\
1781    || STREQ (string, "punct") || STREQ (string, "graph")		\
1782    || STREQ (string, "cntrl") || STREQ (string, "blank"))
1783
1784#ifndef MATCH_MAY_ALLOCATE
1785
1786/* If we cannot allocate large objects within re_match_2_internal,
1787   we make the fail stack and register vectors global.
1788   The fail stack, we grow to the maximum size when a regexp
1789   is compiled.
1790   The register vectors, we adjust in size each time we
1791   compile a regexp, according to the number of registers it needs.  */
1792
1793static fail_stack_type fail_stack;
1794
1795/* Size with which the following vectors are currently allocated.
1796   That is so we can make them bigger as needed,
1797   but never make them smaller.	 */
1798static int regs_allocated_size;
1799
1800static const char **	 regstart, **	  regend;
1801static const char ** old_regstart, ** old_regend;
1802static const char **best_regstart, **best_regend;
1803static register_info_type *reg_info;
1804static const char **reg_dummy;
1805static register_info_type *reg_info_dummy;
1806
1807/* Make the register vectors big enough for NUM_REGS registers,
1808   but don't make them smaller.	 */
1809
1810static
1811regex_grow_registers (num_regs)
1812     int num_regs;
1813{
1814  if (num_regs > regs_allocated_size)
1815    {
1816      RETALLOC_IF (regstart,	 num_regs, const char *);
1817      RETALLOC_IF (regend,	 num_regs, const char *);
1818      RETALLOC_IF (old_regstart, num_regs, const char *);
1819      RETALLOC_IF (old_regend,	 num_regs, const char *);
1820      RETALLOC_IF (best_regstart, num_regs, const char *);
1821      RETALLOC_IF (best_regend,	 num_regs, const char *);
1822      RETALLOC_IF (reg_info,	 num_regs, register_info_type);
1823      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
1824      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1825
1826      regs_allocated_size = num_regs;
1827    }
1828}
1829
1830#endif /* not MATCH_MAY_ALLOCATE */
1831
1832/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1833   Returns one of error codes defined in `regex.h', or zero for success.
1834
1835   Assumes the `allocated' (and perhaps `buffer') and `translate'
1836   fields are set in BUFP on entry.
1837
1838   If it succeeds, results are put in BUFP (if it returns an error, the
1839   contents of BUFP are undefined):
1840     `buffer' is the compiled pattern;
1841     `syntax' is set to SYNTAX;
1842     `used' is set to the length of the compiled pattern;
1843     `fastmap_accurate' is zero;
1844     `re_nsub' is the number of subexpressions in PATTERN;
1845     `not_bol' and `not_eol' are zero;
1846
1847   The `fastmap' and `newline_anchor' fields are neither
1848   examined nor set.  */
1849
1850/* Return, freeing storage we allocated.  */
1851#define FREE_STACK_RETURN(value)		\
1852  do {							\
1853    FREE_RANGE_TABLE_WORK_AREA (range_table_work);	\
1854    free (compile_stack.stack);				\
1855    return value;					\
1856  } while (0)
1857
1858static reg_errcode_t
1859regex_compile (pattern, size, syntax, bufp)
1860     const char *pattern;
1861     int size;
1862     reg_syntax_t syntax;
1863     struct re_pattern_buffer *bufp;
1864{
1865  /* We fetch characters from PATTERN here.  Even though PATTERN is
1866     `char *' (i.e., signed), we declare these variables as unsigned, so
1867     they can be reliably used as array indices.  */
1868  register unsigned int c, c1;
1869
1870  /* A random temporary spot in PATTERN.  */
1871  const char *p1;
1872
1873  /* Points to the end of the buffer, where we should append.  */
1874  register unsigned char *b;
1875
1876  /* Keeps track of unclosed groups.  */
1877  compile_stack_type compile_stack;
1878
1879  /* Points to the current (ending) position in the pattern.  */
1880#ifdef AIX
1881  /* `const' makes AIX compiler fail.  */
1882  char *p = pattern;
1883#else
1884  const char *p = pattern;
1885#endif
1886  const char *pend = pattern + size;
1887
1888  /* How to translate the characters in the pattern.  */
1889  RE_TRANSLATE_TYPE translate = bufp->translate;
1890
1891  /* Address of the count-byte of the most recently inserted `exactn'
1892     command.  This makes it possible to tell if a new exact-match
1893     character can be added to that command or if the character requires
1894     a new `exactn' command.  */
1895  unsigned char *pending_exact = 0;
1896
1897  /* Address of start of the most recently finished expression.
1898     This tells, e.g., postfix * where to find the start of its
1899     operand.  Reset at the beginning of groups and alternatives.  */
1900  unsigned char *laststart = 0;
1901
1902  /* Address of beginning of regexp, or inside of last group.  */
1903  unsigned char *begalt;
1904
1905  /* Place in the uncompiled pattern (i.e., the {) to
1906     which to go back if the interval is invalid.  */
1907  const char *beg_interval;
1908
1909  /* Address of the place where a forward jump should go to the end of
1910     the containing expression.	 Each alternative of an `or' -- except the
1911     last -- ends with a forward jump of this sort.  */
1912  unsigned char *fixup_alt_jump = 0;
1913
1914  /* Counts open-groups as they are encountered.  Remembered for the
1915     matching close-group on the compile stack, so the same register
1916     number is put in the stop_memory as the start_memory.  */
1917  regnum_t regnum = 0;
1918
1919  /* Work area for range table of charset.  */
1920  struct range_table_work_area range_table_work;
1921
1922#ifdef DEBUG
1923  DEBUG_PRINT1 ("\nCompiling pattern: ");
1924  if (debug)
1925    {
1926      unsigned debug_count;
1927
1928      for (debug_count = 0; debug_count < size; debug_count++)
1929	putchar (pattern[debug_count]);
1930      putchar ('\n');
1931    }
1932#endif /* DEBUG */
1933
1934  /* Initialize the compile stack.  */
1935  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1936  if (compile_stack.stack == NULL)
1937    return REG_ESPACE;
1938
1939  compile_stack.size = INIT_COMPILE_STACK_SIZE;
1940  compile_stack.avail = 0;
1941
1942  range_table_work.table = 0;
1943  range_table_work.allocated = 0;
1944
1945  /* Initialize the pattern buffer.  */
1946  bufp->syntax = syntax;
1947  bufp->fastmap_accurate = 0;
1948  bufp->not_bol = bufp->not_eol = 0;
1949
1950  /* Set `used' to zero, so that if we return an error, the pattern
1951     printer (for debugging) will think there's no pattern.  We reset it
1952     at the end.  */
1953  bufp->used = 0;
1954
1955  /* Always count groups, whether or not bufp->no_sub is set.  */
1956  bufp->re_nsub = 0;
1957
1958#ifdef emacs
1959  /* bufp->multibyte is set before regex_compile is called, so don't alter
1960     it. */
1961#else  /* not emacs */
1962  /* Nothing is recognized as a multibyte character.  */
1963  bufp->multibyte = 0;
1964#endif
1965
1966#if !defined (emacs) && !defined (SYNTAX_TABLE)
1967  /* Initialize the syntax table.  */
1968   init_syntax_once ();
1969#endif
1970
1971  if (bufp->allocated == 0)
1972    {
1973      if (bufp->buffer)
1974	{ /* If zero allocated, but buffer is non-null, try to realloc
1975	     enough space.  This loses if buffer's address is bogus, but
1976	     that is the user's responsibility.	 */
1977	  RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1978	}
1979      else
1980	{ /* Caller did not allocate a buffer.	Do it for them.	 */
1981	  bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1982	}
1983      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1984
1985      bufp->allocated = INIT_BUF_SIZE;
1986    }
1987
1988  begalt = b = bufp->buffer;
1989
1990  /* Loop through the uncompiled pattern until we're at the end.  */
1991  while (p != pend)
1992    {
1993      PATFETCH (c);
1994
1995      switch (c)
1996	{
1997	case '^':
1998	  {
1999	    if (   /* If at start of pattern, it's an operator.	 */
2000		   p == pattern + 1
2001		   /* If context independent, it's an operator.	 */
2002		|| syntax & RE_CONTEXT_INDEP_ANCHORS
2003		   /* Otherwise, depends on what's come before.	 */
2004		|| at_begline_loc_p (pattern, p, syntax))
2005	      BUF_PUSH (begline);
2006	    else
2007	      goto normal_char;
2008	  }
2009	  break;
2010
2011
2012	case '$':
2013	  {
2014	    if (   /* If at end of pattern, it's an operator.  */
2015		   p == pend
2016		   /* If context independent, it's an operator.	 */
2017		|| syntax & RE_CONTEXT_INDEP_ANCHORS
2018		   /* Otherwise, depends on what's next.  */
2019		|| at_endline_loc_p (p, pend, syntax))
2020	       BUF_PUSH (endline);
2021	     else
2022	       goto normal_char;
2023	   }
2024	   break;
2025
2026
2027	case '+':
2028	case '?':
2029	  if ((syntax & RE_BK_PLUS_QM)
2030	      || (syntax & RE_LIMITED_OPS))
2031	    goto normal_char;
2032	handle_plus:
2033	case '*':
2034	  /* If there is no previous pattern... */
2035	  if (!laststart)
2036	    {
2037	      if (syntax & RE_CONTEXT_INVALID_OPS)
2038		FREE_STACK_RETURN (REG_BADRPT);
2039	      else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2040		goto normal_char;
2041	    }
2042
2043	  {
2044	    /* Are we optimizing this jump?  */
2045	    boolean keep_string_p = false;
2046
2047	    /* 1 means zero (many) matches is allowed.	*/
2048	    char zero_times_ok = 0, many_times_ok = 0;
2049
2050	    /* If there is a sequence of repetition chars, collapse it
2051	       down to just one (the right one).  We can't combine
2052	       interval operators with these because of, e.g., `a{2}*',
2053	       which should only match an even number of `a's.	*/
2054
2055	    for (;;)
2056	      {
2057		zero_times_ok |= c != '+';
2058		many_times_ok |= c != '?';
2059
2060		if (p == pend)
2061		  break;
2062
2063		PATFETCH (c);
2064
2065		if (c == '*'
2066		    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2067		  ;
2068
2069		else if (syntax & RE_BK_PLUS_QM	 &&  c == '\\')
2070		  {
2071		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2072
2073		    PATFETCH (c1);
2074		    if (!(c1 == '+' || c1 == '?'))
2075		      {
2076			PATUNFETCH;
2077			PATUNFETCH;
2078			break;
2079		      }
2080
2081		    c = c1;
2082		  }
2083		else
2084		  {
2085		    PATUNFETCH;
2086		    break;
2087		  }
2088
2089		/* If we get here, we found another repeat character.  */
2090	       }
2091
2092	    /* Star, etc. applied to an empty pattern is equivalent
2093	       to an empty pattern.  */
2094	    if (!laststart)
2095	      break;
2096
2097	    /* Now we know whether or not zero matches is allowed
2098	       and also whether or not two or more matches is allowed.	*/
2099	    if (many_times_ok)
2100	      { /* More than one repetition is allowed, so put in at the
2101		   end a backward relative jump from `b' to before the next
2102		   jump we're going to put in below (which jumps from
2103		   laststart to after this jump).
2104
2105		   But if we are at the `*' in the exact sequence `.*\n',
2106		   insert an unconditional jump backwards to the .,
2107		   instead of the beginning of the loop.  This way we only
2108		   push a failure point once, instead of every time
2109		   through the loop.  */
2110		assert (p - 1 > pattern);
2111
2112		/* Allocate the space for the jump.  */
2113		GET_BUFFER_SPACE (3);
2114
2115		/* We know we are not at the first character of the pattern,
2116		   because laststart was nonzero.  And we've already
2117		   incremented `p', by the way, to be the character after
2118		   the `*'.  Do we have to do something analogous here
2119		   for null bytes, because of RE_DOT_NOT_NULL?	*/
2120		if (TRANSLATE ((unsigned char)*(p - 2)) == TRANSLATE ('.')
2121		    && zero_times_ok
2122		    && p < pend
2123		    && TRANSLATE ((unsigned char)*p) == TRANSLATE ('\n')
2124		    && !(syntax & RE_DOT_NEWLINE))
2125		  { /* We have .*\n.  */
2126		    STORE_JUMP (jump, b, laststart);
2127		    keep_string_p = true;
2128		  }
2129		else
2130		  /* Anything else.  */
2131		  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2132
2133		/* We've added more stuff to the buffer.  */
2134		b += 3;
2135	      }
2136
2137	    /* On failure, jump from laststart to b + 3, which will be the
2138	       end of the buffer after this jump is inserted.  */
2139	    GET_BUFFER_SPACE (3);
2140	    INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2141				       : on_failure_jump,
2142			 laststart, b + 3);
2143	    pending_exact = 0;
2144	    b += 3;
2145
2146	    if (!zero_times_ok)
2147	      {
2148		/* At least one repetition is required, so insert a
2149		   `dummy_failure_jump' before the initial
2150		   `on_failure_jump' instruction of the loop. This
2151		   effects a skip over that instruction the first time
2152		   we hit that loop.  */
2153		GET_BUFFER_SPACE (3);
2154		INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2155		b += 3;
2156	      }
2157	    }
2158	  break;
2159
2160
2161	case '.':
2162	  laststart = b;
2163	  BUF_PUSH (anychar);
2164	  break;
2165
2166
2167	case '[':
2168	  {
2169	    CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2170
2171	    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2172
2173	    /* Ensure that we have enough space to push a charset: the
2174	       opcode, the length count, and the bitset; 34 bytes in all.  */
2175	    GET_BUFFER_SPACE (34);
2176
2177	    laststart = b;
2178
2179	    /* We test `*p == '^' twice, instead of using an if
2180	       statement, so we only need one BUF_PUSH.	 */
2181	    BUF_PUSH (*p == '^' ? charset_not : charset);
2182	    if (*p == '^')
2183	      p++;
2184
2185	    /* Remember the first position in the bracket expression.  */
2186	    p1 = p;
2187
2188	    /* Push the number of bytes in the bitmap.	*/
2189	    BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2190
2191	    /* Clear the whole map.  */
2192	    bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2193
2194	    /* charset_not matches newline according to a syntax bit.  */
2195	    if ((re_opcode_t) b[-2] == charset_not
2196		&& (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2197	      SET_LIST_BIT ('\n');
2198
2199	    /* Read in characters and ranges, setting map bits.	 */
2200	    for (;;)
2201	      {
2202		int len;
2203		boolean escaped_char = false;
2204
2205		if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2206
2207		PATFETCH (c);
2208
2209		/* \ might escape characters inside [...] and [^...].  */
2210		if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2211		  {
2212		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2213
2214		    PATFETCH (c);
2215		    escaped_char = true;
2216		  }
2217		else
2218		  {
2219		    /* Could be the end of the bracket expression.	If it's
2220		       not (i.e., when the bracket expression is `[]' so
2221		       far), the ']' character bit gets set way below.  */
2222		    if (c == ']' && p != p1 + 1)
2223		      break;
2224		  }
2225
2226		/* If C indicates start of multibyte char, get the
2227		   actual character code in C, and set the pattern
2228		   pointer P to the next character boundary.  */
2229		if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2230		  {
2231		    PATUNFETCH;
2232		    c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2233		    p += len;
2234		  }
2235		/* What should we do for the character which is
2236		   greater than 0x7F, but not BASE_LEADING_CODE_P?
2237		   XXX */
2238
2239		/* See if we're at the beginning of a possible character
2240		   class.  */
2241
2242		else if (!escaped_char &&
2243			 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2244		  {
2245		    /* Leave room for the null.	 */
2246		    char str[CHAR_CLASS_MAX_LENGTH + 1];
2247
2248		    PATFETCH (c);
2249		    c1 = 0;
2250
2251		    /* If pattern is `[[:'.  */
2252		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2253
2254		    for (;;)
2255		      {
2256			PATFETCH (c);
2257			if (c == ':' || c == ']' || p == pend
2258			    || c1 == CHAR_CLASS_MAX_LENGTH)
2259			  break;
2260			str[c1++] = c;
2261		      }
2262		    str[c1] = '\0';
2263
2264		    /* If isn't a word bracketed by `[:' and `:]':
2265		       undo the ending character, the letters, and
2266		       leave the leading `:' and `[' (but set bits for
2267		       them).  */
2268		    if (c == ':' && *p == ']')
2269		      {
2270			int ch;
2271			boolean is_alnum = STREQ (str, "alnum");
2272			boolean is_alpha = STREQ (str, "alpha");
2273			boolean is_blank = STREQ (str, "blank");
2274			boolean is_cntrl = STREQ (str, "cntrl");
2275			boolean is_digit = STREQ (str, "digit");
2276			boolean is_graph = STREQ (str, "graph");
2277			boolean is_lower = STREQ (str, "lower");
2278			boolean is_print = STREQ (str, "print");
2279			boolean is_punct = STREQ (str, "punct");
2280			boolean is_space = STREQ (str, "space");
2281			boolean is_upper = STREQ (str, "upper");
2282			boolean is_xdigit = STREQ (str, "xdigit");
2283
2284			if (!IS_CHAR_CLASS (str))
2285			  FREE_STACK_RETURN (REG_ECTYPE);
2286
2287			/* Throw away the ] at the end of the character
2288			   class.  */
2289			PATFETCH (c);
2290
2291			if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2292
2293			for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2294			  {
2295			    int translated = TRANSLATE (ch);
2296			    /* This was split into 3 if's to
2297			       avoid an arbitrary limit in some compiler.  */
2298			    if (   (is_alnum  && ISALNUM (ch))
2299				|| (is_alpha  && ISALPHA (ch))
2300				|| (is_blank  && ISBLANK (ch))
2301				|| (is_cntrl  && ISCNTRL (ch)))
2302			      SET_LIST_BIT (translated);
2303			    if (   (is_digit  && ISDIGIT (ch))
2304				|| (is_graph  && ISGRAPH (ch))
2305				|| (is_lower  && ISLOWER (ch))
2306				|| (is_print  && ISPRINT (ch)))
2307			      SET_LIST_BIT (translated);
2308			    if (   (is_punct  && ISPUNCT (ch))
2309				|| (is_space  && ISSPACE (ch))
2310				|| (is_upper  && ISUPPER (ch))
2311				|| (is_xdigit && ISXDIGIT (ch)))
2312			      SET_LIST_BIT (translated);
2313			  }
2314
2315			/* Repeat the loop. */
2316			continue;
2317		      }
2318		    else
2319		      {
2320			c1++;
2321			while (c1--)
2322			  PATUNFETCH;
2323			SET_LIST_BIT ('[');
2324
2325			/* Because the `:' may starts the range, we
2326			   can't simply set bit and repeat the loop.
2327			   Instead, just set it to C and handle below.	*/
2328			c = ':';
2329		      }
2330		  }
2331
2332		if (p < pend && p[0] == '-' && p[1] != ']')
2333		  {
2334
2335		    /* Discard the `-'. */
2336		    PATFETCH (c1);
2337
2338		    /* Fetch the character which ends the range. */
2339		    PATFETCH (c1);
2340		    if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
2341		      {
2342			PATUNFETCH;
2343			c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2344			p += len;
2345		      }
2346
2347		    if (SINGLE_BYTE_CHAR_P (c)
2348			&& ! SINGLE_BYTE_CHAR_P (c1))
2349		      {
2350			/* Handle a range such as \177-\377 in multibyte mode.
2351			   Split that into two ranges,,
2352			   the low one ending at 0237, and the high one
2353			   starting at ...040.  */
2354			int c1_base = (c1 & ~0177) | 040;
2355			SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2356			c1 = 0237;
2357		      }
2358		    else if (!SAME_CHARSET_P (c, c1))
2359		      FREE_STACK_RETURN (REG_ERANGE);
2360		  }
2361		else
2362		  /* Range from C to C. */
2363		  c1 = c;
2364
2365		/* Set the range ... */
2366		if (SINGLE_BYTE_CHAR_P (c))
2367		  /* ... into bitmap.  */
2368		  {
2369		    unsigned this_char;
2370		    int range_start = c, range_end = c1;
2371
2372		    /* If the start is after the end, the range is empty.  */
2373		    if (range_start > range_end)
2374		      {
2375			if (syntax & RE_NO_EMPTY_RANGES)
2376			  FREE_STACK_RETURN (REG_ERANGE);
2377			/* Else, repeat the loop.  */
2378		      }
2379		    else
2380		      {
2381			for (this_char = range_start; this_char <= range_end;
2382			     this_char++)
2383			  SET_LIST_BIT (TRANSLATE (this_char));
2384		      }
2385		  }
2386		else
2387		  /* ... into range table.  */
2388		  SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2389	      }
2390
2391	    /* Discard any (non)matching list bytes that are all 0 at the
2392	       end of the map.	Decrease the map-length byte too.  */
2393	    while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2394	      b[-1]--;
2395	    b += b[-1];
2396
2397	    /* Build real range table from work area. */
2398	    if (RANGE_TABLE_WORK_USED (range_table_work))
2399	      {
2400		int i;
2401		int used = RANGE_TABLE_WORK_USED (range_table_work);
2402
2403		/* Allocate space for COUNT + RANGE_TABLE.  Needs two
2404		   bytes for COUNT and three bytes for each character.	*/
2405		GET_BUFFER_SPACE (2 + used * 3);
2406
2407		/* Indicate the existence of range table.  */
2408		laststart[1] |= 0x80;
2409
2410		STORE_NUMBER_AND_INCR (b, used / 2);
2411		for (i = 0; i < used; i++)
2412		  STORE_CHARACTER_AND_INCR
2413		    (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2414	      }
2415	  }
2416	  break;
2417
2418
2419	case '(':
2420	  if (syntax & RE_NO_BK_PARENS)
2421	    goto handle_open;
2422	  else
2423	    goto normal_char;
2424
2425
2426	case ')':
2427	  if (syntax & RE_NO_BK_PARENS)
2428	    goto handle_close;
2429	  else
2430	    goto normal_char;
2431
2432
2433	case '\n':
2434	  if (syntax & RE_NEWLINE_ALT)
2435	    goto handle_alt;
2436	  else
2437	    goto normal_char;
2438
2439
2440	case '|':
2441	  if (syntax & RE_NO_BK_VBAR)
2442	    goto handle_alt;
2443	  else
2444	    goto normal_char;
2445
2446
2447	case '{':
2448	   if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2449	     goto handle_interval;
2450	   else
2451	     goto normal_char;
2452
2453
2454	case '\\':
2455	  if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2456
2457	  /* Do not translate the character after the \, so that we can
2458	     distinguish, e.g., \B from \b, even if we normally would
2459	     translate, e.g., B to b.  */
2460	  PATFETCH_RAW (c);
2461
2462	  switch (c)
2463	    {
2464	    case '(':
2465	      if (syntax & RE_NO_BK_PARENS)
2466		goto normal_backslash;
2467
2468	    handle_open:
2469	      bufp->re_nsub++;
2470	      regnum++;
2471
2472	      if (COMPILE_STACK_FULL)
2473		{
2474		  RETALLOC (compile_stack.stack, compile_stack.size << 1,
2475			    compile_stack_elt_t);
2476		  if (compile_stack.stack == NULL) return REG_ESPACE;
2477
2478		  compile_stack.size <<= 1;
2479		}
2480
2481	      /* These are the values to restore when we hit end of this
2482		 group.	 They are all relative offsets, so that if the
2483		 whole pattern moves because of realloc, they will still
2484		 be valid.  */
2485	      COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2486	      COMPILE_STACK_TOP.fixup_alt_jump
2487		= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2488	      COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2489	      COMPILE_STACK_TOP.regnum = regnum;
2490
2491	      /* We will eventually replace the 0 with the number of
2492		 groups inner to this one.  But do not push a
2493		 start_memory for groups beyond the last one we can
2494		 represent in the compiled pattern.  */
2495	      if (regnum <= MAX_REGNUM)
2496		{
2497		  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2498		  BUF_PUSH_3 (start_memory, regnum, 0);
2499		}
2500
2501	      compile_stack.avail++;
2502
2503	      fixup_alt_jump = 0;
2504	      laststart = 0;
2505	      begalt = b;
2506	      /* If we've reached MAX_REGNUM groups, then this open
2507		 won't actually generate any code, so we'll have to
2508		 clear pending_exact explicitly.  */
2509	      pending_exact = 0;
2510	      break;
2511
2512
2513	    case ')':
2514	      if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2515
2516	      if (COMPILE_STACK_EMPTY)
2517		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2518		  goto normal_backslash;
2519		else
2520		  FREE_STACK_RETURN (REG_ERPAREN);
2521
2522	    handle_close:
2523	      if (fixup_alt_jump)
2524		{ /* Push a dummy failure point at the end of the
2525		     alternative for a possible future
2526		     `pop_failure_jump' to pop.	 See comments at
2527		     `push_dummy_failure' in `re_match_2'.  */
2528		  BUF_PUSH (push_dummy_failure);
2529
2530		  /* We allocated space for this jump when we assigned
2531		     to `fixup_alt_jump', in the `handle_alt' case below.  */
2532		  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2533		}
2534
2535	      /* See similar code for backslashed left paren above.  */
2536	      if (COMPILE_STACK_EMPTY)
2537		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2538		  goto normal_char;
2539		else
2540		  FREE_STACK_RETURN (REG_ERPAREN);
2541
2542	      /* Since we just checked for an empty stack above, this
2543		 ``can't happen''.  */
2544	      assert (compile_stack.avail != 0);
2545	      {
2546		/* We don't just want to restore into `regnum', because
2547		   later groups should continue to be numbered higher,
2548		   as in `(ab)c(de)' -- the second group is #2.	 */
2549		regnum_t this_group_regnum;
2550
2551		compile_stack.avail--;
2552		begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2553		fixup_alt_jump
2554		  = COMPILE_STACK_TOP.fixup_alt_jump
2555		    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2556		    : 0;
2557		laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2558		this_group_regnum = COMPILE_STACK_TOP.regnum;
2559		/* If we've reached MAX_REGNUM groups, then this open
2560		   won't actually generate any code, so we'll have to
2561		   clear pending_exact explicitly.  */
2562		pending_exact = 0;
2563
2564		/* We're at the end of the group, so now we know how many
2565		   groups were inside this one.	 */
2566		if (this_group_regnum <= MAX_REGNUM)
2567		  {
2568		    unsigned char *inner_group_loc
2569		      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2570
2571		    *inner_group_loc = regnum - this_group_regnum;
2572		    BUF_PUSH_3 (stop_memory, this_group_regnum,
2573				regnum - this_group_regnum);
2574		  }
2575	      }
2576	      break;
2577
2578
2579	    case '|':					/* `\|'.  */
2580	      if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2581		goto normal_backslash;
2582	    handle_alt:
2583	      if (syntax & RE_LIMITED_OPS)
2584		goto normal_char;
2585
2586	      /* Insert before the previous alternative a jump which
2587		 jumps to this alternative if the former fails.	 */
2588	      GET_BUFFER_SPACE (3);
2589	      INSERT_JUMP (on_failure_jump, begalt, b + 6);
2590	      pending_exact = 0;
2591	      b += 3;
2592
2593	      /* The alternative before this one has a jump after it
2594		 which gets executed if it gets matched.  Adjust that
2595		 jump so it will jump to this alternative's analogous
2596		 jump (put in below, which in turn will jump to the next
2597		 (if any) alternative's such jump, etc.).  The last such
2598		 jump jumps to the correct final destination.  A picture:
2599			  _____ _____
2600			  |   | |   |
2601			  |   v |   v
2602			 a | b	 | c
2603
2604		 If we are at `b', then fixup_alt_jump right now points to a
2605		 three-byte space after `a'.  We'll put in the jump, set
2606		 fixup_alt_jump to right after `b', and leave behind three
2607		 bytes which we'll fill in when we get to after `c'.  */
2608
2609	      if (fixup_alt_jump)
2610		STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2611
2612	      /* Mark and leave space for a jump after this alternative,
2613		 to be filled in later either by next alternative or
2614		 when know we're at the end of a series of alternatives.  */
2615	      fixup_alt_jump = b;
2616	      GET_BUFFER_SPACE (3);
2617	      b += 3;
2618
2619	      laststart = 0;
2620	      begalt = b;
2621	      break;
2622
2623
2624	    case '{':
2625	      /* If \{ is a literal.  */
2626	      if (!(syntax & RE_INTERVALS)
2627		     /* If we're at `\{' and it's not the open-interval
2628			operator.  */
2629		  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2630		  || (p - 2 == pattern	&&  p == pend))
2631		goto normal_backslash;
2632
2633	    handle_interval:
2634	      {
2635		/* If got here, then the syntax allows intervals.  */
2636
2637		/* At least (most) this many matches must be made.  */
2638		int lower_bound = -1, upper_bound = -1;
2639
2640		beg_interval = p - 1;
2641
2642		if (p == pend)
2643		  {
2644		    if (syntax & RE_NO_BK_BRACES)
2645		      goto unfetch_interval;
2646		    else
2647		      FREE_STACK_RETURN (REG_EBRACE);
2648		  }
2649
2650		GET_UNSIGNED_NUMBER (lower_bound);
2651
2652		if (c == ',')
2653		  {
2654		    GET_UNSIGNED_NUMBER (upper_bound);
2655		    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2656		  }
2657		else
2658		  /* Interval such as `{1}' => match exactly once. */
2659		  upper_bound = lower_bound;
2660
2661		if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2662		    || lower_bound > upper_bound)
2663		  {
2664		    if (syntax & RE_NO_BK_BRACES)
2665		      goto unfetch_interval;
2666		    else
2667		      FREE_STACK_RETURN (REG_BADBR);
2668		  }
2669
2670		if (!(syntax & RE_NO_BK_BRACES))
2671		  {
2672		    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2673
2674		    PATFETCH (c);
2675		  }
2676
2677		if (c != '}')
2678		  {
2679		    if (syntax & RE_NO_BK_BRACES)
2680		      goto unfetch_interval;
2681		    else
2682		      FREE_STACK_RETURN (REG_BADBR);
2683		  }
2684
2685		/* We just parsed a valid interval.  */
2686
2687		/* If it's invalid to have no preceding re.  */
2688		if (!laststart)
2689		  {
2690		    if (syntax & RE_CONTEXT_INVALID_OPS)
2691		      FREE_STACK_RETURN (REG_BADRPT);
2692		    else if (syntax & RE_CONTEXT_INDEP_OPS)
2693		      laststart = b;
2694		    else
2695		      goto unfetch_interval;
2696		  }
2697
2698		/* If the upper bound is zero, don't want to succeed at
2699		   all; jump from `laststart' to `b + 3', which will be
2700		   the end of the buffer after we insert the jump.  */
2701		 if (upper_bound == 0)
2702		   {
2703		     GET_BUFFER_SPACE (3);
2704		     INSERT_JUMP (jump, laststart, b + 3);
2705		     b += 3;
2706		   }
2707
2708		 /* Otherwise, we have a nontrivial interval.  When
2709		    we're all done, the pattern will look like:
2710		      set_number_at <jump count> <upper bound>
2711		      set_number_at <succeed_n count> <lower bound>
2712		      succeed_n <after jump addr> <succeed_n count>
2713		      <body of loop>
2714		      jump_n <succeed_n addr> <jump count>
2715		    (The upper bound and `jump_n' are omitted if
2716		    `upper_bound' is 1, though.)  */
2717		 else
2718		   { /* If the upper bound is > 1, we need to insert
2719			more at the end of the loop.  */
2720		     unsigned nbytes = 10 + (upper_bound > 1) * 10;
2721
2722		     GET_BUFFER_SPACE (nbytes);
2723
2724		     /* Initialize lower bound of the `succeed_n', even
2725			though it will be set during matching by its
2726			attendant `set_number_at' (inserted next),
2727			because `re_compile_fastmap' needs to know.
2728			Jump to the `jump_n' we might insert below.  */
2729		     INSERT_JUMP2 (succeed_n, laststart,
2730				   b + 5 + (upper_bound > 1) * 5,
2731				   lower_bound);
2732		     b += 5;
2733
2734		     /* Code to initialize the lower bound.  Insert
2735			before the `succeed_n'.	 The `5' is the last two
2736			bytes of this `set_number_at', plus 3 bytes of
2737			the following `succeed_n'.  */
2738		     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2739		     b += 5;
2740
2741		     if (upper_bound > 1)
2742		       { /* More than one repetition is allowed, so
2743			    append a backward jump to the `succeed_n'
2744			    that starts this interval.
2745
2746			    When we've reached this during matching,
2747			    we'll have matched the interval once, so
2748			    jump back only `upper_bound - 1' times.  */
2749			 STORE_JUMP2 (jump_n, b, laststart + 5,
2750				      upper_bound - 1);
2751			 b += 5;
2752
2753			 /* The location we want to set is the second
2754			    parameter of the `jump_n'; that is `b-2' as
2755			    an absolute address.  `laststart' will be
2756			    the `set_number_at' we're about to insert;
2757			    `laststart+3' the number to set, the source
2758			    for the relative address.  But we are
2759			    inserting into the middle of the pattern --
2760			    so everything is getting moved up by 5.
2761			    Conclusion: (b - 2) - (laststart + 3) + 5,
2762			    i.e., b - laststart.
2763
2764			    We insert this at the beginning of the loop
2765			    so that if we fail during matching, we'll
2766			    reinitialize the bounds.  */
2767			 insert_op2 (set_number_at, laststart, b - laststart,
2768				     upper_bound - 1, b);
2769			 b += 5;
2770		       }
2771		   }
2772		pending_exact = 0;
2773		beg_interval = NULL;
2774	      }
2775	      break;
2776
2777	    unfetch_interval:
2778	      /* If an invalid interval, match the characters as literals.  */
2779	       assert (beg_interval);
2780	       p = beg_interval;
2781	       beg_interval = NULL;
2782
2783	       /* normal_char and normal_backslash need `c'.  */
2784	       PATFETCH (c);
2785
2786	       if (!(syntax & RE_NO_BK_BRACES))
2787		 {
2788		   if (p > pattern  &&	p[-1] == '\\')
2789		     goto normal_backslash;
2790		 }
2791	       goto normal_char;
2792
2793#ifdef emacs
2794	    /* There is no way to specify the before_dot and after_dot
2795	       operators.  rms says this is ok.	 --karl	 */
2796	    case '=':
2797	      BUF_PUSH (at_dot);
2798	      break;
2799
2800	    case 's':
2801	      laststart = b;
2802	      PATFETCH (c);
2803	      BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2804	      break;
2805
2806	    case 'S':
2807	      laststart = b;
2808	      PATFETCH (c);
2809	      BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2810	      break;
2811
2812	    case 'c':
2813	      laststart = b;
2814	      PATFETCH_RAW (c);
2815	      BUF_PUSH_2 (categoryspec, c);
2816	      break;
2817
2818	    case 'C':
2819	      laststart = b;
2820	      PATFETCH_RAW (c);
2821	      BUF_PUSH_2 (notcategoryspec, c);
2822	      break;
2823#endif /* emacs */
2824
2825
2826	    case 'w':
2827	      laststart = b;
2828	      BUF_PUSH (wordchar);
2829	      break;
2830
2831
2832	    case 'W':
2833	      laststart = b;
2834	      BUF_PUSH (notwordchar);
2835	      break;
2836
2837
2838	    case '<':
2839	      BUF_PUSH (wordbeg);
2840	      break;
2841
2842	    case '>':
2843	      BUF_PUSH (wordend);
2844	      break;
2845
2846	    case 'b':
2847	      BUF_PUSH (wordbound);
2848	      break;
2849
2850	    case 'B':
2851	      BUF_PUSH (notwordbound);
2852	      break;
2853
2854	    case '`':
2855	      BUF_PUSH (begbuf);
2856	      break;
2857
2858	    case '\'':
2859	      BUF_PUSH (endbuf);
2860	      break;
2861
2862	    case '1': case '2': case '3': case '4': case '5':
2863	    case '6': case '7': case '8': case '9':
2864	      if (syntax & RE_NO_BK_REFS)
2865		goto normal_char;
2866
2867	      c1 = c - '0';
2868
2869	      if (c1 > regnum)
2870		FREE_STACK_RETURN (REG_ESUBREG);
2871
2872	      /* Can't back reference to a subexpression if inside of it.  */
2873	      if (group_in_compile_stack (compile_stack, c1))
2874		goto normal_char;
2875
2876	      laststart = b;
2877	      BUF_PUSH_2 (duplicate, c1);
2878	      break;
2879
2880
2881	    case '+':
2882	    case '?':
2883	      if (syntax & RE_BK_PLUS_QM)
2884		goto handle_plus;
2885	      else
2886		goto normal_backslash;
2887
2888	    default:
2889	    normal_backslash:
2890	      /* You might think it would be useful for \ to mean
2891		 not to translate; but if we don't translate it
2892		 it will never match anything.	*/
2893	      c = TRANSLATE (c);
2894	      goto normal_char;
2895	    }
2896	  break;
2897
2898
2899	default:
2900	/* Expects the character in `c'.  */
2901	normal_char:
2902	  p1 = p - 1;		/* P1 points the head of C.  */
2903#ifdef emacs
2904	  if (bufp->multibyte)
2905	    {
2906	      c = STRING_CHAR (p1, pend - p1);
2907	      c = TRANSLATE (c);
2908	      /* Set P to the next character boundary.  */
2909	      p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2910	    }
2911#endif
2912	      /* If no exactn currently being built.  */
2913	  if (!pending_exact
2914
2915	      /* If last exactn not at current position.  */
2916	      || pending_exact + *pending_exact + 1 != b
2917
2918	      /* We have only one byte following the exactn for the count.  */
2919	      || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
2920
2921	      /* If followed by a repetition operator.	*/
2922	      || (p != pend && (*p == '*' || *p == '^'))
2923	      || ((syntax & RE_BK_PLUS_QM)
2924		  ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
2925		  : p != pend && (*p == '+' || *p == '?'))
2926	      || ((syntax & RE_INTERVALS)
2927		  && ((syntax & RE_NO_BK_BRACES)
2928		      ? p != pend && *p == '{'
2929		      : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
2930	    {
2931	      /* Start building a new exactn.  */
2932
2933	      laststart = b;
2934
2935	      BUF_PUSH_2 (exactn, 0);
2936	      pending_exact = b - 1;
2937	    }
2938
2939#ifdef emacs
2940	  if (! SINGLE_BYTE_CHAR_P (c))
2941	    {
2942	      unsigned char work[4], *str;
2943	      int i = CHAR_STRING (c, work, str);
2944	      int j;
2945	      for (j = 0; j < i; j++)
2946		{
2947		  BUF_PUSH (str[j]);
2948		  (*pending_exact)++;
2949		}
2950	    }
2951	  else
2952#endif
2953	    {
2954	      BUF_PUSH (c);
2955	      (*pending_exact)++;
2956	    }
2957	  break;
2958	} /* switch (c) */
2959    } /* while p != pend */
2960
2961
2962  /* Through the pattern now.  */
2963
2964  if (fixup_alt_jump)
2965    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2966
2967  if (!COMPILE_STACK_EMPTY)
2968    FREE_STACK_RETURN (REG_EPAREN);
2969
2970  /* If we don't want backtracking, force success
2971     the first time we reach the end of the compiled pattern.  */
2972  if (syntax & RE_NO_POSIX_BACKTRACKING)
2973    BUF_PUSH (succeed);
2974
2975  free (compile_stack.stack);
2976
2977  /* We have succeeded; set the length of the buffer.  */
2978  bufp->used = b - bufp->buffer;
2979
2980#ifdef DEBUG
2981  if (debug)
2982    {
2983      DEBUG_PRINT1 ("\nCompiled pattern: \n");
2984      print_compiled_pattern (bufp);
2985    }
2986#endif /* DEBUG */
2987
2988#ifndef MATCH_MAY_ALLOCATE
2989  /* Initialize the failure stack to the largest possible stack.  This
2990     isn't necessary unless we're trying to avoid calling alloca in
2991     the search and match routines.  */
2992  {
2993    int num_regs = bufp->re_nsub + 1;
2994
2995    if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
2996      {
2997	fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
2998
2999#ifdef emacs
3000	if (! fail_stack.stack)
3001	  fail_stack.stack
3002	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
3003					    * sizeof (fail_stack_elt_t));
3004	else
3005	  fail_stack.stack
3006	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
3007					     (fail_stack.size
3008					      * sizeof (fail_stack_elt_t)));
3009#else /* not emacs */
3010	if (! fail_stack.stack)
3011	  fail_stack.stack
3012	    = (fail_stack_elt_t *) malloc (fail_stack.size
3013					   * sizeof (fail_stack_elt_t));
3014	else
3015	  fail_stack.stack
3016	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
3017					    (fail_stack.size
3018					     * sizeof (fail_stack_elt_t)));
3019#endif /* not emacs */
3020      }
3021
3022    regex_grow_registers (num_regs);
3023  }
3024#endif /* not MATCH_MAY_ALLOCATE */
3025
3026  return REG_NOERROR;
3027} /* regex_compile */
3028
3029/* Subroutines for `regex_compile'.  */
3030
3031/* Store OP at LOC followed by two-byte integer parameter ARG.	*/
3032
3033static void
3034store_op1 (op, loc, arg)
3035    re_opcode_t op;
3036    unsigned char *loc;
3037    int arg;
3038{
3039  *loc = (unsigned char) op;
3040  STORE_NUMBER (loc + 1, arg);
3041}
3042
3043
3044/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
3045
3046static void
3047store_op2 (op, loc, arg1, arg2)
3048    re_opcode_t op;
3049    unsigned char *loc;
3050    int arg1, arg2;
3051{
3052  *loc = (unsigned char) op;
3053  STORE_NUMBER (loc + 1, arg1);
3054  STORE_NUMBER (loc + 3, arg2);
3055}
3056
3057
3058/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3059   for OP followed by two-byte integer parameter ARG.  */
3060
3061static void
3062insert_op1 (op, loc, arg, end)
3063    re_opcode_t op;
3064    unsigned char *loc;
3065    int arg;
3066    unsigned char *end;
3067{
3068  register unsigned char *pfrom = end;
3069  register unsigned char *pto = end + 3;
3070
3071  while (pfrom != loc)
3072    *--pto = *--pfrom;
3073
3074  store_op1 (op, loc, arg);
3075}
3076
3077
3078/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
3079
3080static void
3081insert_op2 (op, loc, arg1, arg2, end)
3082    re_opcode_t op;
3083    unsigned char *loc;
3084    int arg1, arg2;
3085    unsigned char *end;
3086{
3087  register unsigned char *pfrom = end;
3088  register unsigned char *pto = end + 5;
3089
3090  while (pfrom != loc)
3091    *--pto = *--pfrom;
3092
3093  store_op2 (op, loc, arg1, arg2);
3094}
3095
3096
3097/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
3098   after an alternative or a begin-subexpression.  We assume there is at
3099   least one character before the ^.  */
3100
3101static boolean
3102at_begline_loc_p (pattern, p, syntax)
3103    const char *pattern, *p;
3104    reg_syntax_t syntax;
3105{
3106  const char *prev = p - 2;
3107  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3108
3109  return
3110       /* After a subexpression?  */
3111       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3112       /* After an alternative?	 */
3113    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3114}
3115
3116
3117/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
3118   at least one character after the $, i.e., `P < PEND'.  */
3119
3120static boolean
3121at_endline_loc_p (p, pend, syntax)
3122    const char *p, *pend;
3123    int syntax;
3124{
3125  const char *next = p;
3126  boolean next_backslash = *next == '\\';
3127  const char *next_next = p + 1 < pend ? p + 1 : 0;
3128
3129  return
3130       /* Before a subexpression?  */
3131       (syntax & RE_NO_BK_PARENS ? *next == ')'
3132	: next_backslash && next_next && *next_next == ')')
3133       /* Before an alternative?  */
3134    || (syntax & RE_NO_BK_VBAR ? *next == '|'
3135	: next_backslash && next_next && *next_next == '|');
3136}
3137
3138
3139/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3140   false if it's not.  */
3141
3142static boolean
3143group_in_compile_stack (compile_stack, regnum)
3144    compile_stack_type compile_stack;
3145    regnum_t regnum;
3146{
3147  int this_element;
3148
3149  for (this_element = compile_stack.avail - 1;
3150       this_element >= 0;
3151       this_element--)
3152    if (compile_stack.stack[this_element].regnum == regnum)
3153      return true;
3154
3155  return false;
3156}
3157
3158/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3159   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
3160   characters can start a string that matches the pattern.  This fastmap
3161   is used by re_search to skip quickly over impossible starting points.
3162
3163   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3164   area as BUFP->fastmap.
3165
3166   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3167   the pattern buffer.
3168
3169   Returns 0 if we succeed, -2 if an internal error.   */
3170
3171int
3172re_compile_fastmap (bufp)
3173     struct re_pattern_buffer *bufp;
3174{
3175  int i, j, k;
3176#ifdef MATCH_MAY_ALLOCATE
3177  fail_stack_type fail_stack;
3178#endif
3179#ifndef REGEX_MALLOC
3180  char *destination;
3181#endif
3182  /* We don't push any register information onto the failure stack.  */
3183  unsigned num_regs = 0;
3184
3185  register char *fastmap = bufp->fastmap;
3186  unsigned char *pattern = bufp->buffer;
3187  unsigned long size = bufp->used;
3188  unsigned char *p = pattern;
3189  register unsigned char *pend = pattern + size;
3190
3191  /* This holds the pointer to the failure stack, when
3192     it is allocated relocatably.  */
3193  fail_stack_elt_t *failure_stack_ptr;
3194
3195  /* Assume that each path through the pattern can be null until
3196     proven otherwise.	We set this false at the bottom of switch
3197     statement, to which we get only if a particular path doesn't
3198     match the empty string.  */
3199  boolean path_can_be_null = true;
3200
3201  /* We aren't doing a `succeed_n' to begin with.  */
3202  boolean succeed_n_p = false;
3203
3204  /* If all elements for base leading-codes in fastmap is set, this
3205     flag is set true.	*/
3206  boolean match_any_multibyte_characters = false;
3207
3208  /* Maximum code of simple (single byte) character. */
3209  int simple_char_max;
3210
3211  assert (fastmap != NULL && p != NULL);
3212
3213  INIT_FAIL_STACK ();
3214  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.	*/
3215  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
3216  bufp->can_be_null = 0;
3217
3218  while (1)
3219    {
3220      if (p == pend || *p == succeed)
3221	{
3222	  /* We have reached the (effective) end of pattern.  */
3223	  if (!FAIL_STACK_EMPTY ())
3224	    {
3225	      bufp->can_be_null |= path_can_be_null;
3226
3227	      /* Reset for next path.  */
3228	      path_can_be_null = true;
3229
3230	      p = fail_stack.stack[--fail_stack.avail].pointer;
3231
3232	      continue;
3233	    }
3234	  else
3235	    break;
3236	}
3237
3238      /* We should never be about to go beyond the end of the pattern.	*/
3239      assert (p < pend);
3240
3241      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3242	{
3243
3244	/* I guess the idea here is to simply not bother with a fastmap
3245	   if a backreference is used, since it's too hard to figure out
3246	   the fastmap for the corresponding group.  Setting
3247	   `can_be_null' stops `re_search_2' from using the fastmap, so
3248	   that is all we do.  */
3249	case duplicate:
3250	  bufp->can_be_null = 1;
3251	  goto done;
3252
3253
3254      /* Following are the cases which match a character.  These end
3255	 with `break'.	*/
3256
3257	case exactn:
3258	  fastmap[p[1]] = 1;
3259	  break;
3260
3261
3262#ifndef emacs
3263	case charset:
3264	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3265	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3266	      fastmap[j] = 1;
3267	  break;
3268
3269
3270	case charset_not:
3271	  /* Chars beyond end of map must be allowed.  */
3272	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3273	    fastmap[j] = 1;
3274
3275	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3276	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3277	      fastmap[j] = 1;
3278	  break;
3279
3280
3281	case wordchar:
3282	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3283	    if (SYNTAX (j) == Sword)
3284	      fastmap[j] = 1;
3285	  break;
3286
3287
3288	case notwordchar:
3289	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3290	    if (SYNTAX (j) != Sword)
3291	      fastmap[j] = 1;
3292	  break;
3293#else  /* emacs */
3294	case charset:
3295	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3296	       j >= 0; j--)
3297	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3298	      fastmap[j] = 1;
3299
3300	  if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3301	      && match_any_multibyte_characters == false)
3302	    {
3303	      /* Set fastmap[I] 1 where I is a base leading code of each
3304		 multibyte character in the range table. */
3305	      int c, count;
3306
3307	      /* Make P points the range table. */
3308	      p += CHARSET_BITMAP_SIZE (&p[-2]);
3309
3310	      /* Extract the number of ranges in range table into
3311		 COUNT.	 */
3312	      EXTRACT_NUMBER_AND_INCR (count, p);
3313	      for (; count > 0; count--, p += 2 * 3) /* XXX */
3314		{
3315		  /* Extract the start of each range.  */
3316		  EXTRACT_CHARACTER (c, p);
3317		  j = CHAR_CHARSET (c);
3318		  fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3319		}
3320	    }
3321	  break;
3322
3323
3324	case charset_not:
3325	  /* Chars beyond end of bitmap are possible matches.
3326	     All the single-byte codes can occur in multibyte buffers.
3327	     So any that are not listed in the charset
3328	     are possible matches, even in multibyte buffers.  */
3329	  simple_char_max = (1 << BYTEWIDTH);
3330	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3331	       j < simple_char_max; j++)
3332	    fastmap[j] = 1;
3333
3334	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3335	       j >= 0; j--)
3336	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3337	      fastmap[j] = 1;
3338
3339	  if (bufp->multibyte)
3340	    /* Any character set can possibly contain a character
3341	       which doesn't match the specified set of characters.  */
3342	    {
3343	    set_fastmap_for_multibyte_characters:
3344	      if (match_any_multibyte_characters == false)
3345		{
3346		  for (j = 0x80; j < 0xA0; j++)	/* XXX */
3347		    if (BASE_LEADING_CODE_P (j))
3348		      fastmap[j] = 1;
3349		  match_any_multibyte_characters = true;
3350		}
3351	    }
3352	  break;
3353
3354
3355	case wordchar:
3356	  /* All the single-byte codes can occur in multibyte buffers,
3357	     and they may have word syntax.  So do consider them.  */
3358	  simple_char_max = (1 << BYTEWIDTH);
3359	  for (j = 0; j < simple_char_max; j++)
3360	    if (SYNTAX (j) == Sword)
3361	      fastmap[j] = 1;
3362
3363	  if (bufp->multibyte)
3364	    /* Any character set can possibly contain a character
3365	       whose syntax is `Sword'.	 */
3366	    goto set_fastmap_for_multibyte_characters;
3367	  break;
3368
3369
3370	case notwordchar:
3371	  /* All the single-byte codes can occur in multibyte buffers,
3372	     and they may not have word syntax.  So do consider them.  */
3373	  simple_char_max = (1 << BYTEWIDTH);
3374	  for (j = 0; j < simple_char_max; j++)
3375	    if (SYNTAX (j) != Sword)
3376	      fastmap[j] = 1;
3377
3378	  if (bufp->multibyte)
3379	    /* Any character set can possibly contain a character
3380	       whose syntax is not `Sword'.  */
3381	    goto set_fastmap_for_multibyte_characters;
3382	  break;
3383#endif
3384
3385	case anychar:
3386	  {
3387	    int fastmap_newline = fastmap['\n'];
3388
3389	    /* `.' matches anything, except perhaps newline.
3390	       Even in a multibyte buffer, it should match any
3391	       conceivable byte value for the fastmap.  */
3392	    if (bufp->multibyte)
3393	      match_any_multibyte_characters = true;
3394
3395	    simple_char_max = (1 << BYTEWIDTH);
3396	    for (j = 0; j < simple_char_max; j++)
3397	      fastmap[j] = 1;
3398
3399	    /* ... except perhaps newline.  */
3400	    if (!(bufp->syntax & RE_DOT_NEWLINE))
3401	      fastmap['\n'] = fastmap_newline;
3402
3403	    /* Return if we have already set `can_be_null'; if we have,
3404	       then the fastmap is irrelevant.	Something's wrong here.	 */
3405	    else if (bufp->can_be_null)
3406	      goto done;
3407
3408	    /* Otherwise, have to check alternative paths.  */
3409	    break;
3410	  }
3411
3412#ifdef emacs
3413	case wordbound:
3414	case notwordbound:
3415	case wordbeg:
3416	case wordend:
3417	case notsyntaxspec:
3418	case syntaxspec:
3419	  /* This match depends on text properties.  These end with
3420	     aborting optimizations.  */
3421	  bufp->can_be_null = 1;
3422	  goto done;
3423#if 0
3424	  k = *p++;
3425	  simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3426	  for (j = 0; j < simple_char_max; j++)
3427	    if (SYNTAX (j) == (enum syntaxcode) k)
3428	      fastmap[j] = 1;
3429
3430	  if (bufp->multibyte)
3431	    /* Any character set can possibly contain a character
3432	       whose syntax is K.  */
3433	    goto set_fastmap_for_multibyte_characters;
3434	  break;
3435
3436	case notsyntaxspec:
3437	  k = *p++;
3438	  simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3439	  for (j = 0; j < simple_char_max; j++)
3440	    if (SYNTAX (j) != (enum syntaxcode) k)
3441	      fastmap[j] = 1;
3442
3443	  if (bufp->multibyte)
3444	    /* Any character set can possibly contain a character
3445	       whose syntax is not K.  */
3446	    goto set_fastmap_for_multibyte_characters;
3447	  break;
3448#endif
3449
3450
3451	case categoryspec:
3452	  k = *p++;
3453	  simple_char_max = (1 << BYTEWIDTH);
3454	  for (j = 0; j < simple_char_max; j++)
3455	    if (CHAR_HAS_CATEGORY (j, k))
3456	      fastmap[j] = 1;
3457
3458	  if (bufp->multibyte)
3459	    /* Any character set can possibly contain a character
3460	       whose category is K.  */
3461	    goto set_fastmap_for_multibyte_characters;
3462	  break;
3463
3464
3465	case notcategoryspec:
3466	  k = *p++;
3467	  simple_char_max = (1 << BYTEWIDTH);
3468	  for (j = 0; j < simple_char_max; j++)
3469	    if (!CHAR_HAS_CATEGORY (j, k))
3470	      fastmap[j] = 1;
3471
3472	  if (bufp->multibyte)
3473	    /* Any character set can possibly contain a character
3474	       whose category is not K.	 */
3475	    goto set_fastmap_for_multibyte_characters;
3476	  break;
3477
3478      /* All cases after this match the empty string.  These end with
3479	 `continue'.  */
3480
3481
3482	case before_dot:
3483	case at_dot:
3484	case after_dot:
3485	  continue;
3486#endif /* emacs */
3487
3488
3489	case no_op:
3490	case begline:
3491	case endline:
3492	case begbuf:
3493	case endbuf:
3494#ifndef emacs
3495	case wordbound:
3496	case notwordbound:
3497	case wordbeg:
3498	case wordend:
3499#endif
3500	case push_dummy_failure:
3501	  continue;
3502
3503
3504	case jump_n:
3505	case pop_failure_jump:
3506	case maybe_pop_jump:
3507	case jump:
3508	case jump_past_alt:
3509	case dummy_failure_jump:
3510	  EXTRACT_NUMBER_AND_INCR (j, p);
3511	  p += j;
3512	  if (j > 0)
3513	    continue;
3514
3515	  /* Jump backward implies we just went through the body of a
3516	     loop and matched nothing.	Opcode jumped to should be
3517	     `on_failure_jump' or `succeed_n'.	Just treat it like an
3518	     ordinary jump.  For a * loop, it has pushed its failure
3519	     point already; if so, discard that as redundant.  */
3520	  if ((re_opcode_t) *p != on_failure_jump
3521	      && (re_opcode_t) *p != succeed_n)
3522	    continue;
3523
3524	  p++;
3525	  EXTRACT_NUMBER_AND_INCR (j, p);
3526	  p += j;
3527
3528	  /* If what's on the stack is where we are now, pop it.  */
3529	  if (!FAIL_STACK_EMPTY ()
3530	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3531	    fail_stack.avail--;
3532
3533	  continue;
3534
3535
3536	case on_failure_jump:
3537	case on_failure_keep_string_jump:
3538	handle_on_failure_jump:
3539	  EXTRACT_NUMBER_AND_INCR (j, p);
3540
3541	  /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3542	     end of the pattern.  We don't want to push such a point,
3543	     since when we restore it above, entering the switch will
3544	     increment `p' past the end of the pattern.	 We don't need
3545	     to push such a point since we obviously won't find any more
3546	     fastmap entries beyond `pend'.  Such a pattern can match
3547	     the null string, though.  */
3548	  if (p + j < pend)
3549	    {
3550	      if (!PUSH_PATTERN_OP (p + j, fail_stack))
3551		{
3552		  RESET_FAIL_STACK ();
3553		  return -2;
3554		}
3555	    }
3556	  else
3557	    bufp->can_be_null = 1;
3558
3559	  if (succeed_n_p)
3560	    {
3561	      EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.	*/
3562	      succeed_n_p = false;
3563	    }
3564
3565	  continue;
3566
3567
3568	case succeed_n:
3569	  /* Get to the number of times to succeed.  */
3570	  p += 2;
3571
3572	  /* Increment p past the n for when k != 0.  */
3573	  EXTRACT_NUMBER_AND_INCR (k, p);
3574	  if (k == 0)
3575	    {
3576	      p -= 4;
3577	      succeed_n_p = true;  /* Spaghetti code alert.  */
3578	      goto handle_on_failure_jump;
3579	    }
3580	  continue;
3581
3582
3583	case set_number_at:
3584	  p += 4;
3585	  continue;
3586
3587
3588	case start_memory:
3589	case stop_memory:
3590	  p += 2;
3591	  continue;
3592
3593
3594	default:
3595	  abort (); /* We have listed all the cases.  */
3596	} /* switch *p++ */
3597
3598      /* Getting here means we have found the possible starting
3599	 characters for one path of the pattern -- and that the empty
3600	 string does not match.	 We need not follow this path further.
3601	 Instead, look at the next alternative (remembered on the
3602	 stack), or quit if no more.  The test at the top of the loop
3603	 does these things.  */
3604      path_can_be_null = false;
3605      p = pend;
3606    } /* while p */
3607
3608  /* Set `can_be_null' for the last path (also the first path, if the
3609     pattern is empty).	 */
3610  bufp->can_be_null |= path_can_be_null;
3611
3612 done:
3613  RESET_FAIL_STACK ();
3614  return 0;
3615} /* re_compile_fastmap */
3616
3617/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3618   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3619   this memory for recording register information.  STARTS and ENDS
3620   must be allocated using the malloc library routine, and must each
3621   be at least NUM_REGS * sizeof (regoff_t) bytes long.
3622
3623   If NUM_REGS == 0, then subsequent matches should allocate their own
3624   register data.
3625
3626   Unless this function is called, the first search or match using
3627   PATTERN_BUFFER will allocate its own register data, without
3628   freeing the old data.  */
3629
3630void
3631re_set_registers (bufp, regs, num_regs, starts, ends)
3632    struct re_pattern_buffer *bufp;
3633    struct re_registers *regs;
3634    unsigned num_regs;
3635    regoff_t *starts, *ends;
3636{
3637  if (num_regs)
3638    {
3639      bufp->regs_allocated = REGS_REALLOCATE;
3640      regs->num_regs = num_regs;
3641      regs->start = starts;
3642      regs->end = ends;
3643    }
3644  else
3645    {
3646      bufp->regs_allocated = REGS_UNALLOCATED;
3647      regs->num_regs = 0;
3648      regs->start = regs->end = (regoff_t *) 0;
3649    }
3650}
3651
3652/* Searching routines.	*/
3653
3654/* Like re_search_2, below, but only one string is specified, and
3655   doesn't let you say where to stop matching. */
3656
3657int
3658re_search (bufp, string, size, startpos, range, regs)
3659     struct re_pattern_buffer *bufp;
3660     const char *string;
3661     int size, startpos, range;
3662     struct re_registers *regs;
3663{
3664  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3665		      regs, size);
3666}
3667
3668/* End address of virtual concatenation of string.  */
3669#define STOP_ADDR_VSTRING(P)				\
3670  (((P) >= size1 ? string2 + size2 : string1 + size1))
3671
3672/* Address of POS in the concatenation of virtual string. */
3673#define POS_ADDR_VSTRING(POS)					\
3674  (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3675
3676/* Using the compiled pattern in BUFP->buffer, first tries to match the
3677   virtual concatenation of STRING1 and STRING2, starting first at index
3678   STARTPOS, then at STARTPOS + 1, and so on.
3679
3680   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3681
3682   RANGE is how far to scan while trying to match.  RANGE = 0 means try
3683   only at STARTPOS; in general, the last start tried is STARTPOS +
3684   RANGE.
3685
3686   In REGS, return the indices of the virtual concatenation of STRING1
3687   and STRING2 that matched the entire BUFP->buffer and its contained
3688   subexpressions.
3689
3690   Do not consider matching one past the index STOP in the virtual
3691   concatenation of STRING1 and STRING2.
3692
3693   We return either the position in the strings at which the match was
3694   found, -1 if no match, or -2 if error (such as failure
3695   stack overflow).  */
3696
3697int
3698re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3699     struct re_pattern_buffer *bufp;
3700     const char *string1, *string2;
3701     int size1, size2;
3702     int startpos;
3703     int range;
3704     struct re_registers *regs;
3705     int stop;
3706{
3707  int val;
3708  register char *fastmap = bufp->fastmap;
3709  register RE_TRANSLATE_TYPE translate = bufp->translate;
3710  int total_size = size1 + size2;
3711  int endpos = startpos + range;
3712  int anchored_start = 0;
3713
3714  /* Nonzero if we have to concern multibyte character.	 */
3715  int multibyte = bufp->multibyte;
3716
3717  /* Check for out-of-range STARTPOS.  */
3718  if (startpos < 0 || startpos > total_size)
3719    return -1;
3720
3721  /* Fix up RANGE if it might eventually take us outside
3722     the virtual concatenation of STRING1 and STRING2.
3723     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3724  if (endpos < 0)
3725    range = 0 - startpos;
3726  else if (endpos > total_size)
3727    range = total_size - startpos;
3728
3729  /* If the search isn't to be a backwards one, don't waste time in a
3730     search for a pattern anchored at beginning of buffer.  */
3731  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3732    {
3733      if (startpos > 0)
3734	return -1;
3735      else
3736	range = 0;
3737    }
3738
3739#ifdef emacs
3740  /* In a forward search for something that starts with \=.
3741     don't keep searching past point.  */
3742  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3743    {
3744      range = PT_BYTE - BEGV_BYTE - startpos;
3745      if (range < 0)
3746	return -1;
3747    }
3748#endif /* emacs */
3749
3750  /* Update the fastmap now if not correct already.  */
3751  if (fastmap && !bufp->fastmap_accurate)
3752    if (re_compile_fastmap (bufp) == -2)
3753      return -2;
3754
3755  /* See whether the pattern is anchored.  */
3756  if (bufp->buffer[0] == begline)
3757    anchored_start = 1;
3758
3759#ifdef emacs
3760  gl_state.object = re_match_object;
3761  {
3762    int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
3763    int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos);
3764
3765    SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3766  }
3767#endif
3768
3769  /* Loop through the string, looking for a place to start matching.  */
3770  for (;;)
3771    {
3772      /* If the pattern is anchored,
3773	 skip quickly past places we cannot match.
3774	 We don't bother to treat startpos == 0 specially
3775	 because that case doesn't repeat.  */
3776      if (anchored_start && startpos > 0)
3777	{
3778	  if (! (bufp->newline_anchor
3779		 && ((startpos <= size1 ? string1[startpos - 1]
3780		      : string2[startpos - size1 - 1])
3781		     == '\n')))
3782	    goto advance;
3783	}
3784
3785      /* If a fastmap is supplied, skip quickly over characters that
3786	 cannot be the start of a match.  If the pattern can match the
3787	 null string, however, we don't need to skip characters; we want
3788	 the first null string.	 */
3789      if (fastmap && startpos < total_size && !bufp->can_be_null)
3790	{
3791	  register const char *d;
3792	  register unsigned int buf_ch;
3793
3794	  d = POS_ADDR_VSTRING (startpos);
3795
3796	  if (range > 0)	/* Searching forwards.	*/
3797	    {
3798	      register int lim = 0;
3799	      int irange = range;
3800
3801	      if (startpos < size1 && startpos + range >= size1)
3802		lim = range - (size1 - startpos);
3803
3804	      /* Written out as an if-else to avoid testing `translate'
3805		 inside the loop.  */
3806	      if (RE_TRANSLATE_P (translate))
3807		{
3808		  if (multibyte)
3809		    while (range > lim)
3810		      {
3811			int buf_charlen;
3812
3813			buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3814							 buf_charlen);
3815
3816			buf_ch = RE_TRANSLATE (translate, buf_ch);
3817			if (buf_ch >= 0400
3818			    || fastmap[buf_ch])
3819			  break;
3820
3821			range -= buf_charlen;
3822			d += buf_charlen;
3823		      }
3824		  else
3825		    while (range > lim
3826			   && !fastmap[(unsigned char)
3827				       RE_TRANSLATE (translate, (unsigned char) *d)])
3828		      {
3829			d++;
3830			range--;
3831		      }
3832		}
3833	      else
3834		while (range > lim && !fastmap[(unsigned char) *d])
3835		  {
3836		    d++;
3837		    range--;
3838		  }
3839
3840	      startpos += irange - range;
3841	    }
3842	  else				/* Searching backwards.	 */
3843	    {
3844	      int room = (size1 == 0 || startpos >= size1
3845			  ? size2 + size1 - startpos
3846			  : size1 - startpos);
3847
3848	      buf_ch = STRING_CHAR (d, room);
3849	      if (RE_TRANSLATE_P (translate))
3850		buf_ch = RE_TRANSLATE (translate, buf_ch);
3851
3852	      if (! (buf_ch >= 0400
3853		     || fastmap[buf_ch]))
3854		goto advance;
3855	    }
3856	}
3857
3858      /* If can't match the null string, and that's all we have left, fail.  */
3859      if (range >= 0 && startpos == total_size && fastmap
3860	  && !bufp->can_be_null)
3861	return -1;
3862
3863      val = re_match_2_internal (bufp, string1, size1, string2, size2,
3864				 startpos, regs, stop);
3865#ifndef REGEX_MALLOC
3866#ifdef C_ALLOCA
3867      alloca (0);
3868#endif
3869#endif
3870
3871      if (val >= 0)
3872	return startpos;
3873
3874      if (val == -2)
3875	return -2;
3876
3877    advance:
3878      if (!range)
3879	break;
3880      else if (range > 0)
3881	{
3882	  /* Update STARTPOS to the next character boundary.  */
3883	  if (multibyte)
3884	    {
3885	      const unsigned char *p
3886		= (const unsigned char *) POS_ADDR_VSTRING (startpos);
3887	      const unsigned char *pend
3888		= (const unsigned char *) STOP_ADDR_VSTRING (startpos);
3889	      int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3890
3891	      range -= len;
3892	      if (range < 0)
3893		break;
3894	      startpos += len;
3895	    }
3896	  else
3897	    {
3898	      range--;
3899	      startpos++;
3900	    }
3901	}
3902      else
3903	{
3904	  range++;
3905	  startpos--;
3906
3907	  /* Update STARTPOS to the previous character boundary.  */
3908	  if (multibyte)
3909	    {
3910	      const unsigned char *p
3911		= (const unsigned char *) POS_ADDR_VSTRING (startpos);
3912	      int len = 0;
3913
3914	      /* Find the head of multibyte form.  */
3915	      while (!CHAR_HEAD_P (*p))
3916		p--, len++;
3917
3918	      /* Adjust it. */
3919#if 0				/* XXX */
3920	      if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3921		;
3922	      else
3923#endif
3924		{
3925		  range += len;
3926		  if (range > 0)
3927		    break;
3928
3929		  startpos -= len;
3930		}
3931	    }
3932	}
3933    }
3934  return -1;
3935} /* re_search_2 */
3936
3937/* Declarations and macros for re_match_2.  */
3938
3939static int bcmp_translate ();
3940static boolean alt_match_null_string_p (),
3941	       common_op_match_null_string_p (),
3942	       group_match_null_string_p ();
3943
3944/* This converts PTR, a pointer into one of the search strings `string1'
3945   and `string2' into an offset from the beginning of that string.  */
3946#define POINTER_TO_OFFSET(ptr)			\
3947  (FIRST_STRING_P (ptr)				\
3948   ? ((regoff_t) ((ptr) - string1))		\
3949   : ((regoff_t) ((ptr) - string2 + size1)))
3950
3951/* Macros for dealing with the split strings in re_match_2.  */
3952
3953#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3954
3955/* Call before fetching a character with *d.  This switches over to
3956   string2 if necessary.  */
3957#define PREFETCH()							\
3958  while (d == dend)							\
3959    {									\
3960      /* End of string2 => fail.  */					\
3961      if (dend == end_match_2)						\
3962	goto fail;							\
3963      /* End of string1 => advance to string2.	*/			\
3964      d = string2;							\
3965      dend = end_match_2;						\
3966    }
3967
3968
3969/* Test if at very beginning or at very end of the virtual concatenation
3970   of `string1' and `string2'.	If only one string, it's `string2'.  */
3971#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3972#define AT_STRINGS_END(d) ((d) == end2)
3973
3974
3975/* Test if D points to a character which is word-constituent.  We have
3976   two special cases to check for: if past the end of string1, look at
3977   the first character in string2; and if before the beginning of
3978   string2, look at the last character in string1.  */
3979#define WORDCHAR_P(d)							\
3980  (SYNTAX ((d) == end1 ? *string2					\
3981	   : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3982   == Sword)
3983
3984/* Disabled due to a compiler bug -- see comment at case wordbound */
3985
3986/* The comment at case wordbound is following one, but we don't use
3987   AT_WORD_BOUNDARY anymore to support multibyte form.
3988
3989   The DEC Alpha C compiler 3.x generates incorrect code for the
3990   test	 WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
3991   AT_WORD_BOUNDARY, so this code is disabled.	Expanding the
3992   macro and introducing temporary variables works around the bug.  */
3993
3994#if 0
3995/* Test if the character before D and the one at D differ with respect
3996   to being word-constituent.  */
3997#define AT_WORD_BOUNDARY(d)						\
3998  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
3999   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4000#endif
4001
4002/* Free everything we malloc.  */
4003#ifdef MATCH_MAY_ALLOCATE
4004#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4005#define FREE_VARIABLES()						\
4006  do {									\
4007    REGEX_FREE_STACK (fail_stack.stack);				\
4008    FREE_VAR (regstart);						\
4009    FREE_VAR (regend);							\
4010    FREE_VAR (old_regstart);						\
4011    FREE_VAR (old_regend);						\
4012    FREE_VAR (best_regstart);						\
4013    FREE_VAR (best_regend);						\
4014    FREE_VAR (reg_info);						\
4015    FREE_VAR (reg_dummy);						\
4016    FREE_VAR (reg_info_dummy);						\
4017  } while (0)
4018#else
4019#define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
4020#endif /* not MATCH_MAY_ALLOCATE */
4021
4022/* These values must meet several constraints.	They must not be valid
4023   register values; since we have a limit of 255 registers (because
4024   we use only one byte in the pattern for the register number), we can
4025   use numbers larger than 255.	 They must differ by 1, because of
4026   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
4027   be larger than the value for the highest register, so we do not try
4028   to actually save any registers when none are active.	 */
4029#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4030#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4031
4032/* Matching routines.  */
4033
4034#ifndef emacs	/* Emacs never uses this.  */
4035/* re_match is like re_match_2 except it takes only a single string.  */
4036
4037int
4038re_match (bufp, string, size, pos, regs)
4039     struct re_pattern_buffer *bufp;
4040     const char *string;
4041     int size, pos;
4042     struct re_registers *regs;
4043{
4044  int result = re_match_2_internal (bufp, NULL, 0, string, size,
4045				    pos, regs, size);
4046#ifndef REGEX_MALLOC	/* CVS */
4047#ifdef C_ALLOCA		/* CVS */
4048  alloca (0);
4049#endif			/* CVS */
4050#endif			/* CVS */
4051  return result;
4052}
4053#endif /* not emacs */
4054
4055#ifdef emacs
4056/* In Emacs, this is the string or buffer in which we
4057   are matching.  It is used for looking up syntax properties.	*/
4058Lisp_Object re_match_object;
4059#endif
4060
4061/* re_match_2 matches the compiled pattern in BUFP against the
4062   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4063   and SIZE2, respectively).  We start matching at POS, and stop
4064   matching at STOP.
4065
4066   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4067   store offsets for the substring each group matched in REGS.	See the
4068   documentation for exactly how many groups we fill.
4069
4070   We return -1 if no match, -2 if an internal error (such as the
4071   failure stack overflowing).	Otherwise, we return the length of the
4072   matched substring.  */
4073
4074int
4075re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4076     struct re_pattern_buffer *bufp;
4077     const char *string1, *string2;
4078     int size1, size2;
4079     int pos;
4080     struct re_registers *regs;
4081     int stop;
4082{
4083  int result;
4084
4085#ifdef emacs
4086  int charpos;
4087  int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
4088  gl_state.object = re_match_object;
4089  charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos);
4090  SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4091#endif
4092
4093  result = re_match_2_internal (bufp, string1, size1, string2, size2,
4094				pos, regs, stop);
4095#ifndef REGEX_MALLOC	/* CVS */
4096#ifdef C_ALLOCA		/* CVS */
4097  alloca (0);
4098#endif			/* CVS */
4099#endif			/* CVS */
4100  return result;
4101}
4102
4103/* This is a separate function so that we can force an alloca cleanup
4104   afterwards.	*/
4105static int
4106re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4107     struct re_pattern_buffer *bufp;
4108     const char *string1, *string2;
4109     int size1, size2;
4110     int pos;
4111     struct re_registers *regs;
4112     int stop;
4113{
4114  /* General temporaries.  */
4115  int mcnt;
4116  unsigned char *p1;
4117
4118  /* Just past the end of the corresponding string.  */
4119  const char *end1, *end2;
4120
4121  /* Pointers into string1 and string2, just past the last characters in
4122     each to consider matching.	 */
4123  const char *end_match_1, *end_match_2;
4124
4125  /* Where we are in the data, and the end of the current string.  */
4126  const char *d, *dend;
4127
4128  /* Where we are in the pattern, and the end of the pattern.  */
4129  unsigned char *p = bufp->buffer;
4130  register unsigned char *pend = p + bufp->used;
4131
4132  /* Mark the opcode just after a start_memory, so we can test for an
4133     empty subpattern when we get to the stop_memory.  */
4134  unsigned char *just_past_start_mem = 0;
4135
4136  /* We use this to map every character in the string.	*/
4137  RE_TRANSLATE_TYPE translate = bufp->translate;
4138
4139  /* Nonzero if we have to concern multibyte character.	 */
4140  int multibyte = bufp->multibyte;
4141
4142  /* Failure point stack.  Each place that can handle a failure further
4143     down the line pushes a failure point on this stack.  It consists of
4144     restart, regend, and reg_info for all registers corresponding to
4145     the subexpressions we're currently inside, plus the number of such
4146     registers, and, finally, two char *'s.  The first char * is where
4147     to resume scanning the pattern; the second one is where to resume
4148     scanning the strings.  If the latter is zero, the failure point is
4149     a ``dummy''; if a failure happens and the failure point is a dummy,
4150     it gets discarded and the next next one is tried.	*/
4151#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
4152  fail_stack_type fail_stack;
4153#endif
4154#ifdef DEBUG
4155  static unsigned failure_id = 0;
4156  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4157#endif
4158
4159  /* This holds the pointer to the failure stack, when
4160     it is allocated relocatably.  */
4161  fail_stack_elt_t *failure_stack_ptr;
4162
4163  /* We fill all the registers internally, independent of what we
4164     return, for use in backreferences.	 The number here includes
4165     an element for register zero.  */
4166  unsigned num_regs = bufp->re_nsub + 1;
4167
4168  /* The currently active registers.  */
4169  unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4170  unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4171
4172  /* Information on the contents of registers. These are pointers into
4173     the input strings; they record just what was matched (on this
4174     attempt) by a subexpression part of the pattern, that is, the
4175     regnum-th regstart pointer points to where in the pattern we began
4176     matching and the regnum-th regend points to right after where we
4177     stopped matching the regnum-th subexpression.  (The zeroth register
4178     keeps track of what the whole pattern matches.)  */
4179#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4180  const char **regstart, **regend;
4181#endif
4182
4183  /* If a group that's operated upon by a repetition operator fails to
4184     match anything, then the register for its start will need to be
4185     restored because it will have been set to wherever in the string we
4186     are when we last see its open-group operator.  Similarly for a
4187     register's end.  */
4188#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4189  const char **old_regstart, **old_regend;
4190#endif
4191
4192  /* The is_active field of reg_info helps us keep track of which (possibly
4193     nested) subexpressions we are currently in. The matched_something
4194     field of reg_info[reg_num] helps us tell whether or not we have
4195     matched any of the pattern so far this time through the reg_num-th
4196     subexpression.  These two fields get reset each time through any
4197     loop their register is in.	 */
4198#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
4199  register_info_type *reg_info;
4200#endif
4201
4202  /* The following record the register info as found in the above
4203     variables when we find a match better than any we've seen before.
4204     This happens as we backtrack through the failure points, which in
4205     turn happens only if we have not yet matched the entire string. */
4206  unsigned best_regs_set = false;
4207#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4208  const char **best_regstart, **best_regend;
4209#endif
4210
4211  /* Logically, this is `best_regend[0]'.  But we don't want to have to
4212     allocate space for that if we're not allocating space for anything
4213     else (see below).	Also, we never need info about register 0 for
4214     any of the other register vectors, and it seems rather a kludge to
4215     treat `best_regend' differently than the rest.  So we keep track of
4216     the end of the best match so far in a separate variable.  We
4217     initialize this to NULL so that when we backtrack the first time
4218     and need to test it, it's not garbage.  */
4219  const char *match_end = NULL;
4220
4221  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
4222  int set_regs_matched_done = 0;
4223
4224  /* Used when we pop values we don't care about.  */
4225#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4226  const char **reg_dummy;
4227  register_info_type *reg_info_dummy;
4228#endif
4229
4230#ifdef DEBUG
4231  /* Counts the total number of registers pushed.  */
4232  unsigned num_regs_pushed = 0;
4233#endif
4234
4235  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4236
4237  INIT_FAIL_STACK ();
4238
4239#ifdef MATCH_MAY_ALLOCATE
4240  /* Do not bother to initialize all the register variables if there are
4241     no groups in the pattern, as it takes a fair amount of time.  If
4242     there are groups, we include space for register 0 (the whole
4243     pattern), even though we never use it, since it simplifies the
4244     array indexing.  We should fix this.  */
4245  if (bufp->re_nsub)
4246    {
4247      regstart = REGEX_TALLOC (num_regs, const char *);
4248      regend = REGEX_TALLOC (num_regs, const char *);
4249      old_regstart = REGEX_TALLOC (num_regs, const char *);
4250      old_regend = REGEX_TALLOC (num_regs, const char *);
4251      best_regstart = REGEX_TALLOC (num_regs, const char *);
4252      best_regend = REGEX_TALLOC (num_regs, const char *);
4253      reg_info = REGEX_TALLOC (num_regs, register_info_type);
4254      reg_dummy = REGEX_TALLOC (num_regs, const char *);
4255      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4256
4257      if (!(regstart && regend && old_regstart && old_regend && reg_info
4258	    && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4259	{
4260	  FREE_VARIABLES ();
4261	  return -2;
4262	}
4263    }
4264  else
4265    {
4266      /* We must initialize all our variables to NULL, so that
4267	 `FREE_VARIABLES' doesn't try to free them.  */
4268      regstart = regend = old_regstart = old_regend = best_regstart
4269	= best_regend = reg_dummy = NULL;
4270      reg_info = reg_info_dummy = (register_info_type *) NULL;
4271    }
4272#endif /* MATCH_MAY_ALLOCATE */
4273
4274  /* The starting position is bogus.  */
4275  if (pos < 0 || pos > size1 + size2)
4276    {
4277      FREE_VARIABLES ();
4278      return -1;
4279    }
4280
4281  /* Initialize subexpression text positions to -1 to mark ones that no
4282     start_memory/stop_memory has been seen for. Also initialize the
4283     register information struct.  */
4284  for (mcnt = 1; mcnt < num_regs; mcnt++)
4285    {
4286      regstart[mcnt] = regend[mcnt]
4287	= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4288
4289      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4290      IS_ACTIVE (reg_info[mcnt]) = 0;
4291      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4292      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4293    }
4294
4295  /* We move `string1' into `string2' if the latter's empty -- but not if
4296     `string1' is null.	 */
4297  if (size2 == 0 && string1 != NULL)
4298    {
4299      string2 = string1;
4300      size2 = size1;
4301      string1 = 0;
4302      size1 = 0;
4303    }
4304  end1 = string1 + size1;
4305  end2 = string2 + size2;
4306
4307  /* Compute where to stop matching, within the two strings.  */
4308  if (stop <= size1)
4309    {
4310      end_match_1 = string1 + stop;
4311      end_match_2 = string2;
4312    }
4313  else
4314    {
4315      end_match_1 = end1;
4316      end_match_2 = string2 + stop - size1;
4317    }
4318
4319  /* `p' scans through the pattern as `d' scans through the data.
4320     `dend' is the end of the input string that `d' points within.  `d'
4321     is advanced into the following input string whenever necessary, but
4322     this happens before fetching; therefore, at the beginning of the
4323     loop, `d' can be pointing at the end of a string, but it cannot
4324     equal `string2'.  */
4325  if (size1 > 0 && pos <= size1)
4326    {
4327      d = string1 + pos;
4328      dend = end_match_1;
4329    }
4330  else
4331    {
4332      d = string2 + pos - size1;
4333      dend = end_match_2;
4334    }
4335
4336  DEBUG_PRINT1 ("The compiled pattern is: ");
4337  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4338  DEBUG_PRINT1 ("The string to match is: `");
4339  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4340  DEBUG_PRINT1 ("'\n");
4341
4342  /* This loops over pattern commands.	It exits by returning from the
4343     function if the match is complete, or it drops through if the match
4344     fails at this starting point in the input data.  */
4345  for (;;)
4346    {
4347      DEBUG_PRINT2 ("\n0x%x: ", p);
4348
4349      if (p == pend)
4350	{ /* End of pattern means we might have succeeded.  */
4351	  DEBUG_PRINT1 ("end of pattern ... ");
4352
4353	  /* If we haven't matched the entire string, and we want the
4354	     longest match, try backtracking.  */
4355	  if (d != end_match_2)
4356	    {
4357	      /* 1 if this match ends in the same string (string1 or string2)
4358		 as the best previous match.  */
4359	      boolean same_str_p = (FIRST_STRING_P (match_end)
4360				    == MATCHING_IN_FIRST_STRING);
4361	      /* 1 if this match is the best seen so far.  */
4362	      boolean best_match_p;
4363
4364	      /* AIX compiler got confused when this was combined
4365		 with the previous declaration.	 */
4366	      if (same_str_p)
4367		best_match_p = d > match_end;
4368	      else
4369		best_match_p = !MATCHING_IN_FIRST_STRING;
4370
4371	      DEBUG_PRINT1 ("backtracking.\n");
4372
4373	      if (!FAIL_STACK_EMPTY ())
4374		{ /* More failure points to try.  */
4375
4376		  /* If exceeds best match so far, save it.  */
4377		  if (!best_regs_set || best_match_p)
4378		    {
4379		      best_regs_set = true;
4380		      match_end = d;
4381
4382		      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4383
4384		      for (mcnt = 1; mcnt < num_regs; mcnt++)
4385			{
4386			  best_regstart[mcnt] = regstart[mcnt];
4387			  best_regend[mcnt] = regend[mcnt];
4388			}
4389		    }
4390		  goto fail;
4391		}
4392
4393	      /* If no failure points, don't restore garbage.  And if
4394		 last match is real best match, don't restore second
4395		 best one. */
4396	      else if (best_regs_set && !best_match_p)
4397		{
4398		restore_best_regs:
4399		  /* Restore best match.  It may happen that `dend ==
4400		     end_match_1' while the restored d is in string2.
4401		     For example, the pattern `x.*y.*z' against the
4402		     strings `x-' and `y-z-', if the two strings are
4403		     not consecutive in memory.	 */
4404		  DEBUG_PRINT1 ("Restoring best registers.\n");
4405
4406		  d = match_end;
4407		  dend = ((d >= string1 && d <= end1)
4408			   ? end_match_1 : end_match_2);
4409
4410		  for (mcnt = 1; mcnt < num_regs; mcnt++)
4411		    {
4412		      regstart[mcnt] = best_regstart[mcnt];
4413		      regend[mcnt] = best_regend[mcnt];
4414		    }
4415		}
4416	    } /* d != end_match_2 */
4417
4418	succeed_label:
4419	  DEBUG_PRINT1 ("Accepting match.\n");
4420
4421	  /* If caller wants register contents data back, do it.  */
4422	  if (regs && !bufp->no_sub)
4423	    {
4424	      /* Have the register data arrays been allocated?	*/
4425	      if (bufp->regs_allocated == REGS_UNALLOCATED)
4426		{ /* No.  So allocate them with malloc.	 We need one
4427		     extra element beyond `num_regs' for the `-1' marker
4428		     GNU code uses.  */
4429		  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4430		  regs->start = TALLOC (regs->num_regs, regoff_t);
4431		  regs->end = TALLOC (regs->num_regs, regoff_t);
4432		  if (regs->start == NULL || regs->end == NULL)
4433		    {
4434		      FREE_VARIABLES ();
4435		      return -2;
4436		    }
4437		  bufp->regs_allocated = REGS_REALLOCATE;
4438		}
4439	      else if (bufp->regs_allocated == REGS_REALLOCATE)
4440		{ /* Yes.  If we need more elements than were already
4441		     allocated, reallocate them.  If we need fewer, just
4442		     leave it alone.  */
4443		  if (regs->num_regs < num_regs + 1)
4444		    {
4445		      regs->num_regs = num_regs + 1;
4446		      RETALLOC (regs->start, regs->num_regs, regoff_t);
4447		      RETALLOC (regs->end, regs->num_regs, regoff_t);
4448		      if (regs->start == NULL || regs->end == NULL)
4449			{
4450			  FREE_VARIABLES ();
4451			  return -2;
4452			}
4453		    }
4454		}
4455	      else
4456		{
4457		  /* These braces fend off a "empty body in an else-statement"
4458		     warning under GCC when assert expands to nothing.	*/
4459		  assert (bufp->regs_allocated == REGS_FIXED);
4460		}
4461
4462	      /* Convert the pointer data in `regstart' and `regend' to
4463		 indices.  Register zero has to be set differently,
4464		 since we haven't kept track of any info for it.  */
4465	      if (regs->num_regs > 0)
4466		{
4467		  regs->start[0] = pos;
4468		  regs->end[0] = (MATCHING_IN_FIRST_STRING
4469				  ? ((regoff_t) (d - string1))
4470				  : ((regoff_t) (d - string2 + size1)));
4471		}
4472
4473	      /* Go through the first `min (num_regs, regs->num_regs)'
4474		 registers, since that is all we initialized.  */
4475	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4476		{
4477		  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4478		    regs->start[mcnt] = regs->end[mcnt] = -1;
4479		  else
4480		    {
4481		      regs->start[mcnt]
4482			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4483		      regs->end[mcnt]
4484			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4485		    }
4486		}
4487
4488	      /* If the regs structure we return has more elements than
4489		 were in the pattern, set the extra elements to -1.  If
4490		 we (re)allocated the registers, this is the case,
4491		 because we always allocate enough to have at least one
4492		 -1 at the end.	 */
4493	      for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4494		regs->start[mcnt] = regs->end[mcnt] = -1;
4495	    } /* regs && !bufp->no_sub */
4496
4497	  DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4498			nfailure_points_pushed, nfailure_points_popped,
4499			nfailure_points_pushed - nfailure_points_popped);
4500	  DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4501
4502	  mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4503			    ? string1
4504			    : string2 - size1);
4505
4506	  DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4507
4508	  FREE_VARIABLES ();
4509	  return mcnt;
4510	}
4511
4512      /* Otherwise match next pattern command.	*/
4513      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4514	{
4515	/* Ignore these.  Used to ignore the n of succeed_n's which
4516	   currently have n == 0.  */
4517	case no_op:
4518	  DEBUG_PRINT1 ("EXECUTING no_op.\n");
4519	  break;
4520
4521	case succeed:
4522	  DEBUG_PRINT1 ("EXECUTING succeed.\n");
4523	  goto succeed_label;
4524
4525	/* Match the next n pattern characters exactly.	 The following
4526	   byte in the pattern defines n, and the n bytes after that
4527	   are the characters to match.	 */
4528	case exactn:
4529	  mcnt = *p++;
4530	  DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4531
4532	  /* This is written out as an if-else so we don't waste time
4533	     testing `translate' inside the loop.  */
4534	  if (RE_TRANSLATE_P (translate))
4535	    {
4536#ifdef emacs
4537	      if (multibyte)
4538		do
4539		  {
4540		    int pat_charlen, buf_charlen;
4541		    unsigned int pat_ch, buf_ch;
4542
4543		    PREFETCH ();
4544		    pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4545		    buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4546
4547		    if (RE_TRANSLATE (translate, buf_ch)
4548			!= pat_ch)
4549		      goto fail;
4550
4551		    p += pat_charlen;
4552		    d += buf_charlen;
4553		    mcnt -= pat_charlen;
4554		  }
4555		while (mcnt > 0);
4556	      else
4557#endif /* not emacs */
4558		do
4559		  {
4560		    PREFETCH ();
4561		    if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d)
4562			!= (unsigned char) *p++)
4563		      goto fail;
4564		    d++;
4565		  }
4566		while (--mcnt);
4567	    }
4568	  else
4569	    {
4570	      do
4571		{
4572		  PREFETCH ();
4573		  if (*d++ != (char) *p++) goto fail;
4574		}
4575	      while (--mcnt);
4576	    }
4577	  SET_REGS_MATCHED ();
4578	  break;
4579
4580
4581	/* Match any character except possibly a newline or a null.  */
4582	case anychar:
4583	  {
4584	    int buf_charlen;
4585	    unsigned int buf_ch;
4586
4587	    DEBUG_PRINT1 ("EXECUTING anychar.\n");
4588
4589	    PREFETCH ();
4590
4591#ifdef emacs
4592	    if (multibyte)
4593	      buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4594	    else
4595#endif /* not emacs */
4596	      {
4597		buf_ch = (unsigned char) *d;
4598		buf_charlen = 1;
4599	      }
4600
4601	    buf_ch = TRANSLATE (buf_ch);
4602
4603	    if ((!(bufp->syntax & RE_DOT_NEWLINE)
4604		 && buf_ch == '\n')
4605		|| ((bufp->syntax & RE_DOT_NOT_NULL)
4606		    && buf_ch == '\000'))
4607	      goto fail;
4608
4609	    SET_REGS_MATCHED ();
4610	    DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4611	    d += buf_charlen;
4612	  }
4613	  break;
4614
4615
4616	case charset:
4617	case charset_not:
4618	  {
4619	    register unsigned int c;
4620	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
4621	    int len;
4622
4623	    /* Start of actual range_table, or end of bitmap if there is no
4624	       range table.  */
4625	    unsigned char *range_table;
4626
4627	    /* Nonzero if there is range table.	 */
4628	    int range_table_exists;
4629
4630	    /* Number of ranges of range table.	 Not in bytes.	*/
4631	    int count;
4632
4633	    DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4634
4635	    PREFETCH ();
4636	    c = (unsigned char) *d;
4637
4638	    range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap.  */
4639	    range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4640	    if (range_table_exists)
4641	      EXTRACT_NUMBER_AND_INCR (count, range_table);
4642	    else
4643	      count = 0;
4644
4645	    if (multibyte && BASE_LEADING_CODE_P (c))
4646	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4647
4648	    if (SINGLE_BYTE_CHAR_P (c))
4649	      {			/* Lookup bitmap.  */
4650		c = TRANSLATE (c); /* The character to match.  */
4651		len = 1;
4652
4653		/* Cast to `unsigned' instead of `unsigned char' in
4654		   case the bit list is a full 32 bytes long.  */
4655		if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
4656		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4657	      not = !not;
4658	      }
4659	    else if (range_table_exists)
4660	      CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
4661
4662	    p = CHARSET_RANGE_TABLE_END (range_table, count);
4663
4664	    if (!not) goto fail;
4665
4666	    SET_REGS_MATCHED ();
4667	    d += len;
4668	    break;
4669	  }
4670
4671
4672	/* The beginning of a group is represented by start_memory.
4673	   The arguments are the register number in the next byte, and the
4674	   number of groups inner to this one in the next.  The text
4675	   matched within the group is recorded (in the internal
4676	   registers data structure) under the register number.	 */
4677	case start_memory:
4678	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4679
4680	  /* Find out if this group can match the empty string.	 */
4681	  p1 = p;		/* To send to group_match_null_string_p.  */
4682
4683	  if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4684	    REG_MATCH_NULL_STRING_P (reg_info[*p])
4685	      = group_match_null_string_p (&p1, pend, reg_info);
4686
4687	  /* Save the position in the string where we were the last time
4688	     we were at this open-group operator in case the group is
4689	     operated upon by a repetition operator, e.g., with `(a*)*b'
4690	     against `ab'; then we want to ignore where we are now in
4691	     the string in case this attempt to match fails.  */
4692	  old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4693			     ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4694			     : regstart[*p];
4695	  DEBUG_PRINT2 ("  old_regstart: %d\n",
4696			 POINTER_TO_OFFSET (old_regstart[*p]));
4697
4698	  regstart[*p] = d;
4699	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4700
4701	  IS_ACTIVE (reg_info[*p]) = 1;
4702	  MATCHED_SOMETHING (reg_info[*p]) = 0;
4703
4704	  /* Clear this whenever we change the register activity status.  */
4705	  set_regs_matched_done = 0;
4706
4707	  /* This is the new highest active register.  */
4708	  highest_active_reg = *p;
4709
4710	  /* If nothing was active before, this is the new lowest active
4711	     register.	*/
4712	  if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4713	    lowest_active_reg = *p;
4714
4715	  /* Move past the register number and inner group count.  */
4716	  p += 2;
4717	  just_past_start_mem = p;
4718
4719	  break;
4720
4721
4722	/* The stop_memory opcode represents the end of a group.  Its
4723	   arguments are the same as start_memory's: the register
4724	   number, and the number of inner groups.  */
4725	case stop_memory:
4726	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4727
4728	  /* We need to save the string position the last time we were at
4729	     this close-group operator in case the group is operated
4730	     upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4731	     against `aba'; then we want to ignore where we are now in
4732	     the string in case this attempt to match fails.  */
4733	  old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4734			   ? REG_UNSET (regend[*p]) ? d : regend[*p]
4735			   : regend[*p];
4736	  DEBUG_PRINT2 ("      old_regend: %d\n",
4737			 POINTER_TO_OFFSET (old_regend[*p]));
4738
4739	  regend[*p] = d;
4740	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4741
4742	  /* This register isn't active anymore.  */
4743	  IS_ACTIVE (reg_info[*p]) = 0;
4744
4745	  /* Clear this whenever we change the register activity status.  */
4746	  set_regs_matched_done = 0;
4747
4748	  /* If this was the only register active, nothing is active
4749	     anymore.  */
4750	  if (lowest_active_reg == highest_active_reg)
4751	    {
4752	      lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4753	      highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4754	    }
4755	  else
4756	    { /* We must scan for the new highest active register, since
4757		 it isn't necessarily one less than now: consider
4758		 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4759		 new highest active register is 1.  */
4760	      unsigned char r = *p - 1;
4761	      while (r > 0 && !IS_ACTIVE (reg_info[r]))
4762		r--;
4763
4764	      /* If we end up at register zero, that means that we saved
4765		 the registers as the result of an `on_failure_jump', not
4766		 a `start_memory', and we jumped to past the innermost
4767		 `stop_memory'.	 For example, in ((.)*) we save
4768		 registers 1 and 2 as a result of the *, but when we pop
4769		 back to the second ), we are at the stop_memory 1.
4770		 Thus, nothing is active.  */
4771	      if (r == 0)
4772		{
4773		  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4774		  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4775		}
4776	      else
4777		highest_active_reg = r;
4778	    }
4779
4780	  /* If just failed to match something this time around with a
4781	     group that's operated on by a repetition operator, try to
4782	     force exit from the ``loop'', and restore the register
4783	     information for this group that we had before trying this
4784	     last match.  */
4785	  if ((!MATCHED_SOMETHING (reg_info[*p])
4786	       || just_past_start_mem == p - 1)
4787	      && (p + 2) < pend)
4788	    {
4789	      boolean is_a_jump_n = false;
4790
4791	      p1 = p + 2;
4792	      mcnt = 0;
4793	      switch ((re_opcode_t) *p1++)
4794		{
4795		  case jump_n:
4796		    is_a_jump_n = true;
4797		  case pop_failure_jump:
4798		  case maybe_pop_jump:
4799		  case jump:
4800		  case dummy_failure_jump:
4801		    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4802		    if (is_a_jump_n)
4803		      p1 += 2;
4804		    break;
4805
4806		  default:
4807		    /* do nothing */ ;
4808		}
4809	      p1 += mcnt;
4810
4811	      /* If the next operation is a jump backwards in the pattern
4812		 to an on_failure_jump right before the start_memory
4813		 corresponding to this stop_memory, exit from the loop
4814		 by forcing a failure after pushing on the stack the
4815		 on_failure_jump's jump in the pattern, and d.	*/
4816	      if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4817		  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4818		{
4819		  /* If this group ever matched anything, then restore
4820		     what its registers were before trying this last
4821		     failed match, e.g., with `(a*)*b' against `ab' for
4822		     regstart[1], and, e.g., with `((a*)*(b*)*)*'
4823		     against `aba' for regend[3].
4824
4825		     Also restore the registers for inner groups for,
4826		     e.g., `((a*)(b*))*' against `aba' (register 3 would
4827		     otherwise get trashed).  */
4828
4829		  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4830		    {
4831		      unsigned r;
4832
4833		      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4834
4835		      /* Restore this and inner groups' (if any) registers.  */
4836		      for (r = *p; r < *p + *(p + 1); r++)
4837			{
4838			  regstart[r] = old_regstart[r];
4839
4840			  /* xx why this test?	*/
4841			  if (old_regend[r] >= regstart[r])
4842			    regend[r] = old_regend[r];
4843			}
4844		    }
4845		  p1++;
4846		  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4847		  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4848
4849		  goto fail;
4850		}
4851	    }
4852
4853	  /* Move past the register number and the inner group count.  */
4854	  p += 2;
4855	  break;
4856
4857
4858	/* \<digit> has been turned into a `duplicate' command which is
4859	   followed by the numeric value of <digit> as the register number.  */
4860	case duplicate:
4861	  {
4862	    register const char *d2, *dend2;
4863	    int regno = *p++;	/* Get which register to match against.	 */
4864	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4865
4866	    /* Can't back reference a group which we've never matched.	*/
4867	    if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4868	      goto fail;
4869
4870	    /* Where in input to try to start matching.	 */
4871	    d2 = regstart[regno];
4872
4873	    /* Where to stop matching; if both the place to start and
4874	       the place to stop matching are in the same string, then
4875	       set to the place to stop, otherwise, for now have to use
4876	       the end of the first string.  */
4877
4878	    dend2 = ((FIRST_STRING_P (regstart[regno])
4879		      == FIRST_STRING_P (regend[regno]))
4880		     ? regend[regno] : end_match_1);
4881	    for (;;)
4882	      {
4883		/* If necessary, advance to next segment in register
4884		   contents.  */
4885		while (d2 == dend2)
4886		  {
4887		    if (dend2 == end_match_2) break;
4888		    if (dend2 == regend[regno]) break;
4889
4890		    /* End of string1 => advance to string2. */
4891		    d2 = string2;
4892		    dend2 = regend[regno];
4893		  }
4894		/* At end of register contents => success */
4895		if (d2 == dend2) break;
4896
4897		/* If necessary, advance to next segment in data.  */
4898		PREFETCH ();
4899
4900		/* How many characters left in this segment to match.  */
4901		mcnt = dend - d;
4902
4903		/* Want how many consecutive characters we can match in
4904		   one shot, so, if necessary, adjust the count.  */
4905		if (mcnt > dend2 - d2)
4906		  mcnt = dend2 - d2;
4907
4908		/* Compare that many; failure if mismatch, else move
4909		   past them.  */
4910		if (RE_TRANSLATE_P (translate)
4911		    ? bcmp_translate (d, d2, mcnt, translate)
4912		    : bcmp (d, d2, mcnt))
4913		  goto fail;
4914		d += mcnt, d2 += mcnt;
4915
4916		/* Do this because we've match some characters.	 */
4917		SET_REGS_MATCHED ();
4918	      }
4919	  }
4920	  break;
4921
4922
4923	/* begline matches the empty string at the beginning of the string
4924	   (unless `not_bol' is set in `bufp'), and, if
4925	   `newline_anchor' is set, after newlines.  */
4926	case begline:
4927	  DEBUG_PRINT1 ("EXECUTING begline.\n");
4928
4929	  if (AT_STRINGS_BEG (d))
4930	    {
4931	      if (!bufp->not_bol) break;
4932	    }
4933	  else if (d[-1] == '\n' && bufp->newline_anchor)
4934	    {
4935	      break;
4936	    }
4937	  /* In all other cases, we fail.  */
4938	  goto fail;
4939
4940
4941	/* endline is the dual of begline.  */
4942	case endline:
4943	  DEBUG_PRINT1 ("EXECUTING endline.\n");
4944
4945	  if (AT_STRINGS_END (d))
4946	    {
4947	      if (!bufp->not_eol) break;
4948	    }
4949
4950	  /* We have to ``prefetch'' the next character.  */
4951	  else if ((d == end1 ? *string2 : *d) == '\n'
4952		   && bufp->newline_anchor)
4953	    {
4954	      break;
4955	    }
4956	  goto fail;
4957
4958
4959	/* Match at the very beginning of the data.  */
4960	case begbuf:
4961	  DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4962	  if (AT_STRINGS_BEG (d))
4963	    break;
4964	  goto fail;
4965
4966
4967	/* Match at the very end of the data.  */
4968	case endbuf:
4969	  DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4970	  if (AT_STRINGS_END (d))
4971	    break;
4972	  goto fail;
4973
4974
4975	/* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4976	   pushes NULL as the value for the string on the stack.  Then
4977	   `pop_failure_point' will keep the current value for the
4978	   string, instead of restoring it.  To see why, consider
4979	   matching `foo\nbar' against `.*\n'.	The .* matches the foo;
4980	   then the . fails against the \n.  But the next thing we want
4981	   to do is match the \n against the \n; if we restored the
4982	   string value, we would be back at the foo.
4983
4984	   Because this is used only in specific cases, we don't need to
4985	   check all the things that `on_failure_jump' does, to make
4986	   sure the right things get saved on the stack.  Hence we don't
4987	   share its code.  The only reason to push anything on the
4988	   stack at all is that otherwise we would have to change
4989	   `anychar's code to do something besides goto fail in this
4990	   case; that seems worse than this.  */
4991	case on_failure_keep_string_jump:
4992	  DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4993
4994	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
4995	  DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4996
4997	  PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4998	  break;
4999
5000
5001	/* Uses of on_failure_jump:
5002
5003	   Each alternative starts with an on_failure_jump that points
5004	   to the beginning of the next alternative.  Each alternative
5005	   except the last ends with a jump that in effect jumps past
5006	   the rest of the alternatives.  (They really jump to the
5007	   ending jump of the following alternative, because tensioning
5008	   these jumps is a hassle.)
5009
5010	   Repeats start with an on_failure_jump that points past both
5011	   the repetition text and either the following jump or
5012	   pop_failure_jump back to this on_failure_jump.  */
5013	case on_failure_jump:
5014	on_failure:
5015	  DEBUG_PRINT1 ("EXECUTING on_failure_jump");
5016
5017#if defined (WINDOWSNT) && defined (emacs)
5018	  QUIT;
5019#endif
5020
5021	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
5022	  DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
5023
5024	  /* If this on_failure_jump comes right before a group (i.e.,
5025	     the original * applied to a group), save the information
5026	     for that group and all inner ones, so that if we fail back
5027	     to this point, the group's information will be correct.
5028	     For example, in \(a*\)*\1, we need the preceding group,
5029	     and in \(zz\(a*\)b*\)\2, we need the inner group.	*/
5030
5031	  /* We can't use `p' to check ahead because we push
5032	     a failure point to `p + mcnt' after we do this.  */
5033	  p1 = p;
5034
5035	  /* We need to skip no_op's before we look for the
5036	     start_memory in case this on_failure_jump is happening as
5037	     the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
5038	     against aba.  */
5039	  while (p1 < pend && (re_opcode_t) *p1 == no_op)
5040	    p1++;
5041
5042	  if (p1 < pend && (re_opcode_t) *p1 == start_memory)
5043	    {
5044	      /* We have a new highest active register now.  This will
5045		 get reset at the start_memory we are about to get to,
5046		 but we will have saved all the registers relevant to
5047		 this repetition op, as described above.  */
5048	      highest_active_reg = *(p1 + 1) + *(p1 + 2);
5049	      if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
5050		lowest_active_reg = *(p1 + 1);
5051	    }
5052
5053	  DEBUG_PRINT1 (":\n");
5054	  PUSH_FAILURE_POINT (p + mcnt, d, -2);
5055	  break;
5056
5057
5058	/* A smart repeat ends with `maybe_pop_jump'.
5059	   We change it to either `pop_failure_jump' or `jump'.	 */
5060	case maybe_pop_jump:
5061#if defined (WINDOWSNT) && defined (emacs)
5062	  QUIT;
5063#endif
5064	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
5065	  DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
5066	  {
5067	    register unsigned char *p2 = p;
5068
5069	    /* Compare the beginning of the repeat with what in the
5070	       pattern follows its end. If we can establish that there
5071	       is nothing that they would both match, i.e., that we
5072	       would have to backtrack because of (as in, e.g., `a*a')
5073	       then we can change to pop_failure_jump, because we'll
5074	       never have to backtrack.
5075
5076	       This is not true in the case of alternatives: in
5077	       `(a|ab)*' we do need to backtrack to the `ab' alternative
5078	       (e.g., if the string was `ab').	But instead of trying to
5079	       detect that here, the alternative has put on a dummy
5080	       failure point which is what we will end up popping.  */
5081
5082	    /* Skip over open/close-group commands.
5083	       If what follows this loop is a ...+ construct,
5084	       look at what begins its body, since we will have to
5085	       match at least one of that.  */
5086	    while (1)
5087	      {
5088		if (p2 + 2 < pend
5089		    && ((re_opcode_t) *p2 == stop_memory
5090			|| (re_opcode_t) *p2 == start_memory))
5091		  p2 += 3;
5092		else if (p2 + 6 < pend
5093			 && (re_opcode_t) *p2 == dummy_failure_jump)
5094		  p2 += 6;
5095		else
5096		  break;
5097	      }
5098
5099	    p1 = p + mcnt;
5100	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5101	       to the `maybe_finalize_jump' of this case.  Examine what
5102	       follows.	 */
5103
5104	    /* If we're at the end of the pattern, we can change.  */
5105	    if (p2 == pend)
5106	      {
5107		/* Consider what happens when matching ":\(.*\)"
5108		   against ":/".  I don't really understand this code
5109		   yet.	 */
5110		p[-3] = (unsigned char) pop_failure_jump;
5111		DEBUG_PRINT1
5112		  ("  End of pattern: change to `pop_failure_jump'.\n");
5113	      }
5114
5115	    else if ((re_opcode_t) *p2 == exactn
5116		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5117	      {
5118		register unsigned int c
5119		  = *p2 == (unsigned char) endline ? '\n' : p2[2];
5120
5121		if ((re_opcode_t) p1[3] == exactn)
5122		  {
5123		    if (!(multibyte /* && (c != '\n') */
5124			  && BASE_LEADING_CODE_P (c))
5125			? c != p1[5]
5126			: (STRING_CHAR (&p2[2], pend - &p2[2])
5127			   != STRING_CHAR (&p1[5], pend - &p1[5])))
5128		  {
5129		    p[-3] = (unsigned char) pop_failure_jump;
5130		    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
5131				  c, p1[5]);
5132		  }
5133		  }
5134
5135		else if ((re_opcode_t) p1[3] == charset
5136			 || (re_opcode_t) p1[3] == charset_not)
5137		  {
5138		    int not = (re_opcode_t) p1[3] == charset_not;
5139
5140		    if (multibyte /* && (c != '\n') */
5141			&& BASE_LEADING_CODE_P (c))
5142		      c = STRING_CHAR (&p2[2], pend - &p2[2]);
5143
5144		    /* Test if C is listed in charset (or charset_not)
5145		       at `&p1[3]'.  */
5146		    if (SINGLE_BYTE_CHAR_P (c))
5147		      {
5148			if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
5149			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5150		      not = !not;
5151		      }
5152		    else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5153		      CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
5154
5155		    /* `not' is equal to 1 if c would match, which means
5156			that we can't change to pop_failure_jump.  */
5157		    if (!not)
5158		      {
5159			p[-3] = (unsigned char) pop_failure_jump;
5160			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5161		      }
5162		  }
5163	      }
5164	    else if ((re_opcode_t) *p2 == charset)
5165	      {
5166		if ((re_opcode_t) p1[3] == exactn)
5167		  {
5168		    register unsigned int c = p1[5];
5169		    int not = 0;
5170
5171		    if (multibyte && BASE_LEADING_CODE_P (c))
5172		      c = STRING_CHAR (&p1[5], pend - &p1[5]);
5173
5174		    /* Test if C is listed in charset at `p2'.	*/
5175		    if (SINGLE_BYTE_CHAR_P (c))
5176		      {
5177			if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5178			    && (p2[2 + c / BYTEWIDTH]
5179				& (1 << (c % BYTEWIDTH))))
5180			  not = !not;
5181		      }
5182		    else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5183		      CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5184
5185		    if (!not)
5186		  {
5187		    p[-3] = (unsigned char) pop_failure_jump;
5188			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5189		      }
5190		  }
5191
5192		/* It is hard to list up all the character in charset
5193		   P2 if it includes multibyte character.  Give up in
5194		   such case.  */
5195		else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5196		  {
5197		    /* Now, we are sure that P2 has no range table.
5198		       So, for the size of bitmap in P2, `p2[1]' is
5199		       enough.	But P1 may have range table, so the
5200		       size of bitmap table of P1 is extracted by
5201		       using macro `CHARSET_BITMAP_SIZE'.
5202
5203		       Since we know that all the character listed in
5204		       P2 is ASCII, it is enough to test only bitmap
5205		       table of P1.  */
5206
5207		    if ((re_opcode_t) p1[3] == charset_not)
5208		  {
5209		    int idx;
5210			/* We win if the charset_not inside the loop lists
5211			   every character listed in the charset after.	 */
5212		    for (idx = 0; idx < (int) p2[1]; idx++)
5213		      if (! (p2[2 + idx] == 0
5214				 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
5215				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5216			break;
5217
5218		    if (idx == p2[1])
5219		      {
5220			p[-3] = (unsigned char) pop_failure_jump;
5221			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5222		      }
5223		  }
5224		else if ((re_opcode_t) p1[3] == charset)
5225		  {
5226		    int idx;
5227		    /* We win if the charset inside the loop
5228		       has no overlap with the one after the loop.  */
5229		    for (idx = 0;
5230			     (idx < (int) p2[1]
5231			      && idx < CHARSET_BITMAP_SIZE (&p1[3]));
5232			 idx++)
5233		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
5234			break;
5235
5236			if (idx == p2[1]
5237			    || idx == CHARSET_BITMAP_SIZE (&p1[3]))
5238		      {
5239			p[-3] = (unsigned char) pop_failure_jump;
5240			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5241		      }
5242		  }
5243	      }
5244	  }
5245	  }
5246	  p -= 2;		/* Point at relative address again.  */
5247	  if ((re_opcode_t) p[-1] != pop_failure_jump)
5248	    {
5249	      p[-1] = (unsigned char) jump;
5250	      DEBUG_PRINT1 ("  Match => jump.\n");
5251	      goto unconditional_jump;
5252	    }
5253	/* Note fall through.  */
5254
5255
5256	/* The end of a simple repeat has a pop_failure_jump back to
5257	   its matching on_failure_jump, where the latter will push a
5258	   failure point.  The pop_failure_jump takes off failure
5259	   points put on by this pop_failure_jump's matching
5260	   on_failure_jump; we got through the pattern to here from the
5261	   matching on_failure_jump, so didn't fail.  */
5262	case pop_failure_jump:
5263	  {
5264	    /* We need to pass separate storage for the lowest and
5265	       highest registers, even though we don't care about the
5266	       actual values.  Otherwise, we will restore only one
5267	       register from the stack, since lowest will == highest in
5268	       `pop_failure_point'.  */
5269	    unsigned dummy_low_reg, dummy_high_reg;
5270	    unsigned char *pdummy;
5271	    const char *sdummy;
5272
5273	    DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5274	    POP_FAILURE_POINT (sdummy, pdummy,
5275			       dummy_low_reg, dummy_high_reg,
5276			       reg_dummy, reg_dummy, reg_info_dummy);
5277	  }
5278	  /* Note fall through.	 */
5279
5280
5281	/* Unconditionally jump (without popping any failure points).  */
5282	case jump:
5283	unconditional_jump:
5284#if defined (WINDOWSNT) && defined (emacs)
5285	  QUIT;
5286#endif
5287	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
5288	  DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5289	  p += mcnt;				/* Do the jump.	 */
5290	  DEBUG_PRINT2 ("(to 0x%x).\n", p);
5291	  break;
5292
5293
5294	/* We need this opcode so we can detect where alternatives end
5295	   in `group_match_null_string_p' et al.  */
5296	case jump_past_alt:
5297	  DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5298	  goto unconditional_jump;
5299
5300
5301	/* Normally, the on_failure_jump pushes a failure point, which
5302	   then gets popped at pop_failure_jump.  We will end up at
5303	   pop_failure_jump, also, and with a pattern of, say, `a+', we
5304	   are skipping over the on_failure_jump, so we have to push
5305	   something meaningless for pop_failure_jump to pop.  */
5306	case dummy_failure_jump:
5307	  DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5308	  /* It doesn't matter what we push for the string here.  What
5309	     the code at `fail' tests is the value for the pattern.  */
5310	  PUSH_FAILURE_POINT (0, 0, -2);
5311	  goto unconditional_jump;
5312
5313
5314	/* At the end of an alternative, we need to push a dummy failure
5315	   point in case we are followed by a `pop_failure_jump', because
5316	   we don't want the failure point for the alternative to be
5317	   popped.  For example, matching `(a|ab)*' against `aab'
5318	   requires that we match the `ab' alternative.	 */
5319	case push_dummy_failure:
5320	  DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5321	  /* See comments just above at `dummy_failure_jump' about the
5322	     two zeroes.  */
5323	  PUSH_FAILURE_POINT (0, 0, -2);
5324	  break;
5325
5326	/* Have to succeed matching what follows at least n times.
5327	   After that, handle like `on_failure_jump'.  */
5328	case succeed_n:
5329	  EXTRACT_NUMBER (mcnt, p + 2);
5330	  DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5331
5332	  assert (mcnt >= 0);
5333	  /* Originally, this is how many times we HAVE to succeed.  */
5334	  if (mcnt > 0)
5335	    {
5336	       mcnt--;
5337	       p += 2;
5338	       STORE_NUMBER_AND_INCR (p, mcnt);
5339	       DEBUG_PRINT3 ("	Setting 0x%x to %d.\n", p, mcnt);
5340	    }
5341	  else if (mcnt == 0)
5342	    {
5343	      DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
5344	      p[2] = (unsigned char) no_op;
5345	      p[3] = (unsigned char) no_op;
5346	      goto on_failure;
5347	    }
5348	  break;
5349
5350	case jump_n:
5351	  EXTRACT_NUMBER (mcnt, p + 2);
5352	  DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5353
5354	  /* Originally, this is how many times we CAN jump.  */
5355	  if (mcnt)
5356	    {
5357	       mcnt--;
5358	       STORE_NUMBER (p + 2, mcnt);
5359	       goto unconditional_jump;
5360	    }
5361	  /* If don't have to jump any more, skip over the rest of command.  */
5362	  else
5363	    p += 4;
5364	  break;
5365
5366	case set_number_at:
5367	  {
5368	    DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5369
5370	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
5371	    p1 = p + mcnt;
5372	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
5373	    DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
5374	    STORE_NUMBER (p1, mcnt);
5375	    break;
5376	  }
5377
5378	case wordbound:
5379	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5380
5381	  /* We SUCCEED in one of the following cases: */
5382
5383	  /* Case 1: D is at the beginning or the end of string.  */
5384	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5385	    break;
5386	  else
5387	    {
5388	      /* C1 is the character before D, S1 is the syntax of C1, C2
5389		 is the character at D, and S2 is the syntax of C2.  */
5390	      int c1, c2, s1, s2;
5391	      int pos1 = PTR_TO_OFFSET (d - 1);
5392	      int charpos;
5393
5394	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5395	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5396#ifdef emacs
5397	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5398	      UPDATE_SYNTAX_TABLE (charpos);
5399#endif
5400	      s1 = SYNTAX (c1);
5401#ifdef emacs
5402	      UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5403#endif
5404	      s2 = SYNTAX (c2);
5405
5406	      if (/* Case 2: Only one of S1 and S2 is Sword.  */
5407		  ((s1 == Sword) != (s2 == Sword))
5408		  /* Case 3: Both of S1 and S2 are Sword, and macro
5409		     WORD_BOUNDARY_P (C1, C2) returns nonzero.	*/
5410		  || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5411	    break;
5412	}
5413	  goto fail;
5414
5415      case notwordbound:
5416	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5417
5418	  /* We FAIL in one of the following cases: */
5419
5420	  /* Case 1: D is at the beginning or the end of string.  */
5421	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5422	    goto fail;
5423	  else
5424	    {
5425	      /* C1 is the character before D, S1 is the syntax of C1, C2
5426		 is the character at D, and S2 is the syntax of C2.  */
5427	      int c1, c2, s1, s2;
5428	      int pos1 = PTR_TO_OFFSET (d - 1);
5429	      int charpos;
5430
5431	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5432	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5433#ifdef emacs
5434	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5435	      UPDATE_SYNTAX_TABLE (charpos);
5436#endif
5437	      s1 = SYNTAX (c1);
5438#ifdef emacs
5439	      UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5440#endif
5441	      s2 = SYNTAX (c2);
5442
5443	      if (/* Case 2: Only one of S1 and S2 is Sword.  */
5444		  ((s1 == Sword) != (s2 == Sword))
5445		  /* Case 3: Both of S1 and S2 are Sword, and macro
5446		     WORD_BOUNDARY_P (C1, C2) returns nonzero.	*/
5447		  || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5448	    goto fail;
5449	}
5450	  break;
5451
5452	case wordbeg:
5453	  DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5454
5455	  /* We FAIL in one of the following cases: */
5456
5457	  /* Case 1: D is at the end of string.	 */
5458	  if (AT_STRINGS_END (d))
5459	  goto fail;
5460	  else
5461	    {
5462	      /* C1 is the character before D, S1 is the syntax of C1, C2
5463		 is the character at D, and S2 is the syntax of C2.  */
5464	      int c1, c2, s1, s2;
5465	      int pos1 = PTR_TO_OFFSET (d);
5466	      int charpos;
5467
5468	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5469#ifdef emacs
5470	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5471	      UPDATE_SYNTAX_TABLE (charpos);
5472#endif
5473	      s2 = SYNTAX (c2);
5474
5475	      /* Case 2: S2 is not Sword. */
5476	      if (s2 != Sword)
5477		goto fail;
5478
5479	      /* Case 3: D is not at the beginning of string ... */
5480	      if (!AT_STRINGS_BEG (d))
5481		{
5482		  GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5483#ifdef emacs
5484		  UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5485#endif
5486		  s1 = SYNTAX (c1);
5487
5488		  /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5489		     returns 0.	 */
5490		  if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5491		    goto fail;
5492		}
5493	    }
5494	  break;
5495
5496	case wordend:
5497	  DEBUG_PRINT1 ("EXECUTING wordend.\n");
5498
5499	  /* We FAIL in one of the following cases: */
5500
5501	  /* Case 1: D is at the beginning of string.  */
5502	  if (AT_STRINGS_BEG (d))
5503	    goto fail;
5504	  else
5505	    {
5506	      /* C1 is the character before D, S1 is the syntax of C1, C2
5507		 is the character at D, and S2 is the syntax of C2.  */
5508	      int c1, c2, s1, s2;
5509	      int pos1 = PTR_TO_OFFSET (d);
5510	      int charpos;
5511
5512	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5513#ifdef emacs
5514	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1);
5515	      UPDATE_SYNTAX_TABLE (charpos);
5516#endif
5517	      s1 = SYNTAX (c1);
5518
5519	      /* Case 2: S1 is not Sword.  */
5520	      if (s1 != Sword)
5521		goto fail;
5522
5523	      /* Case 3: D is not at the end of string ... */
5524	      if (!AT_STRINGS_END (d))
5525		{
5526		  GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5527#ifdef emacs
5528		  UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5529#endif
5530		  s2 = SYNTAX (c2);
5531
5532		  /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5533		     returns 0.	 */
5534		  if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5535	  goto fail;
5536		}
5537	    }
5538	  break;
5539
5540#ifdef emacs
5541	case before_dot:
5542	  DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5543	  if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE)
5544	    goto fail;
5545	  break;
5546
5547	case at_dot:
5548	  DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5549	  if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE)
5550	    goto fail;
5551	  break;
5552
5553	case after_dot:
5554	  DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5555	  if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE)
5556	    goto fail;
5557	  break;
5558
5559	case syntaxspec:
5560	  DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5561	  mcnt = *p++;
5562	  goto matchsyntax;
5563
5564	case wordchar:
5565	  DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5566	  mcnt = (int) Sword;
5567	matchsyntax:
5568	  PREFETCH ();
5569#ifdef emacs
5570	  {
5571	    int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
5572	    UPDATE_SYNTAX_TABLE (pos1);
5573	  }
5574#endif
5575	  {
5576	    int c, len;
5577
5578	    if (multibyte)
5579	      /* we must concern about multibyte form, ... */
5580	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5581	    else
5582	      /* everything should be handled as ASCII, even though it
5583		 looks like multibyte form.  */
5584	      c = *d, len = 1;
5585
5586	    if (SYNTAX (c) != (enum syntaxcode) mcnt)
5587	    goto fail;
5588	    d += len;
5589	  }
5590	  SET_REGS_MATCHED ();
5591	  break;
5592
5593	case notsyntaxspec:
5594	  DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5595	  mcnt = *p++;
5596	  goto matchnotsyntax;
5597
5598	case notwordchar:
5599	  DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5600	  mcnt = (int) Sword;
5601	matchnotsyntax:
5602	  PREFETCH ();
5603#ifdef emacs
5604	  {
5605	    int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
5606	    UPDATE_SYNTAX_TABLE (pos1);
5607	  }
5608#endif
5609	  {
5610	    int c, len;
5611
5612	    if (multibyte)
5613	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5614	    else
5615	      c = *d, len = 1;
5616
5617	    if (SYNTAX (c) == (enum syntaxcode) mcnt)
5618	    goto fail;
5619	    d += len;
5620	  }
5621	  SET_REGS_MATCHED ();
5622	  break;
5623
5624	case categoryspec:
5625	  DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5626	  mcnt = *p++;
5627	  PREFETCH ();
5628	  {
5629	    int c, len;
5630
5631	    if (multibyte)
5632	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5633	    else
5634	      c = *d, len = 1;
5635
5636	    if (!CHAR_HAS_CATEGORY (c, mcnt))
5637	      goto fail;
5638	    d += len;
5639	  }
5640	  SET_REGS_MATCHED ();
5641	  break;
5642
5643	case notcategoryspec:
5644	  DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5645	  mcnt = *p++;
5646	  PREFETCH ();
5647	  {
5648	    int c, len;
5649
5650	    if (multibyte)
5651	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5652	    else
5653	      c = *d, len = 1;
5654
5655	    if (CHAR_HAS_CATEGORY (c, mcnt))
5656	      goto fail;
5657	    d += len;
5658	  }
5659	  SET_REGS_MATCHED ();
5660          break;
5661
5662#else /* not emacs */
5663	case wordchar:
5664          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5665	  PREFETCH ();
5666          if (!WORDCHAR_P (d))
5667            goto fail;
5668	  SET_REGS_MATCHED ();
5669          d++;
5670	  break;
5671
5672	case notwordchar:
5673          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5674	  PREFETCH ();
5675	  if (WORDCHAR_P (d))
5676            goto fail;
5677          SET_REGS_MATCHED ();
5678          d++;
5679	  break;
5680#endif /* not emacs */
5681
5682        default:
5683          abort ();
5684	}
5685      continue;  /* Successfully executed one pattern command; keep going.  */
5686
5687
5688    /* We goto here if a matching operation fails. */
5689    fail:
5690#if defined (WINDOWSNT) && defined (emacs)
5691      QUIT;
5692#endif
5693      if (!FAIL_STACK_EMPTY ())
5694	{ /* A restart point is known.  Restore to that state.  */
5695          DEBUG_PRINT1 ("\nFAIL:\n");
5696          POP_FAILURE_POINT (d, p,
5697                             lowest_active_reg, highest_active_reg,
5698                             regstart, regend, reg_info);
5699
5700          /* If this failure point is a dummy, try the next one.  */
5701          if (!p)
5702	    goto fail;
5703
5704          /* If we failed to the end of the pattern, don't examine *p.  */
5705	  assert (p <= pend);
5706          if (p < pend)
5707            {
5708              boolean is_a_jump_n = false;
5709
5710              /* If failed to a backwards jump that's part of a repetition
5711                 loop, need to pop this failure point and use the next one.  */
5712              switch ((re_opcode_t) *p)
5713                {
5714                case jump_n:
5715                  is_a_jump_n = true;
5716                case maybe_pop_jump:
5717                case pop_failure_jump:
5718                case jump:
5719                  p1 = p + 1;
5720                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5721                  p1 += mcnt;
5722
5723                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5724                      || (!is_a_jump_n
5725                          && (re_opcode_t) *p1 == on_failure_jump))
5726                    goto fail;
5727                  break;
5728                default:
5729                  /* do nothing */ ;
5730                }
5731            }
5732
5733          if (d >= string1 && d <= end1)
5734	    dend = end_match_1;
5735        }
5736      else
5737        break;   /* Matching at this starting point really fails.  */
5738    } /* for (;;) */
5739
5740  if (best_regs_set)
5741    goto restore_best_regs;
5742
5743  FREE_VARIABLES ();
5744
5745  return -1;         			/* Failure to match.  */
5746} /* re_match_2 */
5747
5748/* Subroutine definitions for re_match_2.  */
5749
5750
5751/* We are passed P pointing to a register number after a start_memory.
5752
5753   Return true if the pattern up to the corresponding stop_memory can
5754   match the empty string, and false otherwise.
5755
5756   If we find the matching stop_memory, sets P to point to one past its number.
5757   Otherwise, sets P to an undefined byte less than or equal to END.
5758
5759   We don't handle duplicates properly (yet).  */
5760
5761static boolean
5762group_match_null_string_p (p, end, reg_info)
5763    unsigned char **p, *end;
5764    register_info_type *reg_info;
5765{
5766  int mcnt;
5767  /* Point to after the args to the start_memory.  */
5768  unsigned char *p1 = *p + 2;
5769
5770  while (p1 < end)
5771    {
5772      /* Skip over opcodes that can match nothing, and return true or
5773	 false, as appropriate, when we get to one that can't, or to the
5774         matching stop_memory.  */
5775
5776      switch ((re_opcode_t) *p1)
5777        {
5778        /* Could be either a loop or a series of alternatives.  */
5779        case on_failure_jump:
5780          p1++;
5781          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5782
5783          /* If the next operation is not a jump backwards in the
5784	     pattern.  */
5785
5786	  if (mcnt >= 0)
5787	    {
5788              /* Go through the on_failure_jumps of the alternatives,
5789                 seeing if any of the alternatives cannot match nothing.
5790                 The last alternative starts with only a jump,
5791                 whereas the rest start with on_failure_jump and end
5792                 with a jump, e.g., here is the pattern for `a|b|c':
5793
5794                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5795                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5796                 /exactn/1/c
5797
5798                 So, we have to first go through the first (n-1)
5799                 alternatives and then deal with the last one separately.  */
5800
5801
5802              /* Deal with the first (n-1) alternatives, which start
5803                 with an on_failure_jump (see above) that jumps to right
5804                 past a jump_past_alt.  */
5805
5806              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5807                {
5808                  /* `mcnt' holds how many bytes long the alternative
5809                     is, including the ending `jump_past_alt' and
5810                     its number.  */
5811
5812                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5813				                      reg_info))
5814                    return false;
5815
5816                  /* Move to right after this alternative, including the
5817		     jump_past_alt.  */
5818                  p1 += mcnt;
5819
5820                  /* Break if it's the beginning of an n-th alternative
5821                     that doesn't begin with an on_failure_jump.  */
5822                  if ((re_opcode_t) *p1 != on_failure_jump)
5823                    break;
5824
5825		  /* Still have to check that it's not an n-th
5826		     alternative that starts with an on_failure_jump.  */
5827		  p1++;
5828                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5829                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5830                    {
5831		      /* Get to the beginning of the n-th alternative.  */
5832                      p1 -= 3;
5833                      break;
5834                    }
5835                }
5836
5837              /* Deal with the last alternative: go back and get number
5838                 of the `jump_past_alt' just before it.  `mcnt' contains
5839                 the length of the alternative.  */
5840              EXTRACT_NUMBER (mcnt, p1 - 2);
5841
5842              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5843                return false;
5844
5845              p1 += mcnt;	/* Get past the n-th alternative.  */
5846            } /* if mcnt > 0 */
5847          break;
5848
5849
5850        case stop_memory:
5851	  assert (p1[1] == **p);
5852          *p = p1 + 2;
5853          return true;
5854
5855
5856        default:
5857          if (!common_op_match_null_string_p (&p1, end, reg_info))
5858            return false;
5859        }
5860    } /* while p1 < end */
5861
5862  return false;
5863} /* group_match_null_string_p */
5864
5865
5866/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5867   It expects P to be the first byte of a single alternative and END one
5868   byte past the last. The alternative can contain groups.  */
5869
5870static boolean
5871alt_match_null_string_p (p, end, reg_info)
5872    unsigned char *p, *end;
5873    register_info_type *reg_info;
5874{
5875  int mcnt;
5876  unsigned char *p1 = p;
5877
5878  while (p1 < end)
5879    {
5880      /* Skip over opcodes that can match nothing, and break when we get
5881         to one that can't.  */
5882
5883      switch ((re_opcode_t) *p1)
5884        {
5885	/* It's a loop.  */
5886        case on_failure_jump:
5887          p1++;
5888          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5889          p1 += mcnt;
5890          break;
5891
5892	default:
5893          if (!common_op_match_null_string_p (&p1, end, reg_info))
5894            return false;
5895        }
5896    }  /* while p1 < end */
5897
5898  return true;
5899} /* alt_match_null_string_p */
5900
5901
5902/* Deals with the ops common to group_match_null_string_p and
5903   alt_match_null_string_p.
5904
5905   Sets P to one after the op and its arguments, if any.  */
5906
5907static boolean
5908common_op_match_null_string_p (p, end, reg_info)
5909    unsigned char **p, *end;
5910    register_info_type *reg_info;
5911{
5912  int mcnt;
5913  boolean ret;
5914  int reg_no;
5915  unsigned char *p1 = *p;
5916
5917  switch ((re_opcode_t) *p1++)
5918    {
5919    case no_op:
5920    case begline:
5921    case endline:
5922    case begbuf:
5923    case endbuf:
5924    case wordbeg:
5925    case wordend:
5926    case wordbound:
5927    case notwordbound:
5928#ifdef emacs
5929    case before_dot:
5930    case at_dot:
5931    case after_dot:
5932#endif
5933      break;
5934
5935    case start_memory:
5936      reg_no = *p1;
5937      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5938      ret = group_match_null_string_p (&p1, end, reg_info);
5939
5940      /* Have to set this here in case we're checking a group which
5941         contains a group and a back reference to it.  */
5942
5943      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5944        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5945
5946      if (!ret)
5947        return false;
5948      break;
5949
5950    /* If this is an optimized succeed_n for zero times, make the jump.  */
5951    case jump:
5952      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5953      if (mcnt >= 0)
5954        p1 += mcnt;
5955      else
5956        return false;
5957      break;
5958
5959    case succeed_n:
5960      /* Get to the number of times to succeed.  */
5961      p1 += 2;
5962      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5963
5964      if (mcnt == 0)
5965        {
5966          p1 -= 4;
5967          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5968          p1 += mcnt;
5969        }
5970      else
5971        return false;
5972      break;
5973
5974    case duplicate:
5975      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5976        return false;
5977      break;
5978
5979    case set_number_at:
5980      p1 += 4;
5981
5982    default:
5983      /* All other opcodes mean we cannot match the empty string.  */
5984      return false;
5985  }
5986
5987  *p = p1;
5988  return true;
5989} /* common_op_match_null_string_p */
5990
5991
5992/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5993   bytes; nonzero otherwise.  */
5994
5995static int
5996bcmp_translate (s1, s2, len, translate)
5997     unsigned char *s1, *s2;
5998     register int len;
5999     RE_TRANSLATE_TYPE translate;
6000{
6001  register unsigned char *p1 = s1, *p2 = s2;
6002  unsigned char *p1_end = s1 + len;
6003  unsigned char *p2_end = s2 + len;
6004
6005  while (p1 != p1_end && p2 != p2_end)
6006    {
6007      int p1_charlen, p2_charlen;
6008      int p1_ch, p2_ch;
6009
6010      p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6011      p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6012
6013      if (RE_TRANSLATE (translate, p1_ch)
6014	  != RE_TRANSLATE (translate, p2_ch))
6015	return 1;
6016
6017      p1 += p1_charlen, p2 += p2_charlen;
6018    }
6019
6020  if (p1 != p1_end || p2 != p2_end)
6021    return 1;
6022
6023  return 0;
6024}
6025
6026/* Entry points for GNU code.  */
6027
6028/* re_compile_pattern is the GNU regular expression compiler: it
6029   compiles PATTERN (of length SIZE) and puts the result in BUFP.
6030   Returns 0 if the pattern was valid, otherwise an error string.
6031
6032   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6033   are set in BUFP on entry.
6034
6035   We call regex_compile to do the actual compilation.  */
6036
6037const char *
6038re_compile_pattern (pattern, length, bufp)
6039     const char *pattern;
6040     int length;
6041     struct re_pattern_buffer *bufp;
6042{
6043  reg_errcode_t ret;
6044
6045  /* GNU code is written to assume at least RE_NREGS registers will be set
6046     (and at least one extra will be -1).  */
6047  bufp->regs_allocated = REGS_UNALLOCATED;
6048
6049  /* And GNU code determines whether or not to get register information
6050     by passing null for the REGS argument to re_match, etc., not by
6051     setting no_sub.  */
6052  bufp->no_sub = 0;
6053
6054  /* Match anchors at newline.  */
6055  bufp->newline_anchor = 1;
6056
6057  ret = regex_compile (pattern, length, re_syntax_options, bufp);
6058
6059  if (!ret)
6060    return NULL;
6061  return gettext (re_error_msgid[(int) ret]);
6062}
6063
6064/* Entry points compatible with 4.2 BSD regex library.  We don't define
6065   them unless specifically requested.  */
6066
6067#if defined (_REGEX_RE_COMP) || defined (_LIBC)
6068
6069/* BSD has one and only one pattern buffer.  */
6070static struct re_pattern_buffer re_comp_buf;
6071
6072char *
6073#ifdef _LIBC
6074/* Make these definitions weak in libc, so POSIX programs can redefine
6075   these names if they don't use our functions, and still use
6076   regcomp/regexec below without link errors.  */
6077weak_function
6078#endif
6079re_comp (s)
6080    const char *s;
6081{
6082  reg_errcode_t ret;
6083
6084  if (!s)
6085    {
6086      if (!re_comp_buf.buffer)
6087	return (char *) gettext ("No previous regular expression");
6088      return 0;
6089    }
6090
6091  if (!re_comp_buf.buffer)
6092    {
6093      re_comp_buf.buffer = (unsigned char *) malloc (200);
6094      if (re_comp_buf.buffer == NULL)
6095        /* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6096        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6097      re_comp_buf.allocated = 200;
6098
6099      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6100      if (re_comp_buf.fastmap == NULL)
6101	/* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6102	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6103    }
6104
6105  /* Since `re_exec' always passes NULL for the `regs' argument, we
6106     don't need to initialize the pattern buffer fields which affect it.  */
6107
6108  /* Match anchors at newlines.  */
6109  re_comp_buf.newline_anchor = 1;
6110
6111  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6112
6113  if (!ret)
6114    return NULL;
6115
6116  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6117  return (char *) gettext (re_error_msgid[(int) ret]);
6118}
6119
6120
6121int
6122#ifdef _LIBC
6123weak_function
6124#endif
6125re_exec (s)
6126    const char *s;
6127{
6128  const int len = strlen (s);
6129  return
6130    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6131}
6132#endif /* _REGEX_RE_COMP */
6133
6134/* POSIX.2 functions.  Don't define these for Emacs.  */
6135
6136#ifndef emacs
6137
6138/* regcomp takes a regular expression as a string and compiles it.
6139
6140   PREG is a regex_t *.  We do not expect any fields to be initialized,
6141   since POSIX says we shouldn't.  Thus, we set
6142
6143     `buffer' to the compiled pattern;
6144     `used' to the length of the compiled pattern;
6145     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6146       REG_EXTENDED bit in CFLAGS is set; otherwise, to
6147       RE_SYNTAX_POSIX_BASIC;
6148     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6149     `fastmap' and `fastmap_accurate' to zero;
6150     `re_nsub' to the number of subexpressions in PATTERN.
6151
6152   PATTERN is the address of the pattern string.
6153
6154   CFLAGS is a series of bits which affect compilation.
6155
6156     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6157     use POSIX basic syntax.
6158
6159     If REG_NEWLINE is set, then . and [^...] don't match newline.
6160     Also, regexec will try a match beginning after every newline.
6161
6162     If REG_ICASE is set, then we considers upper- and lowercase
6163     versions of letters to be equivalent when matching.
6164
6165     If REG_NOSUB is set, then when PREG is passed to regexec, that
6166     routine will report only success or failure, and nothing about the
6167     registers.
6168
6169   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
6170   the return codes and their meanings.)  */
6171
6172int
6173regcomp (preg, pattern, cflags)
6174    regex_t *preg;
6175    const char *pattern;
6176    int cflags;
6177{
6178  reg_errcode_t ret;
6179  unsigned syntax
6180    = (cflags & REG_EXTENDED) ?
6181      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6182
6183  /* regex_compile will allocate the space for the compiled pattern.  */
6184  preg->buffer = 0;
6185  preg->allocated = 0;
6186  preg->used = 0;
6187
6188  /* Don't bother to use a fastmap when searching.  This simplifies the
6189     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6190     characters after newlines into the fastmap.  This way, we just try
6191     every character.  */
6192  preg->fastmap = 0;
6193
6194  if (cflags & REG_ICASE)
6195    {
6196      unsigned i;
6197
6198      preg->translate
6199	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6200				      * sizeof (*(RE_TRANSLATE_TYPE)0));
6201      if (preg->translate == NULL)
6202        return (int) REG_ESPACE;
6203
6204      /* Map uppercase characters to corresponding lowercase ones.  */
6205      for (i = 0; i < CHAR_SET_SIZE; i++)
6206        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
6207    }
6208  else
6209    preg->translate = NULL;
6210
6211  /* If REG_NEWLINE is set, newlines are treated differently.  */
6212  if (cflags & REG_NEWLINE)
6213    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
6214      syntax &= ~RE_DOT_NEWLINE;
6215      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6216      /* It also changes the matching behavior.  */
6217      preg->newline_anchor = 1;
6218    }
6219  else
6220    preg->newline_anchor = 0;
6221
6222  preg->no_sub = !!(cflags & REG_NOSUB);
6223
6224  /* POSIX says a null character in the pattern terminates it, so we
6225     can use strlen here in compiling the pattern.  */
6226  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
6227
6228  /* POSIX doesn't distinguish between an unmatched open-group and an
6229     unmatched close-group: both are REG_EPAREN.  */
6230  if (ret == REG_ERPAREN) ret = REG_EPAREN;
6231
6232  return (int) ret;
6233}
6234
6235
6236/* regexec searches for a given pattern, specified by PREG, in the
6237   string STRING.
6238
6239   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6240   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
6241   least NMATCH elements, and we set them to the offsets of the
6242   corresponding matched substrings.
6243
6244   EFLAGS specifies `execution flags' which affect matching: if
6245   REG_NOTBOL is set, then ^ does not match at the beginning of the
6246   string; if REG_NOTEOL is set, then $ does not match at the end.
6247
6248   We return 0 if we find a match and REG_NOMATCH if not.  */
6249
6250int
6251regexec (preg, string, nmatch, pmatch, eflags)
6252    const regex_t *preg;
6253    const char *string;
6254    size_t nmatch;
6255    regmatch_t pmatch[];
6256    int eflags;
6257{
6258  int ret;
6259  struct re_registers regs;
6260  regex_t private_preg;
6261  int len = strlen (string);
6262  boolean want_reg_info = !preg->no_sub && nmatch > 0;
6263
6264  private_preg = *preg;
6265
6266  private_preg.not_bol = !!(eflags & REG_NOTBOL);
6267  private_preg.not_eol = !!(eflags & REG_NOTEOL);
6268
6269  /* The user has told us exactly how many registers to return
6270     information about, via `nmatch'.  We have to pass that on to the
6271     matching routines.  */
6272  private_preg.regs_allocated = REGS_FIXED;
6273
6274  if (want_reg_info)
6275    {
6276      regs.num_regs = nmatch;
6277      regs.start = TALLOC (nmatch, regoff_t);
6278      regs.end = TALLOC (nmatch, regoff_t);
6279      if (regs.start == NULL || regs.end == NULL)
6280        return (int) REG_NOMATCH;
6281    }
6282
6283  /* Perform the searching operation.  */
6284  ret = re_search (&private_preg, string, len,
6285                   /* start: */ 0, /* range: */ len,
6286                   want_reg_info ? &regs : (struct re_registers *) 0);
6287
6288  /* Copy the register information to the POSIX structure.  */
6289  if (want_reg_info)
6290    {
6291      if (ret >= 0)
6292        {
6293          unsigned r;
6294
6295          for (r = 0; r < nmatch; r++)
6296            {
6297              pmatch[r].rm_so = regs.start[r];
6298              pmatch[r].rm_eo = regs.end[r];
6299            }
6300        }
6301
6302      /* If we needed the temporary register info, free the space now.  */
6303      free (regs.start);
6304      free (regs.end);
6305    }
6306
6307  /* We want zero return to mean success, unlike `re_search'.  */
6308  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6309}
6310
6311
6312/* Returns a message corresponding to an error code, ERRCODE, returned
6313   from either regcomp or regexec.   We don't use PREG here.  */
6314
6315size_t
6316regerror (errcode, preg, errbuf, errbuf_size)
6317    int errcode;
6318    const regex_t *preg;
6319    char *errbuf;
6320    size_t errbuf_size;
6321{
6322  const char *msg;
6323  size_t msg_size;
6324
6325  if (errcode < 0
6326      || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6327    /* Only error codes returned by the rest of the code should be passed
6328       to this routine.  If we are given anything else, or if other regex
6329       code generates an invalid error code, then the program has a bug.
6330       Dump core so we can fix it.  */
6331    abort ();
6332
6333  msg = gettext (re_error_msgid[errcode]);
6334
6335  msg_size = strlen (msg) + 1; /* Includes the null.  */
6336
6337  if (errbuf_size != 0)
6338    {
6339      if (msg_size > errbuf_size)
6340        {
6341          strncpy (errbuf, msg, errbuf_size - 1);
6342          errbuf[errbuf_size - 1] = 0;
6343        }
6344      else
6345        strcpy (errbuf, msg);
6346    }
6347
6348  return msg_size;
6349}
6350
6351
6352/* Free dynamically allocated space used by PREG.  */
6353
6354void
6355regfree (preg)
6356    regex_t *preg;
6357{
6358  if (preg->buffer != NULL)
6359    free (preg->buffer);
6360  preg->buffer = NULL;
6361
6362  preg->allocated = 0;
6363  preg->used = 0;
6364
6365  if (preg->fastmap != NULL)
6366    free (preg->fastmap);
6367  preg->fastmap = NULL;
6368  preg->fastmap_accurate = 0;
6369
6370  if (preg->translate != NULL)
6371    free (preg->translate);
6372  preg->translate = NULL;
6373}
6374
6375#endif /* not emacs  */
6376