1/* linker.c -- BFD linker routines
2   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3   2003, 2004, 2005, 2006, 2007
4   Free Software Foundation, Inc.
5   Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
22
23#include "sysdep.h"
24#include "bfd.h"
25#include "libbfd.h"
26#include "bfdlink.h"
27#include "genlink.h"
28
29/*
30SECTION
31	Linker Functions
32
33@cindex Linker
34	The linker uses three special entry points in the BFD target
35	vector.  It is not necessary to write special routines for
36	these entry points when creating a new BFD back end, since
37	generic versions are provided.  However, writing them can
38	speed up linking and make it use significantly less runtime
39	memory.
40
41	The first routine creates a hash table used by the other
42	routines.  The second routine adds the symbols from an object
43	file to the hash table.  The third routine takes all the
44	object files and links them together to create the output
45	file.  These routines are designed so that the linker proper
46	does not need to know anything about the symbols in the object
47	files that it is linking.  The linker merely arranges the
48	sections as directed by the linker script and lets BFD handle
49	the details of symbols and relocs.
50
51	The second routine and third routines are passed a pointer to
52	a <<struct bfd_link_info>> structure (defined in
53	<<bfdlink.h>>) which holds information relevant to the link,
54	including the linker hash table (which was created by the
55	first routine) and a set of callback functions to the linker
56	proper.
57
58	The generic linker routines are in <<linker.c>>, and use the
59	header file <<genlink.h>>.  As of this writing, the only back
60	ends which have implemented versions of these routines are
61	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
62	routines are used as examples throughout this section.
63
64@menu
65@* Creating a Linker Hash Table::
66@* Adding Symbols to the Hash Table::
67@* Performing the Final Link::
68@end menu
69
70INODE
71Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
72SUBSECTION
73	Creating a linker hash table
74
75@cindex _bfd_link_hash_table_create in target vector
76@cindex target vector (_bfd_link_hash_table_create)
77	The linker routines must create a hash table, which must be
78	derived from <<struct bfd_link_hash_table>> described in
79	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
80	create a derived hash table.  This entry point is called using
81	the target vector of the linker output file.
82
83	The <<_bfd_link_hash_table_create>> entry point must allocate
84	and initialize an instance of the desired hash table.  If the
85	back end does not require any additional information to be
86	stored with the entries in the hash table, the entry point may
87	simply create a <<struct bfd_link_hash_table>>.  Most likely,
88	however, some additional information will be needed.
89
90	For example, with each entry in the hash table the a.out
91	linker keeps the index the symbol has in the final output file
92	(this index number is used so that when doing a relocatable
93	link the symbol index used in the output file can be quickly
94	filled in when copying over a reloc).  The a.out linker code
95	defines the required structures and functions for a hash table
96	derived from <<struct bfd_link_hash_table>>.  The a.out linker
97	hash table is created by the function
98	<<NAME(aout,link_hash_table_create)>>; it simply allocates
99	space for the hash table, initializes it, and returns a
100	pointer to it.
101
102	When writing the linker routines for a new back end, you will
103	generally not know exactly which fields will be required until
104	you have finished.  You should simply create a new hash table
105	which defines no additional fields, and then simply add fields
106	as they become necessary.
107
108INODE
109Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
110SUBSECTION
111	Adding symbols to the hash table
112
113@cindex _bfd_link_add_symbols in target vector
114@cindex target vector (_bfd_link_add_symbols)
115	The linker proper will call the <<_bfd_link_add_symbols>>
116	entry point for each object file or archive which is to be
117	linked (typically these are the files named on the command
118	line, but some may also come from the linker script).  The
119	entry point is responsible for examining the file.  For an
120	object file, BFD must add any relevant symbol information to
121	the hash table.  For an archive, BFD must determine which
122	elements of the archive should be used and adding them to the
123	link.
124
125	The a.out version of this entry point is
126	<<NAME(aout,link_add_symbols)>>.
127
128@menu
129@* Differing file formats::
130@* Adding symbols from an object file::
131@* Adding symbols from an archive::
132@end menu
133
134INODE
135Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
136SUBSUBSECTION
137	Differing file formats
138
139	Normally all the files involved in a link will be of the same
140	format, but it is also possible to link together different
141	format object files, and the back end must support that.  The
142	<<_bfd_link_add_symbols>> entry point is called via the target
143	vector of the file to be added.  This has an important
144	consequence: the function may not assume that the hash table
145	is the type created by the corresponding
146	<<_bfd_link_hash_table_create>> vector.  All the
147	<<_bfd_link_add_symbols>> function can assume about the hash
148	table is that it is derived from <<struct
149	bfd_link_hash_table>>.
150
151	Sometimes the <<_bfd_link_add_symbols>> function must store
152	some information in the hash table entry to be used by the
153	<<_bfd_final_link>> function.  In such a case the <<creator>>
154	field of the hash table must be checked to make sure that the
155	hash table was created by an object file of the same format.
156
157	The <<_bfd_final_link>> routine must be prepared to handle a
158	hash entry without any extra information added by the
159	<<_bfd_link_add_symbols>> function.  A hash entry without
160	extra information will also occur when the linker script
161	directs the linker to create a symbol.  Note that, regardless
162	of how a hash table entry is added, all the fields will be
163	initialized to some sort of null value by the hash table entry
164	initialization function.
165
166	See <<ecoff_link_add_externals>> for an example of how to
167	check the <<creator>> field before saving information (in this
168	case, the ECOFF external symbol debugging information) in a
169	hash table entry.
170
171INODE
172Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
173SUBSUBSECTION
174	Adding symbols from an object file
175
176	When the <<_bfd_link_add_symbols>> routine is passed an object
177	file, it must add all externally visible symbols in that
178	object file to the hash table.  The actual work of adding the
179	symbol to the hash table is normally handled by the function
180	<<_bfd_generic_link_add_one_symbol>>.  The
181	<<_bfd_link_add_symbols>> routine is responsible for reading
182	all the symbols from the object file and passing the correct
183	information to <<_bfd_generic_link_add_one_symbol>>.
184
185	The <<_bfd_link_add_symbols>> routine should not use
186	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
187	providing this routine is to avoid the overhead of converting
188	the symbols into generic <<asymbol>> structures.
189
190@findex _bfd_generic_link_add_one_symbol
191	<<_bfd_generic_link_add_one_symbol>> handles the details of
192	combining common symbols, warning about multiple definitions,
193	and so forth.  It takes arguments which describe the symbol to
194	add, notably symbol flags, a section, and an offset.  The
195	symbol flags include such things as <<BSF_WEAK>> or
196	<<BSF_INDIRECT>>.  The section is a section in the object
197	file, or something like <<bfd_und_section_ptr>> for an undefined
198	symbol or <<bfd_com_section_ptr>> for a common symbol.
199
200	If the <<_bfd_final_link>> routine is also going to need to
201	read the symbol information, the <<_bfd_link_add_symbols>>
202	routine should save it somewhere attached to the object file
203	BFD.  However, the information should only be saved if the
204	<<keep_memory>> field of the <<info>> argument is TRUE, so
205	that the <<-no-keep-memory>> linker switch is effective.
206
207	The a.out function which adds symbols from an object file is
208	<<aout_link_add_object_symbols>>, and most of the interesting
209	work is in <<aout_link_add_symbols>>.  The latter saves
210	pointers to the hash tables entries created by
211	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
212	so that the <<_bfd_final_link>> routine does not have to call
213	the hash table lookup routine to locate the entry.
214
215INODE
216Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
217SUBSUBSECTION
218	Adding symbols from an archive
219
220	When the <<_bfd_link_add_symbols>> routine is passed an
221	archive, it must look through the symbols defined by the
222	archive and decide which elements of the archive should be
223	included in the link.  For each such element it must call the
224	<<add_archive_element>> linker callback, and it must add the
225	symbols from the object file to the linker hash table.
226
227@findex _bfd_generic_link_add_archive_symbols
228	In most cases the work of looking through the symbols in the
229	archive should be done by the
230	<<_bfd_generic_link_add_archive_symbols>> function.  This
231	function builds a hash table from the archive symbol table and
232	looks through the list of undefined symbols to see which
233	elements should be included.
234	<<_bfd_generic_link_add_archive_symbols>> is passed a function
235	to call to make the final decision about adding an archive
236	element to the link and to do the actual work of adding the
237	symbols to the linker hash table.
238
239	The function passed to
240	<<_bfd_generic_link_add_archive_symbols>> must read the
241	symbols of the archive element and decide whether the archive
242	element should be included in the link.  If the element is to
243	be included, the <<add_archive_element>> linker callback
244	routine must be called with the element as an argument, and
245	the elements symbols must be added to the linker hash table
246	just as though the element had itself been passed to the
247	<<_bfd_link_add_symbols>> function.
248
249	When the a.out <<_bfd_link_add_symbols>> function receives an
250	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
251	passing <<aout_link_check_archive_element>> as the function
252	argument. <<aout_link_check_archive_element>> calls
253	<<aout_link_check_ar_symbols>>.  If the latter decides to add
254	the element (an element is only added if it provides a real,
255	non-common, definition for a previously undefined or common
256	symbol) it calls the <<add_archive_element>> callback and then
257	<<aout_link_check_archive_element>> calls
258	<<aout_link_add_symbols>> to actually add the symbols to the
259	linker hash table.
260
261	The ECOFF back end is unusual in that it does not normally
262	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
263	archives already contain a hash table of symbols.  The ECOFF
264	back end searches the archive itself to avoid the overhead of
265	creating a new hash table.
266
267INODE
268Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
269SUBSECTION
270	Performing the final link
271
272@cindex _bfd_link_final_link in target vector
273@cindex target vector (_bfd_final_link)
274	When all the input files have been processed, the linker calls
275	the <<_bfd_final_link>> entry point of the output BFD.  This
276	routine is responsible for producing the final output file,
277	which has several aspects.  It must relocate the contents of
278	the input sections and copy the data into the output sections.
279	It must build an output symbol table including any local
280	symbols from the input files and the global symbols from the
281	hash table.  When producing relocatable output, it must
282	modify the input relocs and write them into the output file.
283	There may also be object format dependent work to be done.
284
285	The linker will also call the <<write_object_contents>> entry
286	point when the BFD is closed.  The two entry points must work
287	together in order to produce the correct output file.
288
289	The details of how this works are inevitably dependent upon
290	the specific object file format.  The a.out
291	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
292
293@menu
294@* Information provided by the linker::
295@* Relocating the section contents::
296@* Writing the symbol table::
297@end menu
298
299INODE
300Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
301SUBSUBSECTION
302	Information provided by the linker
303
304	Before the linker calls the <<_bfd_final_link>> entry point,
305	it sets up some data structures for the function to use.
306
307	The <<input_bfds>> field of the <<bfd_link_info>> structure
308	will point to a list of all the input files included in the
309	link.  These files are linked through the <<link_next>> field
310	of the <<bfd>> structure.
311
312	Each section in the output file will have a list of
313	<<link_order>> structures attached to the <<map_head.link_order>>
314	field (the <<link_order>> structure is defined in
315	<<bfdlink.h>>).  These structures describe how to create the
316	contents of the output section in terms of the contents of
317	various input sections, fill constants, and, eventually, other
318	types of information.  They also describe relocs that must be
319	created by the BFD backend, but do not correspond to any input
320	file; this is used to support -Ur, which builds constructors
321	while generating a relocatable object file.
322
323INODE
324Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
325SUBSUBSECTION
326	Relocating the section contents
327
328	The <<_bfd_final_link>> function should look through the
329	<<link_order>> structures attached to each section of the
330	output file.  Each <<link_order>> structure should either be
331	handled specially, or it should be passed to the function
332	<<_bfd_default_link_order>> which will do the right thing
333	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
334
335	For efficiency, a <<link_order>> of type
336	<<bfd_indirect_link_order>> whose associated section belongs
337	to a BFD of the same format as the output BFD must be handled
338	specially.  This type of <<link_order>> describes part of an
339	output section in terms of a section belonging to one of the
340	input files.  The <<_bfd_final_link>> function should read the
341	contents of the section and any associated relocs, apply the
342	relocs to the section contents, and write out the modified
343	section contents.  If performing a relocatable link, the
344	relocs themselves must also be modified and written out.
345
346@findex _bfd_relocate_contents
347@findex _bfd_final_link_relocate
348	The functions <<_bfd_relocate_contents>> and
349	<<_bfd_final_link_relocate>> provide some general support for
350	performing the actual relocations, notably overflow checking.
351	Their arguments include information about the symbol the
352	relocation is against and a <<reloc_howto_type>> argument
353	which describes the relocation to perform.  These functions
354	are defined in <<reloc.c>>.
355
356	The a.out function which handles reading, relocating, and
357	writing section contents is <<aout_link_input_section>>.  The
358	actual relocation is done in <<aout_link_input_section_std>>
359	and <<aout_link_input_section_ext>>.
360
361INODE
362Writing the symbol table, , Relocating the section contents, Performing the Final Link
363SUBSUBSECTION
364	Writing the symbol table
365
366	The <<_bfd_final_link>> function must gather all the symbols
367	in the input files and write them out.  It must also write out
368	all the symbols in the global hash table.  This must be
369	controlled by the <<strip>> and <<discard>> fields of the
370	<<bfd_link_info>> structure.
371
372	The local symbols of the input files will not have been
373	entered into the linker hash table.  The <<_bfd_final_link>>
374	routine must consider each input file and include the symbols
375	in the output file.  It may be convenient to do this when
376	looking through the <<link_order>> structures, or it may be
377	done by stepping through the <<input_bfds>> list.
378
379	The <<_bfd_final_link>> routine must also traverse the global
380	hash table to gather all the externally visible symbols.  It
381	is possible that most of the externally visible symbols may be
382	written out when considering the symbols of each input file,
383	but it is still necessary to traverse the hash table since the
384	linker script may have defined some symbols that are not in
385	any of the input files.
386
387	The <<strip>> field of the <<bfd_link_info>> structure
388	controls which symbols are written out.  The possible values
389	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
390	then the <<keep_hash>> field of the <<bfd_link_info>>
391	structure is a hash table of symbols to keep; each symbol
392	should be looked up in this hash table, and only symbols which
393	are present should be included in the output file.
394
395	If the <<strip>> field of the <<bfd_link_info>> structure
396	permits local symbols to be written out, the <<discard>> field
397	is used to further controls which local symbols are included
398	in the output file.  If the value is <<discard_l>>, then all
399	local symbols which begin with a certain prefix are discarded;
400	this is controlled by the <<bfd_is_local_label_name>> entry point.
401
402	The a.out backend handles symbols by calling
403	<<aout_link_write_symbols>> on each input BFD and then
404	traversing the global hash table with the function
405	<<aout_link_write_other_symbol>>.  It builds a string table
406	while writing out the symbols, which is written to the output
407	file at the end of <<NAME(aout,final_link)>>.
408*/
409
410static bfd_boolean generic_link_add_object_symbols
411  (bfd *, struct bfd_link_info *, bfd_boolean collect);
412static bfd_boolean generic_link_add_symbols
413  (bfd *, struct bfd_link_info *, bfd_boolean);
414static bfd_boolean generic_link_check_archive_element_no_collect
415  (bfd *, struct bfd_link_info *, bfd_boolean *);
416static bfd_boolean generic_link_check_archive_element_collect
417  (bfd *, struct bfd_link_info *, bfd_boolean *);
418static bfd_boolean generic_link_check_archive_element
419  (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
420static bfd_boolean generic_link_add_symbol_list
421  (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
422   bfd_boolean);
423static bfd_boolean generic_add_output_symbol
424  (bfd *, size_t *psymalloc, asymbol *);
425static bfd_boolean default_data_link_order
426  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
427static bfd_boolean default_indirect_link_order
428  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
429   bfd_boolean);
430
431/* The link hash table structure is defined in bfdlink.h.  It provides
432   a base hash table which the backend specific hash tables are built
433   upon.  */
434
435/* Routine to create an entry in the link hash table.  */
436
437struct bfd_hash_entry *
438_bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
439			struct bfd_hash_table *table,
440			const char *string)
441{
442  /* Allocate the structure if it has not already been allocated by a
443     subclass.  */
444  if (entry == NULL)
445    {
446      entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
447      if (entry == NULL)
448	return entry;
449    }
450
451  /* Call the allocation method of the superclass.  */
452  entry = bfd_hash_newfunc (entry, table, string);
453  if (entry)
454    {
455      struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
456
457      /* Initialize the local fields.  */
458      h->type = bfd_link_hash_new;
459      memset (&h->u.undef.next, 0,
460	      (sizeof (struct bfd_link_hash_entry)
461	       - offsetof (struct bfd_link_hash_entry, u.undef.next)));
462    }
463
464  return entry;
465}
466
467/* Initialize a link hash table.  The BFD argument is the one
468   responsible for creating this table.  */
469
470bfd_boolean
471_bfd_link_hash_table_init
472  (struct bfd_link_hash_table *table,
473   bfd *abfd,
474   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
475				      struct bfd_hash_table *,
476				      const char *),
477   unsigned int entsize)
478{
479  table->creator = abfd->xvec;
480  table->undefs = NULL;
481  table->undefs_tail = NULL;
482  table->type = bfd_link_generic_hash_table;
483
484  return bfd_hash_table_init (&table->table, newfunc, entsize);
485}
486
487/* Look up a symbol in a link hash table.  If follow is TRUE, we
488   follow bfd_link_hash_indirect and bfd_link_hash_warning links to
489   the real symbol.  */
490
491struct bfd_link_hash_entry *
492bfd_link_hash_lookup (struct bfd_link_hash_table *table,
493		      const char *string,
494		      bfd_boolean create,
495		      bfd_boolean copy,
496		      bfd_boolean follow)
497{
498  struct bfd_link_hash_entry *ret;
499
500  ret = ((struct bfd_link_hash_entry *)
501	 bfd_hash_lookup (&table->table, string, create, copy));
502
503  if (follow && ret != NULL)
504    {
505      while (ret->type == bfd_link_hash_indirect
506	     || ret->type == bfd_link_hash_warning)
507	ret = ret->u.i.link;
508    }
509
510  return ret;
511}
512
513/* Look up a symbol in the main linker hash table if the symbol might
514   be wrapped.  This should only be used for references to an
515   undefined symbol, not for definitions of a symbol.  */
516
517struct bfd_link_hash_entry *
518bfd_wrapped_link_hash_lookup (bfd *abfd,
519			      struct bfd_link_info *info,
520			      const char *string,
521			      bfd_boolean create,
522			      bfd_boolean copy,
523			      bfd_boolean follow)
524{
525  bfd_size_type amt;
526
527  if (info->wrap_hash != NULL)
528    {
529      const char *l;
530      char prefix = '\0';
531
532      l = string;
533      if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
534	{
535	  prefix = *l;
536	  ++l;
537	}
538
539#undef WRAP
540#define WRAP "__wrap_"
541
542      if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
543	{
544	  char *n;
545	  struct bfd_link_hash_entry *h;
546
547	  /* This symbol is being wrapped.  We want to replace all
548             references to SYM with references to __wrap_SYM.  */
549
550	  amt = strlen (l) + sizeof WRAP + 1;
551	  n = bfd_malloc (amt);
552	  if (n == NULL)
553	    return NULL;
554
555	  n[0] = prefix;
556	  n[1] = '\0';
557	  strcat (n, WRAP);
558	  strcat (n, l);
559	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
560	  free (n);
561	  return h;
562	}
563
564#undef WRAP
565
566#undef  REAL
567#define REAL "__real_"
568
569      if (*l == '_'
570	  && CONST_STRNEQ (l, REAL)
571	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
572			      FALSE, FALSE) != NULL)
573	{
574	  char *n;
575	  struct bfd_link_hash_entry *h;
576
577	  /* This is a reference to __real_SYM, where SYM is being
578             wrapped.  We want to replace all references to __real_SYM
579             with references to SYM.  */
580
581	  amt = strlen (l + sizeof REAL - 1) + 2;
582	  n = bfd_malloc (amt);
583	  if (n == NULL)
584	    return NULL;
585
586	  n[0] = prefix;
587	  n[1] = '\0';
588	  strcat (n, l + sizeof REAL - 1);
589	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
590	  free (n);
591	  return h;
592	}
593
594#undef REAL
595    }
596
597  return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
598}
599
600/* Traverse a generic link hash table.  The only reason this is not a
601   macro is to do better type checking.  This code presumes that an
602   argument passed as a struct bfd_hash_entry * may be caught as a
603   struct bfd_link_hash_entry * with no explicit cast required on the
604   call.  */
605
606void
607bfd_link_hash_traverse
608  (struct bfd_link_hash_table *table,
609   bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
610   void *info)
611{
612  bfd_hash_traverse (&table->table,
613		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
614		     info);
615}
616
617/* Add a symbol to the linker hash table undefs list.  */
618
619void
620bfd_link_add_undef (struct bfd_link_hash_table *table,
621		    struct bfd_link_hash_entry *h)
622{
623  BFD_ASSERT (h->u.undef.next == NULL);
624  if (table->undefs_tail != NULL)
625    table->undefs_tail->u.undef.next = h;
626  if (table->undefs == NULL)
627    table->undefs = h;
628  table->undefs_tail = h;
629}
630
631/* The undefs list was designed so that in normal use we don't need to
632   remove entries.  However, if symbols on the list are changed from
633   bfd_link_hash_undefined to either bfd_link_hash_undefweak or
634   bfd_link_hash_new for some reason, then they must be removed from the
635   list.  Failure to do so might result in the linker attempting to add
636   the symbol to the list again at a later stage.  */
637
638void
639bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
640{
641  struct bfd_link_hash_entry **pun;
642
643  pun = &table->undefs;
644  while (*pun != NULL)
645    {
646      struct bfd_link_hash_entry *h = *pun;
647
648      if (h->type == bfd_link_hash_new
649	  || h->type == bfd_link_hash_undefweak)
650	{
651	  *pun = h->u.undef.next;
652	  h->u.undef.next = NULL;
653	  if (h == table->undefs_tail)
654	    {
655	      if (pun == &table->undefs)
656		table->undefs_tail = NULL;
657	      else
658		/* pun points at an u.undef.next field.  Go back to
659		   the start of the link_hash_entry.  */
660		table->undefs_tail = (struct bfd_link_hash_entry *)
661		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
662	      break;
663	    }
664	}
665      else
666	pun = &h->u.undef.next;
667    }
668}
669
670/* Routine to create an entry in a generic link hash table.  */
671
672struct bfd_hash_entry *
673_bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
674				struct bfd_hash_table *table,
675				const char *string)
676{
677  /* Allocate the structure if it has not already been allocated by a
678     subclass.  */
679  if (entry == NULL)
680    {
681      entry =
682	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
683      if (entry == NULL)
684	return entry;
685    }
686
687  /* Call the allocation method of the superclass.  */
688  entry = _bfd_link_hash_newfunc (entry, table, string);
689  if (entry)
690    {
691      struct generic_link_hash_entry *ret;
692
693      /* Set local fields.  */
694      ret = (struct generic_link_hash_entry *) entry;
695      ret->written = FALSE;
696      ret->sym = NULL;
697    }
698
699  return entry;
700}
701
702/* Create a generic link hash table.  */
703
704struct bfd_link_hash_table *
705_bfd_generic_link_hash_table_create (bfd *abfd)
706{
707  struct generic_link_hash_table *ret;
708  bfd_size_type amt = sizeof (struct generic_link_hash_table);
709
710  ret = bfd_malloc (amt);
711  if (ret == NULL)
712    return NULL;
713  if (! _bfd_link_hash_table_init (&ret->root, abfd,
714				   _bfd_generic_link_hash_newfunc,
715				   sizeof (struct generic_link_hash_entry)))
716    {
717      free (ret);
718      return NULL;
719    }
720  return &ret->root;
721}
722
723void
724_bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
725{
726  struct generic_link_hash_table *ret
727    = (struct generic_link_hash_table *) hash;
728
729  bfd_hash_table_free (&ret->root.table);
730  free (ret);
731}
732
733/* Grab the symbols for an object file when doing a generic link.  We
734   store the symbols in the outsymbols field.  We need to keep them
735   around for the entire link to ensure that we only read them once.
736   If we read them multiple times, we might wind up with relocs and
737   the hash table pointing to different instances of the symbol
738   structure.  */
739
740static bfd_boolean
741generic_link_read_symbols (bfd *abfd)
742{
743  if (bfd_get_outsymbols (abfd) == NULL)
744    {
745      long symsize;
746      long symcount;
747
748      symsize = bfd_get_symtab_upper_bound (abfd);
749      if (symsize < 0)
750	return FALSE;
751      bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
752      if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
753	return FALSE;
754      symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
755      if (symcount < 0)
756	return FALSE;
757      bfd_get_symcount (abfd) = symcount;
758    }
759
760  return TRUE;
761}
762
763/* Generic function to add symbols to from an object file to the
764   global hash table.  This version does not automatically collect
765   constructors by name.  */
766
767bfd_boolean
768_bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
769{
770  return generic_link_add_symbols (abfd, info, FALSE);
771}
772
773/* Generic function to add symbols from an object file to the global
774   hash table.  This version automatically collects constructors by
775   name, as the collect2 program does.  It should be used for any
776   target which does not provide some other mechanism for setting up
777   constructors and destructors; these are approximately those targets
778   for which gcc uses collect2 and do not support stabs.  */
779
780bfd_boolean
781_bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
782{
783  return generic_link_add_symbols (abfd, info, TRUE);
784}
785
786/* Indicate that we are only retrieving symbol values from this
787   section.  We want the symbols to act as though the values in the
788   file are absolute.  */
789
790void
791_bfd_generic_link_just_syms (asection *sec,
792			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
793{
794  sec->output_section = bfd_abs_section_ptr;
795  sec->output_offset = sec->vma;
796}
797
798/* Add symbols from an object file to the global hash table.  */
799
800static bfd_boolean
801generic_link_add_symbols (bfd *abfd,
802			  struct bfd_link_info *info,
803			  bfd_boolean collect)
804{
805  bfd_boolean ret;
806
807  switch (bfd_get_format (abfd))
808    {
809    case bfd_object:
810      ret = generic_link_add_object_symbols (abfd, info, collect);
811      break;
812    case bfd_archive:
813      ret = (_bfd_generic_link_add_archive_symbols
814	     (abfd, info,
815	      (collect
816	       ? generic_link_check_archive_element_collect
817	       : generic_link_check_archive_element_no_collect)));
818      break;
819    default:
820      bfd_set_error (bfd_error_wrong_format);
821      ret = FALSE;
822    }
823
824  return ret;
825}
826
827/* Add symbols from an object file to the global hash table.  */
828
829static bfd_boolean
830generic_link_add_object_symbols (bfd *abfd,
831				 struct bfd_link_info *info,
832				 bfd_boolean collect)
833{
834  bfd_size_type symcount;
835  struct bfd_symbol **outsyms;
836
837  if (! generic_link_read_symbols (abfd))
838    return FALSE;
839  symcount = _bfd_generic_link_get_symcount (abfd);
840  outsyms = _bfd_generic_link_get_symbols (abfd);
841  return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
842}
843
844/* We build a hash table of all symbols defined in an archive.  */
845
846/* An archive symbol may be defined by multiple archive elements.
847   This linked list is used to hold the elements.  */
848
849struct archive_list
850{
851  struct archive_list *next;
852  unsigned int indx;
853};
854
855/* An entry in an archive hash table.  */
856
857struct archive_hash_entry
858{
859  struct bfd_hash_entry root;
860  /* Where the symbol is defined.  */
861  struct archive_list *defs;
862};
863
864/* An archive hash table itself.  */
865
866struct archive_hash_table
867{
868  struct bfd_hash_table table;
869};
870
871/* Create a new entry for an archive hash table.  */
872
873static struct bfd_hash_entry *
874archive_hash_newfunc (struct bfd_hash_entry *entry,
875		      struct bfd_hash_table *table,
876		      const char *string)
877{
878  struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
879
880  /* Allocate the structure if it has not already been allocated by a
881     subclass.  */
882  if (ret == NULL)
883    ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
884  if (ret == NULL)
885    return NULL;
886
887  /* Call the allocation method of the superclass.  */
888  ret = ((struct archive_hash_entry *)
889	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
890
891  if (ret)
892    {
893      /* Initialize the local fields.  */
894      ret->defs = NULL;
895    }
896
897  return &ret->root;
898}
899
900/* Initialize an archive hash table.  */
901
902static bfd_boolean
903archive_hash_table_init
904  (struct archive_hash_table *table,
905   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
906				      struct bfd_hash_table *,
907				      const char *),
908   unsigned int entsize)
909{
910  return bfd_hash_table_init (&table->table, newfunc, entsize);
911}
912
913/* Look up an entry in an archive hash table.  */
914
915#define archive_hash_lookup(t, string, create, copy) \
916  ((struct archive_hash_entry *) \
917   bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
918
919/* Allocate space in an archive hash table.  */
920
921#define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
922
923/* Free an archive hash table.  */
924
925#define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
926
927/* Generic function to add symbols from an archive file to the global
928   hash file.  This function presumes that the archive symbol table
929   has already been read in (this is normally done by the
930   bfd_check_format entry point).  It looks through the undefined and
931   common symbols and searches the archive symbol table for them.  If
932   it finds an entry, it includes the associated object file in the
933   link.
934
935   The old linker looked through the archive symbol table for
936   undefined symbols.  We do it the other way around, looking through
937   undefined symbols for symbols defined in the archive.  The
938   advantage of the newer scheme is that we only have to look through
939   the list of undefined symbols once, whereas the old method had to
940   re-search the symbol table each time a new object file was added.
941
942   The CHECKFN argument is used to see if an object file should be
943   included.  CHECKFN should set *PNEEDED to TRUE if the object file
944   should be included, and must also call the bfd_link_info
945   add_archive_element callback function and handle adding the symbols
946   to the global hash table.  CHECKFN should only return FALSE if some
947   sort of error occurs.
948
949   For some formats, such as a.out, it is possible to look through an
950   object file but not actually include it in the link.  The
951   archive_pass field in a BFD is used to avoid checking the symbols
952   of an object files too many times.  When an object is included in
953   the link, archive_pass is set to -1.  If an object is scanned but
954   not included, archive_pass is set to the pass number.  The pass
955   number is incremented each time a new object file is included.  The
956   pass number is used because when a new object file is included it
957   may create new undefined symbols which cause a previously examined
958   object file to be included.  */
959
960bfd_boolean
961_bfd_generic_link_add_archive_symbols
962  (bfd *abfd,
963   struct bfd_link_info *info,
964   bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
965{
966  carsym *arsyms;
967  carsym *arsym_end;
968  register carsym *arsym;
969  int pass;
970  struct archive_hash_table arsym_hash;
971  unsigned int indx;
972  struct bfd_link_hash_entry **pundef;
973
974  if (! bfd_has_map (abfd))
975    {
976      /* An empty archive is a special case.  */
977      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
978	return TRUE;
979      bfd_set_error (bfd_error_no_armap);
980      return FALSE;
981    }
982
983  arsyms = bfd_ardata (abfd)->symdefs;
984  arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
985
986  /* In order to quickly determine whether an symbol is defined in
987     this archive, we build a hash table of the symbols.  */
988  if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
989				 sizeof (struct archive_hash_entry)))
990    return FALSE;
991  for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
992    {
993      struct archive_hash_entry *arh;
994      struct archive_list *l, **pp;
995
996      arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
997      if (arh == NULL)
998	goto error_return;
999      l = ((struct archive_list *)
1000	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1001      if (l == NULL)
1002	goto error_return;
1003      l->indx = indx;
1004      for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1005	;
1006      *pp = l;
1007      l->next = NULL;
1008    }
1009
1010  /* The archive_pass field in the archive itself is used to
1011     initialize PASS, sine we may search the same archive multiple
1012     times.  */
1013  pass = abfd->archive_pass + 1;
1014
1015  /* New undefined symbols are added to the end of the list, so we
1016     only need to look through it once.  */
1017  pundef = &info->hash->undefs;
1018  while (*pundef != NULL)
1019    {
1020      struct bfd_link_hash_entry *h;
1021      struct archive_hash_entry *arh;
1022      struct archive_list *l;
1023
1024      h = *pundef;
1025
1026      /* When a symbol is defined, it is not necessarily removed from
1027	 the list.  */
1028      if (h->type != bfd_link_hash_undefined
1029	  && h->type != bfd_link_hash_common)
1030	{
1031	  /* Remove this entry from the list, for general cleanliness
1032	     and because we are going to look through the list again
1033	     if we search any more libraries.  We can't remove the
1034	     entry if it is the tail, because that would lose any
1035	     entries we add to the list later on (it would also cause
1036	     us to lose track of whether the symbol has been
1037	     referenced).  */
1038	  if (*pundef != info->hash->undefs_tail)
1039	    *pundef = (*pundef)->u.undef.next;
1040	  else
1041	    pundef = &(*pundef)->u.undef.next;
1042	  continue;
1043	}
1044
1045      /* Look for this symbol in the archive symbol map.  */
1046      arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1047      if (arh == NULL)
1048	{
1049	  /* If we haven't found the exact symbol we're looking for,
1050	     let's look for its import thunk */
1051	  if (info->pei386_auto_import)
1052	    {
1053	      bfd_size_type amt = strlen (h->root.string) + 10;
1054	      char *buf = bfd_malloc (amt);
1055	      if (buf == NULL)
1056		return FALSE;
1057
1058	      sprintf (buf, "__imp_%s", h->root.string);
1059	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1060	      free(buf);
1061	    }
1062	  if (arh == NULL)
1063	    {
1064	      pundef = &(*pundef)->u.undef.next;
1065	      continue;
1066	    }
1067	}
1068      /* Look at all the objects which define this symbol.  */
1069      for (l = arh->defs; l != NULL; l = l->next)
1070	{
1071	  bfd *element;
1072	  bfd_boolean needed;
1073
1074	  /* If the symbol has gotten defined along the way, quit.  */
1075	  if (h->type != bfd_link_hash_undefined
1076	      && h->type != bfd_link_hash_common)
1077	    break;
1078
1079	  element = bfd_get_elt_at_index (abfd, l->indx);
1080	  if (element == NULL)
1081	    goto error_return;
1082
1083	  /* If we've already included this element, or if we've
1084	     already checked it on this pass, continue.  */
1085	  if (element->archive_pass == -1
1086	      || element->archive_pass == pass)
1087	    continue;
1088
1089	  /* If we can't figure this element out, just ignore it.  */
1090	  if (! bfd_check_format (element, bfd_object))
1091	    {
1092	      element->archive_pass = -1;
1093	      continue;
1094	    }
1095
1096	  /* CHECKFN will see if this element should be included, and
1097	     go ahead and include it if appropriate.  */
1098	  if (! (*checkfn) (element, info, &needed))
1099	    goto error_return;
1100
1101	  if (! needed)
1102	    element->archive_pass = pass;
1103	  else
1104	    {
1105	      element->archive_pass = -1;
1106
1107	      /* Increment the pass count to show that we may need to
1108		 recheck object files which were already checked.  */
1109	      ++pass;
1110	    }
1111	}
1112
1113      pundef = &(*pundef)->u.undef.next;
1114    }
1115
1116  archive_hash_table_free (&arsym_hash);
1117
1118  /* Save PASS in case we are called again.  */
1119  abfd->archive_pass = pass;
1120
1121  return TRUE;
1122
1123 error_return:
1124  archive_hash_table_free (&arsym_hash);
1125  return FALSE;
1126}
1127
1128/* See if we should include an archive element.  This version is used
1129   when we do not want to automatically collect constructors based on
1130   the symbol name, presumably because we have some other mechanism
1131   for finding them.  */
1132
1133static bfd_boolean
1134generic_link_check_archive_element_no_collect (
1135					       bfd *abfd,
1136					       struct bfd_link_info *info,
1137					       bfd_boolean *pneeded)
1138{
1139  return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1140}
1141
1142/* See if we should include an archive element.  This version is used
1143   when we want to automatically collect constructors based on the
1144   symbol name, as collect2 does.  */
1145
1146static bfd_boolean
1147generic_link_check_archive_element_collect (bfd *abfd,
1148					    struct bfd_link_info *info,
1149					    bfd_boolean *pneeded)
1150{
1151  return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1152}
1153
1154/* See if we should include an archive element.  Optionally collect
1155   constructors.  */
1156
1157static bfd_boolean
1158generic_link_check_archive_element (bfd *abfd,
1159				    struct bfd_link_info *info,
1160				    bfd_boolean *pneeded,
1161				    bfd_boolean collect)
1162{
1163  asymbol **pp, **ppend;
1164
1165  *pneeded = FALSE;
1166
1167  if (! generic_link_read_symbols (abfd))
1168    return FALSE;
1169
1170  pp = _bfd_generic_link_get_symbols (abfd);
1171  ppend = pp + _bfd_generic_link_get_symcount (abfd);
1172  for (; pp < ppend; pp++)
1173    {
1174      asymbol *p;
1175      struct bfd_link_hash_entry *h;
1176
1177      p = *pp;
1178
1179      /* We are only interested in globally visible symbols.  */
1180      if (! bfd_is_com_section (p->section)
1181	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1182	continue;
1183
1184      /* We are only interested if we know something about this
1185	 symbol, and it is undefined or common.  An undefined weak
1186	 symbol (type bfd_link_hash_undefweak) is not considered to be
1187	 a reference when pulling files out of an archive.  See the
1188	 SVR4 ABI, p. 4-27.  */
1189      h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1190				FALSE, TRUE);
1191      if (h == NULL
1192	  || (h->type != bfd_link_hash_undefined
1193	      && h->type != bfd_link_hash_common))
1194	continue;
1195
1196      /* P is a symbol we are looking for.  */
1197
1198      if (! bfd_is_com_section (p->section))
1199	{
1200	  bfd_size_type symcount;
1201	  asymbol **symbols;
1202
1203	  /* This object file defines this symbol, so pull it in.  */
1204	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1205							 bfd_asymbol_name (p)))
1206	    return FALSE;
1207	  symcount = _bfd_generic_link_get_symcount (abfd);
1208	  symbols = _bfd_generic_link_get_symbols (abfd);
1209	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1210					      symbols, collect))
1211	    return FALSE;
1212	  *pneeded = TRUE;
1213	  return TRUE;
1214	}
1215
1216      /* P is a common symbol.  */
1217
1218      if (h->type == bfd_link_hash_undefined)
1219	{
1220	  bfd *symbfd;
1221	  bfd_vma size;
1222	  unsigned int power;
1223
1224	  symbfd = h->u.undef.abfd;
1225	  if (symbfd == NULL)
1226	    {
1227	      /* This symbol was created as undefined from outside
1228		 BFD.  We assume that we should link in the object
1229		 file.  This is for the -u option in the linker.  */
1230	      if (! (*info->callbacks->add_archive_element)
1231		  (info, abfd, bfd_asymbol_name (p)))
1232		return FALSE;
1233	      *pneeded = TRUE;
1234	      return TRUE;
1235	    }
1236
1237	  /* Turn the symbol into a common symbol but do not link in
1238	     the object file.  This is how a.out works.  Object
1239	     formats that require different semantics must implement
1240	     this function differently.  This symbol is already on the
1241	     undefs list.  We add the section to a common section
1242	     attached to symbfd to ensure that it is in a BFD which
1243	     will be linked in.  */
1244	  h->type = bfd_link_hash_common;
1245	  h->u.c.p =
1246	    bfd_hash_allocate (&info->hash->table,
1247			       sizeof (struct bfd_link_hash_common_entry));
1248	  if (h->u.c.p == NULL)
1249	    return FALSE;
1250
1251	  size = bfd_asymbol_value (p);
1252	  h->u.c.size = size;
1253
1254	  power = bfd_log2 (size);
1255	  if (power > 4)
1256	    power = 4;
1257	  h->u.c.p->alignment_power = power;
1258
1259	  if (p->section == bfd_com_section_ptr)
1260	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1261	  else
1262	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1263							  p->section->name);
1264	  h->u.c.p->section->flags = SEC_ALLOC;
1265	}
1266      else
1267	{
1268	  /* Adjust the size of the common symbol if necessary.  This
1269	     is how a.out works.  Object formats that require
1270	     different semantics must implement this function
1271	     differently.  */
1272	  if (bfd_asymbol_value (p) > h->u.c.size)
1273	    h->u.c.size = bfd_asymbol_value (p);
1274	}
1275    }
1276
1277  /* This archive element is not needed.  */
1278  return TRUE;
1279}
1280
1281/* Add the symbols from an object file to the global hash table.  ABFD
1282   is the object file.  INFO is the linker information.  SYMBOL_COUNT
1283   is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1284   is TRUE if constructors should be automatically collected by name
1285   as is done by collect2.  */
1286
1287static bfd_boolean
1288generic_link_add_symbol_list (bfd *abfd,
1289			      struct bfd_link_info *info,
1290			      bfd_size_type symbol_count,
1291			      asymbol **symbols,
1292			      bfd_boolean collect)
1293{
1294  asymbol **pp, **ppend;
1295
1296  pp = symbols;
1297  ppend = symbols + symbol_count;
1298  for (; pp < ppend; pp++)
1299    {
1300      asymbol *p;
1301
1302      p = *pp;
1303
1304      if ((p->flags & (BSF_INDIRECT
1305		       | BSF_WARNING
1306		       | BSF_GLOBAL
1307		       | BSF_CONSTRUCTOR
1308		       | BSF_WEAK)) != 0
1309	  || bfd_is_und_section (bfd_get_section (p))
1310	  || bfd_is_com_section (bfd_get_section (p))
1311	  || bfd_is_ind_section (bfd_get_section (p)))
1312	{
1313	  const char *name;
1314	  const char *string;
1315	  struct generic_link_hash_entry *h;
1316	  struct bfd_link_hash_entry *bh;
1317
1318	  name = bfd_asymbol_name (p);
1319	  if (((p->flags & BSF_INDIRECT) != 0
1320	       || bfd_is_ind_section (p->section))
1321	      && pp + 1 < ppend)
1322	    {
1323	      pp++;
1324	      string = bfd_asymbol_name (*pp);
1325	    }
1326	  else if ((p->flags & BSF_WARNING) != 0
1327		   && pp + 1 < ppend)
1328	    {
1329	      /* The name of P is actually the warning string, and the
1330		 next symbol is the one to warn about.  */
1331	      string = name;
1332	      pp++;
1333	      name = bfd_asymbol_name (*pp);
1334	    }
1335	  else
1336	    string = NULL;
1337
1338	  bh = NULL;
1339	  if (! (_bfd_generic_link_add_one_symbol
1340		 (info, abfd, name, p->flags, bfd_get_section (p),
1341		  p->value, string, FALSE, collect, &bh)))
1342	    return FALSE;
1343	  h = (struct generic_link_hash_entry *) bh;
1344
1345	  /* If this is a constructor symbol, and the linker didn't do
1346             anything with it, then we want to just pass the symbol
1347             through to the output file.  This will happen when
1348             linking with -r.  */
1349	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1350	      && (h == NULL || h->root.type == bfd_link_hash_new))
1351	    {
1352	      p->udata.p = NULL;
1353	      continue;
1354	    }
1355
1356	  /* Save the BFD symbol so that we don't lose any backend
1357	     specific information that may be attached to it.  We only
1358	     want this one if it gives more information than the
1359	     existing one; we don't want to replace a defined symbol
1360	     with an undefined one.  This routine may be called with a
1361	     hash table other than the generic hash table, so we only
1362	     do this if we are certain that the hash table is a
1363	     generic one.  */
1364	  if (info->hash->creator == abfd->xvec)
1365	    {
1366	      if (h->sym == NULL
1367		  || (! bfd_is_und_section (bfd_get_section (p))
1368		      && (! bfd_is_com_section (bfd_get_section (p))
1369			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1370		{
1371		  h->sym = p;
1372		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1373		     reading, and it should go away when the COFF
1374		     linker is switched to the new version.  */
1375		  if (bfd_is_com_section (bfd_get_section (p)))
1376		    p->flags |= BSF_OLD_COMMON;
1377		}
1378	    }
1379
1380	  /* Store a back pointer from the symbol to the hash
1381	     table entry for the benefit of relaxation code until
1382	     it gets rewritten to not use asymbol structures.
1383	     Setting this is also used to check whether these
1384	     symbols were set up by the generic linker.  */
1385	  p->udata.p = h;
1386	}
1387    }
1388
1389  return TRUE;
1390}
1391
1392/* We use a state table to deal with adding symbols from an object
1393   file.  The first index into the state table describes the symbol
1394   from the object file.  The second index into the state table is the
1395   type of the symbol in the hash table.  */
1396
1397/* The symbol from the object file is turned into one of these row
1398   values.  */
1399
1400enum link_row
1401{
1402  UNDEF_ROW,		/* Undefined.  */
1403  UNDEFW_ROW,		/* Weak undefined.  */
1404  DEF_ROW,		/* Defined.  */
1405  DEFW_ROW,		/* Weak defined.  */
1406  COMMON_ROW,		/* Common.  */
1407  INDR_ROW,		/* Indirect.  */
1408  WARN_ROW,		/* Warning.  */
1409  SET_ROW		/* Member of set.  */
1410};
1411
1412/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1413#undef FAIL
1414
1415/* The actions to take in the state table.  */
1416
1417enum link_action
1418{
1419  FAIL,		/* Abort.  */
1420  UND,		/* Mark symbol undefined.  */
1421  WEAK,		/* Mark symbol weak undefined.  */
1422  DEF,		/* Mark symbol defined.  */
1423  DEFW,		/* Mark symbol weak defined.  */
1424  COM,		/* Mark symbol common.  */
1425  REF,		/* Mark defined symbol referenced.  */
1426  CREF,		/* Possibly warn about common reference to defined symbol.  */
1427  CDEF,		/* Define existing common symbol.  */
1428  NOACT,	/* No action.  */
1429  BIG,		/* Mark symbol common using largest size.  */
1430  MDEF,		/* Multiple definition error.  */
1431  MIND,		/* Multiple indirect symbols.  */
1432  IND,		/* Make indirect symbol.  */
1433  CIND,		/* Make indirect symbol from existing common symbol.  */
1434  SET,		/* Add value to set.  */
1435  MWARN,	/* Make warning symbol.  */
1436  WARN,		/* Issue warning.  */
1437  CWARN,	/* Warn if referenced, else MWARN.  */
1438  CYCLE,	/* Repeat with symbol pointed to.  */
1439  REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1440  WARNC		/* Issue warning and then CYCLE.  */
1441};
1442
1443/* The state table itself.  The first index is a link_row and the
1444   second index is a bfd_link_hash_type.  */
1445
1446static const enum link_action link_action[8][8] =
1447{
1448  /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1449  /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1450  /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1451  /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1452  /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1453  /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1454  /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1455  /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1456  /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1457};
1458
1459/* Most of the entries in the LINK_ACTION table are straightforward,
1460   but a few are somewhat subtle.
1461
1462   A reference to an indirect symbol (UNDEF_ROW/indr or
1463   UNDEFW_ROW/indr) is counted as a reference both to the indirect
1464   symbol and to the symbol the indirect symbol points to.
1465
1466   A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1467   causes the warning to be issued.
1468
1469   A common definition of an indirect symbol (COMMON_ROW/indr) is
1470   treated as a multiple definition error.  Likewise for an indirect
1471   definition of a common symbol (INDR_ROW/com).
1472
1473   An indirect definition of a warning (INDR_ROW/warn) does not cause
1474   the warning to be issued.
1475
1476   If a warning is created for an indirect symbol (WARN_ROW/indr) no
1477   warning is created for the symbol the indirect symbol points to.
1478
1479   Adding an entry to a set does not count as a reference to a set,
1480   and no warning is issued (SET_ROW/warn).  */
1481
1482/* Return the BFD in which a hash entry has been defined, if known.  */
1483
1484static bfd *
1485hash_entry_bfd (struct bfd_link_hash_entry *h)
1486{
1487  while (h->type == bfd_link_hash_warning)
1488    h = h->u.i.link;
1489  switch (h->type)
1490    {
1491    default:
1492      return NULL;
1493    case bfd_link_hash_undefined:
1494    case bfd_link_hash_undefweak:
1495      return h->u.undef.abfd;
1496    case bfd_link_hash_defined:
1497    case bfd_link_hash_defweak:
1498      return h->u.def.section->owner;
1499    case bfd_link_hash_common:
1500      return h->u.c.p->section->owner;
1501    }
1502  /*NOTREACHED*/
1503}
1504
1505/* Add a symbol to the global hash table.
1506   ABFD is the BFD the symbol comes from.
1507   NAME is the name of the symbol.
1508   FLAGS is the BSF_* bits associated with the symbol.
1509   SECTION is the section in which the symbol is defined; this may be
1510     bfd_und_section_ptr or bfd_com_section_ptr.
1511   VALUE is the value of the symbol, relative to the section.
1512   STRING is used for either an indirect symbol, in which case it is
1513     the name of the symbol to indirect to, or a warning symbol, in
1514     which case it is the warning string.
1515   COPY is TRUE if NAME or STRING must be copied into locally
1516     allocated memory if they need to be saved.
1517   COLLECT is TRUE if we should automatically collect gcc constructor
1518     or destructor names as collect2 does.
1519   HASHP, if not NULL, is a place to store the created hash table
1520     entry; if *HASHP is not NULL, the caller has already looked up
1521     the hash table entry, and stored it in *HASHP.  */
1522
1523bfd_boolean
1524_bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1525				  bfd *abfd,
1526				  const char *name,
1527				  flagword flags,
1528				  asection *section,
1529				  bfd_vma value,
1530				  const char *string,
1531				  bfd_boolean copy,
1532				  bfd_boolean collect,
1533				  struct bfd_link_hash_entry **hashp)
1534{
1535  enum link_row row;
1536  struct bfd_link_hash_entry *h;
1537  bfd_boolean cycle;
1538
1539  if (bfd_is_ind_section (section)
1540      || (flags & BSF_INDIRECT) != 0)
1541    row = INDR_ROW;
1542  else if ((flags & BSF_WARNING) != 0)
1543    row = WARN_ROW;
1544  else if ((flags & BSF_CONSTRUCTOR) != 0)
1545    row = SET_ROW;
1546  else if (bfd_is_und_section (section))
1547    {
1548      if ((flags & BSF_WEAK) != 0)
1549	row = UNDEFW_ROW;
1550      else
1551	row = UNDEF_ROW;
1552    }
1553  else if ((flags & BSF_WEAK) != 0)
1554    row = DEFW_ROW;
1555  else if (bfd_is_com_section (section))
1556    row = COMMON_ROW;
1557  else
1558    row = DEF_ROW;
1559
1560  if (hashp != NULL && *hashp != NULL)
1561    h = *hashp;
1562  else
1563    {
1564      if (row == UNDEF_ROW || row == UNDEFW_ROW)
1565	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1566      else
1567	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1568      if (h == NULL)
1569	{
1570	  if (hashp != NULL)
1571	    *hashp = NULL;
1572	  return FALSE;
1573	}
1574    }
1575
1576  if (info->notice_all
1577      || (info->notice_hash != NULL
1578	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1579    {
1580      if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1581					value))
1582	return FALSE;
1583    }
1584
1585  if (hashp != NULL)
1586    *hashp = h;
1587
1588  do
1589    {
1590      enum link_action action;
1591
1592      cycle = FALSE;
1593      action = link_action[(int) row][(int) h->type];
1594      switch (action)
1595	{
1596	case FAIL:
1597	  abort ();
1598
1599	case NOACT:
1600	  /* Do nothing.  */
1601	  break;
1602
1603	case UND:
1604	  /* Make a new undefined symbol.  */
1605	  h->type = bfd_link_hash_undefined;
1606	  h->u.undef.abfd = abfd;
1607	  bfd_link_add_undef (info->hash, h);
1608	  break;
1609
1610	case WEAK:
1611	  /* Make a new weak undefined symbol.  */
1612	  h->type = bfd_link_hash_undefweak;
1613	  h->u.undef.abfd = abfd;
1614	  h->u.undef.weak = abfd;
1615	  break;
1616
1617	case CDEF:
1618	  /* We have found a definition for a symbol which was
1619	     previously common.  */
1620	  BFD_ASSERT (h->type == bfd_link_hash_common);
1621	  if (! ((*info->callbacks->multiple_common)
1622		 (info, h->root.string,
1623		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1624		  abfd, bfd_link_hash_defined, 0)))
1625	    return FALSE;
1626	  /* Fall through.  */
1627	case DEF:
1628	case DEFW:
1629	  {
1630	    enum bfd_link_hash_type oldtype;
1631
1632	    /* Define a symbol.  */
1633	    oldtype = h->type;
1634	    if (action == DEFW)
1635	      h->type = bfd_link_hash_defweak;
1636	    else
1637	      h->type = bfd_link_hash_defined;
1638	    h->u.def.section = section;
1639	    h->u.def.value = value;
1640
1641	    /* If we have been asked to, we act like collect2 and
1642	       identify all functions that might be global
1643	       constructors and destructors and pass them up in a
1644	       callback.  We only do this for certain object file
1645	       types, since many object file types can handle this
1646	       automatically.  */
1647	    if (collect && name[0] == '_')
1648	      {
1649		const char *s;
1650
1651		/* A constructor or destructor name starts like this:
1652		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1653		   the second are the same character (we accept any
1654		   character there, in case a new object file format
1655		   comes along with even worse naming restrictions).  */
1656
1657#define CONS_PREFIX "GLOBAL_"
1658#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1659
1660		s = name + 1;
1661		while (*s == '_')
1662		  ++s;
1663		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1664		  {
1665		    char c;
1666
1667		    c = s[CONS_PREFIX_LEN + 1];
1668		    if ((c == 'I' || c == 'D')
1669			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1670		      {
1671			/* If this is a definition of a symbol which
1672                           was previously weakly defined, we are in
1673                           trouble.  We have already added a
1674                           constructor entry for the weak defined
1675                           symbol, and now we are trying to add one
1676                           for the new symbol.  Fortunately, this case
1677                           should never arise in practice.  */
1678			if (oldtype == bfd_link_hash_defweak)
1679			  abort ();
1680
1681			if (! ((*info->callbacks->constructor)
1682			       (info, c == 'I',
1683				h->root.string, abfd, section, value)))
1684			  return FALSE;
1685		      }
1686		  }
1687	      }
1688	  }
1689
1690	  break;
1691
1692	case COM:
1693	  /* We have found a common definition for a symbol.  */
1694	  if (h->type == bfd_link_hash_new)
1695	    bfd_link_add_undef (info->hash, h);
1696	  h->type = bfd_link_hash_common;
1697	  h->u.c.p =
1698	    bfd_hash_allocate (&info->hash->table,
1699			       sizeof (struct bfd_link_hash_common_entry));
1700	  if (h->u.c.p == NULL)
1701	    return FALSE;
1702
1703	  h->u.c.size = value;
1704
1705	  /* Select a default alignment based on the size.  This may
1706             be overridden by the caller.  */
1707	  {
1708	    unsigned int power;
1709
1710	    power = bfd_log2 (value);
1711	    if (power > 4)
1712	      power = 4;
1713	    h->u.c.p->alignment_power = power;
1714	  }
1715
1716	  /* The section of a common symbol is only used if the common
1717             symbol is actually allocated.  It basically provides a
1718             hook for the linker script to decide which output section
1719             the common symbols should be put in.  In most cases, the
1720             section of a common symbol will be bfd_com_section_ptr,
1721             the code here will choose a common symbol section named
1722             "COMMON", and the linker script will contain *(COMMON) in
1723             the appropriate place.  A few targets use separate common
1724             sections for small symbols, and they require special
1725             handling.  */
1726	  if (section == bfd_com_section_ptr)
1727	    {
1728	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1729	      h->u.c.p->section->flags = SEC_ALLOC;
1730	    }
1731	  else if (section->owner != abfd)
1732	    {
1733	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1734							    section->name);
1735	      h->u.c.p->section->flags = SEC_ALLOC;
1736	    }
1737	  else
1738	    h->u.c.p->section = section;
1739	  break;
1740
1741	case REF:
1742	  /* A reference to a defined symbol.  */
1743	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1744	    h->u.undef.next = h;
1745	  break;
1746
1747	case BIG:
1748	  /* We have found a common definition for a symbol which
1749	     already had a common definition.  Use the maximum of the
1750	     two sizes, and use the section required by the larger symbol.  */
1751	  BFD_ASSERT (h->type == bfd_link_hash_common);
1752	  if (! ((*info->callbacks->multiple_common)
1753		 (info, h->root.string,
1754		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1755		  abfd, bfd_link_hash_common, value)))
1756	    return FALSE;
1757	  if (value > h->u.c.size)
1758	    {
1759	      unsigned int power;
1760
1761	      h->u.c.size = value;
1762
1763	      /* Select a default alignment based on the size.  This may
1764		 be overridden by the caller.  */
1765	      power = bfd_log2 (value);
1766	      if (power > 4)
1767		power = 4;
1768	      h->u.c.p->alignment_power = power;
1769
1770	      /* Some systems have special treatment for small commons,
1771		 hence we want to select the section used by the larger
1772		 symbol.  This makes sure the symbol does not go in a
1773		 small common section if it is now too large.  */
1774	      if (section == bfd_com_section_ptr)
1775		{
1776		  h->u.c.p->section
1777		    = bfd_make_section_old_way (abfd, "COMMON");
1778		  h->u.c.p->section->flags = SEC_ALLOC;
1779		}
1780	      else if (section->owner != abfd)
1781		{
1782		  h->u.c.p->section
1783		    = bfd_make_section_old_way (abfd, section->name);
1784		  h->u.c.p->section->flags = SEC_ALLOC;
1785		}
1786	      else
1787		h->u.c.p->section = section;
1788	    }
1789	  break;
1790
1791	case CREF:
1792	  {
1793	    bfd *obfd;
1794
1795	    /* We have found a common definition for a symbol which
1796	       was already defined.  FIXME: It would nice if we could
1797	       report the BFD which defined an indirect symbol, but we
1798	       don't have anywhere to store the information.  */
1799	    if (h->type == bfd_link_hash_defined
1800		|| h->type == bfd_link_hash_defweak)
1801	      obfd = h->u.def.section->owner;
1802	    else
1803	      obfd = NULL;
1804	    if (! ((*info->callbacks->multiple_common)
1805		   (info, h->root.string, obfd, h->type, 0,
1806		    abfd, bfd_link_hash_common, value)))
1807	      return FALSE;
1808	  }
1809	  break;
1810
1811	case MIND:
1812	  /* Multiple indirect symbols.  This is OK if they both point
1813	     to the same symbol.  */
1814	  if (strcmp (h->u.i.link->root.string, string) == 0)
1815	    break;
1816	  /* Fall through.  */
1817	case MDEF:
1818	  /* Handle a multiple definition.  */
1819	  if (!info->allow_multiple_definition)
1820	    {
1821	      asection *msec = NULL;
1822	      bfd_vma mval = 0;
1823
1824	      switch (h->type)
1825		{
1826		case bfd_link_hash_defined:
1827		  msec = h->u.def.section;
1828		  mval = h->u.def.value;
1829		  break;
1830	        case bfd_link_hash_indirect:
1831		  msec = bfd_ind_section_ptr;
1832		  mval = 0;
1833		  break;
1834		default:
1835		  abort ();
1836		}
1837
1838	      /* Ignore a redefinition of an absolute symbol to the
1839		 same value; it's harmless.  */
1840	      if (h->type == bfd_link_hash_defined
1841		  && bfd_is_abs_section (msec)
1842		  && bfd_is_abs_section (section)
1843		  && value == mval)
1844		break;
1845
1846	      if (! ((*info->callbacks->multiple_definition)
1847		     (info, h->root.string, msec->owner, msec, mval,
1848		      abfd, section, value)))
1849		return FALSE;
1850	    }
1851	  break;
1852
1853	case CIND:
1854	  /* Create an indirect symbol from an existing common symbol.  */
1855	  BFD_ASSERT (h->type == bfd_link_hash_common);
1856	  if (! ((*info->callbacks->multiple_common)
1857		 (info, h->root.string,
1858		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1859		  abfd, bfd_link_hash_indirect, 0)))
1860	    return FALSE;
1861	  /* Fall through.  */
1862	case IND:
1863	  /* Create an indirect symbol.  */
1864	  {
1865	    struct bfd_link_hash_entry *inh;
1866
1867	    /* STRING is the name of the symbol we want to indirect
1868	       to.  */
1869	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1870						copy, FALSE);
1871	    if (inh == NULL)
1872	      return FALSE;
1873	    if (inh->type == bfd_link_hash_indirect
1874		&& inh->u.i.link == h)
1875	      {
1876		(*_bfd_error_handler)
1877		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1878		   abfd, name, string);
1879		bfd_set_error (bfd_error_invalid_operation);
1880		return FALSE;
1881	      }
1882	    if (inh->type == bfd_link_hash_new)
1883	      {
1884		inh->type = bfd_link_hash_undefined;
1885		inh->u.undef.abfd = abfd;
1886		bfd_link_add_undef (info->hash, inh);
1887	      }
1888
1889	    /* If the indirect symbol has been referenced, we need to
1890	       push the reference down to the symbol we are
1891	       referencing.  */
1892	    if (h->type != bfd_link_hash_new)
1893	      {
1894		row = UNDEF_ROW;
1895		cycle = TRUE;
1896	      }
1897
1898	    h->type = bfd_link_hash_indirect;
1899	    h->u.i.link = inh;
1900	  }
1901	  break;
1902
1903	case SET:
1904	  /* Add an entry to a set.  */
1905	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1906						abfd, section, value))
1907	    return FALSE;
1908	  break;
1909
1910	case WARNC:
1911	  /* Issue a warning and cycle.  */
1912	  if (h->u.i.warning != NULL)
1913	    {
1914	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1915						 h->root.string, abfd,
1916						 NULL, 0))
1917		return FALSE;
1918	      /* Only issue a warning once.  */
1919	      h->u.i.warning = NULL;
1920	    }
1921	  /* Fall through.  */
1922	case CYCLE:
1923	  /* Try again with the referenced symbol.  */
1924	  h = h->u.i.link;
1925	  cycle = TRUE;
1926	  break;
1927
1928	case REFC:
1929	  /* A reference to an indirect symbol.  */
1930	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1931	    h->u.undef.next = h;
1932	  h = h->u.i.link;
1933	  cycle = TRUE;
1934	  break;
1935
1936	case WARN:
1937	  /* Issue a warning.  */
1938	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1939					     hash_entry_bfd (h), NULL, 0))
1940	    return FALSE;
1941	  break;
1942
1943	case CWARN:
1944	  /* Warn if this symbol has been referenced already,
1945	     otherwise add a warning.  A symbol has been referenced if
1946	     the u.undef.next field is not NULL, or it is the tail of the
1947	     undefined symbol list.  The REF case above helps to
1948	     ensure this.  */
1949	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1950	    {
1951	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1952						 hash_entry_bfd (h), NULL, 0))
1953		return FALSE;
1954	      break;
1955	    }
1956	  /* Fall through.  */
1957	case MWARN:
1958	  /* Make a warning symbol.  */
1959	  {
1960	    struct bfd_link_hash_entry *sub;
1961
1962	    /* STRING is the warning to give.  */
1963	    sub = ((struct bfd_link_hash_entry *)
1964		   ((*info->hash->table.newfunc)
1965		    (NULL, &info->hash->table, h->root.string)));
1966	    if (sub == NULL)
1967	      return FALSE;
1968	    *sub = *h;
1969	    sub->type = bfd_link_hash_warning;
1970	    sub->u.i.link = h;
1971	    if (! copy)
1972	      sub->u.i.warning = string;
1973	    else
1974	      {
1975		char *w;
1976		size_t len = strlen (string) + 1;
1977
1978		w = bfd_hash_allocate (&info->hash->table, len);
1979		if (w == NULL)
1980		  return FALSE;
1981		memcpy (w, string, len);
1982		sub->u.i.warning = w;
1983	      }
1984
1985	    bfd_hash_replace (&info->hash->table,
1986			      (struct bfd_hash_entry *) h,
1987			      (struct bfd_hash_entry *) sub);
1988	    if (hashp != NULL)
1989	      *hashp = sub;
1990	  }
1991	  break;
1992	}
1993    }
1994  while (cycle);
1995
1996  return TRUE;
1997}
1998
1999/* Generic final link routine.  */
2000
2001bfd_boolean
2002_bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2003{
2004  bfd *sub;
2005  asection *o;
2006  struct bfd_link_order *p;
2007  size_t outsymalloc;
2008  struct generic_write_global_symbol_info wginfo;
2009
2010  bfd_get_outsymbols (abfd) = NULL;
2011  bfd_get_symcount (abfd) = 0;
2012  outsymalloc = 0;
2013
2014  /* Mark all sections which will be included in the output file.  */
2015  for (o = abfd->sections; o != NULL; o = o->next)
2016    for (p = o->map_head.link_order; p != NULL; p = p->next)
2017      if (p->type == bfd_indirect_link_order)
2018	p->u.indirect.section->linker_mark = TRUE;
2019
2020  /* Build the output symbol table.  */
2021  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2022    if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2023      return FALSE;
2024
2025  /* Accumulate the global symbols.  */
2026  wginfo.info = info;
2027  wginfo.output_bfd = abfd;
2028  wginfo.psymalloc = &outsymalloc;
2029  _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2030				   _bfd_generic_link_write_global_symbol,
2031				   &wginfo);
2032
2033  /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2034     shouldn't really need one, since we have SYMCOUNT, but some old
2035     code still expects one.  */
2036  if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2037    return FALSE;
2038
2039  if (info->relocatable)
2040    {
2041      /* Allocate space for the output relocs for each section.  */
2042      for (o = abfd->sections; o != NULL; o = o->next)
2043	{
2044	  o->reloc_count = 0;
2045	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2046	    {
2047	      if (p->type == bfd_section_reloc_link_order
2048		  || p->type == bfd_symbol_reloc_link_order)
2049		++o->reloc_count;
2050	      else if (p->type == bfd_indirect_link_order)
2051		{
2052		  asection *input_section;
2053		  bfd *input_bfd;
2054		  long relsize;
2055		  arelent **relocs;
2056		  asymbol **symbols;
2057		  long reloc_count;
2058
2059		  input_section = p->u.indirect.section;
2060		  input_bfd = input_section->owner;
2061		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2062						       input_section);
2063		  if (relsize < 0)
2064		    return FALSE;
2065		  relocs = bfd_malloc (relsize);
2066		  if (!relocs && relsize != 0)
2067		    return FALSE;
2068		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2069		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2070							input_section,
2071							relocs,
2072							symbols);
2073		  free (relocs);
2074		  if (reloc_count < 0)
2075		    return FALSE;
2076		  BFD_ASSERT ((unsigned long) reloc_count
2077			      == input_section->reloc_count);
2078		  o->reloc_count += reloc_count;
2079		}
2080	    }
2081	  if (o->reloc_count > 0)
2082	    {
2083	      bfd_size_type amt;
2084
2085	      amt = o->reloc_count;
2086	      amt *= sizeof (arelent *);
2087	      o->orelocation = bfd_alloc (abfd, amt);
2088	      if (!o->orelocation)
2089		return FALSE;
2090	      o->flags |= SEC_RELOC;
2091	      /* Reset the count so that it can be used as an index
2092		 when putting in the output relocs.  */
2093	      o->reloc_count = 0;
2094	    }
2095	}
2096    }
2097
2098  /* Handle all the link order information for the sections.  */
2099  for (o = abfd->sections; o != NULL; o = o->next)
2100    {
2101      for (p = o->map_head.link_order; p != NULL; p = p->next)
2102	{
2103	  switch (p->type)
2104	    {
2105	    case bfd_section_reloc_link_order:
2106	    case bfd_symbol_reloc_link_order:
2107	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2108		return FALSE;
2109	      break;
2110	    case bfd_indirect_link_order:
2111	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2112		return FALSE;
2113	      break;
2114	    default:
2115	      if (! _bfd_default_link_order (abfd, info, o, p))
2116		return FALSE;
2117	      break;
2118	    }
2119	}
2120    }
2121
2122  return TRUE;
2123}
2124
2125/* Add an output symbol to the output BFD.  */
2126
2127static bfd_boolean
2128generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2129{
2130  if (bfd_get_symcount (output_bfd) >= *psymalloc)
2131    {
2132      asymbol **newsyms;
2133      bfd_size_type amt;
2134
2135      if (*psymalloc == 0)
2136	*psymalloc = 124;
2137      else
2138	*psymalloc *= 2;
2139      amt = *psymalloc;
2140      amt *= sizeof (asymbol *);
2141      newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2142      if (newsyms == NULL)
2143	return FALSE;
2144      bfd_get_outsymbols (output_bfd) = newsyms;
2145    }
2146
2147  bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2148  if (sym != NULL)
2149    ++ bfd_get_symcount (output_bfd);
2150
2151  return TRUE;
2152}
2153
2154/* Handle the symbols for an input BFD.  */
2155
2156bfd_boolean
2157_bfd_generic_link_output_symbols (bfd *output_bfd,
2158				  bfd *input_bfd,
2159				  struct bfd_link_info *info,
2160				  size_t *psymalloc)
2161{
2162  asymbol **sym_ptr;
2163  asymbol **sym_end;
2164
2165  if (! generic_link_read_symbols (input_bfd))
2166    return FALSE;
2167
2168  /* Create a filename symbol if we are supposed to.  */
2169  if (info->create_object_symbols_section != NULL)
2170    {
2171      asection *sec;
2172
2173      for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2174	{
2175	  if (sec->output_section == info->create_object_symbols_section)
2176	    {
2177	      asymbol *newsym;
2178
2179	      newsym = bfd_make_empty_symbol (input_bfd);
2180	      if (!newsym)
2181		return FALSE;
2182	      newsym->name = input_bfd->filename;
2183	      newsym->value = 0;
2184	      newsym->flags = BSF_LOCAL | BSF_FILE;
2185	      newsym->section = sec;
2186
2187	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2188					       newsym))
2189		return FALSE;
2190
2191	      break;
2192	    }
2193	}
2194    }
2195
2196  /* Adjust the values of the globally visible symbols, and write out
2197     local symbols.  */
2198  sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2199  sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2200  for (; sym_ptr < sym_end; sym_ptr++)
2201    {
2202      asymbol *sym;
2203      struct generic_link_hash_entry *h;
2204      bfd_boolean output;
2205
2206      h = NULL;
2207      sym = *sym_ptr;
2208      if ((sym->flags & (BSF_INDIRECT
2209			 | BSF_WARNING
2210			 | BSF_GLOBAL
2211			 | BSF_CONSTRUCTOR
2212			 | BSF_WEAK)) != 0
2213	  || bfd_is_und_section (bfd_get_section (sym))
2214	  || bfd_is_com_section (bfd_get_section (sym))
2215	  || bfd_is_ind_section (bfd_get_section (sym)))
2216	{
2217	  if (sym->udata.p != NULL)
2218	    h = sym->udata.p;
2219	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2220	    {
2221	      /* This case normally means that the main linker code
2222                 deliberately ignored this constructor symbol.  We
2223                 should just pass it through.  This will screw up if
2224                 the constructor symbol is from a different,
2225                 non-generic, object file format, but the case will
2226                 only arise when linking with -r, which will probably
2227                 fail anyhow, since there will be no way to represent
2228                 the relocs in the output format being used.  */
2229	      h = NULL;
2230	    }
2231	  else if (bfd_is_und_section (bfd_get_section (sym)))
2232	    h = ((struct generic_link_hash_entry *)
2233		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2234					       bfd_asymbol_name (sym),
2235					       FALSE, FALSE, TRUE));
2236	  else
2237	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2238					       bfd_asymbol_name (sym),
2239					       FALSE, FALSE, TRUE);
2240
2241	  if (h != NULL)
2242	    {
2243	      /* Force all references to this symbol to point to
2244		 the same area in memory.  It is possible that
2245		 this routine will be called with a hash table
2246		 other than a generic hash table, so we double
2247		 check that.  */
2248	      if (info->hash->creator == input_bfd->xvec)
2249		{
2250		  if (h->sym != NULL)
2251		    *sym_ptr = sym = h->sym;
2252		}
2253
2254	      switch (h->root.type)
2255		{
2256		default:
2257		case bfd_link_hash_new:
2258		  abort ();
2259		case bfd_link_hash_undefined:
2260		  break;
2261		case bfd_link_hash_undefweak:
2262		  sym->flags |= BSF_WEAK;
2263		  break;
2264		case bfd_link_hash_indirect:
2265		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2266		  /* fall through */
2267		case bfd_link_hash_defined:
2268		  sym->flags |= BSF_GLOBAL;
2269		  sym->flags &=~ BSF_CONSTRUCTOR;
2270		  sym->value = h->root.u.def.value;
2271		  sym->section = h->root.u.def.section;
2272		  break;
2273		case bfd_link_hash_defweak:
2274		  sym->flags |= BSF_WEAK;
2275		  sym->flags &=~ BSF_CONSTRUCTOR;
2276		  sym->value = h->root.u.def.value;
2277		  sym->section = h->root.u.def.section;
2278		  break;
2279		case bfd_link_hash_common:
2280		  sym->value = h->root.u.c.size;
2281		  sym->flags |= BSF_GLOBAL;
2282		  if (! bfd_is_com_section (sym->section))
2283		    {
2284		      BFD_ASSERT (bfd_is_und_section (sym->section));
2285		      sym->section = bfd_com_section_ptr;
2286		    }
2287		  /* We do not set the section of the symbol to
2288		     h->root.u.c.p->section.  That value was saved so
2289		     that we would know where to allocate the symbol
2290		     if it was defined.  In this case the type is
2291		     still bfd_link_hash_common, so we did not define
2292		     it, so we do not want to use that section.  */
2293		  break;
2294		}
2295	    }
2296	}
2297
2298      /* This switch is straight from the old code in
2299	 write_file_locals in ldsym.c.  */
2300      if (info->strip == strip_all
2301	  || (info->strip == strip_some
2302	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2303				  FALSE, FALSE) == NULL))
2304	output = FALSE;
2305      else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2306	{
2307	  /* If this symbol is marked as occurring now, rather
2308	     than at the end, output it now.  This is used for
2309	     COFF C_EXT FCN symbols.  FIXME: There must be a
2310	     better way.  */
2311	  if (bfd_asymbol_bfd (sym) == input_bfd
2312	      && (sym->flags & BSF_NOT_AT_END) != 0)
2313	    output = TRUE;
2314	  else
2315	    output = FALSE;
2316	}
2317      else if (bfd_is_ind_section (sym->section))
2318	output = FALSE;
2319      else if ((sym->flags & BSF_DEBUGGING) != 0)
2320	{
2321	  if (info->strip == strip_none)
2322	    output = TRUE;
2323	  else
2324	    output = FALSE;
2325	}
2326      else if (bfd_is_und_section (sym->section)
2327	       || bfd_is_com_section (sym->section))
2328	output = FALSE;
2329      else if ((sym->flags & BSF_LOCAL) != 0)
2330	{
2331	  if ((sym->flags & BSF_WARNING) != 0)
2332	    output = FALSE;
2333	  else
2334	    {
2335	      switch (info->discard)
2336		{
2337		default:
2338		case discard_all:
2339		  output = FALSE;
2340		  break;
2341		case discard_sec_merge:
2342		  output = TRUE;
2343		  if (info->relocatable
2344		      || ! (sym->section->flags & SEC_MERGE))
2345		    break;
2346		  /* FALLTHROUGH */
2347		case discard_l:
2348		  if (bfd_is_local_label (input_bfd, sym))
2349		    output = FALSE;
2350		  else
2351		    output = TRUE;
2352		  break;
2353		case discard_none:
2354		  output = TRUE;
2355		  break;
2356		}
2357	    }
2358	}
2359      else if ((sym->flags & BSF_CONSTRUCTOR))
2360	{
2361	  if (info->strip != strip_all)
2362	    output = TRUE;
2363	  else
2364	    output = FALSE;
2365	}
2366      else
2367	abort ();
2368
2369      /* If this symbol is in a section which is not being included
2370	 in the output file, then we don't want to output the
2371	 symbol.  */
2372      if (!bfd_is_abs_section (sym->section)
2373	  && bfd_section_removed_from_list (output_bfd,
2374					    sym->section->output_section))
2375	output = FALSE;
2376
2377      if (output)
2378	{
2379	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2380	    return FALSE;
2381	  if (h != NULL)
2382	    h->written = TRUE;
2383	}
2384    }
2385
2386  return TRUE;
2387}
2388
2389/* Set the section and value of a generic BFD symbol based on a linker
2390   hash table entry.  */
2391
2392static void
2393set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2394{
2395  switch (h->type)
2396    {
2397    default:
2398      abort ();
2399      break;
2400    case bfd_link_hash_new:
2401      /* This can happen when a constructor symbol is seen but we are
2402         not building constructors.  */
2403      if (sym->section != NULL)
2404	{
2405	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2406	}
2407      else
2408	{
2409	  sym->flags |= BSF_CONSTRUCTOR;
2410	  sym->section = bfd_abs_section_ptr;
2411	  sym->value = 0;
2412	}
2413      break;
2414    case bfd_link_hash_undefined:
2415      sym->section = bfd_und_section_ptr;
2416      sym->value = 0;
2417      break;
2418    case bfd_link_hash_undefweak:
2419      sym->section = bfd_und_section_ptr;
2420      sym->value = 0;
2421      sym->flags |= BSF_WEAK;
2422      break;
2423    case bfd_link_hash_defined:
2424      sym->section = h->u.def.section;
2425      sym->value = h->u.def.value;
2426      break;
2427    case bfd_link_hash_defweak:
2428      sym->flags |= BSF_WEAK;
2429      sym->section = h->u.def.section;
2430      sym->value = h->u.def.value;
2431      break;
2432    case bfd_link_hash_common:
2433      sym->value = h->u.c.size;
2434      if (sym->section == NULL)
2435	sym->section = bfd_com_section_ptr;
2436      else if (! bfd_is_com_section (sym->section))
2437	{
2438	  BFD_ASSERT (bfd_is_und_section (sym->section));
2439	  sym->section = bfd_com_section_ptr;
2440	}
2441      /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2442      break;
2443    case bfd_link_hash_indirect:
2444    case bfd_link_hash_warning:
2445      /* FIXME: What should we do here?  */
2446      break;
2447    }
2448}
2449
2450/* Write out a global symbol, if it hasn't already been written out.
2451   This is called for each symbol in the hash table.  */
2452
2453bfd_boolean
2454_bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2455				       void *data)
2456{
2457  struct generic_write_global_symbol_info *wginfo = data;
2458  asymbol *sym;
2459
2460  if (h->root.type == bfd_link_hash_warning)
2461    h = (struct generic_link_hash_entry *) h->root.u.i.link;
2462
2463  if (h->written)
2464    return TRUE;
2465
2466  h->written = TRUE;
2467
2468  if (wginfo->info->strip == strip_all
2469      || (wginfo->info->strip == strip_some
2470	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2471			      FALSE, FALSE) == NULL))
2472    return TRUE;
2473
2474  if (h->sym != NULL)
2475    sym = h->sym;
2476  else
2477    {
2478      sym = bfd_make_empty_symbol (wginfo->output_bfd);
2479      if (!sym)
2480	return FALSE;
2481      sym->name = h->root.root.string;
2482      sym->flags = 0;
2483    }
2484
2485  set_symbol_from_hash (sym, &h->root);
2486
2487  sym->flags |= BSF_GLOBAL;
2488
2489  if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2490				   sym))
2491    {
2492      /* FIXME: No way to return failure.  */
2493      abort ();
2494    }
2495
2496  return TRUE;
2497}
2498
2499/* Create a relocation.  */
2500
2501bfd_boolean
2502_bfd_generic_reloc_link_order (bfd *abfd,
2503			       struct bfd_link_info *info,
2504			       asection *sec,
2505			       struct bfd_link_order *link_order)
2506{
2507  arelent *r;
2508
2509  if (! info->relocatable)
2510    abort ();
2511  if (sec->orelocation == NULL)
2512    abort ();
2513
2514  r = bfd_alloc (abfd, sizeof (arelent));
2515  if (r == NULL)
2516    return FALSE;
2517
2518  r->address = link_order->offset;
2519  r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2520  if (r->howto == 0)
2521    {
2522      bfd_set_error (bfd_error_bad_value);
2523      return FALSE;
2524    }
2525
2526  /* Get the symbol to use for the relocation.  */
2527  if (link_order->type == bfd_section_reloc_link_order)
2528    r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2529  else
2530    {
2531      struct generic_link_hash_entry *h;
2532
2533      h = ((struct generic_link_hash_entry *)
2534	   bfd_wrapped_link_hash_lookup (abfd, info,
2535					 link_order->u.reloc.p->u.name,
2536					 FALSE, FALSE, TRUE));
2537      if (h == NULL
2538	  || ! h->written)
2539	{
2540	  if (! ((*info->callbacks->unattached_reloc)
2541		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2542	    return FALSE;
2543	  bfd_set_error (bfd_error_bad_value);
2544	  return FALSE;
2545	}
2546      r->sym_ptr_ptr = &h->sym;
2547    }
2548
2549  /* If this is an inplace reloc, write the addend to the object file.
2550     Otherwise, store it in the reloc addend.  */
2551  if (! r->howto->partial_inplace)
2552    r->addend = link_order->u.reloc.p->addend;
2553  else
2554    {
2555      bfd_size_type size;
2556      bfd_reloc_status_type rstat;
2557      bfd_byte *buf;
2558      bfd_boolean ok;
2559      file_ptr loc;
2560
2561      size = bfd_get_reloc_size (r->howto);
2562      buf = bfd_zmalloc (size);
2563      if (buf == NULL)
2564	return FALSE;
2565      rstat = _bfd_relocate_contents (r->howto, abfd,
2566				      (bfd_vma) link_order->u.reloc.p->addend,
2567				      buf);
2568      switch (rstat)
2569	{
2570	case bfd_reloc_ok:
2571	  break;
2572	default:
2573	case bfd_reloc_outofrange:
2574	  abort ();
2575	case bfd_reloc_overflow:
2576	  if (! ((*info->callbacks->reloc_overflow)
2577		 (info, NULL,
2578		  (link_order->type == bfd_section_reloc_link_order
2579		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2580		   : link_order->u.reloc.p->u.name),
2581		  r->howto->name, link_order->u.reloc.p->addend,
2582		  NULL, NULL, 0)))
2583	    {
2584	      free (buf);
2585	      return FALSE;
2586	    }
2587	  break;
2588	}
2589      loc = link_order->offset * bfd_octets_per_byte (abfd);
2590      ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2591      free (buf);
2592      if (! ok)
2593	return FALSE;
2594
2595      r->addend = 0;
2596    }
2597
2598  sec->orelocation[sec->reloc_count] = r;
2599  ++sec->reloc_count;
2600
2601  return TRUE;
2602}
2603
2604/* Allocate a new link_order for a section.  */
2605
2606struct bfd_link_order *
2607bfd_new_link_order (bfd *abfd, asection *section)
2608{
2609  bfd_size_type amt = sizeof (struct bfd_link_order);
2610  struct bfd_link_order *new;
2611
2612  new = bfd_zalloc (abfd, amt);
2613  if (!new)
2614    return NULL;
2615
2616  new->type = bfd_undefined_link_order;
2617
2618  if (section->map_tail.link_order != NULL)
2619    section->map_tail.link_order->next = new;
2620  else
2621    section->map_head.link_order = new;
2622  section->map_tail.link_order = new;
2623
2624  return new;
2625}
2626
2627/* Default link order processing routine.  Note that we can not handle
2628   the reloc_link_order types here, since they depend upon the details
2629   of how the particular backends generates relocs.  */
2630
2631bfd_boolean
2632_bfd_default_link_order (bfd *abfd,
2633			 struct bfd_link_info *info,
2634			 asection *sec,
2635			 struct bfd_link_order *link_order)
2636{
2637  switch (link_order->type)
2638    {
2639    case bfd_undefined_link_order:
2640    case bfd_section_reloc_link_order:
2641    case bfd_symbol_reloc_link_order:
2642    default:
2643      abort ();
2644    case bfd_indirect_link_order:
2645      return default_indirect_link_order (abfd, info, sec, link_order,
2646					  FALSE);
2647    case bfd_data_link_order:
2648      return default_data_link_order (abfd, info, sec, link_order);
2649    }
2650}
2651
2652/* Default routine to handle a bfd_data_link_order.  */
2653
2654static bfd_boolean
2655default_data_link_order (bfd *abfd,
2656			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2657			 asection *sec,
2658			 struct bfd_link_order *link_order)
2659{
2660  bfd_size_type size;
2661  size_t fill_size;
2662  bfd_byte *fill;
2663  file_ptr loc;
2664  bfd_boolean result;
2665
2666  BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2667
2668  size = link_order->size;
2669  if (size == 0)
2670    return TRUE;
2671
2672  fill = link_order->u.data.contents;
2673  fill_size = link_order->u.data.size;
2674  if (fill_size != 0 && fill_size < size)
2675    {
2676      bfd_byte *p;
2677      fill = bfd_malloc (size);
2678      if (fill == NULL)
2679	return FALSE;
2680      p = fill;
2681      if (fill_size == 1)
2682	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2683      else
2684	{
2685	  do
2686	    {
2687	      memcpy (p, link_order->u.data.contents, fill_size);
2688	      p += fill_size;
2689	      size -= fill_size;
2690	    }
2691	  while (size >= fill_size);
2692	  if (size != 0)
2693	    memcpy (p, link_order->u.data.contents, (size_t) size);
2694	  size = link_order->size;
2695	}
2696    }
2697
2698  loc = link_order->offset * bfd_octets_per_byte (abfd);
2699  result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2700
2701  if (fill != link_order->u.data.contents)
2702    free (fill);
2703  return result;
2704}
2705
2706/* Default routine to handle a bfd_indirect_link_order.  */
2707
2708static bfd_boolean
2709default_indirect_link_order (bfd *output_bfd,
2710			     struct bfd_link_info *info,
2711			     asection *output_section,
2712			     struct bfd_link_order *link_order,
2713			     bfd_boolean generic_linker)
2714{
2715  asection *input_section;
2716  bfd *input_bfd;
2717  bfd_byte *contents = NULL;
2718  bfd_byte *new_contents;
2719  bfd_size_type sec_size;
2720  file_ptr loc;
2721
2722  BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2723
2724  input_section = link_order->u.indirect.section;
2725  input_bfd = input_section->owner;
2726  if (input_section->size == 0)
2727    return TRUE;
2728
2729  BFD_ASSERT (input_section->output_section == output_section);
2730  BFD_ASSERT (input_section->output_offset == link_order->offset);
2731  BFD_ASSERT (input_section->size == link_order->size);
2732
2733  if (info->relocatable
2734      && input_section->reloc_count > 0
2735      && output_section->orelocation == NULL)
2736    {
2737      /* Space has not been allocated for the output relocations.
2738	 This can happen when we are called by a specific backend
2739	 because somebody is attempting to link together different
2740	 types of object files.  Handling this case correctly is
2741	 difficult, and sometimes impossible.  */
2742      (*_bfd_error_handler)
2743	(_("Attempt to do relocatable link with %s input and %s output"),
2744	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2745      bfd_set_error (bfd_error_wrong_format);
2746      return FALSE;
2747    }
2748
2749  if (! generic_linker)
2750    {
2751      asymbol **sympp;
2752      asymbol **symppend;
2753
2754      /* Get the canonical symbols.  The generic linker will always
2755	 have retrieved them by this point, but we are being called by
2756	 a specific linker, presumably because we are linking
2757	 different types of object files together.  */
2758      if (! generic_link_read_symbols (input_bfd))
2759	return FALSE;
2760
2761      /* Since we have been called by a specific linker, rather than
2762	 the generic linker, the values of the symbols will not be
2763	 right.  They will be the values as seen in the input file,
2764	 not the values of the final link.  We need to fix them up
2765	 before we can relocate the section.  */
2766      sympp = _bfd_generic_link_get_symbols (input_bfd);
2767      symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2768      for (; sympp < symppend; sympp++)
2769	{
2770	  asymbol *sym;
2771	  struct bfd_link_hash_entry *h;
2772
2773	  sym = *sympp;
2774
2775	  if ((sym->flags & (BSF_INDIRECT
2776			     | BSF_WARNING
2777			     | BSF_GLOBAL
2778			     | BSF_CONSTRUCTOR
2779			     | BSF_WEAK)) != 0
2780	      || bfd_is_und_section (bfd_get_section (sym))
2781	      || bfd_is_com_section (bfd_get_section (sym))
2782	      || bfd_is_ind_section (bfd_get_section (sym)))
2783	    {
2784	      /* sym->udata may have been set by
2785		 generic_link_add_symbol_list.  */
2786	      if (sym->udata.p != NULL)
2787		h = sym->udata.p;
2788	      else if (bfd_is_und_section (bfd_get_section (sym)))
2789		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2790						  bfd_asymbol_name (sym),
2791						  FALSE, FALSE, TRUE);
2792	      else
2793		h = bfd_link_hash_lookup (info->hash,
2794					  bfd_asymbol_name (sym),
2795					  FALSE, FALSE, TRUE);
2796	      if (h != NULL)
2797		set_symbol_from_hash (sym, h);
2798	    }
2799	}
2800    }
2801
2802  /* Get and relocate the section contents.  */
2803  sec_size = (input_section->rawsize > input_section->size
2804	      ? input_section->rawsize
2805	      : input_section->size);
2806  contents = bfd_malloc (sec_size);
2807  if (contents == NULL && sec_size != 0)
2808    goto error_return;
2809  new_contents = (bfd_get_relocated_section_contents
2810		  (output_bfd, info, link_order, contents, info->relocatable,
2811		   _bfd_generic_link_get_symbols (input_bfd)));
2812  if (!new_contents)
2813    goto error_return;
2814
2815  /* Output the section contents.  */
2816  loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2817  if (! bfd_set_section_contents (output_bfd, output_section,
2818				  new_contents, loc, input_section->size))
2819    goto error_return;
2820
2821  if (contents != NULL)
2822    free (contents);
2823  return TRUE;
2824
2825 error_return:
2826  if (contents != NULL)
2827    free (contents);
2828  return FALSE;
2829}
2830
2831/* A little routine to count the number of relocs in a link_order
2832   list.  */
2833
2834unsigned int
2835_bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2836{
2837  register unsigned int c;
2838  register struct bfd_link_order *l;
2839
2840  c = 0;
2841  for (l = link_order; l != NULL; l = l->next)
2842    {
2843      if (l->type == bfd_section_reloc_link_order
2844	  || l->type == bfd_symbol_reloc_link_order)
2845	++c;
2846    }
2847
2848  return c;
2849}
2850
2851/*
2852FUNCTION
2853	bfd_link_split_section
2854
2855SYNOPSIS
2856        bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2857
2858DESCRIPTION
2859	Return nonzero if @var{sec} should be split during a
2860	reloceatable or final link.
2861
2862.#define bfd_link_split_section(abfd, sec) \
2863.       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2864.
2865
2866*/
2867
2868bfd_boolean
2869_bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2870				 asection *sec ATTRIBUTE_UNUSED)
2871{
2872  return FALSE;
2873}
2874
2875/*
2876FUNCTION
2877	bfd_section_already_linked
2878
2879SYNOPSIS
2880        void bfd_section_already_linked (bfd *abfd, asection *sec,
2881					 struct bfd_link_info *info);
2882
2883DESCRIPTION
2884	Check if @var{sec} has been already linked during a reloceatable
2885	or final link.
2886
2887.#define bfd_section_already_linked(abfd, sec, info) \
2888.       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2889.
2890
2891*/
2892
2893/* Sections marked with the SEC_LINK_ONCE flag should only be linked
2894   once into the output.  This routine checks each section, and
2895   arrange to discard it if a section of the same name has already
2896   been linked.  This code assumes that all relevant sections have the
2897   SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2898   section name.  bfd_section_already_linked is called via
2899   bfd_map_over_sections.  */
2900
2901/* The hash table.  */
2902
2903static struct bfd_hash_table _bfd_section_already_linked_table;
2904
2905/* Support routines for the hash table used by section_already_linked,
2906   initialize the table, traverse, lookup, fill in an entry and remove
2907   the table.  */
2908
2909void
2910bfd_section_already_linked_table_traverse
2911  (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2912			void *), void *info)
2913{
2914  bfd_hash_traverse (&_bfd_section_already_linked_table,
2915		     (bfd_boolean (*) (struct bfd_hash_entry *,
2916				       void *)) func,
2917		     info);
2918}
2919
2920struct bfd_section_already_linked_hash_entry *
2921bfd_section_already_linked_table_lookup (const char *name)
2922{
2923  return ((struct bfd_section_already_linked_hash_entry *)
2924	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2925			   TRUE, FALSE));
2926}
2927
2928void
2929bfd_section_already_linked_table_insert
2930  (struct bfd_section_already_linked_hash_entry *already_linked_list,
2931   asection *sec)
2932{
2933  struct bfd_section_already_linked *l;
2934
2935  /* Allocate the memory from the same obstack as the hash table is
2936     kept in.  */
2937  l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2938  l->sec = sec;
2939  l->next = already_linked_list->entry;
2940  already_linked_list->entry = l;
2941}
2942
2943static struct bfd_hash_entry *
2944already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2945			struct bfd_hash_table *table,
2946			const char *string ATTRIBUTE_UNUSED)
2947{
2948  struct bfd_section_already_linked_hash_entry *ret =
2949    bfd_hash_allocate (table, sizeof *ret);
2950
2951  ret->entry = NULL;
2952
2953  return &ret->root;
2954}
2955
2956bfd_boolean
2957bfd_section_already_linked_table_init (void)
2958{
2959  return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2960				already_linked_newfunc,
2961				sizeof (struct bfd_section_already_linked_hash_entry),
2962				42);
2963}
2964
2965void
2966bfd_section_already_linked_table_free (void)
2967{
2968  bfd_hash_table_free (&_bfd_section_already_linked_table);
2969}
2970
2971/* This is used on non-ELF inputs.  */
2972
2973void
2974_bfd_generic_section_already_linked (bfd *abfd, asection *sec,
2975				     struct bfd_link_info *info ATTRIBUTE_UNUSED)
2976{
2977  flagword flags;
2978  const char *name;
2979  struct bfd_section_already_linked *l;
2980  struct bfd_section_already_linked_hash_entry *already_linked_list;
2981
2982  flags = sec->flags;
2983  if ((flags & SEC_LINK_ONCE) == 0)
2984    return;
2985
2986  /* FIXME: When doing a relocatable link, we may have trouble
2987     copying relocations in other sections that refer to local symbols
2988     in the section being discarded.  Those relocations will have to
2989     be converted somehow; as of this writing I'm not sure that any of
2990     the backends handle that correctly.
2991
2992     It is tempting to instead not discard link once sections when
2993     doing a relocatable link (technically, they should be discarded
2994     whenever we are building constructors).  However, that fails,
2995     because the linker winds up combining all the link once sections
2996     into a single large link once section, which defeats the purpose
2997     of having link once sections in the first place.  */
2998
2999  name = bfd_get_section_name (abfd, sec);
3000
3001  already_linked_list = bfd_section_already_linked_table_lookup (name);
3002
3003  for (l = already_linked_list->entry; l != NULL; l = l->next)
3004    {
3005      bfd_boolean skip = FALSE;
3006      struct coff_comdat_info *s_comdat
3007	= bfd_coff_get_comdat_section (abfd, sec);
3008      struct coff_comdat_info *l_comdat
3009	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3010
3011      /* We may have 3 different sections on the list: group section,
3012	 comdat section and linkonce section. SEC may be a linkonce or
3013	 comdat section. We always ignore group section. For non-COFF
3014	 inputs, we also ignore comdat section.
3015
3016	 FIXME: Is that safe to match a linkonce section with a comdat
3017	 section for COFF inputs?  */
3018      if ((l->sec->flags & SEC_GROUP) != 0)
3019	skip = TRUE;
3020      else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3021	{
3022	  if (s_comdat != NULL
3023	      && l_comdat != NULL
3024	      && strcmp (s_comdat->name, l_comdat->name) != 0)
3025	    skip = TRUE;
3026	}
3027      else if (l_comdat != NULL)
3028	skip = TRUE;
3029
3030      if (!skip)
3031	{
3032	  /* The section has already been linked.  See if we should
3033             issue a warning.  */
3034	  switch (flags & SEC_LINK_DUPLICATES)
3035	    {
3036	    default:
3037	      abort ();
3038
3039	    case SEC_LINK_DUPLICATES_DISCARD:
3040	      break;
3041
3042	    case SEC_LINK_DUPLICATES_ONE_ONLY:
3043	      (*_bfd_error_handler)
3044		(_("%B: warning: ignoring duplicate section `%A'\n"),
3045		 abfd, sec);
3046	      break;
3047
3048	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3049	      /* FIXME: We should really dig out the contents of both
3050                 sections and memcmp them.  The COFF/PE spec says that
3051                 the Microsoft linker does not implement this
3052                 correctly, so I'm not going to bother doing it
3053                 either.  */
3054	      /* Fall through.  */
3055	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3056	      if (sec->size != l->sec->size)
3057		(*_bfd_error_handler)
3058		  (_("%B: warning: duplicate section `%A' has different size\n"),
3059		   abfd, sec);
3060	      break;
3061	    }
3062
3063	  /* Set the output_section field so that lang_add_section
3064	     does not create a lang_input_section structure for this
3065	     section.  Since there might be a symbol in the section
3066	     being discarded, we must retain a pointer to the section
3067	     which we are really going to use.  */
3068	  sec->output_section = bfd_abs_section_ptr;
3069	  sec->kept_section = l->sec;
3070
3071	  return;
3072	}
3073    }
3074
3075  /* This is the first section with this name.  Record it.  */
3076  bfd_section_already_linked_table_insert (already_linked_list, sec);
3077}
3078
3079/* Convert symbols in excluded output sections to use a kept section.  */
3080
3081static bfd_boolean
3082fix_syms (struct bfd_link_hash_entry *h, void *data)
3083{
3084  bfd *obfd = (bfd *) data;
3085
3086  if (h->type == bfd_link_hash_warning)
3087    h = h->u.i.link;
3088
3089  if (h->type == bfd_link_hash_defined
3090      || h->type == bfd_link_hash_defweak)
3091    {
3092      asection *s = h->u.def.section;
3093      if (s != NULL
3094	  && s->output_section != NULL
3095	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3096	  && bfd_section_removed_from_list (obfd, s->output_section))
3097	{
3098	  asection *op, *op1;
3099
3100	  h->u.def.value += s->output_offset + s->output_section->vma;
3101
3102	  /* Find preceding kept section.  */
3103	  for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3104	    if ((op1->flags & SEC_EXCLUDE) == 0
3105		&& !bfd_section_removed_from_list (obfd, op1))
3106	      break;
3107
3108	  /* Find following kept section.  Start at prev->next because
3109	     other sections may have been added after S was removed.  */
3110	  if (s->output_section->prev != NULL)
3111	    op = s->output_section->prev->next;
3112	  else
3113	    op = s->output_section->owner->sections;
3114	  for (; op != NULL; op = op->next)
3115	    if ((op->flags & SEC_EXCLUDE) == 0
3116		&& !bfd_section_removed_from_list (obfd, op))
3117	      break;
3118
3119	  /* Choose better of two sections, based on flags.  The idea
3120	     is to choose a section that will be in the same segment
3121	     as S would have been if it was kept.  */
3122	  if (op1 == NULL)
3123	    {
3124	      if (op == NULL)
3125		op = bfd_abs_section_ptr;
3126	    }
3127	  else if (op == NULL)
3128	    op = op1;
3129	  else if (((op1->flags ^ op->flags)
3130		    & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
3131	    {
3132	      if (((op->flags ^ s->flags)
3133		   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
3134		op = op1;
3135	    }
3136	  else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3137	    {
3138	      if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3139		op = op1;
3140	    }
3141	  else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3142	    {
3143	      if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3144		op = op1;
3145	    }
3146	  else
3147	    {
3148	      /* Flags we care about are the same.  Prefer the following
3149		 section if that will result in a positive valued sym.  */
3150	      if (h->u.def.value < op->vma)
3151		op = op1;
3152	    }
3153
3154	  h->u.def.value -= op->vma;
3155	  h->u.def.section = op;
3156	}
3157    }
3158
3159  return TRUE;
3160}
3161
3162void
3163_bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3164{
3165  bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3166}
3167