1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */
30
31#include <stdlib.h>
32#include <strings.h>
33#include <errno.h>
34#include <unistd.h>
35#include <limits.h>
36#include <assert.h>
37#include <ctype.h>
38#if defined(sun)
39#include <alloca.h>
40#endif
41#include <dt_impl.h>
42#include <dt_pq.h>
43#if !defined(sun)
44#include <libproc_compat.h>
45#endif
46
47#define	DT_MASK_LO 0x00000000FFFFFFFFULL
48
49/*
50 * We declare this here because (1) we need it and (2) we want to avoid a
51 * dependency on libm in libdtrace.
52 */
53static long double
54dt_fabsl(long double x)
55{
56	if (x < 0)
57		return (-x);
58
59	return (x);
60}
61
62/*
63 * 128-bit arithmetic functions needed to support the stddev() aggregating
64 * action.
65 */
66static int
67dt_gt_128(uint64_t *a, uint64_t *b)
68{
69	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
70}
71
72static int
73dt_ge_128(uint64_t *a, uint64_t *b)
74{
75	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
76}
77
78static int
79dt_le_128(uint64_t *a, uint64_t *b)
80{
81	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
82}
83
84/*
85 * Shift the 128-bit value in a by b. If b is positive, shift left.
86 * If b is negative, shift right.
87 */
88static void
89dt_shift_128(uint64_t *a, int b)
90{
91	uint64_t mask;
92
93	if (b == 0)
94		return;
95
96	if (b < 0) {
97		b = -b;
98		if (b >= 64) {
99			a[0] = a[1] >> (b - 64);
100			a[1] = 0;
101		} else {
102			a[0] >>= b;
103			mask = 1LL << (64 - b);
104			mask -= 1;
105			a[0] |= ((a[1] & mask) << (64 - b));
106			a[1] >>= b;
107		}
108	} else {
109		if (b >= 64) {
110			a[1] = a[0] << (b - 64);
111			a[0] = 0;
112		} else {
113			a[1] <<= b;
114			mask = a[0] >> (64 - b);
115			a[1] |= mask;
116			a[0] <<= b;
117		}
118	}
119}
120
121static int
122dt_nbits_128(uint64_t *a)
123{
124	int nbits = 0;
125	uint64_t tmp[2];
126	uint64_t zero[2] = { 0, 0 };
127
128	tmp[0] = a[0];
129	tmp[1] = a[1];
130
131	dt_shift_128(tmp, -1);
132	while (dt_gt_128(tmp, zero)) {
133		dt_shift_128(tmp, -1);
134		nbits++;
135	}
136
137	return (nbits);
138}
139
140static void
141dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
142{
143	uint64_t result[2];
144
145	result[0] = minuend[0] - subtrahend[0];
146	result[1] = minuend[1] - subtrahend[1] -
147	    (minuend[0] < subtrahend[0] ? 1 : 0);
148
149	difference[0] = result[0];
150	difference[1] = result[1];
151}
152
153static void
154dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
155{
156	uint64_t result[2];
157
158	result[0] = addend1[0] + addend2[0];
159	result[1] = addend1[1] + addend2[1] +
160	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
161
162	sum[0] = result[0];
163	sum[1] = result[1];
164}
165
166/*
167 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
168 * use native multiplication on those, and then re-combine into the
169 * resulting 128-bit value.
170 *
171 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
172 *     hi1 * hi2 << 64 +
173 *     hi1 * lo2 << 32 +
174 *     hi2 * lo1 << 32 +
175 *     lo1 * lo2
176 */
177static void
178dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
179{
180	uint64_t hi1, hi2, lo1, lo2;
181	uint64_t tmp[2];
182
183	hi1 = factor1 >> 32;
184	hi2 = factor2 >> 32;
185
186	lo1 = factor1 & DT_MASK_LO;
187	lo2 = factor2 & DT_MASK_LO;
188
189	product[0] = lo1 * lo2;
190	product[1] = hi1 * hi2;
191
192	tmp[0] = hi1 * lo2;
193	tmp[1] = 0;
194	dt_shift_128(tmp, 32);
195	dt_add_128(product, tmp, product);
196
197	tmp[0] = hi2 * lo1;
198	tmp[1] = 0;
199	dt_shift_128(tmp, 32);
200	dt_add_128(product, tmp, product);
201}
202
203/*
204 * This is long-hand division.
205 *
206 * We initialize subtrahend by shifting divisor left as far as possible. We
207 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
208 * subtract and set the appropriate bit in the result.  We then shift
209 * subtrahend right by one bit for the next comparison.
210 */
211static void
212dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
213{
214	uint64_t result[2] = { 0, 0 };
215	uint64_t remainder[2];
216	uint64_t subtrahend[2];
217	uint64_t divisor_128[2];
218	uint64_t mask[2] = { 1, 0 };
219	int log = 0;
220
221	assert(divisor != 0);
222
223	divisor_128[0] = divisor;
224	divisor_128[1] = 0;
225
226	remainder[0] = dividend[0];
227	remainder[1] = dividend[1];
228
229	subtrahend[0] = divisor;
230	subtrahend[1] = 0;
231
232	while (divisor > 0) {
233		log++;
234		divisor >>= 1;
235	}
236
237	dt_shift_128(subtrahend, 128 - log);
238	dt_shift_128(mask, 128 - log);
239
240	while (dt_ge_128(remainder, divisor_128)) {
241		if (dt_ge_128(remainder, subtrahend)) {
242			dt_subtract_128(remainder, subtrahend, remainder);
243			result[0] |= mask[0];
244			result[1] |= mask[1];
245		}
246
247		dt_shift_128(subtrahend, -1);
248		dt_shift_128(mask, -1);
249	}
250
251	quotient[0] = result[0];
252	quotient[1] = result[1];
253}
254
255/*
256 * This is the long-hand method of calculating a square root.
257 * The algorithm is as follows:
258 *
259 * 1. Group the digits by 2 from the right.
260 * 2. Over the leftmost group, find the largest single-digit number
261 *    whose square is less than that group.
262 * 3. Subtract the result of the previous step (2 or 4, depending) and
263 *    bring down the next two-digit group.
264 * 4. For the result R we have so far, find the largest single-digit number
265 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
266 *    (Note that this is doubling R and performing a decimal left-shift by 1
267 *    and searching for the appropriate decimal to fill the one's place.)
268 *    The value x is the next digit in the square root.
269 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
270 * dealing with integers, so the above is sufficient.)
271 *
272 * In decimal, the square root of 582,734 would be calculated as so:
273 *
274 *     __7__6__3
275 *    | 58 27 34
276 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
277 *      --
278 *       9 27    (Subtract and bring down the next group.)
279 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
280 *      -----     the square root)
281 *         51 34 (Subtract and bring down the next group.)
282 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
283 *         -----  the square root)
284 *          5 65 (remainder)
285 *
286 * The above algorithm applies similarly in binary, but note that the
287 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
288 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
289 * preceding difference?
290 *
291 * In binary, the square root of 11011011 would be calculated as so:
292 *
293 *     __1__1__1__0
294 *    | 11 01 10 11
295 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
296 *      --
297 *      10 01 10 11
298 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
299 *      -----
300 *       1 00 10 11
301 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
302 *       -------
303 *          1 01 11
304 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
305 *
306 */
307static uint64_t
308dt_sqrt_128(uint64_t *square)
309{
310	uint64_t result[2] = { 0, 0 };
311	uint64_t diff[2] = { 0, 0 };
312	uint64_t one[2] = { 1, 0 };
313	uint64_t next_pair[2];
314	uint64_t next_try[2];
315	uint64_t bit_pairs, pair_shift;
316	int i;
317
318	bit_pairs = dt_nbits_128(square) / 2;
319	pair_shift = bit_pairs * 2;
320
321	for (i = 0; i <= bit_pairs; i++) {
322		/*
323		 * Bring down the next pair of bits.
324		 */
325		next_pair[0] = square[0];
326		next_pair[1] = square[1];
327		dt_shift_128(next_pair, -pair_shift);
328		next_pair[0] &= 0x3;
329		next_pair[1] = 0;
330
331		dt_shift_128(diff, 2);
332		dt_add_128(diff, next_pair, diff);
333
334		/*
335		 * next_try = R << 2 + 1
336		 */
337		next_try[0] = result[0];
338		next_try[1] = result[1];
339		dt_shift_128(next_try, 2);
340		dt_add_128(next_try, one, next_try);
341
342		if (dt_le_128(next_try, diff)) {
343			dt_subtract_128(diff, next_try, diff);
344			dt_shift_128(result, 1);
345			dt_add_128(result, one, result);
346		} else {
347			dt_shift_128(result, 1);
348		}
349
350		pair_shift -= 2;
351	}
352
353	assert(result[1] == 0);
354
355	return (result[0]);
356}
357
358uint64_t
359dt_stddev(uint64_t *data, uint64_t normal)
360{
361	uint64_t avg_of_squares[2];
362	uint64_t square_of_avg[2];
363	int64_t norm_avg;
364	uint64_t diff[2];
365
366	/*
367	 * The standard approximation for standard deviation is
368	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
369	 * of the average of the squares minus the square of the average.
370	 */
371	dt_divide_128(data + 2, normal, avg_of_squares);
372	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
373
374	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
375
376	if (norm_avg < 0)
377		norm_avg = -norm_avg;
378
379	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
380
381	dt_subtract_128(avg_of_squares, square_of_avg, diff);
382
383	return (dt_sqrt_128(diff));
384}
385
386static int
387dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
388    dtrace_bufdesc_t *buf, size_t offs)
389{
390	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
391	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
392	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
393	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
394	const char *str = NULL;
395	static const char *e_str[2] = { " -> ", " => " };
396	static const char *r_str[2] = { " <- ", " <= " };
397	static const char *ent = "entry", *ret = "return";
398	static int entlen = 0, retlen = 0;
399	dtrace_epid_t next, id = epd->dtepd_epid;
400	int rval;
401
402	if (entlen == 0) {
403		assert(retlen == 0);
404		entlen = strlen(ent);
405		retlen = strlen(ret);
406	}
407
408	/*
409	 * If the name of the probe is "entry" or ends with "-entry", we
410	 * treat it as an entry; if it is "return" or ends with "-return",
411	 * we treat it as a return.  (This allows application-provided probes
412	 * like "method-entry" or "function-entry" to participate in flow
413	 * indentation -- without accidentally misinterpreting popular probe
414	 * names like "carpentry", "gentry" or "Coventry".)
415	 */
416	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
417	    (sub == n || sub[-1] == '-')) {
418		flow = DTRACEFLOW_ENTRY;
419		str = e_str[strcmp(p, "syscall") == 0];
420	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
421	    (sub == n || sub[-1] == '-')) {
422		flow = DTRACEFLOW_RETURN;
423		str = r_str[strcmp(p, "syscall") == 0];
424	}
425
426	/*
427	 * If we're going to indent this, we need to check the ID of our last
428	 * call.  If we're looking at the same probe ID but a different EPID,
429	 * we _don't_ want to indent.  (Yes, there are some minor holes in
430	 * this scheme -- it's a heuristic.)
431	 */
432	if (flow == DTRACEFLOW_ENTRY) {
433		if ((last != DTRACE_EPIDNONE && id != last &&
434		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
435			flow = DTRACEFLOW_NONE;
436	}
437
438	/*
439	 * If we're going to unindent this, it's more difficult to see if
440	 * we don't actually want to unindent it -- we need to look at the
441	 * _next_ EPID.
442	 */
443	if (flow == DTRACEFLOW_RETURN) {
444		offs += epd->dtepd_size;
445
446		do {
447			if (offs >= buf->dtbd_size)
448				goto out;
449
450			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
451
452			if (next == DTRACE_EPIDNONE)
453				offs += sizeof (id);
454		} while (next == DTRACE_EPIDNONE);
455
456		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
457			return (rval);
458
459		if (next != id && npd->dtpd_id == pd->dtpd_id)
460			flow = DTRACEFLOW_NONE;
461	}
462
463out:
464	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
465		data->dtpda_prefix = str;
466	} else {
467		data->dtpda_prefix = "| ";
468	}
469
470	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
471		data->dtpda_indent -= 2;
472
473	data->dtpda_flow = flow;
474
475	return (0);
476}
477
478static int
479dt_nullprobe()
480{
481	return (DTRACE_CONSUME_THIS);
482}
483
484static int
485dt_nullrec()
486{
487	return (DTRACE_CONSUME_NEXT);
488}
489
490int
491dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
492    uint64_t normal, long double total, char positives, char negatives)
493{
494	long double f;
495	uint_t depth, len = 40;
496
497	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
498	const char *spaces = "                                        ";
499
500	assert(strlen(ats) == len && strlen(spaces) == len);
501	assert(!(total == 0 && (positives || negatives)));
502	assert(!(val < 0 && !negatives));
503	assert(!(val > 0 && !positives));
504	assert(!(val != 0 && total == 0));
505
506	if (!negatives) {
507		if (positives) {
508			f = (dt_fabsl((long double)val) * len) / total;
509			depth = (uint_t)(f + 0.5);
510		} else {
511			depth = 0;
512		}
513
514		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
515		    spaces + depth, (long long)val / normal));
516	}
517
518	if (!positives) {
519		f = (dt_fabsl((long double)val) * len) / total;
520		depth = (uint_t)(f + 0.5);
521
522		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
523		    ats + len - depth, (long long)val / normal));
524	}
525
526	/*
527	 * If we're here, we have both positive and negative bucket values.
528	 * To express this graphically, we're going to generate both positive
529	 * and negative bars separated by a centerline.  These bars are half
530	 * the size of normal quantize()/lquantize() bars, so we divide the
531	 * length in half before calculating the bar length.
532	 */
533	len /= 2;
534	ats = &ats[len];
535	spaces = &spaces[len];
536
537	f = (dt_fabsl((long double)val) * len) / total;
538	depth = (uint_t)(f + 0.5);
539
540	if (val <= 0) {
541		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
542		    ats + len - depth, len, "", (long long)val / normal));
543	} else {
544		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
545		    ats + len - depth, spaces + depth,
546		    (long long)val / normal));
547	}
548}
549
550int
551dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
552    size_t size, uint64_t normal)
553{
554	const int64_t *data = addr;
555	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
556	long double total = 0;
557	char positives = 0, negatives = 0;
558
559	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
560		return (dt_set_errno(dtp, EDT_DMISMATCH));
561
562	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
563		first_bin++;
564
565	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
566		/*
567		 * There isn't any data.  This is possible if (and only if)
568		 * negative increment values have been used.  In this case,
569		 * we'll print the buckets around 0.
570		 */
571		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
572		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
573	} else {
574		if (first_bin > 0)
575			first_bin--;
576
577		while (last_bin > 0 && data[last_bin] == 0)
578			last_bin--;
579
580		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
581			last_bin++;
582	}
583
584	for (i = first_bin; i <= last_bin; i++) {
585		positives |= (data[i] > 0);
586		negatives |= (data[i] < 0);
587		total += dt_fabsl((long double)data[i]);
588	}
589
590	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
591	    "------------- Distribution -------------", "count") < 0)
592		return (-1);
593
594	for (i = first_bin; i <= last_bin; i++) {
595		if (dt_printf(dtp, fp, "%16lld ",
596		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
597			return (-1);
598
599		if (dt_print_quantline(dtp, fp, data[i], normal, total,
600		    positives, negatives) < 0)
601			return (-1);
602	}
603
604	return (0);
605}
606
607int
608dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
609    size_t size, uint64_t normal)
610{
611	const int64_t *data = addr;
612	int i, first_bin, last_bin, base;
613	uint64_t arg;
614	long double total = 0;
615	uint16_t step, levels;
616	char positives = 0, negatives = 0;
617
618	if (size < sizeof (uint64_t))
619		return (dt_set_errno(dtp, EDT_DMISMATCH));
620
621	arg = *data++;
622	size -= sizeof (uint64_t);
623
624	base = DTRACE_LQUANTIZE_BASE(arg);
625	step = DTRACE_LQUANTIZE_STEP(arg);
626	levels = DTRACE_LQUANTIZE_LEVELS(arg);
627
628	first_bin = 0;
629	last_bin = levels + 1;
630
631	if (size != sizeof (uint64_t) * (levels + 2))
632		return (dt_set_errno(dtp, EDT_DMISMATCH));
633
634	while (first_bin <= levels + 1 && data[first_bin] == 0)
635		first_bin++;
636
637	if (first_bin > levels + 1) {
638		first_bin = 0;
639		last_bin = 2;
640	} else {
641		if (first_bin > 0)
642			first_bin--;
643
644		while (last_bin > 0 && data[last_bin] == 0)
645			last_bin--;
646
647		if (last_bin < levels + 1)
648			last_bin++;
649	}
650
651	for (i = first_bin; i <= last_bin; i++) {
652		positives |= (data[i] > 0);
653		negatives |= (data[i] < 0);
654		total += dt_fabsl((long double)data[i]);
655	}
656
657	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
658	    "------------- Distribution -------------", "count") < 0)
659		return (-1);
660
661	for (i = first_bin; i <= last_bin; i++) {
662		char c[32];
663		int err;
664
665		if (i == 0) {
666			(void) snprintf(c, sizeof (c), "< %d",
667			    base / (uint32_t)normal);
668			err = dt_printf(dtp, fp, "%16s ", c);
669		} else if (i == levels + 1) {
670			(void) snprintf(c, sizeof (c), ">= %d",
671			    base + (levels * step));
672			err = dt_printf(dtp, fp, "%16s ", c);
673		} else {
674			err = dt_printf(dtp, fp, "%16d ",
675			    base + (i - 1) * step);
676		}
677
678		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
679		    total, positives, negatives) < 0)
680			return (-1);
681	}
682
683	return (0);
684}
685
686int
687dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
688    size_t size, uint64_t normal)
689{
690	int i, first_bin, last_bin, bin = 1, order, levels;
691	uint16_t factor, low, high, nsteps;
692	const int64_t *data = addr;
693	int64_t value = 1, next, step;
694	char positives = 0, negatives = 0;
695	long double total = 0;
696	uint64_t arg;
697	char c[32];
698
699	if (size < sizeof (uint64_t))
700		return (dt_set_errno(dtp, EDT_DMISMATCH));
701
702	arg = *data++;
703	size -= sizeof (uint64_t);
704
705	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
706	low = DTRACE_LLQUANTIZE_LOW(arg);
707	high = DTRACE_LLQUANTIZE_HIGH(arg);
708	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
709
710	/*
711	 * We don't expect to be handed invalid llquantize() parameters here,
712	 * but sanity check them (to a degree) nonetheless.
713	 */
714	if (size > INT32_MAX || factor < 2 || low >= high ||
715	    nsteps == 0 || factor > nsteps)
716		return (dt_set_errno(dtp, EDT_DMISMATCH));
717
718	levels = (int)size / sizeof (uint64_t);
719
720	first_bin = 0;
721	last_bin = levels - 1;
722
723	while (first_bin < levels && data[first_bin] == 0)
724		first_bin++;
725
726	if (first_bin == levels) {
727		first_bin = 0;
728		last_bin = 1;
729	} else {
730		if (first_bin > 0)
731			first_bin--;
732
733		while (last_bin > 0 && data[last_bin] == 0)
734			last_bin--;
735
736		if (last_bin < levels - 1)
737			last_bin++;
738	}
739
740	for (i = first_bin; i <= last_bin; i++) {
741		positives |= (data[i] > 0);
742		negatives |= (data[i] < 0);
743		total += dt_fabsl((long double)data[i]);
744	}
745
746	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
747	    "------------- Distribution -------------", "count") < 0)
748		return (-1);
749
750	for (order = 0; order < low; order++)
751		value *= factor;
752
753	next = value * factor;
754	step = next > nsteps ? next / nsteps : 1;
755
756	if (first_bin == 0) {
757		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
758
759		if (dt_printf(dtp, fp, "%16s ", c) < 0)
760			return (-1);
761
762		if (dt_print_quantline(dtp, fp, data[0], normal,
763		    total, positives, negatives) < 0)
764			return (-1);
765	}
766
767	while (order <= high) {
768		if (bin >= first_bin && bin <= last_bin) {
769			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
770				return (-1);
771
772			if (dt_print_quantline(dtp, fp, data[bin],
773			    normal, total, positives, negatives) < 0)
774				return (-1);
775		}
776
777		assert(value < next);
778		bin++;
779
780		if ((value += step) != next)
781			continue;
782
783		next = value * factor;
784		step = next > nsteps ? next / nsteps : 1;
785		order++;
786	}
787
788	if (last_bin < bin)
789		return (0);
790
791	assert(last_bin == bin);
792	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
793
794	if (dt_printf(dtp, fp, "%16s ", c) < 0)
795		return (-1);
796
797	return (dt_print_quantline(dtp, fp, data[bin], normal,
798	    total, positives, negatives));
799}
800
801/*ARGSUSED*/
802static int
803dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
804    size_t size, uint64_t normal)
805{
806	/* LINTED - alignment */
807	int64_t *data = (int64_t *)addr;
808
809	return (dt_printf(dtp, fp, " %16lld", data[0] ?
810	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
811}
812
813/*ARGSUSED*/
814static int
815dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
816    size_t size, uint64_t normal)
817{
818	/* LINTED - alignment */
819	uint64_t *data = (uint64_t *)addr;
820
821	return (dt_printf(dtp, fp, " %16llu", data[0] ?
822	    (unsigned long long) dt_stddev(data, normal) : 0));
823}
824
825/*ARGSUSED*/
826int
827dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
828    size_t nbytes, int width, int quiet, int forceraw)
829{
830	/*
831	 * If the byte stream is a series of printable characters, followed by
832	 * a terminating byte, we print it out as a string.  Otherwise, we
833	 * assume that it's something else and just print the bytes.
834	 */
835	int i, j, margin = 5;
836	char *c = (char *)addr;
837
838	if (nbytes == 0)
839		return (0);
840
841	if (forceraw)
842		goto raw;
843
844	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
845		goto raw;
846
847	for (i = 0; i < nbytes; i++) {
848		/*
849		 * We define a "printable character" to be one for which
850		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
851		 * or a character which is either backspace or the bell.
852		 * Backspace and the bell are regrettably special because
853		 * they fail the first two tests -- and yet they are entirely
854		 * printable.  These are the only two control characters that
855		 * have meaning for the terminal and for which isprint(3C) and
856		 * isspace(3C) return 0.
857		 */
858		if (isprint(c[i]) || isspace(c[i]) ||
859		    c[i] == '\b' || c[i] == '\a')
860			continue;
861
862		if (c[i] == '\0' && i > 0) {
863			/*
864			 * This looks like it might be a string.  Before we
865			 * assume that it is indeed a string, check the
866			 * remainder of the byte range; if it contains
867			 * additional non-nul characters, we'll assume that
868			 * it's a binary stream that just happens to look like
869			 * a string, and we'll print out the individual bytes.
870			 */
871			for (j = i + 1; j < nbytes; j++) {
872				if (c[j] != '\0')
873					break;
874			}
875
876			if (j != nbytes)
877				break;
878
879			if (quiet)
880				return (dt_printf(dtp, fp, "%s", c));
881			else
882				return (dt_printf(dtp, fp, "  %-*s", width, c));
883		}
884
885		break;
886	}
887
888	if (i == nbytes) {
889		/*
890		 * The byte range is all printable characters, but there is
891		 * no trailing nul byte.  We'll assume that it's a string and
892		 * print it as such.
893		 */
894		char *s = alloca(nbytes + 1);
895		bcopy(c, s, nbytes);
896		s[nbytes] = '\0';
897		return (dt_printf(dtp, fp, "  %-*s", width, s));
898	}
899
900raw:
901	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
902		return (-1);
903
904	for (i = 0; i < 16; i++)
905		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
906			return (-1);
907
908	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
909		return (-1);
910
911
912	for (i = 0; i < nbytes; i += 16) {
913		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
914			return (-1);
915
916		for (j = i; j < i + 16 && j < nbytes; j++) {
917			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
918				return (-1);
919		}
920
921		while (j++ % 16) {
922			if (dt_printf(dtp, fp, "   ") < 0)
923				return (-1);
924		}
925
926		if (dt_printf(dtp, fp, "  ") < 0)
927			return (-1);
928
929		for (j = i; j < i + 16 && j < nbytes; j++) {
930			if (dt_printf(dtp, fp, "%c",
931			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
932				return (-1);
933		}
934
935		if (dt_printf(dtp, fp, "\n") < 0)
936			return (-1);
937	}
938
939	return (0);
940}
941
942int
943dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
944    caddr_t addr, int depth, int size)
945{
946	dtrace_syminfo_t dts;
947	GElf_Sym sym;
948	int i, indent;
949	char c[PATH_MAX * 2];
950	uint64_t pc;
951
952	if (dt_printf(dtp, fp, "\n") < 0)
953		return (-1);
954
955	if (format == NULL)
956		format = "%s";
957
958	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
959		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
960	else
961		indent = _dtrace_stkindent;
962
963	for (i = 0; i < depth; i++) {
964		switch (size) {
965		case sizeof (uint32_t):
966			/* LINTED - alignment */
967			pc = *((uint32_t *)addr);
968			break;
969
970		case sizeof (uint64_t):
971			/* LINTED - alignment */
972			pc = *((uint64_t *)addr);
973			break;
974
975		default:
976			return (dt_set_errno(dtp, EDT_BADSTACKPC));
977		}
978
979		if (pc == 0)
980			break;
981
982		addr += size;
983
984		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
985			return (-1);
986
987		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
988			if (pc > sym.st_value) {
989				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
990				    dts.dts_object, dts.dts_name,
991				    (u_longlong_t)(pc - sym.st_value));
992			} else {
993				(void) snprintf(c, sizeof (c), "%s`%s",
994				    dts.dts_object, dts.dts_name);
995			}
996		} else {
997			/*
998			 * We'll repeat the lookup, but this time we'll specify
999			 * a NULL GElf_Sym -- indicating that we're only
1000			 * interested in the containing module.
1001			 */
1002			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1003				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1004				    dts.dts_object, (u_longlong_t)pc);
1005			} else {
1006				(void) snprintf(c, sizeof (c), "0x%llx",
1007				    (u_longlong_t)pc);
1008			}
1009		}
1010
1011		if (dt_printf(dtp, fp, format, c) < 0)
1012			return (-1);
1013
1014		if (dt_printf(dtp, fp, "\n") < 0)
1015			return (-1);
1016	}
1017
1018	return (0);
1019}
1020
1021int
1022dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1023    caddr_t addr, uint64_t arg)
1024{
1025	/* LINTED - alignment */
1026	uint64_t *pc = (uint64_t *)addr;
1027	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1028	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1029	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1030	const char *str = strsize ? strbase : NULL;
1031	int err = 0;
1032
1033	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1034	struct ps_prochandle *P;
1035	GElf_Sym sym;
1036	int i, indent;
1037	pid_t pid;
1038
1039	if (depth == 0)
1040		return (0);
1041
1042	pid = (pid_t)*pc++;
1043
1044	if (dt_printf(dtp, fp, "\n") < 0)
1045		return (-1);
1046
1047	if (format == NULL)
1048		format = "%s";
1049
1050	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1051		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1052	else
1053		indent = _dtrace_stkindent;
1054
1055	/*
1056	 * Ultimately, we need to add an entry point in the library vector for
1057	 * determining <symbol, offset> from <pid, address>.  For now, if
1058	 * this is a vector open, we just print the raw address or string.
1059	 */
1060	if (dtp->dt_vector == NULL)
1061		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1062	else
1063		P = NULL;
1064
1065	if (P != NULL)
1066		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1067
1068	for (i = 0; i < depth && pc[i] != 0; i++) {
1069		const prmap_t *map;
1070
1071		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1072			break;
1073
1074		if (P != NULL && Plookup_by_addr(P, pc[i],
1075		    name, sizeof (name), &sym) == 0) {
1076			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1077
1078			if (pc[i] > sym.st_value) {
1079				(void) snprintf(c, sizeof (c),
1080				    "%s`%s+0x%llx", dt_basename(objname), name,
1081				    (u_longlong_t)(pc[i] - sym.st_value));
1082			} else {
1083				(void) snprintf(c, sizeof (c),
1084				    "%s`%s", dt_basename(objname), name);
1085			}
1086		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1087		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1088		    (map->pr_mflags & MA_WRITE)))) {
1089			/*
1090			 * If the current string pointer in the string table
1091			 * does not point to an empty string _and_ the program
1092			 * counter falls in a writable region, we'll use the
1093			 * string from the string table instead of the raw
1094			 * address.  This last condition is necessary because
1095			 * some (broken) ustack helpers will return a string
1096			 * even for a program counter that they can't
1097			 * identify.  If we have a string for a program
1098			 * counter that falls in a segment that isn't
1099			 * writable, we assume that we have fallen into this
1100			 * case and we refuse to use the string.
1101			 */
1102			(void) snprintf(c, sizeof (c), "%s", str);
1103		} else {
1104			if (P != NULL && Pobjname(P, pc[i], objname,
1105			    sizeof (objname)) != 0) {
1106				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1107				    dt_basename(objname), (u_longlong_t)pc[i]);
1108			} else {
1109				(void) snprintf(c, sizeof (c), "0x%llx",
1110				    (u_longlong_t)pc[i]);
1111			}
1112		}
1113
1114		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1115			break;
1116
1117		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1118			break;
1119
1120		if (str != NULL && str[0] == '@') {
1121			/*
1122			 * If the first character of the string is an "at" sign,
1123			 * then the string is inferred to be an annotation --
1124			 * and it is printed out beneath the frame and offset
1125			 * with brackets.
1126			 */
1127			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1128				break;
1129
1130			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1131
1132			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1133				break;
1134
1135			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1136				break;
1137		}
1138
1139		if (str != NULL) {
1140			str += strlen(str) + 1;
1141			if (str - strbase >= strsize)
1142				str = NULL;
1143		}
1144	}
1145
1146	if (P != NULL) {
1147		dt_proc_unlock(dtp, P);
1148		dt_proc_release(dtp, P);
1149	}
1150
1151	return (err);
1152}
1153
1154static int
1155dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1156{
1157	/* LINTED - alignment */
1158	uint64_t pid = ((uint64_t *)addr)[0];
1159	/* LINTED - alignment */
1160	uint64_t pc = ((uint64_t *)addr)[1];
1161	const char *format = "  %-50s";
1162	char *s;
1163	int n, len = 256;
1164
1165	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1166		struct ps_prochandle *P;
1167
1168		if ((P = dt_proc_grab(dtp, pid,
1169		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1170			GElf_Sym sym;
1171
1172			dt_proc_lock(dtp, P);
1173
1174			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1175				pc = sym.st_value;
1176
1177			dt_proc_unlock(dtp, P);
1178			dt_proc_release(dtp, P);
1179		}
1180	}
1181
1182	do {
1183		n = len;
1184		s = alloca(n);
1185	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1186
1187	return (dt_printf(dtp, fp, format, s));
1188}
1189
1190int
1191dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1192{
1193	/* LINTED - alignment */
1194	uint64_t pid = ((uint64_t *)addr)[0];
1195	/* LINTED - alignment */
1196	uint64_t pc = ((uint64_t *)addr)[1];
1197	int err = 0;
1198
1199	char objname[PATH_MAX], c[PATH_MAX * 2];
1200	struct ps_prochandle *P;
1201
1202	if (format == NULL)
1203		format = "  %-50s";
1204
1205	/*
1206	 * See the comment in dt_print_ustack() for the rationale for
1207	 * printing raw addresses in the vectored case.
1208	 */
1209	if (dtp->dt_vector == NULL)
1210		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1211	else
1212		P = NULL;
1213
1214	if (P != NULL)
1215		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1216
1217	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1218		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1219	} else {
1220		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1221	}
1222
1223	err = dt_printf(dtp, fp, format, c);
1224
1225	if (P != NULL) {
1226		dt_proc_unlock(dtp, P);
1227		dt_proc_release(dtp, P);
1228	}
1229
1230	return (err);
1231}
1232
1233int
1234dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1235{
1236	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1237	size_t nbytes = *((uintptr_t *) addr);
1238
1239	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1240	    nbytes, 50, quiet, 1));
1241}
1242
1243typedef struct dt_type_cbdata {
1244	dtrace_hdl_t		*dtp;
1245	dtrace_typeinfo_t	dtt;
1246	caddr_t			addr;
1247	caddr_t			addrend;
1248	const char		*name;
1249	int			f_type;
1250	int			indent;
1251	int			type_width;
1252	int			name_width;
1253	FILE			*fp;
1254} dt_type_cbdata_t;
1255
1256static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1257
1258static int
1259dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1260{
1261	dt_type_cbdata_t cbdata;
1262	dt_type_cbdata_t *cbdatap = arg;
1263	ssize_t ssz;
1264
1265	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1266		return (0);
1267
1268	off /= 8;
1269
1270	cbdata = *cbdatap;
1271	cbdata.name = name;
1272	cbdata.addr += off;
1273	cbdata.addrend = cbdata.addr + ssz;
1274
1275	return (dt_print_type_data(&cbdata, type));
1276}
1277
1278static int
1279dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1280{
1281	char buf[DT_TYPE_NAMELEN];
1282	char *p;
1283	dt_type_cbdata_t *cbdatap = arg;
1284	size_t sz = strlen(name);
1285
1286	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1287
1288	if ((p = strchr(buf, '[')) != NULL)
1289		p[-1] = '\0';
1290	else
1291		p = "";
1292
1293	sz += strlen(p);
1294
1295	if (sz > cbdatap->name_width)
1296		cbdatap->name_width = sz;
1297
1298	sz = strlen(buf);
1299
1300	if (sz > cbdatap->type_width)
1301		cbdatap->type_width = sz;
1302
1303	return (0);
1304}
1305
1306static int
1307dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1308{
1309	caddr_t addr = cbdatap->addr;
1310	caddr_t addrend = cbdatap->addrend;
1311	char buf[DT_TYPE_NAMELEN];
1312	char *p;
1313	int cnt = 0;
1314	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1315	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1316
1317	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1318
1319	if ((p = strchr(buf, '[')) != NULL)
1320		p[-1] = '\0';
1321	else
1322		p = "";
1323
1324	if (cbdatap->f_type) {
1325		int type_width = roundup(cbdatap->type_width + 1, 4);
1326		int name_width = roundup(cbdatap->name_width + 1, 4);
1327
1328		name_width -= strlen(cbdatap->name);
1329
1330		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1331	}
1332
1333	while (addr < addrend) {
1334		dt_type_cbdata_t cbdata;
1335		ctf_arinfo_t arinfo;
1336		ctf_encoding_t cte;
1337		uintptr_t *up;
1338		void *vp = addr;
1339		cbdata = *cbdatap;
1340		cbdata.name = "";
1341		cbdata.addr = addr;
1342		cbdata.addrend = addr + ssz;
1343		cbdata.f_type = 0;
1344		cbdata.indent++;
1345		cbdata.type_width = 0;
1346		cbdata.name_width = 0;
1347
1348		if (cnt > 0)
1349			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1350
1351		switch (kind) {
1352		case CTF_K_INTEGER:
1353			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1354				return (-1);
1355			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1356				switch (cte.cte_bits) {
1357				case 8:
1358					if (isprint(*((char *) vp)))
1359						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1360					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1361					break;
1362				case 16:
1363					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1364					break;
1365				case 32:
1366					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1367					break;
1368				case 64:
1369					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1370					break;
1371				default:
1372					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1373					break;
1374				}
1375			else
1376				switch (cte.cte_bits) {
1377				case 8:
1378					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1379					break;
1380				case 16:
1381					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1382					break;
1383				case 32:
1384					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1385					break;
1386				case 64:
1387					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1388					break;
1389				default:
1390					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1391					break;
1392				}
1393			break;
1394		case CTF_K_FLOAT:
1395			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1396			break;
1397		case CTF_K_POINTER:
1398			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1399			break;
1400		case CTF_K_ARRAY:
1401			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1402				return (-1);
1403			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1404			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1405			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1406			break;
1407		case CTF_K_FUNCTION:
1408			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1409			break;
1410		case CTF_K_STRUCT:
1411			cbdata.f_type = 1;
1412			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1413			    dt_print_type_width, &cbdata) != 0)
1414				return (-1);
1415			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1416			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1417			    dt_print_type_member, &cbdata) != 0)
1418				return (-1);
1419			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1420			break;
1421		case CTF_K_UNION:
1422			cbdata.f_type = 1;
1423			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1424			    dt_print_type_width, &cbdata) != 0)
1425				return (-1);
1426			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1427			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1428			    dt_print_type_member, &cbdata) != 0)
1429				return (-1);
1430			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1431			break;
1432		case CTF_K_ENUM:
1433			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1434			break;
1435		case CTF_K_TYPEDEF:
1436			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1437			break;
1438		case CTF_K_VOLATILE:
1439			if (cbdatap->f_type)
1440				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1441			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1442			break;
1443		case CTF_K_CONST:
1444			if (cbdatap->f_type)
1445				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1446			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1447			break;
1448		case CTF_K_RESTRICT:
1449			if (cbdatap->f_type)
1450				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1451			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1452			break;
1453		default:
1454			break;
1455		}
1456
1457		addr += ssz;
1458		cnt++;
1459	}
1460
1461	return (0);
1462}
1463
1464static int
1465dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1466{
1467	caddr_t addrend;
1468	char *p;
1469	dtrace_typeinfo_t dtt;
1470	dt_type_cbdata_t cbdata;
1471	int num = 0;
1472	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1473	ssize_t ssz;
1474
1475	if (!quiet)
1476		dt_printf(dtp, fp, "\n");
1477
1478	/* Get the total number of bytes of data buffered. */
1479	size_t nbytes = *((uintptr_t *) addr);
1480	addr += sizeof(uintptr_t);
1481
1482	/*
1483	 * Get the size of the type so that we can check that it matches
1484	 * the CTF data we look up and so that we can figure out how many
1485	 * type elements are buffered.
1486	 */
1487	size_t typs = *((uintptr_t *) addr);
1488	addr += sizeof(uintptr_t);
1489
1490	/*
1491	 * Point to the type string in the buffer. Get it's string
1492	 * length and round it up to become the offset to the start
1493	 * of the buffered type data which we would like to be aligned
1494	 * for easy access.
1495	 */
1496	char *strp = (char *) addr;
1497	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1498
1499	/*
1500	 * The type string might have a format such as 'int [20]'.
1501	 * Check if there is an array dimension present.
1502	 */
1503	if ((p = strchr(strp, '[')) != NULL) {
1504		/* Strip off the array dimension. */
1505		*p++ = '\0';
1506
1507		for (; *p != '\0' && *p != ']'; p++)
1508			num = num * 10 + *p - '0';
1509	} else
1510		/* No array dimension, so default. */
1511		num = 1;
1512
1513	/* Lookup the CTF type from the type string. */
1514	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1515		return (-1);
1516
1517	/* Offset the buffer address to the start of the data... */
1518	addr += offset;
1519
1520	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1521
1522	if (typs != ssz) {
1523		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1524		return (-1);
1525	}
1526
1527	cbdata.dtp = dtp;
1528	cbdata.dtt = dtt;
1529	cbdata.name = "";
1530	cbdata.addr = addr;
1531	cbdata.addrend = addr + nbytes;
1532	cbdata.indent = 1;
1533	cbdata.f_type = 1;
1534	cbdata.type_width = 0;
1535	cbdata.name_width = 0;
1536	cbdata.fp = fp;
1537
1538	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1539}
1540
1541static int
1542dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1543{
1544	/* LINTED - alignment */
1545	uint64_t pc = *((uint64_t *)addr);
1546	dtrace_syminfo_t dts;
1547	GElf_Sym sym;
1548	char c[PATH_MAX * 2];
1549
1550	if (format == NULL)
1551		format = "  %-50s";
1552
1553	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1554		(void) snprintf(c, sizeof (c), "%s`%s",
1555		    dts.dts_object, dts.dts_name);
1556	} else {
1557		/*
1558		 * We'll repeat the lookup, but this time we'll specify a
1559		 * NULL GElf_Sym -- indicating that we're only interested in
1560		 * the containing module.
1561		 */
1562		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1563			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1564			    dts.dts_object, (u_longlong_t)pc);
1565		} else {
1566			(void) snprintf(c, sizeof (c), "0x%llx",
1567			    (u_longlong_t)pc);
1568		}
1569	}
1570
1571	if (dt_printf(dtp, fp, format, c) < 0)
1572		return (-1);
1573
1574	return (0);
1575}
1576
1577int
1578dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1579{
1580	/* LINTED - alignment */
1581	uint64_t pc = *((uint64_t *)addr);
1582	dtrace_syminfo_t dts;
1583	char c[PATH_MAX * 2];
1584
1585	if (format == NULL)
1586		format = "  %-50s";
1587
1588	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1589		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1590	} else {
1591		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1592	}
1593
1594	if (dt_printf(dtp, fp, format, c) < 0)
1595		return (-1);
1596
1597	return (0);
1598}
1599
1600typedef struct dt_normal {
1601	dtrace_aggvarid_t dtnd_id;
1602	uint64_t dtnd_normal;
1603} dt_normal_t;
1604
1605static int
1606dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1607{
1608	dt_normal_t *normal = arg;
1609	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1610	dtrace_aggvarid_t id = normal->dtnd_id;
1611
1612	if (agg->dtagd_nrecs == 0)
1613		return (DTRACE_AGGWALK_NEXT);
1614
1615	if (agg->dtagd_varid != id)
1616		return (DTRACE_AGGWALK_NEXT);
1617
1618	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1619	return (DTRACE_AGGWALK_NORMALIZE);
1620}
1621
1622static int
1623dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1624{
1625	dt_normal_t normal;
1626	caddr_t addr;
1627
1628	/*
1629	 * We (should) have two records:  the aggregation ID followed by the
1630	 * normalization value.
1631	 */
1632	addr = base + rec->dtrd_offset;
1633
1634	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1635		return (dt_set_errno(dtp, EDT_BADNORMAL));
1636
1637	/* LINTED - alignment */
1638	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1639	rec++;
1640
1641	if (rec->dtrd_action != DTRACEACT_LIBACT)
1642		return (dt_set_errno(dtp, EDT_BADNORMAL));
1643
1644	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1645		return (dt_set_errno(dtp, EDT_BADNORMAL));
1646
1647	addr = base + rec->dtrd_offset;
1648
1649	switch (rec->dtrd_size) {
1650	case sizeof (uint64_t):
1651		/* LINTED - alignment */
1652		normal.dtnd_normal = *((uint64_t *)addr);
1653		break;
1654	case sizeof (uint32_t):
1655		/* LINTED - alignment */
1656		normal.dtnd_normal = *((uint32_t *)addr);
1657		break;
1658	case sizeof (uint16_t):
1659		/* LINTED - alignment */
1660		normal.dtnd_normal = *((uint16_t *)addr);
1661		break;
1662	case sizeof (uint8_t):
1663		normal.dtnd_normal = *((uint8_t *)addr);
1664		break;
1665	default:
1666		return (dt_set_errno(dtp, EDT_BADNORMAL));
1667	}
1668
1669	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1670
1671	return (0);
1672}
1673
1674static int
1675dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1676{
1677	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1678	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1679
1680	if (agg->dtagd_nrecs == 0)
1681		return (DTRACE_AGGWALK_NEXT);
1682
1683	if (agg->dtagd_varid != id)
1684		return (DTRACE_AGGWALK_NEXT);
1685
1686	return (DTRACE_AGGWALK_DENORMALIZE);
1687}
1688
1689static int
1690dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1691{
1692	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1693	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1694
1695	if (agg->dtagd_nrecs == 0)
1696		return (DTRACE_AGGWALK_NEXT);
1697
1698	if (agg->dtagd_varid != id)
1699		return (DTRACE_AGGWALK_NEXT);
1700
1701	return (DTRACE_AGGWALK_CLEAR);
1702}
1703
1704typedef struct dt_trunc {
1705	dtrace_aggvarid_t dttd_id;
1706	uint64_t dttd_remaining;
1707} dt_trunc_t;
1708
1709static int
1710dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1711{
1712	dt_trunc_t *trunc = arg;
1713	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1714	dtrace_aggvarid_t id = trunc->dttd_id;
1715
1716	if (agg->dtagd_nrecs == 0)
1717		return (DTRACE_AGGWALK_NEXT);
1718
1719	if (agg->dtagd_varid != id)
1720		return (DTRACE_AGGWALK_NEXT);
1721
1722	if (trunc->dttd_remaining == 0)
1723		return (DTRACE_AGGWALK_REMOVE);
1724
1725	trunc->dttd_remaining--;
1726	return (DTRACE_AGGWALK_NEXT);
1727}
1728
1729static int
1730dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1731{
1732	dt_trunc_t trunc;
1733	caddr_t addr;
1734	int64_t remaining;
1735	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1736
1737	/*
1738	 * We (should) have two records:  the aggregation ID followed by the
1739	 * number of aggregation entries after which the aggregation is to be
1740	 * truncated.
1741	 */
1742	addr = base + rec->dtrd_offset;
1743
1744	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1745		return (dt_set_errno(dtp, EDT_BADTRUNC));
1746
1747	/* LINTED - alignment */
1748	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1749	rec++;
1750
1751	if (rec->dtrd_action != DTRACEACT_LIBACT)
1752		return (dt_set_errno(dtp, EDT_BADTRUNC));
1753
1754	if (rec->dtrd_arg != DT_ACT_TRUNC)
1755		return (dt_set_errno(dtp, EDT_BADTRUNC));
1756
1757	addr = base + rec->dtrd_offset;
1758
1759	switch (rec->dtrd_size) {
1760	case sizeof (uint64_t):
1761		/* LINTED - alignment */
1762		remaining = *((int64_t *)addr);
1763		break;
1764	case sizeof (uint32_t):
1765		/* LINTED - alignment */
1766		remaining = *((int32_t *)addr);
1767		break;
1768	case sizeof (uint16_t):
1769		/* LINTED - alignment */
1770		remaining = *((int16_t *)addr);
1771		break;
1772	case sizeof (uint8_t):
1773		remaining = *((int8_t *)addr);
1774		break;
1775	default:
1776		return (dt_set_errno(dtp, EDT_BADNORMAL));
1777	}
1778
1779	if (remaining < 0) {
1780		func = dtrace_aggregate_walk_valsorted;
1781		remaining = -remaining;
1782	} else {
1783		func = dtrace_aggregate_walk_valrevsorted;
1784	}
1785
1786	assert(remaining >= 0);
1787	trunc.dttd_remaining = remaining;
1788
1789	(void) func(dtp, dt_trunc_agg, &trunc);
1790
1791	return (0);
1792}
1793
1794static int
1795dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1796    caddr_t addr, size_t size, uint64_t normal)
1797{
1798	int err;
1799	dtrace_actkind_t act = rec->dtrd_action;
1800
1801	switch (act) {
1802	case DTRACEACT_STACK:
1803		return (dt_print_stack(dtp, fp, NULL, addr,
1804		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1805
1806	case DTRACEACT_USTACK:
1807	case DTRACEACT_JSTACK:
1808		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1809
1810	case DTRACEACT_USYM:
1811	case DTRACEACT_UADDR:
1812		return (dt_print_usym(dtp, fp, addr, act));
1813
1814	case DTRACEACT_UMOD:
1815		return (dt_print_umod(dtp, fp, NULL, addr));
1816
1817	case DTRACEACT_SYM:
1818		return (dt_print_sym(dtp, fp, NULL, addr));
1819
1820	case DTRACEACT_MOD:
1821		return (dt_print_mod(dtp, fp, NULL, addr));
1822
1823	case DTRACEAGG_QUANTIZE:
1824		return (dt_print_quantize(dtp, fp, addr, size, normal));
1825
1826	case DTRACEAGG_LQUANTIZE:
1827		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1828
1829	case DTRACEAGG_LLQUANTIZE:
1830		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1831
1832	case DTRACEAGG_AVG:
1833		return (dt_print_average(dtp, fp, addr, size, normal));
1834
1835	case DTRACEAGG_STDDEV:
1836		return (dt_print_stddev(dtp, fp, addr, size, normal));
1837
1838	default:
1839		break;
1840	}
1841
1842	switch (size) {
1843	case sizeof (uint64_t):
1844		err = dt_printf(dtp, fp, " %16lld",
1845		    /* LINTED - alignment */
1846		    (long long)*((uint64_t *)addr) / normal);
1847		break;
1848	case sizeof (uint32_t):
1849		/* LINTED - alignment */
1850		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1851		    (uint32_t)normal);
1852		break;
1853	case sizeof (uint16_t):
1854		/* LINTED - alignment */
1855		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1856		    (uint32_t)normal);
1857		break;
1858	case sizeof (uint8_t):
1859		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1860		    (uint32_t)normal);
1861		break;
1862	default:
1863		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1864		break;
1865	}
1866
1867	return (err);
1868}
1869
1870int
1871dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1872{
1873	int i, aggact = 0;
1874	dt_print_aggdata_t *pd = arg;
1875	const dtrace_aggdata_t *aggdata = aggsdata[0];
1876	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1877	FILE *fp = pd->dtpa_fp;
1878	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1879	dtrace_recdesc_t *rec;
1880	dtrace_actkind_t act;
1881	caddr_t addr;
1882	size_t size;
1883
1884	/*
1885	 * Iterate over each record description in the key, printing the traced
1886	 * data, skipping the first datum (the tuple member created by the
1887	 * compiler).
1888	 */
1889	for (i = 1; i < agg->dtagd_nrecs; i++) {
1890		rec = &agg->dtagd_rec[i];
1891		act = rec->dtrd_action;
1892		addr = aggdata->dtada_data + rec->dtrd_offset;
1893		size = rec->dtrd_size;
1894
1895		if (DTRACEACT_ISAGG(act)) {
1896			aggact = i;
1897			break;
1898		}
1899
1900		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1901			return (-1);
1902
1903		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1904		    DTRACE_BUFDATA_AGGKEY) < 0)
1905			return (-1);
1906	}
1907
1908	assert(aggact != 0);
1909
1910	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1911		uint64_t normal;
1912
1913		aggdata = aggsdata[i];
1914		agg = aggdata->dtada_desc;
1915		rec = &agg->dtagd_rec[aggact];
1916		act = rec->dtrd_action;
1917		addr = aggdata->dtada_data + rec->dtrd_offset;
1918		size = rec->dtrd_size;
1919
1920		assert(DTRACEACT_ISAGG(act));
1921		normal = aggdata->dtada_normal;
1922
1923		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1924			return (-1);
1925
1926		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1927		    DTRACE_BUFDATA_AGGVAL) < 0)
1928			return (-1);
1929
1930		if (!pd->dtpa_allunprint)
1931			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1932	}
1933
1934	if (dt_printf(dtp, fp, "\n") < 0)
1935		return (-1);
1936
1937	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1938	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1939		return (-1);
1940
1941	return (0);
1942}
1943
1944int
1945dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1946{
1947	dt_print_aggdata_t *pd = arg;
1948	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1949	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1950
1951	if (pd->dtpa_allunprint) {
1952		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1953			return (0);
1954	} else {
1955		/*
1956		 * If we're not printing all unprinted aggregations, then the
1957		 * aggregation variable ID denotes a specific aggregation
1958		 * variable that we should print -- skip any other aggregations
1959		 * that we encounter.
1960		 */
1961		if (agg->dtagd_nrecs == 0)
1962			return (0);
1963
1964		if (aggvarid != agg->dtagd_varid)
1965			return (0);
1966	}
1967
1968	return (dt_print_aggs(&aggdata, 1, arg));
1969}
1970
1971int
1972dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1973    const char *option, const char *value)
1974{
1975	int len, rval;
1976	char *msg;
1977	const char *errstr;
1978	dtrace_setoptdata_t optdata;
1979
1980	bzero(&optdata, sizeof (optdata));
1981	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1982
1983	if (dtrace_setopt(dtp, option, value) == 0) {
1984		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1985		optdata.dtsda_probe = data;
1986		optdata.dtsda_option = option;
1987		optdata.dtsda_handle = dtp;
1988
1989		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1990			return (rval);
1991
1992		return (0);
1993	}
1994
1995	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1996	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1997	msg = alloca(len);
1998
1999	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2000	    option, value, errstr);
2001
2002	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2003		return (0);
2004
2005	return (rval);
2006}
2007
2008static int
2009dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2010    dtrace_bufdesc_t *buf, boolean_t just_one,
2011    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2012{
2013	dtrace_epid_t id;
2014	size_t offs;
2015	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2016	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2017	int rval, i, n;
2018	uint64_t tracememsize = 0;
2019	dtrace_probedata_t data;
2020	uint64_t drops;
2021
2022	bzero(&data, sizeof (data));
2023	data.dtpda_handle = dtp;
2024	data.dtpda_cpu = cpu;
2025	data.dtpda_flow = dtp->dt_flow;
2026	data.dtpda_indent = dtp->dt_indent;
2027	data.dtpda_prefix = dtp->dt_prefix;
2028
2029	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2030		dtrace_eprobedesc_t *epd;
2031
2032		/*
2033		 * We're guaranteed to have an ID.
2034		 */
2035		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2036
2037		if (id == DTRACE_EPIDNONE) {
2038			/*
2039			 * This is filler to assure proper alignment of the
2040			 * next record; we simply ignore it.
2041			 */
2042			offs += sizeof (id);
2043			continue;
2044		}
2045
2046		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2047		    &data.dtpda_pdesc)) != 0)
2048			return (rval);
2049
2050		epd = data.dtpda_edesc;
2051		data.dtpda_data = buf->dtbd_data + offs;
2052
2053		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2054			rval = dt_handle(dtp, &data);
2055
2056			if (rval == DTRACE_CONSUME_NEXT)
2057				goto nextepid;
2058
2059			if (rval == DTRACE_CONSUME_ERROR)
2060				return (-1);
2061		}
2062
2063		if (flow)
2064			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2065			    buf, offs);
2066
2067		rval = (*efunc)(&data, arg);
2068
2069		if (flow) {
2070			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2071				data.dtpda_indent += 2;
2072		}
2073
2074		if (rval == DTRACE_CONSUME_NEXT)
2075			goto nextepid;
2076
2077		if (rval == DTRACE_CONSUME_ABORT)
2078			return (dt_set_errno(dtp, EDT_DIRABORT));
2079
2080		if (rval != DTRACE_CONSUME_THIS)
2081			return (dt_set_errno(dtp, EDT_BADRVAL));
2082
2083		for (i = 0; i < epd->dtepd_nrecs; i++) {
2084			caddr_t addr;
2085			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2086			dtrace_actkind_t act = rec->dtrd_action;
2087
2088			data.dtpda_data = buf->dtbd_data + offs +
2089			    rec->dtrd_offset;
2090			addr = data.dtpda_data;
2091
2092			if (act == DTRACEACT_LIBACT) {
2093				uint64_t arg = rec->dtrd_arg;
2094				dtrace_aggvarid_t id;
2095
2096				switch (arg) {
2097				case DT_ACT_CLEAR:
2098					/* LINTED - alignment */
2099					id = *((dtrace_aggvarid_t *)addr);
2100					(void) dtrace_aggregate_walk(dtp,
2101					    dt_clear_agg, &id);
2102					continue;
2103
2104				case DT_ACT_DENORMALIZE:
2105					/* LINTED - alignment */
2106					id = *((dtrace_aggvarid_t *)addr);
2107					(void) dtrace_aggregate_walk(dtp,
2108					    dt_denormalize_agg, &id);
2109					continue;
2110
2111				case DT_ACT_FTRUNCATE:
2112					if (fp == NULL)
2113						continue;
2114
2115					(void) fflush(fp);
2116					(void) ftruncate(fileno(fp), 0);
2117					(void) fseeko(fp, 0, SEEK_SET);
2118					continue;
2119
2120				case DT_ACT_NORMALIZE:
2121					if (i == epd->dtepd_nrecs - 1)
2122						return (dt_set_errno(dtp,
2123						    EDT_BADNORMAL));
2124
2125					if (dt_normalize(dtp,
2126					    buf->dtbd_data + offs, rec) != 0)
2127						return (-1);
2128
2129					i++;
2130					continue;
2131
2132				case DT_ACT_SETOPT: {
2133					uint64_t *opts = dtp->dt_options;
2134					dtrace_recdesc_t *valrec;
2135					uint32_t valsize;
2136					caddr_t val;
2137					int rv;
2138
2139					if (i == epd->dtepd_nrecs - 1) {
2140						return (dt_set_errno(dtp,
2141						    EDT_BADSETOPT));
2142					}
2143
2144					valrec = &epd->dtepd_rec[++i];
2145					valsize = valrec->dtrd_size;
2146
2147					if (valrec->dtrd_action != act ||
2148					    valrec->dtrd_arg != arg) {
2149						return (dt_set_errno(dtp,
2150						    EDT_BADSETOPT));
2151					}
2152
2153					if (valsize > sizeof (uint64_t)) {
2154						val = buf->dtbd_data + offs +
2155						    valrec->dtrd_offset;
2156					} else {
2157						val = "1";
2158					}
2159
2160					rv = dt_setopt(dtp, &data, addr, val);
2161
2162					if (rv != 0)
2163						return (-1);
2164
2165					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2166					    DTRACEOPT_UNSET);
2167					quiet = (opts[DTRACEOPT_QUIET] !=
2168					    DTRACEOPT_UNSET);
2169
2170					continue;
2171				}
2172
2173				case DT_ACT_TRUNC:
2174					if (i == epd->dtepd_nrecs - 1)
2175						return (dt_set_errno(dtp,
2176						    EDT_BADTRUNC));
2177
2178					if (dt_trunc(dtp,
2179					    buf->dtbd_data + offs, rec) != 0)
2180						return (-1);
2181
2182					i++;
2183					continue;
2184
2185				default:
2186					continue;
2187				}
2188			}
2189
2190			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2191			    rec->dtrd_size == sizeof (uint64_t)) {
2192			    	/* LINTED - alignment */
2193				tracememsize = *((unsigned long long *)addr);
2194				continue;
2195			}
2196
2197			rval = (*rfunc)(&data, rec, arg);
2198
2199			if (rval == DTRACE_CONSUME_NEXT)
2200				continue;
2201
2202			if (rval == DTRACE_CONSUME_ABORT)
2203				return (dt_set_errno(dtp, EDT_DIRABORT));
2204
2205			if (rval != DTRACE_CONSUME_THIS)
2206				return (dt_set_errno(dtp, EDT_BADRVAL));
2207
2208			if (act == DTRACEACT_STACK) {
2209				int depth = rec->dtrd_arg;
2210
2211				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2212				    rec->dtrd_size / depth) < 0)
2213					return (-1);
2214				goto nextrec;
2215			}
2216
2217			if (act == DTRACEACT_USTACK ||
2218			    act == DTRACEACT_JSTACK) {
2219				if (dt_print_ustack(dtp, fp, NULL,
2220				    addr, rec->dtrd_arg) < 0)
2221					return (-1);
2222				goto nextrec;
2223			}
2224
2225			if (act == DTRACEACT_SYM) {
2226				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2227					return (-1);
2228				goto nextrec;
2229			}
2230
2231			if (act == DTRACEACT_MOD) {
2232				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2233					return (-1);
2234				goto nextrec;
2235			}
2236
2237			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2238				if (dt_print_usym(dtp, fp, addr, act) < 0)
2239					return (-1);
2240				goto nextrec;
2241			}
2242
2243			if (act == DTRACEACT_UMOD) {
2244				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2245					return (-1);
2246				goto nextrec;
2247			}
2248
2249			if (act == DTRACEACT_PRINTM) {
2250				if (dt_print_memory(dtp, fp, addr) < 0)
2251					return (-1);
2252				goto nextrec;
2253			}
2254
2255			if (act == DTRACEACT_PRINTT) {
2256				if (dt_print_type(dtp, fp, addr) < 0)
2257					return (-1);
2258				goto nextrec;
2259			}
2260
2261			if (DTRACEACT_ISPRINTFLIKE(act)) {
2262				void *fmtdata;
2263				int (*func)(dtrace_hdl_t *, FILE *, void *,
2264				    const dtrace_probedata_t *,
2265				    const dtrace_recdesc_t *, uint_t,
2266				    const void *buf, size_t);
2267
2268				if ((fmtdata = dt_format_lookup(dtp,
2269				    rec->dtrd_format)) == NULL)
2270					goto nofmt;
2271
2272				switch (act) {
2273				case DTRACEACT_PRINTF:
2274					func = dtrace_fprintf;
2275					break;
2276				case DTRACEACT_PRINTA:
2277					func = dtrace_fprinta;
2278					break;
2279				case DTRACEACT_SYSTEM:
2280					func = dtrace_system;
2281					break;
2282				case DTRACEACT_FREOPEN:
2283					func = dtrace_freopen;
2284					break;
2285				}
2286
2287				n = (*func)(dtp, fp, fmtdata, &data,
2288				    rec, epd->dtepd_nrecs - i,
2289				    (uchar_t *)buf->dtbd_data + offs,
2290				    buf->dtbd_size - offs);
2291
2292				if (n < 0)
2293					return (-1); /* errno is set for us */
2294
2295				if (n > 0)
2296					i += n - 1;
2297				goto nextrec;
2298			}
2299
2300			/*
2301			 * If this is a DIF expression, and the record has a
2302			 * format set, this indicates we have a CTF type name
2303			 * associated with the data and we should try to print
2304			 * it out by type.
2305			 */
2306			if (act == DTRACEACT_DIFEXPR) {
2307				const char *strdata = dt_strdata_lookup(dtp,
2308				    rec->dtrd_format);
2309				if (strdata != NULL) {
2310					n = dtrace_print(dtp, fp, strdata,
2311					    addr, rec->dtrd_size);
2312
2313					/*
2314					 * dtrace_print() will return -1 on
2315					 * error, or return the number of bytes
2316					 * consumed.  It will return 0 if the
2317					 * type couldn't be determined, and we
2318					 * should fall through to the normal
2319					 * trace method.
2320					 */
2321					if (n < 0)
2322						return (-1);
2323
2324					if (n > 0)
2325						goto nextrec;
2326				}
2327			}
2328
2329nofmt:
2330			if (act == DTRACEACT_PRINTA) {
2331				dt_print_aggdata_t pd;
2332				dtrace_aggvarid_t *aggvars;
2333				int j, naggvars = 0;
2334				size_t size = ((epd->dtepd_nrecs - i) *
2335				    sizeof (dtrace_aggvarid_t));
2336
2337				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2338					return (-1);
2339
2340				/*
2341				 * This might be a printa() with multiple
2342				 * aggregation variables.  We need to scan
2343				 * forward through the records until we find
2344				 * a record from a different statement.
2345				 */
2346				for (j = i; j < epd->dtepd_nrecs; j++) {
2347					dtrace_recdesc_t *nrec;
2348					caddr_t naddr;
2349
2350					nrec = &epd->dtepd_rec[j];
2351
2352					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2353						break;
2354
2355					if (nrec->dtrd_action != act) {
2356						return (dt_set_errno(dtp,
2357						    EDT_BADAGG));
2358					}
2359
2360					naddr = buf->dtbd_data + offs +
2361					    nrec->dtrd_offset;
2362
2363					aggvars[naggvars++] =
2364					    /* LINTED - alignment */
2365					    *((dtrace_aggvarid_t *)naddr);
2366				}
2367
2368				i = j - 1;
2369				bzero(&pd, sizeof (pd));
2370				pd.dtpa_dtp = dtp;
2371				pd.dtpa_fp = fp;
2372
2373				assert(naggvars >= 1);
2374
2375				if (naggvars == 1) {
2376					pd.dtpa_id = aggvars[0];
2377					dt_free(dtp, aggvars);
2378
2379					if (dt_printf(dtp, fp, "\n") < 0 ||
2380					    dtrace_aggregate_walk_sorted(dtp,
2381					    dt_print_agg, &pd) < 0)
2382						return (-1);
2383					goto nextrec;
2384				}
2385
2386				if (dt_printf(dtp, fp, "\n") < 0 ||
2387				    dtrace_aggregate_walk_joined(dtp, aggvars,
2388				    naggvars, dt_print_aggs, &pd) < 0) {
2389					dt_free(dtp, aggvars);
2390					return (-1);
2391				}
2392
2393				dt_free(dtp, aggvars);
2394				goto nextrec;
2395			}
2396
2397			if (act == DTRACEACT_TRACEMEM) {
2398				if (tracememsize == 0 ||
2399				    tracememsize > rec->dtrd_size) {
2400					tracememsize = rec->dtrd_size;
2401				}
2402
2403				n = dt_print_bytes(dtp, fp, addr,
2404				    tracememsize, 33, quiet, 1);
2405
2406				tracememsize = 0;
2407
2408				if (n < 0)
2409					return (-1);
2410
2411				goto nextrec;
2412			}
2413
2414			switch (rec->dtrd_size) {
2415			case sizeof (uint64_t):
2416				n = dt_printf(dtp, fp,
2417				    quiet ? "%lld" : " %16lld",
2418				    /* LINTED - alignment */
2419				    *((unsigned long long *)addr));
2420				break;
2421			case sizeof (uint32_t):
2422				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2423				    /* LINTED - alignment */
2424				    *((uint32_t *)addr));
2425				break;
2426			case sizeof (uint16_t):
2427				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2428				    /* LINTED - alignment */
2429				    *((uint16_t *)addr));
2430				break;
2431			case sizeof (uint8_t):
2432				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2433				    *((uint8_t *)addr));
2434				break;
2435			default:
2436				n = dt_print_bytes(dtp, fp, addr,
2437				    rec->dtrd_size, 33, quiet, 0);
2438				break;
2439			}
2440
2441			if (n < 0)
2442				return (-1); /* errno is set for us */
2443
2444nextrec:
2445			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2446				return (-1); /* errno is set for us */
2447		}
2448
2449		/*
2450		 * Call the record callback with a NULL record to indicate
2451		 * that we're done processing this EPID.
2452		 */
2453		rval = (*rfunc)(&data, NULL, arg);
2454nextepid:
2455		offs += epd->dtepd_size;
2456		dtp->dt_last_epid = id;
2457		if (just_one) {
2458			buf->dtbd_oldest = offs;
2459			break;
2460		}
2461	}
2462
2463	dtp->dt_flow = data.dtpda_flow;
2464	dtp->dt_indent = data.dtpda_indent;
2465	dtp->dt_prefix = data.dtpda_prefix;
2466
2467	if ((drops = buf->dtbd_drops) == 0)
2468		return (0);
2469
2470	/*
2471	 * Explicitly zero the drops to prevent us from processing them again.
2472	 */
2473	buf->dtbd_drops = 0;
2474
2475	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2476}
2477
2478/*
2479 * Reduce memory usage by shrinking the buffer if it's no more than half full.
2480 * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2481 * only 4-byte aligned.
2482 */
2483static void
2484dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2485{
2486	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2487	if (used < cursize / 2) {
2488		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2489		char *newdata = dt_alloc(dtp, used + misalign);
2490		if (newdata == NULL)
2491			return;
2492		bzero(newdata, misalign);
2493		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2494		    newdata + misalign, used);
2495		dt_free(dtp, buf->dtbd_data);
2496		buf->dtbd_oldest = misalign;
2497		buf->dtbd_size = used + misalign;
2498		buf->dtbd_data = newdata;
2499	}
2500}
2501
2502/*
2503 * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2504 * so that it is.  Note, we need to preserve the alignment of the data at
2505 * dtbd_oldest, which is only 4-byte aligned.
2506 */
2507static int
2508dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2509{
2510	int misalign;
2511	char *newdata, *ndp;
2512
2513	if (buf->dtbd_oldest == 0)
2514		return (0);
2515
2516	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2517	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2518
2519	if (newdata == NULL)
2520		return (-1);
2521
2522	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2523
2524	bzero(ndp, misalign);
2525	ndp += misalign;
2526
2527	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2528	    buf->dtbd_size - buf->dtbd_oldest);
2529	ndp += buf->dtbd_size - buf->dtbd_oldest;
2530
2531	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2532
2533	dt_free(dtp, buf->dtbd_data);
2534	buf->dtbd_oldest = 0;
2535	buf->dtbd_data = newdata;
2536	buf->dtbd_size += misalign;
2537
2538	return (0);
2539}
2540
2541static void
2542dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2543{
2544	dt_free(dtp, buf->dtbd_data);
2545	dt_free(dtp, buf);
2546}
2547
2548/*
2549 * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2550 * data, or NULL if there is no data for this CPU.
2551 * Returns -1 on failure and sets dt_errno.
2552 */
2553static int
2554dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2555{
2556	dtrace_optval_t size;
2557	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2558	int error;
2559
2560	if (buf == NULL)
2561		return (-1);
2562
2563	(void) dtrace_getopt(dtp, "bufsize", &size);
2564	buf->dtbd_data = dt_alloc(dtp, size);
2565	if (buf->dtbd_data == NULL) {
2566		dt_free(dtp, buf);
2567		return (-1);
2568	}
2569	buf->dtbd_size = size;
2570	buf->dtbd_cpu = cpu;
2571
2572#if defined(sun)
2573	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2574#else
2575	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2576#endif
2577		dt_put_buf(dtp, buf);
2578		/*
2579		 * If we failed with ENOENT, it may be because the
2580		 * CPU was unconfigured -- this is okay.  Any other
2581		 * error, however, is unexpected.
2582		 */
2583		if (errno == ENOENT) {
2584			*bufp = NULL;
2585			return (0);
2586		}
2587
2588		return (dt_set_errno(dtp, errno));
2589	}
2590
2591	error = dt_unring_buf(dtp, buf);
2592	if (error != 0) {
2593		dt_put_buf(dtp, buf);
2594		return (error);
2595	}
2596	dt_realloc_buf(dtp, buf, size);
2597
2598	*bufp = buf;
2599	return (0);
2600}
2601
2602typedef struct dt_begin {
2603	dtrace_consume_probe_f *dtbgn_probefunc;
2604	dtrace_consume_rec_f *dtbgn_recfunc;
2605	void *dtbgn_arg;
2606	dtrace_handle_err_f *dtbgn_errhdlr;
2607	void *dtbgn_errarg;
2608	int dtbgn_beginonly;
2609} dt_begin_t;
2610
2611static int
2612dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2613{
2614	dt_begin_t *begin = arg;
2615	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2616
2617	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2618	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2619
2620	if (begin->dtbgn_beginonly) {
2621		if (!(r1 && r2))
2622			return (DTRACE_CONSUME_NEXT);
2623	} else {
2624		if (r1 && r2)
2625			return (DTRACE_CONSUME_NEXT);
2626	}
2627
2628	/*
2629	 * We have a record that we're interested in.  Now call the underlying
2630	 * probe function...
2631	 */
2632	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2633}
2634
2635static int
2636dt_consume_begin_record(const dtrace_probedata_t *data,
2637    const dtrace_recdesc_t *rec, void *arg)
2638{
2639	dt_begin_t *begin = arg;
2640
2641	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2642}
2643
2644static int
2645dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2646{
2647	dt_begin_t *begin = (dt_begin_t *)arg;
2648	dtrace_probedesc_t *pd = data->dteda_pdesc;
2649
2650	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2651	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2652
2653	if (begin->dtbgn_beginonly) {
2654		if (!(r1 && r2))
2655			return (DTRACE_HANDLE_OK);
2656	} else {
2657		if (r1 && r2)
2658			return (DTRACE_HANDLE_OK);
2659	}
2660
2661	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2662}
2663
2664static int
2665dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2666    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2667{
2668	/*
2669	 * There's this idea that the BEGIN probe should be processed before
2670	 * everything else, and that the END probe should be processed after
2671	 * anything else.  In the common case, this is pretty easy to deal
2672	 * with.  However, a situation may arise where the BEGIN enabling and
2673	 * END enabling are on the same CPU, and some enabling in the middle
2674	 * occurred on a different CPU.  To deal with this (blech!) we need to
2675	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2676	 * then set it aside.  We will then process every other CPU, and then
2677	 * we'll return to the BEGIN CPU and process the rest of the data
2678	 * (which will inevitably include the END probe, if any).  Making this
2679	 * even more complicated (!) is the library's ERROR enabling.  Because
2680	 * this enabling is processed before we even get into the consume call
2681	 * back, any ERROR firing would result in the library's ERROR enabling
2682	 * being processed twice -- once in our first pass (for BEGIN probes),
2683	 * and again in our second pass (for everything but BEGIN probes).  To
2684	 * deal with this, we interpose on the ERROR handler to assure that we
2685	 * only process ERROR enablings induced by BEGIN enablings in the
2686	 * first pass, and that we only process ERROR enablings _not_ induced
2687	 * by BEGIN enablings in the second pass.
2688	 */
2689
2690	dt_begin_t begin;
2691	processorid_t cpu = dtp->dt_beganon;
2692	int rval, i;
2693	static int max_ncpus;
2694	dtrace_bufdesc_t *buf;
2695
2696	dtp->dt_beganon = -1;
2697
2698	if (dt_get_buf(dtp, cpu, &buf) != 0)
2699		return (-1);
2700	if (buf == NULL)
2701		return (0);
2702
2703	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2704		/*
2705		 * This is the simple case.  We're either not stopped, or if
2706		 * we are, we actually processed any END probes on another
2707		 * CPU.  We can simply consume this buffer and return.
2708		 */
2709		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2710		    pf, rf, arg);
2711		dt_put_buf(dtp, buf);
2712		return (rval);
2713	}
2714
2715	begin.dtbgn_probefunc = pf;
2716	begin.dtbgn_recfunc = rf;
2717	begin.dtbgn_arg = arg;
2718	begin.dtbgn_beginonly = 1;
2719
2720	/*
2721	 * We need to interpose on the ERROR handler to be sure that we
2722	 * only process ERRORs induced by BEGIN.
2723	 */
2724	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2725	begin.dtbgn_errarg = dtp->dt_errarg;
2726	dtp->dt_errhdlr = dt_consume_begin_error;
2727	dtp->dt_errarg = &begin;
2728
2729	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2730	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2731
2732	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2733	dtp->dt_errarg = begin.dtbgn_errarg;
2734
2735	if (rval != 0) {
2736		dt_put_buf(dtp, buf);
2737		return (rval);
2738	}
2739
2740	if (max_ncpus == 0)
2741		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2742
2743	for (i = 0; i < max_ncpus; i++) {
2744		dtrace_bufdesc_t *nbuf;
2745		if (i == cpu)
2746			continue;
2747
2748		if (dt_get_buf(dtp, i, &nbuf) != 0) {
2749			dt_put_buf(dtp, buf);
2750			return (-1);
2751		}
2752		if (nbuf == NULL)
2753			continue;
2754
2755		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2756		    pf, rf, arg);
2757		dt_put_buf(dtp, nbuf);
2758		if (rval != 0) {
2759			dt_put_buf(dtp, buf);
2760			return (rval);
2761		}
2762	}
2763
2764	/*
2765	 * Okay -- we're done with the other buffers.  Now we want to
2766	 * reconsume the first buffer -- but this time we're looking for
2767	 * everything _but_ BEGIN.  And of course, in order to only consume
2768	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2769	 * ERROR interposition function...
2770	 */
2771	begin.dtbgn_beginonly = 0;
2772
2773	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2774	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2775	dtp->dt_errhdlr = dt_consume_begin_error;
2776	dtp->dt_errarg = &begin;
2777
2778	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2779	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2780
2781	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2782	dtp->dt_errarg = begin.dtbgn_errarg;
2783
2784	return (rval);
2785}
2786
2787/* ARGSUSED */
2788static uint64_t
2789dt_buf_oldest(void *elem, void *arg)
2790{
2791	dtrace_bufdesc_t *buf = elem;
2792	size_t offs = buf->dtbd_oldest;
2793
2794	while (offs < buf->dtbd_size) {
2795		dtrace_rechdr_t *dtrh =
2796		    /* LINTED - alignment */
2797		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2798		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2799			offs += sizeof (dtrace_epid_t);
2800		} else {
2801			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2802		}
2803	}
2804
2805	/* There are no records left; use the time the buffer was retrieved. */
2806	return (buf->dtbd_timestamp);
2807}
2808
2809int
2810dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2811    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2812{
2813	dtrace_optval_t size;
2814	static int max_ncpus;
2815	int i, rval;
2816	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2817	hrtime_t now = gethrtime();
2818
2819	if (dtp->dt_lastswitch != 0) {
2820		if (now - dtp->dt_lastswitch < interval)
2821			return (0);
2822
2823		dtp->dt_lastswitch += interval;
2824	} else {
2825		dtp->dt_lastswitch = now;
2826	}
2827
2828	if (!dtp->dt_active)
2829		return (dt_set_errno(dtp, EINVAL));
2830
2831	if (max_ncpus == 0)
2832		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2833
2834	if (pf == NULL)
2835		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2836
2837	if (rf == NULL)
2838		rf = (dtrace_consume_rec_f *)dt_nullrec;
2839
2840	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2841		/*
2842		 * The output will not be in the order it was traced.  Rather,
2843		 * we will consume all of the data from each CPU's buffer in
2844		 * turn.  We apply special handling for the records from BEGIN
2845		 * and END probes so that they are consumed first and last,
2846		 * respectively.
2847		 *
2848		 * If we have just begun, we want to first process the CPU that
2849		 * executed the BEGIN probe (if any).
2850		 */
2851		if (dtp->dt_active && dtp->dt_beganon != -1 &&
2852		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2853			return (rval);
2854
2855		for (i = 0; i < max_ncpus; i++) {
2856			dtrace_bufdesc_t *buf;
2857
2858			/*
2859			 * If we have stopped, we want to process the CPU on
2860			 * which the END probe was processed only _after_ we
2861			 * have processed everything else.
2862			 */
2863			if (dtp->dt_stopped && (i == dtp->dt_endedon))
2864				continue;
2865
2866			if (dt_get_buf(dtp, i, &buf) != 0)
2867				return (-1);
2868			if (buf == NULL)
2869				continue;
2870
2871			dtp->dt_flow = 0;
2872			dtp->dt_indent = 0;
2873			dtp->dt_prefix = NULL;
2874			rval = dt_consume_cpu(dtp, fp, i,
2875			    buf, B_FALSE, pf, rf, arg);
2876			dt_put_buf(dtp, buf);
2877			if (rval != 0)
2878				return (rval);
2879		}
2880		if (dtp->dt_stopped) {
2881			dtrace_bufdesc_t *buf;
2882
2883			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2884				return (-1);
2885			if (buf == NULL)
2886				return (0);
2887
2888			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2889			    buf, B_FALSE, pf, rf, arg);
2890			dt_put_buf(dtp, buf);
2891			return (rval);
2892		}
2893	} else {
2894		/*
2895		 * The output will be in the order it was traced (or for
2896		 * speculations, when it was committed).  We retrieve a buffer
2897		 * from each CPU and put it into a priority queue, which sorts
2898		 * based on the first entry in the buffer.  This is sufficient
2899		 * because entries within a buffer are already sorted.
2900		 *
2901		 * We then consume records one at a time, always consuming the
2902		 * oldest record, as determined by the priority queue.  When
2903		 * we reach the end of the time covered by these buffers,
2904		 * we need to stop and retrieve more records on the next pass.
2905		 * The kernel tells us the time covered by each buffer, in
2906		 * dtbd_timestamp.  The first buffer's timestamp tells us the
2907		 * time covered by all buffers, as subsequently retrieved
2908		 * buffers will cover to a more recent time.
2909		 */
2910
2911		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
2912		uint64_t first_timestamp = 0;
2913		uint_t cookie = 0;
2914		dtrace_bufdesc_t *buf;
2915
2916		bzero(drops, max_ncpus * sizeof (uint64_t));
2917
2918		if (dtp->dt_bufq == NULL) {
2919			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
2920			    dt_buf_oldest, NULL);
2921			if (dtp->dt_bufq == NULL) /* ENOMEM */
2922				return (-1);
2923		}
2924
2925		/* Retrieve data from each CPU. */
2926		(void) dtrace_getopt(dtp, "bufsize", &size);
2927		for (i = 0; i < max_ncpus; i++) {
2928			dtrace_bufdesc_t *buf;
2929
2930			if (dt_get_buf(dtp, i, &buf) != 0)
2931				return (-1);
2932			if (buf != NULL) {
2933				if (first_timestamp == 0)
2934					first_timestamp = buf->dtbd_timestamp;
2935				assert(buf->dtbd_timestamp >= first_timestamp);
2936
2937				dt_pq_insert(dtp->dt_bufq, buf);
2938				drops[i] = buf->dtbd_drops;
2939				buf->dtbd_drops = 0;
2940			}
2941		}
2942
2943		/* Consume records. */
2944		for (;;) {
2945			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
2946			uint64_t timestamp;
2947
2948			if (buf == NULL)
2949				break;
2950
2951			timestamp = dt_buf_oldest(buf, dtp);
2952			assert(timestamp >= dtp->dt_last_timestamp);
2953			dtp->dt_last_timestamp = timestamp;
2954
2955			if (timestamp == buf->dtbd_timestamp) {
2956				/*
2957				 * We've reached the end of the time covered
2958				 * by this buffer.  If this is the oldest
2959				 * buffer, we must do another pass
2960				 * to retrieve more data.
2961				 */
2962				dt_put_buf(dtp, buf);
2963				if (timestamp == first_timestamp &&
2964				    !dtp->dt_stopped)
2965					break;
2966				continue;
2967			}
2968
2969			if ((rval = dt_consume_cpu(dtp, fp,
2970			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
2971				return (rval);
2972			dt_pq_insert(dtp->dt_bufq, buf);
2973		}
2974
2975		/* Consume drops. */
2976		for (i = 0; i < max_ncpus; i++) {
2977			if (drops[i] != 0) {
2978				int error = dt_handle_cpudrop(dtp, i,
2979				    DTRACEDROP_PRINCIPAL, drops[i]);
2980				if (error != 0)
2981					return (error);
2982			}
2983		}
2984
2985		/*
2986		 * Reduce memory usage by re-allocating smaller buffers
2987		 * for the "remnants".
2988		 */
2989		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
2990			dt_realloc_buf(dtp, buf, buf->dtbd_size);
2991	}
2992
2993	return (0);
2994}
2995