1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23/*
24 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25 * Use is subject to license terms.
26 */
27
28#pragma ident	"%Z%%M%	%I%	%E% SMI"
29
30#include <ctf_impl.h>
31#include <sys/mman.h>
32#include <sys/zmod.h>
33
34static const ctf_dmodel_t _libctf_models[] = {
35	{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
36	{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
37	{ NULL, 0, 0, 0, 0, 0, 0 }
38};
39
40const char _CTF_SECTION[] = ".SUNW_ctf";
41const char _CTF_NULLSTR[] = "";
42
43int _libctf_version = CTF_VERSION;	/* library client version */
44int _libctf_debug = 0;			/* debugging messages enabled */
45
46static ushort_t
47get_kind_v1(ushort_t info)
48{
49	return (CTF_INFO_KIND_V1(info));
50}
51
52static ushort_t
53get_kind_v2(ushort_t info)
54{
55	return (CTF_INFO_KIND(info));
56}
57
58static ushort_t
59get_root_v1(ushort_t info)
60{
61	return (CTF_INFO_ISROOT_V1(info));
62}
63
64static ushort_t
65get_root_v2(ushort_t info)
66{
67	return (CTF_INFO_ISROOT(info));
68}
69
70static ushort_t
71get_vlen_v1(ushort_t info)
72{
73	return (CTF_INFO_VLEN_V1(info));
74}
75
76static ushort_t
77get_vlen_v2(ushort_t info)
78{
79	return (CTF_INFO_VLEN(info));
80}
81
82static const ctf_fileops_t ctf_fileops[] = {
83	{ NULL, NULL },
84	{ get_kind_v1, get_root_v1, get_vlen_v1 },
85	{ get_kind_v2, get_root_v2, get_vlen_v2 },
86};
87
88/*
89 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
90 */
91static Elf64_Sym *
92sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
93{
94	dst->st_name = src->st_name;
95	dst->st_value = src->st_value;
96	dst->st_size = src->st_size;
97	dst->st_info = src->st_info;
98	dst->st_other = src->st_other;
99	dst->st_shndx = src->st_shndx;
100
101	return (dst);
102}
103
104/*
105 * Initialize the symtab translation table by filling each entry with the
106 * offset of the CTF type or function data corresponding to each STT_FUNC or
107 * STT_OBJECT entry in the symbol table.
108 */
109static int
110init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
111    const ctf_sect_t *sp, const ctf_sect_t *strp)
112{
113	const uchar_t *symp = sp->cts_data;
114	uint_t *xp = fp->ctf_sxlate;
115	uint_t *xend = xp + fp->ctf_nsyms;
116
117	uint_t objtoff = hp->cth_objtoff;
118	uint_t funcoff = hp->cth_funcoff;
119
120	ushort_t info, vlen;
121	Elf64_Sym sym, *gsp;
122	const char *name;
123
124	/*
125	 * The CTF data object and function type sections are ordered to match
126	 * the relative order of the respective symbol types in the symtab.
127	 * If no type information is available for a symbol table entry, a
128	 * pad is inserted in the CTF section.  As a further optimization,
129	 * anonymous or undefined symbols are omitted from the CTF data.
130	 */
131	for (; xp < xend; xp++, symp += sp->cts_entsize) {
132		if (sp->cts_entsize == sizeof (Elf32_Sym))
133			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
134		else
135			gsp = (Elf64_Sym *)(uintptr_t)symp;
136
137		if (gsp->st_name < strp->cts_size)
138			name = (const char *)strp->cts_data + gsp->st_name;
139		else
140			name = _CTF_NULLSTR;
141
142		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
143		    strcmp(name, "_START_") == 0 ||
144		    strcmp(name, "_END_") == 0) {
145			*xp = -1u;
146			continue;
147		}
148
149		switch (ELF64_ST_TYPE(gsp->st_info)) {
150		case STT_OBJECT:
151			if (objtoff >= hp->cth_funcoff ||
152			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
153				*xp = -1u;
154				break;
155			}
156
157			*xp = objtoff;
158			objtoff += sizeof (ushort_t);
159			break;
160
161		case STT_FUNC:
162			if (funcoff >= hp->cth_typeoff) {
163				*xp = -1u;
164				break;
165			}
166
167			*xp = funcoff;
168
169			info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
170			vlen = LCTF_INFO_VLEN(fp, info);
171
172			/*
173			 * If we encounter a zero pad at the end, just skip it.
174			 * Otherwise skip over the function and its return type
175			 * (+2) and the argument list (vlen).
176			 */
177			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
178			    vlen == 0)
179				funcoff += sizeof (ushort_t); /* skip pad */
180			else
181				funcoff += sizeof (ushort_t) * (vlen + 2);
182			break;
183
184		default:
185			*xp = -1u;
186			break;
187		}
188	}
189
190	ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
191	return (0);
192}
193
194/*
195 * Initialize the type ID translation table with the byte offset of each type,
196 * and initialize the hash tables of each named type.
197 */
198static int
199init_types(ctf_file_t *fp, const ctf_header_t *cth)
200{
201	/* LINTED - pointer alignment */
202	const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
203	/* LINTED - pointer alignment */
204	const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
205
206	ulong_t pop[CTF_K_MAX + 1] = { 0 };
207	const ctf_type_t *tp;
208	ctf_hash_t *hp;
209	ushort_t id, dst;
210	uint_t *xp;
211
212	/*
213	 * We initially determine whether the container is a child or a parent
214	 * based on the value of cth_parname.  To support containers that pre-
215	 * date cth_parname, we also scan the types themselves for references
216	 * to values in the range reserved for child types in our first pass.
217	 */
218	int child = cth->cth_parname != 0;
219	int nlstructs = 0, nlunions = 0;
220	int err;
221
222	/*
223	 * We make two passes through the entire type section.  In this first
224	 * pass, we count the number of each type and the total number of types.
225	 */
226	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
227		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
228		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
229		ssize_t size, increment;
230
231		size_t vbytes;
232		uint_t n;
233
234		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
235
236		switch (kind) {
237		case CTF_K_INTEGER:
238		case CTF_K_FLOAT:
239			vbytes = sizeof (uint_t);
240			break;
241		case CTF_K_ARRAY:
242			vbytes = sizeof (ctf_array_t);
243			break;
244		case CTF_K_FUNCTION:
245			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
246			break;
247		case CTF_K_STRUCT:
248		case CTF_K_UNION:
249			if (fp->ctf_version == CTF_VERSION_1 ||
250			    size < CTF_LSTRUCT_THRESH) {
251				ctf_member_t *mp = (ctf_member_t *)
252				    ((uintptr_t)tp + increment);
253
254				vbytes = sizeof (ctf_member_t) * vlen;
255				for (n = vlen; n != 0; n--, mp++)
256					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
257			} else {
258				ctf_lmember_t *lmp = (ctf_lmember_t *)
259				    ((uintptr_t)tp + increment);
260
261				vbytes = sizeof (ctf_lmember_t) * vlen;
262				for (n = vlen; n != 0; n--, lmp++)
263					child |=
264					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
265			}
266			break;
267		case CTF_K_ENUM:
268			vbytes = sizeof (ctf_enum_t) * vlen;
269			break;
270		case CTF_K_FORWARD:
271			/*
272			 * For forward declarations, ctt_type is the CTF_K_*
273			 * kind for the tag, so bump that population count too.
274			 * If ctt_type is unknown, treat the tag as a struct.
275			 */
276			if (tp->ctt_type == CTF_K_UNKNOWN ||
277			    tp->ctt_type >= CTF_K_MAX)
278				pop[CTF_K_STRUCT]++;
279			else
280				pop[tp->ctt_type]++;
281			/*FALLTHRU*/
282		case CTF_K_UNKNOWN:
283			vbytes = 0;
284			break;
285		case CTF_K_POINTER:
286		case CTF_K_TYPEDEF:
287		case CTF_K_VOLATILE:
288		case CTF_K_CONST:
289		case CTF_K_RESTRICT:
290			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
291			vbytes = 0;
292			break;
293		default:
294			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
295			return (ECTF_CORRUPT);
296		}
297		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
298		pop[kind]++;
299	}
300
301	/*
302	 * If we detected a reference to a child type ID, then we know this
303	 * container is a child and may have a parent's types imported later.
304	 */
305	if (child) {
306		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
307		fp->ctf_flags |= LCTF_CHILD;
308	} else
309		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
310
311	/*
312	 * Now that we've counted up the number of each type, we can allocate
313	 * the hash tables, type translation table, and pointer table.
314	 */
315	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
316		return (err);
317
318	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
319		return (err);
320
321	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
322		return (err);
323
324	if ((err = ctf_hash_create(&fp->ctf_names,
325	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
326	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
327	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
328		return (err);
329
330	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
331	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
332
333	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
334		return (EAGAIN); /* memory allocation failed */
335
336	xp = fp->ctf_txlate;
337	*xp++ = 0; /* type id 0 is used as a sentinel value */
338
339	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
340	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
341
342	/*
343	 * In the second pass through the types, we fill in each entry of the
344	 * type and pointer tables and add names to the appropriate hashes.
345	 */
346	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
347		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
348		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
349		ssize_t size, increment;
350
351		const char *name;
352		size_t vbytes;
353		ctf_helem_t *hep;
354		ctf_encoding_t cte;
355
356		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
357		name = ctf_strptr(fp, tp->ctt_name);
358
359		switch (kind) {
360		case CTF_K_INTEGER:
361		case CTF_K_FLOAT:
362			/*
363			 * Only insert a new integer base type definition if
364			 * this type name has not been defined yet.  We re-use
365			 * the names with different encodings for bit-fields.
366			 */
367			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
368			    name, strlen(name))) == NULL) {
369				err = ctf_hash_insert(&fp->ctf_names, fp,
370				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
371				if (err != 0 && err != ECTF_STRTAB)
372					return (err);
373			} else if (ctf_type_encoding(fp, hep->h_type,
374			    &cte) == 0 && cte.cte_bits == 0) {
375				/*
376				 * Work-around SOS8 stabs bug: replace existing
377				 * intrinsic w/ same name if it was zero bits.
378				 */
379				hep->h_type = CTF_INDEX_TO_TYPE(id, child);
380			}
381			vbytes = sizeof (uint_t);
382			break;
383
384		case CTF_K_ARRAY:
385			vbytes = sizeof (ctf_array_t);
386			break;
387
388		case CTF_K_FUNCTION:
389			err = ctf_hash_insert(&fp->ctf_names, fp,
390			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
391			if (err != 0 && err != ECTF_STRTAB)
392				return (err);
393			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
394			break;
395
396		case CTF_K_STRUCT:
397			err = ctf_hash_define(&fp->ctf_structs, fp,
398			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
399
400			if (err != 0 && err != ECTF_STRTAB)
401				return (err);
402
403			if (fp->ctf_version == CTF_VERSION_1 ||
404			    size < CTF_LSTRUCT_THRESH)
405				vbytes = sizeof (ctf_member_t) * vlen;
406			else {
407				vbytes = sizeof (ctf_lmember_t) * vlen;
408				nlstructs++;
409			}
410			break;
411
412		case CTF_K_UNION:
413			err = ctf_hash_define(&fp->ctf_unions, fp,
414			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
415
416			if (err != 0 && err != ECTF_STRTAB)
417				return (err);
418
419			if (fp->ctf_version == CTF_VERSION_1 ||
420			    size < CTF_LSTRUCT_THRESH)
421				vbytes = sizeof (ctf_member_t) * vlen;
422			else {
423				vbytes = sizeof (ctf_lmember_t) * vlen;
424				nlunions++;
425			}
426			break;
427
428		case CTF_K_ENUM:
429			err = ctf_hash_define(&fp->ctf_enums, fp,
430			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
431
432			if (err != 0 && err != ECTF_STRTAB)
433				return (err);
434
435			vbytes = sizeof (ctf_enum_t) * vlen;
436			break;
437
438		case CTF_K_TYPEDEF:
439			err = ctf_hash_insert(&fp->ctf_names, fp,
440			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
441			if (err != 0 && err != ECTF_STRTAB)
442				return (err);
443			vbytes = 0;
444			break;
445
446		case CTF_K_FORWARD:
447			/*
448			 * Only insert forward tags into the given hash if the
449			 * type or tag name is not already present.
450			 */
451			switch (tp->ctt_type) {
452			case CTF_K_STRUCT:
453				hp = &fp->ctf_structs;
454				break;
455			case CTF_K_UNION:
456				hp = &fp->ctf_unions;
457				break;
458			case CTF_K_ENUM:
459				hp = &fp->ctf_enums;
460				break;
461			default:
462				hp = &fp->ctf_structs;
463			}
464
465			if (ctf_hash_lookup(hp, fp,
466			    name, strlen(name)) == NULL) {
467				err = ctf_hash_insert(hp, fp,
468				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
469				if (err != 0 && err != ECTF_STRTAB)
470					return (err);
471			}
472			vbytes = 0;
473			break;
474
475		case CTF_K_POINTER:
476			/*
477			 * If the type referenced by the pointer is in this CTF
478			 * container, then store the index of the pointer type
479			 * in fp->ctf_ptrtab[ index of referenced type ].
480			 */
481			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
482			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
483				fp->ctf_ptrtab[
484				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
485			/*FALLTHRU*/
486
487		case CTF_K_VOLATILE:
488		case CTF_K_CONST:
489		case CTF_K_RESTRICT:
490			err = ctf_hash_insert(&fp->ctf_names, fp,
491			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
492			if (err != 0 && err != ECTF_STRTAB)
493				return (err);
494			/*FALLTHRU*/
495
496		default:
497			vbytes = 0;
498			break;
499		}
500
501		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
502		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
503	}
504
505	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
506	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
507	ctf_dprintf("%u struct names hashed (%d long)\n",
508	    ctf_hash_size(&fp->ctf_structs), nlstructs);
509	ctf_dprintf("%u union names hashed (%d long)\n",
510	    ctf_hash_size(&fp->ctf_unions), nlunions);
511	ctf_dprintf("%u base type names hashed\n",
512	    ctf_hash_size(&fp->ctf_names));
513
514	/*
515	 * Make an additional pass through the pointer table to find pointers
516	 * that point to anonymous typedef nodes.  If we find one, modify the
517	 * pointer table so that the pointer is also known to point to the
518	 * node that is referenced by the anonymous typedef node.
519	 */
520	for (id = 1; id <= fp->ctf_typemax; id++) {
521		if ((dst = fp->ctf_ptrtab[id]) != 0) {
522			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
523
524			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
525			    strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
526			    CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
527			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
528				fp->ctf_ptrtab[
529				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
530		}
531	}
532
533	return (0);
534}
535
536/*
537 * Decode the specified CTF buffer and optional symbol table and create a new
538 * CTF container representing the symbolic debugging information.  This code
539 * can be used directly by the debugger, or it can be used as the engine for
540 * ctf_fdopen() or ctf_open(), below.
541 */
542ctf_file_t *
543ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
544    const ctf_sect_t *strsect, int *errp)
545{
546	const ctf_preamble_t *pp;
547	ctf_header_t hp;
548	ctf_file_t *fp;
549	void *buf, *base;
550	size_t size, hdrsz;
551	int err;
552
553	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
554		return (ctf_set_open_errno(errp, EINVAL));
555
556	if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
557	    symsect->cts_entsize != sizeof (Elf64_Sym))
558		return (ctf_set_open_errno(errp, ECTF_SYMTAB));
559
560	if (symsect != NULL && symsect->cts_data == NULL)
561		return (ctf_set_open_errno(errp, ECTF_SYMBAD));
562
563	if (strsect != NULL && strsect->cts_data == NULL)
564		return (ctf_set_open_errno(errp, ECTF_STRBAD));
565
566	if (ctfsect->cts_size < sizeof (ctf_preamble_t))
567		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
568
569	pp = (const ctf_preamble_t *)ctfsect->cts_data;
570
571	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
572	    pp->ctp_magic, pp->ctp_version);
573
574	/*
575	 * Validate each part of the CTF header (either V1 or V2).
576	 * First, we validate the preamble (common to all versions).  At that
577	 * point, we know specific header version, and can validate the
578	 * version-specific parts including section offsets and alignments.
579	 */
580	if (pp->ctp_magic != CTF_MAGIC)
581		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
582
583	if (pp->ctp_version == CTF_VERSION_2) {
584		if (ctfsect->cts_size < sizeof (ctf_header_t))
585			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
586
587		bcopy(ctfsect->cts_data, &hp, sizeof (hp));
588		hdrsz = sizeof (ctf_header_t);
589
590	} else if (pp->ctp_version == CTF_VERSION_1) {
591		const ctf_header_v1_t *h1p =
592		    (const ctf_header_v1_t *)ctfsect->cts_data;
593
594		if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
595			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
596
597		bzero(&hp, sizeof (hp));
598		hp.cth_preamble = h1p->cth_preamble;
599		hp.cth_objtoff = h1p->cth_objtoff;
600		hp.cth_funcoff = h1p->cth_funcoff;
601		hp.cth_typeoff = h1p->cth_typeoff;
602		hp.cth_stroff = h1p->cth_stroff;
603		hp.cth_strlen = h1p->cth_strlen;
604
605		hdrsz = sizeof (ctf_header_v1_t);
606	} else
607		return (ctf_set_open_errno(errp, ECTF_CTFVERS));
608
609	size = hp.cth_stroff + hp.cth_strlen;
610
611	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
612
613	if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
614	    hp.cth_funcoff > size || hp.cth_typeoff > size ||
615	    hp.cth_stroff > size)
616		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
617
618	if (hp.cth_lbloff > hp.cth_objtoff ||
619	    hp.cth_objtoff > hp.cth_funcoff ||
620	    hp.cth_funcoff > hp.cth_typeoff ||
621	    hp.cth_typeoff > hp.cth_stroff)
622		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
623
624	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
625	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
626		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
627
628	/*
629	 * Once everything is determined to be valid, attempt to decompress
630	 * the CTF data buffer if it is compressed.  Otherwise we just put
631	 * the data section's buffer pointer into ctf_buf, below.
632	 */
633	if (hp.cth_flags & CTF_F_COMPRESS) {
634		size_t srclen, dstlen;
635		const void *src;
636		int rc = Z_OK;
637
638		if (ctf_zopen(errp) == NULL)
639			return (NULL); /* errp is set for us */
640
641		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
642			return (ctf_set_open_errno(errp, ECTF_ZALLOC));
643
644		bcopy(ctfsect->cts_data, base, hdrsz);
645		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
646		buf = (uchar_t *)base + hdrsz;
647
648		src = (uchar_t *)ctfsect->cts_data + hdrsz;
649		srclen = ctfsect->cts_size - hdrsz;
650		dstlen = size;
651
652		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
653			ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
654			ctf_data_free(base, size + hdrsz);
655			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
656		}
657
658		if (dstlen != size) {
659			ctf_dprintf("zlib inflate short -- got %lu of %lu "
660			    "bytes\n", (ulong_t)dstlen, (ulong_t)size);
661			ctf_data_free(base, size + hdrsz);
662			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
663		}
664
665		ctf_data_protect(base, size + hdrsz);
666
667	} else {
668		base = (void *)ctfsect->cts_data;
669		buf = (uchar_t *)base + hdrsz;
670	}
671
672	/*
673	 * Once we have uncompressed and validated the CTF data buffer, we can
674	 * proceed with allocating a ctf_file_t and initializing it.
675	 */
676	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
677		return (ctf_set_open_errno(errp, EAGAIN));
678
679	bzero(fp, sizeof (ctf_file_t));
680	fp->ctf_version = hp.cth_version;
681	fp->ctf_fileops = &ctf_fileops[hp.cth_version];
682	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
683
684	if (symsect != NULL) {
685		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
686		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
687	}
688
689	if (fp->ctf_data.cts_name != NULL)
690		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
691	if (fp->ctf_symtab.cts_name != NULL)
692		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
693	if (fp->ctf_strtab.cts_name != NULL)
694		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
695
696	if (fp->ctf_data.cts_name == NULL)
697		fp->ctf_data.cts_name = _CTF_NULLSTR;
698	if (fp->ctf_symtab.cts_name == NULL)
699		fp->ctf_symtab.cts_name = _CTF_NULLSTR;
700	if (fp->ctf_strtab.cts_name == NULL)
701		fp->ctf_strtab.cts_name = _CTF_NULLSTR;
702
703	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
704	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
705
706	if (strsect != NULL) {
707		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
708		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
709	}
710
711	fp->ctf_base = base;
712	fp->ctf_buf = buf;
713	fp->ctf_size = size + hdrsz;
714
715	/*
716	 * If we have a parent container name and label, store the relocated
717	 * string pointers in the CTF container for easy access later.
718	 */
719	if (hp.cth_parlabel != 0)
720		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
721	if (hp.cth_parname != 0)
722		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
723
724	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
725	    fp->ctf_parname ? fp->ctf_parname : "<NULL>",
726	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
727
728	/*
729	 * If we have a symbol table section, allocate and initialize
730	 * the symtab translation table, pointed to by ctf_sxlate.
731	 */
732	if (symsect != NULL) {
733		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
734		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
735
736		if (fp->ctf_sxlate == NULL) {
737			(void) ctf_set_open_errno(errp, EAGAIN);
738			goto bad;
739		}
740
741		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
742			(void) ctf_set_open_errno(errp, err);
743			goto bad;
744		}
745	}
746
747	if ((err = init_types(fp, &hp)) != 0) {
748		(void) ctf_set_open_errno(errp, err);
749		goto bad;
750	}
751
752	/*
753	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
754	 * array of type name prefixes and the corresponding ctf_hash to use.
755	 * NOTE: This code must be kept in sync with the code in ctf_update().
756	 */
757	fp->ctf_lookups[0].ctl_prefix = "struct";
758	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
759	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
760	fp->ctf_lookups[1].ctl_prefix = "union";
761	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
762	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
763	fp->ctf_lookups[2].ctl_prefix = "enum";
764	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
765	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
766	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
767	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
768	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
769	fp->ctf_lookups[4].ctl_prefix = NULL;
770	fp->ctf_lookups[4].ctl_len = 0;
771	fp->ctf_lookups[4].ctl_hash = NULL;
772
773	if (symsect != NULL) {
774		if (symsect->cts_entsize == sizeof (Elf64_Sym))
775			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
776		else
777			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
778	} else
779		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
780
781	fp->ctf_refcnt = 1;
782	return (fp);
783
784bad:
785	ctf_close(fp);
786	return (NULL);
787}
788
789/*
790 * Close the specified CTF container and free associated data structures.  Note
791 * that ctf_close() is a reference counted operation: if the specified file is
792 * the parent of other active containers, its reference count will be greater
793 * than one and it will be freed later when no active children exist.
794 */
795void
796ctf_close(ctf_file_t *fp)
797{
798	ctf_dtdef_t *dtd, *ntd;
799
800	if (fp == NULL)
801		return; /* allow ctf_close(NULL) to simplify caller code */
802
803	ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
804
805	if (fp->ctf_refcnt > 1) {
806		fp->ctf_refcnt--;
807		return;
808	}
809
810	if (fp->ctf_parent != NULL)
811		ctf_close(fp->ctf_parent);
812
813	for (dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
814		ntd = ctf_list_next(dtd);
815		ctf_dtd_delete(fp, dtd);
816	}
817
818	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
819
820	if (fp->ctf_flags & LCTF_MMAP) {
821		if (fp->ctf_data.cts_data != NULL)
822			ctf_sect_munmap(&fp->ctf_data);
823		if (fp->ctf_symtab.cts_data != NULL)
824			ctf_sect_munmap(&fp->ctf_symtab);
825		if (fp->ctf_strtab.cts_data != NULL)
826			ctf_sect_munmap(&fp->ctf_strtab);
827	}
828
829	if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
830	    fp->ctf_data.cts_name != NULL) {
831		ctf_free((char *)fp->ctf_data.cts_name,
832		    strlen(fp->ctf_data.cts_name) + 1);
833	}
834
835	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
836	    fp->ctf_symtab.cts_name != NULL) {
837		ctf_free((char *)fp->ctf_symtab.cts_name,
838		    strlen(fp->ctf_symtab.cts_name) + 1);
839	}
840
841	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
842	    fp->ctf_strtab.cts_name != NULL) {
843		ctf_free((char *)fp->ctf_strtab.cts_name,
844		    strlen(fp->ctf_strtab.cts_name) + 1);
845	}
846
847	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
848		ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
849
850	if (fp->ctf_sxlate != NULL)
851		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
852
853	if (fp->ctf_txlate != NULL) {
854		ctf_free(fp->ctf_txlate,
855		    sizeof (uint_t) * (fp->ctf_typemax + 1));
856	}
857
858	if (fp->ctf_ptrtab != NULL) {
859		ctf_free(fp->ctf_ptrtab,
860		    sizeof (ushort_t) * (fp->ctf_typemax + 1));
861	}
862
863	ctf_hash_destroy(&fp->ctf_structs);
864	ctf_hash_destroy(&fp->ctf_unions);
865	ctf_hash_destroy(&fp->ctf_enums);
866	ctf_hash_destroy(&fp->ctf_names);
867
868	ctf_free(fp, sizeof (ctf_file_t));
869}
870
871/*
872 * Return the CTF handle for the parent CTF container, if one exists.
873 * Otherwise return NULL to indicate this container has no imported parent.
874 */
875ctf_file_t *
876ctf_parent_file(ctf_file_t *fp)
877{
878	return (fp->ctf_parent);
879}
880
881/*
882 * Return the name of the parent CTF container, if one exists.  Otherwise
883 * return NULL to indicate this container is a root container.
884 */
885const char *
886ctf_parent_name(ctf_file_t *fp)
887{
888	return (fp->ctf_parname);
889}
890
891/*
892 * Import the types from the specified parent container by storing a pointer
893 * to it in ctf_parent and incrementing its reference count.  Only one parent
894 * is allowed: if a parent already exists, it is replaced by the new parent.
895 */
896int
897ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
898{
899	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
900		return (ctf_set_errno(fp, EINVAL));
901
902	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
903		return (ctf_set_errno(fp, ECTF_DMODEL));
904
905	if (fp->ctf_parent != NULL)
906		ctf_close(fp->ctf_parent);
907
908	if (pfp != NULL) {
909		fp->ctf_flags |= LCTF_CHILD;
910		pfp->ctf_refcnt++;
911	}
912
913	fp->ctf_parent = pfp;
914	return (0);
915}
916
917/*
918 * Set the data model constant for the CTF container.
919 */
920int
921ctf_setmodel(ctf_file_t *fp, int model)
922{
923	const ctf_dmodel_t *dp;
924
925	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
926		if (dp->ctd_code == model) {
927			fp->ctf_dmodel = dp;
928			return (0);
929		}
930	}
931
932	return (ctf_set_errno(fp, EINVAL));
933}
934
935/*
936 * Return the data model constant for the CTF container.
937 */
938int
939ctf_getmodel(ctf_file_t *fp)
940{
941	return (fp->ctf_dmodel->ctd_code);
942}
943
944void
945ctf_setspecific(ctf_file_t *fp, void *data)
946{
947	fp->ctf_specific = data;
948}
949
950void *
951ctf_getspecific(ctf_file_t *fp)
952{
953	return (fp->ctf_specific);
954}
955