1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 McAfee, Inc.
5 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Jonathan Lemon
9 * and McAfee Research, the Security Research Division of McAfee, Inc. under
10 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11 * DARPA CHATS research program. [2001 McAfee, Inc.]
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include "opt_inet.h"
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41#include "opt_pcbgroup.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/hash.h>
46#include <sys/refcount.h>
47#include <sys/kernel.h>
48#include <sys/sysctl.h>
49#include <sys/limits.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/proc.h>		/* for proc0 declaration */
55#include <sys/random.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60
61#include <sys/md5.h>
62#include <crypto/siphash/siphash.h>
63
64#include <vm/uma.h>
65
66#include <net/if.h>
67#include <net/if_var.h>
68#include <net/route.h>
69#include <net/vnet.h>
70
71#include <netinet/in.h>
72#include <netinet/in_kdtrace.h>
73#include <netinet/in_systm.h>
74#include <netinet/ip.h>
75#include <netinet/in_var.h>
76#include <netinet/in_pcb.h>
77#include <netinet/ip_var.h>
78#include <netinet/ip_options.h>
79#ifdef INET6
80#include <netinet/ip6.h>
81#include <netinet/icmp6.h>
82#include <netinet6/nd6.h>
83#include <netinet6/ip6_var.h>
84#include <netinet6/in6_pcb.h>
85#endif
86#include <netinet/tcp.h>
87#include <netinet/tcp_fastopen.h>
88#include <netinet/tcp_fsm.h>
89#include <netinet/tcp_seq.h>
90#include <netinet/tcp_timer.h>
91#include <netinet/tcp_var.h>
92#include <netinet/tcp_syncache.h>
93#ifdef INET6
94#include <netinet6/tcp6_var.h>
95#endif
96#ifdef TCP_OFFLOAD
97#include <netinet/toecore.h>
98#endif
99#include <netinet/udp.h>
100#include <netinet/udp_var.h>
101
102#include <netipsec/ipsec_support.h>
103
104#include <machine/in_cksum.h>
105
106#include <security/mac/mac_framework.h>
107
108VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
109#define	V_tcp_syncookies		VNET(tcp_syncookies)
110SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
111    &VNET_NAME(tcp_syncookies), 0,
112    "Use TCP SYN cookies if the syncache overflows");
113
114VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
115#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
116SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
117    &VNET_NAME(tcp_syncookiesonly), 0,
118    "Use only TCP SYN cookies");
119
120VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
121#define V_functions_inherit_listen_socket_stack \
122    VNET(functions_inherit_listen_socket_stack)
123SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
124    CTLFLAG_VNET | CTLFLAG_RW,
125    &VNET_NAME(functions_inherit_listen_socket_stack), 0,
126    "Inherit listen socket's stack");
127
128#ifdef TCP_OFFLOAD
129#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
130#endif
131
132static void	 syncache_drop(struct syncache *, struct syncache_head *);
133static void	 syncache_free(struct syncache *);
134static void	 syncache_insert(struct syncache *, struct syncache_head *);
135static int	 syncache_respond(struct syncache *, const struct mbuf *, int);
136static struct	 socket *syncache_socket(struct syncache *, struct socket *,
137		    struct mbuf *m);
138static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
139		    int docallout);
140static void	 syncache_timer(void *);
141
142static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
143		    uint8_t *, uintptr_t);
144static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
145static struct syncache
146		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
147		    struct syncache *, struct tcphdr *, struct tcpopt *,
148		    struct socket *, uint16_t);
149static void	syncache_pause(struct in_conninfo *);
150static void	syncache_unpause(void *);
151static void	 syncookie_reseed(void *);
152#ifdef INVARIANTS
153static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
154		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
155		    struct socket *lso, uint16_t port);
156#endif
157
158/*
159 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
160 * 3 retransmits corresponds to a timeout with default values of
161 * tcp_rexmit_initial * (             1 +
162 *                       tcp_backoff[1] +
163 *                       tcp_backoff[2] +
164 *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
165 * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
166 * the odds are that the user has given up attempting to connect by then.
167 */
168#define SYNCACHE_MAXREXMTS		3
169
170/* Arbitrary values */
171#define TCP_SYNCACHE_HASHSIZE		512
172#define TCP_SYNCACHE_BUCKETLIMIT	30
173
174VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
175#define	V_tcp_syncache			VNET(tcp_syncache)
176
177static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache,
178    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
179    "TCP SYN cache");
180
181SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
182    &VNET_NAME(tcp_syncache.bucket_limit), 0,
183    "Per-bucket hash limit for syncache");
184
185SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
186    &VNET_NAME(tcp_syncache.cache_limit), 0,
187    "Overall entry limit for syncache");
188
189SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
190    &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
191
192SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
193    &VNET_NAME(tcp_syncache.hashsize), 0,
194    "Size of TCP syncache hashtable");
195
196static int
197sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
198{
199	int error;
200	u_int new;
201
202	new = V_tcp_syncache.rexmt_limit;
203	error = sysctl_handle_int(oidp, &new, 0, req);
204	if ((error == 0) && (req->newptr != NULL)) {
205		if (new > TCP_MAXRXTSHIFT)
206			error = EINVAL;
207		else
208			V_tcp_syncache.rexmt_limit = new;
209	}
210	return (error);
211}
212
213SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
214    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
215    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
216    sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
217    "Limit on SYN/ACK retransmissions");
218
219VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
220SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
221    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
222    "Send reset on socket allocation failure");
223
224static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
225
226#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
227#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
228#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
229
230/*
231 * Requires the syncache entry to be already removed from the bucket list.
232 */
233static void
234syncache_free(struct syncache *sc)
235{
236
237	if (sc->sc_ipopts)
238		(void) m_free(sc->sc_ipopts);
239	if (sc->sc_cred)
240		crfree(sc->sc_cred);
241#ifdef MAC
242	mac_syncache_destroy(&sc->sc_label);
243#endif
244
245	uma_zfree(V_tcp_syncache.zone, sc);
246}
247
248void
249syncache_init(void)
250{
251	int i;
252
253	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
254	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
255	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
256	V_tcp_syncache.hash_secret = arc4random();
257
258	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
259	    &V_tcp_syncache.hashsize);
260	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
261	    &V_tcp_syncache.bucket_limit);
262	if (!powerof2(V_tcp_syncache.hashsize) ||
263	    V_tcp_syncache.hashsize == 0) {
264		printf("WARNING: syncache hash size is not a power of 2.\n");
265		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
266	}
267	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
268
269	/* Set limits. */
270	V_tcp_syncache.cache_limit =
271	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
272	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
273	    &V_tcp_syncache.cache_limit);
274
275	/* Allocate the hash table. */
276	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
277	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
278
279#ifdef VIMAGE
280	V_tcp_syncache.vnet = curvnet;
281#endif
282
283	/* Initialize the hash buckets. */
284	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
285		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
286		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
287			 NULL, MTX_DEF);
288		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
289			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
290		V_tcp_syncache.hashbase[i].sch_length = 0;
291		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
292		V_tcp_syncache.hashbase[i].sch_last_overflow =
293		    -(SYNCOOKIE_LIFETIME + 1);
294	}
295
296	/* Create the syncache entry zone. */
297	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
298	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
299	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
300	    V_tcp_syncache.cache_limit);
301
302	/* Start the SYN cookie reseeder callout. */
303	callout_init(&V_tcp_syncache.secret.reseed, 1);
304	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
305	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
306	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
307	    syncookie_reseed, &V_tcp_syncache);
308
309	/* Initialize the pause machinery. */
310	mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
311	callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
312	    0);
313	V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
314	V_tcp_syncache.pause_backoff = 0;
315	V_tcp_syncache.paused = false;
316}
317
318#ifdef VIMAGE
319void
320syncache_destroy(void)
321{
322	struct syncache_head *sch;
323	struct syncache *sc, *nsc;
324	int i;
325
326	/*
327	 * Stop the re-seed timer before freeing resources.  No need to
328	 * possibly schedule it another time.
329	 */
330	callout_drain(&V_tcp_syncache.secret.reseed);
331
332	/* Stop the SYN cache pause callout. */
333	mtx_lock(&V_tcp_syncache.pause_mtx);
334	if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
335		mtx_unlock(&V_tcp_syncache.pause_mtx);
336		callout_drain(&V_tcp_syncache.pause_co);
337	} else
338		mtx_unlock(&V_tcp_syncache.pause_mtx);
339
340	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
341	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
342		sch = &V_tcp_syncache.hashbase[i];
343		callout_drain(&sch->sch_timer);
344
345		SCH_LOCK(sch);
346		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
347			syncache_drop(sc, sch);
348		SCH_UNLOCK(sch);
349		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
350		    ("%s: sch->sch_bucket not empty", __func__));
351		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
352		    __func__, sch->sch_length));
353		mtx_destroy(&sch->sch_mtx);
354	}
355
356	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
357	    ("%s: cache_count not 0", __func__));
358
359	/* Free the allocated global resources. */
360	uma_zdestroy(V_tcp_syncache.zone);
361	free(V_tcp_syncache.hashbase, M_SYNCACHE);
362	mtx_destroy(&V_tcp_syncache.pause_mtx);
363}
364#endif
365
366/*
367 * Inserts a syncache entry into the specified bucket row.
368 * Locks and unlocks the syncache_head autonomously.
369 */
370static void
371syncache_insert(struct syncache *sc, struct syncache_head *sch)
372{
373	struct syncache *sc2;
374
375	SCH_LOCK(sch);
376
377	/*
378	 * Make sure that we don't overflow the per-bucket limit.
379	 * If the bucket is full, toss the oldest element.
380	 */
381	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
382		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
383			("sch->sch_length incorrect"));
384		syncache_pause(&sc->sc_inc);
385		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
386		sch->sch_last_overflow = time_uptime;
387		syncache_drop(sc2, sch);
388	}
389
390	/* Put it into the bucket. */
391	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
392	sch->sch_length++;
393
394#ifdef TCP_OFFLOAD
395	if (ADDED_BY_TOE(sc)) {
396		struct toedev *tod = sc->sc_tod;
397
398		tod->tod_syncache_added(tod, sc->sc_todctx);
399	}
400#endif
401
402	/* Reinitialize the bucket row's timer. */
403	if (sch->sch_length == 1)
404		sch->sch_nextc = ticks + INT_MAX;
405	syncache_timeout(sc, sch, 1);
406
407	SCH_UNLOCK(sch);
408
409	TCPSTATES_INC(TCPS_SYN_RECEIVED);
410	TCPSTAT_INC(tcps_sc_added);
411}
412
413/*
414 * Remove and free entry from syncache bucket row.
415 * Expects locked syncache head.
416 */
417static void
418syncache_drop(struct syncache *sc, struct syncache_head *sch)
419{
420
421	SCH_LOCK_ASSERT(sch);
422
423	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
424	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
425	sch->sch_length--;
426
427#ifdef TCP_OFFLOAD
428	if (ADDED_BY_TOE(sc)) {
429		struct toedev *tod = sc->sc_tod;
430
431		tod->tod_syncache_removed(tod, sc->sc_todctx);
432	}
433#endif
434
435	syncache_free(sc);
436}
437
438/*
439 * Engage/reengage time on bucket row.
440 */
441static void
442syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
443{
444	int rexmt;
445
446	if (sc->sc_rxmits == 0)
447		rexmt = tcp_rexmit_initial;
448	else
449		TCPT_RANGESET(rexmt,
450		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
451		    tcp_rexmit_min, TCPTV_REXMTMAX);
452	sc->sc_rxttime = ticks + rexmt;
453	sc->sc_rxmits++;
454	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
455		sch->sch_nextc = sc->sc_rxttime;
456		if (docallout)
457			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
458			    syncache_timer, (void *)sch);
459	}
460}
461
462/*
463 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
464 * If we have retransmitted an entry the maximum number of times, expire it.
465 * One separate timer for each bucket row.
466 */
467static void
468syncache_timer(void *xsch)
469{
470	struct syncache_head *sch = (struct syncache_head *)xsch;
471	struct syncache *sc, *nsc;
472	struct epoch_tracker et;
473	int tick = ticks;
474	char *s;
475	bool paused;
476
477	CURVNET_SET(sch->sch_sc->vnet);
478
479	/* NB: syncache_head has already been locked by the callout. */
480	SCH_LOCK_ASSERT(sch);
481
482	/*
483	 * In the following cycle we may remove some entries and/or
484	 * advance some timeouts, so re-initialize the bucket timer.
485	 */
486	sch->sch_nextc = tick + INT_MAX;
487
488	/*
489	 * If we have paused processing, unconditionally remove
490	 * all syncache entries.
491	 */
492	mtx_lock(&V_tcp_syncache.pause_mtx);
493	paused = V_tcp_syncache.paused;
494	mtx_unlock(&V_tcp_syncache.pause_mtx);
495
496	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
497		if (paused) {
498			syncache_drop(sc, sch);
499			continue;
500		}
501		/*
502		 * We do not check if the listen socket still exists
503		 * and accept the case where the listen socket may be
504		 * gone by the time we resend the SYN/ACK.  We do
505		 * not expect this to happens often. If it does,
506		 * then the RST will be sent by the time the remote
507		 * host does the SYN/ACK->ACK.
508		 */
509		if (TSTMP_GT(sc->sc_rxttime, tick)) {
510			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
511				sch->sch_nextc = sc->sc_rxttime;
512			continue;
513		}
514		if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
515			sc->sc_flags &= ~SCF_ECN;
516		}
517		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
518			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
519				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
520				    "giving up and removing syncache entry\n",
521				    s, __func__);
522				free(s, M_TCPLOG);
523			}
524			syncache_drop(sc, sch);
525			TCPSTAT_INC(tcps_sc_stale);
526			continue;
527		}
528		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
529			log(LOG_DEBUG, "%s; %s: Response timeout, "
530			    "retransmitting (%u) SYN|ACK\n",
531			    s, __func__, sc->sc_rxmits);
532			free(s, M_TCPLOG);
533		}
534
535		NET_EPOCH_ENTER(et);
536		syncache_respond(sc, NULL, TH_SYN|TH_ACK);
537		NET_EPOCH_EXIT(et);
538		TCPSTAT_INC(tcps_sc_retransmitted);
539		syncache_timeout(sc, sch, 0);
540	}
541	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
542		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
543			syncache_timer, (void *)(sch));
544	CURVNET_RESTORE();
545}
546
547/*
548 * Returns true if the system is only using cookies at the moment.
549 * This could be due to a sysadmin decision to only use cookies, or it
550 * could be due to the system detecting an attack.
551 */
552static inline bool
553syncache_cookiesonly(void)
554{
555
556	return (V_tcp_syncookies && (V_tcp_syncache.paused ||
557	    V_tcp_syncookiesonly));
558}
559
560/*
561 * Find the hash bucket for the given connection.
562 */
563static struct syncache_head *
564syncache_hashbucket(struct in_conninfo *inc)
565{
566	uint32_t hash;
567
568	/*
569	 * The hash is built on foreign port + local port + foreign address.
570	 * We rely on the fact that struct in_conninfo starts with 16 bits
571	 * of foreign port, then 16 bits of local port then followed by 128
572	 * bits of foreign address.  In case of IPv4 address, the first 3
573	 * 32-bit words of the address always are zeroes.
574	 */
575	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
576	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
577
578	return (&V_tcp_syncache.hashbase[hash]);
579}
580
581/*
582 * Find an entry in the syncache.
583 * Returns always with locked syncache_head plus a matching entry or NULL.
584 */
585static struct syncache *
586syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
587{
588	struct syncache *sc;
589	struct syncache_head *sch;
590
591	*schp = sch = syncache_hashbucket(inc);
592	SCH_LOCK(sch);
593
594	/* Circle through bucket row to find matching entry. */
595	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
596		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
597		    sizeof(struct in_endpoints)) == 0)
598			break;
599
600	return (sc);	/* Always returns with locked sch. */
601}
602
603/*
604 * This function is called when we get a RST for a
605 * non-existent connection, so that we can see if the
606 * connection is in the syn cache.  If it is, zap it.
607 * If required send a challenge ACK.
608 */
609void
610syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m,
611    uint16_t port)
612{
613	struct syncache *sc;
614	struct syncache_head *sch;
615	char *s = NULL;
616
617	if (syncache_cookiesonly())
618		return;
619	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
620	SCH_LOCK_ASSERT(sch);
621
622	/*
623	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
624	 * See RFC 793 page 65, section SEGMENT ARRIVES.
625	 */
626	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
627		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
628			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
629			    "FIN flag set, segment ignored\n", s, __func__);
630		TCPSTAT_INC(tcps_badrst);
631		goto done;
632	}
633
634	/*
635	 * No corresponding connection was found in syncache.
636	 * If syncookies are enabled and possibly exclusively
637	 * used, or we are under memory pressure, a valid RST
638	 * may not find a syncache entry.  In that case we're
639	 * done and no SYN|ACK retransmissions will happen.
640	 * Otherwise the RST was misdirected or spoofed.
641	 */
642	if (sc == NULL) {
643		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
644			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
645			    "syncache entry (possibly syncookie only), "
646			    "segment ignored\n", s, __func__);
647		TCPSTAT_INC(tcps_badrst);
648		goto done;
649	}
650
651	/* The remote UDP encaps port does not match. */
652	if (sc->sc_port != port) {
653		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
654			log(LOG_DEBUG, "%s; %s: Spurious RST with matching "
655			    "syncache entry but non-matching UDP encaps port, "
656			    "segment ignored\n", s, __func__);
657		TCPSTAT_INC(tcps_badrst);
658		goto done;
659	}
660
661	/*
662	 * If the RST bit is set, check the sequence number to see
663	 * if this is a valid reset segment.
664	 *
665	 * RFC 793 page 37:
666	 *   In all states except SYN-SENT, all reset (RST) segments
667	 *   are validated by checking their SEQ-fields.  A reset is
668	 *   valid if its sequence number is in the window.
669	 *
670	 * RFC 793 page 69:
671	 *   There are four cases for the acceptability test for an incoming
672	 *   segment:
673	 *
674	 * Segment Receive  Test
675	 * Length  Window
676	 * ------- -------  -------------------------------------------
677	 *    0       0     SEG.SEQ = RCV.NXT
678	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
679	 *   >0       0     not acceptable
680	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
681	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
682	 *
683	 * Note that when receiving a SYN segment in the LISTEN state,
684	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
685	 * described in RFC 793, page 66.
686	 */
687	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
688	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
689	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
690		if (V_tcp_insecure_rst ||
691		    th->th_seq == sc->sc_irs + 1) {
692			syncache_drop(sc, sch);
693			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
694				log(LOG_DEBUG,
695				    "%s; %s: Our SYN|ACK was rejected, "
696				    "connection attempt aborted by remote "
697				    "endpoint\n",
698				    s, __func__);
699			TCPSTAT_INC(tcps_sc_reset);
700		} else {
701			TCPSTAT_INC(tcps_badrst);
702			/* Send challenge ACK. */
703			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
704				log(LOG_DEBUG, "%s; %s: RST with invalid "
705				    " SEQ %u != NXT %u (+WND %u), "
706				    "sending challenge ACK\n",
707				    s, __func__,
708				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
709			syncache_respond(sc, m, TH_ACK);
710		}
711	} else {
712		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
713			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
714			    "NXT %u (+WND %u), segment ignored\n",
715			    s, __func__,
716			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
717		TCPSTAT_INC(tcps_badrst);
718	}
719
720done:
721	if (s != NULL)
722		free(s, M_TCPLOG);
723	SCH_UNLOCK(sch);
724}
725
726void
727syncache_badack(struct in_conninfo *inc, uint16_t port)
728{
729	struct syncache *sc;
730	struct syncache_head *sch;
731
732	if (syncache_cookiesonly())
733		return;
734	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
735	SCH_LOCK_ASSERT(sch);
736	if ((sc != NULL) && (sc->sc_port == port)) {
737		syncache_drop(sc, sch);
738		TCPSTAT_INC(tcps_sc_badack);
739	}
740	SCH_UNLOCK(sch);
741}
742
743void
744syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq, uint16_t port)
745{
746	struct syncache *sc;
747	struct syncache_head *sch;
748
749	if (syncache_cookiesonly())
750		return;
751	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
752	SCH_LOCK_ASSERT(sch);
753	if (sc == NULL)
754		goto done;
755
756	/* If the port != sc_port, then it's a bogus ICMP msg */
757	if (port != sc->sc_port)
758		goto done;
759
760	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
761	if (ntohl(th_seq) != sc->sc_iss)
762		goto done;
763
764	/*
765	 * If we've rertransmitted 3 times and this is our second error,
766	 * we remove the entry.  Otherwise, we allow it to continue on.
767	 * This prevents us from incorrectly nuking an entry during a
768	 * spurious network outage.
769	 *
770	 * See tcp_notify().
771	 */
772	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
773		sc->sc_flags |= SCF_UNREACH;
774		goto done;
775	}
776	syncache_drop(sc, sch);
777	TCPSTAT_INC(tcps_sc_unreach);
778done:
779	SCH_UNLOCK(sch);
780}
781
782/*
783 * Build a new TCP socket structure from a syncache entry.
784 *
785 * On success return the newly created socket with its underlying inp locked.
786 */
787static struct socket *
788syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
789{
790	struct tcp_function_block *blk;
791	struct inpcb *inp = NULL;
792	struct socket *so;
793	struct tcpcb *tp;
794	int error;
795	char *s;
796
797	NET_EPOCH_ASSERT();
798
799	/*
800	 * Ok, create the full blown connection, and set things up
801	 * as they would have been set up if we had created the
802	 * connection when the SYN arrived.  If we can't create
803	 * the connection, abort it.
804	 */
805	so = sonewconn(lso, 0);
806	if (so == NULL) {
807		/*
808		 * Drop the connection; we will either send a RST or
809		 * have the peer retransmit its SYN again after its
810		 * RTO and try again.
811		 */
812		TCPSTAT_INC(tcps_listendrop);
813		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
814			log(LOG_DEBUG, "%s; %s: Socket create failed "
815			    "due to limits or memory shortage\n",
816			    s, __func__);
817			free(s, M_TCPLOG);
818		}
819		goto abort2;
820	}
821#ifdef MAC
822	mac_socketpeer_set_from_mbuf(m, so);
823#endif
824
825	inp = sotoinpcb(so);
826	inp->inp_inc.inc_fibnum = so->so_fibnum;
827	INP_WLOCK(inp);
828	/*
829	 * Exclusive pcbinfo lock is not required in syncache socket case even
830	 * if two inpcb locks can be acquired simultaneously:
831	 *  - the inpcb in LISTEN state,
832	 *  - the newly created inp.
833	 *
834	 * In this case, an inp cannot be at same time in LISTEN state and
835	 * just created by an accept() call.
836	 */
837	INP_HASH_WLOCK(&V_tcbinfo);
838
839	/* Insert new socket into PCB hash list. */
840	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
841#ifdef INET6
842	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
843		inp->inp_vflag &= ~INP_IPV4;
844		inp->inp_vflag |= INP_IPV6;
845		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
846	} else {
847		inp->inp_vflag &= ~INP_IPV6;
848		inp->inp_vflag |= INP_IPV4;
849#endif
850		inp->inp_ip_ttl = sc->sc_ip_ttl;
851		inp->inp_ip_tos = sc->sc_ip_tos;
852		inp->inp_laddr = sc->sc_inc.inc_laddr;
853#ifdef INET6
854	}
855#endif
856
857	/*
858	 * If there's an mbuf and it has a flowid, then let's initialise the
859	 * inp with that particular flowid.
860	 */
861	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
862		inp->inp_flowid = m->m_pkthdr.flowid;
863		inp->inp_flowtype = M_HASHTYPE_GET(m);
864#ifdef NUMA
865		inp->inp_numa_domain = m->m_pkthdr.numa_domain;
866#endif
867	}
868
869	inp->inp_lport = sc->sc_inc.inc_lport;
870#ifdef INET6
871	if (inp->inp_vflag & INP_IPV6PROTO) {
872		struct inpcb *oinp = sotoinpcb(lso);
873
874		/*
875		 * Inherit socket options from the listening socket.
876		 * Note that in6p_inputopts are not (and should not be)
877		 * copied, since it stores previously received options and is
878		 * used to detect if each new option is different than the
879		 * previous one and hence should be passed to a user.
880		 * If we copied in6p_inputopts, a user would not be able to
881		 * receive options just after calling the accept system call.
882		 */
883		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
884		if (oinp->in6p_outputopts)
885			inp->in6p_outputopts =
886			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
887		inp->in6p_hops = oinp->in6p_hops;
888	}
889
890	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
891		struct in6_addr laddr6;
892		struct sockaddr_in6 sin6;
893
894		sin6.sin6_family = AF_INET6;
895		sin6.sin6_len = sizeof(sin6);
896		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
897		sin6.sin6_port = sc->sc_inc.inc_fport;
898		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
899		laddr6 = inp->in6p_laddr;
900		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
901			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
902		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
903		    thread0.td_ucred, m, false)) != 0) {
904			inp->in6p_laddr = laddr6;
905			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
906				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
907				    "with error %i\n",
908				    s, __func__, error);
909				free(s, M_TCPLOG);
910			}
911			INP_HASH_WUNLOCK(&V_tcbinfo);
912			goto abort;
913		}
914		/* Override flowlabel from in6_pcbconnect. */
915		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
916		inp->inp_flow |= sc->sc_flowlabel;
917	}
918#endif /* INET6 */
919#if defined(INET) && defined(INET6)
920	else
921#endif
922#ifdef INET
923	{
924		struct in_addr laddr;
925		struct sockaddr_in sin;
926
927		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
928
929		if (inp->inp_options == NULL) {
930			inp->inp_options = sc->sc_ipopts;
931			sc->sc_ipopts = NULL;
932		}
933
934		sin.sin_family = AF_INET;
935		sin.sin_len = sizeof(sin);
936		sin.sin_addr = sc->sc_inc.inc_faddr;
937		sin.sin_port = sc->sc_inc.inc_fport;
938		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
939		laddr = inp->inp_laddr;
940		if (inp->inp_laddr.s_addr == INADDR_ANY)
941			inp->inp_laddr = sc->sc_inc.inc_laddr;
942		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
943		    thread0.td_ucred, m, false)) != 0) {
944			inp->inp_laddr = laddr;
945			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
946				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
947				    "with error %i\n",
948				    s, __func__, error);
949				free(s, M_TCPLOG);
950			}
951			INP_HASH_WUNLOCK(&V_tcbinfo);
952			goto abort;
953		}
954	}
955#endif /* INET */
956#if defined(IPSEC) || defined(IPSEC_SUPPORT)
957	/* Copy old policy into new socket's. */
958	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
959		printf("syncache_socket: could not copy policy\n");
960#endif
961	INP_HASH_WUNLOCK(&V_tcbinfo);
962	tp = intotcpcb(inp);
963	tcp_state_change(tp, TCPS_SYN_RECEIVED);
964	tp->iss = sc->sc_iss;
965	tp->irs = sc->sc_irs;
966	tp->t_port = sc->sc_port;
967	tcp_rcvseqinit(tp);
968	tcp_sendseqinit(tp);
969	blk = sototcpcb(lso)->t_fb;
970	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
971		/*
972		 * Our parents t_fb was not the default,
973		 * we need to release our ref on tp->t_fb and
974		 * pickup one on the new entry.
975		 */
976		struct tcp_function_block *rblk;
977
978		rblk = find_and_ref_tcp_fb(blk);
979		KASSERT(rblk != NULL,
980		    ("cannot find blk %p out of syncache?", blk));
981		if (tp->t_fb->tfb_tcp_fb_fini)
982			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
983		refcount_release(&tp->t_fb->tfb_refcnt);
984		tp->t_fb = rblk;
985		/*
986		 * XXXrrs this is quite dangerous, it is possible
987		 * for the new function to fail to init. We also
988		 * are not asking if the handoff_is_ok though at
989		 * the very start thats probalbly ok.
990		 */
991		if (tp->t_fb->tfb_tcp_fb_init) {
992			(*tp->t_fb->tfb_tcp_fb_init)(tp);
993		}
994	}
995	tp->snd_wl1 = sc->sc_irs;
996	tp->snd_max = tp->iss + 1;
997	tp->snd_nxt = tp->iss + 1;
998	tp->rcv_up = sc->sc_irs + 1;
999	tp->rcv_wnd = sc->sc_wnd;
1000	tp->rcv_adv += tp->rcv_wnd;
1001	tp->last_ack_sent = tp->rcv_nxt;
1002
1003	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
1004	if (sc->sc_flags & SCF_NOOPT)
1005		tp->t_flags |= TF_NOOPT;
1006	else {
1007		if (sc->sc_flags & SCF_WINSCALE) {
1008			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
1009			tp->snd_scale = sc->sc_requested_s_scale;
1010			tp->request_r_scale = sc->sc_requested_r_scale;
1011		}
1012		if (sc->sc_flags & SCF_TIMESTAMP) {
1013			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
1014			tp->ts_recent = sc->sc_tsreflect;
1015			tp->ts_recent_age = tcp_ts_getticks();
1016			tp->ts_offset = sc->sc_tsoff;
1017		}
1018#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1019		if (sc->sc_flags & SCF_SIGNATURE)
1020			tp->t_flags |= TF_SIGNATURE;
1021#endif
1022		if (sc->sc_flags & SCF_SACK)
1023			tp->t_flags |= TF_SACK_PERMIT;
1024	}
1025
1026	if (sc->sc_flags & SCF_ECN)
1027		tp->t_flags2 |= TF2_ECN_PERMIT;
1028
1029	/*
1030	 * Set up MSS and get cached values from tcp_hostcache.
1031	 * This might overwrite some of the defaults we just set.
1032	 */
1033	tcp_mss(tp, sc->sc_peer_mss);
1034
1035	/*
1036	 * If the SYN,ACK was retransmitted, indicate that CWND to be
1037	 * limited to one segment in cc_conn_init().
1038	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
1039	 */
1040	if (sc->sc_rxmits > 1)
1041		tp->snd_cwnd = 1;
1042
1043#ifdef TCP_OFFLOAD
1044	/*
1045	 * Allow a TOE driver to install its hooks.  Note that we hold the
1046	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
1047	 * new connection before the TOE driver has done its thing.
1048	 */
1049	if (ADDED_BY_TOE(sc)) {
1050		struct toedev *tod = sc->sc_tod;
1051
1052		tod->tod_offload_socket(tod, sc->sc_todctx, so);
1053	}
1054#endif
1055	/*
1056	 * Copy and activate timers.
1057	 */
1058	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
1059	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
1060	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
1061	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1062	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1063
1064	TCPSTAT_INC(tcps_accepts);
1065	return (so);
1066
1067abort:
1068	INP_WUNLOCK(inp);
1069abort2:
1070	if (so != NULL)
1071		soabort(so);
1072	return (NULL);
1073}
1074
1075/*
1076 * This function gets called when we receive an ACK for a
1077 * socket in the LISTEN state.  We look up the connection
1078 * in the syncache, and if its there, we pull it out of
1079 * the cache and turn it into a full-blown connection in
1080 * the SYN-RECEIVED state.
1081 *
1082 * On syncache_socket() success the newly created socket
1083 * has its underlying inp locked.
1084 */
1085int
1086syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1087    struct socket **lsop, struct mbuf *m, uint16_t port)
1088{
1089	struct syncache *sc;
1090	struct syncache_head *sch;
1091	struct syncache scs;
1092	char *s;
1093	bool locked;
1094
1095	NET_EPOCH_ASSERT();
1096	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1097	    ("%s: can handle only ACK", __func__));
1098
1099	if (syncache_cookiesonly()) {
1100		sc = NULL;
1101		sch = syncache_hashbucket(inc);
1102		locked = false;
1103	} else {
1104		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1105		locked = true;
1106		SCH_LOCK_ASSERT(sch);
1107	}
1108
1109#ifdef INVARIANTS
1110	/*
1111	 * Test code for syncookies comparing the syncache stored
1112	 * values with the reconstructed values from the cookie.
1113	 */
1114	if (sc != NULL)
1115		syncookie_cmp(inc, sch, sc, th, to, *lsop, port);
1116#endif
1117
1118	if (sc == NULL) {
1119		/*
1120		 * There is no syncache entry, so see if this ACK is
1121		 * a returning syncookie.  To do this, first:
1122		 *  A. Check if syncookies are used in case of syncache
1123		 *     overflows
1124		 *  B. See if this socket has had a syncache entry dropped in
1125		 *     the recent past. We don't want to accept a bogus
1126		 *     syncookie if we've never received a SYN or accept it
1127		 *     twice.
1128		 *  C. check that the syncookie is valid.  If it is, then
1129		 *     cobble up a fake syncache entry, and return.
1130		 */
1131		if (locked && !V_tcp_syncookies) {
1132			SCH_UNLOCK(sch);
1133			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1134				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1135				    "segment rejected (syncookies disabled)\n",
1136				    s, __func__);
1137			goto failed;
1138		}
1139		if (locked && !V_tcp_syncookiesonly &&
1140		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1141			SCH_UNLOCK(sch);
1142			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1143				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1144				    "segment rejected (no syncache entry)\n",
1145				    s, __func__);
1146			goto failed;
1147		}
1148		bzero(&scs, sizeof(scs));
1149		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop, port);
1150		if (locked)
1151			SCH_UNLOCK(sch);
1152		if (sc == NULL) {
1153			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1154				log(LOG_DEBUG, "%s; %s: Segment failed "
1155				    "SYNCOOKIE authentication, segment rejected "
1156				    "(probably spoofed)\n", s, __func__);
1157			goto failed;
1158		}
1159#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1160		/* If received ACK has MD5 signature, check it. */
1161		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1162		    (!TCPMD5_ENABLED() ||
1163		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1164			/* Drop the ACK. */
1165			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1166				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1167				    "MD5 signature doesn't match.\n",
1168				    s, __func__);
1169				free(s, M_TCPLOG);
1170			}
1171			TCPSTAT_INC(tcps_sig_err_sigopt);
1172			return (-1); /* Do not send RST */
1173		}
1174#endif /* TCP_SIGNATURE */
1175	} else {
1176		if (sc->sc_port != port) {
1177			SCH_UNLOCK(sch);
1178			return (0);
1179		}
1180#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1181		/*
1182		 * If listening socket requested TCP digests, check that
1183		 * received ACK has signature and it is correct.
1184		 * If not, drop the ACK and leave sc entry in th cache,
1185		 * because SYN was received with correct signature.
1186		 */
1187		if (sc->sc_flags & SCF_SIGNATURE) {
1188			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1189				/* No signature */
1190				TCPSTAT_INC(tcps_sig_err_nosigopt);
1191				SCH_UNLOCK(sch);
1192				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1193					log(LOG_DEBUG, "%s; %s: Segment "
1194					    "rejected, MD5 signature wasn't "
1195					    "provided.\n", s, __func__);
1196					free(s, M_TCPLOG);
1197				}
1198				return (-1); /* Do not send RST */
1199			}
1200			if (!TCPMD5_ENABLED() ||
1201			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1202				/* Doesn't match or no SA */
1203				SCH_UNLOCK(sch);
1204				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1205					log(LOG_DEBUG, "%s; %s: Segment "
1206					    "rejected, MD5 signature doesn't "
1207					    "match.\n", s, __func__);
1208					free(s, M_TCPLOG);
1209				}
1210				return (-1); /* Do not send RST */
1211			}
1212		}
1213#endif /* TCP_SIGNATURE */
1214
1215		/*
1216		 * RFC 7323 PAWS: If we have a timestamp on this segment and
1217		 * it's less than ts_recent, drop it.
1218		 * XXXMT: RFC 7323 also requires to send an ACK.
1219		 *        In tcp_input.c this is only done for TCP segments
1220		 *        with user data, so be consistent here and just drop
1221		 *        the segment.
1222		 */
1223		if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1224		    TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1225			SCH_UNLOCK(sch);
1226			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1227				log(LOG_DEBUG,
1228				    "%s; %s: SEG.TSval %u < TS.Recent %u, "
1229				    "segment dropped\n", s, __func__,
1230				    to->to_tsval, sc->sc_tsreflect);
1231				free(s, M_TCPLOG);
1232			}
1233			return (-1);  /* Do not send RST */
1234		}
1235
1236		/*
1237		 * If timestamps were not negotiated during SYN/ACK and a
1238		 * segment with a timestamp is received, ignore the
1239		 * timestamp and process the packet normally.
1240		 * See section 3.2 of RFC 7323.
1241		 */
1242		if (!(sc->sc_flags & SCF_TIMESTAMP) &&
1243		    (to->to_flags & TOF_TS)) {
1244			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1245				log(LOG_DEBUG, "%s; %s: Timestamp not "
1246				    "expected, segment processed normally\n",
1247				    s, __func__);
1248				free(s, M_TCPLOG);
1249				s = NULL;
1250			}
1251		}
1252
1253		/*
1254		 * If timestamps were negotiated during SYN/ACK and a
1255		 * segment without a timestamp is received, silently drop
1256		 * the segment, unless the missing timestamps are tolerated.
1257		 * See section 3.2 of RFC 7323.
1258		 */
1259		if ((sc->sc_flags & SCF_TIMESTAMP) &&
1260		    !(to->to_flags & TOF_TS)) {
1261			if (V_tcp_tolerate_missing_ts) {
1262				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1263					log(LOG_DEBUG,
1264					    "%s; %s: Timestamp missing, "
1265					    "segment processed normally\n",
1266					    s, __func__);
1267					free(s, M_TCPLOG);
1268				}
1269			} else {
1270				SCH_UNLOCK(sch);
1271				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1272					log(LOG_DEBUG,
1273					    "%s; %s: Timestamp missing, "
1274					    "segment silently dropped\n",
1275					    s, __func__);
1276					free(s, M_TCPLOG);
1277				}
1278				return (-1);  /* Do not send RST */
1279			}
1280		}
1281
1282		/*
1283		 * Pull out the entry to unlock the bucket row.
1284		 *
1285		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1286		 * tcp_state_change().  The tcpcb is not existent at this
1287		 * moment.  A new one will be allocated via syncache_socket->
1288		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1289		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1290		 */
1291		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1292		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1293		sch->sch_length--;
1294#ifdef TCP_OFFLOAD
1295		if (ADDED_BY_TOE(sc)) {
1296			struct toedev *tod = sc->sc_tod;
1297
1298			tod->tod_syncache_removed(tod, sc->sc_todctx);
1299		}
1300#endif
1301		SCH_UNLOCK(sch);
1302	}
1303
1304	/*
1305	 * Segment validation:
1306	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1307	 */
1308	if (th->th_ack != sc->sc_iss + 1) {
1309		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1310			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1311			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1312		goto failed;
1313	}
1314
1315	/*
1316	 * The SEQ must fall in the window starting at the received
1317	 * initial receive sequence number + 1 (the SYN).
1318	 */
1319	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1320	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1321		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1322			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1323			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1324		goto failed;
1325	}
1326
1327	*lsop = syncache_socket(sc, *lsop, m);
1328
1329	if (*lsop == NULL)
1330		TCPSTAT_INC(tcps_sc_aborted);
1331	else
1332		TCPSTAT_INC(tcps_sc_completed);
1333
1334/* how do we find the inp for the new socket? */
1335	if (sc != &scs)
1336		syncache_free(sc);
1337	return (1);
1338failed:
1339	if (sc != NULL && sc != &scs)
1340		syncache_free(sc);
1341	if (s != NULL)
1342		free(s, M_TCPLOG);
1343	*lsop = NULL;
1344	return (0);
1345}
1346
1347static void
1348syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1349    uint64_t response_cookie)
1350{
1351	struct inpcb *inp;
1352	struct tcpcb *tp;
1353	unsigned int *pending_counter;
1354
1355	NET_EPOCH_ASSERT();
1356
1357	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1358	*lsop = syncache_socket(sc, *lsop, m);
1359	if (*lsop == NULL) {
1360		TCPSTAT_INC(tcps_sc_aborted);
1361		atomic_subtract_int(pending_counter, 1);
1362	} else {
1363		soisconnected(*lsop);
1364		inp = sotoinpcb(*lsop);
1365		tp = intotcpcb(inp);
1366		tp->t_flags |= TF_FASTOPEN;
1367		tp->t_tfo_cookie.server = response_cookie;
1368		tp->snd_max = tp->iss;
1369		tp->snd_nxt = tp->iss;
1370		tp->t_tfo_pending = pending_counter;
1371		TCPSTAT_INC(tcps_sc_completed);
1372	}
1373}
1374
1375/*
1376 * Given a LISTEN socket and an inbound SYN request, add
1377 * this to the syn cache, and send back a segment:
1378 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1379 * to the source.
1380 *
1381 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1382 * Doing so would require that we hold onto the data and deliver it
1383 * to the application.  However, if we are the target of a SYN-flood
1384 * DoS attack, an attacker could send data which would eventually
1385 * consume all available buffer space if it were ACKed.  By not ACKing
1386 * the data, we avoid this DoS scenario.
1387 *
1388 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1389 * cookie is processed and a new socket is created.  In this case, any data
1390 * accompanying the SYN will be queued to the socket by tcp_input() and will
1391 * be ACKed either when the application sends response data or the delayed
1392 * ACK timer expires, whichever comes first.
1393 */
1394int
1395syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1396    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1397    void *todctx, uint8_t iptos, uint16_t port)
1398{
1399	struct tcpcb *tp;
1400	struct socket *so;
1401	struct syncache *sc = NULL;
1402	struct syncache_head *sch;
1403	struct mbuf *ipopts = NULL;
1404	u_int ltflags;
1405	int win, ip_ttl, ip_tos;
1406	char *s;
1407	int rv = 0;
1408#ifdef INET6
1409	int autoflowlabel = 0;
1410#endif
1411#ifdef MAC
1412	struct label *maclabel;
1413#endif
1414	struct syncache scs;
1415	struct ucred *cred;
1416	uint64_t tfo_response_cookie;
1417	unsigned int *tfo_pending = NULL;
1418	int tfo_cookie_valid = 0;
1419	int tfo_response_cookie_valid = 0;
1420	bool locked;
1421
1422	INP_WLOCK_ASSERT(inp);			/* listen socket */
1423	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1424	    ("%s: unexpected tcp flags", __func__));
1425
1426	/*
1427	 * Combine all so/tp operations very early to drop the INP lock as
1428	 * soon as possible.
1429	 */
1430	so = *lsop;
1431	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1432	tp = sototcpcb(so);
1433	cred = crhold(so->so_cred);
1434
1435#ifdef INET6
1436	if (inc->inc_flags & INC_ISIPV6) {
1437		if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1438			autoflowlabel = 1;
1439		}
1440		ip_ttl = in6_selecthlim(inp, NULL);
1441		if ((inp->in6p_outputopts == NULL) ||
1442		    (inp->in6p_outputopts->ip6po_tclass == -1)) {
1443			ip_tos = 0;
1444		} else {
1445			ip_tos = inp->in6p_outputopts->ip6po_tclass;
1446		}
1447	}
1448#endif
1449#if defined(INET6) && defined(INET)
1450	else
1451#endif
1452#ifdef INET
1453	{
1454		ip_ttl = inp->inp_ip_ttl;
1455		ip_tos = inp->inp_ip_tos;
1456	}
1457#endif
1458	win = so->sol_sbrcv_hiwat;
1459	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1460
1461	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1462	    (tp->t_tfo_pending != NULL) &&
1463	    (to->to_flags & TOF_FASTOPEN)) {
1464		/*
1465		 * Limit the number of pending TFO connections to
1466		 * approximately half of the queue limit.  This prevents TFO
1467		 * SYN floods from starving the service by filling the
1468		 * listen queue with bogus TFO connections.
1469		 */
1470		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1471		    (so->sol_qlimit / 2)) {
1472			int result;
1473
1474			result = tcp_fastopen_check_cookie(inc,
1475			    to->to_tfo_cookie, to->to_tfo_len,
1476			    &tfo_response_cookie);
1477			tfo_cookie_valid = (result > 0);
1478			tfo_response_cookie_valid = (result >= 0);
1479		}
1480
1481		/*
1482		 * Remember the TFO pending counter as it will have to be
1483		 * decremented below if we don't make it to syncache_tfo_expand().
1484		 */
1485		tfo_pending = tp->t_tfo_pending;
1486	}
1487
1488	/* By the time we drop the lock these should no longer be used. */
1489	so = NULL;
1490	tp = NULL;
1491
1492#ifdef MAC
1493	if (mac_syncache_init(&maclabel) != 0) {
1494		INP_WUNLOCK(inp);
1495		goto done;
1496	} else
1497		mac_syncache_create(maclabel, inp);
1498#endif
1499	if (!tfo_cookie_valid)
1500		INP_WUNLOCK(inp);
1501
1502	/*
1503	 * Remember the IP options, if any.
1504	 */
1505#ifdef INET6
1506	if (!(inc->inc_flags & INC_ISIPV6))
1507#endif
1508#ifdef INET
1509		ipopts = (m) ? ip_srcroute(m) : NULL;
1510#else
1511		ipopts = NULL;
1512#endif
1513
1514#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1515	/*
1516	 * If listening socket requested TCP digests, check that received
1517	 * SYN has signature and it is correct. If signature doesn't match
1518	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1519	 */
1520	if (ltflags & TF_SIGNATURE) {
1521		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1522			TCPSTAT_INC(tcps_sig_err_nosigopt);
1523			goto done;
1524		}
1525		if (!TCPMD5_ENABLED() ||
1526		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1527			goto done;
1528	}
1529#endif	/* TCP_SIGNATURE */
1530	/*
1531	 * See if we already have an entry for this connection.
1532	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1533	 *
1534	 * XXX: should the syncache be re-initialized with the contents
1535	 * of the new SYN here (which may have different options?)
1536	 *
1537	 * XXX: We do not check the sequence number to see if this is a
1538	 * real retransmit or a new connection attempt.  The question is
1539	 * how to handle such a case; either ignore it as spoofed, or
1540	 * drop the current entry and create a new one?
1541	 */
1542	if (syncache_cookiesonly()) {
1543		sc = NULL;
1544		sch = syncache_hashbucket(inc);
1545		locked = false;
1546	} else {
1547		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1548		locked = true;
1549		SCH_LOCK_ASSERT(sch);
1550	}
1551	if (sc != NULL) {
1552		if (tfo_cookie_valid)
1553			INP_WUNLOCK(inp);
1554		TCPSTAT_INC(tcps_sc_dupsyn);
1555		if (ipopts) {
1556			/*
1557			 * If we were remembering a previous source route,
1558			 * forget it and use the new one we've been given.
1559			 */
1560			if (sc->sc_ipopts)
1561				(void) m_free(sc->sc_ipopts);
1562			sc->sc_ipopts = ipopts;
1563		}
1564		/*
1565		 * Update timestamp if present.
1566		 */
1567		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1568			sc->sc_tsreflect = to->to_tsval;
1569		else
1570			sc->sc_flags &= ~SCF_TIMESTAMP;
1571		/*
1572		 * Disable ECN if needed.
1573		 */
1574		if ((sc->sc_flags & SCF_ECN) &&
1575		    ((th->th_flags & (TH_ECE|TH_CWR)) != (TH_ECE|TH_CWR))) {
1576			sc->sc_flags &= ~SCF_ECN;
1577		}
1578#ifdef MAC
1579		/*
1580		 * Since we have already unconditionally allocated label
1581		 * storage, free it up.  The syncache entry will already
1582		 * have an initialized label we can use.
1583		 */
1584		mac_syncache_destroy(&maclabel);
1585#endif
1586		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1587		/* Retransmit SYN|ACK and reset retransmit count. */
1588		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1589			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1590			    "resetting timer and retransmitting SYN|ACK\n",
1591			    s, __func__);
1592			free(s, M_TCPLOG);
1593		}
1594		if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1595			sc->sc_rxmits = 0;
1596			syncache_timeout(sc, sch, 1);
1597			TCPSTAT_INC(tcps_sndacks);
1598			TCPSTAT_INC(tcps_sndtotal);
1599		}
1600		SCH_UNLOCK(sch);
1601		goto donenoprobe;
1602	}
1603
1604	if (tfo_cookie_valid) {
1605		bzero(&scs, sizeof(scs));
1606		sc = &scs;
1607		goto skip_alloc;
1608	}
1609
1610	/*
1611	 * Skip allocating a syncache entry if we are just going to discard
1612	 * it later.
1613	 */
1614	if (!locked) {
1615		bzero(&scs, sizeof(scs));
1616		sc = &scs;
1617	} else
1618		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1619	if (sc == NULL) {
1620		/*
1621		 * The zone allocator couldn't provide more entries.
1622		 * Treat this as if the cache was full; drop the oldest
1623		 * entry and insert the new one.
1624		 */
1625		TCPSTAT_INC(tcps_sc_zonefail);
1626		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1627			sch->sch_last_overflow = time_uptime;
1628			syncache_drop(sc, sch);
1629			syncache_pause(inc);
1630		}
1631		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1632		if (sc == NULL) {
1633			if (V_tcp_syncookies) {
1634				bzero(&scs, sizeof(scs));
1635				sc = &scs;
1636			} else {
1637				KASSERT(locked,
1638				    ("%s: bucket unexpectedly unlocked",
1639				    __func__));
1640				SCH_UNLOCK(sch);
1641				if (ipopts)
1642					(void) m_free(ipopts);
1643				goto done;
1644			}
1645		}
1646	}
1647
1648skip_alloc:
1649	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1650		sc->sc_tfo_cookie = &tfo_response_cookie;
1651
1652	/*
1653	 * Fill in the syncache values.
1654	 */
1655#ifdef MAC
1656	sc->sc_label = maclabel;
1657#endif
1658	sc->sc_cred = cred;
1659	sc->sc_port = port;
1660	cred = NULL;
1661	sc->sc_ipopts = ipopts;
1662	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1663	sc->sc_ip_tos = ip_tos;
1664	sc->sc_ip_ttl = ip_ttl;
1665#ifdef TCP_OFFLOAD
1666	sc->sc_tod = tod;
1667	sc->sc_todctx = todctx;
1668#endif
1669	sc->sc_irs = th->th_seq;
1670	sc->sc_flags = 0;
1671	sc->sc_flowlabel = 0;
1672
1673	/*
1674	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1675	 * win was derived from socket earlier in the function.
1676	 */
1677	win = imax(win, 0);
1678	win = imin(win, TCP_MAXWIN);
1679	sc->sc_wnd = win;
1680
1681	if (V_tcp_do_rfc1323 &&
1682	    !(ltflags & TF_NOOPT)) {
1683		/*
1684		 * A timestamp received in a SYN makes
1685		 * it ok to send timestamp requests and replies.
1686		 */
1687		if (to->to_flags & TOF_TS) {
1688			sc->sc_tsreflect = to->to_tsval;
1689			sc->sc_flags |= SCF_TIMESTAMP;
1690			sc->sc_tsoff = tcp_new_ts_offset(inc);
1691		}
1692		if (to->to_flags & TOF_SCALE) {
1693			int wscale = 0;
1694
1695			/*
1696			 * Pick the smallest possible scaling factor that
1697			 * will still allow us to scale up to sb_max, aka
1698			 * kern.ipc.maxsockbuf.
1699			 *
1700			 * We do this because there are broken firewalls that
1701			 * will corrupt the window scale option, leading to
1702			 * the other endpoint believing that our advertised
1703			 * window is unscaled.  At scale factors larger than
1704			 * 5 the unscaled window will drop below 1500 bytes,
1705			 * leading to serious problems when traversing these
1706			 * broken firewalls.
1707			 *
1708			 * With the default maxsockbuf of 256K, a scale factor
1709			 * of 3 will be chosen by this algorithm.  Those who
1710			 * choose a larger maxsockbuf should watch out
1711			 * for the compatibility problems mentioned above.
1712			 *
1713			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1714			 * or <SYN,ACK>) segment itself is never scaled.
1715			 */
1716			while (wscale < TCP_MAX_WINSHIFT &&
1717			    (TCP_MAXWIN << wscale) < sb_max)
1718				wscale++;
1719			sc->sc_requested_r_scale = wscale;
1720			sc->sc_requested_s_scale = to->to_wscale;
1721			sc->sc_flags |= SCF_WINSCALE;
1722		}
1723	}
1724#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1725	/*
1726	 * If listening socket requested TCP digests, flag this in the
1727	 * syncache so that syncache_respond() will do the right thing
1728	 * with the SYN+ACK.
1729	 */
1730	if (ltflags & TF_SIGNATURE)
1731		sc->sc_flags |= SCF_SIGNATURE;
1732#endif	/* TCP_SIGNATURE */
1733	if (to->to_flags & TOF_SACKPERM)
1734		sc->sc_flags |= SCF_SACK;
1735	if (to->to_flags & TOF_MSS)
1736		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1737	if (ltflags & TF_NOOPT)
1738		sc->sc_flags |= SCF_NOOPT;
1739	if (((th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) &&
1740	    V_tcp_do_ecn)
1741		sc->sc_flags |= SCF_ECN;
1742
1743	if (V_tcp_syncookies)
1744		sc->sc_iss = syncookie_generate(sch, sc);
1745	else
1746		sc->sc_iss = arc4random();
1747#ifdef INET6
1748	if (autoflowlabel) {
1749		if (V_tcp_syncookies)
1750			sc->sc_flowlabel = sc->sc_iss;
1751		else
1752			sc->sc_flowlabel = ip6_randomflowlabel();
1753		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1754	}
1755#endif
1756	if (locked)
1757		SCH_UNLOCK(sch);
1758
1759	if (tfo_cookie_valid) {
1760		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1761		/* INP_WUNLOCK(inp) will be performed by the caller */
1762		rv = 1;
1763		goto tfo_expanded;
1764	}
1765
1766	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1767	/*
1768	 * Do a standard 3-way handshake.
1769	 */
1770	if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1771		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1772			syncache_free(sc);
1773		else if (sc != &scs)
1774			syncache_insert(sc, sch);   /* locks and unlocks sch */
1775		TCPSTAT_INC(tcps_sndacks);
1776		TCPSTAT_INC(tcps_sndtotal);
1777	} else {
1778		if (sc != &scs)
1779			syncache_free(sc);
1780		TCPSTAT_INC(tcps_sc_dropped);
1781	}
1782	goto donenoprobe;
1783
1784done:
1785	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1786donenoprobe:
1787	if (m) {
1788		*lsop = NULL;
1789		m_freem(m);
1790	}
1791	/*
1792	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1793	 * result in a new socket was processed and the associated pending
1794	 * counter has not yet been decremented.  All such TFO processing paths
1795	 * transit this point.
1796	 */
1797	if (tfo_pending != NULL)
1798		tcp_fastopen_decrement_counter(tfo_pending);
1799
1800tfo_expanded:
1801	if (cred != NULL)
1802		crfree(cred);
1803#ifdef MAC
1804	if (sc == &scs)
1805		mac_syncache_destroy(&maclabel);
1806#endif
1807	return (rv);
1808}
1809
1810/*
1811 * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1812 * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1813 */
1814static int
1815syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1816{
1817	struct ip *ip = NULL;
1818	struct mbuf *m;
1819	struct tcphdr *th = NULL;
1820	struct udphdr *udp = NULL;
1821	int optlen, error = 0;	/* Make compiler happy */
1822	u_int16_t hlen, tlen, mssopt, ulen;
1823	struct tcpopt to;
1824#ifdef INET6
1825	struct ip6_hdr *ip6 = NULL;
1826#endif
1827
1828	NET_EPOCH_ASSERT();
1829
1830	hlen =
1831#ifdef INET6
1832	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1833#endif
1834		sizeof(struct ip);
1835	tlen = hlen + sizeof(struct tcphdr);
1836	if (sc->sc_port) {
1837		tlen += sizeof(struct udphdr);
1838	}
1839	/* Determine MSS we advertize to other end of connection. */
1840	mssopt = tcp_mssopt(&sc->sc_inc);
1841	if (sc->sc_port)
1842		mssopt -= V_tcp_udp_tunneling_overhead;
1843	mssopt = max(mssopt, V_tcp_minmss);
1844
1845	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1846	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1847	    ("syncache: mbuf too small"));
1848
1849	/* Create the IP+TCP header from scratch. */
1850	m = m_gethdr(M_NOWAIT, MT_DATA);
1851	if (m == NULL)
1852		return (ENOBUFS);
1853#ifdef MAC
1854	mac_syncache_create_mbuf(sc->sc_label, m);
1855#endif
1856	m->m_data += max_linkhdr;
1857	m->m_len = tlen;
1858	m->m_pkthdr.len = tlen;
1859	m->m_pkthdr.rcvif = NULL;
1860
1861#ifdef INET6
1862	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1863		ip6 = mtod(m, struct ip6_hdr *);
1864		ip6->ip6_vfc = IPV6_VERSION;
1865		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1866		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1867		ip6->ip6_plen = htons(tlen - hlen);
1868		/* ip6_hlim is set after checksum */
1869		/* Zero out traffic class and flow label. */
1870		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1871		ip6->ip6_flow |= sc->sc_flowlabel;
1872		if (sc->sc_port != 0) {
1873			ip6->ip6_nxt = IPPROTO_UDP;
1874			udp = (struct udphdr *)(ip6 + 1);
1875			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1876			udp->uh_dport = sc->sc_port;
1877			ulen = (tlen - sizeof(struct ip6_hdr));
1878			th = (struct tcphdr *)(udp + 1);
1879		} else {
1880			ip6->ip6_nxt = IPPROTO_TCP;
1881			th = (struct tcphdr *)(ip6 + 1);
1882		}
1883		ip6->ip6_flow |= htonl(sc->sc_ip_tos << 20);
1884	}
1885#endif
1886#if defined(INET6) && defined(INET)
1887	else
1888#endif
1889#ifdef INET
1890	{
1891		ip = mtod(m, struct ip *);
1892		ip->ip_v = IPVERSION;
1893		ip->ip_hl = sizeof(struct ip) >> 2;
1894		ip->ip_len = htons(tlen);
1895		ip->ip_id = 0;
1896		ip->ip_off = 0;
1897		ip->ip_sum = 0;
1898		ip->ip_src = sc->sc_inc.inc_laddr;
1899		ip->ip_dst = sc->sc_inc.inc_faddr;
1900		ip->ip_ttl = sc->sc_ip_ttl;
1901		ip->ip_tos = sc->sc_ip_tos;
1902
1903		/*
1904		 * See if we should do MTU discovery.  Route lookups are
1905		 * expensive, so we will only unset the DF bit if:
1906		 *
1907		 *	1) path_mtu_discovery is disabled
1908		 *	2) the SCF_UNREACH flag has been set
1909		 */
1910		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1911		       ip->ip_off |= htons(IP_DF);
1912		if (sc->sc_port == 0) {
1913			ip->ip_p = IPPROTO_TCP;
1914			th = (struct tcphdr *)(ip + 1);
1915		} else {
1916			ip->ip_p = IPPROTO_UDP;
1917			udp = (struct udphdr *)(ip + 1);
1918			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1919			udp->uh_dport = sc->sc_port;
1920			ulen = (tlen - sizeof(struct ip));
1921			th = (struct tcphdr *)(udp + 1);
1922		}
1923	}
1924#endif /* INET */
1925	th->th_sport = sc->sc_inc.inc_lport;
1926	th->th_dport = sc->sc_inc.inc_fport;
1927
1928	if (flags & TH_SYN)
1929		th->th_seq = htonl(sc->sc_iss);
1930	else
1931		th->th_seq = htonl(sc->sc_iss + 1);
1932	th->th_ack = htonl(sc->sc_irs + 1);
1933	th->th_off = sizeof(struct tcphdr) >> 2;
1934	th->th_x2 = 0;
1935	th->th_flags = flags;
1936	th->th_win = htons(sc->sc_wnd);
1937	th->th_urp = 0;
1938
1939	if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
1940		th->th_flags |= TH_ECE;
1941		TCPSTAT_INC(tcps_ecn_shs);
1942	}
1943
1944	/* Tack on the TCP options. */
1945	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1946		to.to_flags = 0;
1947
1948		if (flags & TH_SYN) {
1949			to.to_mss = mssopt;
1950			to.to_flags = TOF_MSS;
1951			if (sc->sc_flags & SCF_WINSCALE) {
1952				to.to_wscale = sc->sc_requested_r_scale;
1953				to.to_flags |= TOF_SCALE;
1954			}
1955			if (sc->sc_flags & SCF_SACK)
1956				to.to_flags |= TOF_SACKPERM;
1957#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1958			if (sc->sc_flags & SCF_SIGNATURE)
1959				to.to_flags |= TOF_SIGNATURE;
1960#endif
1961			if (sc->sc_tfo_cookie) {
1962				to.to_flags |= TOF_FASTOPEN;
1963				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1964				to.to_tfo_cookie = sc->sc_tfo_cookie;
1965				/* don't send cookie again when retransmitting response */
1966				sc->sc_tfo_cookie = NULL;
1967			}
1968		}
1969		if (sc->sc_flags & SCF_TIMESTAMP) {
1970			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1971			to.to_tsecr = sc->sc_tsreflect;
1972			to.to_flags |= TOF_TS;
1973		}
1974		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1975
1976		/* Adjust headers by option size. */
1977		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1978		m->m_len += optlen;
1979		m->m_pkthdr.len += optlen;
1980#ifdef INET6
1981		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1982			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1983		else
1984#endif
1985			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1986#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1987		if (sc->sc_flags & SCF_SIGNATURE) {
1988			KASSERT(to.to_flags & TOF_SIGNATURE,
1989			    ("tcp_addoptions() didn't set tcp_signature"));
1990
1991			/* NOTE: to.to_signature is inside of mbuf */
1992			if (!TCPMD5_ENABLED() ||
1993			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1994				m_freem(m);
1995				return (EACCES);
1996			}
1997		}
1998#endif
1999	} else
2000		optlen = 0;
2001
2002	if (udp) {
2003		ulen += optlen;
2004		udp->uh_ulen = htons(ulen);
2005	}
2006	M_SETFIB(m, sc->sc_inc.inc_fibnum);
2007	/*
2008	 * If we have peer's SYN and it has a flowid, then let's assign it to
2009	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
2010	 * to SYN|ACK due to lack of inp here.
2011	 */
2012	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
2013		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
2014		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
2015	}
2016#ifdef INET6
2017	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
2018		if (sc->sc_port) {
2019			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
2020			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2021			udp->uh_sum = in6_cksum_pseudo(ip6, ulen,
2022			      IPPROTO_UDP, 0);
2023			th->th_sum = htons(0);
2024		} else {
2025			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2026			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2027			th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
2028			    IPPROTO_TCP, 0);
2029		}
2030		ip6->ip6_hlim = sc->sc_ip_ttl;
2031#ifdef TCP_OFFLOAD
2032		if (ADDED_BY_TOE(sc)) {
2033			struct toedev *tod = sc->sc_tod;
2034
2035			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2036
2037			return (error);
2038		}
2039#endif
2040		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
2041		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2042	}
2043#endif
2044#if defined(INET6) && defined(INET)
2045	else
2046#endif
2047#ifdef INET
2048	{
2049		if (sc->sc_port) {
2050			m->m_pkthdr.csum_flags = CSUM_UDP;
2051			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2052			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
2053			      ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
2054			th->th_sum = htons(0);
2055		} else {
2056			m->m_pkthdr.csum_flags = CSUM_TCP;
2057			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2058			th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2059			    htons(tlen + optlen - hlen + IPPROTO_TCP));
2060		}
2061#ifdef TCP_OFFLOAD
2062		if (ADDED_BY_TOE(sc)) {
2063			struct toedev *tod = sc->sc_tod;
2064
2065			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2066
2067			return (error);
2068		}
2069#endif
2070		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
2071		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
2072	}
2073#endif
2074	return (error);
2075}
2076
2077/*
2078 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
2079 * that exceed the capacity of the syncache by avoiding the storage of any
2080 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
2081 * attacks where the attacker does not have access to our responses.
2082 *
2083 * Syncookies encode and include all necessary information about the
2084 * connection setup within the SYN|ACK that we send back.  That way we
2085 * can avoid keeping any local state until the ACK to our SYN|ACK returns
2086 * (if ever).  Normally the syncache and syncookies are running in parallel
2087 * with the latter taking over when the former is exhausted.  When matching
2088 * syncache entry is found the syncookie is ignored.
2089 *
2090 * The only reliable information persisting the 3WHS is our initial sequence
2091 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
2092 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2093 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
2094 * returns and signifies a legitimate connection if it matches the ACK.
2095 *
2096 * The available space of 32 bits to store the hash and to encode the SYN
2097 * option information is very tight and we should have at least 24 bits for
2098 * the MAC to keep the number of guesses by blind spoofing reasonably high.
2099 *
2100 * SYN option information we have to encode to fully restore a connection:
2101 * MSS: is imporant to chose an optimal segment size to avoid IP level
2102 *   fragmentation along the path.  The common MSS values can be encoded
2103 *   in a 3-bit table.  Uncommon values are captured by the next lower value
2104 *   in the table leading to a slight increase in packetization overhead.
2105 * WSCALE: is necessary to allow large windows to be used for high delay-
2106 *   bandwidth product links.  Not scaling the window when it was initially
2107 *   negotiated is bad for performance as lack of scaling further decreases
2108 *   the apparent available send window.  We only need to encode the WSCALE
2109 *   we received from the remote end.  Our end can be recalculated at any
2110 *   time.  The common WSCALE values can be encoded in a 3-bit table.
2111 *   Uncommon values are captured by the next lower value in the table
2112 *   making us under-estimate the available window size halving our
2113 *   theoretically possible maximum throughput for that connection.
2114 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2115 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2116 *   that are included in all segments on a connection.  We enable them when
2117 *   the ACK has them.
2118 *
2119 * Security of syncookies and attack vectors:
2120 *
2121 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2122 * together with the gloabl secret to make it unique per connection attempt.
2123 * Thus any change of any of those parameters results in a different MAC output
2124 * in an unpredictable way unless a collision is encountered.  24 bits of the
2125 * MAC are embedded into the ISS.
2126 *
2127 * To prevent replay attacks two rotating global secrets are updated with a
2128 * new random value every 15 seconds.  The life-time of a syncookie is thus
2129 * 15-30 seconds.
2130 *
2131 * Vector 1: Attacking the secret.  This requires finding a weakness in the
2132 * MAC itself or the way it is used here.  The attacker can do a chosen plain
2133 * text attack by varying and testing the all parameters under his control.
2134 * The strength depends on the size and randomness of the secret, and the
2135 * cryptographic security of the MAC function.  Due to the constant updating
2136 * of the secret the attacker has at most 29.999 seconds to find the secret
2137 * and launch spoofed connections.  After that he has to start all over again.
2138 *
2139 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
2140 * size an average of 4,823 attempts are required for a 50% chance of success
2141 * to spoof a single syncookie (birthday collision paradox).  However the
2142 * attacker is blind and doesn't know if one of his attempts succeeded unless
2143 * he has a side channel to interfere success from.  A single connection setup
2144 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2145 * This many attempts are required for each one blind spoofed connection.  For
2146 * every additional spoofed connection he has to launch another N attempts.
2147 * Thus for a sustained rate 100 spoofed connections per second approximately
2148 * 1,800,000 packets per second would have to be sent.
2149 *
2150 * NB: The MAC function should be fast so that it doesn't become a CPU
2151 * exhaustion attack vector itself.
2152 *
2153 * References:
2154 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2155 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2156 *   http://cr.yp.to/syncookies.html    (overview)
2157 *   http://cr.yp.to/syncookies/archive (details)
2158 *
2159 *
2160 * Schematic construction of a syncookie enabled Initial Sequence Number:
2161 *  0        1         2         3
2162 *  12345678901234567890123456789012
2163 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2164 *
2165 *  x 24 MAC (truncated)
2166 *  W  3 Send Window Scale index
2167 *  M  3 MSS index
2168 *  S  1 SACK permitted
2169 *  P  1 Odd/even secret
2170 */
2171
2172/*
2173 * Distribution and probability of certain MSS values.  Those in between are
2174 * rounded down to the next lower one.
2175 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2176 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
2177 */
2178static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2179
2180/*
2181 * Distribution and probability of certain WSCALE values.  We have to map the
2182 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2183 * bits based on prevalence of certain values.  Where we don't have an exact
2184 * match for are rounded down to the next lower one letting us under-estimate
2185 * the true available window.  At the moment this would happen only for the
2186 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2187 * and window size).  The absence of the WSCALE option (no scaling in either
2188 * direction) is encoded with index zero.
2189 * [WSCALE values histograms, Allman, 2012]
2190 *                            X 10 10 35  5  6 14 10%   by host
2191 *                            X 11  4  5  5 18 49  3%   by connections
2192 */
2193static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2194
2195/*
2196 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
2197 * and good cryptographic properties.
2198 */
2199static uint32_t
2200syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2201    uint8_t *secbits, uintptr_t secmod)
2202{
2203	SIPHASH_CTX ctx;
2204	uint32_t siphash[2];
2205
2206	SipHash24_Init(&ctx);
2207	SipHash_SetKey(&ctx, secbits);
2208	switch (inc->inc_flags & INC_ISIPV6) {
2209#ifdef INET
2210	case 0:
2211		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2212		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2213		break;
2214#endif
2215#ifdef INET6
2216	case INC_ISIPV6:
2217		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2218		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2219		break;
2220#endif
2221	}
2222	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2223	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2224	SipHash_Update(&ctx, &irs, sizeof(irs));
2225	SipHash_Update(&ctx, &flags, sizeof(flags));
2226	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2227	SipHash_Final((u_int8_t *)&siphash, &ctx);
2228
2229	return (siphash[0] ^ siphash[1]);
2230}
2231
2232static tcp_seq
2233syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2234{
2235	u_int i, secbit, wscale;
2236	uint32_t iss, hash;
2237	uint8_t *secbits;
2238	union syncookie cookie;
2239
2240	cookie.cookie = 0;
2241
2242	/* Map our computed MSS into the 3-bit index. */
2243	for (i = nitems(tcp_sc_msstab) - 1;
2244	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2245	     i--)
2246		;
2247	cookie.flags.mss_idx = i;
2248
2249	/*
2250	 * Map the send window scale into the 3-bit index but only if
2251	 * the wscale option was received.
2252	 */
2253	if (sc->sc_flags & SCF_WINSCALE) {
2254		wscale = sc->sc_requested_s_scale;
2255		for (i = nitems(tcp_sc_wstab) - 1;
2256		    tcp_sc_wstab[i] > wscale && i > 0;
2257		     i--)
2258			;
2259		cookie.flags.wscale_idx = i;
2260	}
2261
2262	/* Can we do SACK? */
2263	if (sc->sc_flags & SCF_SACK)
2264		cookie.flags.sack_ok = 1;
2265
2266	/* Which of the two secrets to use. */
2267	secbit = V_tcp_syncache.secret.oddeven & 0x1;
2268	cookie.flags.odd_even = secbit;
2269
2270	secbits = V_tcp_syncache.secret.key[secbit];
2271	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2272	    (uintptr_t)sch);
2273
2274	/*
2275	 * Put the flags into the hash and XOR them to get better ISS number
2276	 * variance.  This doesn't enhance the cryptographic strength and is
2277	 * done to prevent the 8 cookie bits from showing up directly on the
2278	 * wire.
2279	 */
2280	iss = hash & ~0xff;
2281	iss |= cookie.cookie ^ (hash >> 24);
2282
2283	TCPSTAT_INC(tcps_sc_sendcookie);
2284	return (iss);
2285}
2286
2287static struct syncache *
2288syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2289    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2290    struct socket *lso, uint16_t port)
2291{
2292	uint32_t hash;
2293	uint8_t *secbits;
2294	tcp_seq ack, seq;
2295	int wnd, wscale = 0;
2296	union syncookie cookie;
2297
2298	/*
2299	 * Pull information out of SYN-ACK/ACK and revert sequence number
2300	 * advances.
2301	 */
2302	ack = th->th_ack - 1;
2303	seq = th->th_seq - 1;
2304
2305	/*
2306	 * Unpack the flags containing enough information to restore the
2307	 * connection.
2308	 */
2309	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2310
2311	/* Which of the two secrets to use. */
2312	secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2313
2314	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2315
2316	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2317	if ((ack & ~0xff) != (hash & ~0xff))
2318		return (NULL);
2319
2320	/* Fill in the syncache values. */
2321	sc->sc_flags = 0;
2322	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2323	sc->sc_ipopts = NULL;
2324
2325	sc->sc_irs = seq;
2326	sc->sc_iss = ack;
2327
2328	switch (inc->inc_flags & INC_ISIPV6) {
2329#ifdef INET
2330	case 0:
2331		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2332		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2333		break;
2334#endif
2335#ifdef INET6
2336	case INC_ISIPV6:
2337		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2338			sc->sc_flowlabel =
2339			    htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2340		break;
2341#endif
2342	}
2343
2344	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2345
2346	/* We can simply recompute receive window scale we sent earlier. */
2347	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2348		wscale++;
2349
2350	/* Only use wscale if it was enabled in the orignal SYN. */
2351	if (cookie.flags.wscale_idx > 0) {
2352		sc->sc_requested_r_scale = wscale;
2353		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2354		sc->sc_flags |= SCF_WINSCALE;
2355	}
2356
2357	wnd = lso->sol_sbrcv_hiwat;
2358	wnd = imax(wnd, 0);
2359	wnd = imin(wnd, TCP_MAXWIN);
2360	sc->sc_wnd = wnd;
2361
2362	if (cookie.flags.sack_ok)
2363		sc->sc_flags |= SCF_SACK;
2364
2365	if (to->to_flags & TOF_TS) {
2366		sc->sc_flags |= SCF_TIMESTAMP;
2367		sc->sc_tsreflect = to->to_tsval;
2368		sc->sc_tsoff = tcp_new_ts_offset(inc);
2369	}
2370
2371	if (to->to_flags & TOF_SIGNATURE)
2372		sc->sc_flags |= SCF_SIGNATURE;
2373
2374	sc->sc_rxmits = 0;
2375
2376	sc->sc_port = port;
2377
2378	TCPSTAT_INC(tcps_sc_recvcookie);
2379	return (sc);
2380}
2381
2382#ifdef INVARIANTS
2383static int
2384syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2385    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2386    struct socket *lso, uint16_t port)
2387{
2388	struct syncache scs, *scx;
2389	char *s;
2390
2391	bzero(&scs, sizeof(scs));
2392	scx = syncookie_lookup(inc, sch, &scs, th, to, lso, port);
2393
2394	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2395		return (0);
2396
2397	if (scx != NULL) {
2398		if (sc->sc_peer_mss != scx->sc_peer_mss)
2399			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2400			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2401
2402		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2403			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2404			    s, __func__, sc->sc_requested_r_scale,
2405			    scx->sc_requested_r_scale);
2406
2407		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2408			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2409			    s, __func__, sc->sc_requested_s_scale,
2410			    scx->sc_requested_s_scale);
2411
2412		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2413			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2414	}
2415
2416	if (s != NULL)
2417		free(s, M_TCPLOG);
2418	return (0);
2419}
2420#endif /* INVARIANTS */
2421
2422static void
2423syncookie_reseed(void *arg)
2424{
2425	struct tcp_syncache *sc = arg;
2426	uint8_t *secbits;
2427	int secbit;
2428
2429	/*
2430	 * Reseeding the secret doesn't have to be protected by a lock.
2431	 * It only must be ensured that the new random values are visible
2432	 * to all CPUs in a SMP environment.  The atomic with release
2433	 * semantics ensures that.
2434	 */
2435	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2436	secbits = sc->secret.key[secbit];
2437	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2438	atomic_add_rel_int(&sc->secret.oddeven, 1);
2439
2440	/* Reschedule ourself. */
2441	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2442}
2443
2444/*
2445 * We have overflowed a bucket. Let's pause dealing with the syncache.
2446 * This function will increment the bucketoverflow statistics appropriately
2447 * (once per pause when pausing is enabled; otherwise, once per overflow).
2448 */
2449static void
2450syncache_pause(struct in_conninfo *inc)
2451{
2452	time_t delta;
2453	const char *s;
2454
2455	/* XXX:
2456	 * 2. Add sysctl read here so we don't get the benefit of this
2457	 * change without the new sysctl.
2458	 */
2459
2460	/*
2461	 * Try an unlocked read. If we already know that another thread
2462	 * has activated the feature, there is no need to proceed.
2463	 */
2464	if (V_tcp_syncache.paused)
2465		return;
2466
2467	/* Are cookied enabled? If not, we can't pause. */
2468	if (!V_tcp_syncookies) {
2469		TCPSTAT_INC(tcps_sc_bucketoverflow);
2470		return;
2471	}
2472
2473	/*
2474	 * We may be the first thread to find an overflow. Get the lock
2475	 * and evaluate if we need to take action.
2476	 */
2477	mtx_lock(&V_tcp_syncache.pause_mtx);
2478	if (V_tcp_syncache.paused) {
2479		mtx_unlock(&V_tcp_syncache.pause_mtx);
2480		return;
2481	}
2482
2483	/* Activate protection. */
2484	V_tcp_syncache.paused = true;
2485	TCPSTAT_INC(tcps_sc_bucketoverflow);
2486
2487	/*
2488	 * Determine the last backoff time. If we are seeing a re-newed
2489	 * attack within that same time after last reactivating the syncache,
2490	 * consider it an extension of the same attack.
2491	 */
2492	delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2493	if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2494		if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2495			delta <<= 1;
2496			V_tcp_syncache.pause_backoff++;
2497		}
2498	} else {
2499		delta = TCP_SYNCACHE_PAUSE_TIME;
2500		V_tcp_syncache.pause_backoff = 0;
2501	}
2502
2503	/* Log a warning, including IP addresses, if able. */
2504	if (inc != NULL)
2505		s = tcp_log_addrs(inc, NULL, NULL, NULL);
2506	else
2507		s = (const char *)NULL;
2508	log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2509	    "the next %lld seconds%s%s%s\n", (long long)delta,
2510	    (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2511	    (s != NULL) ? ")" : "");
2512	free(__DECONST(void *, s), M_TCPLOG);
2513
2514	/* Use the calculated delta to set a new pause time. */
2515	V_tcp_syncache.pause_until = time_uptime + delta;
2516	callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2517	    &V_tcp_syncache);
2518	mtx_unlock(&V_tcp_syncache.pause_mtx);
2519}
2520
2521/* Evaluate whether we need to unpause. */
2522static void
2523syncache_unpause(void *arg)
2524{
2525	struct tcp_syncache *sc;
2526	time_t delta;
2527
2528	sc = arg;
2529	mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2530	callout_deactivate(&sc->pause_co);
2531
2532	/*
2533	 * Check to make sure we are not running early. If the pause
2534	 * time has expired, then deactivate the protection.
2535	 */
2536	if ((delta = sc->pause_until - time_uptime) > 0)
2537		callout_schedule(&sc->pause_co, delta * hz);
2538	else
2539		sc->paused = false;
2540}
2541
2542/*
2543 * Exports the syncache entries to userland so that netstat can display
2544 * them alongside the other sockets.  This function is intended to be
2545 * called only from tcp_pcblist.
2546 *
2547 * Due to concurrency on an active system, the number of pcbs exported
2548 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2549 * amount of space the caller allocated for this function to use.
2550 */
2551int
2552syncache_pcblist(struct sysctl_req *req)
2553{
2554	struct xtcpcb xt;
2555	struct syncache *sc;
2556	struct syncache_head *sch;
2557	int error, i;
2558
2559	bzero(&xt, sizeof(xt));
2560	xt.xt_len = sizeof(xt);
2561	xt.t_state = TCPS_SYN_RECEIVED;
2562	xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2563	xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2564	xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2565	xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2566
2567	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
2568		sch = &V_tcp_syncache.hashbase[i];
2569		SCH_LOCK(sch);
2570		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2571			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2572				continue;
2573			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2574				xt.xt_inp.inp_vflag = INP_IPV6;
2575			else
2576				xt.xt_inp.inp_vflag = INP_IPV4;
2577			xt.xt_encaps_port = sc->sc_port;
2578			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2579			    sizeof (struct in_conninfo));
2580			error = SYSCTL_OUT(req, &xt, sizeof xt);
2581			if (error) {
2582				SCH_UNLOCK(sch);
2583				return (0);
2584			}
2585		}
2586		SCH_UNLOCK(sch);
2587	}
2588
2589	return (0);
2590}
2591