1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
5 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * a) Redistributions of source code must retain the above copyright notice,
12 *    this list of conditions and the following disclaimer.
13 *
14 * b) Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the distribution.
17 *
18 * c) Neither the name of Cisco Systems, Inc. nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include <netinet/sctp_os.h>
39#include <netinet/sctp.h>
40#include <netinet/sctp_header.h>
41#include <netinet/sctp_pcb.h>
42#include <netinet/sctp_var.h>
43#include <netinet/sctp_sysctl.h>
44#include <netinet/sctputil.h>
45#include <netinet/sctp_indata.h>
46#include <netinet/sctp_output.h>
47#include <netinet/sctp_auth.h>
48
49#ifdef SCTP_DEBUG
50#define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
51#define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
52#endif				/* SCTP_DEBUG */
53
54void
55sctp_clear_chunklist(sctp_auth_chklist_t *chklist)
56{
57	memset(chklist, 0, sizeof(*chklist));
58	/* chklist->num_chunks = 0; */
59}
60
61sctp_auth_chklist_t *
62sctp_alloc_chunklist(void)
63{
64	sctp_auth_chklist_t *chklist;
65
66	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
67	    SCTP_M_AUTH_CL);
68	if (chklist == NULL) {
69		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
70	} else {
71		sctp_clear_chunklist(chklist);
72	}
73	return (chklist);
74}
75
76void
77sctp_free_chunklist(sctp_auth_chklist_t *list)
78{
79	if (list != NULL)
80		SCTP_FREE(list, SCTP_M_AUTH_CL);
81}
82
83sctp_auth_chklist_t *
84sctp_copy_chunklist(sctp_auth_chklist_t *list)
85{
86	sctp_auth_chklist_t *new_list;
87
88	if (list == NULL)
89		return (NULL);
90
91	/* get a new list */
92	new_list = sctp_alloc_chunklist();
93	if (new_list == NULL)
94		return (NULL);
95	/* copy it */
96	memcpy(new_list, list, sizeof(*new_list));
97
98	return (new_list);
99}
100
101/*
102 * add a chunk to the required chunks list
103 */
104int
105sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
106{
107	if (list == NULL)
108		return (-1);
109
110	/* is chunk restricted? */
111	if ((chunk == SCTP_INITIATION) ||
112	    (chunk == SCTP_INITIATION_ACK) ||
113	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114	    (chunk == SCTP_AUTHENTICATION)) {
115		return (-1);
116	}
117	if (list->chunks[chunk] == 0) {
118		list->chunks[chunk] = 1;
119		list->num_chunks++;
120		SCTPDBG(SCTP_DEBUG_AUTH1,
121		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122		    chunk, chunk);
123	}
124	return (0);
125}
126
127/*
128 * delete a chunk from the required chunks list
129 */
130int
131sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
132{
133	if (list == NULL)
134		return (-1);
135
136	if (list->chunks[chunk] == 1) {
137		list->chunks[chunk] = 0;
138		list->num_chunks--;
139		SCTPDBG(SCTP_DEBUG_AUTH1,
140		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
141		    chunk, chunk);
142	}
143	return (0);
144}
145
146size_t
147sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list)
148{
149	if (list == NULL)
150		return (0);
151	else
152		return (list->num_chunks);
153}
154
155/*
156 * return the current number and list of required chunks caller must
157 * guarantee ptr has space for up to 256 bytes
158 */
159int
160sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
161{
162	int i, count = 0;
163
164	if (list == NULL)
165		return (0);
166
167	for (i = 0; i < 256; i++) {
168		if (list->chunks[i] != 0) {
169			*ptr++ = i;
170			count++;
171		}
172	}
173	return (count);
174}
175
176int
177sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
178{
179	int i, size = 0;
180
181	if (list == NULL)
182		return (0);
183
184	if (list->num_chunks <= 32) {
185		/* just list them, one byte each */
186		for (i = 0; i < 256; i++) {
187			if (list->chunks[i] != 0) {
188				*ptr++ = i;
189				size++;
190			}
191		}
192	} else {
193		int index, offset;
194
195		/* pack into a 32 byte bitfield */
196		for (i = 0; i < 256; i++) {
197			if (list->chunks[i] != 0) {
198				index = i / 8;
199				offset = i % 8;
200				ptr[index] |= (1 << offset);
201			}
202		}
203		size = 32;
204	}
205	return (size);
206}
207
208int
209sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks,
210    sctp_auth_chklist_t *list)
211{
212	int i;
213	int size;
214
215	if (list == NULL)
216		return (0);
217
218	if (num_chunks <= 32) {
219		/* just pull them, one byte each */
220		for (i = 0; i < num_chunks; i++) {
221			(void)sctp_auth_add_chunk(*ptr++, list);
222		}
223		size = num_chunks;
224	} else {
225		int index, offset;
226
227		/* unpack from a 32 byte bitfield */
228		for (index = 0; index < 32; index++) {
229			for (offset = 0; offset < 8; offset++) {
230				if (ptr[index] & (1 << offset)) {
231					(void)sctp_auth_add_chunk((index * 8) + offset, list);
232				}
233			}
234		}
235		size = 32;
236	}
237	return (size);
238}
239
240/*
241 * allocate structure space for a key of length keylen
242 */
243sctp_key_t *
244sctp_alloc_key(uint32_t keylen)
245{
246	sctp_key_t *new_key;
247
248	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
249	    SCTP_M_AUTH_KY);
250	if (new_key == NULL) {
251		/* out of memory */
252		return (NULL);
253	}
254	new_key->keylen = keylen;
255	return (new_key);
256}
257
258void
259sctp_free_key(sctp_key_t *key)
260{
261	if (key != NULL)
262		SCTP_FREE(key, SCTP_M_AUTH_KY);
263}
264
265void
266sctp_print_key(sctp_key_t *key, const char *str)
267{
268	uint32_t i;
269
270	if (key == NULL) {
271		SCTP_PRINTF("%s: [Null key]\n", str);
272		return;
273	}
274	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
275	if (key->keylen) {
276		for (i = 0; i < key->keylen; i++)
277			SCTP_PRINTF("%02x", key->key[i]);
278		SCTP_PRINTF("\n");
279	} else {
280		SCTP_PRINTF("[Null key]\n");
281	}
282}
283
284void
285sctp_show_key(sctp_key_t *key, const char *str)
286{
287	uint32_t i;
288
289	if (key == NULL) {
290		SCTP_PRINTF("%s: [Null key]\n", str);
291		return;
292	}
293	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
294	if (key->keylen) {
295		for (i = 0; i < key->keylen; i++)
296			SCTP_PRINTF("%02x", key->key[i]);
297		SCTP_PRINTF("\n");
298	} else {
299		SCTP_PRINTF("[Null key]\n");
300	}
301}
302
303static uint32_t
304sctp_get_keylen(sctp_key_t *key)
305{
306	if (key != NULL)
307		return (key->keylen);
308	else
309		return (0);
310}
311
312/*
313 * generate a new random key of length 'keylen'
314 */
315sctp_key_t *
316sctp_generate_random_key(uint32_t keylen)
317{
318	sctp_key_t *new_key;
319
320	new_key = sctp_alloc_key(keylen);
321	if (new_key == NULL) {
322		/* out of memory */
323		return (NULL);
324	}
325	SCTP_READ_RANDOM(new_key->key, keylen);
326	new_key->keylen = keylen;
327	return (new_key);
328}
329
330sctp_key_t *
331sctp_set_key(uint8_t *key, uint32_t keylen)
332{
333	sctp_key_t *new_key;
334
335	new_key = sctp_alloc_key(keylen);
336	if (new_key == NULL) {
337		/* out of memory */
338		return (NULL);
339	}
340	memcpy(new_key->key, key, keylen);
341	return (new_key);
342}
343
344/*-
345 * given two keys of variable size, compute which key is "larger/smaller"
346 * returns:  1 if key1 > key2
347 *          -1 if key1 < key2
348 *           0 if key1 = key2
349 */
350static int
351sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2)
352{
353	uint32_t maxlen;
354	uint32_t i;
355	uint32_t key1len, key2len;
356	uint8_t *key_1, *key_2;
357	uint8_t val1, val2;
358
359	/* sanity/length check */
360	key1len = sctp_get_keylen(key1);
361	key2len = sctp_get_keylen(key2);
362	if ((key1len == 0) && (key2len == 0))
363		return (0);
364	else if (key1len == 0)
365		return (-1);
366	else if (key2len == 0)
367		return (1);
368
369	if (key1len < key2len) {
370		maxlen = key2len;
371	} else {
372		maxlen = key1len;
373	}
374	key_1 = key1->key;
375	key_2 = key2->key;
376	/* check for numeric equality */
377	for (i = 0; i < maxlen; i++) {
378		/* left-pad with zeros */
379		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
380		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
381		if (val1 > val2) {
382			return (1);
383		} else if (val1 < val2) {
384			return (-1);
385		}
386	}
387	/* keys are equal value, so check lengths */
388	if (key1len == key2len)
389		return (0);
390	else if (key1len < key2len)
391		return (-1);
392	else
393		return (1);
394}
395
396/*
397 * generate the concatenated keying material based on the two keys and the
398 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
399 * order for concatenation
400 */
401sctp_key_t *
402sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared)
403{
404	uint32_t keylen;
405	sctp_key_t *new_key;
406	uint8_t *key_ptr;
407
408	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
409	    sctp_get_keylen(shared);
410
411	if (keylen > 0) {
412		/* get space for the new key */
413		new_key = sctp_alloc_key(keylen);
414		if (new_key == NULL) {
415			/* out of memory */
416			return (NULL);
417		}
418		new_key->keylen = keylen;
419		key_ptr = new_key->key;
420	} else {
421		/* all keys empty/null?! */
422		return (NULL);
423	}
424
425	/* concatenate the keys */
426	if (sctp_compare_key(key1, key2) <= 0) {
427		/* key is shared + key1 + key2 */
428		if (sctp_get_keylen(shared)) {
429			memcpy(key_ptr, shared->key, shared->keylen);
430			key_ptr += shared->keylen;
431		}
432		if (sctp_get_keylen(key1)) {
433			memcpy(key_ptr, key1->key, key1->keylen);
434			key_ptr += key1->keylen;
435		}
436		if (sctp_get_keylen(key2)) {
437			memcpy(key_ptr, key2->key, key2->keylen);
438		}
439	} else {
440		/* key is shared + key2 + key1 */
441		if (sctp_get_keylen(shared)) {
442			memcpy(key_ptr, shared->key, shared->keylen);
443			key_ptr += shared->keylen;
444		}
445		if (sctp_get_keylen(key2)) {
446			memcpy(key_ptr, key2->key, key2->keylen);
447			key_ptr += key2->keylen;
448		}
449		if (sctp_get_keylen(key1)) {
450			memcpy(key_ptr, key1->key, key1->keylen);
451		}
452	}
453	return (new_key);
454}
455
456sctp_sharedkey_t *
457sctp_alloc_sharedkey(void)
458{
459	sctp_sharedkey_t *new_key;
460
461	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
462	    SCTP_M_AUTH_KY);
463	if (new_key == NULL) {
464		/* out of memory */
465		return (NULL);
466	}
467	new_key->keyid = 0;
468	new_key->key = NULL;
469	new_key->refcount = 1;
470	new_key->deactivated = 0;
471	return (new_key);
472}
473
474void
475sctp_free_sharedkey(sctp_sharedkey_t *skey)
476{
477	if (skey == NULL)
478		return;
479
480	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
481		if (skey->key != NULL)
482			sctp_free_key(skey->key);
483		SCTP_FREE(skey, SCTP_M_AUTH_KY);
484	}
485}
486
487sctp_sharedkey_t *
488sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
489{
490	sctp_sharedkey_t *skey;
491
492	LIST_FOREACH(skey, shared_keys, next) {
493		if (skey->keyid == key_id)
494			return (skey);
495	}
496	return (NULL);
497}
498
499int
500sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
501    sctp_sharedkey_t *new_skey)
502{
503	sctp_sharedkey_t *skey;
504
505	if ((shared_keys == NULL) || (new_skey == NULL))
506		return (EINVAL);
507
508	/* insert into an empty list? */
509	if (LIST_EMPTY(shared_keys)) {
510		LIST_INSERT_HEAD(shared_keys, new_skey, next);
511		return (0);
512	}
513	/* insert into the existing list, ordered by key id */
514	LIST_FOREACH(skey, shared_keys, next) {
515		if (new_skey->keyid < skey->keyid) {
516			/* insert it before here */
517			LIST_INSERT_BEFORE(skey, new_skey, next);
518			return (0);
519		} else if (new_skey->keyid == skey->keyid) {
520			/* replace the existing key */
521			/* verify this key *can* be replaced */
522			if ((skey->deactivated) || (skey->refcount > 1)) {
523				SCTPDBG(SCTP_DEBUG_AUTH1,
524				    "can't replace shared key id %u\n",
525				    new_skey->keyid);
526				return (EBUSY);
527			}
528			SCTPDBG(SCTP_DEBUG_AUTH1,
529			    "replacing shared key id %u\n",
530			    new_skey->keyid);
531			LIST_INSERT_BEFORE(skey, new_skey, next);
532			LIST_REMOVE(skey, next);
533			sctp_free_sharedkey(skey);
534			return (0);
535		}
536		if (LIST_NEXT(skey, next) == NULL) {
537			/* belongs at the end of the list */
538			LIST_INSERT_AFTER(skey, new_skey, next);
539			return (0);
540		}
541	}
542	/* shouldn't reach here */
543	return (EINVAL);
544}
545
546void
547sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
548{
549	sctp_sharedkey_t *skey;
550
551	/* find the shared key */
552	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
553
554	/* bump the ref count */
555	if (skey) {
556		atomic_add_int(&skey->refcount, 1);
557		SCTPDBG(SCTP_DEBUG_AUTH2,
558		    "%s: stcb %p key %u refcount acquire to %d\n",
559		    __func__, (void *)stcb, key_id, skey->refcount);
560	}
561}
562
563void
564sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked)
565{
566	sctp_sharedkey_t *skey;
567
568	/* find the shared key */
569	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
570
571	/* decrement the ref count */
572	if (skey) {
573		SCTPDBG(SCTP_DEBUG_AUTH2,
574		    "%s: stcb %p key %u refcount release to %d\n",
575		    __func__, (void *)stcb, key_id, skey->refcount);
576
577		/* see if a notification should be generated */
578		if ((skey->refcount <= 2) && (skey->deactivated)) {
579			/* notify ULP that key is no longer used */
580			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
581			    key_id, 0, so_locked);
582			SCTPDBG(SCTP_DEBUG_AUTH2,
583			    "%s: stcb %p key %u no longer used, %d\n",
584			    __func__, (void *)stcb, key_id, skey->refcount);
585		}
586		sctp_free_sharedkey(skey);
587	}
588}
589
590static sctp_sharedkey_t *
591sctp_copy_sharedkey(const sctp_sharedkey_t *skey)
592{
593	sctp_sharedkey_t *new_skey;
594
595	if (skey == NULL)
596		return (NULL);
597	new_skey = sctp_alloc_sharedkey();
598	if (new_skey == NULL)
599		return (NULL);
600	if (skey->key != NULL)
601		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
602	else
603		new_skey->key = NULL;
604	new_skey->keyid = skey->keyid;
605	return (new_skey);
606}
607
608int
609sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
610{
611	sctp_sharedkey_t *skey, *new_skey;
612	int count = 0;
613
614	if ((src == NULL) || (dest == NULL))
615		return (0);
616	LIST_FOREACH(skey, src, next) {
617		new_skey = sctp_copy_sharedkey(skey);
618		if (new_skey != NULL) {
619			if (sctp_insert_sharedkey(dest, new_skey)) {
620				sctp_free_sharedkey(new_skey);
621			} else {
622				count++;
623			}
624		}
625	}
626	return (count);
627}
628
629sctp_hmaclist_t *
630sctp_alloc_hmaclist(uint16_t num_hmacs)
631{
632	sctp_hmaclist_t *new_list;
633	int alloc_size;
634
635	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
636	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
637	    SCTP_M_AUTH_HL);
638	if (new_list == NULL) {
639		/* out of memory */
640		return (NULL);
641	}
642	new_list->max_algo = num_hmacs;
643	new_list->num_algo = 0;
644	return (new_list);
645}
646
647void
648sctp_free_hmaclist(sctp_hmaclist_t *list)
649{
650	if (list != NULL) {
651		SCTP_FREE(list, SCTP_M_AUTH_HL);
652	}
653}
654
655int
656sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id)
657{
658	int i;
659
660	if (list == NULL)
661		return (-1);
662	if (list->num_algo == list->max_algo) {
663		SCTPDBG(SCTP_DEBUG_AUTH1,
664		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
665		return (-1);
666	}
667	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
668	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
669		return (-1);
670	}
671	/* Now is it already in the list */
672	for (i = 0; i < list->num_algo; i++) {
673		if (list->hmac[i] == hmac_id) {
674			/* already in list */
675			return (-1);
676		}
677	}
678	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
679	list->hmac[list->num_algo++] = hmac_id;
680	return (0);
681}
682
683sctp_hmaclist_t *
684sctp_copy_hmaclist(sctp_hmaclist_t *list)
685{
686	sctp_hmaclist_t *new_list;
687	int i;
688
689	if (list == NULL)
690		return (NULL);
691	/* get a new list */
692	new_list = sctp_alloc_hmaclist(list->max_algo);
693	if (new_list == NULL)
694		return (NULL);
695	/* copy it */
696	new_list->max_algo = list->max_algo;
697	new_list->num_algo = list->num_algo;
698	for (i = 0; i < list->num_algo; i++)
699		new_list->hmac[i] = list->hmac[i];
700	return (new_list);
701}
702
703sctp_hmaclist_t *
704sctp_default_supported_hmaclist(void)
705{
706	sctp_hmaclist_t *new_list;
707
708	new_list = sctp_alloc_hmaclist(2);
709	if (new_list == NULL)
710		return (NULL);
711	/* We prefer SHA256, so list it first */
712	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
713	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
714	return (new_list);
715}
716
717/*-
718 * HMAC algos are listed in priority/preference order
719 * find the best HMAC id to use for the peer based on local support
720 */
721uint16_t
722sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local)
723{
724	int i, j;
725
726	if ((local == NULL) || (peer == NULL))
727		return (SCTP_AUTH_HMAC_ID_RSVD);
728
729	for (i = 0; i < peer->num_algo; i++) {
730		for (j = 0; j < local->num_algo; j++) {
731			if (peer->hmac[i] == local->hmac[j]) {
732				/* found the "best" one */
733				SCTPDBG(SCTP_DEBUG_AUTH1,
734				    "SCTP: negotiated peer HMAC id %u\n",
735				    peer->hmac[i]);
736				return (peer->hmac[i]);
737			}
738		}
739	}
740	/* didn't find one! */
741	return (SCTP_AUTH_HMAC_ID_RSVD);
742}
743
744/*-
745 * serialize the HMAC algo list and return space used
746 * caller must guarantee ptr has appropriate space
747 */
748int
749sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr)
750{
751	int i;
752	uint16_t hmac_id;
753
754	if (list == NULL)
755		return (0);
756
757	for (i = 0; i < list->num_algo; i++) {
758		hmac_id = htons(list->hmac[i]);
759		memcpy(ptr, &hmac_id, sizeof(hmac_id));
760		ptr += sizeof(hmac_id);
761	}
762	return (list->num_algo * sizeof(hmac_id));
763}
764
765int
766sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
767{
768	uint32_t i;
769
770	for (i = 0; i < num_hmacs; i++) {
771		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
772			return (0);
773		}
774	}
775	return (-1);
776}
777
778sctp_authinfo_t *
779sctp_alloc_authinfo(void)
780{
781	sctp_authinfo_t *new_authinfo;
782
783	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
784	    SCTP_M_AUTH_IF);
785
786	if (new_authinfo == NULL) {
787		/* out of memory */
788		return (NULL);
789	}
790	memset(new_authinfo, 0, sizeof(*new_authinfo));
791	return (new_authinfo);
792}
793
794void
795sctp_free_authinfo(sctp_authinfo_t *authinfo)
796{
797	if (authinfo == NULL)
798		return;
799
800	if (authinfo->random != NULL)
801		sctp_free_key(authinfo->random);
802	if (authinfo->peer_random != NULL)
803		sctp_free_key(authinfo->peer_random);
804	if (authinfo->assoc_key != NULL)
805		sctp_free_key(authinfo->assoc_key);
806	if (authinfo->recv_key != NULL)
807		sctp_free_key(authinfo->recv_key);
808
809	/* We are NOT dynamically allocating authinfo's right now... */
810	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
811}
812
813uint32_t
814sctp_get_auth_chunk_len(uint16_t hmac_algo)
815{
816	int size;
817
818	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
819	return (SCTP_SIZE32(size));
820}
821
822uint32_t
823sctp_get_hmac_digest_len(uint16_t hmac_algo)
824{
825	switch (hmac_algo) {
826	case SCTP_AUTH_HMAC_ID_SHA1:
827		return (SCTP_AUTH_DIGEST_LEN_SHA1);
828	case SCTP_AUTH_HMAC_ID_SHA256:
829		return (SCTP_AUTH_DIGEST_LEN_SHA256);
830	default:
831		/* unknown HMAC algorithm: can't do anything */
832		return (0);
833	}			/* end switch */
834}
835
836static inline int
837sctp_get_hmac_block_len(uint16_t hmac_algo)
838{
839	switch (hmac_algo) {
840	case SCTP_AUTH_HMAC_ID_SHA1:
841		return (64);
842	case SCTP_AUTH_HMAC_ID_SHA256:
843		return (64);
844	case SCTP_AUTH_HMAC_ID_RSVD:
845	default:
846		/* unknown HMAC algorithm: can't do anything */
847		return (0);
848	}			/* end switch */
849}
850
851static void
852sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx)
853{
854	switch (hmac_algo) {
855	case SCTP_AUTH_HMAC_ID_SHA1:
856		SCTP_SHA1_INIT(&ctx->sha1);
857		break;
858	case SCTP_AUTH_HMAC_ID_SHA256:
859		SCTP_SHA256_INIT(&ctx->sha256);
860		break;
861	case SCTP_AUTH_HMAC_ID_RSVD:
862	default:
863		/* unknown HMAC algorithm: can't do anything */
864		return;
865	}			/* end switch */
866}
867
868static void
869sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx,
870    uint8_t *text, uint32_t textlen)
871{
872	switch (hmac_algo) {
873	case SCTP_AUTH_HMAC_ID_SHA1:
874		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
875		break;
876	case SCTP_AUTH_HMAC_ID_SHA256:
877		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
878		break;
879	case SCTP_AUTH_HMAC_ID_RSVD:
880	default:
881		/* unknown HMAC algorithm: can't do anything */
882		return;
883	}			/* end switch */
884}
885
886static void
887sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx,
888    uint8_t *digest)
889{
890	switch (hmac_algo) {
891	case SCTP_AUTH_HMAC_ID_SHA1:
892		SCTP_SHA1_FINAL(digest, &ctx->sha1);
893		break;
894	case SCTP_AUTH_HMAC_ID_SHA256:
895		SCTP_SHA256_FINAL(digest, &ctx->sha256);
896		break;
897	case SCTP_AUTH_HMAC_ID_RSVD:
898	default:
899		/* unknown HMAC algorithm: can't do anything */
900		return;
901	}			/* end switch */
902}
903
904/*-
905 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
906 *
907 * Compute the HMAC digest using the desired hash key, text, and HMAC
908 * algorithm.  Resulting digest is placed in 'digest' and digest length
909 * is returned, if the HMAC was performed.
910 *
911 * WARNING: it is up to the caller to supply sufficient space to hold the
912 * resultant digest.
913 */
914uint32_t
915sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
916    uint8_t *text, uint32_t textlen, uint8_t *digest)
917{
918	uint32_t digestlen;
919	uint32_t blocklen;
920	sctp_hash_context_t ctx;
921	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
922	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
923	uint32_t i;
924
925	/* sanity check the material and length */
926	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
927	    (textlen == 0) || (digest == NULL)) {
928		/* can't do HMAC with empty key or text or digest store */
929		return (0);
930	}
931	/* validate the hmac algo and get the digest length */
932	digestlen = sctp_get_hmac_digest_len(hmac_algo);
933	if (digestlen == 0)
934		return (0);
935
936	/* hash the key if it is longer than the hash block size */
937	blocklen = sctp_get_hmac_block_len(hmac_algo);
938	if (keylen > blocklen) {
939		sctp_hmac_init(hmac_algo, &ctx);
940		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
941		sctp_hmac_final(hmac_algo, &ctx, temp);
942		/* set the hashed key as the key */
943		keylen = digestlen;
944		key = temp;
945	}
946	/* initialize the inner/outer pads with the key and "append" zeroes */
947	memset(ipad, 0, blocklen);
948	memset(opad, 0, blocklen);
949	memcpy(ipad, key, keylen);
950	memcpy(opad, key, keylen);
951
952	/* XOR the key with ipad and opad values */
953	for (i = 0; i < blocklen; i++) {
954		ipad[i] ^= 0x36;
955		opad[i] ^= 0x5c;
956	}
957
958	/* perform inner hash */
959	sctp_hmac_init(hmac_algo, &ctx);
960	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
961	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
962	sctp_hmac_final(hmac_algo, &ctx, temp);
963
964	/* perform outer hash */
965	sctp_hmac_init(hmac_algo, &ctx);
966	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
967	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
968	sctp_hmac_final(hmac_algo, &ctx, digest);
969
970	return (digestlen);
971}
972
973/* mbuf version */
974uint32_t
975sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
976    struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer)
977{
978	uint32_t digestlen;
979	uint32_t blocklen;
980	sctp_hash_context_t ctx;
981	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
982	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
983	uint32_t i;
984	struct mbuf *m_tmp;
985
986	/* sanity check the material and length */
987	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
988		/* can't do HMAC with empty key or text or digest store */
989		return (0);
990	}
991	/* validate the hmac algo and get the digest length */
992	digestlen = sctp_get_hmac_digest_len(hmac_algo);
993	if (digestlen == 0)
994		return (0);
995
996	/* hash the key if it is longer than the hash block size */
997	blocklen = sctp_get_hmac_block_len(hmac_algo);
998	if (keylen > blocklen) {
999		sctp_hmac_init(hmac_algo, &ctx);
1000		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1001		sctp_hmac_final(hmac_algo, &ctx, temp);
1002		/* set the hashed key as the key */
1003		keylen = digestlen;
1004		key = temp;
1005	}
1006	/* initialize the inner/outer pads with the key and "append" zeroes */
1007	memset(ipad, 0, blocklen);
1008	memset(opad, 0, blocklen);
1009	memcpy(ipad, key, keylen);
1010	memcpy(opad, key, keylen);
1011
1012	/* XOR the key with ipad and opad values */
1013	for (i = 0; i < blocklen; i++) {
1014		ipad[i] ^= 0x36;
1015		opad[i] ^= 0x5c;
1016	}
1017
1018	/* perform inner hash */
1019	sctp_hmac_init(hmac_algo, &ctx);
1020	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1021	/* find the correct starting mbuf and offset (get start of text) */
1022	m_tmp = m;
1023	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1024		m_offset -= SCTP_BUF_LEN(m_tmp);
1025		m_tmp = SCTP_BUF_NEXT(m_tmp);
1026	}
1027	/* now use the rest of the mbuf chain for the text */
1028	while (m_tmp != NULL) {
1029		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1030			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1031			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1032		} else {
1033			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1034			    SCTP_BUF_LEN(m_tmp) - m_offset);
1035		}
1036
1037		/* clear the offset since it's only for the first mbuf */
1038		m_offset = 0;
1039		m_tmp = SCTP_BUF_NEXT(m_tmp);
1040	}
1041	sctp_hmac_final(hmac_algo, &ctx, temp);
1042
1043	/* perform outer hash */
1044	sctp_hmac_init(hmac_algo, &ctx);
1045	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1046	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1047	sctp_hmac_final(hmac_algo, &ctx, digest);
1048
1049	return (digestlen);
1050}
1051
1052/*
1053 * computes the requested HMAC using a key struct (which may be modified if
1054 * the keylen exceeds the HMAC block len).
1055 */
1056uint32_t
1057sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text,
1058    uint32_t textlen, uint8_t *digest)
1059{
1060	uint32_t digestlen;
1061	uint32_t blocklen;
1062	sctp_hash_context_t ctx;
1063	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1064
1065	/* sanity check */
1066	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1067	    (digest == NULL)) {
1068		/* can't do HMAC with empty key or text or digest store */
1069		return (0);
1070	}
1071	/* validate the hmac algo and get the digest length */
1072	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1073	if (digestlen == 0)
1074		return (0);
1075
1076	/* hash the key if it is longer than the hash block size */
1077	blocklen = sctp_get_hmac_block_len(hmac_algo);
1078	if (key->keylen > blocklen) {
1079		sctp_hmac_init(hmac_algo, &ctx);
1080		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1081		sctp_hmac_final(hmac_algo, &ctx, temp);
1082		/* save the hashed key as the new key */
1083		key->keylen = digestlen;
1084		memcpy(key->key, temp, key->keylen);
1085	}
1086	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1087	    digest));
1088}
1089
1090/* mbuf version */
1091uint32_t
1092sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m,
1093    uint32_t m_offset, uint8_t *digest)
1094{
1095	uint32_t digestlen;
1096	uint32_t blocklen;
1097	sctp_hash_context_t ctx;
1098	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1099
1100	/* sanity check */
1101	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1102		/* can't do HMAC with empty key or text or digest store */
1103		return (0);
1104	}
1105	/* validate the hmac algo and get the digest length */
1106	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1107	if (digestlen == 0)
1108		return (0);
1109
1110	/* hash the key if it is longer than the hash block size */
1111	blocklen = sctp_get_hmac_block_len(hmac_algo);
1112	if (key->keylen > blocklen) {
1113		sctp_hmac_init(hmac_algo, &ctx);
1114		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1115		sctp_hmac_final(hmac_algo, &ctx, temp);
1116		/* save the hashed key as the new key */
1117		key->keylen = digestlen;
1118		memcpy(key->key, temp, key->keylen);
1119	}
1120	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1121}
1122
1123int
1124sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id)
1125{
1126	int i;
1127
1128	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1129		return (0);
1130
1131	for (i = 0; i < list->num_algo; i++)
1132		if (list->hmac[i] == id)
1133			return (1);
1134
1135	/* not in the list */
1136	return (0);
1137}
1138
1139/*-
1140 * clear any cached key(s) if they match the given key id on an association.
1141 * the cached key(s) will be recomputed and re-cached at next use.
1142 * ASSUMES TCB_LOCK is already held
1143 */
1144void
1145sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1146{
1147	if (stcb == NULL)
1148		return;
1149
1150	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1151		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1152		stcb->asoc.authinfo.assoc_key = NULL;
1153	}
1154	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1155		sctp_free_key(stcb->asoc.authinfo.recv_key);
1156		stcb->asoc.authinfo.recv_key = NULL;
1157	}
1158}
1159
1160/*-
1161 * clear any cached key(s) if they match the given key id for all assocs on
1162 * an endpoint.
1163 * ASSUMES INP_WLOCK is already held
1164 */
1165void
1166sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1167{
1168	struct sctp_tcb *stcb;
1169
1170	if (inp == NULL)
1171		return;
1172
1173	/* clear the cached keys on all assocs on this instance */
1174	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1175		SCTP_TCB_LOCK(stcb);
1176		sctp_clear_cachedkeys(stcb, keyid);
1177		SCTP_TCB_UNLOCK(stcb);
1178	}
1179}
1180
1181/*-
1182 * delete a shared key from an association
1183 * ASSUMES TCB_LOCK is already held
1184 */
1185int
1186sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1187{
1188	sctp_sharedkey_t *skey;
1189
1190	if (stcb == NULL)
1191		return (-1);
1192
1193	/* is the keyid the assoc active sending key */
1194	if (keyid == stcb->asoc.authinfo.active_keyid)
1195		return (-1);
1196
1197	/* does the key exist? */
1198	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1199	if (skey == NULL)
1200		return (-1);
1201
1202	/* are there other refcount holders on the key? */
1203	if (skey->refcount > 1)
1204		return (-1);
1205
1206	/* remove it */
1207	LIST_REMOVE(skey, next);
1208	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1209
1210	/* clear any cached keys */
1211	sctp_clear_cachedkeys(stcb, keyid);
1212	return (0);
1213}
1214
1215/*-
1216 * deletes a shared key from the endpoint
1217 * ASSUMES INP_WLOCK is already held
1218 */
1219int
1220sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1221{
1222	sctp_sharedkey_t *skey;
1223
1224	if (inp == NULL)
1225		return (-1);
1226
1227	/* is the keyid the active sending key on the endpoint */
1228	if (keyid == inp->sctp_ep.default_keyid)
1229		return (-1);
1230
1231	/* does the key exist? */
1232	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1233	if (skey == NULL)
1234		return (-1);
1235
1236	/* endpoint keys are not refcounted */
1237
1238	/* remove it */
1239	LIST_REMOVE(skey, next);
1240	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1241
1242	/* clear any cached keys */
1243	sctp_clear_cachedkeys_ep(inp, keyid);
1244	return (0);
1245}
1246
1247/*-
1248 * set the active key on an association
1249 * ASSUMES TCB_LOCK is already held
1250 */
1251int
1252sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1253{
1254	sctp_sharedkey_t *skey = NULL;
1255
1256	/* find the key on the assoc */
1257	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1258	if (skey == NULL) {
1259		/* that key doesn't exist */
1260		return (-1);
1261	}
1262	if ((skey->deactivated) && (skey->refcount > 1)) {
1263		/* can't reactivate a deactivated key with other refcounts */
1264		return (-1);
1265	}
1266
1267	/* set the (new) active key */
1268	stcb->asoc.authinfo.active_keyid = keyid;
1269	/* reset the deactivated flag */
1270	skey->deactivated = 0;
1271
1272	return (0);
1273}
1274
1275/*-
1276 * set the active key on an endpoint
1277 * ASSUMES INP_WLOCK is already held
1278 */
1279int
1280sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1281{
1282	sctp_sharedkey_t *skey;
1283
1284	/* find the key */
1285	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1286	if (skey == NULL) {
1287		/* that key doesn't exist */
1288		return (-1);
1289	}
1290	inp->sctp_ep.default_keyid = keyid;
1291	return (0);
1292}
1293
1294/*-
1295 * deactivates a shared key from the association
1296 * ASSUMES INP_WLOCK is already held
1297 */
1298int
1299sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1300{
1301	sctp_sharedkey_t *skey;
1302
1303	if (stcb == NULL)
1304		return (-1);
1305
1306	/* is the keyid the assoc active sending key */
1307	if (keyid == stcb->asoc.authinfo.active_keyid)
1308		return (-1);
1309
1310	/* does the key exist? */
1311	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1312	if (skey == NULL)
1313		return (-1);
1314
1315	/* are there other refcount holders on the key? */
1316	if (skey->refcount == 1) {
1317		/* no other users, send a notification for this key */
1318		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1319		    SCTP_SO_LOCKED);
1320	}
1321
1322	/* mark the key as deactivated */
1323	skey->deactivated = 1;
1324
1325	return (0);
1326}
1327
1328/*-
1329 * deactivates a shared key from the endpoint
1330 * ASSUMES INP_WLOCK is already held
1331 */
1332int
1333sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1334{
1335	sctp_sharedkey_t *skey;
1336
1337	if (inp == NULL)
1338		return (-1);
1339
1340	/* is the keyid the active sending key on the endpoint */
1341	if (keyid == inp->sctp_ep.default_keyid)
1342		return (-1);
1343
1344	/* does the key exist? */
1345	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1346	if (skey == NULL)
1347		return (-1);
1348
1349	/* endpoint keys are not refcounted */
1350
1351	/* remove it */
1352	LIST_REMOVE(skey, next);
1353	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1354
1355	return (0);
1356}
1357
1358/*
1359 * get local authentication parameters from cookie (from INIT-ACK)
1360 */
1361void
1362sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1363    uint32_t offset, uint32_t length)
1364{
1365	struct sctp_paramhdr *phdr, tmp_param;
1366	uint16_t plen, ptype;
1367	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1368	struct sctp_auth_random *p_random = NULL;
1369	uint16_t random_len = 0;
1370	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1371	struct sctp_auth_hmac_algo *hmacs = NULL;
1372	uint16_t hmacs_len = 0;
1373	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1374	struct sctp_auth_chunk_list *chunks = NULL;
1375	uint16_t num_chunks = 0;
1376	sctp_key_t *new_key;
1377	uint32_t keylen;
1378
1379	/* convert to upper bound */
1380	length += offset;
1381
1382	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1383	    sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param);
1384	while (phdr != NULL) {
1385		ptype = ntohs(phdr->param_type);
1386		plen = ntohs(phdr->param_length);
1387
1388		if ((plen < sizeof(struct sctp_paramhdr)) ||
1389		    (offset + plen > length))
1390			break;
1391
1392		if (ptype == SCTP_RANDOM) {
1393			if (plen > sizeof(random_store))
1394				break;
1395			phdr = sctp_get_next_param(m, offset,
1396			    (struct sctp_paramhdr *)random_store, plen);
1397			if (phdr == NULL)
1398				return;
1399			/* save the random and length for the key */
1400			p_random = (struct sctp_auth_random *)phdr;
1401			random_len = plen - sizeof(*p_random);
1402		} else if (ptype == SCTP_HMAC_LIST) {
1403			uint16_t num_hmacs;
1404			uint16_t i;
1405
1406			if (plen > sizeof(hmacs_store))
1407				break;
1408			phdr = sctp_get_next_param(m, offset,
1409			    (struct sctp_paramhdr *)hmacs_store, plen);
1410			if (phdr == NULL)
1411				return;
1412			/* save the hmacs list and num for the key */
1413			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1414			hmacs_len = plen - sizeof(*hmacs);
1415			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1416			if (stcb->asoc.local_hmacs != NULL)
1417				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1418			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1419			if (stcb->asoc.local_hmacs != NULL) {
1420				for (i = 0; i < num_hmacs; i++) {
1421					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1422					    ntohs(hmacs->hmac_ids[i]));
1423				}
1424			}
1425		} else if (ptype == SCTP_CHUNK_LIST) {
1426			int i;
1427
1428			if (plen > sizeof(chunks_store))
1429				break;
1430			phdr = sctp_get_next_param(m, offset,
1431			    (struct sctp_paramhdr *)chunks_store, plen);
1432			if (phdr == NULL)
1433				return;
1434			chunks = (struct sctp_auth_chunk_list *)phdr;
1435			num_chunks = plen - sizeof(*chunks);
1436			/* save chunks list and num for the key */
1437			if (stcb->asoc.local_auth_chunks != NULL)
1438				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1439			else
1440				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1441			for (i = 0; i < num_chunks; i++) {
1442				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1443				    stcb->asoc.local_auth_chunks);
1444			}
1445		}
1446		/* get next parameter */
1447		offset += SCTP_SIZE32(plen);
1448		if (offset + sizeof(struct sctp_paramhdr) > length)
1449			break;
1450		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1451		    (uint8_t *)&tmp_param);
1452	}
1453	/* concatenate the full random key */
1454	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1455	if (chunks != NULL) {
1456		keylen += sizeof(*chunks) + num_chunks;
1457	}
1458	new_key = sctp_alloc_key(keylen);
1459	if (new_key != NULL) {
1460		/* copy in the RANDOM */
1461		if (p_random != NULL) {
1462			keylen = sizeof(*p_random) + random_len;
1463			memcpy(new_key->key, p_random, keylen);
1464		} else {
1465			keylen = 0;
1466		}
1467		/* append in the AUTH chunks */
1468		if (chunks != NULL) {
1469			memcpy(new_key->key + keylen, chunks,
1470			    sizeof(*chunks) + num_chunks);
1471			keylen += sizeof(*chunks) + num_chunks;
1472		}
1473		/* append in the HMACs */
1474		if (hmacs != NULL) {
1475			memcpy(new_key->key + keylen, hmacs,
1476			    sizeof(*hmacs) + hmacs_len);
1477		}
1478	}
1479	if (stcb->asoc.authinfo.random != NULL)
1480		sctp_free_key(stcb->asoc.authinfo.random);
1481	stcb->asoc.authinfo.random = new_key;
1482	stcb->asoc.authinfo.random_len = random_len;
1483	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1484	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1485
1486	/* negotiate what HMAC to use for the peer */
1487	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1488	    stcb->asoc.local_hmacs);
1489
1490	/* copy defaults from the endpoint */
1491	/* FIX ME: put in cookie? */
1492	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1493	/* copy out the shared key list (by reference) from the endpoint */
1494	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1495	    &stcb->asoc.shared_keys);
1496}
1497
1498/*
1499 * compute and fill in the HMAC digest for a packet
1500 */
1501void
1502sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1503    struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1504{
1505	uint32_t digestlen;
1506	sctp_sharedkey_t *skey;
1507	sctp_key_t *key;
1508
1509	if ((stcb == NULL) || (auth == NULL))
1510		return;
1511
1512	/* zero the digest + chunk padding */
1513	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1514	memset(auth->hmac, 0, SCTP_SIZE32(digestlen));
1515
1516	/* is the desired key cached? */
1517	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1518	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1519		if (stcb->asoc.authinfo.assoc_key != NULL) {
1520			/* free the old cached key */
1521			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1522		}
1523		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1524		/* the only way skey is NULL is if null key id 0 is used */
1525		if (skey != NULL)
1526			key = skey->key;
1527		else
1528			key = NULL;
1529		/* compute a new assoc key and cache it */
1530		stcb->asoc.authinfo.assoc_key =
1531		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1532		    stcb->asoc.authinfo.peer_random, key);
1533		stcb->asoc.authinfo.assoc_keyid = keyid;
1534		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1535		    stcb->asoc.authinfo.assoc_keyid);
1536#ifdef SCTP_DEBUG
1537		if (SCTP_AUTH_DEBUG)
1538			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1539			    "Assoc Key");
1540#endif
1541	}
1542
1543	/* set in the active key id */
1544	auth->shared_key_id = htons(keyid);
1545
1546	/* compute and fill in the digest */
1547	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1548	    m, auth_offset, auth->hmac);
1549}
1550
1551static void
1552sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1553{
1554	struct mbuf *m_tmp;
1555	uint8_t *data;
1556
1557	/* sanity check */
1558	if (m == NULL)
1559		return;
1560
1561	/* find the correct starting mbuf and offset (get start position) */
1562	m_tmp = m;
1563	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1564		m_offset -= SCTP_BUF_LEN(m_tmp);
1565		m_tmp = SCTP_BUF_NEXT(m_tmp);
1566	}
1567	/* now use the rest of the mbuf chain */
1568	while ((m_tmp != NULL) && (size > 0)) {
1569		data = mtod(m_tmp, uint8_t *)+m_offset;
1570		if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) {
1571			memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset);
1572			size -= SCTP_BUF_LEN(m_tmp) - m_offset;
1573		} else {
1574			memset(data, 0, size);
1575			size = 0;
1576		}
1577		/* clear the offset since it's only for the first mbuf */
1578		m_offset = 0;
1579		m_tmp = SCTP_BUF_NEXT(m_tmp);
1580	}
1581}
1582
1583/*-
1584 * process the incoming Authentication chunk
1585 * return codes:
1586 *   -1 on any authentication error
1587 *    0 on authentication verification
1588 */
1589int
1590sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1591    struct mbuf *m, uint32_t offset)
1592{
1593	uint16_t chunklen;
1594	uint16_t shared_key_id;
1595	uint16_t hmac_id;
1596	sctp_sharedkey_t *skey;
1597	uint32_t digestlen;
1598	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1599	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1600
1601	/* auth is checked for NULL by caller */
1602	chunklen = ntohs(auth->ch.chunk_length);
1603	if (chunklen < sizeof(*auth)) {
1604		SCTP_STAT_INCR(sctps_recvauthfailed);
1605		return (-1);
1606	}
1607	SCTP_STAT_INCR(sctps_recvauth);
1608
1609	/* get the auth params */
1610	shared_key_id = ntohs(auth->shared_key_id);
1611	hmac_id = ntohs(auth->hmac_id);
1612	SCTPDBG(SCTP_DEBUG_AUTH1,
1613	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1614	    shared_key_id, hmac_id);
1615
1616	/* is the indicated HMAC supported? */
1617	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1618		struct mbuf *op_err;
1619		struct sctp_error_auth_invalid_hmac *cause;
1620
1621		SCTP_STAT_INCR(sctps_recvivalhmacid);
1622		SCTPDBG(SCTP_DEBUG_AUTH1,
1623		    "SCTP Auth: unsupported HMAC id %u\n",
1624		    hmac_id);
1625		/*
1626		 * report this in an Error Chunk: Unsupported HMAC
1627		 * Identifier
1628		 */
1629		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1630		    0, M_NOWAIT, 1, MT_HEADER);
1631		if (op_err != NULL) {
1632			/* pre-reserve some space */
1633			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1634			/* fill in the error */
1635			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1636			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1637			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1638			cause->hmac_id = ntohs(hmac_id);
1639			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1640			/* queue it */
1641			sctp_queue_op_err(stcb, op_err);
1642		}
1643		return (-1);
1644	}
1645	/* get the indicated shared key, if available */
1646	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1647	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1648		/* find the shared key on the assoc first */
1649		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1650		    shared_key_id);
1651		/* if the shared key isn't found, discard the chunk */
1652		if (skey == NULL) {
1653			SCTP_STAT_INCR(sctps_recvivalkeyid);
1654			SCTPDBG(SCTP_DEBUG_AUTH1,
1655			    "SCTP Auth: unknown key id %u\n",
1656			    shared_key_id);
1657			return (-1);
1658		}
1659		/* generate a notification if this is a new key id */
1660		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1661			/*
1662			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1663			 * shared_key_id, (void
1664			 * *)stcb->asoc.authinfo.recv_keyid);
1665			 */
1666			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1667			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1668			    SCTP_SO_NOT_LOCKED);
1669		/* compute a new recv assoc key and cache it */
1670		if (stcb->asoc.authinfo.recv_key != NULL)
1671			sctp_free_key(stcb->asoc.authinfo.recv_key);
1672		stcb->asoc.authinfo.recv_key =
1673		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1674		    stcb->asoc.authinfo.peer_random, skey->key);
1675		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1676#ifdef SCTP_DEBUG
1677		if (SCTP_AUTH_DEBUG)
1678			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1679#endif
1680	}
1681	/* validate the digest length */
1682	digestlen = sctp_get_hmac_digest_len(hmac_id);
1683	if (chunklen < (sizeof(*auth) + digestlen)) {
1684		/* invalid digest length */
1685		SCTP_STAT_INCR(sctps_recvauthfailed);
1686		SCTPDBG(SCTP_DEBUG_AUTH1,
1687		    "SCTP Auth: chunk too short for HMAC\n");
1688		return (-1);
1689	}
1690	/* save a copy of the digest, zero the pseudo header, and validate */
1691	memcpy(digest, auth->hmac, digestlen);
1692	sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1693	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1694	    m, offset, computed_digest);
1695
1696	/* compare the computed digest with the one in the AUTH chunk */
1697	if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) {
1698		SCTP_STAT_INCR(sctps_recvauthfailed);
1699		SCTPDBG(SCTP_DEBUG_AUTH1,
1700		    "SCTP Auth: HMAC digest check failed\n");
1701		return (-1);
1702	}
1703	return (0);
1704}
1705
1706/*
1707 * Generate NOTIFICATION
1708 */
1709void
1710sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1711    uint16_t keyid, uint16_t alt_keyid, int so_locked)
1712{
1713	struct mbuf *m_notify;
1714	struct sctp_authkey_event *auth;
1715	struct sctp_queued_to_read *control;
1716
1717	if ((stcb == NULL) ||
1718	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1719	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1720	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1721	    ) {
1722		/* If the socket is gone we are out of here */
1723		return;
1724	}
1725
1726	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1727		/* event not enabled */
1728		return;
1729
1730	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1731	    0, M_NOWAIT, 1, MT_HEADER);
1732	if (m_notify == NULL)
1733		/* no space left */
1734		return;
1735
1736	SCTP_BUF_LEN(m_notify) = 0;
1737	auth = mtod(m_notify, struct sctp_authkey_event *);
1738	memset(auth, 0, sizeof(struct sctp_authkey_event));
1739	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1740	auth->auth_flags = 0;
1741	auth->auth_length = sizeof(*auth);
1742	auth->auth_keynumber = keyid;
1743	auth->auth_altkeynumber = alt_keyid;
1744	auth->auth_indication = indication;
1745	auth->auth_assoc_id = sctp_get_associd(stcb);
1746
1747	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1748	SCTP_BUF_NEXT(m_notify) = NULL;
1749
1750	/* append to socket */
1751	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1752	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1753	if (control == NULL) {
1754		/* no memory */
1755		sctp_m_freem(m_notify);
1756		return;
1757	}
1758	control->length = SCTP_BUF_LEN(m_notify);
1759	control->spec_flags = M_NOTIFICATION;
1760	/* not that we need this */
1761	control->tail_mbuf = m_notify;
1762	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1763	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1764}
1765
1766/*-
1767 * validates the AUTHentication related parameters in an INIT/INIT-ACK
1768 * Note: currently only used for INIT as INIT-ACK is handled inline
1769 * with sctp_load_addresses_from_init()
1770 */
1771int
1772sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1773{
1774	struct sctp_paramhdr *phdr, param_buf;
1775	uint16_t ptype, plen;
1776	int peer_supports_asconf = 0;
1777	int peer_supports_auth = 0;
1778	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1779	uint8_t saw_asconf = 0;
1780	uint8_t saw_asconf_ack = 0;
1781
1782	/* go through each of the params. */
1783	phdr = sctp_get_next_param(m, offset, &param_buf, sizeof(param_buf));
1784	while (phdr) {
1785		ptype = ntohs(phdr->param_type);
1786		plen = ntohs(phdr->param_length);
1787
1788		if (offset + plen > limit) {
1789			break;
1790		}
1791		if (plen < sizeof(struct sctp_paramhdr)) {
1792			break;
1793		}
1794		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1795			/* A supported extension chunk */
1796			struct sctp_supported_chunk_types_param *pr_supported;
1797			uint8_t local_store[SCTP_SMALL_CHUNK_STORE];
1798			int num_ent, i;
1799
1800			if (plen > sizeof(local_store)) {
1801				break;
1802			}
1803			phdr = sctp_get_next_param(m, offset,
1804			    (struct sctp_paramhdr *)&local_store,
1805			    plen);
1806			if (phdr == NULL) {
1807				return (-1);
1808			}
1809			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1810			num_ent = plen - sizeof(struct sctp_paramhdr);
1811			for (i = 0; i < num_ent; i++) {
1812				switch (pr_supported->chunk_types[i]) {
1813				case SCTP_ASCONF:
1814				case SCTP_ASCONF_ACK:
1815					peer_supports_asconf = 1;
1816					break;
1817				default:
1818					/* one we don't care about */
1819					break;
1820				}
1821			}
1822		} else if (ptype == SCTP_RANDOM) {
1823			/* enforce the random length */
1824			if (plen != (sizeof(struct sctp_auth_random) +
1825			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1826				SCTPDBG(SCTP_DEBUG_AUTH1,
1827				    "SCTP: invalid RANDOM len\n");
1828				return (-1);
1829			}
1830			got_random = 1;
1831		} else if (ptype == SCTP_HMAC_LIST) {
1832			struct sctp_auth_hmac_algo *hmacs;
1833			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1834			int num_hmacs;
1835
1836			if (plen > sizeof(store)) {
1837				break;
1838			}
1839			phdr = sctp_get_next_param(m, offset,
1840			    (struct sctp_paramhdr *)store,
1841			    plen);
1842			if (phdr == NULL) {
1843				return (-1);
1844			}
1845			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1846			num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]);
1847			/* validate the hmac list */
1848			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1849				SCTPDBG(SCTP_DEBUG_AUTH1,
1850				    "SCTP: invalid HMAC param\n");
1851				return (-1);
1852			}
1853			got_hmacs = 1;
1854		} else if (ptype == SCTP_CHUNK_LIST) {
1855			struct sctp_auth_chunk_list *chunks;
1856			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1857			int i, num_chunks;
1858
1859			if (plen > sizeof(chunks_store)) {
1860				break;
1861			}
1862			phdr = sctp_get_next_param(m, offset,
1863			    (struct sctp_paramhdr *)chunks_store,
1864			    plen);
1865			if (phdr == NULL) {
1866				return (-1);
1867			}
1868			/*-
1869			 * Flip through the list and mark that the
1870			 * peer supports asconf/asconf_ack.
1871			 */
1872			chunks = (struct sctp_auth_chunk_list *)phdr;
1873			num_chunks = plen - sizeof(*chunks);
1874			for (i = 0; i < num_chunks; i++) {
1875				/* record asconf/asconf-ack if listed */
1876				if (chunks->chunk_types[i] == SCTP_ASCONF)
1877					saw_asconf = 1;
1878				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1879					saw_asconf_ack = 1;
1880			}
1881			if (num_chunks)
1882				got_chklist = 1;
1883		}
1884
1885		offset += SCTP_SIZE32(plen);
1886		if (offset >= limit) {
1887			break;
1888		}
1889		phdr = sctp_get_next_param(m, offset, &param_buf,
1890		    sizeof(param_buf));
1891	}
1892	/* validate authentication required parameters */
1893	if (got_random && got_hmacs) {
1894		peer_supports_auth = 1;
1895	} else {
1896		peer_supports_auth = 0;
1897	}
1898	if (!peer_supports_auth && got_chklist) {
1899		SCTPDBG(SCTP_DEBUG_AUTH1,
1900		    "SCTP: peer sent chunk list w/o AUTH\n");
1901		return (-1);
1902	}
1903	if (peer_supports_asconf && !peer_supports_auth) {
1904		SCTPDBG(SCTP_DEBUG_AUTH1,
1905		    "SCTP: peer supports ASCONF but not AUTH\n");
1906		return (-1);
1907	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1908	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1909		return (-2);
1910	}
1911	return (0);
1912}
1913
1914void
1915sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1916{
1917	uint16_t chunks_len = 0;
1918	uint16_t hmacs_len = 0;
1919	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1920	sctp_key_t *new_key;
1921	uint16_t keylen;
1922
1923	/* initialize hmac list from endpoint */
1924	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1925	if (stcb->asoc.local_hmacs != NULL) {
1926		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1927		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1928	}
1929	/* initialize auth chunks list from endpoint */
1930	stcb->asoc.local_auth_chunks =
1931	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1932	if (stcb->asoc.local_auth_chunks != NULL) {
1933		int i;
1934
1935		for (i = 0; i < 256; i++) {
1936			if (stcb->asoc.local_auth_chunks->chunks[i])
1937				chunks_len++;
1938		}
1939	}
1940	/* copy defaults from the endpoint */
1941	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1942
1943	/* copy out the shared key list (by reference) from the endpoint */
1944	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1945	    &stcb->asoc.shared_keys);
1946
1947	/* now set the concatenated key (random + chunks + hmacs) */
1948	/* key includes parameter headers */
1949	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1950	    hmacs_len;
1951	new_key = sctp_alloc_key(keylen);
1952	if (new_key != NULL) {
1953		struct sctp_paramhdr *ph;
1954		int plen;
1955
1956		/* generate and copy in the RANDOM */
1957		ph = (struct sctp_paramhdr *)new_key->key;
1958		ph->param_type = htons(SCTP_RANDOM);
1959		plen = sizeof(*ph) + random_len;
1960		ph->param_length = htons(plen);
1961		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1962		keylen = plen;
1963
1964		/* append in the AUTH chunks */
1965		/* NOTE: currently we always have chunks to list */
1966		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1967		ph->param_type = htons(SCTP_CHUNK_LIST);
1968		plen = sizeof(*ph) + chunks_len;
1969		ph->param_length = htons(plen);
1970		keylen += sizeof(*ph);
1971		if (stcb->asoc.local_auth_chunks) {
1972			int i;
1973
1974			for (i = 0; i < 256; i++) {
1975				if (stcb->asoc.local_auth_chunks->chunks[i])
1976					new_key->key[keylen++] = i;
1977			}
1978		}
1979
1980		/* append in the HMACs */
1981		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1982		ph->param_type = htons(SCTP_HMAC_LIST);
1983		plen = sizeof(*ph) + hmacs_len;
1984		ph->param_length = htons(plen);
1985		keylen += sizeof(*ph);
1986		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
1987		    new_key->key + keylen);
1988	}
1989	if (stcb->asoc.authinfo.random != NULL)
1990		sctp_free_key(stcb->asoc.authinfo.random);
1991	stcb->asoc.authinfo.random = new_key;
1992	stcb->asoc.authinfo.random_len = random_len;
1993}
1994