1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1988, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)radix.c	8.5 (Berkeley) 5/19/95
32 * $FreeBSD$
33 */
34
35/*
36 * Routines to build and maintain radix trees for routing lookups.
37 */
38#include <sys/param.h>
39#ifdef	_KERNEL
40#include <sys/lock.h>
41#include <sys/mutex.h>
42#include <sys/rmlock.h>
43#include <sys/systm.h>
44#include <sys/malloc.h>
45#include <sys/syslog.h>
46#include <net/radix.h>
47#else /* !_KERNEL */
48#include <stdio.h>
49#include <strings.h>
50#include <stdlib.h>
51#define log(x, arg...)	fprintf(stderr, ## arg)
52#define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
53#define min(a, b) ((a) < (b) ? (a) : (b) )
54#include <net/radix.h>
55#endif /* !_KERNEL */
56
57static struct radix_node
58	 *rn_insert(void *, struct radix_head *, int *,
59	     struct radix_node [2]),
60	 *rn_newpair(void *, int, struct radix_node[2]),
61	 *rn_search(void *, struct radix_node *),
62	 *rn_search_m(void *, struct radix_node *, void *);
63static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int);
64
65static void rn_detachhead_internal(struct radix_head *);
66
67#define	RADIX_MAX_KEY_LEN	32
68
69static char rn_zeros[RADIX_MAX_KEY_LEN];
70static char rn_ones[RADIX_MAX_KEY_LEN] = {
71	-1, -1, -1, -1, -1, -1, -1, -1,
72	-1, -1, -1, -1, -1, -1, -1, -1,
73	-1, -1, -1, -1, -1, -1, -1, -1,
74	-1, -1, -1, -1, -1, -1, -1, -1,
75};
76
77static int	rn_lexobetter(void *m_arg, void *n_arg);
78static struct radix_mask *
79		rn_new_radix_mask(struct radix_node *tt,
80		    struct radix_mask *next);
81static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
82		    int skip);
83
84/*
85 * The data structure for the keys is a radix tree with one way
86 * branching removed.  The index rn_bit at an internal node n represents a bit
87 * position to be tested.  The tree is arranged so that all descendants
88 * of a node n have keys whose bits all agree up to position rn_bit - 1.
89 * (We say the index of n is rn_bit.)
90 *
91 * There is at least one descendant which has a one bit at position rn_bit,
92 * and at least one with a zero there.
93 *
94 * A route is determined by a pair of key and mask.  We require that the
95 * bit-wise logical and of the key and mask to be the key.
96 * We define the index of a route to associated with the mask to be
97 * the first bit number in the mask where 0 occurs (with bit number 0
98 * representing the highest order bit).
99 *
100 * We say a mask is normal if every bit is 0, past the index of the mask.
101 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
102 * and m is a normal mask, then the route applies to every descendant of n.
103 * If the index(m) < rn_bit, this implies the trailing last few bits of k
104 * before bit b are all 0, (and hence consequently true of every descendant
105 * of n), so the route applies to all descendants of the node as well.
106 *
107 * Similar logic shows that a non-normal mask m such that
108 * index(m) <= index(n) could potentially apply to many children of n.
109 * Thus, for each non-host route, we attach its mask to a list at an internal
110 * node as high in the tree as we can go.
111 *
112 * The present version of the code makes use of normal routes in short-
113 * circuiting an explict mask and compare operation when testing whether
114 * a key satisfies a normal route, and also in remembering the unique leaf
115 * that governs a subtree.
116 */
117
118/*
119 * Most of the functions in this code assume that the key/mask arguments
120 * are sockaddr-like structures, where the first byte is an u_char
121 * indicating the size of the entire structure.
122 *
123 * To make the assumption more explicit, we use the LEN() macro to access
124 * this field. It is safe to pass an expression with side effects
125 * to LEN() as the argument is evaluated only once.
126 * We cast the result to int as this is the dominant usage.
127 */
128#define LEN(x) ( (int) (*(const u_char *)(x)) )
129
130/*
131 * XXX THIS NEEDS TO BE FIXED
132 * In the code, pointers to keys and masks are passed as either
133 * 'void *' (because callers use to pass pointers of various kinds), or
134 * 'caddr_t' (which is fine for pointer arithmetics, but not very
135 * clean when you dereference it to access data). Furthermore, caddr_t
136 * is really 'char *', while the natural type to operate on keys and
137 * masks would be 'u_char'. This mismatch require a lot of casts and
138 * intermediate variables to adapt types that clutter the code.
139 */
140
141/*
142 * Search a node in the tree matching the key.
143 */
144static struct radix_node *
145rn_search(void *v_arg, struct radix_node *head)
146{
147	struct radix_node *x;
148	caddr_t v;
149
150	for (x = head, v = v_arg; x->rn_bit >= 0;) {
151		if (x->rn_bmask & v[x->rn_offset])
152			x = x->rn_right;
153		else
154			x = x->rn_left;
155	}
156	return (x);
157}
158
159/*
160 * Same as above, but with an additional mask.
161 * XXX note this function is used only once.
162 */
163static struct radix_node *
164rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
165{
166	struct radix_node *x;
167	caddr_t v = v_arg, m = m_arg;
168
169	for (x = head; x->rn_bit >= 0;) {
170		if ((x->rn_bmask & m[x->rn_offset]) &&
171		    (x->rn_bmask & v[x->rn_offset]))
172			x = x->rn_right;
173		else
174			x = x->rn_left;
175	}
176	return (x);
177}
178
179int
180rn_refines(void *m_arg, void *n_arg)
181{
182	caddr_t m = m_arg, n = n_arg;
183	caddr_t lim, lim2 = lim = n + LEN(n);
184	int longer = LEN(n++) - LEN(m++);
185	int masks_are_equal = 1;
186
187	if (longer > 0)
188		lim -= longer;
189	while (n < lim) {
190		if (*n & ~(*m))
191			return (0);
192		if (*n++ != *m++)
193			masks_are_equal = 0;
194	}
195	while (n < lim2)
196		if (*n++)
197			return (0);
198	if (masks_are_equal && (longer < 0))
199		for (lim2 = m - longer; m < lim2; )
200			if (*m++)
201				return (1);
202	return (!masks_are_equal);
203}
204
205/*
206 * Search for exact match in given @head.
207 * Assume host bits are cleared in @v_arg if @m_arg is not NULL
208 * Note that prefixes with /32 or /128 masks are treated differently
209 * from host routes.
210 */
211struct radix_node *
212rn_lookup(void *v_arg, void *m_arg, struct radix_head *head)
213{
214	struct radix_node *x;
215	caddr_t netmask;
216
217	if (m_arg != NULL) {
218		/*
219		 * Most common case: search exact prefix/mask
220		 */
221		x = rn_addmask(m_arg, head->rnh_masks, 1,
222		    head->rnh_treetop->rn_offset);
223		if (x == NULL)
224			return (NULL);
225		netmask = x->rn_key;
226
227		x = rn_match(v_arg, head);
228
229		while (x != NULL && x->rn_mask != netmask)
230			x = x->rn_dupedkey;
231
232		return (x);
233	}
234
235	/*
236	 * Search for host address.
237	 */
238	if ((x = rn_match(v_arg, head)) == NULL)
239		return (NULL);
240
241	/* Check if found key is the same */
242	if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
243		return (NULL);
244
245	/* Check if this is not host route */
246	if (x->rn_mask != NULL)
247		return (NULL);
248
249	return (x);
250}
251
252static int
253rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
254{
255	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
256	char *cplim;
257	int length = min(LEN(cp), LEN(cp2));
258
259	if (cp3 == NULL)
260		cp3 = rn_ones;
261	else
262		length = min(length, LEN(cp3));
263	cplim = cp + length; cp3 += skip; cp2 += skip;
264	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
265		if ((*cp ^ *cp2) & *cp3)
266			return (0);
267	return (1);
268}
269
270/*
271 * Search for longest-prefix match in given @head
272 */
273struct radix_node *
274rn_match(void *v_arg, struct radix_head *head)
275{
276	caddr_t v = v_arg;
277	struct radix_node *t = head->rnh_treetop, *x;
278	caddr_t cp = v, cp2;
279	caddr_t cplim;
280	struct radix_node *saved_t, *top = t;
281	int off = t->rn_offset, vlen = LEN(cp), matched_off;
282	int test, b, rn_bit;
283
284	/*
285	 * Open code rn_search(v, top) to avoid overhead of extra
286	 * subroutine call.
287	 */
288	for (; t->rn_bit >= 0; ) {
289		if (t->rn_bmask & cp[t->rn_offset])
290			t = t->rn_right;
291		else
292			t = t->rn_left;
293	}
294	/*
295	 * See if we match exactly as a host destination
296	 * or at least learn how many bits match, for normal mask finesse.
297	 *
298	 * It doesn't hurt us to limit how many bytes to check
299	 * to the length of the mask, since if it matches we had a genuine
300	 * match and the leaf we have is the most specific one anyway;
301	 * if it didn't match with a shorter length it would fail
302	 * with a long one.  This wins big for class B&C netmasks which
303	 * are probably the most common case...
304	 */
305	if (t->rn_mask)
306		vlen = *(u_char *)t->rn_mask;
307	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
308	for (; cp < cplim; cp++, cp2++)
309		if (*cp != *cp2)
310			goto on1;
311	/*
312	 * This extra grot is in case we are explicitly asked
313	 * to look up the default.  Ugh!
314	 *
315	 * Never return the root node itself, it seems to cause a
316	 * lot of confusion.
317	 */
318	if (t->rn_flags & RNF_ROOT)
319		t = t->rn_dupedkey;
320	return (t);
321on1:
322	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
323	for (b = 7; (test >>= 1) > 0;)
324		b--;
325	matched_off = cp - v;
326	b += matched_off << 3;
327	rn_bit = -1 - b;
328	/*
329	 * If there is a host route in a duped-key chain, it will be first.
330	 */
331	if ((saved_t = t)->rn_mask == 0)
332		t = t->rn_dupedkey;
333	for (; t; t = t->rn_dupedkey)
334		/*
335		 * Even if we don't match exactly as a host,
336		 * we may match if the leaf we wound up at is
337		 * a route to a net.
338		 */
339		if (t->rn_flags & RNF_NORMAL) {
340			if (rn_bit <= t->rn_bit)
341				return (t);
342		} else if (rn_satisfies_leaf(v, t, matched_off))
343				return (t);
344	t = saved_t;
345	/* start searching up the tree */
346	do {
347		struct radix_mask *m;
348		t = t->rn_parent;
349		m = t->rn_mklist;
350		/*
351		 * If non-contiguous masks ever become important
352		 * we can restore the masking and open coding of
353		 * the search and satisfaction test and put the
354		 * calculation of "off" back before the "do".
355		 */
356		while (m) {
357			if (m->rm_flags & RNF_NORMAL) {
358				if (rn_bit <= m->rm_bit)
359					return (m->rm_leaf);
360			} else {
361				off = min(t->rn_offset, matched_off);
362				x = rn_search_m(v, t, m->rm_mask);
363				while (x && x->rn_mask != m->rm_mask)
364					x = x->rn_dupedkey;
365				if (x && rn_satisfies_leaf(v, x, off))
366					return (x);
367			}
368			m = m->rm_mklist;
369		}
370	} while (t != top);
371	return (0);
372}
373
374#ifdef RN_DEBUG
375int	rn_nodenum;
376struct	radix_node *rn_clist;
377int	rn_saveinfo;
378int	rn_debug =  1;
379#endif
380
381/*
382 * Whenever we add a new leaf to the tree, we also add a parent node,
383 * so we allocate them as an array of two elements: the first one must be
384 * the leaf (see RNTORT() in route.c), the second one is the parent.
385 * This routine initializes the relevant fields of the nodes, so that
386 * the leaf is the left child of the parent node, and both nodes have
387 * (almost) all all fields filled as appropriate.
388 * (XXX some fields are left unset, see the '#if 0' section).
389 * The function returns a pointer to the parent node.
390 */
391
392static struct radix_node *
393rn_newpair(void *v, int b, struct radix_node nodes[2])
394{
395	struct radix_node *tt = nodes, *t = tt + 1;
396	t->rn_bit = b;
397	t->rn_bmask = 0x80 >> (b & 7);
398	t->rn_left = tt;
399	t->rn_offset = b >> 3;
400
401#if 0  /* XXX perhaps we should fill these fields as well. */
402	t->rn_parent = t->rn_right = NULL;
403
404	tt->rn_mask = NULL;
405	tt->rn_dupedkey = NULL;
406	tt->rn_bmask = 0;
407#endif
408	tt->rn_bit = -1;
409	tt->rn_key = (caddr_t)v;
410	tt->rn_parent = t;
411	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
412	tt->rn_mklist = t->rn_mklist = 0;
413#ifdef RN_DEBUG
414	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
415	tt->rn_twin = t;
416	tt->rn_ybro = rn_clist;
417	rn_clist = tt;
418#endif
419	return (t);
420}
421
422static struct radix_node *
423rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
424    struct radix_node nodes[2])
425{
426	caddr_t v = v_arg;
427	struct radix_node *top = head->rnh_treetop;
428	int head_off = top->rn_offset, vlen = LEN(v);
429	struct radix_node *t = rn_search(v_arg, top);
430	caddr_t cp = v + head_off;
431	unsigned b;
432	struct radix_node *p, *tt, *x;
433    	/*
434	 * Find first bit at which v and t->rn_key differ
435	 */
436	caddr_t cp2 = t->rn_key + head_off;
437	int cmp_res;
438	caddr_t cplim = v + vlen;
439
440	while (cp < cplim)
441		if (*cp2++ != *cp++)
442			goto on1;
443	*dupentry = 1;
444	return (t);
445on1:
446	*dupentry = 0;
447	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
448	for (b = (cp - v) << 3; cmp_res; b--)
449		cmp_res >>= 1;
450
451	x = top;
452	cp = v;
453	do {
454		p = x;
455		if (cp[x->rn_offset] & x->rn_bmask)
456			x = x->rn_right;
457		else
458			x = x->rn_left;
459	} while (b > (unsigned) x->rn_bit);
460				/* x->rn_bit < b && x->rn_bit >= 0 */
461#ifdef RN_DEBUG
462	if (rn_debug)
463		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
464#endif
465	t = rn_newpair(v_arg, b, nodes);
466	tt = t->rn_left;
467	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
468		p->rn_left = t;
469	else
470		p->rn_right = t;
471	x->rn_parent = t;
472	t->rn_parent = p; /* frees x, p as temp vars below */
473	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
474		t->rn_right = x;
475	} else {
476		t->rn_right = tt;
477		t->rn_left = x;
478	}
479#ifdef RN_DEBUG
480	if (rn_debug)
481		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
482#endif
483	return (tt);
484}
485
486static struct radix_node *
487rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
488{
489	unsigned char *netmask = n_arg;
490	unsigned char *cp, *cplim;
491	struct radix_node *x;
492	int b = 0, mlen, j;
493	int maskduplicated, isnormal;
494	struct radix_node *saved_x;
495	unsigned char addmask_key[RADIX_MAX_KEY_LEN];
496
497	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
498		mlen = RADIX_MAX_KEY_LEN;
499	if (skip == 0)
500		skip = 1;
501	if (mlen <= skip)
502		return (maskhead->mask_nodes);
503
504	bzero(addmask_key, RADIX_MAX_KEY_LEN);
505	if (skip > 1)
506		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
507	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
508	/*
509	 * Trim trailing zeroes.
510	 */
511	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
512		cp--;
513	mlen = cp - addmask_key;
514	if (mlen <= skip)
515		return (maskhead->mask_nodes);
516	*addmask_key = mlen;
517	x = rn_search(addmask_key, maskhead->head.rnh_treetop);
518	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
519		x = NULL;
520	if (x || search)
521		return (x);
522	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
523	if ((saved_x = x) == NULL)
524		return (0);
525	netmask = cp = (unsigned char *)(x + 2);
526	bcopy(addmask_key, cp, mlen);
527	x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
528	if (maskduplicated) {
529		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
530		R_Free(saved_x);
531		return (x);
532	}
533	/*
534	 * Calculate index of mask, and check for normalcy.
535	 * First find the first byte with a 0 bit, then if there are
536	 * more bits left (remember we already trimmed the trailing 0's),
537	 * the bits should be contiguous, otherwise we have got
538	 * a non-contiguous mask.
539	 */
540#define	CONTIG(_c)	(((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
541	cplim = netmask + mlen;
542	isnormal = 1;
543	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
544		cp++;
545	if (cp != cplim) {
546		for (j = 0x80; (j & *cp) != 0; j >>= 1)
547			b++;
548		if (!CONTIG(*cp) || cp != (cplim - 1))
549			isnormal = 0;
550	}
551	b += (cp - netmask) << 3;
552	x->rn_bit = -1 - b;
553	if (isnormal)
554		x->rn_flags |= RNF_NORMAL;
555	return (x);
556}
557
558static int	/* XXX: arbitrary ordering for non-contiguous masks */
559rn_lexobetter(void *m_arg, void *n_arg)
560{
561	u_char *mp = m_arg, *np = n_arg, *lim;
562
563	if (LEN(mp) > LEN(np))
564		return (1);  /* not really, but need to check longer one first */
565	if (LEN(mp) == LEN(np))
566		for (lim = mp + LEN(mp); mp < lim;)
567			if (*mp++ > *np++)
568				return (1);
569	return (0);
570}
571
572static struct radix_mask *
573rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
574{
575	struct radix_mask *m;
576
577	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
578	if (m == NULL) {
579		log(LOG_ERR, "Failed to allocate route mask\n");
580		return (0);
581	}
582	bzero(m, sizeof(*m));
583	m->rm_bit = tt->rn_bit;
584	m->rm_flags = tt->rn_flags;
585	if (tt->rn_flags & RNF_NORMAL)
586		m->rm_leaf = tt;
587	else
588		m->rm_mask = tt->rn_mask;
589	m->rm_mklist = next;
590	tt->rn_mklist = m;
591	return (m);
592}
593
594struct radix_node *
595rn_addroute(void *v_arg, void *n_arg, struct radix_head *head,
596    struct radix_node treenodes[2])
597{
598	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
599	struct radix_node *t, *x = NULL, *tt;
600	struct radix_node *saved_tt, *top = head->rnh_treetop;
601	short b = 0, b_leaf = 0;
602	int keyduplicated;
603	caddr_t mmask;
604	struct radix_mask *m, **mp;
605
606	/*
607	 * In dealing with non-contiguous masks, there may be
608	 * many different routes which have the same mask.
609	 * We will find it useful to have a unique pointer to
610	 * the mask to speed avoiding duplicate references at
611	 * nodes and possibly save time in calculating indices.
612	 */
613	if (netmask)  {
614		x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset);
615		if (x == NULL)
616			return (0);
617		b_leaf = x->rn_bit;
618		b = -1 - x->rn_bit;
619		netmask = x->rn_key;
620	}
621	/*
622	 * Deal with duplicated keys: attach node to previous instance
623	 */
624	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
625	if (keyduplicated) {
626		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
627			if (tt->rn_mask == netmask)
628				return (0);
629			if (netmask == 0 ||
630			    (tt->rn_mask &&
631			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
632			      || rn_refines(netmask, tt->rn_mask)
633			      || rn_lexobetter(netmask, tt->rn_mask))))
634				break;
635		}
636		/*
637		 * If the mask is not duplicated, we wouldn't
638		 * find it among possible duplicate key entries
639		 * anyway, so the above test doesn't hurt.
640		 *
641		 * We sort the masks for a duplicated key the same way as
642		 * in a masklist -- most specific to least specific.
643		 * This may require the unfortunate nuisance of relocating
644		 * the head of the list.
645		 *
646		 * We also reverse, or doubly link the list through the
647		 * parent pointer.
648		 */
649		if (tt == saved_tt) {
650			struct	radix_node *xx = x;
651			/* link in at head of list */
652			(tt = treenodes)->rn_dupedkey = t;
653			tt->rn_flags = t->rn_flags;
654			tt->rn_parent = x = t->rn_parent;
655			t->rn_parent = tt;	 		/* parent */
656			if (x->rn_left == t)
657				x->rn_left = tt;
658			else
659				x->rn_right = tt;
660			saved_tt = tt; x = xx;
661		} else {
662			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
663			t->rn_dupedkey = tt;
664			tt->rn_parent = t;			/* parent */
665			if (tt->rn_dupedkey)			/* parent */
666				tt->rn_dupedkey->rn_parent = tt; /* parent */
667		}
668#ifdef RN_DEBUG
669		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
670		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
671#endif
672		tt->rn_key = (caddr_t) v;
673		tt->rn_bit = -1;
674		tt->rn_flags = RNF_ACTIVE;
675	}
676	/*
677	 * Put mask in tree.
678	 */
679	if (netmask) {
680		tt->rn_mask = netmask;
681		tt->rn_bit = x->rn_bit;
682		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
683	}
684	t = saved_tt->rn_parent;
685	if (keyduplicated)
686		goto on2;
687	b_leaf = -1 - t->rn_bit;
688	if (t->rn_right == saved_tt)
689		x = t->rn_left;
690	else
691		x = t->rn_right;
692	/* Promote general routes from below */
693	if (x->rn_bit < 0) {
694	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
695		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
696			*mp = m = rn_new_radix_mask(x, 0);
697			if (m)
698				mp = &m->rm_mklist;
699		}
700	} else if (x->rn_mklist) {
701		/*
702		 * Skip over masks whose index is > that of new node
703		 */
704		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
705			if (m->rm_bit >= b_leaf)
706				break;
707		t->rn_mklist = m; *mp = NULL;
708	}
709on2:
710	/* Add new route to highest possible ancestor's list */
711	if ((netmask == 0) || (b > t->rn_bit ))
712		return (tt); /* can't lift at all */
713	b_leaf = tt->rn_bit;
714	do {
715		x = t;
716		t = t->rn_parent;
717	} while (b <= t->rn_bit && x != top);
718	/*
719	 * Search through routes associated with node to
720	 * insert new route according to index.
721	 * Need same criteria as when sorting dupedkeys to avoid
722	 * double loop on deletion.
723	 */
724	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
725		if (m->rm_bit < b_leaf)
726			continue;
727		if (m->rm_bit > b_leaf)
728			break;
729		if (m->rm_flags & RNF_NORMAL) {
730			mmask = m->rm_leaf->rn_mask;
731			if (tt->rn_flags & RNF_NORMAL) {
732			    log(LOG_ERR,
733			        "Non-unique normal route, mask not entered\n");
734				return (tt);
735			}
736		} else
737			mmask = m->rm_mask;
738		if (mmask == netmask) {
739			m->rm_refs++;
740			tt->rn_mklist = m;
741			return (tt);
742		}
743		if (rn_refines(netmask, mmask)
744		    || rn_lexobetter(netmask, mmask))
745			break;
746	}
747	*mp = rn_new_radix_mask(tt, *mp);
748	return (tt);
749}
750
751struct radix_node *
752rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head)
753{
754	struct radix_node *t, *p, *x, *tt;
755	struct radix_mask *m, *saved_m, **mp;
756	struct radix_node *dupedkey, *saved_tt, *top;
757	caddr_t v, netmask;
758	int b, head_off, vlen;
759
760	v = v_arg;
761	netmask = netmask_arg;
762	x = head->rnh_treetop;
763	tt = rn_search(v, x);
764	head_off = x->rn_offset;
765	vlen =  LEN(v);
766	saved_tt = tt;
767	top = x;
768	if (tt == NULL ||
769	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
770		return (0);
771	/*
772	 * Delete our route from mask lists.
773	 */
774	if (netmask) {
775		x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
776		if (x == NULL)
777			return (0);
778		netmask = x->rn_key;
779		while (tt->rn_mask != netmask)
780			if ((tt = tt->rn_dupedkey) == NULL)
781				return (0);
782	}
783	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
784		goto on1;
785	if (tt->rn_flags & RNF_NORMAL) {
786		if (m->rm_leaf != tt || m->rm_refs > 0) {
787			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
788			return (0);  /* dangling ref could cause disaster */
789		}
790	} else {
791		if (m->rm_mask != tt->rn_mask) {
792			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
793			goto on1;
794		}
795		if (--m->rm_refs >= 0)
796			goto on1;
797	}
798	b = -1 - tt->rn_bit;
799	t = saved_tt->rn_parent;
800	if (b > t->rn_bit)
801		goto on1; /* Wasn't lifted at all */
802	do {
803		x = t;
804		t = t->rn_parent;
805	} while (b <= t->rn_bit && x != top);
806	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
807		if (m == saved_m) {
808			*mp = m->rm_mklist;
809			R_Free(m);
810			break;
811		}
812	if (m == NULL) {
813		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
814		if (tt->rn_flags & RNF_NORMAL)
815			return (0); /* Dangling ref to us */
816	}
817on1:
818	/*
819	 * Eliminate us from tree
820	 */
821	if (tt->rn_flags & RNF_ROOT)
822		return (0);
823#ifdef RN_DEBUG
824	/* Get us out of the creation list */
825	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
826	if (t) t->rn_ybro = tt->rn_ybro;
827#endif
828	t = tt->rn_parent;
829	dupedkey = saved_tt->rn_dupedkey;
830	if (dupedkey) {
831		/*
832		 * Here, tt is the deletion target and
833		 * saved_tt is the head of the dupekey chain.
834		 */
835		if (tt == saved_tt) {
836			/* remove from head of chain */
837			x = dupedkey; x->rn_parent = t;
838			if (t->rn_left == tt)
839				t->rn_left = x;
840			else
841				t->rn_right = x;
842		} else {
843			/* find node in front of tt on the chain */
844			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
845				p = p->rn_dupedkey;
846			if (p) {
847				p->rn_dupedkey = tt->rn_dupedkey;
848				if (tt->rn_dupedkey)		/* parent */
849					tt->rn_dupedkey->rn_parent = p;
850								/* parent */
851			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
852		}
853		t = tt + 1;
854		if  (t->rn_flags & RNF_ACTIVE) {
855#ifndef RN_DEBUG
856			*++x = *t;
857			p = t->rn_parent;
858#else
859			b = t->rn_info;
860			*++x = *t;
861			t->rn_info = b;
862			p = t->rn_parent;
863#endif
864			if (p->rn_left == t)
865				p->rn_left = x;
866			else
867				p->rn_right = x;
868			x->rn_left->rn_parent = x;
869			x->rn_right->rn_parent = x;
870		}
871		goto out;
872	}
873	if (t->rn_left == tt)
874		x = t->rn_right;
875	else
876		x = t->rn_left;
877	p = t->rn_parent;
878	if (p->rn_right == t)
879		p->rn_right = x;
880	else
881		p->rn_left = x;
882	x->rn_parent = p;
883	/*
884	 * Demote routes attached to us.
885	 */
886	if (t->rn_mklist) {
887		if (x->rn_bit >= 0) {
888			for (mp = &x->rn_mklist; (m = *mp);)
889				mp = &m->rm_mklist;
890			*mp = t->rn_mklist;
891		} else {
892			/* If there are any key,mask pairs in a sibling
893			   duped-key chain, some subset will appear sorted
894			   in the same order attached to our mklist */
895			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
896				if (m == x->rn_mklist) {
897					struct radix_mask *mm = m->rm_mklist;
898					x->rn_mklist = 0;
899					if (--(m->rm_refs) < 0)
900						R_Free(m);
901					m = mm;
902				}
903			if (m)
904				log(LOG_ERR,
905				    "rn_delete: Orphaned Mask %p at %p\n",
906				    m, x);
907		}
908	}
909	/*
910	 * We may be holding an active internal node in the tree.
911	 */
912	x = tt + 1;
913	if (t != x) {
914#ifndef RN_DEBUG
915		*t = *x;
916#else
917		b = t->rn_info;
918		*t = *x;
919		t->rn_info = b;
920#endif
921		t->rn_left->rn_parent = t;
922		t->rn_right->rn_parent = t;
923		p = x->rn_parent;
924		if (p->rn_left == x)
925			p->rn_left = t;
926		else
927			p->rn_right = t;
928	}
929out:
930	tt->rn_flags &= ~RNF_ACTIVE;
931	tt[1].rn_flags &= ~RNF_ACTIVE;
932	return (tt);
933}
934
935/*
936 * This is the same as rn_walktree() except for the parameters and the
937 * exit.
938 */
939int
940rn_walktree_from(struct radix_head *h, void *a, void *m,
941    walktree_f_t *f, void *w)
942{
943	int error;
944	struct radix_node *base, *next;
945	u_char *xa = (u_char *)a;
946	u_char *xm = (u_char *)m;
947	struct radix_node *rn, *last = NULL; /* shut up gcc */
948	int stopping = 0;
949	int lastb;
950
951	KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
952
953	/*
954	 * rn_search_m is sort-of-open-coded here. We cannot use the
955	 * function because we need to keep track of the last node seen.
956	 */
957	/* printf("about to search\n"); */
958	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
959		last = rn;
960		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
961		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
962		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
963			break;
964		}
965		if (rn->rn_bmask & xa[rn->rn_offset]) {
966			rn = rn->rn_right;
967		} else {
968			rn = rn->rn_left;
969		}
970	}
971	/* printf("done searching\n"); */
972
973	/*
974	 * Two cases: either we stepped off the end of our mask,
975	 * in which case last == rn, or we reached a leaf, in which
976	 * case we want to start from the leaf.
977	 */
978	if (rn->rn_bit >= 0)
979		rn = last;
980	lastb = last->rn_bit;
981
982	/* printf("rn %p, lastb %d\n", rn, lastb);*/
983
984	/*
985	 * This gets complicated because we may delete the node
986	 * while applying the function f to it, so we need to calculate
987	 * the successor node in advance.
988	 */
989	while (rn->rn_bit >= 0)
990		rn = rn->rn_left;
991
992	while (!stopping) {
993		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
994		base = rn;
995		/* If at right child go back up, otherwise, go right */
996		while (rn->rn_parent->rn_right == rn
997		       && !(rn->rn_flags & RNF_ROOT)) {
998			rn = rn->rn_parent;
999
1000			/* if went up beyond last, stop */
1001			if (rn->rn_bit <= lastb) {
1002				stopping = 1;
1003				/* printf("up too far\n"); */
1004				/*
1005				 * XXX we should jump to the 'Process leaves'
1006				 * part, because the values of 'rn' and 'next'
1007				 * we compute will not be used. Not a big deal
1008				 * because this loop will terminate, but it is
1009				 * inefficient and hard to understand!
1010				 */
1011			}
1012		}
1013
1014		/*
1015		 * At the top of the tree, no need to traverse the right
1016		 * half, prevent the traversal of the entire tree in the
1017		 * case of default route.
1018		 */
1019		if (rn->rn_parent->rn_flags & RNF_ROOT)
1020			stopping = 1;
1021
1022		/* Find the next *leaf* since next node might vanish, too */
1023		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1024			rn = rn->rn_left;
1025		next = rn;
1026		/* Process leaves */
1027		while ((rn = base) != NULL) {
1028			base = rn->rn_dupedkey;
1029			/* printf("leaf %p\n", rn); */
1030			if (!(rn->rn_flags & RNF_ROOT)
1031			    && (error = (*f)(rn, w)))
1032				return (error);
1033		}
1034		rn = next;
1035
1036		if (rn->rn_flags & RNF_ROOT) {
1037			/* printf("root, stopping"); */
1038			stopping = 1;
1039		}
1040	}
1041	return (0);
1042}
1043
1044int
1045rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
1046{
1047	int error;
1048	struct radix_node *base, *next;
1049	struct radix_node *rn = h->rnh_treetop;
1050	/*
1051	 * This gets complicated because we may delete the node
1052	 * while applying the function f to it, so we need to calculate
1053	 * the successor node in advance.
1054	 */
1055
1056	/* First time through node, go left */
1057	while (rn->rn_bit >= 0)
1058		rn = rn->rn_left;
1059	for (;;) {
1060		base = rn;
1061		/* If at right child go back up, otherwise, go right */
1062		while (rn->rn_parent->rn_right == rn
1063		       && (rn->rn_flags & RNF_ROOT) == 0)
1064			rn = rn->rn_parent;
1065		/* Find the next *leaf* since next node might vanish, too */
1066		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1067			rn = rn->rn_left;
1068		next = rn;
1069		/* Process leaves */
1070		while ((rn = base)) {
1071			base = rn->rn_dupedkey;
1072			if (!(rn->rn_flags & RNF_ROOT)
1073			    && (error = (*f)(rn, w)))
1074				return (error);
1075		}
1076		rn = next;
1077		if (rn->rn_flags & RNF_ROOT)
1078			return (0);
1079	}
1080	/* NOTREACHED */
1081}
1082
1083/*
1084 * Initialize an empty tree. This has 3 nodes, which are passed
1085 * via base_nodes (in the order <left,root,right>) and are
1086 * marked RNF_ROOT so they cannot be freed.
1087 * The leaves have all-zero and all-one keys, with significant
1088 * bits starting at 'off'.
1089 */
1090void
1091rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
1092{
1093	struct radix_node *t, *tt, *ttt;
1094
1095	t = rn_newpair(rn_zeros, off, base_nodes);
1096	ttt = base_nodes + 2;
1097	t->rn_right = ttt;
1098	t->rn_parent = t;
1099	tt = t->rn_left;	/* ... which in turn is base_nodes */
1100	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1101	tt->rn_bit = -1 - off;
1102	*ttt = *tt;
1103	ttt->rn_key = rn_ones;
1104
1105	rh->rnh_treetop = t;
1106}
1107
1108static void
1109rn_detachhead_internal(struct radix_head *head)
1110{
1111
1112	KASSERT((head != NULL),
1113	    ("%s: head already freed", __func__));
1114
1115	/* Free <left,root,right> nodes. */
1116	R_Free(head);
1117}
1118
1119/* Functions used by 'struct radix_node_head' users */
1120
1121int
1122rn_inithead(void **head, int off)
1123{
1124	struct radix_node_head *rnh;
1125	struct radix_mask_head *rmh;
1126
1127	rnh = *head;
1128	rmh = NULL;
1129
1130	if (*head != NULL)
1131		return (1);
1132
1133	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1134	R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
1135	if (rnh == NULL || rmh == NULL) {
1136		if (rnh != NULL)
1137			R_Free(rnh);
1138		if (rmh != NULL)
1139			R_Free(rmh);
1140		return (0);
1141	}
1142
1143	/* Init trees */
1144	rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
1145	rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
1146	*head = rnh;
1147	rnh->rh.rnh_masks = rmh;
1148
1149	/* Finally, set base callbacks */
1150	rnh->rnh_addaddr = rn_addroute;
1151	rnh->rnh_deladdr = rn_delete;
1152	rnh->rnh_matchaddr = rn_match;
1153	rnh->rnh_lookup = rn_lookup;
1154	rnh->rnh_walktree = rn_walktree;
1155	rnh->rnh_walktree_from = rn_walktree_from;
1156
1157	return (1);
1158}
1159
1160static int
1161rn_freeentry(struct radix_node *rn, void *arg)
1162{
1163	struct radix_head * const rnh = arg;
1164	struct radix_node *x;
1165
1166	x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1167	if (x != NULL)
1168		R_Free(x);
1169	return (0);
1170}
1171
1172int
1173rn_detachhead(void **head)
1174{
1175	struct radix_node_head *rnh;
1176
1177	KASSERT((head != NULL && *head != NULL),
1178	    ("%s: head already freed", __func__));
1179
1180	rnh = (struct radix_node_head *)(*head);
1181
1182	rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
1183	rn_detachhead_internal(&rnh->rh.rnh_masks->head);
1184	rn_detachhead_internal(&rnh->rh);
1185
1186	*head = NULL;
1187
1188	return (1);
1189}
1190