1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/module.h>
36#include <sys/limits.h>
37#include <sys/lock.h>
38#include <sys/mutex.h>
39#include <sys/bio.h>
40#include <sys/sbuf.h>
41#include <sys/sysctl.h>
42#include <sys/malloc.h>
43#include <sys/eventhandler.h>
44#include <vm/uma.h>
45#include <geom/geom.h>
46#include <geom/geom_dbg.h>
47#include <sys/proc.h>
48#include <sys/kthread.h>
49#include <sys/sched.h>
50#include <geom/raid3/g_raid3.h>
51
52FEATURE(geom_raid3, "GEOM RAID-3 functionality");
53
54static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
55
56SYSCTL_DECL(_kern_geom);
57static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
58    "GEOM_RAID3 stuff");
59u_int g_raid3_debug = 0;
60SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0,
61    "Debug level");
62static u_int g_raid3_timeout = 4;
63SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout,
64    0, "Time to wait on all raid3 components");
65static u_int g_raid3_idletime = 5;
66SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN,
67    &g_raid3_idletime, 0, "Mark components as clean when idling");
68static u_int g_raid3_disconnect_on_failure = 1;
69SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
70    &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
71static u_int g_raid3_syncreqs = 2;
72SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
73    &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
74static u_int g_raid3_use_malloc = 0;
75SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
76    &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
77
78static u_int g_raid3_n64k = 50;
79SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0,
80    "Maximum number of 64kB allocations");
81static u_int g_raid3_n16k = 200;
82SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0,
83    "Maximum number of 16kB allocations");
84static u_int g_raid3_n4k = 1200;
85SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0,
86    "Maximum number of 4kB allocations");
87
88static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat,
89    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
90    "GEOM_RAID3 statistics");
91static u_int g_raid3_parity_mismatch = 0;
92SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
93    &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
94
95#define	MSLEEP(ident, mtx, priority, wmesg, timeout)	do {		\
96	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));	\
97	msleep((ident), (mtx), (priority), (wmesg), (timeout));		\
98	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));	\
99} while (0)
100
101static eventhandler_tag g_raid3_post_sync = NULL;
102static int g_raid3_shutdown = 0;
103
104static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
105    struct g_geom *gp);
106static g_taste_t g_raid3_taste;
107static void g_raid3_init(struct g_class *mp);
108static void g_raid3_fini(struct g_class *mp);
109
110struct g_class g_raid3_class = {
111	.name = G_RAID3_CLASS_NAME,
112	.version = G_VERSION,
113	.ctlreq = g_raid3_config,
114	.taste = g_raid3_taste,
115	.destroy_geom = g_raid3_destroy_geom,
116	.init = g_raid3_init,
117	.fini = g_raid3_fini
118};
119
120static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
121static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
122static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
123static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
124    struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
125static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
126static int g_raid3_register_request(struct bio *pbp);
127static void g_raid3_sync_release(struct g_raid3_softc *sc);
128
129static const char *
130g_raid3_disk_state2str(int state)
131{
132
133	switch (state) {
134	case G_RAID3_DISK_STATE_NODISK:
135		return ("NODISK");
136	case G_RAID3_DISK_STATE_NONE:
137		return ("NONE");
138	case G_RAID3_DISK_STATE_NEW:
139		return ("NEW");
140	case G_RAID3_DISK_STATE_ACTIVE:
141		return ("ACTIVE");
142	case G_RAID3_DISK_STATE_STALE:
143		return ("STALE");
144	case G_RAID3_DISK_STATE_SYNCHRONIZING:
145		return ("SYNCHRONIZING");
146	case G_RAID3_DISK_STATE_DISCONNECTED:
147		return ("DISCONNECTED");
148	default:
149		return ("INVALID");
150	}
151}
152
153static const char *
154g_raid3_device_state2str(int state)
155{
156
157	switch (state) {
158	case G_RAID3_DEVICE_STATE_STARTING:
159		return ("STARTING");
160	case G_RAID3_DEVICE_STATE_DEGRADED:
161		return ("DEGRADED");
162	case G_RAID3_DEVICE_STATE_COMPLETE:
163		return ("COMPLETE");
164	default:
165		return ("INVALID");
166	}
167}
168
169const char *
170g_raid3_get_diskname(struct g_raid3_disk *disk)
171{
172
173	if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
174		return ("[unknown]");
175	return (disk->d_name);
176}
177
178static void *
179g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
180{
181	void *ptr;
182	enum g_raid3_zones zone;
183
184	if (g_raid3_use_malloc ||
185	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
186		ptr = malloc(size, M_RAID3, flags);
187	else {
188		ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
189		   &sc->sc_zones[zone], flags);
190		sc->sc_zones[zone].sz_requested++;
191		if (ptr == NULL)
192			sc->sc_zones[zone].sz_failed++;
193	}
194	return (ptr);
195}
196
197static void
198g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
199{
200	enum g_raid3_zones zone;
201
202	if (g_raid3_use_malloc ||
203	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
204		free(ptr, M_RAID3);
205	else {
206		uma_zfree_arg(sc->sc_zones[zone].sz_zone,
207		    ptr, &sc->sc_zones[zone]);
208	}
209}
210
211static int
212g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
213{
214	struct g_raid3_zone *sz = arg;
215
216	if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
217		return (ENOMEM);
218	sz->sz_inuse++;
219	return (0);
220}
221
222static void
223g_raid3_uma_dtor(void *mem, int size, void *arg)
224{
225	struct g_raid3_zone *sz = arg;
226
227	sz->sz_inuse--;
228}
229
230#define	g_raid3_xor(src, dst, size)					\
231	_g_raid3_xor((uint64_t *)(src),					\
232	    (uint64_t *)(dst), (size_t)size)
233static void
234_g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
235{
236
237	KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
238	for (; size > 0; size -= 128) {
239		*dst++ ^= (*src++);
240		*dst++ ^= (*src++);
241		*dst++ ^= (*src++);
242		*dst++ ^= (*src++);
243		*dst++ ^= (*src++);
244		*dst++ ^= (*src++);
245		*dst++ ^= (*src++);
246		*dst++ ^= (*src++);
247		*dst++ ^= (*src++);
248		*dst++ ^= (*src++);
249		*dst++ ^= (*src++);
250		*dst++ ^= (*src++);
251		*dst++ ^= (*src++);
252		*dst++ ^= (*src++);
253		*dst++ ^= (*src++);
254		*dst++ ^= (*src++);
255	}
256}
257
258static int
259g_raid3_is_zero(struct bio *bp)
260{
261	static const uint64_t zeros[] = {
262	    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
263	};
264	u_char *addr;
265	ssize_t size;
266
267	size = bp->bio_length;
268	addr = (u_char *)bp->bio_data;
269	for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
270		if (bcmp(addr, zeros, sizeof(zeros)) != 0)
271			return (0);
272	}
273	return (1);
274}
275
276/*
277 * --- Events handling functions ---
278 * Events in geom_raid3 are used to maintain disks and device status
279 * from one thread to simplify locking.
280 */
281static void
282g_raid3_event_free(struct g_raid3_event *ep)
283{
284
285	free(ep, M_RAID3);
286}
287
288int
289g_raid3_event_send(void *arg, int state, int flags)
290{
291	struct g_raid3_softc *sc;
292	struct g_raid3_disk *disk;
293	struct g_raid3_event *ep;
294	int error;
295
296	ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
297	G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
298	if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
299		disk = NULL;
300		sc = arg;
301	} else {
302		disk = arg;
303		sc = disk->d_softc;
304	}
305	ep->e_disk = disk;
306	ep->e_state = state;
307	ep->e_flags = flags;
308	ep->e_error = 0;
309	mtx_lock(&sc->sc_events_mtx);
310	TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
311	mtx_unlock(&sc->sc_events_mtx);
312	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
313	mtx_lock(&sc->sc_queue_mtx);
314	wakeup(sc);
315	wakeup(&sc->sc_queue);
316	mtx_unlock(&sc->sc_queue_mtx);
317	if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
318		return (0);
319	sx_assert(&sc->sc_lock, SX_XLOCKED);
320	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
321	sx_xunlock(&sc->sc_lock);
322	while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
323		mtx_lock(&sc->sc_events_mtx);
324		MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
325		    hz * 5);
326	}
327	error = ep->e_error;
328	g_raid3_event_free(ep);
329	sx_xlock(&sc->sc_lock);
330	return (error);
331}
332
333static struct g_raid3_event *
334g_raid3_event_get(struct g_raid3_softc *sc)
335{
336	struct g_raid3_event *ep;
337
338	mtx_lock(&sc->sc_events_mtx);
339	ep = TAILQ_FIRST(&sc->sc_events);
340	mtx_unlock(&sc->sc_events_mtx);
341	return (ep);
342}
343
344static void
345g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
346{
347
348	mtx_lock(&sc->sc_events_mtx);
349	TAILQ_REMOVE(&sc->sc_events, ep, e_next);
350	mtx_unlock(&sc->sc_events_mtx);
351}
352
353static void
354g_raid3_event_cancel(struct g_raid3_disk *disk)
355{
356	struct g_raid3_softc *sc;
357	struct g_raid3_event *ep, *tmpep;
358
359	sc = disk->d_softc;
360	sx_assert(&sc->sc_lock, SX_XLOCKED);
361
362	mtx_lock(&sc->sc_events_mtx);
363	TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
364		if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
365			continue;
366		if (ep->e_disk != disk)
367			continue;
368		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
369		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
370			g_raid3_event_free(ep);
371		else {
372			ep->e_error = ECANCELED;
373			wakeup(ep);
374		}
375	}
376	mtx_unlock(&sc->sc_events_mtx);
377}
378
379/*
380 * Return the number of disks in the given state.
381 * If state is equal to -1, count all connected disks.
382 */
383u_int
384g_raid3_ndisks(struct g_raid3_softc *sc, int state)
385{
386	struct g_raid3_disk *disk;
387	u_int n, ndisks;
388
389	sx_assert(&sc->sc_lock, SX_LOCKED);
390
391	for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
392		disk = &sc->sc_disks[n];
393		if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
394			continue;
395		if (state == -1 || disk->d_state == state)
396			ndisks++;
397	}
398	return (ndisks);
399}
400
401static u_int
402g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
403{
404	struct bio *bp;
405	u_int nreqs = 0;
406
407	mtx_lock(&sc->sc_queue_mtx);
408	TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
409		if (bp->bio_from == cp)
410			nreqs++;
411	}
412	mtx_unlock(&sc->sc_queue_mtx);
413	return (nreqs);
414}
415
416static int
417g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
418{
419
420	if (cp->index > 0) {
421		G_RAID3_DEBUG(2,
422		    "I/O requests for %s exist, can't destroy it now.",
423		    cp->provider->name);
424		return (1);
425	}
426	if (g_raid3_nrequests(sc, cp) > 0) {
427		G_RAID3_DEBUG(2,
428		    "I/O requests for %s in queue, can't destroy it now.",
429		    cp->provider->name);
430		return (1);
431	}
432	return (0);
433}
434
435static void
436g_raid3_destroy_consumer(void *arg, int flags __unused)
437{
438	struct g_consumer *cp;
439
440	g_topology_assert();
441
442	cp = arg;
443	G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
444	g_detach(cp);
445	g_destroy_consumer(cp);
446}
447
448static void
449g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
450{
451	struct g_provider *pp;
452	int retaste_wait;
453
454	g_topology_assert();
455
456	cp->private = NULL;
457	if (g_raid3_is_busy(sc, cp))
458		return;
459	G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
460	pp = cp->provider;
461	retaste_wait = 0;
462	if (cp->acw == 1) {
463		if ((pp->geom->flags & G_GEOM_WITHER) == 0)
464			retaste_wait = 1;
465	}
466	G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
467	    -cp->acw, -cp->ace, 0);
468	if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
469		g_access(cp, -cp->acr, -cp->acw, -cp->ace);
470	if (retaste_wait) {
471		/*
472		 * After retaste event was send (inside g_access()), we can send
473		 * event to detach and destroy consumer.
474		 * A class, which has consumer to the given provider connected
475		 * will not receive retaste event for the provider.
476		 * This is the way how I ignore retaste events when I close
477		 * consumers opened for write: I detach and destroy consumer
478		 * after retaste event is sent.
479		 */
480		g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
481		return;
482	}
483	G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
484	g_detach(cp);
485	g_destroy_consumer(cp);
486}
487
488static int
489g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
490{
491	struct g_consumer *cp;
492	int error;
493
494	g_topology_assert_not();
495	KASSERT(disk->d_consumer == NULL,
496	    ("Disk already connected (device %s).", disk->d_softc->sc_name));
497
498	g_topology_lock();
499	cp = g_new_consumer(disk->d_softc->sc_geom);
500	error = g_attach(cp, pp);
501	if (error != 0) {
502		g_destroy_consumer(cp);
503		g_topology_unlock();
504		return (error);
505	}
506	error = g_access(cp, 1, 1, 1);
507		g_topology_unlock();
508	if (error != 0) {
509		g_detach(cp);
510		g_destroy_consumer(cp);
511		G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
512		    pp->name, error);
513		return (error);
514	}
515	disk->d_consumer = cp;
516	disk->d_consumer->private = disk;
517	disk->d_consumer->index = 0;
518	G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
519	return (0);
520}
521
522static void
523g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
524{
525
526	g_topology_assert();
527
528	if (cp == NULL)
529		return;
530	if (cp->provider != NULL)
531		g_raid3_kill_consumer(sc, cp);
532	else
533		g_destroy_consumer(cp);
534}
535
536/*
537 * Initialize disk. This means allocate memory, create consumer, attach it
538 * to the provider and open access (r1w1e1) to it.
539 */
540static struct g_raid3_disk *
541g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
542    struct g_raid3_metadata *md, int *errorp)
543{
544	struct g_raid3_disk *disk;
545	int error;
546
547	disk = &sc->sc_disks[md->md_no];
548	error = g_raid3_connect_disk(disk, pp);
549	if (error != 0) {
550		if (errorp != NULL)
551			*errorp = error;
552		return (NULL);
553	}
554	disk->d_state = G_RAID3_DISK_STATE_NONE;
555	disk->d_flags = md->md_dflags;
556	if (md->md_provider[0] != '\0')
557		disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
558	disk->d_sync.ds_consumer = NULL;
559	disk->d_sync.ds_offset = md->md_sync_offset;
560	disk->d_sync.ds_offset_done = md->md_sync_offset;
561	disk->d_genid = md->md_genid;
562	disk->d_sync.ds_syncid = md->md_syncid;
563	if (errorp != NULL)
564		*errorp = 0;
565	return (disk);
566}
567
568static void
569g_raid3_destroy_disk(struct g_raid3_disk *disk)
570{
571	struct g_raid3_softc *sc;
572
573	g_topology_assert_not();
574	sc = disk->d_softc;
575	sx_assert(&sc->sc_lock, SX_XLOCKED);
576
577	if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
578		return;
579	g_raid3_event_cancel(disk);
580	switch (disk->d_state) {
581	case G_RAID3_DISK_STATE_SYNCHRONIZING:
582		if (sc->sc_syncdisk != NULL)
583			g_raid3_sync_stop(sc, 1);
584		/* FALLTHROUGH */
585	case G_RAID3_DISK_STATE_NEW:
586	case G_RAID3_DISK_STATE_STALE:
587	case G_RAID3_DISK_STATE_ACTIVE:
588		g_topology_lock();
589		g_raid3_disconnect_consumer(sc, disk->d_consumer);
590		g_topology_unlock();
591		disk->d_consumer = NULL;
592		break;
593	default:
594		KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
595		    g_raid3_get_diskname(disk),
596		    g_raid3_disk_state2str(disk->d_state)));
597	}
598	disk->d_state = G_RAID3_DISK_STATE_NODISK;
599}
600
601static void
602g_raid3_destroy_device(struct g_raid3_softc *sc)
603{
604	struct g_raid3_event *ep;
605	struct g_raid3_disk *disk;
606	struct g_geom *gp;
607	struct g_consumer *cp;
608	u_int n;
609
610	g_topology_assert_not();
611	sx_assert(&sc->sc_lock, SX_XLOCKED);
612
613	gp = sc->sc_geom;
614	if (sc->sc_provider != NULL)
615		g_raid3_destroy_provider(sc);
616	for (n = 0; n < sc->sc_ndisks; n++) {
617		disk = &sc->sc_disks[n];
618		if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
619			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
620			g_raid3_update_metadata(disk);
621			g_raid3_destroy_disk(disk);
622		}
623	}
624	while ((ep = g_raid3_event_get(sc)) != NULL) {
625		g_raid3_event_remove(sc, ep);
626		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
627			g_raid3_event_free(ep);
628		else {
629			ep->e_error = ECANCELED;
630			ep->e_flags |= G_RAID3_EVENT_DONE;
631			G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
632			mtx_lock(&sc->sc_events_mtx);
633			wakeup(ep);
634			mtx_unlock(&sc->sc_events_mtx);
635		}
636	}
637	callout_drain(&sc->sc_callout);
638	cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
639	g_topology_lock();
640	if (cp != NULL)
641		g_raid3_disconnect_consumer(sc, cp);
642	g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
643	G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
644	g_wither_geom(gp, ENXIO);
645	g_topology_unlock();
646	if (!g_raid3_use_malloc) {
647		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
648		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
649		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
650	}
651	mtx_destroy(&sc->sc_queue_mtx);
652	mtx_destroy(&sc->sc_events_mtx);
653	sx_xunlock(&sc->sc_lock);
654	sx_destroy(&sc->sc_lock);
655}
656
657static void
658g_raid3_orphan(struct g_consumer *cp)
659{
660	struct g_raid3_disk *disk;
661
662	g_topology_assert();
663
664	disk = cp->private;
665	if (disk == NULL)
666		return;
667	disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
668	g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
669	    G_RAID3_EVENT_DONTWAIT);
670}
671
672static int
673g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
674{
675	struct g_raid3_softc *sc;
676	struct g_consumer *cp;
677	off_t offset, length;
678	u_char *sector;
679	int error = 0;
680
681	g_topology_assert_not();
682	sc = disk->d_softc;
683	sx_assert(&sc->sc_lock, SX_LOCKED);
684
685	cp = disk->d_consumer;
686	KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
687	KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
688	KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
689	    ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
690	    cp->acw, cp->ace));
691	length = cp->provider->sectorsize;
692	offset = cp->provider->mediasize - length;
693	sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
694	if (md != NULL)
695		raid3_metadata_encode(md, sector);
696	error = g_write_data(cp, offset, sector, length);
697	free(sector, M_RAID3);
698	if (error != 0) {
699		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
700			G_RAID3_DEBUG(0, "Cannot write metadata on %s "
701			    "(device=%s, error=%d).",
702			    g_raid3_get_diskname(disk), sc->sc_name, error);
703			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
704		} else {
705			G_RAID3_DEBUG(1, "Cannot write metadata on %s "
706			    "(device=%s, error=%d).",
707			    g_raid3_get_diskname(disk), sc->sc_name, error);
708		}
709		if (g_raid3_disconnect_on_failure &&
710		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
711			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
712			g_raid3_event_send(disk,
713			    G_RAID3_DISK_STATE_DISCONNECTED,
714			    G_RAID3_EVENT_DONTWAIT);
715		}
716	}
717	return (error);
718}
719
720int
721g_raid3_clear_metadata(struct g_raid3_disk *disk)
722{
723	int error;
724
725	g_topology_assert_not();
726	sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
727
728	error = g_raid3_write_metadata(disk, NULL);
729	if (error == 0) {
730		G_RAID3_DEBUG(2, "Metadata on %s cleared.",
731		    g_raid3_get_diskname(disk));
732	} else {
733		G_RAID3_DEBUG(0,
734		    "Cannot clear metadata on disk %s (error=%d).",
735		    g_raid3_get_diskname(disk), error);
736	}
737	return (error);
738}
739
740void
741g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
742{
743	struct g_raid3_softc *sc;
744	struct g_provider *pp;
745
746	sc = disk->d_softc;
747	strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
748	md->md_version = G_RAID3_VERSION;
749	strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
750	md->md_id = sc->sc_id;
751	md->md_all = sc->sc_ndisks;
752	md->md_genid = sc->sc_genid;
753	md->md_mediasize = sc->sc_mediasize;
754	md->md_sectorsize = sc->sc_sectorsize;
755	md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
756	md->md_no = disk->d_no;
757	md->md_syncid = disk->d_sync.ds_syncid;
758	md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
759	if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
760		md->md_sync_offset = 0;
761	else {
762		md->md_sync_offset =
763		    disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
764	}
765	if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
766		pp = disk->d_consumer->provider;
767	else
768		pp = NULL;
769	if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
770		strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
771	else
772		bzero(md->md_provider, sizeof(md->md_provider));
773	if (pp != NULL)
774		md->md_provsize = pp->mediasize;
775	else
776		md->md_provsize = 0;
777}
778
779void
780g_raid3_update_metadata(struct g_raid3_disk *disk)
781{
782	struct g_raid3_softc *sc;
783	struct g_raid3_metadata md;
784	int error;
785
786	g_topology_assert_not();
787	sc = disk->d_softc;
788	sx_assert(&sc->sc_lock, SX_LOCKED);
789
790	g_raid3_fill_metadata(disk, &md);
791	error = g_raid3_write_metadata(disk, &md);
792	if (error == 0) {
793		G_RAID3_DEBUG(2, "Metadata on %s updated.",
794		    g_raid3_get_diskname(disk));
795	} else {
796		G_RAID3_DEBUG(0,
797		    "Cannot update metadata on disk %s (error=%d).",
798		    g_raid3_get_diskname(disk), error);
799	}
800}
801
802static void
803g_raid3_bump_syncid(struct g_raid3_softc *sc)
804{
805	struct g_raid3_disk *disk;
806	u_int n;
807
808	g_topology_assert_not();
809	sx_assert(&sc->sc_lock, SX_XLOCKED);
810	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
811	    ("%s called with no active disks (device=%s).", __func__,
812	    sc->sc_name));
813
814	sc->sc_syncid++;
815	G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
816	    sc->sc_syncid);
817	for (n = 0; n < sc->sc_ndisks; n++) {
818		disk = &sc->sc_disks[n];
819		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
820		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
821			disk->d_sync.ds_syncid = sc->sc_syncid;
822			g_raid3_update_metadata(disk);
823		}
824	}
825}
826
827static void
828g_raid3_bump_genid(struct g_raid3_softc *sc)
829{
830	struct g_raid3_disk *disk;
831	u_int n;
832
833	g_topology_assert_not();
834	sx_assert(&sc->sc_lock, SX_XLOCKED);
835	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
836	    ("%s called with no active disks (device=%s).", __func__,
837	    sc->sc_name));
838
839	sc->sc_genid++;
840	G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
841	    sc->sc_genid);
842	for (n = 0; n < sc->sc_ndisks; n++) {
843		disk = &sc->sc_disks[n];
844		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
845		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
846			disk->d_genid = sc->sc_genid;
847			g_raid3_update_metadata(disk);
848		}
849	}
850}
851
852static int
853g_raid3_idle(struct g_raid3_softc *sc, int acw)
854{
855	struct g_raid3_disk *disk;
856	u_int i;
857	int timeout;
858
859	g_topology_assert_not();
860	sx_assert(&sc->sc_lock, SX_XLOCKED);
861
862	if (sc->sc_provider == NULL)
863		return (0);
864	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
865		return (0);
866	if (sc->sc_idle)
867		return (0);
868	if (sc->sc_writes > 0)
869		return (0);
870	if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
871		timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
872		if (!g_raid3_shutdown && timeout > 0)
873			return (timeout);
874	}
875	sc->sc_idle = 1;
876	for (i = 0; i < sc->sc_ndisks; i++) {
877		disk = &sc->sc_disks[i];
878		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
879			continue;
880		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
881		    g_raid3_get_diskname(disk), sc->sc_name);
882		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
883		g_raid3_update_metadata(disk);
884	}
885	return (0);
886}
887
888static void
889g_raid3_unidle(struct g_raid3_softc *sc)
890{
891	struct g_raid3_disk *disk;
892	u_int i;
893
894	g_topology_assert_not();
895	sx_assert(&sc->sc_lock, SX_XLOCKED);
896
897	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
898		return;
899	sc->sc_idle = 0;
900	sc->sc_last_write = time_uptime;
901	for (i = 0; i < sc->sc_ndisks; i++) {
902		disk = &sc->sc_disks[i];
903		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
904			continue;
905		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
906		    g_raid3_get_diskname(disk), sc->sc_name);
907		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
908		g_raid3_update_metadata(disk);
909	}
910}
911
912/*
913 * Treat bio_driver1 field in parent bio as list head and field bio_caller1
914 * in child bio as pointer to the next element on the list.
915 */
916#define	G_RAID3_HEAD_BIO(pbp)	(pbp)->bio_driver1
917
918#define	G_RAID3_NEXT_BIO(cbp)	(cbp)->bio_caller1
919
920#define	G_RAID3_FOREACH_BIO(pbp, bp)					\
921	for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;		\
922	    (bp) = G_RAID3_NEXT_BIO(bp))
923
924#define	G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)			\
925	for ((bp) = G_RAID3_HEAD_BIO(pbp);				\
926	    (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);	\
927	    (bp) = (tmpbp))
928
929static void
930g_raid3_init_bio(struct bio *pbp)
931{
932
933	G_RAID3_HEAD_BIO(pbp) = NULL;
934}
935
936static void
937g_raid3_remove_bio(struct bio *cbp)
938{
939	struct bio *pbp, *bp;
940
941	pbp = cbp->bio_parent;
942	if (G_RAID3_HEAD_BIO(pbp) == cbp)
943		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
944	else {
945		G_RAID3_FOREACH_BIO(pbp, bp) {
946			if (G_RAID3_NEXT_BIO(bp) == cbp) {
947				G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
948				break;
949			}
950		}
951	}
952	G_RAID3_NEXT_BIO(cbp) = NULL;
953}
954
955static void
956g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
957{
958	struct bio *pbp, *bp;
959
960	g_raid3_remove_bio(sbp);
961	pbp = dbp->bio_parent;
962	G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
963	if (G_RAID3_HEAD_BIO(pbp) == dbp)
964		G_RAID3_HEAD_BIO(pbp) = sbp;
965	else {
966		G_RAID3_FOREACH_BIO(pbp, bp) {
967			if (G_RAID3_NEXT_BIO(bp) == dbp) {
968				G_RAID3_NEXT_BIO(bp) = sbp;
969				break;
970			}
971		}
972	}
973	G_RAID3_NEXT_BIO(dbp) = NULL;
974}
975
976static void
977g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
978{
979	struct bio *bp, *pbp;
980	size_t size;
981
982	pbp = cbp->bio_parent;
983	pbp->bio_children--;
984	KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
985	size = pbp->bio_length / (sc->sc_ndisks - 1);
986	g_raid3_free(sc, cbp->bio_data, size);
987	if (G_RAID3_HEAD_BIO(pbp) == cbp) {
988		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
989		G_RAID3_NEXT_BIO(cbp) = NULL;
990		g_destroy_bio(cbp);
991	} else {
992		G_RAID3_FOREACH_BIO(pbp, bp) {
993			if (G_RAID3_NEXT_BIO(bp) == cbp)
994				break;
995		}
996		if (bp != NULL) {
997			KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
998			    ("NULL bp->bio_driver1"));
999			G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1000			G_RAID3_NEXT_BIO(cbp) = NULL;
1001		}
1002		g_destroy_bio(cbp);
1003	}
1004}
1005
1006static struct bio *
1007g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1008{
1009	struct bio *bp, *cbp;
1010	size_t size;
1011	int memflag;
1012
1013	cbp = g_clone_bio(pbp);
1014	if (cbp == NULL)
1015		return (NULL);
1016	size = pbp->bio_length / (sc->sc_ndisks - 1);
1017	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1018		memflag = M_WAITOK;
1019	else
1020		memflag = M_NOWAIT;
1021	cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1022	if (cbp->bio_data == NULL) {
1023		pbp->bio_children--;
1024		g_destroy_bio(cbp);
1025		return (NULL);
1026	}
1027	G_RAID3_NEXT_BIO(cbp) = NULL;
1028	if (G_RAID3_HEAD_BIO(pbp) == NULL)
1029		G_RAID3_HEAD_BIO(pbp) = cbp;
1030	else {
1031		G_RAID3_FOREACH_BIO(pbp, bp) {
1032			if (G_RAID3_NEXT_BIO(bp) == NULL) {
1033				G_RAID3_NEXT_BIO(bp) = cbp;
1034				break;
1035			}
1036		}
1037	}
1038	return (cbp);
1039}
1040
1041static void
1042g_raid3_scatter(struct bio *pbp)
1043{
1044	struct g_raid3_softc *sc;
1045	struct g_raid3_disk *disk;
1046	struct bio *bp, *cbp, *tmpbp;
1047	off_t atom, cadd, padd, left;
1048	int first;
1049
1050	sc = pbp->bio_to->geom->softc;
1051	bp = NULL;
1052	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1053		/*
1054		 * Find bio for which we should calculate data.
1055		 */
1056		G_RAID3_FOREACH_BIO(pbp, cbp) {
1057			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1058				bp = cbp;
1059				break;
1060			}
1061		}
1062		KASSERT(bp != NULL, ("NULL parity bio."));
1063	}
1064	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1065	cadd = padd = 0;
1066	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1067		G_RAID3_FOREACH_BIO(pbp, cbp) {
1068			if (cbp == bp)
1069				continue;
1070			bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1071			padd += atom;
1072		}
1073		cadd += atom;
1074	}
1075	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1076		/*
1077		 * Calculate parity.
1078		 */
1079		first = 1;
1080		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1081			if (cbp == bp)
1082				continue;
1083			if (first) {
1084				bcopy(cbp->bio_data, bp->bio_data,
1085				    bp->bio_length);
1086				first = 0;
1087			} else {
1088				g_raid3_xor(cbp->bio_data, bp->bio_data,
1089				    bp->bio_length);
1090			}
1091			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1092				g_raid3_destroy_bio(sc, cbp);
1093		}
1094	}
1095	G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1096		struct g_consumer *cp;
1097
1098		disk = cbp->bio_caller2;
1099		cp = disk->d_consumer;
1100		cbp->bio_to = cp->provider;
1101		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1102		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1103		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1104		    cp->acr, cp->acw, cp->ace));
1105		cp->index++;
1106		sc->sc_writes++;
1107		g_io_request(cbp, cp);
1108	}
1109}
1110
1111static void
1112g_raid3_gather(struct bio *pbp)
1113{
1114	struct g_raid3_softc *sc;
1115	struct g_raid3_disk *disk;
1116	struct bio *xbp, *fbp, *cbp;
1117	off_t atom, cadd, padd, left;
1118
1119	sc = pbp->bio_to->geom->softc;
1120	/*
1121	 * Find bio for which we have to calculate data.
1122	 * While going through this path, check if all requests
1123	 * succeeded, if not, deny whole request.
1124	 * If we're in COMPLETE mode, we allow one request to fail,
1125	 * so if we find one, we're sending it to the parity consumer.
1126	 * If there are more failed requests, we deny whole request.
1127	 */
1128	xbp = fbp = NULL;
1129	G_RAID3_FOREACH_BIO(pbp, cbp) {
1130		if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1131			KASSERT(xbp == NULL, ("More than one parity bio."));
1132			xbp = cbp;
1133		}
1134		if (cbp->bio_error == 0)
1135			continue;
1136		/*
1137		 * Found failed request.
1138		 */
1139		if (fbp == NULL) {
1140			if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1141				/*
1142				 * We are already in degraded mode, so we can't
1143				 * accept any failures.
1144				 */
1145				if (pbp->bio_error == 0)
1146					pbp->bio_error = cbp->bio_error;
1147			} else {
1148				fbp = cbp;
1149			}
1150		} else {
1151			/*
1152			 * Next failed request, that's too many.
1153			 */
1154			if (pbp->bio_error == 0)
1155				pbp->bio_error = fbp->bio_error;
1156		}
1157		disk = cbp->bio_caller2;
1158		if (disk == NULL)
1159			continue;
1160		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1161			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1162			G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1163			    cbp->bio_error);
1164		} else {
1165			G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1166			    cbp->bio_error);
1167		}
1168		if (g_raid3_disconnect_on_failure &&
1169		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1170			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1171			g_raid3_event_send(disk,
1172			    G_RAID3_DISK_STATE_DISCONNECTED,
1173			    G_RAID3_EVENT_DONTWAIT);
1174		}
1175	}
1176	if (pbp->bio_error != 0)
1177		goto finish;
1178	if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1179		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1180		if (xbp != fbp)
1181			g_raid3_replace_bio(xbp, fbp);
1182		g_raid3_destroy_bio(sc, fbp);
1183	} else if (fbp != NULL) {
1184		struct g_consumer *cp;
1185
1186		/*
1187		 * One request failed, so send the same request to
1188		 * the parity consumer.
1189		 */
1190		disk = pbp->bio_driver2;
1191		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1192			pbp->bio_error = fbp->bio_error;
1193			goto finish;
1194		}
1195		pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1196		pbp->bio_inbed--;
1197		fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1198		if (disk->d_no == sc->sc_ndisks - 1)
1199			fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1200		fbp->bio_error = 0;
1201		fbp->bio_completed = 0;
1202		fbp->bio_children = 0;
1203		fbp->bio_inbed = 0;
1204		cp = disk->d_consumer;
1205		fbp->bio_caller2 = disk;
1206		fbp->bio_to = cp->provider;
1207		G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1208		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1209		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1210		    cp->acr, cp->acw, cp->ace));
1211		cp->index++;
1212		g_io_request(fbp, cp);
1213		return;
1214	}
1215	if (xbp != NULL) {
1216		/*
1217		 * Calculate parity.
1218		 */
1219		G_RAID3_FOREACH_BIO(pbp, cbp) {
1220			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1221				continue;
1222			g_raid3_xor(cbp->bio_data, xbp->bio_data,
1223			    xbp->bio_length);
1224		}
1225		xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1226		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1227			if (!g_raid3_is_zero(xbp)) {
1228				g_raid3_parity_mismatch++;
1229				pbp->bio_error = EIO;
1230				goto finish;
1231			}
1232			g_raid3_destroy_bio(sc, xbp);
1233		}
1234	}
1235	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1236	cadd = padd = 0;
1237	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1238		G_RAID3_FOREACH_BIO(pbp, cbp) {
1239			bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1240			pbp->bio_completed += atom;
1241			padd += atom;
1242		}
1243		cadd += atom;
1244	}
1245finish:
1246	if (pbp->bio_error == 0)
1247		G_RAID3_LOGREQ(3, pbp, "Request finished.");
1248	else {
1249		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1250			G_RAID3_LOGREQ(1, pbp, "Verification error.");
1251		else
1252			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1253	}
1254	pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1255	while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1256		g_raid3_destroy_bio(sc, cbp);
1257	g_io_deliver(pbp, pbp->bio_error);
1258}
1259
1260static void
1261g_raid3_done(struct bio *bp)
1262{
1263	struct g_raid3_softc *sc;
1264
1265	sc = bp->bio_from->geom->softc;
1266	bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1267	G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1268	mtx_lock(&sc->sc_queue_mtx);
1269	bioq_insert_head(&sc->sc_queue, bp);
1270	mtx_unlock(&sc->sc_queue_mtx);
1271	wakeup(sc);
1272	wakeup(&sc->sc_queue);
1273}
1274
1275static void
1276g_raid3_regular_request(struct bio *cbp)
1277{
1278	struct g_raid3_softc *sc;
1279	struct g_raid3_disk *disk;
1280	struct bio *pbp;
1281
1282	g_topology_assert_not();
1283
1284	pbp = cbp->bio_parent;
1285	sc = pbp->bio_to->geom->softc;
1286	cbp->bio_from->index--;
1287	if (cbp->bio_cmd == BIO_WRITE)
1288		sc->sc_writes--;
1289	disk = cbp->bio_from->private;
1290	if (disk == NULL) {
1291		g_topology_lock();
1292		g_raid3_kill_consumer(sc, cbp->bio_from);
1293		g_topology_unlock();
1294	}
1295
1296	G_RAID3_LOGREQ(3, cbp, "Request finished.");
1297	pbp->bio_inbed++;
1298	KASSERT(pbp->bio_inbed <= pbp->bio_children,
1299	    ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1300	    pbp->bio_children));
1301	if (pbp->bio_inbed != pbp->bio_children)
1302		return;
1303	switch (pbp->bio_cmd) {
1304	case BIO_READ:
1305		g_raid3_gather(pbp);
1306		break;
1307	case BIO_WRITE:
1308	case BIO_DELETE:
1309	    {
1310		int error = 0;
1311
1312		pbp->bio_completed = pbp->bio_length;
1313		while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1314			if (cbp->bio_error == 0) {
1315				g_raid3_destroy_bio(sc, cbp);
1316				continue;
1317			}
1318
1319			if (error == 0)
1320				error = cbp->bio_error;
1321			else if (pbp->bio_error == 0) {
1322				/*
1323				 * Next failed request, that's too many.
1324				 */
1325				pbp->bio_error = error;
1326			}
1327
1328			disk = cbp->bio_caller2;
1329			if (disk == NULL) {
1330				g_raid3_destroy_bio(sc, cbp);
1331				continue;
1332			}
1333
1334			if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1335				disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1336				G_RAID3_LOGREQ(0, cbp,
1337				    "Request failed (error=%d).",
1338				    cbp->bio_error);
1339			} else {
1340				G_RAID3_LOGREQ(1, cbp,
1341				    "Request failed (error=%d).",
1342				    cbp->bio_error);
1343			}
1344			if (g_raid3_disconnect_on_failure &&
1345			    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1346				sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1347				g_raid3_event_send(disk,
1348				    G_RAID3_DISK_STATE_DISCONNECTED,
1349				    G_RAID3_EVENT_DONTWAIT);
1350			}
1351			g_raid3_destroy_bio(sc, cbp);
1352		}
1353		if (pbp->bio_error == 0)
1354			G_RAID3_LOGREQ(3, pbp, "Request finished.");
1355		else
1356			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1357		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1358		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1359		bioq_remove(&sc->sc_inflight, pbp);
1360		/* Release delayed sync requests if possible. */
1361		g_raid3_sync_release(sc);
1362		g_io_deliver(pbp, pbp->bio_error);
1363		break;
1364	    }
1365	}
1366}
1367
1368static void
1369g_raid3_sync_done(struct bio *bp)
1370{
1371	struct g_raid3_softc *sc;
1372
1373	G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1374	sc = bp->bio_from->geom->softc;
1375	bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1376	mtx_lock(&sc->sc_queue_mtx);
1377	bioq_insert_head(&sc->sc_queue, bp);
1378	mtx_unlock(&sc->sc_queue_mtx);
1379	wakeup(sc);
1380	wakeup(&sc->sc_queue);
1381}
1382
1383static void
1384g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1385{
1386	struct bio_queue_head queue;
1387	struct g_raid3_disk *disk;
1388	struct g_consumer *cp;
1389	struct bio *cbp;
1390	u_int i;
1391
1392	bioq_init(&queue);
1393	for (i = 0; i < sc->sc_ndisks; i++) {
1394		disk = &sc->sc_disks[i];
1395		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1396			continue;
1397		cbp = g_clone_bio(bp);
1398		if (cbp == NULL) {
1399			for (cbp = bioq_first(&queue); cbp != NULL;
1400			    cbp = bioq_first(&queue)) {
1401				bioq_remove(&queue, cbp);
1402				g_destroy_bio(cbp);
1403			}
1404			if (bp->bio_error == 0)
1405				bp->bio_error = ENOMEM;
1406			g_io_deliver(bp, bp->bio_error);
1407			return;
1408		}
1409		bioq_insert_tail(&queue, cbp);
1410		cbp->bio_done = g_std_done;
1411		cbp->bio_caller1 = disk;
1412		cbp->bio_to = disk->d_consumer->provider;
1413	}
1414	for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1415		bioq_remove(&queue, cbp);
1416		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1417		disk = cbp->bio_caller1;
1418		cbp->bio_caller1 = NULL;
1419		cp = disk->d_consumer;
1420		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1421		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1422		    cp->acr, cp->acw, cp->ace));
1423		g_io_request(cbp, disk->d_consumer);
1424	}
1425}
1426
1427static void
1428g_raid3_start(struct bio *bp)
1429{
1430	struct g_raid3_softc *sc;
1431
1432	sc = bp->bio_to->geom->softc;
1433	/*
1434	 * If sc == NULL or there are no valid disks, provider's error
1435	 * should be set and g_raid3_start() should not be called at all.
1436	 */
1437	KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1438	    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1439	    ("Provider's error should be set (error=%d)(device=%s).",
1440	    bp->bio_to->error, bp->bio_to->name));
1441	G_RAID3_LOGREQ(3, bp, "Request received.");
1442
1443	switch (bp->bio_cmd) {
1444	case BIO_READ:
1445	case BIO_WRITE:
1446	case BIO_DELETE:
1447		break;
1448	case BIO_SPEEDUP:
1449	case BIO_FLUSH:
1450		g_raid3_flush(sc, bp);
1451		return;
1452	case BIO_GETATTR:
1453	default:
1454		g_io_deliver(bp, EOPNOTSUPP);
1455		return;
1456	}
1457	mtx_lock(&sc->sc_queue_mtx);
1458	bioq_insert_tail(&sc->sc_queue, bp);
1459	mtx_unlock(&sc->sc_queue_mtx);
1460	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1461	wakeup(sc);
1462}
1463
1464/*
1465 * Return TRUE if the given request is colliding with a in-progress
1466 * synchronization request.
1467 */
1468static int
1469g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1470{
1471	struct g_raid3_disk *disk;
1472	struct bio *sbp;
1473	off_t rstart, rend, sstart, send;
1474	int i;
1475
1476	disk = sc->sc_syncdisk;
1477	if (disk == NULL)
1478		return (0);
1479	rstart = bp->bio_offset;
1480	rend = bp->bio_offset + bp->bio_length;
1481	for (i = 0; i < g_raid3_syncreqs; i++) {
1482		sbp = disk->d_sync.ds_bios[i];
1483		if (sbp == NULL)
1484			continue;
1485		sstart = sbp->bio_offset;
1486		send = sbp->bio_length;
1487		if (sbp->bio_cmd == BIO_WRITE) {
1488			sstart *= sc->sc_ndisks - 1;
1489			send *= sc->sc_ndisks - 1;
1490		}
1491		send += sstart;
1492		if (rend > sstart && rstart < send)
1493			return (1);
1494	}
1495	return (0);
1496}
1497
1498/*
1499 * Return TRUE if the given sync request is colliding with a in-progress regular
1500 * request.
1501 */
1502static int
1503g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1504{
1505	off_t rstart, rend, sstart, send;
1506	struct bio *bp;
1507
1508	if (sc->sc_syncdisk == NULL)
1509		return (0);
1510	sstart = sbp->bio_offset;
1511	send = sstart + sbp->bio_length;
1512	TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1513		rstart = bp->bio_offset;
1514		rend = bp->bio_offset + bp->bio_length;
1515		if (rend > sstart && rstart < send)
1516			return (1);
1517	}
1518	return (0);
1519}
1520
1521/*
1522 * Puts request onto delayed queue.
1523 */
1524static void
1525g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1526{
1527
1528	G_RAID3_LOGREQ(2, bp, "Delaying request.");
1529	bioq_insert_head(&sc->sc_regular_delayed, bp);
1530}
1531
1532/*
1533 * Puts synchronization request onto delayed queue.
1534 */
1535static void
1536g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1537{
1538
1539	G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1540	bioq_insert_tail(&sc->sc_sync_delayed, bp);
1541}
1542
1543/*
1544 * Releases delayed regular requests which don't collide anymore with sync
1545 * requests.
1546 */
1547static void
1548g_raid3_regular_release(struct g_raid3_softc *sc)
1549{
1550	struct bio *bp, *bp2;
1551
1552	TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1553		if (g_raid3_sync_collision(sc, bp))
1554			continue;
1555		bioq_remove(&sc->sc_regular_delayed, bp);
1556		G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1557		mtx_lock(&sc->sc_queue_mtx);
1558		bioq_insert_head(&sc->sc_queue, bp);
1559#if 0
1560		/*
1561		 * wakeup() is not needed, because this function is called from
1562		 * the worker thread.
1563		 */
1564		wakeup(&sc->sc_queue);
1565#endif
1566		mtx_unlock(&sc->sc_queue_mtx);
1567	}
1568}
1569
1570/*
1571 * Releases delayed sync requests which don't collide anymore with regular
1572 * requests.
1573 */
1574static void
1575g_raid3_sync_release(struct g_raid3_softc *sc)
1576{
1577	struct bio *bp, *bp2;
1578
1579	TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1580		if (g_raid3_regular_collision(sc, bp))
1581			continue;
1582		bioq_remove(&sc->sc_sync_delayed, bp);
1583		G_RAID3_LOGREQ(2, bp,
1584		    "Releasing delayed synchronization request.");
1585		g_io_request(bp, bp->bio_from);
1586	}
1587}
1588
1589/*
1590 * Handle synchronization requests.
1591 * Every synchronization request is two-steps process: first, READ request is
1592 * send to active provider and then WRITE request (with read data) to the provider
1593 * being synchronized. When WRITE is finished, new synchronization request is
1594 * send.
1595 */
1596static void
1597g_raid3_sync_request(struct bio *bp)
1598{
1599	struct g_raid3_softc *sc;
1600	struct g_raid3_disk *disk;
1601
1602	bp->bio_from->index--;
1603	sc = bp->bio_from->geom->softc;
1604	disk = bp->bio_from->private;
1605	if (disk == NULL) {
1606		sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1607		g_topology_lock();
1608		g_raid3_kill_consumer(sc, bp->bio_from);
1609		g_topology_unlock();
1610		free(bp->bio_data, M_RAID3);
1611		g_destroy_bio(bp);
1612		sx_xlock(&sc->sc_lock);
1613		return;
1614	}
1615
1616	/*
1617	 * Synchronization request.
1618	 */
1619	switch (bp->bio_cmd) {
1620	case BIO_READ:
1621	    {
1622		struct g_consumer *cp;
1623		u_char *dst, *src;
1624		off_t left;
1625		u_int atom;
1626
1627		if (bp->bio_error != 0) {
1628			G_RAID3_LOGREQ(0, bp,
1629			    "Synchronization request failed (error=%d).",
1630			    bp->bio_error);
1631			g_destroy_bio(bp);
1632			return;
1633		}
1634		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1635		atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1636		dst = src = bp->bio_data;
1637		if (disk->d_no == sc->sc_ndisks - 1) {
1638			u_int n;
1639
1640			/* Parity component. */
1641			for (left = bp->bio_length; left > 0;
1642			    left -= sc->sc_sectorsize) {
1643				bcopy(src, dst, atom);
1644				src += atom;
1645				for (n = 1; n < sc->sc_ndisks - 1; n++) {
1646					g_raid3_xor(src, dst, atom);
1647					src += atom;
1648				}
1649				dst += atom;
1650			}
1651		} else {
1652			/* Regular component. */
1653			src += atom * disk->d_no;
1654			for (left = bp->bio_length; left > 0;
1655			    left -= sc->sc_sectorsize) {
1656				bcopy(src, dst, atom);
1657				src += sc->sc_sectorsize;
1658				dst += atom;
1659			}
1660		}
1661		bp->bio_driver1 = bp->bio_driver2 = NULL;
1662		bp->bio_pflags = 0;
1663		bp->bio_offset /= sc->sc_ndisks - 1;
1664		bp->bio_length /= sc->sc_ndisks - 1;
1665		bp->bio_cmd = BIO_WRITE;
1666		bp->bio_cflags = 0;
1667		bp->bio_children = bp->bio_inbed = 0;
1668		cp = disk->d_consumer;
1669		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1670		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1671		    cp->acr, cp->acw, cp->ace));
1672		cp->index++;
1673		g_io_request(bp, cp);
1674		return;
1675	    }
1676	case BIO_WRITE:
1677	    {
1678		struct g_raid3_disk_sync *sync;
1679		off_t boffset, moffset;
1680		void *data;
1681		int i;
1682
1683		if (bp->bio_error != 0) {
1684			G_RAID3_LOGREQ(0, bp,
1685			    "Synchronization request failed (error=%d).",
1686			    bp->bio_error);
1687			g_destroy_bio(bp);
1688			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1689			g_raid3_event_send(disk,
1690			    G_RAID3_DISK_STATE_DISCONNECTED,
1691			    G_RAID3_EVENT_DONTWAIT);
1692			return;
1693		}
1694		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1695		sync = &disk->d_sync;
1696		if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1697		    sync->ds_consumer == NULL ||
1698		    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1699			/* Don't send more synchronization requests. */
1700			sync->ds_inflight--;
1701			if (sync->ds_bios != NULL) {
1702				i = (int)(uintptr_t)bp->bio_caller1;
1703				sync->ds_bios[i] = NULL;
1704			}
1705			free(bp->bio_data, M_RAID3);
1706			g_destroy_bio(bp);
1707			if (sync->ds_inflight > 0)
1708				return;
1709			if (sync->ds_consumer == NULL ||
1710			    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1711				return;
1712			}
1713			/*
1714			 * Disk up-to-date, activate it.
1715			 */
1716			g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1717			    G_RAID3_EVENT_DONTWAIT);
1718			return;
1719		}
1720
1721		/* Send next synchronization request. */
1722		data = bp->bio_data;
1723		g_reset_bio(bp);
1724		bp->bio_cmd = BIO_READ;
1725		bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1726		bp->bio_length = MIN(maxphys, sc->sc_mediasize - bp->bio_offset);
1727		sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1728		bp->bio_done = g_raid3_sync_done;
1729		bp->bio_data = data;
1730		bp->bio_from = sync->ds_consumer;
1731		bp->bio_to = sc->sc_provider;
1732		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1733		sync->ds_consumer->index++;
1734		/*
1735		 * Delay the request if it is colliding with a regular request.
1736		 */
1737		if (g_raid3_regular_collision(sc, bp))
1738			g_raid3_sync_delay(sc, bp);
1739		else
1740			g_io_request(bp, sync->ds_consumer);
1741
1742		/* Release delayed requests if possible. */
1743		g_raid3_regular_release(sc);
1744
1745		/* Find the smallest offset. */
1746		moffset = sc->sc_mediasize;
1747		for (i = 0; i < g_raid3_syncreqs; i++) {
1748			bp = sync->ds_bios[i];
1749			boffset = bp->bio_offset;
1750			if (bp->bio_cmd == BIO_WRITE)
1751				boffset *= sc->sc_ndisks - 1;
1752			if (boffset < moffset)
1753				moffset = boffset;
1754		}
1755		if (sync->ds_offset_done + maxphys * 100 < moffset) {
1756			/* Update offset_done on every 100 blocks. */
1757			sync->ds_offset_done = moffset;
1758			g_raid3_update_metadata(disk);
1759		}
1760		return;
1761	    }
1762	default:
1763		KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1764		    bp->bio_cmd, sc->sc_name));
1765		break;
1766	}
1767}
1768
1769static int
1770g_raid3_register_request(struct bio *pbp)
1771{
1772	struct g_raid3_softc *sc;
1773	struct g_raid3_disk *disk;
1774	struct g_consumer *cp;
1775	struct bio *cbp, *tmpbp;
1776	off_t offset, length;
1777	u_int n, ndisks;
1778	int round_robin, verify;
1779
1780	ndisks = 0;
1781	sc = pbp->bio_to->geom->softc;
1782	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1783	    sc->sc_syncdisk == NULL) {
1784		g_io_deliver(pbp, EIO);
1785		return (0);
1786	}
1787	g_raid3_init_bio(pbp);
1788	length = pbp->bio_length / (sc->sc_ndisks - 1);
1789	offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1790	round_robin = verify = 0;
1791	switch (pbp->bio_cmd) {
1792	case BIO_READ:
1793		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1794		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1795			pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1796			verify = 1;
1797			ndisks = sc->sc_ndisks;
1798		} else {
1799			verify = 0;
1800			ndisks = sc->sc_ndisks - 1;
1801		}
1802		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1803		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1804			round_robin = 1;
1805		} else {
1806			round_robin = 0;
1807		}
1808		KASSERT(!round_robin || !verify,
1809		    ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1810		pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1811		break;
1812	case BIO_WRITE:
1813	case BIO_DELETE:
1814		/*
1815		 * Delay the request if it is colliding with a synchronization
1816		 * request.
1817		 */
1818		if (g_raid3_sync_collision(sc, pbp)) {
1819			g_raid3_regular_delay(sc, pbp);
1820			return (0);
1821		}
1822
1823		if (sc->sc_idle)
1824			g_raid3_unidle(sc);
1825		else
1826			sc->sc_last_write = time_uptime;
1827
1828		ndisks = sc->sc_ndisks;
1829		break;
1830	}
1831	for (n = 0; n < ndisks; n++) {
1832		disk = &sc->sc_disks[n];
1833		cbp = g_raid3_clone_bio(sc, pbp);
1834		if (cbp == NULL) {
1835			while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1836				g_raid3_destroy_bio(sc, cbp);
1837			/*
1838			 * To prevent deadlock, we must run back up
1839			 * with the ENOMEM for failed requests of any
1840			 * of our consumers.  Our own sync requests
1841			 * can stick around, as they are finite.
1842			 */
1843			if ((pbp->bio_cflags &
1844			    G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1845				g_io_deliver(pbp, ENOMEM);
1846				return (0);
1847			}
1848			return (ENOMEM);
1849		}
1850		cbp->bio_offset = offset;
1851		cbp->bio_length = length;
1852		cbp->bio_done = g_raid3_done;
1853		switch (pbp->bio_cmd) {
1854		case BIO_READ:
1855			if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1856				/*
1857				 * Replace invalid component with the parity
1858				 * component.
1859				 */
1860				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1861				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1862				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1863			} else if (round_robin &&
1864			    disk->d_no == sc->sc_round_robin) {
1865				/*
1866				 * In round-robin mode skip one data component
1867				 * and use parity component when reading.
1868				 */
1869				pbp->bio_driver2 = disk;
1870				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1871				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1872				sc->sc_round_robin++;
1873				round_robin = 0;
1874			} else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1875				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1876			}
1877			break;
1878		case BIO_WRITE:
1879		case BIO_DELETE:
1880			if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1881			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1882				if (n == ndisks - 1) {
1883					/*
1884					 * Active parity component, mark it as such.
1885					 */
1886					cbp->bio_cflags |=
1887					    G_RAID3_BIO_CFLAG_PARITY;
1888				}
1889			} else {
1890				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1891				if (n == ndisks - 1) {
1892					/*
1893					 * Parity component is not connected,
1894					 * so destroy its request.
1895					 */
1896					pbp->bio_pflags |=
1897					    G_RAID3_BIO_PFLAG_NOPARITY;
1898					g_raid3_destroy_bio(sc, cbp);
1899					cbp = NULL;
1900				} else {
1901					cbp->bio_cflags |=
1902					    G_RAID3_BIO_CFLAG_NODISK;
1903					disk = NULL;
1904				}
1905			}
1906			break;
1907		}
1908		if (cbp != NULL)
1909			cbp->bio_caller2 = disk;
1910	}
1911	switch (pbp->bio_cmd) {
1912	case BIO_READ:
1913		if (round_robin) {
1914			/*
1915			 * If we are in round-robin mode and 'round_robin' is
1916			 * still 1, it means, that we skipped parity component
1917			 * for this read and must reset sc_round_robin field.
1918			 */
1919			sc->sc_round_robin = 0;
1920		}
1921		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1922			disk = cbp->bio_caller2;
1923			cp = disk->d_consumer;
1924			cbp->bio_to = cp->provider;
1925			G_RAID3_LOGREQ(3, cbp, "Sending request.");
1926			KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1927			    ("Consumer %s not opened (r%dw%de%d).",
1928			    cp->provider->name, cp->acr, cp->acw, cp->ace));
1929			cp->index++;
1930			g_io_request(cbp, cp);
1931		}
1932		break;
1933	case BIO_WRITE:
1934	case BIO_DELETE:
1935		/*
1936		 * Put request onto inflight queue, so we can check if new
1937		 * synchronization requests don't collide with it.
1938		 */
1939		bioq_insert_tail(&sc->sc_inflight, pbp);
1940
1941		/*
1942		 * Bump syncid on first write.
1943		 */
1944		if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1945			sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1946			g_raid3_bump_syncid(sc);
1947		}
1948		g_raid3_scatter(pbp);
1949		break;
1950	}
1951	return (0);
1952}
1953
1954static int
1955g_raid3_can_destroy(struct g_raid3_softc *sc)
1956{
1957	struct g_geom *gp;
1958	struct g_consumer *cp;
1959
1960	g_topology_assert();
1961	gp = sc->sc_geom;
1962	if (gp->softc == NULL)
1963		return (1);
1964	LIST_FOREACH(cp, &gp->consumer, consumer) {
1965		if (g_raid3_is_busy(sc, cp))
1966			return (0);
1967	}
1968	gp = sc->sc_sync.ds_geom;
1969	LIST_FOREACH(cp, &gp->consumer, consumer) {
1970		if (g_raid3_is_busy(sc, cp))
1971			return (0);
1972	}
1973	G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
1974	    sc->sc_name);
1975	return (1);
1976}
1977
1978static int
1979g_raid3_try_destroy(struct g_raid3_softc *sc)
1980{
1981
1982	g_topology_assert_not();
1983	sx_assert(&sc->sc_lock, SX_XLOCKED);
1984
1985	if (sc->sc_rootmount != NULL) {
1986		G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
1987		    sc->sc_rootmount);
1988		root_mount_rel(sc->sc_rootmount);
1989		sc->sc_rootmount = NULL;
1990	}
1991
1992	g_topology_lock();
1993	if (!g_raid3_can_destroy(sc)) {
1994		g_topology_unlock();
1995		return (0);
1996	}
1997	sc->sc_geom->softc = NULL;
1998	sc->sc_sync.ds_geom->softc = NULL;
1999	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
2000		g_topology_unlock();
2001		G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2002		    &sc->sc_worker);
2003		/* Unlock sc_lock here, as it can be destroyed after wakeup. */
2004		sx_xunlock(&sc->sc_lock);
2005		wakeup(&sc->sc_worker);
2006		sc->sc_worker = NULL;
2007	} else {
2008		g_topology_unlock();
2009		g_raid3_destroy_device(sc);
2010		free(sc->sc_disks, M_RAID3);
2011		free(sc, M_RAID3);
2012	}
2013	return (1);
2014}
2015
2016/*
2017 * Worker thread.
2018 */
2019static void
2020g_raid3_worker(void *arg)
2021{
2022	struct g_raid3_softc *sc;
2023	struct g_raid3_event *ep;
2024	struct bio *bp;
2025	int timeout;
2026
2027	sc = arg;
2028	thread_lock(curthread);
2029	sched_prio(curthread, PRIBIO);
2030	thread_unlock(curthread);
2031
2032	sx_xlock(&sc->sc_lock);
2033	for (;;) {
2034		G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2035		/*
2036		 * First take a look at events.
2037		 * This is important to handle events before any I/O requests.
2038		 */
2039		ep = g_raid3_event_get(sc);
2040		if (ep != NULL) {
2041			g_raid3_event_remove(sc, ep);
2042			if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2043				/* Update only device status. */
2044				G_RAID3_DEBUG(3,
2045				    "Running event for device %s.",
2046				    sc->sc_name);
2047				ep->e_error = 0;
2048				g_raid3_update_device(sc, 1);
2049			} else {
2050				/* Update disk status. */
2051				G_RAID3_DEBUG(3, "Running event for disk %s.",
2052				     g_raid3_get_diskname(ep->e_disk));
2053				ep->e_error = g_raid3_update_disk(ep->e_disk,
2054				    ep->e_state);
2055				if (ep->e_error == 0)
2056					g_raid3_update_device(sc, 0);
2057			}
2058			if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2059				KASSERT(ep->e_error == 0,
2060				    ("Error cannot be handled."));
2061				g_raid3_event_free(ep);
2062			} else {
2063				ep->e_flags |= G_RAID3_EVENT_DONE;
2064				G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2065				    ep);
2066				mtx_lock(&sc->sc_events_mtx);
2067				wakeup(ep);
2068				mtx_unlock(&sc->sc_events_mtx);
2069			}
2070			if ((sc->sc_flags &
2071			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2072				if (g_raid3_try_destroy(sc)) {
2073					curthread->td_pflags &= ~TDP_GEOM;
2074					G_RAID3_DEBUG(1, "Thread exiting.");
2075					kproc_exit(0);
2076				}
2077			}
2078			G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2079			continue;
2080		}
2081		/*
2082		 * Check if we can mark array as CLEAN and if we can't take
2083		 * how much seconds should we wait.
2084		 */
2085		timeout = g_raid3_idle(sc, -1);
2086		/*
2087		 * Now I/O requests.
2088		 */
2089		/* Get first request from the queue. */
2090		mtx_lock(&sc->sc_queue_mtx);
2091		bp = bioq_first(&sc->sc_queue);
2092		if (bp == NULL) {
2093			if ((sc->sc_flags &
2094			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2095				mtx_unlock(&sc->sc_queue_mtx);
2096				if (g_raid3_try_destroy(sc)) {
2097					curthread->td_pflags &= ~TDP_GEOM;
2098					G_RAID3_DEBUG(1, "Thread exiting.");
2099					kproc_exit(0);
2100				}
2101				mtx_lock(&sc->sc_queue_mtx);
2102			}
2103			sx_xunlock(&sc->sc_lock);
2104			/*
2105			 * XXX: We can miss an event here, because an event
2106			 *      can be added without sx-device-lock and without
2107			 *      mtx-queue-lock. Maybe I should just stop using
2108			 *      dedicated mutex for events synchronization and
2109			 *      stick with the queue lock?
2110			 *      The event will hang here until next I/O request
2111			 *      or next event is received.
2112			 */
2113			MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2114			    timeout * hz);
2115			sx_xlock(&sc->sc_lock);
2116			G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2117			continue;
2118		}
2119process:
2120		bioq_remove(&sc->sc_queue, bp);
2121		mtx_unlock(&sc->sc_queue_mtx);
2122
2123		if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2124		    (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2125			g_raid3_sync_request(bp);	/* READ */
2126		} else if (bp->bio_to != sc->sc_provider) {
2127			if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2128				g_raid3_regular_request(bp);
2129			else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2130				g_raid3_sync_request(bp);	/* WRITE */
2131			else {
2132				KASSERT(0,
2133				    ("Invalid request cflags=0x%hx to=%s.",
2134				    bp->bio_cflags, bp->bio_to->name));
2135			}
2136		} else if (g_raid3_register_request(bp) != 0) {
2137			mtx_lock(&sc->sc_queue_mtx);
2138			bioq_insert_head(&sc->sc_queue, bp);
2139			/*
2140			 * We are short in memory, let see if there are finished
2141			 * request we can free.
2142			 */
2143			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2144				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2145					goto process;
2146			}
2147			/*
2148			 * No finished regular request, so at least keep
2149			 * synchronization running.
2150			 */
2151			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2152				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2153					goto process;
2154			}
2155			sx_xunlock(&sc->sc_lock);
2156			MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2157			    "r3:lowmem", hz / 10);
2158			sx_xlock(&sc->sc_lock);
2159		}
2160		G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2161	}
2162}
2163
2164static void
2165g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2166{
2167
2168	sx_assert(&sc->sc_lock, SX_LOCKED);
2169	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2170		return;
2171	if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2172		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2173		    g_raid3_get_diskname(disk), sc->sc_name);
2174		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2175	} else if (sc->sc_idle &&
2176	    (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2177		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2178		    g_raid3_get_diskname(disk), sc->sc_name);
2179		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2180	}
2181}
2182
2183static void
2184g_raid3_sync_start(struct g_raid3_softc *sc)
2185{
2186	struct g_raid3_disk *disk;
2187	struct g_consumer *cp;
2188	struct bio *bp;
2189	int error;
2190	u_int n;
2191
2192	g_topology_assert_not();
2193	sx_assert(&sc->sc_lock, SX_XLOCKED);
2194
2195	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2196	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2197	    sc->sc_state));
2198	KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2199	    sc->sc_name, sc->sc_state));
2200	disk = NULL;
2201	for (n = 0; n < sc->sc_ndisks; n++) {
2202		if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2203			continue;
2204		disk = &sc->sc_disks[n];
2205		break;
2206	}
2207	if (disk == NULL)
2208		return;
2209
2210	sx_xunlock(&sc->sc_lock);
2211	g_topology_lock();
2212	cp = g_new_consumer(sc->sc_sync.ds_geom);
2213	error = g_attach(cp, sc->sc_provider);
2214	KASSERT(error == 0,
2215	    ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2216	error = g_access(cp, 1, 0, 0);
2217	KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2218	g_topology_unlock();
2219	sx_xlock(&sc->sc_lock);
2220
2221	G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2222	    g_raid3_get_diskname(disk));
2223	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2224		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2225	KASSERT(disk->d_sync.ds_consumer == NULL,
2226	    ("Sync consumer already exists (device=%s, disk=%s).",
2227	    sc->sc_name, g_raid3_get_diskname(disk)));
2228
2229	disk->d_sync.ds_consumer = cp;
2230	disk->d_sync.ds_consumer->private = disk;
2231	disk->d_sync.ds_consumer->index = 0;
2232	sc->sc_syncdisk = disk;
2233
2234	/*
2235	 * Allocate memory for synchronization bios and initialize them.
2236	 */
2237	disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2238	    M_RAID3, M_WAITOK);
2239	for (n = 0; n < g_raid3_syncreqs; n++) {
2240		bp = g_alloc_bio();
2241		disk->d_sync.ds_bios[n] = bp;
2242		bp->bio_parent = NULL;
2243		bp->bio_cmd = BIO_READ;
2244		bp->bio_data = malloc(maxphys, M_RAID3, M_WAITOK);
2245		bp->bio_cflags = 0;
2246		bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2247		bp->bio_length = MIN(maxphys, sc->sc_mediasize - bp->bio_offset);
2248		disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2249		bp->bio_done = g_raid3_sync_done;
2250		bp->bio_from = disk->d_sync.ds_consumer;
2251		bp->bio_to = sc->sc_provider;
2252		bp->bio_caller1 = (void *)(uintptr_t)n;
2253	}
2254
2255	/* Set the number of in-flight synchronization requests. */
2256	disk->d_sync.ds_inflight = g_raid3_syncreqs;
2257
2258	/*
2259	 * Fire off first synchronization requests.
2260	 */
2261	for (n = 0; n < g_raid3_syncreqs; n++) {
2262		bp = disk->d_sync.ds_bios[n];
2263		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2264		disk->d_sync.ds_consumer->index++;
2265		/*
2266		 * Delay the request if it is colliding with a regular request.
2267		 */
2268		if (g_raid3_regular_collision(sc, bp))
2269			g_raid3_sync_delay(sc, bp);
2270		else
2271			g_io_request(bp, disk->d_sync.ds_consumer);
2272	}
2273}
2274
2275/*
2276 * Stop synchronization process.
2277 * type: 0 - synchronization finished
2278 *       1 - synchronization stopped
2279 */
2280static void
2281g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2282{
2283	struct g_raid3_disk *disk;
2284	struct g_consumer *cp;
2285
2286	g_topology_assert_not();
2287	sx_assert(&sc->sc_lock, SX_LOCKED);
2288
2289	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2290	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2291	    sc->sc_state));
2292	disk = sc->sc_syncdisk;
2293	sc->sc_syncdisk = NULL;
2294	KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2295	KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2296	    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2297	    g_raid3_disk_state2str(disk->d_state)));
2298	if (disk->d_sync.ds_consumer == NULL)
2299		return;
2300
2301	if (type == 0) {
2302		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2303		    sc->sc_name, g_raid3_get_diskname(disk));
2304	} else /* if (type == 1) */ {
2305		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2306		    sc->sc_name, g_raid3_get_diskname(disk));
2307	}
2308	free(disk->d_sync.ds_bios, M_RAID3);
2309	disk->d_sync.ds_bios = NULL;
2310	cp = disk->d_sync.ds_consumer;
2311	disk->d_sync.ds_consumer = NULL;
2312	disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2313	sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2314	g_topology_lock();
2315	g_raid3_kill_consumer(sc, cp);
2316	g_topology_unlock();
2317	sx_xlock(&sc->sc_lock);
2318}
2319
2320static void
2321g_raid3_launch_provider(struct g_raid3_softc *sc)
2322{
2323	struct g_provider *pp;
2324	struct g_raid3_disk *disk;
2325	int n;
2326
2327	sx_assert(&sc->sc_lock, SX_LOCKED);
2328
2329	g_topology_lock();
2330	pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2331	pp->mediasize = sc->sc_mediasize;
2332	pp->sectorsize = sc->sc_sectorsize;
2333	pp->stripesize = 0;
2334	pp->stripeoffset = 0;
2335	for (n = 0; n < sc->sc_ndisks; n++) {
2336		disk = &sc->sc_disks[n];
2337		if (disk->d_consumer && disk->d_consumer->provider &&
2338		    disk->d_consumer->provider->stripesize > pp->stripesize) {
2339			pp->stripesize = disk->d_consumer->provider->stripesize;
2340			pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
2341		}
2342	}
2343	pp->stripesize *= sc->sc_ndisks - 1;
2344	pp->stripeoffset *= sc->sc_ndisks - 1;
2345	sc->sc_provider = pp;
2346	g_error_provider(pp, 0);
2347	g_topology_unlock();
2348	G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2349	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2350
2351	if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2352		g_raid3_sync_start(sc);
2353}
2354
2355static void
2356g_raid3_destroy_provider(struct g_raid3_softc *sc)
2357{
2358	struct bio *bp;
2359
2360	g_topology_assert_not();
2361	KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2362	    sc->sc_name));
2363
2364	g_topology_lock();
2365	g_error_provider(sc->sc_provider, ENXIO);
2366	mtx_lock(&sc->sc_queue_mtx);
2367	while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2368		bioq_remove(&sc->sc_queue, bp);
2369		g_io_deliver(bp, ENXIO);
2370	}
2371	mtx_unlock(&sc->sc_queue_mtx);
2372	G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2373	    sc->sc_provider->name);
2374	g_wither_provider(sc->sc_provider, ENXIO);
2375	g_topology_unlock();
2376	sc->sc_provider = NULL;
2377	if (sc->sc_syncdisk != NULL)
2378		g_raid3_sync_stop(sc, 1);
2379}
2380
2381static void
2382g_raid3_go(void *arg)
2383{
2384	struct g_raid3_softc *sc;
2385
2386	sc = arg;
2387	G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2388	g_raid3_event_send(sc, 0,
2389	    G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2390}
2391
2392static u_int
2393g_raid3_determine_state(struct g_raid3_disk *disk)
2394{
2395	struct g_raid3_softc *sc;
2396	u_int state;
2397
2398	sc = disk->d_softc;
2399	if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2400		if ((disk->d_flags &
2401		    G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2402			/* Disk does not need synchronization. */
2403			state = G_RAID3_DISK_STATE_ACTIVE;
2404		} else {
2405			if ((sc->sc_flags &
2406			     G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2407			    (disk->d_flags &
2408			     G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2409				/*
2410				 * We can start synchronization from
2411				 * the stored offset.
2412				 */
2413				state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2414			} else {
2415				state = G_RAID3_DISK_STATE_STALE;
2416			}
2417		}
2418	} else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2419		/*
2420		 * Reset all synchronization data for this disk,
2421		 * because if it even was synchronized, it was
2422		 * synchronized to disks with different syncid.
2423		 */
2424		disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2425		disk->d_sync.ds_offset = 0;
2426		disk->d_sync.ds_offset_done = 0;
2427		disk->d_sync.ds_syncid = sc->sc_syncid;
2428		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2429		    (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2430			state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2431		} else {
2432			state = G_RAID3_DISK_STATE_STALE;
2433		}
2434	} else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2435		/*
2436		 * Not good, NOT GOOD!
2437		 * It means that device was started on stale disks
2438		 * and more fresh disk just arrive.
2439		 * If there were writes, device is broken, sorry.
2440		 * I think the best choice here is don't touch
2441		 * this disk and inform the user loudly.
2442		 */
2443		G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2444		    "disk (%s) arrives!! It will not be connected to the "
2445		    "running device.", sc->sc_name,
2446		    g_raid3_get_diskname(disk));
2447		g_raid3_destroy_disk(disk);
2448		state = G_RAID3_DISK_STATE_NONE;
2449		/* Return immediately, because disk was destroyed. */
2450		return (state);
2451	}
2452	G_RAID3_DEBUG(3, "State for %s disk: %s.",
2453	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2454	return (state);
2455}
2456
2457/*
2458 * Update device state.
2459 */
2460static void
2461g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2462{
2463	struct g_raid3_disk *disk;
2464	u_int state;
2465
2466	sx_assert(&sc->sc_lock, SX_XLOCKED);
2467
2468	switch (sc->sc_state) {
2469	case G_RAID3_DEVICE_STATE_STARTING:
2470	    {
2471		u_int n, ndirty, ndisks, genid, syncid;
2472
2473		KASSERT(sc->sc_provider == NULL,
2474		    ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2475		/*
2476		 * Are we ready? We are, if all disks are connected or
2477		 * one disk is missing and 'force' is true.
2478		 */
2479		if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2480			if (!force)
2481				callout_drain(&sc->sc_callout);
2482		} else {
2483			if (force) {
2484				/*
2485				 * Timeout expired, so destroy device.
2486				 */
2487				sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2488				G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2489				    __LINE__, sc->sc_rootmount);
2490				root_mount_rel(sc->sc_rootmount);
2491				sc->sc_rootmount = NULL;
2492			}
2493			return;
2494		}
2495
2496		/*
2497		 * Find the biggest genid.
2498		 */
2499		genid = 0;
2500		for (n = 0; n < sc->sc_ndisks; n++) {
2501			disk = &sc->sc_disks[n];
2502			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2503				continue;
2504			if (disk->d_genid > genid)
2505				genid = disk->d_genid;
2506		}
2507		sc->sc_genid = genid;
2508		/*
2509		 * Remove all disks without the biggest genid.
2510		 */
2511		for (n = 0; n < sc->sc_ndisks; n++) {
2512			disk = &sc->sc_disks[n];
2513			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2514				continue;
2515			if (disk->d_genid < genid) {
2516				G_RAID3_DEBUG(0,
2517				    "Component %s (device %s) broken, skipping.",
2518				    g_raid3_get_diskname(disk), sc->sc_name);
2519				g_raid3_destroy_disk(disk);
2520			}
2521		}
2522
2523		/*
2524		 * There must be at least 'sc->sc_ndisks - 1' components
2525		 * with the same syncid and without SYNCHRONIZING flag.
2526		 */
2527
2528		/*
2529		 * Find the biggest syncid, number of valid components and
2530		 * number of dirty components.
2531		 */
2532		ndirty = ndisks = syncid = 0;
2533		for (n = 0; n < sc->sc_ndisks; n++) {
2534			disk = &sc->sc_disks[n];
2535			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2536				continue;
2537			if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2538				ndirty++;
2539			if (disk->d_sync.ds_syncid > syncid) {
2540				syncid = disk->d_sync.ds_syncid;
2541				ndisks = 0;
2542			} else if (disk->d_sync.ds_syncid < syncid) {
2543				continue;
2544			}
2545			if ((disk->d_flags &
2546			    G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2547				continue;
2548			}
2549			ndisks++;
2550		}
2551		/*
2552		 * Do we have enough valid components?
2553		 */
2554		if (ndisks + 1 < sc->sc_ndisks) {
2555			G_RAID3_DEBUG(0,
2556			    "Device %s is broken, too few valid components.",
2557			    sc->sc_name);
2558			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2559			return;
2560		}
2561		/*
2562		 * If there is one DIRTY component and all disks are present,
2563		 * mark it for synchronization. If there is more than one DIRTY
2564		 * component, mark parity component for synchronization.
2565		 */
2566		if (ndisks == sc->sc_ndisks && ndirty == 1) {
2567			for (n = 0; n < sc->sc_ndisks; n++) {
2568				disk = &sc->sc_disks[n];
2569				if ((disk->d_flags &
2570				    G_RAID3_DISK_FLAG_DIRTY) == 0) {
2571					continue;
2572				}
2573				disk->d_flags |=
2574				    G_RAID3_DISK_FLAG_SYNCHRONIZING;
2575			}
2576		} else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2577			disk = &sc->sc_disks[sc->sc_ndisks - 1];
2578			disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2579		}
2580
2581		sc->sc_syncid = syncid;
2582		if (force) {
2583			/* Remember to bump syncid on first write. */
2584			sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2585		}
2586		if (ndisks == sc->sc_ndisks)
2587			state = G_RAID3_DEVICE_STATE_COMPLETE;
2588		else /* if (ndisks == sc->sc_ndisks - 1) */
2589			state = G_RAID3_DEVICE_STATE_DEGRADED;
2590		G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2591		    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2592		    g_raid3_device_state2str(state));
2593		sc->sc_state = state;
2594		for (n = 0; n < sc->sc_ndisks; n++) {
2595			disk = &sc->sc_disks[n];
2596			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2597				continue;
2598			state = g_raid3_determine_state(disk);
2599			g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2600			if (state == G_RAID3_DISK_STATE_STALE)
2601				sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2602		}
2603		break;
2604	    }
2605	case G_RAID3_DEVICE_STATE_DEGRADED:
2606		/*
2607		 * Genid need to be bumped immediately, so do it here.
2608		 */
2609		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2610			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2611			g_raid3_bump_genid(sc);
2612		}
2613
2614		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2615			return;
2616		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2617		    sc->sc_ndisks - 1) {
2618			if (sc->sc_provider != NULL)
2619				g_raid3_destroy_provider(sc);
2620			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2621			return;
2622		}
2623		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2624		    sc->sc_ndisks) {
2625			state = G_RAID3_DEVICE_STATE_COMPLETE;
2626			G_RAID3_DEBUG(1,
2627			    "Device %s state changed from %s to %s.",
2628			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2629			    g_raid3_device_state2str(state));
2630			sc->sc_state = state;
2631		}
2632		if (sc->sc_provider == NULL)
2633			g_raid3_launch_provider(sc);
2634		if (sc->sc_rootmount != NULL) {
2635			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2636			    sc->sc_rootmount);
2637			root_mount_rel(sc->sc_rootmount);
2638			sc->sc_rootmount = NULL;
2639		}
2640		break;
2641	case G_RAID3_DEVICE_STATE_COMPLETE:
2642		/*
2643		 * Genid need to be bumped immediately, so do it here.
2644		 */
2645		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2646			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2647			g_raid3_bump_genid(sc);
2648		}
2649
2650		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2651			return;
2652		KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2653		    sc->sc_ndisks - 1,
2654		    ("Too few ACTIVE components in COMPLETE state (device %s).",
2655		    sc->sc_name));
2656		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2657		    sc->sc_ndisks - 1) {
2658			state = G_RAID3_DEVICE_STATE_DEGRADED;
2659			G_RAID3_DEBUG(1,
2660			    "Device %s state changed from %s to %s.",
2661			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2662			    g_raid3_device_state2str(state));
2663			sc->sc_state = state;
2664		}
2665		if (sc->sc_provider == NULL)
2666			g_raid3_launch_provider(sc);
2667		if (sc->sc_rootmount != NULL) {
2668			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2669			    sc->sc_rootmount);
2670			root_mount_rel(sc->sc_rootmount);
2671			sc->sc_rootmount = NULL;
2672		}
2673		break;
2674	default:
2675		KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2676		    g_raid3_device_state2str(sc->sc_state)));
2677		break;
2678	}
2679}
2680
2681/*
2682 * Update disk state and device state if needed.
2683 */
2684#define	DISK_STATE_CHANGED()	G_RAID3_DEBUG(1,			\
2685	"Disk %s state changed from %s to %s (device %s).",		\
2686	g_raid3_get_diskname(disk),					\
2687	g_raid3_disk_state2str(disk->d_state),				\
2688	g_raid3_disk_state2str(state), sc->sc_name)
2689static int
2690g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2691{
2692	struct g_raid3_softc *sc;
2693
2694	sc = disk->d_softc;
2695	sx_assert(&sc->sc_lock, SX_XLOCKED);
2696
2697again:
2698	G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2699	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2700	    g_raid3_disk_state2str(state));
2701	switch (state) {
2702	case G_RAID3_DISK_STATE_NEW:
2703		/*
2704		 * Possible scenarios:
2705		 * 1. New disk arrive.
2706		 */
2707		/* Previous state should be NONE. */
2708		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2709		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2710		    g_raid3_disk_state2str(disk->d_state)));
2711		DISK_STATE_CHANGED();
2712
2713		disk->d_state = state;
2714		G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2715		    sc->sc_name, g_raid3_get_diskname(disk));
2716		if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2717			break;
2718		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2719		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2720		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2721		    g_raid3_device_state2str(sc->sc_state),
2722		    g_raid3_get_diskname(disk),
2723		    g_raid3_disk_state2str(disk->d_state)));
2724		state = g_raid3_determine_state(disk);
2725		if (state != G_RAID3_DISK_STATE_NONE)
2726			goto again;
2727		break;
2728	case G_RAID3_DISK_STATE_ACTIVE:
2729		/*
2730		 * Possible scenarios:
2731		 * 1. New disk does not need synchronization.
2732		 * 2. Synchronization process finished successfully.
2733		 */
2734		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2735		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2736		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2737		    g_raid3_device_state2str(sc->sc_state),
2738		    g_raid3_get_diskname(disk),
2739		    g_raid3_disk_state2str(disk->d_state)));
2740		/* Previous state should be NEW or SYNCHRONIZING. */
2741		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2742		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2743		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2744		    g_raid3_disk_state2str(disk->d_state)));
2745		DISK_STATE_CHANGED();
2746
2747		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2748			disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2749			disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2750			g_raid3_sync_stop(sc, 0);
2751		}
2752		disk->d_state = state;
2753		disk->d_sync.ds_offset = 0;
2754		disk->d_sync.ds_offset_done = 0;
2755		g_raid3_update_idle(sc, disk);
2756		g_raid3_update_metadata(disk);
2757		G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2758		    sc->sc_name, g_raid3_get_diskname(disk));
2759		break;
2760	case G_RAID3_DISK_STATE_STALE:
2761		/*
2762		 * Possible scenarios:
2763		 * 1. Stale disk was connected.
2764		 */
2765		/* Previous state should be NEW. */
2766		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2767		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2768		    g_raid3_disk_state2str(disk->d_state)));
2769		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2770		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2771		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2772		    g_raid3_device_state2str(sc->sc_state),
2773		    g_raid3_get_diskname(disk),
2774		    g_raid3_disk_state2str(disk->d_state)));
2775		/*
2776		 * STALE state is only possible if device is marked
2777		 * NOAUTOSYNC.
2778		 */
2779		KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2780		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2781		    g_raid3_device_state2str(sc->sc_state),
2782		    g_raid3_get_diskname(disk),
2783		    g_raid3_disk_state2str(disk->d_state)));
2784		DISK_STATE_CHANGED();
2785
2786		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2787		disk->d_state = state;
2788		g_raid3_update_metadata(disk);
2789		G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2790		    sc->sc_name, g_raid3_get_diskname(disk));
2791		break;
2792	case G_RAID3_DISK_STATE_SYNCHRONIZING:
2793		/*
2794		 * Possible scenarios:
2795		 * 1. Disk which needs synchronization was connected.
2796		 */
2797		/* Previous state should be NEW. */
2798		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2799		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2800		    g_raid3_disk_state2str(disk->d_state)));
2801		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2802		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2803		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2804		    g_raid3_device_state2str(sc->sc_state),
2805		    g_raid3_get_diskname(disk),
2806		    g_raid3_disk_state2str(disk->d_state)));
2807		DISK_STATE_CHANGED();
2808
2809		if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2810			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2811		disk->d_state = state;
2812		if (sc->sc_provider != NULL) {
2813			g_raid3_sync_start(sc);
2814			g_raid3_update_metadata(disk);
2815		}
2816		break;
2817	case G_RAID3_DISK_STATE_DISCONNECTED:
2818		/*
2819		 * Possible scenarios:
2820		 * 1. Device wasn't running yet, but disk disappear.
2821		 * 2. Disk was active and disapppear.
2822		 * 3. Disk disappear during synchronization process.
2823		 */
2824		if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2825		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2826			/*
2827			 * Previous state should be ACTIVE, STALE or
2828			 * SYNCHRONIZING.
2829			 */
2830			KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2831			    disk->d_state == G_RAID3_DISK_STATE_STALE ||
2832			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2833			    ("Wrong disk state (%s, %s).",
2834			    g_raid3_get_diskname(disk),
2835			    g_raid3_disk_state2str(disk->d_state)));
2836		} else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2837			/* Previous state should be NEW. */
2838			KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2839			    ("Wrong disk state (%s, %s).",
2840			    g_raid3_get_diskname(disk),
2841			    g_raid3_disk_state2str(disk->d_state)));
2842			/*
2843			 * Reset bumping syncid if disk disappeared in STARTING
2844			 * state.
2845			 */
2846			if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2847				sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2848#ifdef	INVARIANTS
2849		} else {
2850			KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2851			    sc->sc_name,
2852			    g_raid3_device_state2str(sc->sc_state),
2853			    g_raid3_get_diskname(disk),
2854			    g_raid3_disk_state2str(disk->d_state)));
2855#endif
2856		}
2857		DISK_STATE_CHANGED();
2858		G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2859		    sc->sc_name, g_raid3_get_diskname(disk));
2860
2861		g_raid3_destroy_disk(disk);
2862		break;
2863	default:
2864		KASSERT(1 == 0, ("Unknown state (%u).", state));
2865		break;
2866	}
2867	return (0);
2868}
2869#undef	DISK_STATE_CHANGED
2870
2871int
2872g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2873{
2874	struct g_provider *pp;
2875	u_char *buf;
2876	int error;
2877
2878	g_topology_assert();
2879
2880	error = g_access(cp, 1, 0, 0);
2881	if (error != 0)
2882		return (error);
2883	pp = cp->provider;
2884	g_topology_unlock();
2885	/* Metadata are stored on last sector. */
2886	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2887	    &error);
2888	g_topology_lock();
2889	g_access(cp, -1, 0, 0);
2890	if (buf == NULL) {
2891		G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2892		    cp->provider->name, error);
2893		return (error);
2894	}
2895
2896	/* Decode metadata. */
2897	error = raid3_metadata_decode(buf, md);
2898	g_free(buf);
2899	if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2900		return (EINVAL);
2901	if (md->md_version > G_RAID3_VERSION) {
2902		G_RAID3_DEBUG(0,
2903		    "Kernel module is too old to handle metadata from %s.",
2904		    cp->provider->name);
2905		return (EINVAL);
2906	}
2907	if (error != 0) {
2908		G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2909		    cp->provider->name);
2910		return (error);
2911	}
2912	if (md->md_sectorsize > maxphys) {
2913		G_RAID3_DEBUG(0, "The blocksize is too big.");
2914		return (EINVAL);
2915	}
2916
2917	return (0);
2918}
2919
2920static int
2921g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2922    struct g_raid3_metadata *md)
2923{
2924
2925	if (md->md_no >= sc->sc_ndisks) {
2926		G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2927		    pp->name, md->md_no);
2928		return (EINVAL);
2929	}
2930	if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2931		G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2932		    pp->name, md->md_no);
2933		return (EEXIST);
2934	}
2935	if (md->md_all != sc->sc_ndisks) {
2936		G_RAID3_DEBUG(1,
2937		    "Invalid '%s' field on disk %s (device %s), skipping.",
2938		    "md_all", pp->name, sc->sc_name);
2939		return (EINVAL);
2940	}
2941	if ((md->md_mediasize % md->md_sectorsize) != 0) {
2942		G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2943		    "0) on disk %s (device %s), skipping.", pp->name,
2944		    sc->sc_name);
2945		return (EINVAL);
2946	}
2947	if (md->md_mediasize != sc->sc_mediasize) {
2948		G_RAID3_DEBUG(1,
2949		    "Invalid '%s' field on disk %s (device %s), skipping.",
2950		    "md_mediasize", pp->name, sc->sc_name);
2951		return (EINVAL);
2952	}
2953	if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2954		G_RAID3_DEBUG(1,
2955		    "Invalid '%s' field on disk %s (device %s), skipping.",
2956		    "md_mediasize", pp->name, sc->sc_name);
2957		return (EINVAL);
2958	}
2959	if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
2960		G_RAID3_DEBUG(1,
2961		    "Invalid size of disk %s (device %s), skipping.", pp->name,
2962		    sc->sc_name);
2963		return (EINVAL);
2964	}
2965	if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
2966		G_RAID3_DEBUG(1,
2967		    "Invalid '%s' field on disk %s (device %s), skipping.",
2968		    "md_sectorsize", pp->name, sc->sc_name);
2969		return (EINVAL);
2970	}
2971	if (md->md_sectorsize != sc->sc_sectorsize) {
2972		G_RAID3_DEBUG(1,
2973		    "Invalid '%s' field on disk %s (device %s), skipping.",
2974		    "md_sectorsize", pp->name, sc->sc_name);
2975		return (EINVAL);
2976	}
2977	if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
2978		G_RAID3_DEBUG(1,
2979		    "Invalid sector size of disk %s (device %s), skipping.",
2980		    pp->name, sc->sc_name);
2981		return (EINVAL);
2982	}
2983	if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
2984		G_RAID3_DEBUG(1,
2985		    "Invalid device flags on disk %s (device %s), skipping.",
2986		    pp->name, sc->sc_name);
2987		return (EINVAL);
2988	}
2989	if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
2990	    (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
2991		/*
2992		 * VERIFY and ROUND-ROBIN options are mutally exclusive.
2993		 */
2994		G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
2995		    "disk %s (device %s), skipping.", pp->name, sc->sc_name);
2996		return (EINVAL);
2997	}
2998	if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
2999		G_RAID3_DEBUG(1,
3000		    "Invalid disk flags on disk %s (device %s), skipping.",
3001		    pp->name, sc->sc_name);
3002		return (EINVAL);
3003	}
3004	return (0);
3005}
3006
3007int
3008g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
3009    struct g_raid3_metadata *md)
3010{
3011	struct g_raid3_disk *disk;
3012	int error;
3013
3014	g_topology_assert_not();
3015	G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
3016
3017	error = g_raid3_check_metadata(sc, pp, md);
3018	if (error != 0)
3019		return (error);
3020	if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
3021	    md->md_genid < sc->sc_genid) {
3022		G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
3023		    pp->name, sc->sc_name);
3024		return (EINVAL);
3025	}
3026	disk = g_raid3_init_disk(sc, pp, md, &error);
3027	if (disk == NULL)
3028		return (error);
3029	error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3030	    G_RAID3_EVENT_WAIT);
3031	if (error != 0)
3032		return (error);
3033	if (md->md_version < G_RAID3_VERSION) {
3034		G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3035		    pp->name, md->md_version, G_RAID3_VERSION);
3036		g_raid3_update_metadata(disk);
3037	}
3038	return (0);
3039}
3040
3041static void
3042g_raid3_destroy_delayed(void *arg, int flag)
3043{
3044	struct g_raid3_softc *sc;
3045	int error;
3046
3047	if (flag == EV_CANCEL) {
3048		G_RAID3_DEBUG(1, "Destroying canceled.");
3049		return;
3050	}
3051	sc = arg;
3052	g_topology_unlock();
3053	sx_xlock(&sc->sc_lock);
3054	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3055	    ("DESTROY flag set on %s.", sc->sc_name));
3056	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3057	    ("DESTROYING flag not set on %s.", sc->sc_name));
3058	G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3059	error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3060	if (error != 0) {
3061		G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3062		sx_xunlock(&sc->sc_lock);
3063	}
3064	g_topology_lock();
3065}
3066
3067static int
3068g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3069{
3070	struct g_raid3_softc *sc;
3071	int dcr, dcw, dce, error = 0;
3072
3073	g_topology_assert();
3074	G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3075	    acw, ace);
3076
3077	sc = pp->geom->softc;
3078	if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
3079		return (0);
3080	KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3081
3082	dcr = pp->acr + acr;
3083	dcw = pp->acw + acw;
3084	dce = pp->ace + ace;
3085
3086	g_topology_unlock();
3087	sx_xlock(&sc->sc_lock);
3088	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3089	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3090		if (acr > 0 || acw > 0 || ace > 0)
3091			error = ENXIO;
3092		goto end;
3093	}
3094	if (dcw == 0)
3095		g_raid3_idle(sc, dcw);
3096	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3097		if (acr > 0 || acw > 0 || ace > 0) {
3098			error = ENXIO;
3099			goto end;
3100		}
3101		if (dcr == 0 && dcw == 0 && dce == 0) {
3102			g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3103			    sc, NULL);
3104		}
3105	}
3106end:
3107	sx_xunlock(&sc->sc_lock);
3108	g_topology_lock();
3109	return (error);
3110}
3111
3112static struct g_geom *
3113g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3114{
3115	struct g_raid3_softc *sc;
3116	struct g_geom *gp;
3117	int error, timeout;
3118	u_int n;
3119
3120	g_topology_assert();
3121	G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3122
3123	/* One disk is minimum. */
3124	if (md->md_all < 1)
3125		return (NULL);
3126	/*
3127	 * Action geom.
3128	 */
3129	gp = g_new_geomf(mp, "%s", md->md_name);
3130	sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3131	sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3132	    M_WAITOK | M_ZERO);
3133	gp->start = g_raid3_start;
3134	gp->orphan = g_raid3_orphan;
3135	gp->access = g_raid3_access;
3136	gp->dumpconf = g_raid3_dumpconf;
3137
3138	sc->sc_id = md->md_id;
3139	sc->sc_mediasize = md->md_mediasize;
3140	sc->sc_sectorsize = md->md_sectorsize;
3141	sc->sc_ndisks = md->md_all;
3142	sc->sc_round_robin = 0;
3143	sc->sc_flags = md->md_mflags;
3144	sc->sc_bump_id = 0;
3145	sc->sc_idle = 1;
3146	sc->sc_last_write = time_uptime;
3147	sc->sc_writes = 0;
3148	for (n = 0; n < sc->sc_ndisks; n++) {
3149		sc->sc_disks[n].d_softc = sc;
3150		sc->sc_disks[n].d_no = n;
3151		sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3152	}
3153	sx_init(&sc->sc_lock, "graid3:lock");
3154	bioq_init(&sc->sc_queue);
3155	mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3156	bioq_init(&sc->sc_regular_delayed);
3157	bioq_init(&sc->sc_inflight);
3158	bioq_init(&sc->sc_sync_delayed);
3159	TAILQ_INIT(&sc->sc_events);
3160	mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3161	callout_init(&sc->sc_callout, 1);
3162	sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3163	gp->softc = sc;
3164	sc->sc_geom = gp;
3165	sc->sc_provider = NULL;
3166	/*
3167	 * Synchronization geom.
3168	 */
3169	gp = g_new_geomf(mp, "%s.sync", md->md_name);
3170	gp->softc = sc;
3171	gp->orphan = g_raid3_orphan;
3172	sc->sc_sync.ds_geom = gp;
3173
3174	if (!g_raid3_use_malloc) {
3175		sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3176		    65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3177		    UMA_ALIGN_PTR, 0);
3178		sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3179		sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3180		sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3181		    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3182		sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3183		    16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3184		    UMA_ALIGN_PTR, 0);
3185		sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3186		sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3187		sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3188		    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3189		sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3190		    4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3191		    UMA_ALIGN_PTR, 0);
3192		sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3193		sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3194		sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3195		    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3196	}
3197
3198	error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3199	    "g_raid3 %s", md->md_name);
3200	if (error != 0) {
3201		G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3202		    sc->sc_name);
3203		if (!g_raid3_use_malloc) {
3204			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
3205			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
3206			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
3207		}
3208		g_destroy_geom(sc->sc_sync.ds_geom);
3209		mtx_destroy(&sc->sc_events_mtx);
3210		mtx_destroy(&sc->sc_queue_mtx);
3211		sx_destroy(&sc->sc_lock);
3212		g_destroy_geom(sc->sc_geom);
3213		free(sc->sc_disks, M_RAID3);
3214		free(sc, M_RAID3);
3215		return (NULL);
3216	}
3217
3218	G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3219	    sc->sc_name, sc->sc_ndisks, sc->sc_id);
3220
3221	sc->sc_rootmount = root_mount_hold("GRAID3");
3222	G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3223
3224	/*
3225	 * Run timeout.
3226	 */
3227	timeout = atomic_load_acq_int(&g_raid3_timeout);
3228	callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3229	return (sc->sc_geom);
3230}
3231
3232int
3233g_raid3_destroy(struct g_raid3_softc *sc, int how)
3234{
3235	struct g_provider *pp;
3236
3237	g_topology_assert_not();
3238	if (sc == NULL)
3239		return (ENXIO);
3240	sx_assert(&sc->sc_lock, SX_XLOCKED);
3241
3242	pp = sc->sc_provider;
3243	if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3244		switch (how) {
3245		case G_RAID3_DESTROY_SOFT:
3246			G_RAID3_DEBUG(1,
3247			    "Device %s is still open (r%dw%de%d).", pp->name,
3248			    pp->acr, pp->acw, pp->ace);
3249			return (EBUSY);
3250		case G_RAID3_DESTROY_DELAYED:
3251			G_RAID3_DEBUG(1,
3252			    "Device %s will be destroyed on last close.",
3253			    pp->name);
3254			if (sc->sc_syncdisk != NULL)
3255				g_raid3_sync_stop(sc, 1);
3256			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3257			return (EBUSY);
3258		case G_RAID3_DESTROY_HARD:
3259			G_RAID3_DEBUG(1, "Device %s is still open, so it "
3260			    "can't be definitely removed.", pp->name);
3261			break;
3262		}
3263	}
3264
3265	g_topology_lock();
3266	if (sc->sc_geom->softc == NULL) {
3267		g_topology_unlock();
3268		return (0);
3269	}
3270	sc->sc_geom->softc = NULL;
3271	sc->sc_sync.ds_geom->softc = NULL;
3272	g_topology_unlock();
3273
3274	sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3275	sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3276	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3277	sx_xunlock(&sc->sc_lock);
3278	mtx_lock(&sc->sc_queue_mtx);
3279	wakeup(sc);
3280	wakeup(&sc->sc_queue);
3281	mtx_unlock(&sc->sc_queue_mtx);
3282	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3283	while (sc->sc_worker != NULL)
3284		tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3285	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3286	sx_xlock(&sc->sc_lock);
3287	g_raid3_destroy_device(sc);
3288	free(sc->sc_disks, M_RAID3);
3289	free(sc, M_RAID3);
3290	return (0);
3291}
3292
3293static void
3294g_raid3_taste_orphan(struct g_consumer *cp)
3295{
3296
3297	KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3298	    cp->provider->name));
3299}
3300
3301static struct g_geom *
3302g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3303{
3304	struct g_raid3_metadata md;
3305	struct g_raid3_softc *sc;
3306	struct g_consumer *cp;
3307	struct g_geom *gp;
3308	int error;
3309
3310	g_topology_assert();
3311	g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3312	G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3313
3314	gp = g_new_geomf(mp, "raid3:taste");
3315	/* This orphan function should be never called. */
3316	gp->orphan = g_raid3_taste_orphan;
3317	cp = g_new_consumer(gp);
3318	error = g_attach(cp, pp);
3319	if (error == 0) {
3320		error = g_raid3_read_metadata(cp, &md);
3321		g_detach(cp);
3322	}
3323	g_destroy_consumer(cp);
3324	g_destroy_geom(gp);
3325	if (error != 0)
3326		return (NULL);
3327	gp = NULL;
3328
3329	if (md.md_provider[0] != '\0' &&
3330	    !g_compare_names(md.md_provider, pp->name))
3331		return (NULL);
3332	if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3333		return (NULL);
3334	if (g_raid3_debug >= 2)
3335		raid3_metadata_dump(&md);
3336
3337	/*
3338	 * Let's check if device already exists.
3339	 */
3340	sc = NULL;
3341	LIST_FOREACH(gp, &mp->geom, geom) {
3342		sc = gp->softc;
3343		if (sc == NULL)
3344			continue;
3345		if (sc->sc_sync.ds_geom == gp)
3346			continue;
3347		if (strcmp(md.md_name, sc->sc_name) != 0)
3348			continue;
3349		if (md.md_id != sc->sc_id) {
3350			G_RAID3_DEBUG(0, "Device %s already configured.",
3351			    sc->sc_name);
3352			return (NULL);
3353		}
3354		break;
3355	}
3356	if (gp == NULL) {
3357		gp = g_raid3_create(mp, &md);
3358		if (gp == NULL) {
3359			G_RAID3_DEBUG(0, "Cannot create device %s.",
3360			    md.md_name);
3361			return (NULL);
3362		}
3363		sc = gp->softc;
3364	}
3365	G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3366	g_topology_unlock();
3367	sx_xlock(&sc->sc_lock);
3368	error = g_raid3_add_disk(sc, pp, &md);
3369	if (error != 0) {
3370		G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3371		    pp->name, gp->name, error);
3372		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3373		    sc->sc_ndisks) {
3374			g_cancel_event(sc);
3375			g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3376			g_topology_lock();
3377			return (NULL);
3378		}
3379		gp = NULL;
3380	}
3381	sx_xunlock(&sc->sc_lock);
3382	g_topology_lock();
3383	return (gp);
3384}
3385
3386static int
3387g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3388    struct g_geom *gp)
3389{
3390	struct g_raid3_softc *sc;
3391	int error;
3392
3393	g_topology_unlock();
3394	sc = gp->softc;
3395	sx_xlock(&sc->sc_lock);
3396	g_cancel_event(sc);
3397	error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3398	if (error != 0)
3399		sx_xunlock(&sc->sc_lock);
3400	g_topology_lock();
3401	return (error);
3402}
3403
3404static void
3405g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3406    struct g_consumer *cp, struct g_provider *pp)
3407{
3408	struct g_raid3_softc *sc;
3409
3410	g_topology_assert();
3411
3412	sc = gp->softc;
3413	if (sc == NULL)
3414		return;
3415	/* Skip synchronization geom. */
3416	if (gp == sc->sc_sync.ds_geom)
3417		return;
3418	if (pp != NULL) {
3419		/* Nothing here. */
3420	} else if (cp != NULL) {
3421		struct g_raid3_disk *disk;
3422
3423		disk = cp->private;
3424		if (disk == NULL)
3425			return;
3426		g_topology_unlock();
3427		sx_xlock(&sc->sc_lock);
3428		sbuf_printf(sb, "%s<Type>", indent);
3429		if (disk->d_no == sc->sc_ndisks - 1)
3430			sbuf_cat(sb, "PARITY");
3431		else
3432			sbuf_cat(sb, "DATA");
3433		sbuf_cat(sb, "</Type>\n");
3434		sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3435		    (u_int)disk->d_no);
3436		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3437			sbuf_printf(sb, "%s<Synchronized>", indent);
3438			if (disk->d_sync.ds_offset == 0)
3439				sbuf_cat(sb, "0%");
3440			else {
3441				sbuf_printf(sb, "%u%%",
3442				    (u_int)((disk->d_sync.ds_offset * 100) /
3443				    (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3444			}
3445			sbuf_cat(sb, "</Synchronized>\n");
3446			if (disk->d_sync.ds_offset > 0) {
3447				sbuf_printf(sb, "%s<BytesSynced>%jd"
3448				    "</BytesSynced>\n", indent,
3449				    (intmax_t)disk->d_sync.ds_offset);
3450			}
3451		}
3452		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3453		    disk->d_sync.ds_syncid);
3454		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3455		sbuf_printf(sb, "%s<Flags>", indent);
3456		if (disk->d_flags == 0)
3457			sbuf_cat(sb, "NONE");
3458		else {
3459			int first = 1;
3460
3461#define	ADD_FLAG(flag, name)	do {					\
3462	if ((disk->d_flags & (flag)) != 0) {				\
3463		if (!first)						\
3464			sbuf_cat(sb, ", ");				\
3465		else							\
3466			first = 0;					\
3467		sbuf_cat(sb, name);					\
3468	}								\
3469} while (0)
3470			ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3471			ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3472			ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3473			    "SYNCHRONIZING");
3474			ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3475			ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3476#undef	ADD_FLAG
3477		}
3478		sbuf_cat(sb, "</Flags>\n");
3479		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3480		    g_raid3_disk_state2str(disk->d_state));
3481		sx_xunlock(&sc->sc_lock);
3482		g_topology_lock();
3483	} else {
3484		g_topology_unlock();
3485		sx_xlock(&sc->sc_lock);
3486		if (!g_raid3_use_malloc) {
3487			sbuf_printf(sb,
3488			    "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3489			    sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3490			sbuf_printf(sb,
3491			    "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3492			    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3493			sbuf_printf(sb,
3494			    "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3495			    sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3496			sbuf_printf(sb,
3497			    "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3498			    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3499			sbuf_printf(sb,
3500			    "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3501			    sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3502			sbuf_printf(sb,
3503			    "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3504			    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3505		}
3506		sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3507		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3508		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3509		sbuf_printf(sb, "%s<Flags>", indent);
3510		if (sc->sc_flags == 0)
3511			sbuf_cat(sb, "NONE");
3512		else {
3513			int first = 1;
3514
3515#define	ADD_FLAG(flag, name)	do {					\
3516	if ((sc->sc_flags & (flag)) != 0) {				\
3517		if (!first)						\
3518			sbuf_cat(sb, ", ");				\
3519		else							\
3520			first = 0;					\
3521		sbuf_cat(sb, name);					\
3522	}								\
3523} while (0)
3524			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3525			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3526			ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3527			    "ROUND-ROBIN");
3528			ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3529#undef	ADD_FLAG
3530		}
3531		sbuf_cat(sb, "</Flags>\n");
3532		sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3533		    sc->sc_ndisks);
3534		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3535		    g_raid3_device_state2str(sc->sc_state));
3536		sx_xunlock(&sc->sc_lock);
3537		g_topology_lock();
3538	}
3539}
3540
3541static void
3542g_raid3_shutdown_post_sync(void *arg, int howto)
3543{
3544	struct g_class *mp;
3545	struct g_geom *gp, *gp2;
3546	struct g_raid3_softc *sc;
3547	int error;
3548
3549	mp = arg;
3550	g_topology_lock();
3551	g_raid3_shutdown = 1;
3552	LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3553		if ((sc = gp->softc) == NULL)
3554			continue;
3555		/* Skip synchronization geom. */
3556		if (gp == sc->sc_sync.ds_geom)
3557			continue;
3558		g_topology_unlock();
3559		sx_xlock(&sc->sc_lock);
3560		g_raid3_idle(sc, -1);
3561		g_cancel_event(sc);
3562		error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3563		if (error != 0)
3564			sx_xunlock(&sc->sc_lock);
3565		g_topology_lock();
3566	}
3567	g_topology_unlock();
3568}
3569
3570static void
3571g_raid3_init(struct g_class *mp)
3572{
3573
3574	g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
3575	    g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
3576	if (g_raid3_post_sync == NULL)
3577		G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3578}
3579
3580static void
3581g_raid3_fini(struct g_class *mp)
3582{
3583
3584	if (g_raid3_post_sync != NULL)
3585		EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync);
3586}
3587
3588DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);
3589MODULE_VERSION(geom_raid3, 0);
3590