1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1997, 1998, 1999
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#ifdef HAVE_KERNEL_OPTION_HEADERS
39#include "opt_device_polling.h"
40#endif
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bus.h>
45#include <sys/endian.h>
46#include <sys/kernel.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/module.h>
51#include <sys/rman.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/sysctl.h>
55
56#include <net/bpf.h>
57#include <net/if.h>
58#include <net/if_var.h>
59#include <net/if_arp.h>
60#include <net/ethernet.h>
61#include <net/if_dl.h>
62#include <net/if_media.h>
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#include <machine/bus.h>
67#include <machine/resource.h>
68
69#include <dev/mii/mii.h>
70#include <dev/mii/mii_bitbang.h>
71#include <dev/mii/miivar.h>
72
73#include <dev/pci/pcireg.h>
74#include <dev/pci/pcivar.h>
75
76#include <dev/ste/if_stereg.h>
77
78/* "device miibus" required.  See GENERIC if you get errors here. */
79#include "miibus_if.h"
80
81MODULE_DEPEND(ste, pci, 1, 1, 1);
82MODULE_DEPEND(ste, ether, 1, 1, 1);
83MODULE_DEPEND(ste, miibus, 1, 1, 1);
84
85/* Define to show Tx error status. */
86#define	STE_SHOW_TXERRORS
87
88/*
89 * Various supported device vendors/types and their names.
90 */
91static const struct ste_type ste_devs[] = {
92	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
93	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
94	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
95	{ 0, 0, NULL }
96};
97
98static int	ste_attach(device_t);
99static int	ste_detach(device_t);
100static int	ste_probe(device_t);
101static int	ste_resume(device_t);
102static int	ste_shutdown(device_t);
103static int	ste_suspend(device_t);
104
105static int	ste_dma_alloc(struct ste_softc *);
106static void	ste_dma_free(struct ste_softc *);
107static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
108static int 	ste_eeprom_wait(struct ste_softc *);
109static int	ste_encap(struct ste_softc *, struct mbuf **,
110		    struct ste_chain *);
111static int	ste_ifmedia_upd(struct ifnet *);
112static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
113static void	ste_init(void *);
114static void	ste_init_locked(struct ste_softc *);
115static int	ste_init_rx_list(struct ste_softc *);
116static void	ste_init_tx_list(struct ste_softc *);
117static void	ste_intr(void *);
118static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
119static uint32_t ste_mii_bitbang_read(device_t);
120static void	ste_mii_bitbang_write(device_t, uint32_t);
121static int	ste_miibus_readreg(device_t, int, int);
122static void	ste_miibus_statchg(device_t);
123static int	ste_miibus_writereg(device_t, int, int, int);
124static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
125static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
126static void	ste_reset(struct ste_softc *);
127static void	ste_restart_tx(struct ste_softc *);
128static int	ste_rxeof(struct ste_softc *, int);
129static void	ste_rxfilter(struct ste_softc *);
130static void	ste_setwol(struct ste_softc *);
131static void	ste_start(struct ifnet *);
132static void	ste_start_locked(struct ifnet *);
133static void	ste_stats_clear(struct ste_softc *);
134static void	ste_stats_update(struct ste_softc *);
135static void	ste_stop(struct ste_softc *);
136static void	ste_sysctl_node(struct ste_softc *);
137static void	ste_tick(void *);
138static void	ste_txeoc(struct ste_softc *);
139static void	ste_txeof(struct ste_softc *);
140static void	ste_wait(struct ste_softc *);
141static void	ste_watchdog(struct ste_softc *);
142
143/*
144 * MII bit-bang glue
145 */
146static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
147	ste_mii_bitbang_read,
148	ste_mii_bitbang_write,
149	{
150		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
151		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
152		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
153		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
154		0,			/* MII_BIT_DIR_PHY_HOST */
155	}
156};
157
158static device_method_t ste_methods[] = {
159	/* Device interface */
160	DEVMETHOD(device_probe,		ste_probe),
161	DEVMETHOD(device_attach,	ste_attach),
162	DEVMETHOD(device_detach,	ste_detach),
163	DEVMETHOD(device_shutdown,	ste_shutdown),
164	DEVMETHOD(device_suspend,	ste_suspend),
165	DEVMETHOD(device_resume,	ste_resume),
166
167	/* MII interface */
168	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
169	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
170	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
171
172	DEVMETHOD_END
173};
174
175static driver_t ste_driver = {
176	"ste",
177	ste_methods,
178	sizeof(struct ste_softc)
179};
180
181static devclass_t ste_devclass;
182
183DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
184DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
185
186#define STE_SETBIT4(sc, reg, x)				\
187	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
188
189#define STE_CLRBIT4(sc, reg, x)				\
190	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
191
192#define STE_SETBIT2(sc, reg, x)				\
193	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
194
195#define STE_CLRBIT2(sc, reg, x)				\
196	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
197
198#define STE_SETBIT1(sc, reg, x)				\
199	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
200
201#define STE_CLRBIT1(sc, reg, x)				\
202	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
203
204/*
205 * Read the MII serial port for the MII bit-bang module.
206 */
207static uint32_t
208ste_mii_bitbang_read(device_t dev)
209{
210	struct ste_softc *sc;
211	uint32_t val;
212
213	sc = device_get_softc(dev);
214
215	val = CSR_READ_1(sc, STE_PHYCTL);
216	CSR_BARRIER(sc, STE_PHYCTL, 1,
217	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
218
219	return (val);
220}
221
222/*
223 * Write the MII serial port for the MII bit-bang module.
224 */
225static void
226ste_mii_bitbang_write(device_t dev, uint32_t val)
227{
228	struct ste_softc *sc;
229
230	sc = device_get_softc(dev);
231
232	CSR_WRITE_1(sc, STE_PHYCTL, val);
233	CSR_BARRIER(sc, STE_PHYCTL, 1,
234	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
235}
236
237static int
238ste_miibus_readreg(device_t dev, int phy, int reg)
239{
240
241	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
242}
243
244static int
245ste_miibus_writereg(device_t dev, int phy, int reg, int data)
246{
247
248	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
249
250	return (0);
251}
252
253static void
254ste_miibus_statchg(device_t dev)
255{
256	struct ste_softc *sc;
257	struct mii_data *mii;
258	struct ifnet *ifp;
259	uint16_t cfg;
260
261	sc = device_get_softc(dev);
262
263	mii = device_get_softc(sc->ste_miibus);
264	ifp = sc->ste_ifp;
265	if (mii == NULL || ifp == NULL ||
266	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
267		return;
268
269	sc->ste_flags &= ~STE_FLAG_LINK;
270	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
271	    (IFM_ACTIVE | IFM_AVALID)) {
272		switch (IFM_SUBTYPE(mii->mii_media_active)) {
273		case IFM_10_T:
274		case IFM_100_TX:
275		case IFM_100_FX:
276		case IFM_100_T4:
277			sc->ste_flags |= STE_FLAG_LINK;
278		default:
279			break;
280		}
281	}
282
283	/* Program MACs with resolved speed/duplex/flow-control. */
284	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
285		cfg = CSR_READ_2(sc, STE_MACCTL0);
286		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
287		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
288			/*
289			 * ST201 data sheet says driver should enable receiving
290			 * MAC control frames bit of receive mode register to
291			 * receive flow-control frames but the register has no
292			 * such bits. In addition the controller has no ability
293			 * to send pause frames so it should be handled in
294			 * driver. Implementing pause timer handling in driver
295			 * layer is not trivial, so don't enable flow-control
296			 * here.
297			 */
298			cfg |= STE_MACCTL0_FULLDUPLEX;
299		}
300		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
301	}
302}
303
304static int
305ste_ifmedia_upd(struct ifnet *ifp)
306{
307	struct ste_softc *sc;
308	struct mii_data	*mii;
309	struct mii_softc *miisc;
310	int error;
311
312	sc = ifp->if_softc;
313	STE_LOCK(sc);
314	mii = device_get_softc(sc->ste_miibus);
315	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
316		PHY_RESET(miisc);
317	error = mii_mediachg(mii);
318	STE_UNLOCK(sc);
319
320	return (error);
321}
322
323static void
324ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
325{
326	struct ste_softc *sc;
327	struct mii_data *mii;
328
329	sc = ifp->if_softc;
330	mii = device_get_softc(sc->ste_miibus);
331
332	STE_LOCK(sc);
333	if ((ifp->if_flags & IFF_UP) == 0) {
334		STE_UNLOCK(sc);
335		return;
336	}
337	mii_pollstat(mii);
338	ifmr->ifm_active = mii->mii_media_active;
339	ifmr->ifm_status = mii->mii_media_status;
340	STE_UNLOCK(sc);
341}
342
343static void
344ste_wait(struct ste_softc *sc)
345{
346	int i;
347
348	for (i = 0; i < STE_TIMEOUT; i++) {
349		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
350			break;
351		DELAY(1);
352	}
353
354	if (i == STE_TIMEOUT)
355		device_printf(sc->ste_dev, "command never completed!\n");
356}
357
358/*
359 * The EEPROM is slow: give it time to come ready after issuing
360 * it a command.
361 */
362static int
363ste_eeprom_wait(struct ste_softc *sc)
364{
365	int i;
366
367	DELAY(1000);
368
369	for (i = 0; i < 100; i++) {
370		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
371			DELAY(1000);
372		else
373			break;
374	}
375
376	if (i == 100) {
377		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
378		return (1);
379	}
380
381	return (0);
382}
383
384/*
385 * Read a sequence of words from the EEPROM. Note that ethernet address
386 * data is stored in the EEPROM in network byte order.
387 */
388static int
389ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
390{
391	int err = 0, i;
392
393	if (ste_eeprom_wait(sc))
394		return (1);
395
396	for (i = 0; i < cnt; i++) {
397		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
398		err = ste_eeprom_wait(sc);
399		if (err)
400			break;
401		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
402		dest++;
403	}
404
405	return (err ? 1 : 0);
406}
407
408static u_int
409ste_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
410{
411	uint32_t *hashes = arg;
412	int h;
413
414	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) & 0x3F;
415	if (h < 32)
416		hashes[0] |= (1 << h);
417	else
418		hashes[1] |= (1 << (h - 32));
419
420	return (1);
421}
422
423static void
424ste_rxfilter(struct ste_softc *sc)
425{
426	struct ifnet *ifp;
427	uint32_t hashes[2] = { 0, 0 };
428	uint8_t rxcfg;
429
430	STE_LOCK_ASSERT(sc);
431
432	ifp = sc->ste_ifp;
433	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
434	rxcfg |= STE_RXMODE_UNICAST;
435	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
436	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
437	if (ifp->if_flags & IFF_BROADCAST)
438		rxcfg |= STE_RXMODE_BROADCAST;
439	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
440		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
441			rxcfg |= STE_RXMODE_ALLMULTI;
442		if ((ifp->if_flags & IFF_PROMISC) != 0)
443			rxcfg |= STE_RXMODE_PROMISC;
444		goto chipit;
445	}
446
447	rxcfg |= STE_RXMODE_MULTIHASH;
448	/* Now program new ones. */
449	if_foreach_llmaddr(ifp, ste_hash_maddr, hashes);
450
451chipit:
452	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
453	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
454	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
455	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
456	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
457	CSR_READ_1(sc, STE_RX_MODE);
458}
459
460#ifdef DEVICE_POLLING
461static poll_handler_t ste_poll, ste_poll_locked;
462
463static int
464ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
465{
466	struct ste_softc *sc = ifp->if_softc;
467	int rx_npkts = 0;
468
469	STE_LOCK(sc);
470	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
471		rx_npkts = ste_poll_locked(ifp, cmd, count);
472	STE_UNLOCK(sc);
473	return (rx_npkts);
474}
475
476static int
477ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
478{
479	struct ste_softc *sc = ifp->if_softc;
480	int rx_npkts;
481
482	STE_LOCK_ASSERT(sc);
483
484	rx_npkts = ste_rxeof(sc, count);
485	ste_txeof(sc);
486	ste_txeoc(sc);
487	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
488		ste_start_locked(ifp);
489
490	if (cmd == POLL_AND_CHECK_STATUS) {
491		uint16_t status;
492
493		status = CSR_READ_2(sc, STE_ISR_ACK);
494
495		if (status & STE_ISR_STATS_OFLOW)
496			ste_stats_update(sc);
497
498		if (status & STE_ISR_HOSTERR) {
499			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
500			ste_init_locked(sc);
501		}
502	}
503	return (rx_npkts);
504}
505#endif /* DEVICE_POLLING */
506
507static void
508ste_intr(void *xsc)
509{
510	struct ste_softc *sc;
511	struct ifnet *ifp;
512	uint16_t intrs, status;
513
514	sc = xsc;
515	STE_LOCK(sc);
516	ifp = sc->ste_ifp;
517
518#ifdef DEVICE_POLLING
519	if (ifp->if_capenable & IFCAP_POLLING) {
520		STE_UNLOCK(sc);
521		return;
522	}
523#endif
524	/* Reading STE_ISR_ACK clears STE_IMR register. */
525	status = CSR_READ_2(sc, STE_ISR_ACK);
526	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
527		STE_UNLOCK(sc);
528		return;
529	}
530
531	intrs = STE_INTRS;
532	if (status == 0xFFFF || (status & intrs) == 0)
533		goto done;
534
535	if (sc->ste_int_rx_act > 0) {
536		status &= ~STE_ISR_RX_DMADONE;
537		intrs &= ~STE_IMR_RX_DMADONE;
538	}
539
540	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
541		ste_rxeof(sc, -1);
542		/*
543		 * The controller has no ability to Rx interrupt
544		 * moderation feature. Receiving 64 bytes frames
545		 * from wire generates too many interrupts which in
546		 * turn make system useless to process other useful
547		 * things. Fortunately ST201 supports single shot
548		 * timer so use the timer to implement Rx interrupt
549		 * moderation in driver. This adds more register
550		 * access but it greatly reduces number of Rx
551		 * interrupts under high network load.
552		 */
553		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
554		    (sc->ste_int_rx_mod != 0)) {
555			if ((status & STE_ISR_RX_DMADONE) != 0) {
556				CSR_WRITE_2(sc, STE_COUNTDOWN,
557				    STE_TIMER_USECS(sc->ste_int_rx_mod));
558				intrs &= ~STE_IMR_RX_DMADONE;
559				sc->ste_int_rx_act = 1;
560			} else {
561				intrs |= STE_IMR_RX_DMADONE;
562				sc->ste_int_rx_act = 0;
563			}
564		}
565	}
566	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
567		if ((status & STE_ISR_TX_DMADONE) != 0)
568			ste_txeof(sc);
569		if ((status & STE_ISR_TX_DONE) != 0)
570			ste_txeoc(sc);
571		if ((status & STE_ISR_STATS_OFLOW) != 0)
572			ste_stats_update(sc);
573		if ((status & STE_ISR_HOSTERR) != 0) {
574			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
575			ste_init_locked(sc);
576			STE_UNLOCK(sc);
577			return;
578		}
579		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
580			ste_start_locked(ifp);
581done:
582		/* Re-enable interrupts */
583		CSR_WRITE_2(sc, STE_IMR, intrs);
584	}
585	STE_UNLOCK(sc);
586}
587
588/*
589 * A frame has been uploaded: pass the resulting mbuf chain up to
590 * the higher level protocols.
591 */
592static int
593ste_rxeof(struct ste_softc *sc, int count)
594{
595        struct mbuf *m;
596        struct ifnet *ifp;
597	struct ste_chain_onefrag *cur_rx;
598	uint32_t rxstat;
599	int total_len, rx_npkts;
600
601	ifp = sc->ste_ifp;
602
603	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
604	    sc->ste_cdata.ste_rx_list_map,
605	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
606
607	cur_rx = sc->ste_cdata.ste_rx_head;
608	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
609	    cur_rx = cur_rx->ste_next) {
610		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
611		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
612			break;
613#ifdef DEVICE_POLLING
614		if (ifp->if_capenable & IFCAP_POLLING) {
615			if (count == 0)
616				break;
617			count--;
618		}
619#endif
620		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
621			break;
622		/*
623		 * If an error occurs, update stats, clear the
624		 * status word and leave the mbuf cluster in place:
625		 * it should simply get re-used next time this descriptor
626	 	 * comes up in the ring.
627		 */
628		if (rxstat & STE_RXSTAT_FRAME_ERR) {
629			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
630			cur_rx->ste_ptr->ste_status = 0;
631			continue;
632		}
633
634		/* No errors; receive the packet. */
635		m = cur_rx->ste_mbuf;
636		total_len = STE_RX_BYTES(rxstat);
637
638		/*
639		 * Try to conjure up a new mbuf cluster. If that
640		 * fails, it means we have an out of memory condition and
641		 * should leave the buffer in place and continue. This will
642		 * result in a lost packet, but there's little else we
643		 * can do in this situation.
644		 */
645		if (ste_newbuf(sc, cur_rx) != 0) {
646			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
647			cur_rx->ste_ptr->ste_status = 0;
648			continue;
649		}
650
651		m->m_pkthdr.rcvif = ifp;
652		m->m_pkthdr.len = m->m_len = total_len;
653
654		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
655		STE_UNLOCK(sc);
656		(*ifp->if_input)(ifp, m);
657		STE_LOCK(sc);
658	}
659
660	if (rx_npkts > 0) {
661		sc->ste_cdata.ste_rx_head = cur_rx;
662		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
663		    sc->ste_cdata.ste_rx_list_map,
664		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
665	}
666
667	return (rx_npkts);
668}
669
670static void
671ste_txeoc(struct ste_softc *sc)
672{
673	uint16_t txstat;
674	struct ifnet *ifp;
675
676	STE_LOCK_ASSERT(sc);
677
678	ifp = sc->ste_ifp;
679
680	/*
681	 * STE_TX_STATUS register implements a queue of up to 31
682	 * transmit status byte. Writing an arbitrary value to the
683	 * register will advance the queue to the next transmit
684	 * status byte. This means if driver does not read
685	 * STE_TX_STATUS register after completing sending more
686	 * than 31 frames the controller would be stalled so driver
687	 * should re-wake the Tx MAC. This is the most severe
688	 * limitation of ST201 based controller.
689	 */
690	for (;;) {
691		txstat = CSR_READ_2(sc, STE_TX_STATUS);
692		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
693			break;
694		if ((txstat & (STE_TXSTATUS_UNDERRUN |
695		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
696		    STE_TXSTATUS_STATSOFLOW)) != 0) {
697			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
698#ifdef	STE_SHOW_TXERRORS
699			device_printf(sc->ste_dev, "TX error : 0x%b\n",
700			    txstat & 0xFF, STE_ERR_BITS);
701#endif
702			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
703			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
704				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
705				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
706					sc->ste_tx_thresh = STE_PACKET_SIZE;
707				device_printf(sc->ste_dev,
708				    "TX underrun, increasing TX"
709				    " start threshold to %d bytes\n",
710				    sc->ste_tx_thresh);
711				/* Make sure to disable active DMA cycles. */
712				STE_SETBIT4(sc, STE_DMACTL,
713				    STE_DMACTL_TXDMA_STALL);
714				ste_wait(sc);
715				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
716				ste_init_locked(sc);
717				break;
718			}
719			/* Restart Tx. */
720			ste_restart_tx(sc);
721		}
722		/*
723		 * Advance to next status and ACK TxComplete
724		 * interrupt. ST201 data sheet was wrong here, to
725		 * get next Tx status, we have to write both
726		 * STE_TX_STATUS and STE_TX_FRAMEID register.
727		 * Otherwise controller returns the same status
728		 * as well as not acknowledge Tx completion
729		 * interrupt.
730		 */
731		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
732	}
733}
734
735static void
736ste_tick(void *arg)
737{
738	struct ste_softc *sc;
739	struct mii_data *mii;
740
741	sc = (struct ste_softc *)arg;
742
743	STE_LOCK_ASSERT(sc);
744
745	mii = device_get_softc(sc->ste_miibus);
746	mii_tick(mii);
747	/*
748	 * ukphy(4) does not seem to generate CB that reports
749	 * resolved link state so if we know we lost a link,
750	 * explicitly check the link state.
751	 */
752	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
753		ste_miibus_statchg(sc->ste_dev);
754	/*
755	 * Because we are not generating Tx completion
756	 * interrupt for every frame, reclaim transmitted
757	 * buffers here.
758	 */
759	ste_txeof(sc);
760	ste_txeoc(sc);
761	ste_stats_update(sc);
762	ste_watchdog(sc);
763	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
764}
765
766static void
767ste_txeof(struct ste_softc *sc)
768{
769	struct ifnet *ifp;
770	struct ste_chain *cur_tx;
771	uint32_t txstat;
772	int idx;
773
774	STE_LOCK_ASSERT(sc);
775
776	ifp = sc->ste_ifp;
777	idx = sc->ste_cdata.ste_tx_cons;
778	if (idx == sc->ste_cdata.ste_tx_prod)
779		return;
780
781	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
782	    sc->ste_cdata.ste_tx_list_map,
783	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
784
785	while (idx != sc->ste_cdata.ste_tx_prod) {
786		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
787		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
788		if ((txstat & STE_TXCTL_DMADONE) == 0)
789			break;
790		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
791		    BUS_DMASYNC_POSTWRITE);
792		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
793		KASSERT(cur_tx->ste_mbuf != NULL,
794		    ("%s: freeing NULL mbuf!\n", __func__));
795		m_freem(cur_tx->ste_mbuf);
796		cur_tx->ste_mbuf = NULL;
797		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
798		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
799		sc->ste_cdata.ste_tx_cnt--;
800		STE_INC(idx, STE_TX_LIST_CNT);
801	}
802
803	sc->ste_cdata.ste_tx_cons = idx;
804	if (sc->ste_cdata.ste_tx_cnt == 0)
805		sc->ste_timer = 0;
806}
807
808static void
809ste_stats_clear(struct ste_softc *sc)
810{
811
812	STE_LOCK_ASSERT(sc);
813
814	/* Rx stats. */
815	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
816	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
817	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
818	CSR_READ_1(sc, STE_STAT_RX_BCAST);
819	CSR_READ_1(sc, STE_STAT_RX_MCAST);
820	CSR_READ_1(sc, STE_STAT_RX_LOST);
821	/* Tx stats. */
822	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
823	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
824	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
825	CSR_READ_1(sc, STE_STAT_TX_BCAST);
826	CSR_READ_1(sc, STE_STAT_TX_MCAST);
827	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
828	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
829	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
830	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
831	CSR_READ_1(sc, STE_STAT_TX_DEFER);
832	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
833	CSR_READ_1(sc, STE_STAT_TX_ABORT);
834}
835
836static void
837ste_stats_update(struct ste_softc *sc)
838{
839	struct ifnet *ifp;
840	struct ste_hw_stats *stats;
841	uint32_t val;
842
843	STE_LOCK_ASSERT(sc);
844
845	ifp = sc->ste_ifp;
846	stats = &sc->ste_stats;
847	/* Rx stats. */
848	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
849	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
850	val &= 0x000FFFFF;
851	stats->rx_bytes += val;
852	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
853	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
854	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
855	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
856	/* Tx stats. */
857	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
858	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
859	val &= 0x000FFFFF;
860	stats->tx_bytes += val;
861	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
862	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
863	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
864	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
865	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
866	stats->tx_single_colls += val;
867	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
868	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
869	stats->tx_multi_colls += val;
870	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
871	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
872	stats->tx_late_colls += val;
873	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
874	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
875	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
876	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
877}
878
879/*
880 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
881 * IDs against our list and return a device name if we find a match.
882 */
883static int
884ste_probe(device_t dev)
885{
886	const struct ste_type *t;
887
888	t = ste_devs;
889
890	while (t->ste_name != NULL) {
891		if ((pci_get_vendor(dev) == t->ste_vid) &&
892		    (pci_get_device(dev) == t->ste_did)) {
893			device_set_desc(dev, t->ste_name);
894			return (BUS_PROBE_DEFAULT);
895		}
896		t++;
897	}
898
899	return (ENXIO);
900}
901
902/*
903 * Attach the interface. Allocate softc structures, do ifmedia
904 * setup and ethernet/BPF attach.
905 */
906static int
907ste_attach(device_t dev)
908{
909	struct ste_softc *sc;
910	struct ifnet *ifp;
911	uint16_t eaddr[ETHER_ADDR_LEN / 2];
912	int error = 0, phy, pmc, prefer_iomap, rid;
913
914	sc = device_get_softc(dev);
915	sc->ste_dev = dev;
916
917	/*
918	 * Only use one PHY since this chip reports multiple
919	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
920	 * it is at 0 & 1.  It is rev 0x12.
921	 */
922	if (pci_get_vendor(dev) == DL_VENDORID &&
923	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
924	    pci_get_revid(dev) == 0x12 )
925		sc->ste_flags |= STE_FLAG_ONE_PHY;
926
927	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
928	    MTX_DEF);
929	/*
930	 * Map control/status registers.
931	 */
932	pci_enable_busmaster(dev);
933
934	/*
935	 * Prefer memory space register mapping over IO space but use
936	 * IO space for a device that is known to have issues on memory
937	 * mapping.
938	 */
939	prefer_iomap = 0;
940	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
941		prefer_iomap = 1;
942	else
943		resource_int_value(device_get_name(sc->ste_dev),
944		    device_get_unit(sc->ste_dev), "prefer_iomap",
945		    &prefer_iomap);
946	if (prefer_iomap == 0) {
947		sc->ste_res_id = PCIR_BAR(1);
948		sc->ste_res_type = SYS_RES_MEMORY;
949		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
950		    &sc->ste_res_id, RF_ACTIVE);
951	}
952	if (prefer_iomap || sc->ste_res == NULL) {
953		sc->ste_res_id = PCIR_BAR(0);
954		sc->ste_res_type = SYS_RES_IOPORT;
955		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
956		    &sc->ste_res_id, RF_ACTIVE);
957	}
958	if (sc->ste_res == NULL) {
959		device_printf(dev, "couldn't map ports/memory\n");
960		error = ENXIO;
961		goto fail;
962	}
963
964	/* Allocate interrupt */
965	rid = 0;
966	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
967	    RF_SHAREABLE | RF_ACTIVE);
968
969	if (sc->ste_irq == NULL) {
970		device_printf(dev, "couldn't map interrupt\n");
971		error = ENXIO;
972		goto fail;
973	}
974
975	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
976
977	/* Reset the adapter. */
978	ste_reset(sc);
979
980	/*
981	 * Get station address from the EEPROM.
982	 */
983	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
984		device_printf(dev, "failed to read station address\n");
985		error = ENXIO;
986		goto fail;
987	}
988	ste_sysctl_node(sc);
989
990	if ((error = ste_dma_alloc(sc)) != 0)
991		goto fail;
992
993	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
994	if (ifp == NULL) {
995		device_printf(dev, "can not if_alloc()\n");
996		error = ENOSPC;
997		goto fail;
998	}
999
1000	/* Do MII setup. */
1001	phy = MII_PHY_ANY;
1002	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
1003		phy = 0;
1004	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1005		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1006	if (error != 0) {
1007		device_printf(dev, "attaching PHYs failed\n");
1008		goto fail;
1009	}
1010
1011	ifp->if_softc = sc;
1012	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1013	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1014	ifp->if_ioctl = ste_ioctl;
1015	ifp->if_start = ste_start;
1016	ifp->if_init = ste_init;
1017	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1018	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1019	IFQ_SET_READY(&ifp->if_snd);
1020
1021	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1022
1023	/*
1024	 * Call MI attach routine.
1025	 */
1026	ether_ifattach(ifp, (uint8_t *)eaddr);
1027
1028	/*
1029	 * Tell the upper layer(s) we support long frames.
1030	 */
1031	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1032	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1033	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1034		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1035	ifp->if_capenable = ifp->if_capabilities;
1036#ifdef DEVICE_POLLING
1037	ifp->if_capabilities |= IFCAP_POLLING;
1038#endif
1039
1040	/* Hook interrupt last to avoid having to lock softc */
1041	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1042	    NULL, ste_intr, sc, &sc->ste_intrhand);
1043
1044	if (error) {
1045		device_printf(dev, "couldn't set up irq\n");
1046		ether_ifdetach(ifp);
1047		goto fail;
1048	}
1049
1050fail:
1051	if (error)
1052		ste_detach(dev);
1053
1054	return (error);
1055}
1056
1057/*
1058 * Shutdown hardware and free up resources. This can be called any
1059 * time after the mutex has been initialized. It is called in both
1060 * the error case in attach and the normal detach case so it needs
1061 * to be careful about only freeing resources that have actually been
1062 * allocated.
1063 */
1064static int
1065ste_detach(device_t dev)
1066{
1067	struct ste_softc *sc;
1068	struct ifnet *ifp;
1069
1070	sc = device_get_softc(dev);
1071	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1072	ifp = sc->ste_ifp;
1073
1074#ifdef DEVICE_POLLING
1075	if (ifp->if_capenable & IFCAP_POLLING)
1076		ether_poll_deregister(ifp);
1077#endif
1078
1079	/* These should only be active if attach succeeded */
1080	if (device_is_attached(dev)) {
1081		ether_ifdetach(ifp);
1082		STE_LOCK(sc);
1083		ste_stop(sc);
1084		STE_UNLOCK(sc);
1085		callout_drain(&sc->ste_callout);
1086	}
1087	if (sc->ste_miibus)
1088		device_delete_child(dev, sc->ste_miibus);
1089	bus_generic_detach(dev);
1090
1091	if (sc->ste_intrhand)
1092		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1093	if (sc->ste_irq)
1094		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1095	if (sc->ste_res)
1096		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1097		    sc->ste_res);
1098
1099	if (ifp)
1100		if_free(ifp);
1101
1102	ste_dma_free(sc);
1103	mtx_destroy(&sc->ste_mtx);
1104
1105	return (0);
1106}
1107
1108struct ste_dmamap_arg {
1109	bus_addr_t	ste_busaddr;
1110};
1111
1112static void
1113ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1114{
1115	struct ste_dmamap_arg *ctx;
1116
1117	if (error != 0)
1118		return;
1119
1120	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1121
1122	ctx = (struct ste_dmamap_arg *)arg;
1123	ctx->ste_busaddr = segs[0].ds_addr;
1124}
1125
1126static int
1127ste_dma_alloc(struct ste_softc *sc)
1128{
1129	struct ste_chain *txc;
1130	struct ste_chain_onefrag *rxc;
1131	struct ste_dmamap_arg ctx;
1132	int error, i;
1133
1134	/* Create parent DMA tag. */
1135	error = bus_dma_tag_create(
1136	    bus_get_dma_tag(sc->ste_dev), /* parent */
1137	    1, 0,			/* alignment, boundary */
1138	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1139	    BUS_SPACE_MAXADDR,		/* highaddr */
1140	    NULL, NULL,			/* filter, filterarg */
1141	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1142	    0,				/* nsegments */
1143	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1144	    0,				/* flags */
1145	    NULL, NULL,			/* lockfunc, lockarg */
1146	    &sc->ste_cdata.ste_parent_tag);
1147	if (error != 0) {
1148		device_printf(sc->ste_dev,
1149		    "could not create parent DMA tag.\n");
1150		goto fail;
1151	}
1152
1153	/* Create DMA tag for Tx descriptor list. */
1154	error = bus_dma_tag_create(
1155	    sc->ste_cdata.ste_parent_tag, /* parent */
1156	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1157	    BUS_SPACE_MAXADDR,		/* lowaddr */
1158	    BUS_SPACE_MAXADDR,		/* highaddr */
1159	    NULL, NULL,			/* filter, filterarg */
1160	    STE_TX_LIST_SZ,		/* maxsize */
1161	    1,				/* nsegments */
1162	    STE_TX_LIST_SZ,		/* maxsegsize */
1163	    0,				/* flags */
1164	    NULL, NULL,			/* lockfunc, lockarg */
1165	    &sc->ste_cdata.ste_tx_list_tag);
1166	if (error != 0) {
1167		device_printf(sc->ste_dev,
1168		    "could not create Tx list DMA tag.\n");
1169		goto fail;
1170	}
1171
1172	/* Create DMA tag for Rx descriptor list. */
1173	error = bus_dma_tag_create(
1174	    sc->ste_cdata.ste_parent_tag, /* parent */
1175	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1176	    BUS_SPACE_MAXADDR,		/* lowaddr */
1177	    BUS_SPACE_MAXADDR,		/* highaddr */
1178	    NULL, NULL,			/* filter, filterarg */
1179	    STE_RX_LIST_SZ,		/* maxsize */
1180	    1,				/* nsegments */
1181	    STE_RX_LIST_SZ,		/* maxsegsize */
1182	    0,				/* flags */
1183	    NULL, NULL,			/* lockfunc, lockarg */
1184	    &sc->ste_cdata.ste_rx_list_tag);
1185	if (error != 0) {
1186		device_printf(sc->ste_dev,
1187		    "could not create Rx list DMA tag.\n");
1188		goto fail;
1189	}
1190
1191	/* Create DMA tag for Tx buffers. */
1192	error = bus_dma_tag_create(
1193	    sc->ste_cdata.ste_parent_tag, /* parent */
1194	    1, 0,			/* alignment, boundary */
1195	    BUS_SPACE_MAXADDR,		/* lowaddr */
1196	    BUS_SPACE_MAXADDR,		/* highaddr */
1197	    NULL, NULL,			/* filter, filterarg */
1198	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1199	    STE_MAXFRAGS,		/* nsegments */
1200	    MCLBYTES,			/* maxsegsize */
1201	    0,				/* flags */
1202	    NULL, NULL,			/* lockfunc, lockarg */
1203	    &sc->ste_cdata.ste_tx_tag);
1204	if (error != 0) {
1205		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1206		goto fail;
1207	}
1208
1209	/* Create DMA tag for Rx buffers. */
1210	error = bus_dma_tag_create(
1211	    sc->ste_cdata.ste_parent_tag, /* parent */
1212	    1, 0,			/* alignment, boundary */
1213	    BUS_SPACE_MAXADDR,		/* lowaddr */
1214	    BUS_SPACE_MAXADDR,		/* highaddr */
1215	    NULL, NULL,			/* filter, filterarg */
1216	    MCLBYTES,			/* maxsize */
1217	    1,				/* nsegments */
1218	    MCLBYTES,			/* maxsegsize */
1219	    0,				/* flags */
1220	    NULL, NULL,			/* lockfunc, lockarg */
1221	    &sc->ste_cdata.ste_rx_tag);
1222	if (error != 0) {
1223		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1224		goto fail;
1225	}
1226
1227	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1228	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1229	    (void **)&sc->ste_ldata.ste_tx_list,
1230	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1231	    &sc->ste_cdata.ste_tx_list_map);
1232	if (error != 0) {
1233		device_printf(sc->ste_dev,
1234		    "could not allocate DMA'able memory for Tx list.\n");
1235		goto fail;
1236	}
1237	ctx.ste_busaddr = 0;
1238	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1239	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1240	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1241	if (error != 0 || ctx.ste_busaddr == 0) {
1242		device_printf(sc->ste_dev,
1243		    "could not load DMA'able memory for Tx list.\n");
1244		goto fail;
1245	}
1246	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1247
1248	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1249	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1250	    (void **)&sc->ste_ldata.ste_rx_list,
1251	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1252	    &sc->ste_cdata.ste_rx_list_map);
1253	if (error != 0) {
1254		device_printf(sc->ste_dev,
1255		    "could not allocate DMA'able memory for Rx list.\n");
1256		goto fail;
1257	}
1258	ctx.ste_busaddr = 0;
1259	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1260	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1261	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1262	if (error != 0 || ctx.ste_busaddr == 0) {
1263		device_printf(sc->ste_dev,
1264		    "could not load DMA'able memory for Rx list.\n");
1265		goto fail;
1266	}
1267	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1268
1269	/* Create DMA maps for Tx buffers. */
1270	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1271		txc = &sc->ste_cdata.ste_tx_chain[i];
1272		txc->ste_ptr = NULL;
1273		txc->ste_mbuf = NULL;
1274		txc->ste_next = NULL;
1275		txc->ste_phys = 0;
1276		txc->ste_map = NULL;
1277		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1278		    &txc->ste_map);
1279		if (error != 0) {
1280			device_printf(sc->ste_dev,
1281			    "could not create Tx dmamap.\n");
1282			goto fail;
1283		}
1284	}
1285	/* Create DMA maps for Rx buffers. */
1286	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1287	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1288		device_printf(sc->ste_dev,
1289		    "could not create spare Rx dmamap.\n");
1290		goto fail;
1291	}
1292	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1293		rxc = &sc->ste_cdata.ste_rx_chain[i];
1294		rxc->ste_ptr = NULL;
1295		rxc->ste_mbuf = NULL;
1296		rxc->ste_next = NULL;
1297		rxc->ste_map = NULL;
1298		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1299		    &rxc->ste_map);
1300		if (error != 0) {
1301			device_printf(sc->ste_dev,
1302			    "could not create Rx dmamap.\n");
1303			goto fail;
1304		}
1305	}
1306
1307fail:
1308	return (error);
1309}
1310
1311static void
1312ste_dma_free(struct ste_softc *sc)
1313{
1314	struct ste_chain *txc;
1315	struct ste_chain_onefrag *rxc;
1316	int i;
1317
1318	/* Tx buffers. */
1319	if (sc->ste_cdata.ste_tx_tag != NULL) {
1320		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1321			txc = &sc->ste_cdata.ste_tx_chain[i];
1322			if (txc->ste_map != NULL) {
1323				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1324				    txc->ste_map);
1325				txc->ste_map = NULL;
1326			}
1327		}
1328		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1329		sc->ste_cdata.ste_tx_tag = NULL;
1330	}
1331	/* Rx buffers. */
1332	if (sc->ste_cdata.ste_rx_tag != NULL) {
1333		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1334			rxc = &sc->ste_cdata.ste_rx_chain[i];
1335			if (rxc->ste_map != NULL) {
1336				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1337				    rxc->ste_map);
1338				rxc->ste_map = NULL;
1339			}
1340		}
1341		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1342			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1343			    sc->ste_cdata.ste_rx_sparemap);
1344			sc->ste_cdata.ste_rx_sparemap = NULL;
1345		}
1346		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1347		sc->ste_cdata.ste_rx_tag = NULL;
1348	}
1349	/* Tx descriptor list. */
1350	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1351		if (sc->ste_ldata.ste_tx_list_paddr != 0)
1352			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1353			    sc->ste_cdata.ste_tx_list_map);
1354		if (sc->ste_ldata.ste_tx_list != NULL)
1355			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1356			    sc->ste_ldata.ste_tx_list,
1357			    sc->ste_cdata.ste_tx_list_map);
1358		sc->ste_ldata.ste_tx_list = NULL;
1359		sc->ste_ldata.ste_tx_list_paddr = 0;
1360		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1361		sc->ste_cdata.ste_tx_list_tag = NULL;
1362	}
1363	/* Rx descriptor list. */
1364	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1365		if (sc->ste_ldata.ste_rx_list_paddr != 0)
1366			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1367			    sc->ste_cdata.ste_rx_list_map);
1368		if (sc->ste_ldata.ste_rx_list != NULL)
1369			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1370			    sc->ste_ldata.ste_rx_list,
1371			    sc->ste_cdata.ste_rx_list_map);
1372		sc->ste_ldata.ste_rx_list = NULL;
1373		sc->ste_ldata.ste_rx_list_paddr = 0;
1374		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1375		sc->ste_cdata.ste_rx_list_tag = NULL;
1376	}
1377	if (sc->ste_cdata.ste_parent_tag != NULL) {
1378		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1379		sc->ste_cdata.ste_parent_tag = NULL;
1380	}
1381}
1382
1383static int
1384ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1385{
1386	struct mbuf *m;
1387	bus_dma_segment_t segs[1];
1388	bus_dmamap_t map;
1389	int error, nsegs;
1390
1391	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1392	if (m == NULL)
1393		return (ENOBUFS);
1394	m->m_len = m->m_pkthdr.len = MCLBYTES;
1395	m_adj(m, ETHER_ALIGN);
1396
1397	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1398	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1399		m_freem(m);
1400		return (error);
1401	}
1402	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1403
1404	if (rxc->ste_mbuf != NULL) {
1405		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1406		    BUS_DMASYNC_POSTREAD);
1407		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1408	}
1409	map = rxc->ste_map;
1410	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1411	sc->ste_cdata.ste_rx_sparemap = map;
1412	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1413	    BUS_DMASYNC_PREREAD);
1414	rxc->ste_mbuf = m;
1415	rxc->ste_ptr->ste_status = 0;
1416	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1417	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1418	    STE_FRAG_LAST);
1419	return (0);
1420}
1421
1422static int
1423ste_init_rx_list(struct ste_softc *sc)
1424{
1425	struct ste_chain_data *cd;
1426	struct ste_list_data *ld;
1427	int error, i;
1428
1429	sc->ste_int_rx_act = 0;
1430	cd = &sc->ste_cdata;
1431	ld = &sc->ste_ldata;
1432	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1433	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1434		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1435		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1436		if (error != 0)
1437			return (error);
1438		if (i == (STE_RX_LIST_CNT - 1)) {
1439			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1440			ld->ste_rx_list[i].ste_next =
1441			    htole32(ld->ste_rx_list_paddr +
1442			    (sizeof(struct ste_desc_onefrag) * 0));
1443		} else {
1444			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1445			ld->ste_rx_list[i].ste_next =
1446			    htole32(ld->ste_rx_list_paddr +
1447			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1448		}
1449	}
1450
1451	cd->ste_rx_head = &cd->ste_rx_chain[0];
1452	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1453	    sc->ste_cdata.ste_rx_list_map,
1454	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1455
1456	return (0);
1457}
1458
1459static void
1460ste_init_tx_list(struct ste_softc *sc)
1461{
1462	struct ste_chain_data *cd;
1463	struct ste_list_data *ld;
1464	int i;
1465
1466	cd = &sc->ste_cdata;
1467	ld = &sc->ste_ldata;
1468	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1469	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1470		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1471		cd->ste_tx_chain[i].ste_mbuf = NULL;
1472		if (i == (STE_TX_LIST_CNT - 1)) {
1473			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1474			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1475			    ld->ste_tx_list_paddr +
1476			    (sizeof(struct ste_desc) * 0)));
1477		} else {
1478			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1479			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1480			    ld->ste_tx_list_paddr +
1481			    (sizeof(struct ste_desc) * (i + 1))));
1482		}
1483	}
1484
1485	cd->ste_last_tx = NULL;
1486	cd->ste_tx_prod = 0;
1487	cd->ste_tx_cons = 0;
1488	cd->ste_tx_cnt = 0;
1489
1490	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1491	    sc->ste_cdata.ste_tx_list_map,
1492	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1493}
1494
1495static void
1496ste_init(void *xsc)
1497{
1498	struct ste_softc *sc;
1499
1500	sc = xsc;
1501	STE_LOCK(sc);
1502	ste_init_locked(sc);
1503	STE_UNLOCK(sc);
1504}
1505
1506static void
1507ste_init_locked(struct ste_softc *sc)
1508{
1509	struct ifnet *ifp;
1510	struct mii_data *mii;
1511	uint8_t val;
1512	int i;
1513
1514	STE_LOCK_ASSERT(sc);
1515	ifp = sc->ste_ifp;
1516	mii = device_get_softc(sc->ste_miibus);
1517
1518	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1519		return;
1520
1521	ste_stop(sc);
1522	/* Reset the chip to a known state. */
1523	ste_reset(sc);
1524
1525	/* Init our MAC address */
1526	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1527		CSR_WRITE_2(sc, STE_PAR0 + i,
1528		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1529		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1530	}
1531
1532	/* Init RX list */
1533	if (ste_init_rx_list(sc) != 0) {
1534		device_printf(sc->ste_dev,
1535		    "initialization failed: no memory for RX buffers\n");
1536		ste_stop(sc);
1537		return;
1538	}
1539
1540	/* Set RX polling interval */
1541	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1542
1543	/* Init TX descriptors */
1544	ste_init_tx_list(sc);
1545
1546	/* Clear and disable WOL. */
1547	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1548	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1549	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1550	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1551
1552	/* Set the TX freethresh value */
1553	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1554
1555	/* Set the TX start threshold for best performance. */
1556	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1557
1558	/* Set the TX reclaim threshold. */
1559	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1560
1561	/* Accept VLAN length packets */
1562	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1563
1564	/* Set up the RX filter. */
1565	ste_rxfilter(sc);
1566
1567	/* Load the address of the RX list. */
1568	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1569	ste_wait(sc);
1570	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1571	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1572	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1573	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1574
1575	/* Set TX polling interval(defer until we TX first packet). */
1576	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1577
1578	/* Load address of the TX list */
1579	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1580	ste_wait(sc);
1581	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1582	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1583	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1584	ste_wait(sc);
1585	/* Select 3.2us timer. */
1586	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1587	    STE_DMACTL_COUNTDOWN_MODE);
1588
1589	/* Enable receiver and transmitter */
1590	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1591	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1592	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1593	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1594
1595	/* Enable stats counters. */
1596	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1597	/* Clear stats counters. */
1598	ste_stats_clear(sc);
1599
1600	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1601	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1602#ifdef DEVICE_POLLING
1603	/* Disable interrupts if we are polling. */
1604	if (ifp->if_capenable & IFCAP_POLLING)
1605		CSR_WRITE_2(sc, STE_IMR, 0);
1606	else
1607#endif
1608	/* Enable interrupts. */
1609	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1610
1611	sc->ste_flags &= ~STE_FLAG_LINK;
1612	/* Switch to the current media. */
1613	mii_mediachg(mii);
1614
1615	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1616	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1617
1618	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1619}
1620
1621static void
1622ste_stop(struct ste_softc *sc)
1623{
1624	struct ifnet *ifp;
1625	struct ste_chain_onefrag *cur_rx;
1626	struct ste_chain *cur_tx;
1627	uint32_t val;
1628	int i;
1629
1630	STE_LOCK_ASSERT(sc);
1631	ifp = sc->ste_ifp;
1632
1633	callout_stop(&sc->ste_callout);
1634	sc->ste_timer = 0;
1635	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1636
1637	CSR_WRITE_2(sc, STE_IMR, 0);
1638	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1639	/* Stop pending DMA. */
1640	val = CSR_READ_4(sc, STE_DMACTL);
1641	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1642	CSR_WRITE_4(sc, STE_DMACTL, val);
1643	ste_wait(sc);
1644	/* Disable auto-polling. */
1645	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1646	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1647	/* Nullify DMA address to stop any further DMA. */
1648	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1649	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1650	/* Stop TX/RX MAC. */
1651	val = CSR_READ_2(sc, STE_MACCTL1);
1652	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1653	    STE_MACCTL1_STATS_DISABLE;
1654	CSR_WRITE_2(sc, STE_MACCTL1, val);
1655	for (i = 0; i < STE_TIMEOUT; i++) {
1656		DELAY(10);
1657		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1658		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1659			break;
1660	}
1661	if (i == STE_TIMEOUT)
1662		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1663	/* Acknowledge any pending interrupts. */
1664	CSR_READ_2(sc, STE_ISR_ACK);
1665	ste_stats_update(sc);
1666
1667	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1668		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1669		if (cur_rx->ste_mbuf != NULL) {
1670			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1671			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1672			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1673			    cur_rx->ste_map);
1674			m_freem(cur_rx->ste_mbuf);
1675			cur_rx->ste_mbuf = NULL;
1676		}
1677	}
1678
1679	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1680		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1681		if (cur_tx->ste_mbuf != NULL) {
1682			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1683			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1684			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1685			    cur_tx->ste_map);
1686			m_freem(cur_tx->ste_mbuf);
1687			cur_tx->ste_mbuf = NULL;
1688		}
1689	}
1690}
1691
1692static void
1693ste_reset(struct ste_softc *sc)
1694{
1695	uint32_t ctl;
1696	int i;
1697
1698	ctl = CSR_READ_4(sc, STE_ASICCTL);
1699	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1700	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1701	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1702	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1703	    STE_ASICCTL_EXTRESET_RESET;
1704	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1705	CSR_READ_4(sc, STE_ASICCTL);
1706	/*
1707	 * Due to the need of accessing EEPROM controller can take
1708	 * up to 1ms to complete the global reset.
1709	 */
1710	DELAY(1000);
1711
1712	for (i = 0; i < STE_TIMEOUT; i++) {
1713		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1714			break;
1715		DELAY(10);
1716	}
1717
1718	if (i == STE_TIMEOUT)
1719		device_printf(sc->ste_dev, "global reset never completed\n");
1720}
1721
1722static void
1723ste_restart_tx(struct ste_softc *sc)
1724{
1725	uint16_t mac;
1726	int i;
1727
1728	for (i = 0; i < STE_TIMEOUT; i++) {
1729		mac = CSR_READ_2(sc, STE_MACCTL1);
1730		mac |= STE_MACCTL1_TX_ENABLE;
1731		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1732		mac = CSR_READ_2(sc, STE_MACCTL1);
1733		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1734			break;
1735		DELAY(10);
1736	}
1737
1738	if (i == STE_TIMEOUT)
1739		device_printf(sc->ste_dev, "starting Tx failed");
1740}
1741
1742static int
1743ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1744{
1745	struct ste_softc *sc;
1746	struct ifreq *ifr;
1747	struct mii_data *mii;
1748	int error = 0, mask;
1749
1750	sc = ifp->if_softc;
1751	ifr = (struct ifreq *)data;
1752
1753	switch (command) {
1754	case SIOCSIFFLAGS:
1755		STE_LOCK(sc);
1756		if ((ifp->if_flags & IFF_UP) != 0) {
1757			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1758			    ((ifp->if_flags ^ sc->ste_if_flags) &
1759			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1760				ste_rxfilter(sc);
1761			else
1762				ste_init_locked(sc);
1763		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1764			ste_stop(sc);
1765		sc->ste_if_flags = ifp->if_flags;
1766		STE_UNLOCK(sc);
1767		break;
1768	case SIOCADDMULTI:
1769	case SIOCDELMULTI:
1770		STE_LOCK(sc);
1771		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1772			ste_rxfilter(sc);
1773		STE_UNLOCK(sc);
1774		break;
1775	case SIOCGIFMEDIA:
1776	case SIOCSIFMEDIA:
1777		mii = device_get_softc(sc->ste_miibus);
1778		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1779		break;
1780	case SIOCSIFCAP:
1781		STE_LOCK(sc);
1782		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1783#ifdef DEVICE_POLLING
1784		if ((mask & IFCAP_POLLING) != 0 &&
1785		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1786			ifp->if_capenable ^= IFCAP_POLLING;
1787			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1788				error = ether_poll_register(ste_poll, ifp);
1789				if (error != 0) {
1790					STE_UNLOCK(sc);
1791					break;
1792				}
1793				/* Disable interrupts. */
1794				CSR_WRITE_2(sc, STE_IMR, 0);
1795			} else {
1796				error = ether_poll_deregister(ifp);
1797				/* Enable interrupts. */
1798				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1799			}
1800		}
1801#endif /* DEVICE_POLLING */
1802		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1803		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1804			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1805		STE_UNLOCK(sc);
1806		break;
1807	default:
1808		error = ether_ioctl(ifp, command, data);
1809		break;
1810	}
1811
1812	return (error);
1813}
1814
1815static int
1816ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1817{
1818	struct ste_frag *frag;
1819	struct mbuf *m;
1820	struct ste_desc *desc;
1821	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1822	int error, i, nsegs;
1823
1824	STE_LOCK_ASSERT(sc);
1825	M_ASSERTPKTHDR((*m_head));
1826
1827	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1828	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1829	if (error == EFBIG) {
1830		m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
1831		if (m == NULL) {
1832			m_freem(*m_head);
1833			*m_head = NULL;
1834			return (ENOMEM);
1835		}
1836		*m_head = m;
1837		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1838		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1839		if (error != 0) {
1840			m_freem(*m_head);
1841			*m_head = NULL;
1842			return (error);
1843		}
1844	} else if (error != 0)
1845		return (error);
1846	if (nsegs == 0) {
1847		m_freem(*m_head);
1848		*m_head = NULL;
1849		return (EIO);
1850	}
1851	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1852	    BUS_DMASYNC_PREWRITE);
1853
1854	desc = txc->ste_ptr;
1855	for (i = 0; i < nsegs; i++) {
1856		frag = &desc->ste_frags[i];
1857		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1858		frag->ste_len = htole32(txsegs[i].ds_len);
1859	}
1860	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1861	/*
1862	 * Because we use Tx polling we can't chain multiple
1863	 * Tx descriptors here. Otherwise we race with controller.
1864	 */
1865	desc->ste_next = 0;
1866	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1867		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1868		    STE_TXCTL_DMAINTR);
1869	else
1870		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1871	txc->ste_mbuf = *m_head;
1872	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1873	sc->ste_cdata.ste_tx_cnt++;
1874
1875	return (0);
1876}
1877
1878static void
1879ste_start(struct ifnet *ifp)
1880{
1881	struct ste_softc *sc;
1882
1883	sc = ifp->if_softc;
1884	STE_LOCK(sc);
1885	ste_start_locked(ifp);
1886	STE_UNLOCK(sc);
1887}
1888
1889static void
1890ste_start_locked(struct ifnet *ifp)
1891{
1892	struct ste_softc *sc;
1893	struct ste_chain *cur_tx;
1894	struct mbuf *m_head = NULL;
1895	int enq;
1896
1897	sc = ifp->if_softc;
1898	STE_LOCK_ASSERT(sc);
1899
1900	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1901	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1902		return;
1903
1904	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1905		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1906			/*
1907			 * Controller may have cached copy of the last used
1908			 * next ptr so we have to reserve one TFD to avoid
1909			 * TFD overruns.
1910			 */
1911			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1912			break;
1913		}
1914		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1915		if (m_head == NULL)
1916			break;
1917		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1918		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1919			if (m_head == NULL)
1920				break;
1921			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1922			break;
1923		}
1924		if (sc->ste_cdata.ste_last_tx == NULL) {
1925			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1926			    sc->ste_cdata.ste_tx_list_map,
1927			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1928			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1929			ste_wait(sc);
1930			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1931	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1932			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1933			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1934			ste_wait(sc);
1935		} else {
1936			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1937			    sc->ste_cdata.ste_last_tx->ste_phys;
1938			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1939			    sc->ste_cdata.ste_tx_list_map,
1940			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1941		}
1942		sc->ste_cdata.ste_last_tx = cur_tx;
1943
1944		enq++;
1945		/*
1946		 * If there's a BPF listener, bounce a copy of this frame
1947		 * to him.
1948	 	 */
1949		BPF_MTAP(ifp, m_head);
1950	}
1951
1952	if (enq > 0)
1953		sc->ste_timer = STE_TX_TIMEOUT;
1954}
1955
1956static void
1957ste_watchdog(struct ste_softc *sc)
1958{
1959	struct ifnet *ifp;
1960
1961	ifp = sc->ste_ifp;
1962	STE_LOCK_ASSERT(sc);
1963
1964	if (sc->ste_timer == 0 || --sc->ste_timer)
1965		return;
1966
1967	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1968	if_printf(ifp, "watchdog timeout\n");
1969
1970	ste_txeof(sc);
1971	ste_txeoc(sc);
1972	ste_rxeof(sc, -1);
1973	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1974	ste_init_locked(sc);
1975
1976	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1977		ste_start_locked(ifp);
1978}
1979
1980static int
1981ste_shutdown(device_t dev)
1982{
1983
1984	return (ste_suspend(dev));
1985}
1986
1987static int
1988ste_suspend(device_t dev)
1989{
1990	struct ste_softc *sc;
1991
1992	sc = device_get_softc(dev);
1993
1994	STE_LOCK(sc);
1995	ste_stop(sc);
1996	ste_setwol(sc);
1997	STE_UNLOCK(sc);
1998
1999	return (0);
2000}
2001
2002static int
2003ste_resume(device_t dev)
2004{
2005	struct ste_softc *sc;
2006	struct ifnet *ifp;
2007	int pmc;
2008	uint16_t pmstat;
2009
2010	sc = device_get_softc(dev);
2011	STE_LOCK(sc);
2012	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2013		/* Disable PME and clear PME status. */
2014		pmstat = pci_read_config(sc->ste_dev,
2015		    pmc + PCIR_POWER_STATUS, 2);
2016		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2017			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2018			pci_write_config(sc->ste_dev,
2019			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2020		}
2021	}
2022	ifp = sc->ste_ifp;
2023	if ((ifp->if_flags & IFF_UP) != 0) {
2024		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2025		ste_init_locked(sc);
2026	}
2027	STE_UNLOCK(sc);
2028
2029	return (0);
2030}
2031
2032#define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2033	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2034#define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2035	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2036
2037static void
2038ste_sysctl_node(struct ste_softc *sc)
2039{
2040	struct sysctl_ctx_list *ctx;
2041	struct sysctl_oid_list *child, *parent;
2042	struct sysctl_oid *tree;
2043	struct ste_hw_stats *stats;
2044
2045	stats = &sc->ste_stats;
2046	ctx = device_get_sysctl_ctx(sc->ste_dev);
2047	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2048
2049	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2050	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2051	/* Pull in device tunables. */
2052	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2053	resource_int_value(device_get_name(sc->ste_dev),
2054	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2055
2056	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2057	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "STE statistics");
2058	parent = SYSCTL_CHILDREN(tree);
2059
2060	/* Rx statistics. */
2061	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2062	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2063	child = SYSCTL_CHILDREN(tree);
2064	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2065	    &stats->rx_bytes, "Good octets");
2066	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2067	    &stats->rx_frames, "Good frames");
2068	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2069	    &stats->rx_bcast_frames, "Good broadcast frames");
2070	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2071	    &stats->rx_mcast_frames, "Good multicast frames");
2072	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2073	    &stats->rx_lost_frames, "Lost frames");
2074
2075	/* Tx statistics. */
2076	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2077	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2078	child = SYSCTL_CHILDREN(tree);
2079	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2080	    &stats->tx_bytes, "Good octets");
2081	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2082	    &stats->tx_frames, "Good frames");
2083	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2084	    &stats->tx_bcast_frames, "Good broadcast frames");
2085	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2086	    &stats->tx_mcast_frames, "Good multicast frames");
2087	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2088	    &stats->tx_carrsense_errs, "Carrier sense errors");
2089	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2090	    &stats->tx_single_colls, "Single collisions");
2091	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2092	    &stats->tx_multi_colls, "Multiple collisions");
2093	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2094	    &stats->tx_late_colls, "Late collisions");
2095	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2096	    &stats->tx_frames_defered, "Frames with deferrals");
2097	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2098	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2099	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2100	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2101}
2102
2103#undef STE_SYSCTL_STAT_ADD32
2104#undef STE_SYSCTL_STAT_ADD64
2105
2106static void
2107ste_setwol(struct ste_softc *sc)
2108{
2109	struct ifnet *ifp;
2110	uint16_t pmstat;
2111	uint8_t val;
2112	int pmc;
2113
2114	STE_LOCK_ASSERT(sc);
2115
2116	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2117		/* Disable WOL. */
2118		CSR_READ_1(sc, STE_WAKE_EVENT);
2119		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2120		return;
2121	}
2122
2123	ifp = sc->ste_ifp;
2124	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2125	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2126	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2127	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2128		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2129	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2130	/* Request PME. */
2131	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2132	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2133	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2134		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2135	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2136}
2137