1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5 * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6 * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31/*
32 * Intel High Definition Audio (Controller) driver for FreeBSD.
33 */
34
35#ifdef HAVE_KERNEL_OPTION_HEADERS
36#include "opt_snd.h"
37#endif
38
39#include <dev/sound/pcm/sound.h>
40#include <dev/pci/pcireg.h>
41#include <dev/pci/pcivar.h>
42
43#include <sys/ctype.h>
44#include <sys/endian.h>
45#include <sys/taskqueue.h>
46
47#include <dev/sound/pci/hda/hdac_private.h>
48#include <dev/sound/pci/hda/hdac_reg.h>
49#include <dev/sound/pci/hda/hda_reg.h>
50#include <dev/sound/pci/hda/hdac.h>
51
52#define HDA_DRV_TEST_REV	"20120126_0002"
53
54SND_DECLARE_FILE("$FreeBSD$");
55
56#define hdac_lock(sc)		snd_mtxlock((sc)->lock)
57#define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
58#define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
59
60#define HDAC_QUIRK_64BIT	(1 << 0)
61#define HDAC_QUIRK_DMAPOS	(1 << 1)
62#define HDAC_QUIRK_MSI		(1 << 2)
63
64static const struct {
65	const char *key;
66	uint32_t value;
67} hdac_quirks_tab[] = {
68	{ "64bit", HDAC_QUIRK_64BIT },
69	{ "dmapos", HDAC_QUIRK_DMAPOS },
70	{ "msi", HDAC_QUIRK_MSI },
71};
72
73MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
74
75static const struct {
76	uint32_t	model;
77	const char	*desc;
78	char		quirks_on;
79	char		quirks_off;
80} hdac_devices[] = {
81	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
82	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
83	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
84	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
85	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
86	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
87	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
88	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
89	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
90	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
91	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
92	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
93	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
94	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
95	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
96	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
97	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
98	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
99	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
100	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
101	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
102	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
103	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
104	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
105	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
106	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
107	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
108	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
109	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
110	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
111	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
112	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
113	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
114	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
115	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
116	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
117	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
118	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
119	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
120	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
121	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
122	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
123	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
124	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
125	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
126	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
127	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
128	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
129	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
130	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
131	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
132	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
133	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
134	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
135	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
136	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
137	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
138	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
139	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
140	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
141	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
142	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
143	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
144	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
145	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
146	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
147	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
148	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
149	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
150	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
151	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
152	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
153	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
154	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
155	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
156	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
157	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
158	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
159	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
160	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
161	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
162	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
163	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
164	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
165	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
166	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
167	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
168	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
169	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
170	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
171	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
172	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
173	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
174	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
175	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
176	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
177	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
178	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
179	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
180	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
181	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
182	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
183	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
184	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
185	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
186	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
187	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
188	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
189	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
190	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
191	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
192	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
193	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
194	/* Unknown */
195	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
196	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
197	{ HDA_ATI_ALL,    "ATI",		0, 0 },
198	{ HDA_AMD_ALL,    "AMD",		0, 0 },
199	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
200	{ HDA_VIA_ALL,    "VIA",		0, 0 },
201	{ HDA_SIS_ALL,    "SiS",		0, 0 },
202	{ HDA_ULI_ALL,    "ULI",		0, 0 },
203};
204
205static const struct {
206	uint16_t vendor;
207	uint8_t reg;
208	uint8_t mask;
209	uint8_t enable;
210} hdac_pcie_snoop[] = {
211	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
212	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
213	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
214	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
215};
216
217/****************************************************************************
218 * Function prototypes
219 ****************************************************************************/
220static void	hdac_intr_handler(void *);
221static int	hdac_reset(struct hdac_softc *, bool);
222static int	hdac_get_capabilities(struct hdac_softc *);
223static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
224static int	hdac_dma_alloc(struct hdac_softc *,
225					struct hdac_dma *, bus_size_t);
226static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
227static int	hdac_mem_alloc(struct hdac_softc *);
228static void	hdac_mem_free(struct hdac_softc *);
229static int	hdac_irq_alloc(struct hdac_softc *);
230static void	hdac_irq_free(struct hdac_softc *);
231static void	hdac_corb_init(struct hdac_softc *);
232static void	hdac_rirb_init(struct hdac_softc *);
233static void	hdac_corb_start(struct hdac_softc *);
234static void	hdac_rirb_start(struct hdac_softc *);
235
236static void	hdac_attach2(void *);
237
238static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
239
240static int	hdac_probe(device_t);
241static int	hdac_attach(device_t);
242static int	hdac_detach(device_t);
243static int	hdac_suspend(device_t);
244static int	hdac_resume(device_t);
245
246static int	hdac_rirb_flush(struct hdac_softc *sc);
247static int	hdac_unsolq_flush(struct hdac_softc *sc);
248
249/* This function surely going to make its way into upper level someday. */
250static void
251hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
252{
253	const char *res = NULL;
254	int i = 0, j, k, len, inv;
255
256	if (resource_string_value(device_get_name(sc->dev),
257	    device_get_unit(sc->dev), "config", &res) != 0)
258		return;
259	if (!(res != NULL && strlen(res) > 0))
260		return;
261	HDA_BOOTVERBOSE(
262		device_printf(sc->dev, "Config options:");
263	);
264	for (;;) {
265		while (res[i] != '\0' &&
266		    (res[i] == ',' || isspace(res[i]) != 0))
267			i++;
268		if (res[i] == '\0') {
269			HDA_BOOTVERBOSE(
270				printf("\n");
271			);
272			return;
273		}
274		j = i;
275		while (res[j] != '\0' &&
276		    !(res[j] == ',' || isspace(res[j]) != 0))
277			j++;
278		len = j - i;
279		if (len > 2 && strncmp(res + i, "no", 2) == 0)
280			inv = 2;
281		else
282			inv = 0;
283		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
284			if (strncmp(res + i + inv,
285			    hdac_quirks_tab[k].key, len - inv) != 0)
286				continue;
287			if (len - inv != strlen(hdac_quirks_tab[k].key))
288				continue;
289			HDA_BOOTVERBOSE(
290				printf(" %s%s", (inv != 0) ? "no" : "",
291				    hdac_quirks_tab[k].key);
292			);
293			if (inv == 0) {
294				*on |= hdac_quirks_tab[k].value;
295				*off &= ~hdac_quirks_tab[k].value;
296			} else if (inv != 0) {
297				*off |= hdac_quirks_tab[k].value;
298				*on &= ~hdac_quirks_tab[k].value;
299			}
300			break;
301		}
302		i = j;
303	}
304}
305
306static void
307hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
308{
309	device_t dev;
310	uint8_t rirbsts;
311	int i;
312
313	/* Was this a controller interrupt? */
314	if (intsts & HDAC_INTSTS_CIS) {
315		/*
316		 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
317		 * we will need to check and clear HDAC_STATESTS.
318		 * That event is used to report codec status changes such as
319		 * a reset or a wake-up event.
320		 */
321		/*
322		 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
323		 * will need to check and clear HDAC_CORBSTS_CMEI in
324		 * HDAC_CORBSTS.
325		 * That event is used to report CORB memory errors.
326		 */
327		/*
328		 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
329		 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
330		 * HDAC_RIRBSTS.
331		 * That event is used to report response FIFO overruns.
332		 */
333
334		/* Get as many responses that we can */
335		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
336		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
337			HDAC_WRITE_1(&sc->mem,
338			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
339			hdac_rirb_flush(sc);
340			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
341		}
342		if (sc->unsolq_rp != sc->unsolq_wp)
343			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
344	}
345
346	if (intsts & HDAC_INTSTS_SIS_MASK) {
347		for (i = 0; i < sc->num_ss; i++) {
348			if ((intsts & (1 << i)) == 0)
349				continue;
350			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
351			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
352			if ((dev = sc->streams[i].dev) != NULL) {
353				HDAC_STREAM_INTR(dev,
354				    sc->streams[i].dir, sc->streams[i].stream);
355			}
356		}
357	}
358}
359
360/****************************************************************************
361 * void hdac_intr_handler(void *)
362 *
363 * Interrupt handler. Processes interrupts received from the hdac.
364 ****************************************************************************/
365static void
366hdac_intr_handler(void *context)
367{
368	struct hdac_softc *sc;
369	uint32_t intsts;
370
371	sc = (struct hdac_softc *)context;
372
373	/*
374	 * Loop until HDAC_INTSTS_GIS gets clear.
375	 * It is plausible that hardware interrupts a host only when GIS goes
376	 * from zero to one.  GIS is formed by OR-ing multiple hardware
377	 * statuses, so it's possible that a previously cleared status gets set
378	 * again while another status has not been cleared yet.  Thus, there
379	 * will be no new interrupt as GIS always stayed set.  If we don't
380	 * re-examine GIS then we can leave it set and never get an interrupt
381	 * again.
382	 */
383	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
384	while ((intsts & HDAC_INTSTS_GIS) != 0) {
385		hdac_lock(sc);
386		hdac_one_intr(sc, intsts);
387		hdac_unlock(sc);
388		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
389	}
390}
391
392static void
393hdac_poll_callback(void *arg)
394{
395	struct hdac_softc *sc = arg;
396
397	if (sc == NULL)
398		return;
399
400	hdac_lock(sc);
401	if (sc->polling == 0) {
402		hdac_unlock(sc);
403		return;
404	}
405	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
406	hdac_unlock(sc);
407
408	hdac_intr_handler(sc);
409}
410
411/****************************************************************************
412 * int hdac_reset(hdac_softc *, bool)
413 *
414 * Reset the hdac to a quiescent and known state.
415 ****************************************************************************/
416static int
417hdac_reset(struct hdac_softc *sc, bool wakeup)
418{
419	uint32_t gctl;
420	int count, i;
421
422	/*
423	 * Stop all Streams DMA engine
424	 */
425	for (i = 0; i < sc->num_iss; i++)
426		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
427	for (i = 0; i < sc->num_oss; i++)
428		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
429	for (i = 0; i < sc->num_bss; i++)
430		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
431
432	/*
433	 * Stop Control DMA engines.
434	 */
435	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
436	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
437
438	/*
439	 * Reset DMA position buffer.
440	 */
441	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
442	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
443
444	/*
445	 * Reset the controller. The reset must remain asserted for
446	 * a minimum of 100us.
447	 */
448	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
449	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
450	count = 10000;
451	do {
452		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
453		if (!(gctl & HDAC_GCTL_CRST))
454			break;
455		DELAY(10);
456	} while (--count);
457	if (gctl & HDAC_GCTL_CRST) {
458		device_printf(sc->dev, "Unable to put hdac in reset\n");
459		return (ENXIO);
460	}
461
462	/* If wakeup is not requested - leave the controller in reset state. */
463	if (!wakeup)
464		return (0);
465
466	DELAY(100);
467	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
468	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
469	count = 10000;
470	do {
471		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
472		if (gctl & HDAC_GCTL_CRST)
473			break;
474		DELAY(10);
475	} while (--count);
476	if (!(gctl & HDAC_GCTL_CRST)) {
477		device_printf(sc->dev, "Device stuck in reset\n");
478		return (ENXIO);
479	}
480
481	/*
482	 * Wait for codecs to finish their own reset sequence. The delay here
483	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
484	 */
485	DELAY(1000);
486
487	return (0);
488}
489
490/****************************************************************************
491 * int hdac_get_capabilities(struct hdac_softc *);
492 *
493 * Retreive the general capabilities of the hdac;
494 *	Number of Input Streams
495 *	Number of Output Streams
496 *	Number of bidirectional Streams
497 *	64bit ready
498 *	CORB and RIRB sizes
499 ****************************************************************************/
500static int
501hdac_get_capabilities(struct hdac_softc *sc)
502{
503	uint16_t gcap;
504	uint8_t corbsize, rirbsize;
505
506	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
507	sc->num_iss = HDAC_GCAP_ISS(gcap);
508	sc->num_oss = HDAC_GCAP_OSS(gcap);
509	sc->num_bss = HDAC_GCAP_BSS(gcap);
510	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
511	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
512	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
513	if (sc->quirks_on & HDAC_QUIRK_64BIT)
514		sc->support_64bit = 1;
515	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
516		sc->support_64bit = 0;
517
518	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
519	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
520	    HDAC_CORBSIZE_CORBSZCAP_256)
521		sc->corb_size = 256;
522	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
523	    HDAC_CORBSIZE_CORBSZCAP_16)
524		sc->corb_size = 16;
525	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
526	    HDAC_CORBSIZE_CORBSZCAP_2)
527		sc->corb_size = 2;
528	else {
529		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
530		    __func__, corbsize);
531		return (ENXIO);
532	}
533
534	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
535	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
536	    HDAC_RIRBSIZE_RIRBSZCAP_256)
537		sc->rirb_size = 256;
538	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
539	    HDAC_RIRBSIZE_RIRBSZCAP_16)
540		sc->rirb_size = 16;
541	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
542	    HDAC_RIRBSIZE_RIRBSZCAP_2)
543		sc->rirb_size = 2;
544	else {
545		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
546		    __func__, rirbsize);
547		return (ENXIO);
548	}
549
550	HDA_BOOTVERBOSE(
551		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
552		    "NSDO %d%s, CORB %d, RIRB %d\n",
553		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
554		    sc->support_64bit ? ", 64bit" : "",
555		    sc->corb_size, sc->rirb_size);
556	);
557
558	return (0);
559}
560
561/****************************************************************************
562 * void hdac_dma_cb
563 *
564 * This function is called by bus_dmamap_load when the mapping has been
565 * established. We just record the physical address of the mapping into
566 * the struct hdac_dma passed in.
567 ****************************************************************************/
568static void
569hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
570{
571	struct hdac_dma *dma;
572
573	if (error == 0) {
574		dma = (struct hdac_dma *)callback_arg;
575		dma->dma_paddr = segs[0].ds_addr;
576	}
577}
578
579/****************************************************************************
580 * int hdac_dma_alloc
581 *
582 * This function allocate and setup a dma region (struct hdac_dma).
583 * It must be freed by a corresponding hdac_dma_free.
584 ****************************************************************************/
585static int
586hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
587{
588	bus_size_t roundsz;
589	int result;
590
591	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
592	bzero(dma, sizeof(*dma));
593
594	/*
595	 * Create a DMA tag
596	 */
597	result = bus_dma_tag_create(
598	    bus_get_dma_tag(sc->dev),		/* parent */
599	    HDA_DMA_ALIGNMENT,			/* alignment */
600	    0,					/* boundary */
601	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
602		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
603	    BUS_SPACE_MAXADDR,			/* highaddr */
604	    NULL,				/* filtfunc */
605	    NULL,				/* fistfuncarg */
606	    roundsz, 				/* maxsize */
607	    1,					/* nsegments */
608	    roundsz, 				/* maxsegsz */
609	    0,					/* flags */
610	    NULL,				/* lockfunc */
611	    NULL,				/* lockfuncarg */
612	    &dma->dma_tag);			/* dmat */
613	if (result != 0) {
614		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
615		    __func__, result);
616		goto hdac_dma_alloc_fail;
617	}
618
619	/*
620	 * Allocate DMA memory
621	 */
622	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
623	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
624	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
625	     BUS_DMA_COHERENT),
626	    &dma->dma_map);
627	if (result != 0) {
628		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
629		    __func__, result);
630		goto hdac_dma_alloc_fail;
631	}
632
633	dma->dma_size = roundsz;
634
635	/*
636	 * Map the memory
637	 */
638	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
639	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
640	if (result != 0 || dma->dma_paddr == 0) {
641		if (result == 0)
642			result = ENOMEM;
643		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
644		    __func__, result);
645		goto hdac_dma_alloc_fail;
646	}
647
648	HDA_BOOTHVERBOSE(
649		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
650		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
651	);
652
653	return (0);
654
655hdac_dma_alloc_fail:
656	hdac_dma_free(sc, dma);
657
658	return (result);
659}
660
661/****************************************************************************
662 * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
663 *
664 * Free a struct hdac_dma that has been previously allocated via the
665 * hdac_dma_alloc function.
666 ****************************************************************************/
667static void
668hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
669{
670	if (dma->dma_paddr != 0) {
671		/* Flush caches */
672		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
673		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
674		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
675		dma->dma_paddr = 0;
676	}
677	if (dma->dma_vaddr != NULL) {
678		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
679		dma->dma_vaddr = NULL;
680	}
681	if (dma->dma_tag != NULL) {
682		bus_dma_tag_destroy(dma->dma_tag);
683		dma->dma_tag = NULL;
684	}
685	dma->dma_size = 0;
686}
687
688/****************************************************************************
689 * int hdac_mem_alloc(struct hdac_softc *)
690 *
691 * Allocate all the bus resources necessary to speak with the physical
692 * controller.
693 ****************************************************************************/
694static int
695hdac_mem_alloc(struct hdac_softc *sc)
696{
697	struct hdac_mem *mem;
698
699	mem = &sc->mem;
700	mem->mem_rid = PCIR_BAR(0);
701	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
702	    &mem->mem_rid, RF_ACTIVE);
703	if (mem->mem_res == NULL) {
704		device_printf(sc->dev,
705		    "%s: Unable to allocate memory resource\n", __func__);
706		return (ENOMEM);
707	}
708	mem->mem_tag = rman_get_bustag(mem->mem_res);
709	mem->mem_handle = rman_get_bushandle(mem->mem_res);
710
711	return (0);
712}
713
714/****************************************************************************
715 * void hdac_mem_free(struct hdac_softc *)
716 *
717 * Free up resources previously allocated by hdac_mem_alloc.
718 ****************************************************************************/
719static void
720hdac_mem_free(struct hdac_softc *sc)
721{
722	struct hdac_mem *mem;
723
724	mem = &sc->mem;
725	if (mem->mem_res != NULL)
726		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
727		    mem->mem_res);
728	mem->mem_res = NULL;
729}
730
731/****************************************************************************
732 * int hdac_irq_alloc(struct hdac_softc *)
733 *
734 * Allocate and setup the resources necessary for interrupt handling.
735 ****************************************************************************/
736static int
737hdac_irq_alloc(struct hdac_softc *sc)
738{
739	struct hdac_irq *irq;
740	int result;
741
742	irq = &sc->irq;
743	irq->irq_rid = 0x0;
744
745	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
746	    (result = pci_msi_count(sc->dev)) == 1 &&
747	    pci_alloc_msi(sc->dev, &result) == 0)
748		irq->irq_rid = 0x1;
749
750	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
751	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
752	if (irq->irq_res == NULL) {
753		device_printf(sc->dev, "%s: Unable to allocate irq\n",
754		    __func__);
755		goto hdac_irq_alloc_fail;
756	}
757	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
758	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
759	if (result != 0) {
760		device_printf(sc->dev,
761		    "%s: Unable to setup interrupt handler (%d)\n",
762		    __func__, result);
763		goto hdac_irq_alloc_fail;
764	}
765
766	return (0);
767
768hdac_irq_alloc_fail:
769	hdac_irq_free(sc);
770
771	return (ENXIO);
772}
773
774/****************************************************************************
775 * void hdac_irq_free(struct hdac_softc *)
776 *
777 * Free up resources previously allocated by hdac_irq_alloc.
778 ****************************************************************************/
779static void
780hdac_irq_free(struct hdac_softc *sc)
781{
782	struct hdac_irq *irq;
783
784	irq = &sc->irq;
785	if (irq->irq_res != NULL && irq->irq_handle != NULL)
786		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
787	if (irq->irq_res != NULL)
788		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
789		    irq->irq_res);
790	if (irq->irq_rid == 0x1)
791		pci_release_msi(sc->dev);
792	irq->irq_handle = NULL;
793	irq->irq_res = NULL;
794	irq->irq_rid = 0x0;
795}
796
797/****************************************************************************
798 * void hdac_corb_init(struct hdac_softc *)
799 *
800 * Initialize the corb registers for operations but do not start it up yet.
801 * The CORB engine must not be running when this function is called.
802 ****************************************************************************/
803static void
804hdac_corb_init(struct hdac_softc *sc)
805{
806	uint8_t corbsize;
807	uint64_t corbpaddr;
808
809	/* Setup the CORB size. */
810	switch (sc->corb_size) {
811	case 256:
812		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
813		break;
814	case 16:
815		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
816		break;
817	case 2:
818		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
819		break;
820	default:
821		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
822	}
823	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
824
825	/* Setup the CORB Address in the hdac */
826	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
827	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
828	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
829
830	/* Set the WP and RP */
831	sc->corb_wp = 0;
832	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
833	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
834	/*
835	 * The HDA specification indicates that the CORBRPRST bit will always
836	 * read as zero. Unfortunately, it seems that at least the 82801G
837	 * doesn't reset the bit to zero, which stalls the corb engine.
838	 * manually reset the bit to zero before continuing.
839	 */
840	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
841
842	/* Enable CORB error reporting */
843#if 0
844	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
845#endif
846}
847
848/****************************************************************************
849 * void hdac_rirb_init(struct hdac_softc *)
850 *
851 * Initialize the rirb registers for operations but do not start it up yet.
852 * The RIRB engine must not be running when this function is called.
853 ****************************************************************************/
854static void
855hdac_rirb_init(struct hdac_softc *sc)
856{
857	uint8_t rirbsize;
858	uint64_t rirbpaddr;
859
860	/* Setup the RIRB size. */
861	switch (sc->rirb_size) {
862	case 256:
863		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
864		break;
865	case 16:
866		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
867		break;
868	case 2:
869		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
870		break;
871	default:
872		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
873	}
874	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
875
876	/* Setup the RIRB Address in the hdac */
877	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
878	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
879	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
880
881	/* Setup the WP and RP */
882	sc->rirb_rp = 0;
883	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
884
885	/* Setup the interrupt threshold */
886	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
887
888	/* Enable Overrun and response received reporting */
889#if 0
890	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
891	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
892#else
893	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
894#endif
895
896	/*
897	 * Make sure that the Host CPU cache doesn't contain any dirty
898	 * cache lines that falls in the rirb. If I understood correctly, it
899	 * should be sufficient to do this only once as the rirb is purely
900	 * read-only from now on.
901	 */
902	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
903	    BUS_DMASYNC_PREREAD);
904}
905
906/****************************************************************************
907 * void hdac_corb_start(hdac_softc *)
908 *
909 * Startup the corb DMA engine
910 ****************************************************************************/
911static void
912hdac_corb_start(struct hdac_softc *sc)
913{
914	uint32_t corbctl;
915
916	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
917	corbctl |= HDAC_CORBCTL_CORBRUN;
918	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
919}
920
921/****************************************************************************
922 * void hdac_rirb_start(hdac_softc *)
923 *
924 * Startup the rirb DMA engine
925 ****************************************************************************/
926static void
927hdac_rirb_start(struct hdac_softc *sc)
928{
929	uint32_t rirbctl;
930
931	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
932	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
933	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
934}
935
936static int
937hdac_rirb_flush(struct hdac_softc *sc)
938{
939	struct hdac_rirb *rirb_base, *rirb;
940	nid_t cad;
941	uint32_t resp, resp_ex;
942	uint8_t rirbwp;
943	int ret;
944
945	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
946	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
947	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
948	    BUS_DMASYNC_POSTREAD);
949
950	ret = 0;
951	while (sc->rirb_rp != rirbwp) {
952		sc->rirb_rp++;
953		sc->rirb_rp %= sc->rirb_size;
954		rirb = &rirb_base[sc->rirb_rp];
955		resp = le32toh(rirb->response);
956		resp_ex = le32toh(rirb->response_ex);
957		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
958		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
959			sc->unsolq[sc->unsolq_wp++] = resp;
960			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
961			sc->unsolq[sc->unsolq_wp++] = cad;
962			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
963		} else if (sc->codecs[cad].pending <= 0) {
964			device_printf(sc->dev, "Unexpected unsolicited "
965			    "response from address %d: %08x\n", cad, resp);
966		} else {
967			sc->codecs[cad].response = resp;
968			sc->codecs[cad].pending--;
969		}
970		ret++;
971	}
972
973	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
974	    BUS_DMASYNC_PREREAD);
975	return (ret);
976}
977
978static int
979hdac_unsolq_flush(struct hdac_softc *sc)
980{
981	device_t child;
982	nid_t cad;
983	uint32_t resp;
984	int ret = 0;
985
986	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
987		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
988		while (sc->unsolq_rp != sc->unsolq_wp) {
989			resp = sc->unsolq[sc->unsolq_rp++];
990			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
991			cad = sc->unsolq[sc->unsolq_rp++];
992			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
993			if ((child = sc->codecs[cad].dev) != NULL &&
994			    device_is_attached(child))
995				HDAC_UNSOL_INTR(child, resp);
996			ret++;
997		}
998		sc->unsolq_st = HDAC_UNSOLQ_READY;
999	}
1000
1001	return (ret);
1002}
1003
1004/****************************************************************************
1005 * uint32_t hdac_send_command
1006 *
1007 * Wrapper function that sends only one command to a given codec
1008 ****************************************************************************/
1009static uint32_t
1010hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
1011{
1012	int timeout;
1013	uint32_t *corb;
1014
1015	hdac_lockassert(sc);
1016	verb &= ~HDA_CMD_CAD_MASK;
1017	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1018	sc->codecs[cad].response = HDA_INVALID;
1019
1020	sc->codecs[cad].pending++;
1021	sc->corb_wp++;
1022	sc->corb_wp %= sc->corb_size;
1023	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1024	bus_dmamap_sync(sc->corb_dma.dma_tag,
1025	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1026	corb[sc->corb_wp] = htole32(verb);
1027	bus_dmamap_sync(sc->corb_dma.dma_tag,
1028	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1029	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1030
1031	timeout = 10000;
1032	do {
1033		if (hdac_rirb_flush(sc) == 0)
1034			DELAY(10);
1035	} while (sc->codecs[cad].pending != 0 && --timeout);
1036
1037	if (sc->codecs[cad].pending != 0) {
1038		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1039		    verb, cad);
1040		sc->codecs[cad].pending = 0;
1041	}
1042
1043	if (sc->unsolq_rp != sc->unsolq_wp)
1044		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1045	return (sc->codecs[cad].response);
1046}
1047
1048/****************************************************************************
1049 * Device Methods
1050 ****************************************************************************/
1051
1052/****************************************************************************
1053 * int hdac_probe(device_t)
1054 *
1055 * Probe for the presence of an hdac. If none is found, check for a generic
1056 * match using the subclass of the device.
1057 ****************************************************************************/
1058static int
1059hdac_probe(device_t dev)
1060{
1061	int i, result;
1062	uint32_t model;
1063	uint16_t class, subclass;
1064	char desc[64];
1065
1066	model = (uint32_t)pci_get_device(dev) << 16;
1067	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1068	class = pci_get_class(dev);
1069	subclass = pci_get_subclass(dev);
1070
1071	bzero(desc, sizeof(desc));
1072	result = ENXIO;
1073	for (i = 0; i < nitems(hdac_devices); i++) {
1074		if (hdac_devices[i].model == model) {
1075			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1076			result = BUS_PROBE_DEFAULT;
1077			break;
1078		}
1079		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1080		    class == PCIC_MULTIMEDIA &&
1081		    subclass == PCIS_MULTIMEDIA_HDA) {
1082			snprintf(desc, sizeof(desc), "%s (0x%04x)",
1083			    hdac_devices[i].desc, pci_get_device(dev));
1084			result = BUS_PROBE_GENERIC;
1085			break;
1086		}
1087	}
1088	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1089	    subclass == PCIS_MULTIMEDIA_HDA) {
1090		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1091		result = BUS_PROBE_GENERIC;
1092	}
1093	if (result != ENXIO) {
1094		strlcat(desc, " HDA Controller", sizeof(desc));
1095		device_set_desc_copy(dev, desc);
1096	}
1097
1098	return (result);
1099}
1100
1101static void
1102hdac_unsolq_task(void *context, int pending)
1103{
1104	struct hdac_softc *sc;
1105
1106	sc = (struct hdac_softc *)context;
1107
1108	hdac_lock(sc);
1109	hdac_unsolq_flush(sc);
1110	hdac_unlock(sc);
1111}
1112
1113/****************************************************************************
1114 * int hdac_attach(device_t)
1115 *
1116 * Attach the device into the kernel. Interrupts usually won't be enabled
1117 * when this function is called. Setup everything that doesn't require
1118 * interrupts and defer probing of codecs until interrupts are enabled.
1119 ****************************************************************************/
1120static int
1121hdac_attach(device_t dev)
1122{
1123	struct hdac_softc *sc;
1124	int result;
1125	int i, devid = -1;
1126	uint32_t model;
1127	uint16_t class, subclass;
1128	uint16_t vendor;
1129	uint8_t v;
1130
1131	sc = device_get_softc(dev);
1132	HDA_BOOTVERBOSE(
1133		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1134		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1135		device_printf(dev, "HDA Driver Revision: %s\n",
1136		    HDA_DRV_TEST_REV);
1137	);
1138
1139	model = (uint32_t)pci_get_device(dev) << 16;
1140	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1141	class = pci_get_class(dev);
1142	subclass = pci_get_subclass(dev);
1143
1144	for (i = 0; i < nitems(hdac_devices); i++) {
1145		if (hdac_devices[i].model == model) {
1146			devid = i;
1147			break;
1148		}
1149		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1150		    class == PCIC_MULTIMEDIA &&
1151		    subclass == PCIS_MULTIMEDIA_HDA) {
1152			devid = i;
1153			break;
1154		}
1155	}
1156
1157	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1158	sc->dev = dev;
1159	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1160	callout_init(&sc->poll_callout, 1);
1161	for (i = 0; i < HDAC_CODEC_MAX; i++)
1162		sc->codecs[i].dev = NULL;
1163	if (devid >= 0) {
1164		sc->quirks_on = hdac_devices[devid].quirks_on;
1165		sc->quirks_off = hdac_devices[devid].quirks_off;
1166	} else {
1167		sc->quirks_on = 0;
1168		sc->quirks_off = 0;
1169	}
1170	if (resource_int_value(device_get_name(dev),
1171	    device_get_unit(dev), "msi", &i) == 0) {
1172		if (i == 0)
1173			sc->quirks_off |= HDAC_QUIRK_MSI;
1174		else {
1175			sc->quirks_on |= HDAC_QUIRK_MSI;
1176			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1177		}
1178	}
1179	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1180	HDA_BOOTVERBOSE(
1181		device_printf(sc->dev,
1182		    "Config options: on=0x%08x off=0x%08x\n",
1183		    sc->quirks_on, sc->quirks_off);
1184	);
1185	sc->poll_ival = hz;
1186	if (resource_int_value(device_get_name(dev),
1187	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1188		sc->polling = 1;
1189	else
1190		sc->polling = 0;
1191
1192	pci_enable_busmaster(dev);
1193
1194	vendor = pci_get_vendor(dev);
1195	if (vendor == INTEL_VENDORID) {
1196		/* TCSEL -> TC0 */
1197		v = pci_read_config(dev, 0x44, 1);
1198		pci_write_config(dev, 0x44, v & 0xf8, 1);
1199		HDA_BOOTHVERBOSE(
1200			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1201			    pci_read_config(dev, 0x44, 1));
1202		);
1203	}
1204
1205#if defined(__i386__) || defined(__amd64__)
1206	sc->flags |= HDAC_F_DMA_NOCACHE;
1207
1208	if (resource_int_value(device_get_name(dev),
1209	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1210#else
1211	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1212#endif
1213		/*
1214		 * Try to enable PCIe snoop to avoid messing around with
1215		 * uncacheable DMA attribute. Since PCIe snoop register
1216		 * config is pretty much vendor specific, there are no
1217		 * general solutions on how to enable it, forcing us (even
1218		 * Microsoft) to enable uncacheable or write combined DMA
1219		 * by default.
1220		 *
1221		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1222		 */
1223		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1224			if (hdac_pcie_snoop[i].vendor != vendor)
1225				continue;
1226			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1227			if (hdac_pcie_snoop[i].reg == 0x00)
1228				break;
1229			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1230			if ((v & hdac_pcie_snoop[i].enable) ==
1231			    hdac_pcie_snoop[i].enable)
1232				break;
1233			v &= hdac_pcie_snoop[i].mask;
1234			v |= hdac_pcie_snoop[i].enable;
1235			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1236			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1237			if ((v & hdac_pcie_snoop[i].enable) !=
1238			    hdac_pcie_snoop[i].enable) {
1239				HDA_BOOTVERBOSE(
1240					device_printf(dev,
1241					    "WARNING: Failed to enable PCIe "
1242					    "snoop!\n");
1243				);
1244#if defined(__i386__) || defined(__amd64__)
1245				sc->flags |= HDAC_F_DMA_NOCACHE;
1246#endif
1247			}
1248			break;
1249		}
1250#if defined(__i386__) || defined(__amd64__)
1251	}
1252#endif
1253
1254	HDA_BOOTHVERBOSE(
1255		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1256		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1257		    "Uncacheable" : "PCIe snoop", vendor);
1258	);
1259
1260	/* Allocate resources */
1261	result = hdac_mem_alloc(sc);
1262	if (result != 0)
1263		goto hdac_attach_fail;
1264	result = hdac_irq_alloc(sc);
1265	if (result != 0)
1266		goto hdac_attach_fail;
1267
1268	/* Get Capabilities */
1269	result = hdac_get_capabilities(sc);
1270	if (result != 0)
1271		goto hdac_attach_fail;
1272
1273	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1274	result = hdac_dma_alloc(sc, &sc->corb_dma,
1275	    sc->corb_size * sizeof(uint32_t));
1276	if (result != 0)
1277		goto hdac_attach_fail;
1278	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1279	    sc->rirb_size * sizeof(struct hdac_rirb));
1280	if (result != 0)
1281		goto hdac_attach_fail;
1282	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1283	    M_HDAC, M_ZERO | M_WAITOK);
1284	for (i = 0; i < sc->num_ss; i++) {
1285		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1286		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1287		if (result != 0)
1288			goto hdac_attach_fail;
1289	}
1290	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1291		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1292			HDA_BOOTVERBOSE(
1293				device_printf(dev, "Failed to "
1294				    "allocate DMA pos buffer "
1295				    "(non-fatal)\n");
1296			);
1297		} else {
1298			uint64_t addr = sc->pos_dma.dma_paddr;
1299
1300			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1301			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1302			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1303			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1304		}
1305	}
1306
1307	result = bus_dma_tag_create(
1308	    bus_get_dma_tag(sc->dev),		/* parent */
1309	    HDA_DMA_ALIGNMENT,			/* alignment */
1310	    0,					/* boundary */
1311	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1312		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1313	    BUS_SPACE_MAXADDR,			/* highaddr */
1314	    NULL,				/* filtfunc */
1315	    NULL,				/* fistfuncarg */
1316	    HDA_BUFSZ_MAX, 			/* maxsize */
1317	    1,					/* nsegments */
1318	    HDA_BUFSZ_MAX, 			/* maxsegsz */
1319	    0,					/* flags */
1320	    NULL,				/* lockfunc */
1321	    NULL,				/* lockfuncarg */
1322	    &sc->chan_dmat);			/* dmat */
1323	if (result != 0) {
1324		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1325		     __func__, result);
1326		goto hdac_attach_fail;
1327	}
1328
1329	/* Quiesce everything */
1330	HDA_BOOTHVERBOSE(
1331		device_printf(dev, "Reset controller...\n");
1332	);
1333	hdac_reset(sc, true);
1334
1335	/* Initialize the CORB and RIRB */
1336	hdac_corb_init(sc);
1337	hdac_rirb_init(sc);
1338
1339	/* Defer remaining of initialization until interrupts are enabled */
1340	sc->intrhook.ich_func = hdac_attach2;
1341	sc->intrhook.ich_arg = (void *)sc;
1342	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1343		sc->intrhook.ich_func = NULL;
1344		hdac_attach2((void *)sc);
1345	}
1346
1347	return (0);
1348
1349hdac_attach_fail:
1350	hdac_irq_free(sc);
1351	if (sc->streams != NULL)
1352		for (i = 0; i < sc->num_ss; i++)
1353			hdac_dma_free(sc, &sc->streams[i].bdl);
1354	free(sc->streams, M_HDAC);
1355	hdac_dma_free(sc, &sc->rirb_dma);
1356	hdac_dma_free(sc, &sc->corb_dma);
1357	hdac_mem_free(sc);
1358	snd_mtxfree(sc->lock);
1359
1360	return (ENXIO);
1361}
1362
1363static int
1364sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1365{
1366	struct hdac_softc *sc;
1367	device_t *devlist;
1368	device_t dev;
1369	int devcount, i, err, val;
1370
1371	dev = oidp->oid_arg1;
1372	sc = device_get_softc(dev);
1373	if (sc == NULL)
1374		return (EINVAL);
1375	val = 0;
1376	err = sysctl_handle_int(oidp, &val, 0, req);
1377	if (err != 0 || req->newptr == NULL || val == 0)
1378		return (err);
1379
1380	/* XXX: Temporary. For debugging. */
1381	if (val == 100) {
1382		hdac_suspend(dev);
1383		return (0);
1384	} else if (val == 101) {
1385		hdac_resume(dev);
1386		return (0);
1387	}
1388
1389	if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1390		return (err);
1391	hdac_lock(sc);
1392	for (i = 0; i < devcount; i++)
1393		HDAC_PINDUMP(devlist[i]);
1394	hdac_unlock(sc);
1395	free(devlist, M_TEMP);
1396	return (0);
1397}
1398
1399static int
1400hdac_mdata_rate(uint16_t fmt)
1401{
1402	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1403	int rate, bits;
1404
1405	if (fmt & (1 << 14))
1406		rate = 44100;
1407	else
1408		rate = 48000;
1409	rate *= ((fmt >> 11) & 0x07) + 1;
1410	rate /= ((fmt >> 8) & 0x07) + 1;
1411	bits = mbits[(fmt >> 4) & 0x03];
1412	bits *= (fmt & 0x0f) + 1;
1413	return (rate * bits);
1414}
1415
1416static int
1417hdac_bdata_rate(uint16_t fmt, int output)
1418{
1419	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1420	int rate, bits;
1421
1422	rate = 48000;
1423	rate *= ((fmt >> 11) & 0x07) + 1;
1424	bits = bbits[(fmt >> 4) & 0x03];
1425	bits *= (fmt & 0x0f) + 1;
1426	if (!output)
1427		bits = ((bits + 7) & ~0x07) + 10;
1428	return (rate * bits);
1429}
1430
1431static void
1432hdac_poll_reinit(struct hdac_softc *sc)
1433{
1434	int i, pollticks, min = 1000000;
1435	struct hdac_stream *s;
1436
1437	if (sc->polling == 0)
1438		return;
1439	if (sc->unsol_registered > 0)
1440		min = hz / 2;
1441	for (i = 0; i < sc->num_ss; i++) {
1442		s = &sc->streams[i];
1443		if (s->running == 0)
1444			continue;
1445		pollticks = ((uint64_t)hz * s->blksz) /
1446		    (hdac_mdata_rate(s->format) / 8);
1447		pollticks >>= 1;
1448		if (pollticks > hz)
1449			pollticks = hz;
1450		if (pollticks < 1)
1451			pollticks = 1;
1452		if (min > pollticks)
1453			min = pollticks;
1454	}
1455	sc->poll_ival = min;
1456	if (min == 1000000)
1457		callout_stop(&sc->poll_callout);
1458	else
1459		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1460}
1461
1462static int
1463sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1464{
1465	struct hdac_softc *sc;
1466	device_t dev;
1467	uint32_t ctl;
1468	int err, val;
1469
1470	dev = oidp->oid_arg1;
1471	sc = device_get_softc(dev);
1472	if (sc == NULL)
1473		return (EINVAL);
1474	hdac_lock(sc);
1475	val = sc->polling;
1476	hdac_unlock(sc);
1477	err = sysctl_handle_int(oidp, &val, 0, req);
1478
1479	if (err != 0 || req->newptr == NULL)
1480		return (err);
1481	if (val < 0 || val > 1)
1482		return (EINVAL);
1483
1484	hdac_lock(sc);
1485	if (val != sc->polling) {
1486		if (val == 0) {
1487			callout_stop(&sc->poll_callout);
1488			hdac_unlock(sc);
1489			callout_drain(&sc->poll_callout);
1490			hdac_lock(sc);
1491			sc->polling = 0;
1492			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1493			ctl |= HDAC_INTCTL_GIE;
1494			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1495		} else {
1496			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1497			ctl &= ~HDAC_INTCTL_GIE;
1498			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1499			sc->polling = 1;
1500			hdac_poll_reinit(sc);
1501		}
1502	}
1503	hdac_unlock(sc);
1504
1505	return (err);
1506}
1507
1508static void
1509hdac_attach2(void *arg)
1510{
1511	struct hdac_softc *sc;
1512	device_t child;
1513	uint32_t vendorid, revisionid;
1514	int i;
1515	uint16_t statests;
1516
1517	sc = (struct hdac_softc *)arg;
1518
1519	hdac_lock(sc);
1520
1521	/* Remove ourselves from the config hooks */
1522	if (sc->intrhook.ich_func != NULL) {
1523		config_intrhook_disestablish(&sc->intrhook);
1524		sc->intrhook.ich_func = NULL;
1525	}
1526
1527	HDA_BOOTHVERBOSE(
1528		device_printf(sc->dev, "Starting CORB Engine...\n");
1529	);
1530	hdac_corb_start(sc);
1531	HDA_BOOTHVERBOSE(
1532		device_printf(sc->dev, "Starting RIRB Engine...\n");
1533	);
1534	hdac_rirb_start(sc);
1535
1536	/*
1537	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1538	 * (status change) interrupts.  The documentation says that we
1539	 * should not make any assumptions about the state of this register
1540	 * and set it explicitly.
1541	 * NB: this needs to be done before the interrupt is enabled as
1542	 * the handler does not expect this interrupt source.
1543	 */
1544	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1545
1546	/*
1547	 * Read and clear post-reset SDI wake status.
1548	 * Each set bit corresponds to a codec that came out of reset.
1549	 */
1550	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1551	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
1552
1553	HDA_BOOTHVERBOSE(
1554		device_printf(sc->dev,
1555		    "Enabling controller interrupt...\n");
1556	);
1557	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1558	    HDAC_GCTL_UNSOL);
1559	if (sc->polling == 0) {
1560		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1561		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1562	}
1563	DELAY(1000);
1564
1565	HDA_BOOTHVERBOSE(
1566		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1567	);
1568	hdac_unlock(sc);
1569	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1570		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1571			HDA_BOOTHVERBOSE(
1572				device_printf(sc->dev,
1573				    "Found CODEC at address %d\n", i);
1574			);
1575			hdac_lock(sc);
1576			vendorid = hdac_send_command(sc, i,
1577			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1578			revisionid = hdac_send_command(sc, i,
1579			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1580			hdac_unlock(sc);
1581			if (vendorid == HDA_INVALID &&
1582			    revisionid == HDA_INVALID) {
1583				device_printf(sc->dev,
1584				    "CODEC at address %d not responding!\n", i);
1585				continue;
1586			}
1587			sc->codecs[i].vendor_id =
1588			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1589			sc->codecs[i].device_id =
1590			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1591			sc->codecs[i].revision_id =
1592			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1593			sc->codecs[i].stepping_id =
1594			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1595			child = device_add_child(sc->dev, "hdacc", -1);
1596			if (child == NULL) {
1597				device_printf(sc->dev,
1598				    "Failed to add CODEC device\n");
1599				continue;
1600			}
1601			device_set_ivars(child, (void *)(intptr_t)i);
1602			sc->codecs[i].dev = child;
1603		}
1604	}
1605	bus_generic_attach(sc->dev);
1606
1607	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1608	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1609	    "pindump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
1610	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1611	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1612	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1613	    "polling", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
1614	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1615}
1616
1617/****************************************************************************
1618 * int hdac_suspend(device_t)
1619 *
1620 * Suspend and power down HDA bus and codecs.
1621 ****************************************************************************/
1622static int
1623hdac_suspend(device_t dev)
1624{
1625	struct hdac_softc *sc = device_get_softc(dev);
1626
1627	HDA_BOOTHVERBOSE(
1628		device_printf(dev, "Suspend...\n");
1629	);
1630	bus_generic_suspend(dev);
1631
1632	hdac_lock(sc);
1633	HDA_BOOTHVERBOSE(
1634		device_printf(dev, "Reset controller...\n");
1635	);
1636	callout_stop(&sc->poll_callout);
1637	hdac_reset(sc, false);
1638	hdac_unlock(sc);
1639	callout_drain(&sc->poll_callout);
1640	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1641	HDA_BOOTHVERBOSE(
1642		device_printf(dev, "Suspend done\n");
1643	);
1644	return (0);
1645}
1646
1647/****************************************************************************
1648 * int hdac_resume(device_t)
1649 *
1650 * Powerup and restore HDA bus and codecs state.
1651 ****************************************************************************/
1652static int
1653hdac_resume(device_t dev)
1654{
1655	struct hdac_softc *sc = device_get_softc(dev);
1656	int error;
1657
1658	HDA_BOOTHVERBOSE(
1659		device_printf(dev, "Resume...\n");
1660	);
1661	hdac_lock(sc);
1662
1663	/* Quiesce everything */
1664	HDA_BOOTHVERBOSE(
1665		device_printf(dev, "Reset controller...\n");
1666	);
1667	hdac_reset(sc, true);
1668
1669	/* Initialize the CORB and RIRB */
1670	hdac_corb_init(sc);
1671	hdac_rirb_init(sc);
1672
1673	HDA_BOOTHVERBOSE(
1674		device_printf(dev, "Starting CORB Engine...\n");
1675	);
1676	hdac_corb_start(sc);
1677	HDA_BOOTHVERBOSE(
1678		device_printf(dev, "Starting RIRB Engine...\n");
1679	);
1680	hdac_rirb_start(sc);
1681
1682	/*
1683	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1684	 * (status change) events.  The documentation says that we should
1685	 * not make any assumptions about the state of this register and
1686	 * set it explicitly.
1687	 * Also, clear HDAC_STATESTS.
1688	 * NB: this needs to be done before the interrupt is enabled as
1689	 * the handler does not expect this interrupt source.
1690	 */
1691	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1692	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
1693
1694	HDA_BOOTHVERBOSE(
1695		device_printf(dev, "Enabling controller interrupt...\n");
1696	);
1697	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1698	    HDAC_GCTL_UNSOL);
1699	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1700	DELAY(1000);
1701	hdac_poll_reinit(sc);
1702	hdac_unlock(sc);
1703
1704	error = bus_generic_resume(dev);
1705	HDA_BOOTHVERBOSE(
1706		device_printf(dev, "Resume done\n");
1707	);
1708	return (error);
1709}
1710
1711/****************************************************************************
1712 * int hdac_detach(device_t)
1713 *
1714 * Detach and free up resources utilized by the hdac device.
1715 ****************************************************************************/
1716static int
1717hdac_detach(device_t dev)
1718{
1719	struct hdac_softc *sc = device_get_softc(dev);
1720	device_t *devlist;
1721	int cad, i, devcount, error;
1722
1723	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1724		return (error);
1725	for (i = 0; i < devcount; i++) {
1726		cad = (intptr_t)device_get_ivars(devlist[i]);
1727		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1728			free(devlist, M_TEMP);
1729			return (error);
1730		}
1731		sc->codecs[cad].dev = NULL;
1732	}
1733	free(devlist, M_TEMP);
1734
1735	hdac_lock(sc);
1736	hdac_reset(sc, false);
1737	hdac_unlock(sc);
1738	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1739	hdac_irq_free(sc);
1740
1741	for (i = 0; i < sc->num_ss; i++)
1742		hdac_dma_free(sc, &sc->streams[i].bdl);
1743	free(sc->streams, M_HDAC);
1744	hdac_dma_free(sc, &sc->pos_dma);
1745	hdac_dma_free(sc, &sc->rirb_dma);
1746	hdac_dma_free(sc, &sc->corb_dma);
1747	if (sc->chan_dmat != NULL) {
1748		bus_dma_tag_destroy(sc->chan_dmat);
1749		sc->chan_dmat = NULL;
1750	}
1751	hdac_mem_free(sc);
1752	snd_mtxfree(sc->lock);
1753	return (0);
1754}
1755
1756static bus_dma_tag_t
1757hdac_get_dma_tag(device_t dev, device_t child)
1758{
1759	struct hdac_softc *sc = device_get_softc(dev);
1760
1761	return (sc->chan_dmat);
1762}
1763
1764static int
1765hdac_print_child(device_t dev, device_t child)
1766{
1767	int retval;
1768
1769	retval = bus_print_child_header(dev, child);
1770	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1771	retval += bus_print_child_footer(dev, child);
1772
1773	return (retval);
1774}
1775
1776static int
1777hdac_child_location_str(device_t dev, device_t child, char *buf, size_t buflen)
1778{
1779
1780	snprintf(buf, buflen, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1781	return (0);
1782}
1783
1784static int
1785hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1786    size_t buflen)
1787{
1788	struct hdac_softc *sc = device_get_softc(dev);
1789	nid_t cad = (uintptr_t)device_get_ivars(child);
1790
1791	snprintf(buf, buflen,
1792	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1793	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1794	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1795	return (0);
1796}
1797
1798static int
1799hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1800{
1801	struct hdac_softc *sc = device_get_softc(dev);
1802	nid_t cad = (uintptr_t)device_get_ivars(child);
1803
1804	switch (which) {
1805	case HDA_IVAR_CODEC_ID:
1806		*result = cad;
1807		break;
1808	case HDA_IVAR_VENDOR_ID:
1809		*result = sc->codecs[cad].vendor_id;
1810		break;
1811	case HDA_IVAR_DEVICE_ID:
1812		*result = sc->codecs[cad].device_id;
1813		break;
1814	case HDA_IVAR_REVISION_ID:
1815		*result = sc->codecs[cad].revision_id;
1816		break;
1817	case HDA_IVAR_STEPPING_ID:
1818		*result = sc->codecs[cad].stepping_id;
1819		break;
1820	case HDA_IVAR_SUBVENDOR_ID:
1821		*result = pci_get_subvendor(dev);
1822		break;
1823	case HDA_IVAR_SUBDEVICE_ID:
1824		*result = pci_get_subdevice(dev);
1825		break;
1826	case HDA_IVAR_DMA_NOCACHE:
1827		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1828		break;
1829	case HDA_IVAR_STRIPES_MASK:
1830		*result = (1 << (1 << sc->num_sdo)) - 1;
1831		break;
1832	default:
1833		return (ENOENT);
1834	}
1835	return (0);
1836}
1837
1838static struct mtx *
1839hdac_get_mtx(device_t dev, device_t child)
1840{
1841	struct hdac_softc *sc = device_get_softc(dev);
1842
1843	return (sc->lock);
1844}
1845
1846static uint32_t
1847hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1848{
1849
1850	return (hdac_send_command(device_get_softc(dev),
1851	    (intptr_t)device_get_ivars(child), verb));
1852}
1853
1854static int
1855hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1856{
1857	int i, ss;
1858
1859	ss = -1;
1860	/* Allocate ISS/OSS first. */
1861	if (dir == 0) {
1862		for (i = 0; i < sc->num_iss; i++) {
1863			if (sc->streams[i].stream == stream) {
1864				ss = i;
1865				break;
1866			}
1867		}
1868	} else {
1869		for (i = 0; i < sc->num_oss; i++) {
1870			if (sc->streams[i + sc->num_iss].stream == stream) {
1871				ss = i + sc->num_iss;
1872				break;
1873			}
1874		}
1875	}
1876	/* Fallback to BSS. */
1877	if (ss == -1) {
1878		for (i = 0; i < sc->num_bss; i++) {
1879			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1880			    == stream) {
1881				ss = i + sc->num_iss + sc->num_oss;
1882				break;
1883			}
1884		}
1885	}
1886	return (ss);
1887}
1888
1889static int
1890hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1891    uint32_t **dmapos)
1892{
1893	struct hdac_softc *sc = device_get_softc(dev);
1894	nid_t cad = (uintptr_t)device_get_ivars(child);
1895	int stream, ss, bw, maxbw, prevbw;
1896
1897	/* Look for empty stream. */
1898	ss = hdac_find_stream(sc, dir, 0);
1899
1900	/* Return if found nothing. */
1901	if (ss < 0)
1902		return (0);
1903
1904	/* Check bus bandwidth. */
1905	bw = hdac_bdata_rate(format, dir);
1906	if (dir == 1) {
1907		bw *= 1 << (sc->num_sdo - stripe);
1908		prevbw = sc->sdo_bw_used;
1909		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1910	} else {
1911		prevbw = sc->codecs[cad].sdi_bw_used;
1912		maxbw = 48000 * 464;
1913	}
1914	HDA_BOOTHVERBOSE(
1915		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1916		    (bw + prevbw) / 1000, maxbw / 1000,
1917		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1918	);
1919	if (bw + prevbw > maxbw)
1920		return (0);
1921	if (dir == 1)
1922		sc->sdo_bw_used += bw;
1923	else
1924		sc->codecs[cad].sdi_bw_used += bw;
1925
1926	/* Allocate stream number */
1927	if (ss >= sc->num_iss + sc->num_oss)
1928		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1929	else if (ss >= sc->num_iss)
1930		stream = ss - sc->num_iss + 1;
1931	else
1932		stream = ss + 1;
1933
1934	sc->streams[ss].dev = child;
1935	sc->streams[ss].dir = dir;
1936	sc->streams[ss].stream = stream;
1937	sc->streams[ss].bw = bw;
1938	sc->streams[ss].format = format;
1939	sc->streams[ss].stripe = stripe;
1940	if (dmapos != NULL) {
1941		if (sc->pos_dma.dma_vaddr != NULL)
1942			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1943		else
1944			*dmapos = NULL;
1945	}
1946	return (stream);
1947}
1948
1949static void
1950hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1951{
1952	struct hdac_softc *sc = device_get_softc(dev);
1953	nid_t cad = (uintptr_t)device_get_ivars(child);
1954	int ss;
1955
1956	ss = hdac_find_stream(sc, dir, stream);
1957	KASSERT(ss >= 0,
1958	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1959	if (dir == 1)
1960		sc->sdo_bw_used -= sc->streams[ss].bw;
1961	else
1962		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1963	sc->streams[ss].stream = 0;
1964	sc->streams[ss].dev = NULL;
1965}
1966
1967static int
1968hdac_stream_start(device_t dev, device_t child, int dir, int stream,
1969    bus_addr_t buf, int blksz, int blkcnt)
1970{
1971	struct hdac_softc *sc = device_get_softc(dev);
1972	struct hdac_bdle *bdle;
1973	uint64_t addr;
1974	int i, ss, off;
1975	uint32_t ctl;
1976
1977	ss = hdac_find_stream(sc, dir, stream);
1978	KASSERT(ss >= 0,
1979	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
1980
1981	addr = (uint64_t)buf;
1982	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1983	for (i = 0; i < blkcnt; i++, bdle++) {
1984		bdle->addrl = htole32((uint32_t)addr);
1985		bdle->addrh = htole32((uint32_t)(addr >> 32));
1986		bdle->len = htole32(blksz);
1987		bdle->ioc = htole32(1);
1988		addr += blksz;
1989	}
1990
1991	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1992	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
1993
1994	off = ss << 5;
1995	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1996	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1997	addr = sc->streams[ss].bdl.dma_paddr;
1998	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
1999	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
2000
2001	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
2002	if (dir)
2003		ctl |= HDAC_SDCTL2_DIR;
2004	else
2005		ctl &= ~HDAC_SDCTL2_DIR;
2006	ctl &= ~HDAC_SDCTL2_STRM_MASK;
2007	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
2008	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
2009	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
2010	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
2011
2012	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
2013
2014	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2015	ctl |= 1 << ss;
2016	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2017
2018	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
2019	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
2020	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2021	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2022	    HDAC_SDCTL_RUN;
2023	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2024
2025	sc->streams[ss].blksz = blksz;
2026	sc->streams[ss].running = 1;
2027	hdac_poll_reinit(sc);
2028	return (0);
2029}
2030
2031static void
2032hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
2033{
2034	struct hdac_softc *sc = device_get_softc(dev);
2035	int ss, off;
2036	uint32_t ctl;
2037
2038	ss = hdac_find_stream(sc, dir, stream);
2039	KASSERT(ss >= 0,
2040	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
2041
2042	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2043	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
2044
2045	off = ss << 5;
2046	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2047	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2048	    HDAC_SDCTL_RUN);
2049	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2050
2051	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2052	ctl &= ~(1 << ss);
2053	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2054
2055	sc->streams[ss].running = 0;
2056	hdac_poll_reinit(sc);
2057}
2058
2059static void
2060hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2061{
2062	struct hdac_softc *sc = device_get_softc(dev);
2063	int timeout = 1000;
2064	int to = timeout;
2065	int ss, off;
2066	uint32_t ctl;
2067
2068	ss = hdac_find_stream(sc, dir, stream);
2069	KASSERT(ss >= 0,
2070	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2071
2072	off = ss << 5;
2073	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2074	ctl |= HDAC_SDCTL_SRST;
2075	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2076	do {
2077		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2078		if (ctl & HDAC_SDCTL_SRST)
2079			break;
2080		DELAY(10);
2081	} while (--to);
2082	if (!(ctl & HDAC_SDCTL_SRST))
2083		device_printf(dev, "Reset setting timeout\n");
2084	ctl &= ~HDAC_SDCTL_SRST;
2085	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2086	to = timeout;
2087	do {
2088		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2089		if (!(ctl & HDAC_SDCTL_SRST))
2090			break;
2091		DELAY(10);
2092	} while (--to);
2093	if (ctl & HDAC_SDCTL_SRST)
2094		device_printf(dev, "Reset timeout!\n");
2095}
2096
2097static uint32_t
2098hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2099{
2100	struct hdac_softc *sc = device_get_softc(dev);
2101	int ss, off;
2102
2103	ss = hdac_find_stream(sc, dir, stream);
2104	KASSERT(ss >= 0,
2105	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2106
2107	off = ss << 5;
2108	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2109}
2110
2111static int
2112hdac_unsol_alloc(device_t dev, device_t child, int tag)
2113{
2114	struct hdac_softc *sc = device_get_softc(dev);
2115
2116	sc->unsol_registered++;
2117	hdac_poll_reinit(sc);
2118	return (tag);
2119}
2120
2121static void
2122hdac_unsol_free(device_t dev, device_t child, int tag)
2123{
2124	struct hdac_softc *sc = device_get_softc(dev);
2125
2126	sc->unsol_registered--;
2127	hdac_poll_reinit(sc);
2128}
2129
2130static device_method_t hdac_methods[] = {
2131	/* device interface */
2132	DEVMETHOD(device_probe,		hdac_probe),
2133	DEVMETHOD(device_attach,	hdac_attach),
2134	DEVMETHOD(device_detach,	hdac_detach),
2135	DEVMETHOD(device_suspend,	hdac_suspend),
2136	DEVMETHOD(device_resume,	hdac_resume),
2137	/* Bus interface */
2138	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2139	DEVMETHOD(bus_print_child,	hdac_print_child),
2140	DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2141	DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2142	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2143	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2144	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2145	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2146	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2147	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2148	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2149	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2150	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2151	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2152	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2153	DEVMETHOD_END
2154};
2155
2156static driver_t hdac_driver = {
2157	"hdac",
2158	hdac_methods,
2159	sizeof(struct hdac_softc),
2160};
2161
2162static devclass_t hdac_devclass;
2163
2164DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);
2165