1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *   1. Redistributions of source code must retain the above copyright
10 *      notice, this list of conditions and the following disclaimer.
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* $FreeBSD$ */
29#include "opt_inet.h"
30#include "opt_inet6.h"
31
32#include <sys/param.h>
33#include <sys/module.h>
34#include <sys/errno.h>
35#include <sys/eventhandler.h>
36#include <sys/jail.h>
37#include <sys/poll.h>  /* POLLIN, POLLOUT */
38#include <sys/kernel.h> /* types used in module initialization */
39#include <sys/conf.h>	/* DEV_MODULE_ORDERED */
40#include <sys/endian.h>
41#include <sys/syscallsubr.h> /* kern_ioctl() */
42
43#include <sys/rwlock.h>
44
45#include <vm/vm.h>      /* vtophys */
46#include <vm/pmap.h>    /* vtophys */
47#include <vm/vm_param.h>
48#include <vm/vm_object.h>
49#include <vm/vm_page.h>
50#include <vm/vm_pager.h>
51#include <vm/uma.h>
52
53
54#include <sys/malloc.h>
55#include <sys/socket.h> /* sockaddrs */
56#include <sys/selinfo.h>
57#include <sys/kthread.h> /* kthread_add() */
58#include <sys/proc.h> /* PROC_LOCK() */
59#include <sys/unistd.h> /* RFNOWAIT */
60#include <sys/sched.h> /* sched_bind() */
61#include <sys/smp.h> /* mp_maxid */
62#include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
63#include <net/if.h>
64#include <net/if_var.h>
65#include <net/if_types.h> /* IFT_ETHER */
66#include <net/ethernet.h> /* ether_ifdetach */
67#include <net/if_dl.h> /* LLADDR */
68#include <machine/bus.h>        /* bus_dmamap_* */
69#include <netinet/in.h>		/* in6_cksum_pseudo() */
70#include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
71
72#include <net/netmap.h>
73#include <dev/netmap/netmap_kern.h>
74#include <net/netmap_virt.h>
75#include <dev/netmap/netmap_mem2.h>
76
77
78/* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
79
80static void
81nm_kqueue_notify(void *opaque, int pending)
82{
83	struct nm_selinfo *si = opaque;
84
85	/* We use a non-zero hint to distinguish this notification call
86	 * from the call done in kqueue_scan(), which uses hint=0.
87	 */
88	KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
89}
90
91int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
92	int err;
93
94	TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
95	si->ntfytq = taskqueue_create(name, M_NOWAIT,
96	    taskqueue_thread_enqueue, &si->ntfytq);
97	if (si->ntfytq == NULL)
98		return -ENOMEM;
99	err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
100	if (err) {
101		taskqueue_free(si->ntfytq);
102		si->ntfytq = NULL;
103		return err;
104	}
105
106	snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
107	mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
108	knlist_init_mtx(&si->si.si_note, &si->m);
109	si->kqueue_users = 0;
110
111	return (0);
112}
113
114void
115nm_os_selinfo_uninit(NM_SELINFO_T *si)
116{
117	if (si->ntfytq == NULL) {
118		return;	/* si was not initialized */
119	}
120	taskqueue_drain(si->ntfytq, &si->ntfytask);
121	taskqueue_free(si->ntfytq);
122	si->ntfytq = NULL;
123	knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
124	knlist_destroy(&si->si.si_note);
125	/* now we don't need the mutex anymore */
126	mtx_destroy(&si->m);
127}
128
129void *
130nm_os_malloc(size_t size)
131{
132	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
133}
134
135void *
136nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
137{
138	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
139}
140
141void
142nm_os_free(void *addr)
143{
144	free(addr, M_DEVBUF);
145}
146
147void
148nm_os_ifnet_lock(void)
149{
150	IFNET_RLOCK();
151}
152
153void
154nm_os_ifnet_unlock(void)
155{
156	IFNET_RUNLOCK();
157}
158
159static int netmap_use_count = 0;
160
161void
162nm_os_get_module(void)
163{
164	netmap_use_count++;
165}
166
167void
168nm_os_put_module(void)
169{
170	netmap_use_count--;
171}
172
173static void
174netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
175{
176	netmap_undo_zombie(ifp);
177}
178
179static void
180netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
181{
182	netmap_make_zombie(ifp);
183}
184
185static eventhandler_tag nm_ifnet_ah_tag;
186static eventhandler_tag nm_ifnet_dh_tag;
187
188int
189nm_os_ifnet_init(void)
190{
191	nm_ifnet_ah_tag =
192		EVENTHANDLER_REGISTER(ifnet_arrival_event,
193				netmap_ifnet_arrival_handler,
194				NULL, EVENTHANDLER_PRI_ANY);
195	nm_ifnet_dh_tag =
196		EVENTHANDLER_REGISTER(ifnet_departure_event,
197				netmap_ifnet_departure_handler,
198				NULL, EVENTHANDLER_PRI_ANY);
199	return 0;
200}
201
202void
203nm_os_ifnet_fini(void)
204{
205	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
206			nm_ifnet_ah_tag);
207	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
208			nm_ifnet_dh_tag);
209}
210
211unsigned
212nm_os_ifnet_mtu(struct ifnet *ifp)
213{
214#if __FreeBSD_version < 1100030
215	return ifp->if_data.ifi_mtu;
216#else /* __FreeBSD_version >= 1100030 */
217	return ifp->if_mtu;
218#endif
219}
220
221rawsum_t
222nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
223{
224	/* TODO XXX please use the FreeBSD implementation for this. */
225	uint16_t *words = (uint16_t *)data;
226	int nw = len / 2;
227	int i;
228
229	for (i = 0; i < nw; i++)
230		cur_sum += be16toh(words[i]);
231
232	if (len & 1)
233		cur_sum += (data[len-1] << 8);
234
235	return cur_sum;
236}
237
238/* Fold a raw checksum: 'cur_sum' is in host byte order, while the
239 * return value is in network byte order.
240 */
241uint16_t
242nm_os_csum_fold(rawsum_t cur_sum)
243{
244	/* TODO XXX please use the FreeBSD implementation for this. */
245	while (cur_sum >> 16)
246		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
247
248	return htobe16((~cur_sum) & 0xFFFF);
249}
250
251uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
252{
253#if 0
254	return in_cksum_hdr((void *)iph);
255#else
256	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
257#endif
258}
259
260void
261nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
262					size_t datalen, uint16_t *check)
263{
264#ifdef INET
265	uint16_t pseudolen = datalen + iph->protocol;
266
267	/* Compute and insert the pseudo-header cheksum. */
268	*check = in_pseudo(iph->saddr, iph->daddr,
269				 htobe16(pseudolen));
270	/* Compute the checksum on TCP/UDP header + payload
271	 * (includes the pseudo-header).
272	 */
273	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
274#else
275	static int notsupported = 0;
276	if (!notsupported) {
277		notsupported = 1;
278		nm_prerr("inet4 segmentation not supported");
279	}
280#endif
281}
282
283void
284nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
285					size_t datalen, uint16_t *check)
286{
287#ifdef INET6
288	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
289	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
290#else
291	static int notsupported = 0;
292	if (!notsupported) {
293		notsupported = 1;
294		nm_prerr("inet6 segmentation not supported");
295	}
296#endif
297}
298
299/* on FreeBSD we send up one packet at a time */
300void *
301nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
302{
303	NA(ifp)->if_input(ifp, m);
304	return NULL;
305}
306
307int
308nm_os_mbuf_has_csum_offld(struct mbuf *m)
309{
310	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
311					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
312					 CSUM_SCTP_IPV6);
313}
314
315int
316nm_os_mbuf_has_seg_offld(struct mbuf *m)
317{
318	return m->m_pkthdr.csum_flags & CSUM_TSO;
319}
320
321static void
322freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
323{
324	int stolen;
325
326	if (unlikely(!NM_NA_VALID(ifp))) {
327		nm_prlim(1, "Warning: RX packet intercepted, but no"
328				" emulated adapter");
329		return;
330	}
331
332	stolen = generic_rx_handler(ifp, m);
333	if (!stolen) {
334		struct netmap_generic_adapter *gna =
335				(struct netmap_generic_adapter *)NA(ifp);
336		gna->save_if_input(ifp, m);
337	}
338}
339
340/*
341 * Intercept the rx routine in the standard device driver.
342 * Second argument is non-zero to intercept, 0 to restore
343 */
344int
345nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
346{
347	struct netmap_adapter *na = &gna->up.up;
348	struct ifnet *ifp = na->ifp;
349	int ret = 0;
350
351	nm_os_ifnet_lock();
352	if (intercept) {
353		if (gna->save_if_input) {
354			nm_prerr("RX on %s already intercepted", na->name);
355			ret = EBUSY; /* already set */
356			goto out;
357		}
358		gna->save_if_input = ifp->if_input;
359		ifp->if_input = freebsd_generic_rx_handler;
360	} else {
361		if (!gna->save_if_input) {
362			nm_prerr("Failed to undo RX intercept on %s",
363				na->name);
364			ret = EINVAL;  /* not saved */
365			goto out;
366		}
367		ifp->if_input = gna->save_if_input;
368		gna->save_if_input = NULL;
369	}
370out:
371	nm_os_ifnet_unlock();
372
373	return ret;
374}
375
376
377/*
378 * Intercept the packet steering routine in the tx path,
379 * so that we can decide which queue is used for an mbuf.
380 * Second argument is non-zero to intercept, 0 to restore.
381 * On freebsd we just intercept if_transmit.
382 */
383int
384nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
385{
386	struct netmap_adapter *na = &gna->up.up;
387	struct ifnet *ifp = netmap_generic_getifp(gna);
388
389	nm_os_ifnet_lock();
390	if (intercept) {
391		na->if_transmit = ifp->if_transmit;
392		ifp->if_transmit = netmap_transmit;
393	} else {
394		ifp->if_transmit = na->if_transmit;
395	}
396	nm_os_ifnet_unlock();
397
398	return 0;
399}
400
401
402/*
403 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
404 * and non-zero on error (which may be packet drops or other errors).
405 * addr and len identify the netmap buffer, m is the (preallocated)
406 * mbuf to use for transmissions.
407 *
408 * We should add a reference to the mbuf so the m_freem() at the end
409 * of the transmission does not consume resources.
410 *
411 * On FreeBSD, and on multiqueue cards, we can force the queue using
412 *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
413 *              i = m->m_pkthdr.flowid % adapter->num_queues;
414 *      else
415 *              i = curcpu % adapter->num_queues;
416 *
417 */
418int
419nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
420{
421	int ret;
422	u_int len = a->len;
423	struct ifnet *ifp = a->ifp;
424	struct mbuf *m = a->m;
425
426#if __FreeBSD_version < 1100000
427	/*
428	 * Old FreeBSD versions. The mbuf has a cluster attached,
429	 * we need to copy from the cluster to the netmap buffer.
430	 */
431	if (MBUF_REFCNT(m) != 1) {
432		nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
433		panic("in generic_xmit_frame");
434	}
435	if (m->m_ext.ext_size < len) {
436		nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
437		len = m->m_ext.ext_size;
438	}
439	bcopy(a->addr, m->m_data, len);
440#else  /* __FreeBSD_version >= 1100000 */
441	/* New FreeBSD versions. Link the external storage to
442	 * the netmap buffer, so that no copy is necessary. */
443	m->m_ext.ext_buf = m->m_data = a->addr;
444	m->m_ext.ext_size = len;
445#endif /* __FreeBSD_version >= 1100000 */
446
447	m->m_flags |= M_PKTHDR;
448	m->m_len = m->m_pkthdr.len = len;
449
450	/* mbuf refcnt is not contended, no need to use atomic
451	 * (a memory barrier is enough). */
452	SET_MBUF_REFCNT(m, 2);
453	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
454	m->m_pkthdr.flowid = a->ring_nr;
455	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
456	CURVNET_SET(ifp->if_vnet);
457	ret = NA(ifp)->if_transmit(ifp, m);
458	CURVNET_RESTORE();
459	return ret ? -1 : 0;
460}
461
462
463#if __FreeBSD_version >= 1100005
464struct netmap_adapter *
465netmap_getna(if_t ifp)
466{
467	return (NA((struct ifnet *)ifp));
468}
469#endif /* __FreeBSD_version >= 1100005 */
470
471/*
472 * The following two functions are empty until we have a generic
473 * way to extract the info from the ifp
474 */
475int
476nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
477{
478	return 0;
479}
480
481
482void
483nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
484{
485	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
486
487	*txq = num_rings;
488	*rxq = num_rings;
489}
490
491void
492nm_os_generic_set_features(struct netmap_generic_adapter *gna)
493{
494
495	gna->rxsg = 1; /* Supported through m_copydata. */
496	gna->txqdisc = 0; /* Not supported. */
497}
498
499void
500nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
501{
502	mit->mit_pending = 0;
503	mit->mit_ring_idx = idx;
504	mit->mit_na = na;
505}
506
507
508void
509nm_os_mitigation_start(struct nm_generic_mit *mit)
510{
511}
512
513
514void
515nm_os_mitigation_restart(struct nm_generic_mit *mit)
516{
517}
518
519
520int
521nm_os_mitigation_active(struct nm_generic_mit *mit)
522{
523
524	return 0;
525}
526
527
528void
529nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
530{
531}
532
533static int
534nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
535{
536
537	return EINVAL;
538}
539
540static void
541nm_vi_start(struct ifnet *ifp)
542{
543	panic("nm_vi_start() must not be called");
544}
545
546/*
547 * Index manager of persistent virtual interfaces.
548 * It is used to decide the lowest byte of the MAC address.
549 * We use the same algorithm with management of bridge port index.
550 */
551#define NM_VI_MAX	255
552static struct {
553	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
554	uint8_t active;
555	struct mtx lock;
556} nm_vi_indices;
557
558void
559nm_os_vi_init_index(void)
560{
561	int i;
562	for (i = 0; i < NM_VI_MAX; i++)
563		nm_vi_indices.index[i] = i;
564	nm_vi_indices.active = 0;
565	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
566}
567
568/* return -1 if no index available */
569static int
570nm_vi_get_index(void)
571{
572	int ret;
573
574	mtx_lock(&nm_vi_indices.lock);
575	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
576		nm_vi_indices.index[nm_vi_indices.active++];
577	mtx_unlock(&nm_vi_indices.lock);
578	return ret;
579}
580
581static void
582nm_vi_free_index(uint8_t val)
583{
584	int i, lim;
585
586	mtx_lock(&nm_vi_indices.lock);
587	lim = nm_vi_indices.active;
588	for (i = 0; i < lim; i++) {
589		if (nm_vi_indices.index[i] == val) {
590			/* swap index[lim-1] and j */
591			int tmp = nm_vi_indices.index[lim-1];
592			nm_vi_indices.index[lim-1] = val;
593			nm_vi_indices.index[i] = tmp;
594			nm_vi_indices.active--;
595			break;
596		}
597	}
598	if (lim == nm_vi_indices.active)
599		nm_prerr("Index %u not found", val);
600	mtx_unlock(&nm_vi_indices.lock);
601}
602#undef NM_VI_MAX
603
604/*
605 * Implementation of a netmap-capable virtual interface that
606 * registered to the system.
607 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
608 *
609 * Note: Linux sets refcount to 0 on allocation of net_device,
610 * then increments it on registration to the system.
611 * FreeBSD sets refcount to 1 on if_alloc(), and does not
612 * increment this refcount on if_attach().
613 */
614int
615nm_os_vi_persist(const char *name, struct ifnet **ret)
616{
617	struct ifnet *ifp;
618	u_short macaddr_hi;
619	uint32_t macaddr_mid;
620	u_char eaddr[6];
621	int unit = nm_vi_get_index(); /* just to decide MAC address */
622
623	if (unit < 0)
624		return EBUSY;
625	/*
626	 * We use the same MAC address generation method with tap
627	 * except for the highest octet is 00:be instead of 00:bd
628	 */
629	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
630	macaddr_mid = (uint32_t) ticks;
631	bcopy(&macaddr_hi, eaddr, sizeof(short));
632	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
633	eaddr[5] = (uint8_t)unit;
634
635	ifp = if_alloc(IFT_ETHER);
636	if (ifp == NULL) {
637		nm_prerr("if_alloc failed");
638		return ENOMEM;
639	}
640	if_initname(ifp, name, IF_DUNIT_NONE);
641	ifp->if_mtu = 65536;
642	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
643	ifp->if_init = (void *)nm_vi_dummy;
644	ifp->if_ioctl = nm_vi_dummy;
645	ifp->if_start = nm_vi_start;
646	ifp->if_mtu = ETHERMTU;
647	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
648	ifp->if_capabilities |= IFCAP_LINKSTATE;
649	ifp->if_capenable |= IFCAP_LINKSTATE;
650
651	ether_ifattach(ifp, eaddr);
652	*ret = ifp;
653	return 0;
654}
655
656/* unregister from the system and drop the final refcount */
657void
658nm_os_vi_detach(struct ifnet *ifp)
659{
660	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
661	ether_ifdetach(ifp);
662	if_free(ifp);
663}
664
665#ifdef WITH_EXTMEM
666#include <vm/vm_map.h>
667#include <vm/vm_extern.h>
668#include <vm/vm_kern.h>
669struct nm_os_extmem {
670	vm_object_t obj;
671	vm_offset_t kva;
672	vm_offset_t size;
673	uintptr_t scan;
674};
675
676void
677nm_os_extmem_delete(struct nm_os_extmem *e)
678{
679	nm_prinf("freeing %zx bytes", (size_t)e->size);
680	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
681	nm_os_free(e);
682}
683
684char *
685nm_os_extmem_nextpage(struct nm_os_extmem *e)
686{
687	char *rv = NULL;
688	if (e->scan < e->kva + e->size) {
689		rv = (char *)e->scan;
690		e->scan += PAGE_SIZE;
691	}
692	return rv;
693}
694
695int
696nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
697{
698	return (e1->obj == e2->obj);
699}
700
701int
702nm_os_extmem_nr_pages(struct nm_os_extmem *e)
703{
704	return e->size >> PAGE_SHIFT;
705}
706
707struct nm_os_extmem *
708nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
709{
710	vm_map_t map;
711	vm_map_entry_t entry;
712	vm_object_t obj;
713	vm_prot_t prot;
714	vm_pindex_t index;
715	boolean_t wired;
716	struct nm_os_extmem *e = NULL;
717	int rv, error = 0;
718
719	e = nm_os_malloc(sizeof(*e));
720	if (e == NULL) {
721		error = ENOMEM;
722		goto out;
723	}
724
725	map = &curthread->td_proc->p_vmspace->vm_map;
726	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
727			&obj, &index, &prot, &wired);
728	if (rv != KERN_SUCCESS) {
729		nm_prerr("address %lx not found", p);
730		error = vm_mmap_to_errno(rv);
731		goto out_free;
732	}
733	vm_object_reference(obj);
734
735	/* check that we are given the whole vm_object ? */
736	vm_map_lookup_done(map, entry);
737
738	e->obj = obj;
739	/* Wire the memory and add the vm_object to the kernel map,
740	 * to make sure that it is not freed even if all the processes
741	 * that are mmap()ing should munmap() it.
742	 */
743	e->kva = vm_map_min(kernel_map);
744	e->size = obj->size << PAGE_SHIFT;
745	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
746			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
747			VM_PROT_READ | VM_PROT_WRITE, 0);
748	if (rv != KERN_SUCCESS) {
749		nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
750		error = vm_mmap_to_errno(rv);
751		goto out_rel;
752	}
753	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
754			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
755	if (rv != KERN_SUCCESS) {
756		nm_prerr("vm_map_wire failed");
757		error = vm_mmap_to_errno(rv);
758		goto out_rem;
759	}
760
761	e->scan = e->kva;
762
763	return e;
764
765out_rem:
766	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
767out_rel:
768	vm_object_deallocate(e->obj);
769	e->obj = NULL;
770out_free:
771	nm_os_free(e);
772out:
773	if (perror)
774		*perror = error;
775	return NULL;
776}
777#endif /* WITH_EXTMEM */
778
779/* ================== PTNETMAP GUEST SUPPORT ==================== */
780
781#ifdef WITH_PTNETMAP
782#include <sys/bus.h>
783#include <sys/rman.h>
784#include <machine/bus.h>        /* bus_dmamap_* */
785#include <machine/resource.h>
786#include <dev/pci/pcivar.h>
787#include <dev/pci/pcireg.h>
788/*
789 * ptnetmap memory device (memdev) for freebsd guest,
790 * ssed to expose host netmap memory to the guest through a PCI BAR.
791 */
792
793/*
794 * ptnetmap memdev private data structure
795 */
796struct ptnetmap_memdev {
797	device_t dev;
798	struct resource *pci_io;
799	struct resource *pci_mem;
800	struct netmap_mem_d *nm_mem;
801};
802
803static int	ptn_memdev_probe(device_t);
804static int	ptn_memdev_attach(device_t);
805static int	ptn_memdev_detach(device_t);
806static int	ptn_memdev_shutdown(device_t);
807
808static device_method_t ptn_memdev_methods[] = {
809	DEVMETHOD(device_probe, ptn_memdev_probe),
810	DEVMETHOD(device_attach, ptn_memdev_attach),
811	DEVMETHOD(device_detach, ptn_memdev_detach),
812	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
813	DEVMETHOD_END
814};
815
816static driver_t ptn_memdev_driver = {
817	PTNETMAP_MEMDEV_NAME,
818	ptn_memdev_methods,
819	sizeof(struct ptnetmap_memdev),
820};
821
822/* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
823 * below. */
824static devclass_t ptnetmap_devclass;
825DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
826		      NULL, NULL, SI_ORDER_MIDDLE + 1);
827
828/*
829 * Map host netmap memory through PCI-BAR in the guest OS,
830 * returning physical (nm_paddr) and virtual (nm_addr) addresses
831 * of the netmap memory mapped in the guest.
832 */
833int
834nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
835		      void **nm_addr, uint64_t *mem_size)
836{
837	int rid;
838
839	nm_prinf("ptn_memdev_driver iomap");
840
841	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
842	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
843	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
844			(*mem_size << 32);
845
846	/* map memory allocator */
847	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
848			&rid, 0, ~0, *mem_size, RF_ACTIVE);
849	if (ptn_dev->pci_mem == NULL) {
850		*nm_paddr = 0;
851		*nm_addr = NULL;
852		return ENOMEM;
853	}
854
855	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
856	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
857
858	nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
859			PTNETMAP_MEM_PCI_BAR,
860			(unsigned long)(*nm_paddr),
861			(unsigned long)rman_get_size(ptn_dev->pci_mem),
862			(unsigned long)*mem_size);
863	return (0);
864}
865
866uint32_t
867nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
868{
869	return bus_read_4(ptn_dev->pci_io, reg);
870}
871
872/* Unmap host netmap memory. */
873void
874nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
875{
876	nm_prinf("ptn_memdev_driver iounmap");
877
878	if (ptn_dev->pci_mem) {
879		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
880			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
881		ptn_dev->pci_mem = NULL;
882	}
883}
884
885/* Device identification routine, return BUS_PROBE_DEFAULT on success,
886 * positive on failure */
887static int
888ptn_memdev_probe(device_t dev)
889{
890	char desc[256];
891
892	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
893		return (ENXIO);
894	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
895		return (ENXIO);
896
897	snprintf(desc, sizeof(desc), "%s PCI adapter",
898			PTNETMAP_MEMDEV_NAME);
899	device_set_desc_copy(dev, desc);
900
901	return (BUS_PROBE_DEFAULT);
902}
903
904/* Device initialization routine. */
905static int
906ptn_memdev_attach(device_t dev)
907{
908	struct ptnetmap_memdev *ptn_dev;
909	int rid;
910	uint16_t mem_id;
911
912	ptn_dev = device_get_softc(dev);
913	ptn_dev->dev = dev;
914
915	pci_enable_busmaster(dev);
916
917	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
918	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
919						 RF_ACTIVE);
920	if (ptn_dev->pci_io == NULL) {
921	        device_printf(dev, "cannot map I/O space\n");
922	        return (ENXIO);
923	}
924
925	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
926
927	/* create guest allocator */
928	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
929	if (ptn_dev->nm_mem == NULL) {
930		ptn_memdev_detach(dev);
931	        return (ENOMEM);
932	}
933	netmap_mem_get(ptn_dev->nm_mem);
934
935	nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
936
937	return (0);
938}
939
940/* Device removal routine. */
941static int
942ptn_memdev_detach(device_t dev)
943{
944	struct ptnetmap_memdev *ptn_dev;
945
946	ptn_dev = device_get_softc(dev);
947
948	if (ptn_dev->nm_mem) {
949		nm_prinf("ptnetmap memdev detached, host memid %u",
950			netmap_mem_get_id(ptn_dev->nm_mem));
951		netmap_mem_put(ptn_dev->nm_mem);
952		ptn_dev->nm_mem = NULL;
953	}
954	if (ptn_dev->pci_mem) {
955		bus_release_resource(dev, SYS_RES_MEMORY,
956			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
957		ptn_dev->pci_mem = NULL;
958	}
959	if (ptn_dev->pci_io) {
960		bus_release_resource(dev, SYS_RES_IOPORT,
961			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
962		ptn_dev->pci_io = NULL;
963	}
964
965	return (0);
966}
967
968static int
969ptn_memdev_shutdown(device_t dev)
970{
971	return bus_generic_shutdown(dev);
972}
973
974#endif /* WITH_PTNETMAP */
975
976/*
977 * In order to track whether pages are still mapped, we hook into
978 * the standard cdev_pager and intercept the constructor and
979 * destructor.
980 */
981
982struct netmap_vm_handle_t {
983	struct cdev 		*dev;
984	struct netmap_priv_d	*priv;
985};
986
987
988static int
989netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
990		vm_ooffset_t foff, struct ucred *cred, u_short *color)
991{
992	struct netmap_vm_handle_t *vmh = handle;
993
994	if (netmap_verbose)
995		nm_prinf("handle %p size %jd prot %d foff %jd",
996			handle, (intmax_t)size, prot, (intmax_t)foff);
997	if (color)
998		*color = 0;
999	dev_ref(vmh->dev);
1000	return 0;
1001}
1002
1003
1004static void
1005netmap_dev_pager_dtor(void *handle)
1006{
1007	struct netmap_vm_handle_t *vmh = handle;
1008	struct cdev *dev = vmh->dev;
1009	struct netmap_priv_d *priv = vmh->priv;
1010
1011	if (netmap_verbose)
1012		nm_prinf("handle %p", handle);
1013	netmap_dtor(priv);
1014	free(vmh, M_DEVBUF);
1015	dev_rel(dev);
1016}
1017
1018
1019static int
1020netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
1021	int prot, vm_page_t *mres)
1022{
1023	struct netmap_vm_handle_t *vmh = object->handle;
1024	struct netmap_priv_d *priv = vmh->priv;
1025	struct netmap_adapter *na = priv->np_na;
1026	vm_paddr_t paddr;
1027	vm_page_t page;
1028	vm_memattr_t memattr;
1029
1030	nm_prdis("object %p offset %jd prot %d mres %p",
1031			object, (intmax_t)offset, prot, mres);
1032	memattr = object->memattr;
1033	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1034	if (paddr == 0)
1035		return VM_PAGER_FAIL;
1036
1037	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1038		/*
1039		 * If the passed in result page is a fake page, update it with
1040		 * the new physical address.
1041		 */
1042		page = *mres;
1043		vm_page_updatefake(page, paddr, memattr);
1044	} else {
1045		/*
1046		 * Replace the passed in reqpage page with our own fake page and
1047		 * free up the all of the original pages.
1048		 */
1049#ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
1050#define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1051#define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
1052#endif /* VM_OBJECT_WUNLOCK */
1053
1054		VM_OBJECT_WUNLOCK(object);
1055		page = vm_page_getfake(paddr, memattr);
1056		VM_OBJECT_WLOCK(object);
1057		vm_page_replace(page, object, (*mres)->pindex, *mres);
1058		*mres = page;
1059	}
1060	vm_page_valid(page);
1061	return (VM_PAGER_OK);
1062}
1063
1064
1065static struct cdev_pager_ops netmap_cdev_pager_ops = {
1066	.cdev_pg_ctor = netmap_dev_pager_ctor,
1067	.cdev_pg_dtor = netmap_dev_pager_dtor,
1068	.cdev_pg_fault = netmap_dev_pager_fault,
1069};
1070
1071
1072static int
1073netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1074	vm_size_t objsize,  vm_object_t *objp, int prot)
1075{
1076	int error;
1077	struct netmap_vm_handle_t *vmh;
1078	struct netmap_priv_d *priv;
1079	vm_object_t obj;
1080
1081	if (netmap_verbose)
1082		nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1083		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1084
1085	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1086			      M_NOWAIT | M_ZERO);
1087	if (vmh == NULL)
1088		return ENOMEM;
1089	vmh->dev = cdev;
1090
1091	NMG_LOCK();
1092	error = devfs_get_cdevpriv((void**)&priv);
1093	if (error)
1094		goto err_unlock;
1095	if (priv->np_nifp == NULL) {
1096		error = EINVAL;
1097		goto err_unlock;
1098	}
1099	vmh->priv = priv;
1100	priv->np_refs++;
1101	NMG_UNLOCK();
1102
1103	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1104		&netmap_cdev_pager_ops, objsize, prot,
1105		*foff, NULL);
1106	if (obj == NULL) {
1107		nm_prerr("cdev_pager_allocate failed");
1108		error = EINVAL;
1109		goto err_deref;
1110	}
1111
1112	*objp = obj;
1113	return 0;
1114
1115err_deref:
1116	NMG_LOCK();
1117	priv->np_refs--;
1118err_unlock:
1119	NMG_UNLOCK();
1120// err:
1121	free(vmh, M_DEVBUF);
1122	return error;
1123}
1124
1125/*
1126 * On FreeBSD the close routine is only called on the last close on
1127 * the device (/dev/netmap) so we cannot do anything useful.
1128 * To track close() on individual file descriptors we pass netmap_dtor() to
1129 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1130 * when the last fd pointing to the device is closed.
1131 *
1132 * Note that FreeBSD does not even munmap() on close() so we also have
1133 * to track mmap() ourselves, and postpone the call to
1134 * netmap_dtor() is called when the process has no open fds and no active
1135 * memory maps on /dev/netmap, as in linux.
1136 */
1137static int
1138netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1139{
1140	if (netmap_verbose)
1141		nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1142			dev, fflag, devtype, td);
1143	return 0;
1144}
1145
1146
1147static int
1148netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1149{
1150	struct netmap_priv_d *priv;
1151	int error;
1152
1153	(void)dev;
1154	(void)oflags;
1155	(void)devtype;
1156	(void)td;
1157
1158	NMG_LOCK();
1159	priv = netmap_priv_new();
1160	if (priv == NULL) {
1161		error = ENOMEM;
1162		goto out;
1163	}
1164	error = devfs_set_cdevpriv(priv, netmap_dtor);
1165	if (error) {
1166		netmap_priv_delete(priv);
1167	}
1168out:
1169	NMG_UNLOCK();
1170	return error;
1171}
1172
1173/******************** kthread wrapper ****************/
1174#include <sys/sysproto.h>
1175u_int
1176nm_os_ncpus(void)
1177{
1178	return mp_maxid + 1;
1179}
1180
1181struct nm_kctx_ctx {
1182	/* Userspace thread (kthread creator). */
1183	struct thread *user_td;
1184
1185	/* worker function and parameter */
1186	nm_kctx_worker_fn_t worker_fn;
1187	void *worker_private;
1188
1189	struct nm_kctx *nmk;
1190
1191	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1192	long type;
1193};
1194
1195struct nm_kctx {
1196	struct thread *worker;
1197	struct mtx worker_lock;
1198	struct nm_kctx_ctx worker_ctx;
1199	int run;			/* used to stop kthread */
1200	int attach_user;		/* kthread attached to user_process */
1201	int affinity;
1202};
1203
1204static void
1205nm_kctx_worker(void *data)
1206{
1207	struct nm_kctx *nmk = data;
1208	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1209
1210	if (nmk->affinity >= 0) {
1211		thread_lock(curthread);
1212		sched_bind(curthread, nmk->affinity);
1213		thread_unlock(curthread);
1214	}
1215
1216	while (nmk->run) {
1217		/*
1218		 * check if the parent process dies
1219		 * (when kthread is attached to user process)
1220		 */
1221		if (ctx->user_td) {
1222			PROC_LOCK(curproc);
1223			thread_suspend_check(0);
1224			PROC_UNLOCK(curproc);
1225		} else {
1226			kthread_suspend_check();
1227		}
1228
1229		/* Continuously execute worker process. */
1230		ctx->worker_fn(ctx->worker_private); /* worker body */
1231	}
1232
1233	kthread_exit();
1234}
1235
1236void
1237nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1238{
1239	nmk->affinity = affinity;
1240}
1241
1242struct nm_kctx *
1243nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1244{
1245	struct nm_kctx *nmk = NULL;
1246
1247	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1248	if (!nmk)
1249		return NULL;
1250
1251	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1252	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1253	nmk->worker_ctx.worker_private = cfg->worker_private;
1254	nmk->worker_ctx.type = cfg->type;
1255	nmk->affinity = -1;
1256
1257	/* attach kthread to user process (ptnetmap) */
1258	nmk->attach_user = cfg->attach_user;
1259
1260	return nmk;
1261}
1262
1263int
1264nm_os_kctx_worker_start(struct nm_kctx *nmk)
1265{
1266	struct proc *p = NULL;
1267	int error = 0;
1268
1269	/* Temporarily disable this function as it is currently broken
1270	 * and causes kernel crashes. The failure can be triggered by
1271	 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1272	return EOPNOTSUPP;
1273
1274	if (nmk->worker)
1275		return EBUSY;
1276
1277	/* check if we want to attach kthread to user process */
1278	if (nmk->attach_user) {
1279		nmk->worker_ctx.user_td = curthread;
1280		p = curthread->td_proc;
1281	}
1282
1283	/* enable kthread main loop */
1284	nmk->run = 1;
1285	/* create kthread */
1286	if((error = kthread_add(nm_kctx_worker, nmk, p,
1287			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1288			nmk->worker_ctx.type))) {
1289		goto err;
1290	}
1291
1292	nm_prinf("nm_kthread started td %p", nmk->worker);
1293
1294	return 0;
1295err:
1296	nm_prerr("nm_kthread start failed err %d", error);
1297	nmk->worker = NULL;
1298	return error;
1299}
1300
1301void
1302nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1303{
1304	if (!nmk->worker)
1305		return;
1306
1307	/* tell to kthread to exit from main loop */
1308	nmk->run = 0;
1309
1310	/* wake up kthread if it sleeps */
1311	kthread_resume(nmk->worker);
1312
1313	nmk->worker = NULL;
1314}
1315
1316void
1317nm_os_kctx_destroy(struct nm_kctx *nmk)
1318{
1319	if (!nmk)
1320		return;
1321
1322	if (nmk->worker)
1323		nm_os_kctx_worker_stop(nmk);
1324
1325	free(nmk, M_DEVBUF);
1326}
1327
1328/******************** kqueue support ****************/
1329
1330/*
1331 * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1332 * needs to call knote() to wake up kqueue listeners.
1333 * This operation is deferred to a taskqueue in order to avoid possible
1334 * lock order reversals; these may happen because knote() grabs a
1335 * private lock associated to the 'si' (see struct selinfo,
1336 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1337 * can be called while holding the lock associated to a different
1338 * 'si'.
1339 * When calling knote() we use a non-zero 'hint' argument to inform
1340 * the netmap_knrw() function that it is being called from
1341 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1342 * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1343 * call netmap_poll().
1344 *
1345 * The netmap_kqfilter() function registers one or another f_event
1346 * depending on read or write mode. A pointer to the struct
1347 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1348 * be passed to netmap_poll(). We pass NULL as a third argument to
1349 * netmap_poll(), so that the latter only runs the txsync/rxsync
1350 * (if necessary), and skips the nm_os_selrecord() calls.
1351 */
1352
1353
1354void
1355nm_os_selwakeup(struct nm_selinfo *si)
1356{
1357	selwakeuppri(&si->si, PI_NET);
1358	if (si->kqueue_users > 0) {
1359		taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1360	}
1361}
1362
1363void
1364nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1365{
1366	selrecord(td, &si->si);
1367}
1368
1369static void
1370netmap_knrdetach(struct knote *kn)
1371{
1372	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1373	struct nm_selinfo *si = priv->np_si[NR_RX];
1374
1375	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1376	NMG_LOCK();
1377	KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
1378	    si->mtxname));
1379	si->kqueue_users--;
1380	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1381	NMG_UNLOCK();
1382}
1383
1384static void
1385netmap_knwdetach(struct knote *kn)
1386{
1387	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1388	struct nm_selinfo *si = priv->np_si[NR_TX];
1389
1390	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1391	NMG_LOCK();
1392	si->kqueue_users--;
1393	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1394	NMG_UNLOCK();
1395}
1396
1397/*
1398 * Callback triggered by netmap notifications (see netmap_notify()),
1399 * and by the application calling kevent(). In the former case we
1400 * just return 1 (events ready), since we are not able to do better.
1401 * In the latter case we use netmap_poll() to see which events are
1402 * ready.
1403 */
1404static int
1405netmap_knrw(struct knote *kn, long hint, int events)
1406{
1407	struct netmap_priv_d *priv;
1408	int revents;
1409
1410	if (hint != 0) {
1411		/* Called from netmap_notify(), typically from a
1412		 * thread different from the one issuing kevent().
1413		 * Assume we are ready. */
1414		return 1;
1415	}
1416
1417	/* Called from kevent(). */
1418	priv = kn->kn_hook;
1419	revents = netmap_poll(priv, events, /*thread=*/NULL);
1420
1421	return (events & revents) ? 1 : 0;
1422}
1423
1424static int
1425netmap_knread(struct knote *kn, long hint)
1426{
1427	return netmap_knrw(kn, hint, POLLIN);
1428}
1429
1430static int
1431netmap_knwrite(struct knote *kn, long hint)
1432{
1433	return netmap_knrw(kn, hint, POLLOUT);
1434}
1435
1436static struct filterops netmap_rfiltops = {
1437	.f_isfd = 1,
1438	.f_detach = netmap_knrdetach,
1439	.f_event = netmap_knread,
1440};
1441
1442static struct filterops netmap_wfiltops = {
1443	.f_isfd = 1,
1444	.f_detach = netmap_knwdetach,
1445	.f_event = netmap_knwrite,
1446};
1447
1448
1449/*
1450 * This is called when a thread invokes kevent() to record
1451 * a change in the configuration of the kqueue().
1452 * The 'priv' is the one associated to the open netmap device.
1453 */
1454static int
1455netmap_kqfilter(struct cdev *dev, struct knote *kn)
1456{
1457	struct netmap_priv_d *priv;
1458	int error;
1459	struct netmap_adapter *na;
1460	struct nm_selinfo *si;
1461	int ev = kn->kn_filter;
1462
1463	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1464		nm_prerr("bad filter request %d", ev);
1465		return 1;
1466	}
1467	error = devfs_get_cdevpriv((void**)&priv);
1468	if (error) {
1469		nm_prerr("device not yet setup");
1470		return 1;
1471	}
1472	na = priv->np_na;
1473	if (na == NULL) {
1474		nm_prerr("no netmap adapter for this file descriptor");
1475		return 1;
1476	}
1477	/* the si is indicated in the priv */
1478	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1479	kn->kn_fop = (ev == EVFILT_WRITE) ?
1480		&netmap_wfiltops : &netmap_rfiltops;
1481	kn->kn_hook = priv;
1482	NMG_LOCK();
1483	si->kqueue_users++;
1484	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1485	NMG_UNLOCK();
1486	knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1487
1488	return 0;
1489}
1490
1491static int
1492freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1493{
1494	struct netmap_priv_d *priv;
1495	if (devfs_get_cdevpriv((void **)&priv)) {
1496		return POLLERR;
1497	}
1498	return netmap_poll(priv, events, td);
1499}
1500
1501static int
1502freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1503		int ffla __unused, struct thread *td)
1504{
1505	int error;
1506	struct netmap_priv_d *priv;
1507
1508	CURVNET_SET(TD_TO_VNET(td));
1509	error = devfs_get_cdevpriv((void **)&priv);
1510	if (error) {
1511		/* XXX ENOENT should be impossible, since the priv
1512		 * is now created in the open */
1513		if (error == ENOENT)
1514			error = ENXIO;
1515		goto out;
1516	}
1517	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1518out:
1519	CURVNET_RESTORE();
1520
1521	return error;
1522}
1523
1524void
1525nm_os_onattach(struct ifnet *ifp)
1526{
1527	ifp->if_capabilities |= IFCAP_NETMAP;
1528}
1529
1530void
1531nm_os_onenter(struct ifnet *ifp)
1532{
1533	struct netmap_adapter *na = NA(ifp);
1534
1535	na->if_transmit = ifp->if_transmit;
1536	ifp->if_transmit = netmap_transmit;
1537	ifp->if_capenable |= IFCAP_NETMAP;
1538}
1539
1540void
1541nm_os_onexit(struct ifnet *ifp)
1542{
1543	struct netmap_adapter *na = NA(ifp);
1544
1545	ifp->if_transmit = na->if_transmit;
1546	ifp->if_capenable &= ~IFCAP_NETMAP;
1547}
1548
1549extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1550struct cdevsw netmap_cdevsw = {
1551	.d_version = D_VERSION,
1552	.d_name = "netmap",
1553	.d_open = netmap_open,
1554	.d_mmap_single = netmap_mmap_single,
1555	.d_ioctl = freebsd_netmap_ioctl,
1556	.d_poll = freebsd_netmap_poll,
1557	.d_kqfilter = netmap_kqfilter,
1558	.d_close = netmap_close,
1559};
1560/*--- end of kqueue support ----*/
1561
1562/*
1563 * Kernel entry point.
1564 *
1565 * Initialize/finalize the module and return.
1566 *
1567 * Return 0 on success, errno on failure.
1568 */
1569static int
1570netmap_loader(__unused struct module *module, int event, __unused void *arg)
1571{
1572	int error = 0;
1573
1574	switch (event) {
1575	case MOD_LOAD:
1576		error = netmap_init();
1577		break;
1578
1579	case MOD_UNLOAD:
1580		/*
1581		 * if some one is still using netmap,
1582		 * then the module can not be unloaded.
1583		 */
1584		if (netmap_use_count) {
1585			nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1586					netmap_use_count);
1587			error = EBUSY;
1588			break;
1589		}
1590		netmap_fini();
1591		break;
1592
1593	default:
1594		error = EOPNOTSUPP;
1595		break;
1596	}
1597
1598	return (error);
1599}
1600
1601#ifdef DEV_MODULE_ORDERED
1602/*
1603 * The netmap module contains three drivers: (i) the netmap character device
1604 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1605 * device driver. The attach() routines of both (ii) and (iii) need the
1606 * lock of the global allocator, and such lock is initialized in netmap_init(),
1607 * which is part of (i).
1608 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1609 * the 'order' parameter of driver declaration macros. For (i), we specify
1610 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1611 * macros for (ii) and (iii).
1612 */
1613DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1614#else /* !DEV_MODULE_ORDERED */
1615DEV_MODULE(netmap, netmap_loader, NULL);
1616#endif /* DEV_MODULE_ORDERED  */
1617MODULE_DEPEND(netmap, pci, 1, 1, 1);
1618MODULE_VERSION(netmap, 1);
1619/* reduce conditional code */
1620// linux API, use for the knlist in FreeBSD
1621/* use a private mutex for the knlist */
1622