1/* SPDX-License-Identifier: BSD-3-Clause */
2/*  Copyright (c) 2021, Intel Corporation
3 *  All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions are met:
7 *
8 *   1. Redistributions of source code must retain the above copyright notice,
9 *      this list of conditions and the following disclaimer.
10 *
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 *   3. Neither the name of the Intel Corporation nor the names of its
16 *      contributors may be used to endorse or promote products derived from
17 *      this software without specific prior written permission.
18 *
19 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 *  POSSIBILITY OF SUCH DAMAGE.
30 */
31/*$FreeBSD$*/
32
33/**
34 * @file ice_osdep.h
35 * @brief OS compatibility layer
36 *
37 * Contains various definitions and functions which are part of an OS
38 * compatibility layer for sharing code with other operating systems.
39 */
40#ifndef _ICE_OSDEP_H_
41#define _ICE_OSDEP_H_
42
43#include <sys/endian.h>
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/malloc.h>
47#include <sys/proc.h>
48#include <sys/systm.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/bus.h>
52#include <machine/bus.h>
53#include <sys/bus_dma.h>
54#include <netinet/in.h>
55#include <sys/counter.h>
56#include <sys/sbuf.h>
57
58#include "ice_alloc.h"
59
60#define ICE_INTEL_VENDOR_ID 0x8086
61
62#define ICE_STR_BUF_LEN 32
63
64struct ice_hw;
65
66device_t ice_hw_to_dev(struct ice_hw *hw);
67
68/* configure hw->debug_mask to enable debug prints */
69void ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...) __printflike(3, 4);
70void ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize,
71		     uint32_t groupsize, uint8_t *buf, size_t len);
72
73#define ice_info(_hw, _fmt, args...) \
74	device_printf(ice_hw_to_dev(_hw), (_fmt), ##args)
75
76#define ice_warn(_hw, _fmt, args...) \
77	device_printf(ice_hw_to_dev(_hw), (_fmt), ##args)
78
79#define DIVIDE_AND_ROUND_UP howmany
80#define ROUND_UP roundup
81
82uint32_t rd32(struct ice_hw *hw, uint32_t reg);
83uint64_t rd64(struct ice_hw *hw, uint32_t reg);
84void wr32(struct ice_hw *hw, uint32_t reg, uint32_t val);
85void wr64(struct ice_hw *hw, uint32_t reg, uint64_t val);
86
87#define ice_flush(_hw) rd32((_hw), GLGEN_STAT)
88
89MALLOC_DECLARE(M_ICE_OSDEP);
90
91/**
92 * ice_calloc - Allocate an array of elementes
93 * @hw: the hardware private structure
94 * @count: number of elements to allocate
95 * @size: the size of each element
96 *
97 * Allocate memory for an array of items equal to size. Note that the OS
98 * compatibility layer assumes all allocation functions will provide zero'd
99 * memory.
100 */
101static inline void *
102ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size)
103{
104	return malloc(count * size, M_ICE_OSDEP, M_ZERO | M_NOWAIT);
105}
106
107/**
108 * ice_malloc - Allocate memory of a specified size
109 * @hw: the hardware private structure
110 * @size: the size to allocate
111 *
112 * Allocates memory of the specified size. Note that the OS compatibility
113 * layer assumes that all allocations will provide zero'd memory.
114 */
115static inline void *
116ice_malloc(struct ice_hw __unused *hw, size_t size)
117{
118	return malloc(size, M_ICE_OSDEP, M_ZERO | M_NOWAIT);
119}
120
121/**
122 * ice_memdup - Allocate a copy of some other memory
123 * @hw: private hardware structure
124 * @src: the source to copy from
125 * @size: allocation size
126 * @dir: the direction of copying
127 *
128 * Allocate memory of the specified size, and copy bytes from the src to fill
129 * it. We don't need to zero this memory as we immediately initialize it by
130 * copying from the src pointer.
131 */
132static inline void *
133ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size,
134	   enum ice_memcpy_type __unused dir)
135{
136	void *dst = malloc(size, M_ICE_OSDEP, M_NOWAIT);
137
138	if (dst != NULL)
139		memcpy(dst, src, size);
140
141	return dst;
142}
143
144/**
145 * ice_free - Free previously allocated memory
146 * @hw: the hardware private structure
147 * @mem: pointer to the memory to free
148 *
149 * Free memory that was previously allocated by ice_calloc, ice_malloc, or
150 * ice_memdup.
151 */
152static inline void
153ice_free(struct ice_hw __unused *hw, void *mem)
154{
155	free(mem, M_ICE_OSDEP);
156}
157
158/* These are macros in order to drop the unused direction enumeration constant */
159#define ice_memset(addr, c, len, unused) memset((addr), (c), (len))
160#define ice_memcpy(dst, src, len, unused) memcpy((dst), (src), (len))
161
162void ice_usec_delay(uint32_t time, bool sleep);
163void ice_msec_delay(uint32_t time, bool sleep);
164void ice_msec_pause(uint32_t time);
165void ice_msec_spin(uint32_t time);
166
167#define UNREFERENCED_PARAMETER(_p) _p = _p
168#define UNREFERENCED_1PARAMETER(_p) do {			\
169	UNREFERENCED_PARAMETER(_p);				\
170} while (0)
171#define UNREFERENCED_2PARAMETER(_p, _q) do {			\
172	UNREFERENCED_PARAMETER(_p);				\
173	UNREFERENCED_PARAMETER(_q);				\
174} while (0)
175#define UNREFERENCED_3PARAMETER(_p, _q, _r) do {		\
176	UNREFERENCED_PARAMETER(_p);				\
177	UNREFERENCED_PARAMETER(_q);				\
178	UNREFERENCED_PARAMETER(_r);				\
179} while (0)
180#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) do {		\
181	UNREFERENCED_PARAMETER(_p);				\
182	UNREFERENCED_PARAMETER(_q);				\
183	UNREFERENCED_PARAMETER(_r);				\
184	UNREFERENCED_PARAMETER(_s);				\
185} while (0)
186#define UNREFERENCED_5PARAMETER(_p, _q, _r, _s, _t) do {	\
187	UNREFERENCED_PARAMETER(_p);				\
188	UNREFERENCED_PARAMETER(_q);				\
189	UNREFERENCED_PARAMETER(_r);				\
190	UNREFERENCED_PARAMETER(_s);				\
191	UNREFERENCED_PARAMETER(_t);				\
192} while (0)
193
194#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
195#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
196#define MAKEMASK(_m, _s) ((_m) << (_s))
197
198#define LIST_HEAD_TYPE ice_list_head
199#define LIST_ENTRY_TYPE ice_list_node
200
201/**
202 * @struct ice_list_node
203 * @brief simplified linked list node API
204 *
205 * Represents a node in a linked list, which can be embedded into a structure
206 * to allow that structure to be inserted into a linked list. Access to the
207 * contained structure is done via __containerof
208 */
209struct ice_list_node {
210	LIST_ENTRY(ice_list_node) entries;
211};
212
213/**
214 * @struct ice_list_head
215 * @brief simplified linked list head API
216 *
217 * Represents the head of a linked list. The linked list should consist of
218 * a series of ice_list_node structures embedded into another structure
219 * accessed using __containerof. This way, the ice_list_head doesn't need to
220 * know the type of the structure it contains.
221 */
222LIST_HEAD(ice_list_head, ice_list_node);
223
224#define INIT_LIST_HEAD LIST_INIT
225/* LIST_EMPTY doesn't need to be changed */
226#define LIST_ADD(entry, head) LIST_INSERT_HEAD(head, entry, entries)
227#define LIST_ADD_AFTER(entry, elem) LIST_INSERT_AFTER(elem, entry, entries)
228#define LIST_DEL(entry) LIST_REMOVE(entry, entries)
229#define _osdep_LIST_ENTRY(ptr, type, member) \
230	__containerof(ptr, type, member)
231#define LIST_FIRST_ENTRY(head, type, member) \
232	_osdep_LIST_ENTRY(LIST_FIRST(head), type, member)
233#define LIST_NEXT_ENTRY(ptr, unused, member) \
234	_osdep_LIST_ENTRY(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member)
235#define LIST_REPLACE_INIT(old_head, new_head) do {			\
236	__typeof(new_head) _new_head = (new_head);			\
237	LIST_INIT(_new_head);						\
238	LIST_SWAP(old_head, _new_head, ice_list_node, entries);		\
239} while (0)
240
241#define LIST_ENTRY_SAFE(_ptr, _type, _member) \
242({ __typeof(_ptr) ____ptr = (_ptr); \
243   ____ptr ? _osdep_LIST_ENTRY(____ptr, _type, _member) : NULL; \
244})
245
246/**
247 * ice_get_list_tail - Return the pointer to the last node in the list
248 * @head: the pointer to the head of the list
249 *
250 * A helper function for implementing LIST_ADD_TAIL and LIST_LAST_ENTRY.
251 * Returns the pointer to the last node in the list, or NULL of the list is
252 * empty.
253 *
254 * Note: due to the list implementation this is O(N), where N is the size of
255 * the list. An O(1) implementation requires replacing the underlying list
256 * datastructure with one that has a tail pointer. This is problematic,
257 * because using a simple TAILQ would require that the addition and deletion
258 * be given the head of the list.
259 */
260static inline struct ice_list_node *
261ice_get_list_tail(struct ice_list_head *head)
262{
263	struct ice_list_node *node = LIST_FIRST(head);
264
265	if (node == NULL)
266		return NULL;
267	while (LIST_NEXT(node, entries) != NULL)
268		node = LIST_NEXT(node, entries);
269
270	return node;
271}
272
273/* TODO: This is O(N). An O(1) implementation would require a different
274 * underlying list structure, such as a circularly linked list. */
275#define LIST_ADD_TAIL(entry, head) do {					\
276	struct ice_list_node *node = ice_get_list_tail(head);		\
277									\
278	if (node == NULL) {						\
279		LIST_ADD(entry, head);					\
280	} else {							\
281		LIST_INSERT_AFTER(node, entry, entries);		\
282	}								\
283} while (0)
284
285#define LIST_LAST_ENTRY(head, type, member) \
286	LIST_ENTRY_SAFE(ice_get_list_tail(head), type, member)
287
288#define LIST_FIRST_ENTRY_SAFE(head, type, member) \
289	LIST_ENTRY_SAFE(LIST_FIRST(head), type, member)
290
291#define LIST_NEXT_ENTRY_SAFE(ptr, member) \
292	LIST_ENTRY_SAFE(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member)
293
294#define LIST_FOR_EACH_ENTRY(pos, head, unused, member) \
295	for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member);		\
296	    pos;								\
297	    pos = LIST_NEXT_ENTRY_SAFE(pos, member))
298
299#define LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, unused, member) \
300	for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member);		\
301	     pos && ({ n = LIST_NEXT_ENTRY_SAFE(pos, member); 1; });		\
302	     pos = n)
303
304#define STATIC static
305
306#define NTOHS ntohs
307#define NTOHL ntohl
308#define HTONS htons
309#define HTONL htonl
310#define LE16_TO_CPU le16toh
311#define LE32_TO_CPU le32toh
312#define LE64_TO_CPU le64toh
313#define CPU_TO_LE16 htole16
314#define CPU_TO_LE32 htole32
315#define CPU_TO_LE64 htole64
316#define CPU_TO_BE16 htobe16
317#define CPU_TO_BE32 htobe32
318
319#define SNPRINTF snprintf
320
321/**
322 * @typedef u8
323 * @brief compatibility typedef for uint8_t
324 */
325typedef uint8_t  u8;
326
327/**
328 * @typedef u16
329 * @brief compatibility typedef for uint16_t
330 */
331typedef uint16_t u16;
332
333/**
334 * @typedef u32
335 * @brief compatibility typedef for uint32_t
336 */
337typedef uint32_t u32;
338
339/**
340 * @typedef u64
341 * @brief compatibility typedef for uint64_t
342 */
343typedef uint64_t u64;
344
345/**
346 * @typedef s8
347 * @brief compatibility typedef for int8_t
348 */
349typedef int8_t  s8;
350
351/**
352 * @typedef s16
353 * @brief compatibility typedef for int16_t
354 */
355typedef int16_t s16;
356
357/**
358 * @typedef s32
359 * @brief compatibility typedef for int32_t
360 */
361typedef int32_t s32;
362
363/**
364 * @typedef s64
365 * @brief compatibility typedef for int64_t
366 */
367typedef int64_t s64;
368
369#define __le16 u16
370#define __le32 u32
371#define __le64 u64
372#define __be16 u16
373#define __be32 u32
374#define __be64 u64
375
376#define ice_hweight8(x) bitcount16((u8)x)
377#define ice_hweight16(x) bitcount16(x)
378#define ice_hweight32(x) bitcount32(x)
379#define ice_hweight64(x) bitcount64(x)
380
381/**
382 * @struct ice_dma_mem
383 * @brief DMA memory allocation
384 *
385 * Contains DMA allocation bits, used to simplify DMA allocations.
386 */
387struct ice_dma_mem {
388	void *va;
389	uint64_t pa;
390	size_t size;
391
392	bus_dma_tag_t		tag;
393	bus_dmamap_t		map;
394	bus_dma_segment_t	seg;
395};
396
397
398void * ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size);
399void ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem);
400
401/**
402 * @struct ice_lock
403 * @brief simplified lock API
404 *
405 * Contains a simple lock implementation used to lock various resources.
406 */
407struct ice_lock {
408	struct mtx mutex;
409	char name[ICE_STR_BUF_LEN];
410};
411
412extern u16 ice_lock_count;
413
414/**
415 * ice_init_lock - Initialize a lock for use
416 * @lock: the lock memory to initialize
417 *
418 * OS compatibility layer to provide a simple locking mechanism. We use
419 * a mutex for this purpose.
420 */
421static inline void
422ice_init_lock(struct ice_lock *lock)
423{
424	/*
425	 * Make each lock unique by incrementing a counter each time this
426	 * function is called. Use of a u16 allows 65535 possible locks before
427	 * we'd hit a duplicate.
428	 */
429	memset(lock->name, 0, sizeof(lock->name));
430	snprintf(lock->name, ICE_STR_BUF_LEN, "ice_lock_%u", ice_lock_count++);
431	mtx_init(&lock->mutex, lock->name, NULL, MTX_DEF);
432}
433
434/**
435 * ice_acquire_lock - Acquire the lock
436 * @lock: the lock to acquire
437 *
438 * Acquires the mutex specified by the lock pointer.
439 */
440static inline void
441ice_acquire_lock(struct ice_lock *lock)
442{
443	mtx_lock(&lock->mutex);
444}
445
446/**
447 * ice_release_lock - Release the lock
448 * @lock: the lock to release
449 *
450 * Releases the mutex specified by the lock pointer.
451 */
452static inline void
453ice_release_lock(struct ice_lock *lock)
454{
455	mtx_unlock(&lock->mutex);
456}
457
458/**
459 * ice_destroy_lock - Destroy the lock to de-allocate it
460 * @lock: the lock to destroy
461 *
462 * Destroys a previously initialized lock. We only do this if the mutex was
463 * previously initialized.
464 */
465static inline void
466ice_destroy_lock(struct ice_lock *lock)
467{
468	if (mtx_initialized(&lock->mutex))
469		mtx_destroy(&lock->mutex);
470	memset(lock->name, 0, sizeof(lock->name));
471}
472
473/* Some function parameters are unused outside of MPASS/KASSERT macros. Rather
474 * than marking these as __unused all the time, mark them as __invariant_only,
475 * and define this to __unused when INVARIANTS is disabled. Otherwise, define
476 * it empty so that __invariant_only parameters are caught as unused by the
477 * INVARIANTS build.
478 */
479#ifndef INVARIANTS
480#define __invariant_only __unused
481#else
482#define __invariant_only
483#endif
484
485#define __ALWAYS_UNUSED __unused
486
487/**
488 * ice_ilog2 - Calculate the integer log base 2 of a 64bit value
489 * @n: 64bit number
490 *
491 * Calculates the integer log base 2 of a 64bit value, rounded down.
492 *
493 * @remark The integer log base 2 of zero is technically undefined, but this
494 * function will return 0 in that case.
495 *
496 */
497static inline int
498ice_ilog2(u64 n) {
499	if (n == 0)
500		return 0;
501	return flsll(n) - 1;
502}
503
504/**
505 * ice_is_pow2 - Check if the value is a power of 2
506 * @n: 64bit number
507 *
508 * Check if the given value is a power of 2.
509 *
510 * @remark FreeBSD's powerof2 function treats zero as a power of 2, while this
511 * function does not.
512 *
513 * @returns true or false
514 */
515static inline bool
516ice_is_pow2(u64 n) {
517	if (n == 0)
518		return false;
519	return powerof2(n);
520}
521#endif /* _ICE_OSDEP_H_ */
522