1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#define BXE_DRIVER_VERSION "1.78.91"
33
34#include "bxe.h"
35#include "ecore_sp.h"
36#include "ecore_init.h"
37#include "ecore_init_ops.h"
38
39#include "57710_int_offsets.h"
40#include "57711_int_offsets.h"
41#include "57712_int_offsets.h"
42
43/*
44 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
45 * explicitly here for older kernels that don't include this changeset.
46 */
47#ifndef CTLTYPE_U64
48#define CTLTYPE_U64      CTLTYPE_QUAD
49#define sysctl_handle_64 sysctl_handle_quad
50#endif
51
52/*
53 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
54 * here as zero(0) for older kernels that don't include this changeset
55 * thereby masking the functionality.
56 */
57#ifndef CSUM_TCP_IPV6
58#define CSUM_TCP_IPV6 0
59#define CSUM_UDP_IPV6 0
60#endif
61
62#define BXE_DEF_SB_ATT_IDX 0x0001
63#define BXE_DEF_SB_IDX     0x0002
64
65/*
66 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
67 * function HW initialization.
68 */
69#define FLR_WAIT_USEC     10000 /* 10 msecs */
70#define FLR_WAIT_INTERVAL 50    /* usecs */
71#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
72
73struct pbf_pN_buf_regs {
74    int pN;
75    uint32_t init_crd;
76    uint32_t crd;
77    uint32_t crd_freed;
78};
79
80struct pbf_pN_cmd_regs {
81    int pN;
82    uint32_t lines_occup;
83    uint32_t lines_freed;
84};
85
86/*
87 * PCI Device ID Table used by bxe_probe().
88 */
89#define BXE_DEVDESC_MAX 64
90static struct bxe_device_type bxe_devs[] = {
91    {
92        BRCM_VENDORID,
93        CHIP_NUM_57710,
94        PCI_ANY_ID, PCI_ANY_ID,
95        "QLogic NetXtreme II BCM57710 10GbE"
96    },
97    {
98        BRCM_VENDORID,
99        CHIP_NUM_57711,
100        PCI_ANY_ID, PCI_ANY_ID,
101        "QLogic NetXtreme II BCM57711 10GbE"
102    },
103    {
104        BRCM_VENDORID,
105        CHIP_NUM_57711E,
106        PCI_ANY_ID, PCI_ANY_ID,
107        "QLogic NetXtreme II BCM57711E 10GbE"
108    },
109    {
110        BRCM_VENDORID,
111        CHIP_NUM_57712,
112        PCI_ANY_ID, PCI_ANY_ID,
113        "QLogic NetXtreme II BCM57712 10GbE"
114    },
115    {
116        BRCM_VENDORID,
117        CHIP_NUM_57712_MF,
118        PCI_ANY_ID, PCI_ANY_ID,
119        "QLogic NetXtreme II BCM57712 MF 10GbE"
120    },
121    {
122        BRCM_VENDORID,
123        CHIP_NUM_57800,
124        PCI_ANY_ID, PCI_ANY_ID,
125        "QLogic NetXtreme II BCM57800 10GbE"
126    },
127    {
128        BRCM_VENDORID,
129        CHIP_NUM_57800_MF,
130        PCI_ANY_ID, PCI_ANY_ID,
131        "QLogic NetXtreme II BCM57800 MF 10GbE"
132    },
133    {
134        BRCM_VENDORID,
135        CHIP_NUM_57810,
136        PCI_ANY_ID, PCI_ANY_ID,
137        "QLogic NetXtreme II BCM57810 10GbE"
138    },
139    {
140        BRCM_VENDORID,
141        CHIP_NUM_57810_MF,
142        PCI_ANY_ID, PCI_ANY_ID,
143        "QLogic NetXtreme II BCM57810 MF 10GbE"
144    },
145    {
146        BRCM_VENDORID,
147        CHIP_NUM_57811,
148        PCI_ANY_ID, PCI_ANY_ID,
149        "QLogic NetXtreme II BCM57811 10GbE"
150    },
151    {
152        BRCM_VENDORID,
153        CHIP_NUM_57811_MF,
154        PCI_ANY_ID, PCI_ANY_ID,
155        "QLogic NetXtreme II BCM57811 MF 10GbE"
156    },
157    {
158        BRCM_VENDORID,
159        CHIP_NUM_57840_4_10,
160        PCI_ANY_ID, PCI_ANY_ID,
161        "QLogic NetXtreme II BCM57840 4x10GbE"
162    },
163    {
164        QLOGIC_VENDORID,
165        CHIP_NUM_57840_4_10,
166        PCI_ANY_ID, PCI_ANY_ID,
167        "QLogic NetXtreme II BCM57840 4x10GbE"
168    },
169    {
170        BRCM_VENDORID,
171        CHIP_NUM_57840_2_20,
172        PCI_ANY_ID, PCI_ANY_ID,
173        "QLogic NetXtreme II BCM57840 2x20GbE"
174    },
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57840_MF,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "QLogic NetXtreme II BCM57840 MF 10GbE"
180    },
181    {
182        0, 0, 0, 0, NULL
183    }
184};
185
186MALLOC_DECLARE(M_BXE_ILT);
187MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
188
189/*
190 * FreeBSD device entry points.
191 */
192static int bxe_probe(device_t);
193static int bxe_attach(device_t);
194static int bxe_detach(device_t);
195static int bxe_shutdown(device_t);
196
197
198/*
199 * FreeBSD KLD module/device interface event handler method.
200 */
201static device_method_t bxe_methods[] = {
202    /* Device interface (device_if.h) */
203    DEVMETHOD(device_probe,     bxe_probe),
204    DEVMETHOD(device_attach,    bxe_attach),
205    DEVMETHOD(device_detach,    bxe_detach),
206    DEVMETHOD(device_shutdown,  bxe_shutdown),
207    /* Bus interface (bus_if.h) */
208    DEVMETHOD(bus_print_child,  bus_generic_print_child),
209    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
210    KOBJMETHOD_END
211};
212
213/*
214 * FreeBSD KLD Module data declaration
215 */
216static driver_t bxe_driver = {
217    "bxe",                   /* module name */
218    bxe_methods,             /* event handler */
219    sizeof(struct bxe_softc) /* extra data */
220};
221
222/*
223 * FreeBSD dev class is needed to manage dev instances and
224 * to associate with a bus type
225 */
226static devclass_t bxe_devclass;
227
228MODULE_DEPEND(bxe, pci, 1, 1, 1);
229MODULE_DEPEND(bxe, ether, 1, 1, 1);
230DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
231
232DEBUGNET_DEFINE(bxe);
233
234/* resources needed for unloading a previously loaded device */
235
236#define BXE_PREV_WAIT_NEEDED 1
237struct mtx bxe_prev_mtx;
238MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
239struct bxe_prev_list_node {
240    LIST_ENTRY(bxe_prev_list_node) node;
241    uint8_t bus;
242    uint8_t slot;
243    uint8_t path;
244    uint8_t aer; /* XXX automatic error recovery */
245    uint8_t undi;
246};
247static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
248
249static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
250
251/* Tunable device values... */
252
253SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
254    "bxe driver parameters");
255
256/* Debug */
257unsigned long bxe_debug = 0;
258SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
259             &bxe_debug, 0, "Debug logging mode");
260
261/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
262static int bxe_interrupt_mode = INTR_MODE_MSIX;
263SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
264           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
265
266/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
267static int bxe_queue_count = 4;
268SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
269           &bxe_queue_count, 0, "Multi-Queue queue count");
270
271/* max number of buffers per queue (default RX_BD_USABLE) */
272static int bxe_max_rx_bufs = 0;
273SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
274           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
275
276/* Host interrupt coalescing RX tick timer (usecs) */
277static int bxe_hc_rx_ticks = 25;
278SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
279           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
280
281/* Host interrupt coalescing TX tick timer (usecs) */
282static int bxe_hc_tx_ticks = 50;
283SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
284           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
285
286/* Maximum number of Rx packets to process at a time */
287static int bxe_rx_budget = 0xffffffff;
288SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
289           &bxe_rx_budget, 0, "Rx processing budget");
290
291/* Maximum LRO aggregation size */
292static int bxe_max_aggregation_size = 0;
293SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
294           &bxe_max_aggregation_size, 0, "max aggregation size");
295
296/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
297static int bxe_mrrs = -1;
298SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
299           &bxe_mrrs, 0, "PCIe maximum read request size");
300
301/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
302static int bxe_autogreeen = 0;
303SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
304           &bxe_autogreeen, 0, "AutoGrEEEn support");
305
306/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
307static int bxe_udp_rss = 0;
308SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
309           &bxe_udp_rss, 0, "UDP RSS support");
310
311
312#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
313
314#define STATS_OFFSET32(stat_name)                   \
315    (offsetof(struct bxe_eth_stats, stat_name) / 4)
316
317#define Q_STATS_OFFSET32(stat_name)                   \
318    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
319
320static const struct {
321    uint32_t offset;
322    uint32_t size;
323    uint32_t flags;
324#define STATS_FLAGS_PORT  1
325#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
326#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
327    char string[STAT_NAME_LEN];
328} bxe_eth_stats_arr[] = {
329    { STATS_OFFSET32(total_bytes_received_hi),
330                8, STATS_FLAGS_BOTH, "rx_bytes" },
331    { STATS_OFFSET32(error_bytes_received_hi),
332                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
333    { STATS_OFFSET32(total_unicast_packets_received_hi),
334                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
335    { STATS_OFFSET32(total_multicast_packets_received_hi),
336                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
337    { STATS_OFFSET32(total_broadcast_packets_received_hi),
338                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
339    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
340                8, STATS_FLAGS_PORT, "rx_crc_errors" },
341    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
342                8, STATS_FLAGS_PORT, "rx_align_errors" },
343    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
344                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
345    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
346                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
347    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
348                8, STATS_FLAGS_PORT, "rx_fragments" },
349    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
350                8, STATS_FLAGS_PORT, "rx_jabbers" },
351    { STATS_OFFSET32(no_buff_discard_hi),
352                8, STATS_FLAGS_BOTH, "rx_discards" },
353    { STATS_OFFSET32(mac_filter_discard),
354                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
355    { STATS_OFFSET32(mf_tag_discard),
356                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
357    { STATS_OFFSET32(pfc_frames_received_hi),
358                8, STATS_FLAGS_PORT, "pfc_frames_received" },
359    { STATS_OFFSET32(pfc_frames_sent_hi),
360                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
361    { STATS_OFFSET32(brb_drop_hi),
362                8, STATS_FLAGS_PORT, "rx_brb_discard" },
363    { STATS_OFFSET32(brb_truncate_hi),
364                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
365    { STATS_OFFSET32(pause_frames_received_hi),
366                8, STATS_FLAGS_PORT, "rx_pause_frames" },
367    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
368                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
369    { STATS_OFFSET32(nig_timer_max),
370                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
371    { STATS_OFFSET32(total_bytes_transmitted_hi),
372                8, STATS_FLAGS_BOTH, "tx_bytes" },
373    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
374                8, STATS_FLAGS_PORT, "tx_error_bytes" },
375    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
376                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
377    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
378                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
379    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
380                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
381    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
382                8, STATS_FLAGS_PORT, "tx_mac_errors" },
383    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
384                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
385    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
386                8, STATS_FLAGS_PORT, "tx_single_collisions" },
387    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
388                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
389    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
390                8, STATS_FLAGS_PORT, "tx_deferred" },
391    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
392                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
393    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
394                8, STATS_FLAGS_PORT, "tx_late_collisions" },
395    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
396                8, STATS_FLAGS_PORT, "tx_total_collisions" },
397    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
398                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
399    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
400                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
401    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
402                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
403    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
404                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
405    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
406                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
407    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
408                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
409    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
410                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
411    { STATS_OFFSET32(pause_frames_sent_hi),
412                8, STATS_FLAGS_PORT, "tx_pause_frames" },
413    { STATS_OFFSET32(total_tpa_aggregations_hi),
414                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
415    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
416                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
417    { STATS_OFFSET32(total_tpa_bytes_hi),
418                8, STATS_FLAGS_FUNC, "tpa_bytes"},
419    { STATS_OFFSET32(eee_tx_lpi),
420                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
421    { STATS_OFFSET32(rx_calls),
422                4, STATS_FLAGS_FUNC, "rx_calls"},
423    { STATS_OFFSET32(rx_pkts),
424                4, STATS_FLAGS_FUNC, "rx_pkts"},
425    { STATS_OFFSET32(rx_tpa_pkts),
426                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
427    { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
428                4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
429    { STATS_OFFSET32(rx_bxe_service_rxsgl),
430                4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
431    { STATS_OFFSET32(rx_jumbo_sge_pkts),
432                4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
433    { STATS_OFFSET32(rx_soft_errors),
434                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
435    { STATS_OFFSET32(rx_hw_csum_errors),
436                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
437    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
438                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
439    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
440                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
441    { STATS_OFFSET32(rx_budget_reached),
442                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
443    { STATS_OFFSET32(tx_pkts),
444                4, STATS_FLAGS_FUNC, "tx_pkts"},
445    { STATS_OFFSET32(tx_soft_errors),
446                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
447    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
448                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
449    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
450                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
451    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
452                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
453    { STATS_OFFSET32(tx_ofld_frames_lso),
454                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
455    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
456                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
457    { STATS_OFFSET32(tx_encap_failures),
458                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
459    { STATS_OFFSET32(tx_hw_queue_full),
460                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
461    { STATS_OFFSET32(tx_hw_max_queue_depth),
462                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
463    { STATS_OFFSET32(tx_dma_mapping_failure),
464                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
465    { STATS_OFFSET32(tx_max_drbr_queue_depth),
466                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
467    { STATS_OFFSET32(tx_window_violation_std),
468                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
469    { STATS_OFFSET32(tx_window_violation_tso),
470                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
471    { STATS_OFFSET32(tx_chain_lost_mbuf),
472                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
473    { STATS_OFFSET32(tx_frames_deferred),
474                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
475    { STATS_OFFSET32(tx_queue_xoff),
476                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
477    { STATS_OFFSET32(mbuf_defrag_attempts),
478                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
479    { STATS_OFFSET32(mbuf_defrag_failures),
480                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
481    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
482                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
483    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
484                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
485    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
486                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
487    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
488                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
489    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
490                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
491    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
492                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
493    { STATS_OFFSET32(mbuf_alloc_tx),
494                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
495    { STATS_OFFSET32(mbuf_alloc_rx),
496                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
497    { STATS_OFFSET32(mbuf_alloc_sge),
498                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
499    { STATS_OFFSET32(mbuf_alloc_tpa),
500                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
501    { STATS_OFFSET32(tx_queue_full_return),
502                4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
503    { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
504                4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
505    { STATS_OFFSET32(tx_request_link_down_failures),
506                4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
507    { STATS_OFFSET32(bd_avail_too_less_failures),
508                4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
509    { STATS_OFFSET32(tx_mq_not_empty),
510                4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
511    { STATS_OFFSET32(nsegs_path1_errors),
512                4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
513    { STATS_OFFSET32(nsegs_path2_errors),
514                4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
515
516
517};
518
519static const struct {
520    uint32_t offset;
521    uint32_t size;
522    char string[STAT_NAME_LEN];
523} bxe_eth_q_stats_arr[] = {
524    { Q_STATS_OFFSET32(total_bytes_received_hi),
525                8, "rx_bytes" },
526    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
527                8, "rx_ucast_packets" },
528    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
529                8, "rx_mcast_packets" },
530    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
531                8, "rx_bcast_packets" },
532    { Q_STATS_OFFSET32(no_buff_discard_hi),
533                8, "rx_discards" },
534    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
535                8, "tx_bytes" },
536    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
537                8, "tx_ucast_packets" },
538    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
539                8, "tx_mcast_packets" },
540    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
541                8, "tx_bcast_packets" },
542    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
543                8, "tpa_aggregations" },
544    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
545                8, "tpa_aggregated_frames"},
546    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
547                8, "tpa_bytes"},
548    { Q_STATS_OFFSET32(rx_calls),
549                4, "rx_calls"},
550    { Q_STATS_OFFSET32(rx_pkts),
551                4, "rx_pkts"},
552    { Q_STATS_OFFSET32(rx_tpa_pkts),
553                4, "rx_tpa_pkts"},
554    { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
555                4, "rx_erroneous_jumbo_sge_pkts"},
556    { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
557                4, "rx_bxe_service_rxsgl"},
558    { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
559                4, "rx_jumbo_sge_pkts"},
560    { Q_STATS_OFFSET32(rx_soft_errors),
561                4, "rx_soft_errors"},
562    { Q_STATS_OFFSET32(rx_hw_csum_errors),
563                4, "rx_hw_csum_errors"},
564    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
565                4, "rx_ofld_frames_csum_ip"},
566    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
567                4, "rx_ofld_frames_csum_tcp_udp"},
568    { Q_STATS_OFFSET32(rx_budget_reached),
569                4, "rx_budget_reached"},
570    { Q_STATS_OFFSET32(tx_pkts),
571                4, "tx_pkts"},
572    { Q_STATS_OFFSET32(tx_soft_errors),
573                4, "tx_soft_errors"},
574    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
575                4, "tx_ofld_frames_csum_ip"},
576    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
577                4, "tx_ofld_frames_csum_tcp"},
578    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
579                4, "tx_ofld_frames_csum_udp"},
580    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
581                4, "tx_ofld_frames_lso"},
582    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
583                4, "tx_ofld_frames_lso_hdr_splits"},
584    { Q_STATS_OFFSET32(tx_encap_failures),
585                4, "tx_encap_failures"},
586    { Q_STATS_OFFSET32(tx_hw_queue_full),
587                4, "tx_hw_queue_full"},
588    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
589                4, "tx_hw_max_queue_depth"},
590    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
591                4, "tx_dma_mapping_failure"},
592    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
593                4, "tx_max_drbr_queue_depth"},
594    { Q_STATS_OFFSET32(tx_window_violation_std),
595                4, "tx_window_violation_std"},
596    { Q_STATS_OFFSET32(tx_window_violation_tso),
597                4, "tx_window_violation_tso"},
598    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
599                4, "tx_chain_lost_mbuf"},
600    { Q_STATS_OFFSET32(tx_frames_deferred),
601                4, "tx_frames_deferred"},
602    { Q_STATS_OFFSET32(tx_queue_xoff),
603                4, "tx_queue_xoff"},
604    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
605                4, "mbuf_defrag_attempts"},
606    { Q_STATS_OFFSET32(mbuf_defrag_failures),
607                4, "mbuf_defrag_failures"},
608    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
609                4, "mbuf_rx_bd_alloc_failed"},
610    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
611                4, "mbuf_rx_bd_mapping_failed"},
612    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
613                4, "mbuf_rx_tpa_alloc_failed"},
614    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
615                4, "mbuf_rx_tpa_mapping_failed"},
616    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
617                4, "mbuf_rx_sge_alloc_failed"},
618    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
619                4, "mbuf_rx_sge_mapping_failed"},
620    { Q_STATS_OFFSET32(mbuf_alloc_tx),
621                4, "mbuf_alloc_tx"},
622    { Q_STATS_OFFSET32(mbuf_alloc_rx),
623                4, "mbuf_alloc_rx"},
624    { Q_STATS_OFFSET32(mbuf_alloc_sge),
625                4, "mbuf_alloc_sge"},
626    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
627                4, "mbuf_alloc_tpa"},
628    { Q_STATS_OFFSET32(tx_queue_full_return),
629                4, "tx_queue_full_return"},
630    { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
631                4, "bxe_tx_mq_sc_state_failures"},
632    { Q_STATS_OFFSET32(tx_request_link_down_failures),
633                4, "tx_request_link_down_failures"},
634    { Q_STATS_OFFSET32(bd_avail_too_less_failures),
635                4, "bd_avail_too_less_failures"},
636    { Q_STATS_OFFSET32(tx_mq_not_empty),
637                4, "tx_mq_not_empty"},
638    { Q_STATS_OFFSET32(nsegs_path1_errors),
639                4, "nsegs_path1_errors"},
640    { Q_STATS_OFFSET32(nsegs_path2_errors),
641                4, "nsegs_path2_errors"}
642
643
644};
645
646#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
647#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
648
649
650static void    bxe_cmng_fns_init(struct bxe_softc *sc,
651                                 uint8_t          read_cfg,
652                                 uint8_t          cmng_type);
653static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
654static void    storm_memset_cmng(struct bxe_softc *sc,
655                                 struct cmng_init *cmng,
656                                 uint8_t          port);
657static void    bxe_set_reset_global(struct bxe_softc *sc);
658static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
659static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
660                                 int              engine);
661static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
662static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
663                                   uint8_t          *global,
664                                   uint8_t          print);
665static void    bxe_int_disable(struct bxe_softc *sc);
666static int     bxe_release_leader_lock(struct bxe_softc *sc);
667static void    bxe_pf_disable(struct bxe_softc *sc);
668static void    bxe_free_fp_buffers(struct bxe_softc *sc);
669static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
670                                      struct bxe_fastpath *fp,
671                                      uint16_t            rx_bd_prod,
672                                      uint16_t            rx_cq_prod,
673                                      uint16_t            rx_sge_prod);
674static void    bxe_link_report_locked(struct bxe_softc *sc);
675static void    bxe_link_report(struct bxe_softc *sc);
676static void    bxe_link_status_update(struct bxe_softc *sc);
677static void    bxe_periodic_callout_func(void *xsc);
678static void    bxe_periodic_start(struct bxe_softc *sc);
679static void    bxe_periodic_stop(struct bxe_softc *sc);
680static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
681                                    uint16_t prev_index,
682                                    uint16_t index);
683static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
684                                     int                 queue);
685static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
686                                     uint16_t            index);
687static uint8_t bxe_txeof(struct bxe_softc *sc,
688                         struct bxe_fastpath *fp);
689static void    bxe_task_fp(struct bxe_fastpath *fp);
690static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
691                                     struct mbuf      *m,
692                                     uint8_t          contents);
693static int     bxe_alloc_mem(struct bxe_softc *sc);
694static void    bxe_free_mem(struct bxe_softc *sc);
695static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
696static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
697static int     bxe_interrupt_attach(struct bxe_softc *sc);
698static void    bxe_interrupt_detach(struct bxe_softc *sc);
699static void    bxe_set_rx_mode(struct bxe_softc *sc);
700static int     bxe_init_locked(struct bxe_softc *sc);
701static int     bxe_stop_locked(struct bxe_softc *sc);
702static void    bxe_sp_err_timeout_task(void *arg, int pending);
703void           bxe_parity_recover(struct bxe_softc *sc);
704void           bxe_handle_error(struct bxe_softc *sc);
705static __noinline int bxe_nic_load(struct bxe_softc *sc,
706                                   int              load_mode);
707static __noinline int bxe_nic_unload(struct bxe_softc *sc,
708                                     uint32_t         unload_mode,
709                                     uint8_t          keep_link);
710
711static void bxe_handle_sp_tq(void *context, int pending);
712static void bxe_handle_fp_tq(void *context, int pending);
713
714static int bxe_add_cdev(struct bxe_softc *sc);
715static void bxe_del_cdev(struct bxe_softc *sc);
716int bxe_grc_dump(struct bxe_softc *sc);
717static int bxe_alloc_buf_rings(struct bxe_softc *sc);
718static void bxe_free_buf_rings(struct bxe_softc *sc);
719
720/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
721uint32_t
722calc_crc32(uint8_t  *crc32_packet,
723           uint32_t crc32_length,
724           uint32_t crc32_seed,
725           uint8_t  complement)
726{
727   uint32_t byte         = 0;
728   uint32_t bit          = 0;
729   uint8_t  msb          = 0;
730   uint32_t temp         = 0;
731   uint32_t shft         = 0;
732   uint8_t  current_byte = 0;
733   uint32_t crc32_result = crc32_seed;
734   const uint32_t CRC32_POLY = 0x1edc6f41;
735
736   if ((crc32_packet == NULL) ||
737       (crc32_length == 0) ||
738       ((crc32_length % 8) != 0))
739    {
740        return (crc32_result);
741    }
742
743    for (byte = 0; byte < crc32_length; byte = byte + 1)
744    {
745        current_byte = crc32_packet[byte];
746        for (bit = 0; bit < 8; bit = bit + 1)
747        {
748            /* msb = crc32_result[31]; */
749            msb = (uint8_t)(crc32_result >> 31);
750
751            crc32_result = crc32_result << 1;
752
753            /* it (msb != current_byte[bit]) */
754            if (msb != (0x1 & (current_byte >> bit)))
755            {
756                crc32_result = crc32_result ^ CRC32_POLY;
757                /* crc32_result[0] = 1 */
758                crc32_result |= 1;
759            }
760        }
761    }
762
763    /* Last step is to:
764     * 1. "mirror" every bit
765     * 2. swap the 4 bytes
766     * 3. complement each bit
767     */
768
769    /* Mirror */
770    temp = crc32_result;
771    shft = sizeof(crc32_result) * 8 - 1;
772
773    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
774    {
775        temp <<= 1;
776        temp |= crc32_result & 1;
777        shft-- ;
778    }
779
780    /* temp[31-bit] = crc32_result[bit] */
781    temp <<= shft;
782
783    /* Swap */
784    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
785    {
786        uint32_t t0, t1, t2, t3;
787        t0 = (0x000000ff & (temp >> 24));
788        t1 = (0x0000ff00 & (temp >> 8));
789        t2 = (0x00ff0000 & (temp << 8));
790        t3 = (0xff000000 & (temp << 24));
791        crc32_result = t0 | t1 | t2 | t3;
792    }
793
794    /* Complement */
795    if (complement)
796    {
797        crc32_result = ~crc32_result;
798    }
799
800    return (crc32_result);
801}
802
803int
804bxe_test_bit(int                    nr,
805             volatile unsigned long *addr)
806{
807    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
808}
809
810void
811bxe_set_bit(unsigned int           nr,
812            volatile unsigned long *addr)
813{
814    atomic_set_acq_long(addr, (1 << nr));
815}
816
817void
818bxe_clear_bit(int                    nr,
819              volatile unsigned long *addr)
820{
821    atomic_clear_acq_long(addr, (1 << nr));
822}
823
824int
825bxe_test_and_set_bit(int                    nr,
826                       volatile unsigned long *addr)
827{
828    unsigned long x;
829    nr = (1 << nr);
830    do {
831        x = *addr;
832    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
833    // if (x & nr) bit_was_set; else bit_was_not_set;
834    return (x & nr);
835}
836
837int
838bxe_test_and_clear_bit(int                    nr,
839                       volatile unsigned long *addr)
840{
841    unsigned long x;
842    nr = (1 << nr);
843    do {
844        x = *addr;
845    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
846    // if (x & nr) bit_was_set; else bit_was_not_set;
847    return (x & nr);
848}
849
850int
851bxe_cmpxchg(volatile int *addr,
852            int          old,
853            int          new)
854{
855    int x;
856    do {
857        x = *addr;
858    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
859    return (x);
860}
861
862/*
863 * Get DMA memory from the OS.
864 *
865 * Validates that the OS has provided DMA buffers in response to a
866 * bus_dmamap_load call and saves the physical address of those buffers.
867 * When the callback is used the OS will return 0 for the mapping function
868 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
869 * failures back to the caller.
870 *
871 * Returns:
872 *   Nothing.
873 */
874static void
875bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
876{
877    struct bxe_dma *dma = arg;
878
879    if (error) {
880        dma->paddr = 0;
881        dma->nseg  = 0;
882        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
883    } else {
884        dma->paddr = segs->ds_addr;
885        dma->nseg  = nseg;
886    }
887}
888
889/*
890 * Allocate a block of memory and map it for DMA. No partial completions
891 * allowed and release any resources acquired if we can't acquire all
892 * resources.
893 *
894 * Returns:
895 *   0 = Success, !0 = Failure
896 */
897int
898bxe_dma_alloc(struct bxe_softc *sc,
899              bus_size_t       size,
900              struct bxe_dma   *dma,
901              const char       *msg)
902{
903    int rc;
904
905    if (dma->size > 0) {
906        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
907              (unsigned long)dma->size);
908        return (1);
909    }
910
911    memset(dma, 0, sizeof(*dma)); /* sanity */
912    dma->sc   = sc;
913    dma->size = size;
914    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
915
916    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
917                            BCM_PAGE_SIZE,      /* alignment */
918                            0,                  /* boundary limit */
919                            BUS_SPACE_MAXADDR,  /* restricted low */
920                            BUS_SPACE_MAXADDR,  /* restricted hi */
921                            NULL,               /* addr filter() */
922                            NULL,               /* addr filter() arg */
923                            size,               /* max map size */
924                            1,                  /* num discontinuous */
925                            size,               /* max seg size */
926                            BUS_DMA_ALLOCNOW,   /* flags */
927                            NULL,               /* lock() */
928                            NULL,               /* lock() arg */
929                            &dma->tag);         /* returned dma tag */
930    if (rc != 0) {
931        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
932        memset(dma, 0, sizeof(*dma));
933        return (1);
934    }
935
936    rc = bus_dmamem_alloc(dma->tag,
937                          (void **)&dma->vaddr,
938                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
939                          &dma->map);
940    if (rc != 0) {
941        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
942        bus_dma_tag_destroy(dma->tag);
943        memset(dma, 0, sizeof(*dma));
944        return (1);
945    }
946
947    rc = bus_dmamap_load(dma->tag,
948                         dma->map,
949                         dma->vaddr,
950                         size,
951                         bxe_dma_map_addr, /* BLOGD in here */
952                         dma,
953                         BUS_DMA_NOWAIT);
954    if (rc != 0) {
955        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
956        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
957        bus_dma_tag_destroy(dma->tag);
958        memset(dma, 0, sizeof(*dma));
959        return (1);
960    }
961
962    return (0);
963}
964
965void
966bxe_dma_free(struct bxe_softc *sc,
967             struct bxe_dma   *dma)
968{
969    if (dma->size > 0) {
970        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
971
972        bus_dmamap_sync(dma->tag, dma->map,
973                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
974        bus_dmamap_unload(dma->tag, dma->map);
975        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
976        bus_dma_tag_destroy(dma->tag);
977    }
978
979    memset(dma, 0, sizeof(*dma));
980}
981
982/*
983 * These indirect read and write routines are only during init.
984 * The locking is handled by the MCP.
985 */
986
987void
988bxe_reg_wr_ind(struct bxe_softc *sc,
989               uint32_t         addr,
990               uint32_t         val)
991{
992    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
993    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
994    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
995}
996
997uint32_t
998bxe_reg_rd_ind(struct bxe_softc *sc,
999               uint32_t         addr)
1000{
1001    uint32_t val;
1002
1003    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1004    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1005    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1006
1007    return (val);
1008}
1009
1010static int
1011bxe_acquire_hw_lock(struct bxe_softc *sc,
1012                    uint32_t         resource)
1013{
1014    uint32_t lock_status;
1015    uint32_t resource_bit = (1 << resource);
1016    int func = SC_FUNC(sc);
1017    uint32_t hw_lock_control_reg;
1018    int cnt;
1019
1020    /* validate the resource is within range */
1021    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1022        BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1023            " resource_bit 0x%x\n", resource, resource_bit);
1024        return (-1);
1025    }
1026
1027    if (func <= 5) {
1028        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1029    } else {
1030        hw_lock_control_reg =
1031                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1032    }
1033
1034    /* validate the resource is not already taken */
1035    lock_status = REG_RD(sc, hw_lock_control_reg);
1036    if (lock_status & resource_bit) {
1037        BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1038              resource, lock_status, resource_bit);
1039        return (-1);
1040    }
1041
1042    /* try every 5ms for 5 seconds */
1043    for (cnt = 0; cnt < 1000; cnt++) {
1044        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1045        lock_status = REG_RD(sc, hw_lock_control_reg);
1046        if (lock_status & resource_bit) {
1047            return (0);
1048        }
1049        DELAY(5000);
1050    }
1051
1052    BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1053        resource, resource_bit);
1054    return (-1);
1055}
1056
1057static int
1058bxe_release_hw_lock(struct bxe_softc *sc,
1059                    uint32_t         resource)
1060{
1061    uint32_t lock_status;
1062    uint32_t resource_bit = (1 << resource);
1063    int func = SC_FUNC(sc);
1064    uint32_t hw_lock_control_reg;
1065
1066    /* validate the resource is within range */
1067    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1068        BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1069            " resource_bit 0x%x\n", resource, resource_bit);
1070        return (-1);
1071    }
1072
1073    if (func <= 5) {
1074        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1075    } else {
1076        hw_lock_control_reg =
1077                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1078    }
1079
1080    /* validate the resource is currently taken */
1081    lock_status = REG_RD(sc, hw_lock_control_reg);
1082    if (!(lock_status & resource_bit)) {
1083        BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1084              resource, lock_status, resource_bit);
1085        return (-1);
1086    }
1087
1088    REG_WR(sc, hw_lock_control_reg, resource_bit);
1089    return (0);
1090}
1091static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1092{
1093	BXE_PHY_LOCK(sc);
1094	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1095}
1096
1097static void bxe_release_phy_lock(struct bxe_softc *sc)
1098{
1099	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1100	BXE_PHY_UNLOCK(sc);
1101}
1102/*
1103 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1104 * had we done things the other way around, if two pfs from the same port
1105 * would attempt to access nvram at the same time, we could run into a
1106 * scenario such as:
1107 * pf A takes the port lock.
1108 * pf B succeeds in taking the same lock since they are from the same port.
1109 * pf A takes the per pf misc lock. Performs eeprom access.
1110 * pf A finishes. Unlocks the per pf misc lock.
1111 * Pf B takes the lock and proceeds to perform it's own access.
1112 * pf A unlocks the per port lock, while pf B is still working (!).
1113 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1114 * access corrupted by pf B).*
1115 */
1116static int
1117bxe_acquire_nvram_lock(struct bxe_softc *sc)
1118{
1119    int port = SC_PORT(sc);
1120    int count, i;
1121    uint32_t val = 0;
1122
1123    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1124    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1125
1126    /* adjust timeout for emulation/FPGA */
1127    count = NVRAM_TIMEOUT_COUNT;
1128    if (CHIP_REV_IS_SLOW(sc)) {
1129        count *= 100;
1130    }
1131
1132    /* request access to nvram interface */
1133    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1134           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1135
1136    for (i = 0; i < count*10; i++) {
1137        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1138        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1139            break;
1140        }
1141
1142        DELAY(5);
1143    }
1144
1145    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1146        BLOGE(sc, "Cannot get access to nvram interface "
1147            "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1148            port, val);
1149        return (-1);
1150    }
1151
1152    return (0);
1153}
1154
1155static int
1156bxe_release_nvram_lock(struct bxe_softc *sc)
1157{
1158    int port = SC_PORT(sc);
1159    int count, i;
1160    uint32_t val = 0;
1161
1162    /* adjust timeout for emulation/FPGA */
1163    count = NVRAM_TIMEOUT_COUNT;
1164    if (CHIP_REV_IS_SLOW(sc)) {
1165        count *= 100;
1166    }
1167
1168    /* relinquish nvram interface */
1169    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1170           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1171
1172    for (i = 0; i < count*10; i++) {
1173        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1174        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1175            break;
1176        }
1177
1178        DELAY(5);
1179    }
1180
1181    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1182        BLOGE(sc, "Cannot free access to nvram interface "
1183            "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1184            port, val);
1185        return (-1);
1186    }
1187
1188    /* release HW lock: protect against other PFs in PF Direct Assignment */
1189    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1190
1191    return (0);
1192}
1193
1194static void
1195bxe_enable_nvram_access(struct bxe_softc *sc)
1196{
1197    uint32_t val;
1198
1199    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1200
1201    /* enable both bits, even on read */
1202    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1203           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1204}
1205
1206static void
1207bxe_disable_nvram_access(struct bxe_softc *sc)
1208{
1209    uint32_t val;
1210
1211    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1212
1213    /* disable both bits, even after read */
1214    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1215           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1216                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1217}
1218
1219static int
1220bxe_nvram_read_dword(struct bxe_softc *sc,
1221                     uint32_t         offset,
1222                     uint32_t         *ret_val,
1223                     uint32_t         cmd_flags)
1224{
1225    int count, i, rc;
1226    uint32_t val;
1227
1228    /* build the command word */
1229    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1230
1231    /* need to clear DONE bit separately */
1232    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1233
1234    /* address of the NVRAM to read from */
1235    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1236           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1237
1238    /* issue a read command */
1239    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1240
1241    /* adjust timeout for emulation/FPGA */
1242    count = NVRAM_TIMEOUT_COUNT;
1243    if (CHIP_REV_IS_SLOW(sc)) {
1244        count *= 100;
1245    }
1246
1247    /* wait for completion */
1248    *ret_val = 0;
1249    rc = -1;
1250    for (i = 0; i < count; i++) {
1251        DELAY(5);
1252        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1253
1254        if (val & MCPR_NVM_COMMAND_DONE) {
1255            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1256            /* we read nvram data in cpu order
1257             * but ethtool sees it as an array of bytes
1258             * converting to big-endian will do the work
1259             */
1260            *ret_val = htobe32(val);
1261            rc = 0;
1262            break;
1263        }
1264    }
1265
1266    if (rc == -1) {
1267        BLOGE(sc, "nvram read timeout expired "
1268            "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1269            offset, cmd_flags, val);
1270    }
1271
1272    return (rc);
1273}
1274
1275static int
1276bxe_nvram_read(struct bxe_softc *sc,
1277               uint32_t         offset,
1278               uint8_t          *ret_buf,
1279               int              buf_size)
1280{
1281    uint32_t cmd_flags;
1282    uint32_t val;
1283    int rc;
1284
1285    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1286        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1287              offset, buf_size);
1288        return (-1);
1289    }
1290
1291    if ((offset + buf_size) > sc->devinfo.flash_size) {
1292        BLOGE(sc, "Invalid parameter, "
1293                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1294              offset, buf_size, sc->devinfo.flash_size);
1295        return (-1);
1296    }
1297
1298    /* request access to nvram interface */
1299    rc = bxe_acquire_nvram_lock(sc);
1300    if (rc) {
1301        return (rc);
1302    }
1303
1304    /* enable access to nvram interface */
1305    bxe_enable_nvram_access(sc);
1306
1307    /* read the first word(s) */
1308    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1309    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1310        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1311        memcpy(ret_buf, &val, 4);
1312
1313        /* advance to the next dword */
1314        offset += sizeof(uint32_t);
1315        ret_buf += sizeof(uint32_t);
1316        buf_size -= sizeof(uint32_t);
1317        cmd_flags = 0;
1318    }
1319
1320    if (rc == 0) {
1321        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1322        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1323        memcpy(ret_buf, &val, 4);
1324    }
1325
1326    /* disable access to nvram interface */
1327    bxe_disable_nvram_access(sc);
1328    bxe_release_nvram_lock(sc);
1329
1330    return (rc);
1331}
1332
1333static int
1334bxe_nvram_write_dword(struct bxe_softc *sc,
1335                      uint32_t         offset,
1336                      uint32_t         val,
1337                      uint32_t         cmd_flags)
1338{
1339    int count, i, rc;
1340
1341    /* build the command word */
1342    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1343
1344    /* need to clear DONE bit separately */
1345    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1346
1347    /* write the data */
1348    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1349
1350    /* address of the NVRAM to write to */
1351    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1352           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1353
1354    /* issue the write command */
1355    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1356
1357    /* adjust timeout for emulation/FPGA */
1358    count = NVRAM_TIMEOUT_COUNT;
1359    if (CHIP_REV_IS_SLOW(sc)) {
1360        count *= 100;
1361    }
1362
1363    /* wait for completion */
1364    rc = -1;
1365    for (i = 0; i < count; i++) {
1366        DELAY(5);
1367        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1368        if (val & MCPR_NVM_COMMAND_DONE) {
1369            rc = 0;
1370            break;
1371        }
1372    }
1373
1374    if (rc == -1) {
1375        BLOGE(sc, "nvram write timeout expired "
1376            "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1377            offset, cmd_flags, val);
1378    }
1379
1380    return (rc);
1381}
1382
1383#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1384
1385static int
1386bxe_nvram_write1(struct bxe_softc *sc,
1387                 uint32_t         offset,
1388                 uint8_t          *data_buf,
1389                 int              buf_size)
1390{
1391    uint32_t cmd_flags;
1392    uint32_t align_offset;
1393    uint32_t val;
1394    int rc;
1395
1396    if ((offset + buf_size) > sc->devinfo.flash_size) {
1397        BLOGE(sc, "Invalid parameter, "
1398                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1399              offset, buf_size, sc->devinfo.flash_size);
1400        return (-1);
1401    }
1402
1403    /* request access to nvram interface */
1404    rc = bxe_acquire_nvram_lock(sc);
1405    if (rc) {
1406        return (rc);
1407    }
1408
1409    /* enable access to nvram interface */
1410    bxe_enable_nvram_access(sc);
1411
1412    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1413    align_offset = (offset & ~0x03);
1414    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1415
1416    if (rc == 0) {
1417        val &= ~(0xff << BYTE_OFFSET(offset));
1418        val |= (*data_buf << BYTE_OFFSET(offset));
1419
1420        /* nvram data is returned as an array of bytes
1421         * convert it back to cpu order
1422         */
1423        val = be32toh(val);
1424
1425        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1426    }
1427
1428    /* disable access to nvram interface */
1429    bxe_disable_nvram_access(sc);
1430    bxe_release_nvram_lock(sc);
1431
1432    return (rc);
1433}
1434
1435static int
1436bxe_nvram_write(struct bxe_softc *sc,
1437                uint32_t         offset,
1438                uint8_t          *data_buf,
1439                int              buf_size)
1440{
1441    uint32_t cmd_flags;
1442    uint32_t val;
1443    uint32_t written_so_far;
1444    int rc;
1445
1446    if (buf_size == 1) {
1447        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1448    }
1449
1450    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1451        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1452              offset, buf_size);
1453        return (-1);
1454    }
1455
1456    if (buf_size == 0) {
1457        return (0); /* nothing to do */
1458    }
1459
1460    if ((offset + buf_size) > sc->devinfo.flash_size) {
1461        BLOGE(sc, "Invalid parameter, "
1462                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1463              offset, buf_size, sc->devinfo.flash_size);
1464        return (-1);
1465    }
1466
1467    /* request access to nvram interface */
1468    rc = bxe_acquire_nvram_lock(sc);
1469    if (rc) {
1470        return (rc);
1471    }
1472
1473    /* enable access to nvram interface */
1474    bxe_enable_nvram_access(sc);
1475
1476    written_so_far = 0;
1477    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1478    while ((written_so_far < buf_size) && (rc == 0)) {
1479        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1480            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1481        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1482            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1483        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1484            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1485        }
1486
1487        memcpy(&val, data_buf, 4);
1488
1489        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1490
1491        /* advance to the next dword */
1492        offset += sizeof(uint32_t);
1493        data_buf += sizeof(uint32_t);
1494        written_so_far += sizeof(uint32_t);
1495        cmd_flags = 0;
1496    }
1497
1498    /* disable access to nvram interface */
1499    bxe_disable_nvram_access(sc);
1500    bxe_release_nvram_lock(sc);
1501
1502    return (rc);
1503}
1504
1505/* copy command into DMAE command memory and set DMAE command Go */
1506void
1507bxe_post_dmae(struct bxe_softc    *sc,
1508              struct dmae_cmd *dmae,
1509              int                 idx)
1510{
1511    uint32_t cmd_offset;
1512    int i;
1513
1514    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1515    for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1516        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1517    }
1518
1519    REG_WR(sc, dmae_reg_go_c[idx], 1);
1520}
1521
1522uint32_t
1523bxe_dmae_opcode_add_comp(uint32_t opcode,
1524                         uint8_t  comp_type)
1525{
1526    return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1527                      DMAE_CMD_C_TYPE_ENABLE));
1528}
1529
1530uint32_t
1531bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1532{
1533    return (opcode & ~DMAE_CMD_SRC_RESET);
1534}
1535
1536uint32_t
1537bxe_dmae_opcode(struct bxe_softc *sc,
1538                uint8_t          src_type,
1539                uint8_t          dst_type,
1540                uint8_t          with_comp,
1541                uint8_t          comp_type)
1542{
1543    uint32_t opcode = 0;
1544
1545    opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1546               (dst_type << DMAE_CMD_DST_SHIFT));
1547
1548    opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1549
1550    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1551
1552    opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1553               (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1554
1555    opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1556
1557#ifdef __BIG_ENDIAN
1558    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1559#else
1560    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1561#endif
1562
1563    if (with_comp) {
1564        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1565    }
1566
1567    return (opcode);
1568}
1569
1570static void
1571bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1572                        struct dmae_cmd *dmae,
1573                        uint8_t             src_type,
1574                        uint8_t             dst_type)
1575{
1576    memset(dmae, 0, sizeof(struct dmae_cmd));
1577
1578    /* set the opcode */
1579    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1580                                   TRUE, DMAE_COMP_PCI);
1581
1582    /* fill in the completion parameters */
1583    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1584    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1585    dmae->comp_val     = DMAE_COMP_VAL;
1586}
1587
1588/* issue a DMAE command over the init channel and wait for completion */
1589static int
1590bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1591                         struct dmae_cmd *dmae)
1592{
1593    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1594    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1595
1596    BXE_DMAE_LOCK(sc);
1597
1598    /* reset completion */
1599    *wb_comp = 0;
1600
1601    /* post the command on the channel used for initializations */
1602    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1603
1604    /* wait for completion */
1605    DELAY(5);
1606
1607    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1608        if (!timeout ||
1609            (sc->recovery_state != BXE_RECOVERY_DONE &&
1610             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1611            BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1612                *wb_comp, sc->recovery_state);
1613            BXE_DMAE_UNLOCK(sc);
1614            return (DMAE_TIMEOUT);
1615        }
1616
1617        timeout--;
1618        DELAY(50);
1619    }
1620
1621    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1622        BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1623                *wb_comp, sc->recovery_state);
1624        BXE_DMAE_UNLOCK(sc);
1625        return (DMAE_PCI_ERROR);
1626    }
1627
1628    BXE_DMAE_UNLOCK(sc);
1629    return (0);
1630}
1631
1632void
1633bxe_read_dmae(struct bxe_softc *sc,
1634              uint32_t         src_addr,
1635              uint32_t         len32)
1636{
1637    struct dmae_cmd dmae;
1638    uint32_t *data;
1639    int i, rc;
1640
1641    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1642
1643    if (!sc->dmae_ready) {
1644        data = BXE_SP(sc, wb_data[0]);
1645
1646        for (i = 0; i < len32; i++) {
1647            data[i] = (CHIP_IS_E1(sc)) ?
1648                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1649                          REG_RD(sc, (src_addr + (i * 4)));
1650        }
1651
1652        return;
1653    }
1654
1655    /* set opcode and fixed command fields */
1656    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1657
1658    /* fill in addresses and len */
1659    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1660    dmae.src_addr_hi = 0;
1661    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1662    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1663    dmae.len         = len32;
1664
1665    /* issue the command and wait for completion */
1666    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1667        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1668    }
1669}
1670
1671void
1672bxe_write_dmae(struct bxe_softc *sc,
1673               bus_addr_t       dma_addr,
1674               uint32_t         dst_addr,
1675               uint32_t         len32)
1676{
1677    struct dmae_cmd dmae;
1678    int rc;
1679
1680    if (!sc->dmae_ready) {
1681        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1682
1683        if (CHIP_IS_E1(sc)) {
1684            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1685        } else {
1686            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1687        }
1688
1689        return;
1690    }
1691
1692    /* set opcode and fixed command fields */
1693    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1694
1695    /* fill in addresses and len */
1696    dmae.src_addr_lo = U64_LO(dma_addr);
1697    dmae.src_addr_hi = U64_HI(dma_addr);
1698    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1699    dmae.dst_addr_hi = 0;
1700    dmae.len         = len32;
1701
1702    /* issue the command and wait for completion */
1703    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1704        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1705    }
1706}
1707
1708void
1709bxe_write_dmae_phys_len(struct bxe_softc *sc,
1710                        bus_addr_t       phys_addr,
1711                        uint32_t         addr,
1712                        uint32_t         len)
1713{
1714    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1715    int offset = 0;
1716
1717    while (len > dmae_wr_max) {
1718        bxe_write_dmae(sc,
1719                       (phys_addr + offset), /* src DMA address */
1720                       (addr + offset),      /* dst GRC address */
1721                       dmae_wr_max);
1722        offset += (dmae_wr_max * 4);
1723        len -= dmae_wr_max;
1724    }
1725
1726    bxe_write_dmae(sc,
1727                   (phys_addr + offset), /* src DMA address */
1728                   (addr + offset),      /* dst GRC address */
1729                   len);
1730}
1731
1732void
1733bxe_set_ctx_validation(struct bxe_softc   *sc,
1734                       struct eth_context *cxt,
1735                       uint32_t           cid)
1736{
1737    /* ustorm cxt validation */
1738    cxt->ustorm_ag_context.cdu_usage =
1739        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1740            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1741    /* xcontext validation */
1742    cxt->xstorm_ag_context.cdu_reserved =
1743        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1744            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1745}
1746
1747static void
1748bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1749                            uint8_t          port,
1750                            uint8_t          fw_sb_id,
1751                            uint8_t          sb_index,
1752                            uint8_t          ticks)
1753{
1754    uint32_t addr =
1755        (BAR_CSTRORM_INTMEM +
1756         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1757
1758    REG_WR8(sc, addr, ticks);
1759
1760    BLOGD(sc, DBG_LOAD,
1761          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1762          port, fw_sb_id, sb_index, ticks);
1763}
1764
1765static void
1766bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1767                            uint8_t          port,
1768                            uint16_t         fw_sb_id,
1769                            uint8_t          sb_index,
1770                            uint8_t          disable)
1771{
1772    uint32_t enable_flag =
1773        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1774    uint32_t addr =
1775        (BAR_CSTRORM_INTMEM +
1776         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1777    uint8_t flags;
1778
1779    /* clear and set */
1780    flags = REG_RD8(sc, addr);
1781    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1782    flags |= enable_flag;
1783    REG_WR8(sc, addr, flags);
1784
1785    BLOGD(sc, DBG_LOAD,
1786          "port %d fw_sb_id %d sb_index %d disable %d\n",
1787          port, fw_sb_id, sb_index, disable);
1788}
1789
1790void
1791bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1792                             uint8_t          fw_sb_id,
1793                             uint8_t          sb_index,
1794                             uint8_t          disable,
1795                             uint16_t         usec)
1796{
1797    int port = SC_PORT(sc);
1798    uint8_t ticks = (usec / 4); /* XXX ??? */
1799
1800    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1801
1802    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1803    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1804}
1805
1806void
1807elink_cb_udelay(struct bxe_softc *sc,
1808                uint32_t         usecs)
1809{
1810    DELAY(usecs);
1811}
1812
1813uint32_t
1814elink_cb_reg_read(struct bxe_softc *sc,
1815                  uint32_t         reg_addr)
1816{
1817    return (REG_RD(sc, reg_addr));
1818}
1819
1820void
1821elink_cb_reg_write(struct bxe_softc *sc,
1822                   uint32_t         reg_addr,
1823                   uint32_t         val)
1824{
1825    REG_WR(sc, reg_addr, val);
1826}
1827
1828void
1829elink_cb_reg_wb_write(struct bxe_softc *sc,
1830                      uint32_t         offset,
1831                      uint32_t         *wb_write,
1832                      uint16_t         len)
1833{
1834    REG_WR_DMAE(sc, offset, wb_write, len);
1835}
1836
1837void
1838elink_cb_reg_wb_read(struct bxe_softc *sc,
1839                     uint32_t         offset,
1840                     uint32_t         *wb_write,
1841                     uint16_t         len)
1842{
1843    REG_RD_DMAE(sc, offset, wb_write, len);
1844}
1845
1846uint8_t
1847elink_cb_path_id(struct bxe_softc *sc)
1848{
1849    return (SC_PATH(sc));
1850}
1851
1852void
1853elink_cb_event_log(struct bxe_softc     *sc,
1854                   const elink_log_id_t elink_log_id,
1855                   ...)
1856{
1857    /* XXX */
1858    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1859}
1860
1861static int
1862bxe_set_spio(struct bxe_softc *sc,
1863             int              spio,
1864             uint32_t         mode)
1865{
1866    uint32_t spio_reg;
1867
1868    /* Only 2 SPIOs are configurable */
1869    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1870        BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1871        return (-1);
1872    }
1873
1874    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1875
1876    /* read SPIO and mask except the float bits */
1877    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1878
1879    switch (mode) {
1880    case MISC_SPIO_OUTPUT_LOW:
1881        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1882        /* clear FLOAT and set CLR */
1883        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1884        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1885        break;
1886
1887    case MISC_SPIO_OUTPUT_HIGH:
1888        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1889        /* clear FLOAT and set SET */
1890        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1891        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1892        break;
1893
1894    case MISC_SPIO_INPUT_HI_Z:
1895        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1896        /* set FLOAT */
1897        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1898        break;
1899
1900    default:
1901        break;
1902    }
1903
1904    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1905    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1906
1907    return (0);
1908}
1909
1910static int
1911bxe_gpio_read(struct bxe_softc *sc,
1912              int              gpio_num,
1913              uint8_t          port)
1914{
1915    /* The GPIO should be swapped if swap register is set and active */
1916    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1917                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1918    int gpio_shift = (gpio_num +
1919                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1920    uint32_t gpio_mask = (1 << gpio_shift);
1921    uint32_t gpio_reg;
1922
1923    if (gpio_num > MISC_REGISTERS_GPIO_3) {
1924        BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1925            " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1926            gpio_mask);
1927        return (-1);
1928    }
1929
1930    /* read GPIO value */
1931    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1932
1933    /* get the requested pin value */
1934    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1935}
1936
1937static int
1938bxe_gpio_write(struct bxe_softc *sc,
1939               int              gpio_num,
1940               uint32_t         mode,
1941               uint8_t          port)
1942{
1943    /* The GPIO should be swapped if swap register is set and active */
1944    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1945                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1946    int gpio_shift = (gpio_num +
1947                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1948    uint32_t gpio_mask = (1 << gpio_shift);
1949    uint32_t gpio_reg;
1950
1951    if (gpio_num > MISC_REGISTERS_GPIO_3) {
1952        BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1953            " gpio_shift %d gpio_mask 0x%x\n",
1954            gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1955        return (-1);
1956    }
1957
1958    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1959
1960    /* read GPIO and mask except the float bits */
1961    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1962
1963    switch (mode) {
1964    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1965        BLOGD(sc, DBG_PHY,
1966              "Set GPIO %d (shift %d) -> output low\n",
1967              gpio_num, gpio_shift);
1968        /* clear FLOAT and set CLR */
1969        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1970        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1971        break;
1972
1973    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1974        BLOGD(sc, DBG_PHY,
1975              "Set GPIO %d (shift %d) -> output high\n",
1976              gpio_num, gpio_shift);
1977        /* clear FLOAT and set SET */
1978        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1979        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1980        break;
1981
1982    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1983        BLOGD(sc, DBG_PHY,
1984              "Set GPIO %d (shift %d) -> input\n",
1985              gpio_num, gpio_shift);
1986        /* set FLOAT */
1987        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1988        break;
1989
1990    default:
1991        break;
1992    }
1993
1994    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1995    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1996
1997    return (0);
1998}
1999
2000static int
2001bxe_gpio_mult_write(struct bxe_softc *sc,
2002                    uint8_t          pins,
2003                    uint32_t         mode)
2004{
2005    uint32_t gpio_reg;
2006
2007    /* any port swapping should be handled by caller */
2008
2009    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2010
2011    /* read GPIO and mask except the float bits */
2012    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2013    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2014    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2015    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2016
2017    switch (mode) {
2018    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2019        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2020        /* set CLR */
2021        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2022        break;
2023
2024    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2025        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2026        /* set SET */
2027        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2028        break;
2029
2030    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2031        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2032        /* set FLOAT */
2033        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2034        break;
2035
2036    default:
2037        BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2038            " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2039        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2040        return (-1);
2041    }
2042
2043    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2044    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2045
2046    return (0);
2047}
2048
2049static int
2050bxe_gpio_int_write(struct bxe_softc *sc,
2051                   int              gpio_num,
2052                   uint32_t         mode,
2053                   uint8_t          port)
2054{
2055    /* The GPIO should be swapped if swap register is set and active */
2056    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2057                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2058    int gpio_shift = (gpio_num +
2059                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2060    uint32_t gpio_mask = (1 << gpio_shift);
2061    uint32_t gpio_reg;
2062
2063    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2064        BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2065            " gpio_shift %d gpio_mask 0x%x\n",
2066            gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2067        return (-1);
2068    }
2069
2070    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2071
2072    /* read GPIO int */
2073    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2074
2075    switch (mode) {
2076    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2077        BLOGD(sc, DBG_PHY,
2078              "Clear GPIO INT %d (shift %d) -> output low\n",
2079              gpio_num, gpio_shift);
2080        /* clear SET and set CLR */
2081        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2082        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2083        break;
2084
2085    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2086        BLOGD(sc, DBG_PHY,
2087              "Set GPIO INT %d (shift %d) -> output high\n",
2088              gpio_num, gpio_shift);
2089        /* clear CLR and set SET */
2090        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2091        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2092        break;
2093
2094    default:
2095        break;
2096    }
2097
2098    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2099    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2100
2101    return (0);
2102}
2103
2104uint32_t
2105elink_cb_gpio_read(struct bxe_softc *sc,
2106                   uint16_t         gpio_num,
2107                   uint8_t          port)
2108{
2109    return (bxe_gpio_read(sc, gpio_num, port));
2110}
2111
2112uint8_t
2113elink_cb_gpio_write(struct bxe_softc *sc,
2114                    uint16_t         gpio_num,
2115                    uint8_t          mode, /* 0=low 1=high */
2116                    uint8_t          port)
2117{
2118    return (bxe_gpio_write(sc, gpio_num, mode, port));
2119}
2120
2121uint8_t
2122elink_cb_gpio_mult_write(struct bxe_softc *sc,
2123                         uint8_t          pins,
2124                         uint8_t          mode) /* 0=low 1=high */
2125{
2126    return (bxe_gpio_mult_write(sc, pins, mode));
2127}
2128
2129uint8_t
2130elink_cb_gpio_int_write(struct bxe_softc *sc,
2131                        uint16_t         gpio_num,
2132                        uint8_t          mode, /* 0=low 1=high */
2133                        uint8_t          port)
2134{
2135    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2136}
2137
2138void
2139elink_cb_notify_link_changed(struct bxe_softc *sc)
2140{
2141    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2142                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2143}
2144
2145/* send the MCP a request, block until there is a reply */
2146uint32_t
2147elink_cb_fw_command(struct bxe_softc *sc,
2148                    uint32_t         command,
2149                    uint32_t         param)
2150{
2151    int mb_idx = SC_FW_MB_IDX(sc);
2152    uint32_t seq;
2153    uint32_t rc = 0;
2154    uint32_t cnt = 1;
2155    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2156
2157    BXE_FWMB_LOCK(sc);
2158
2159    seq = ++sc->fw_seq;
2160    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2161    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2162
2163    BLOGD(sc, DBG_PHY,
2164          "wrote command 0x%08x to FW MB param 0x%08x\n",
2165          (command | seq), param);
2166
2167    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2168    do {
2169        DELAY(delay * 1000);
2170        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2171    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2172
2173    BLOGD(sc, DBG_PHY,
2174          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2175          cnt*delay, rc, seq);
2176
2177    /* is this a reply to our command? */
2178    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2179        rc &= FW_MSG_CODE_MASK;
2180    } else {
2181        /* Ruh-roh! */
2182        BLOGE(sc, "FW failed to respond!\n");
2183        // XXX bxe_fw_dump(sc);
2184        rc = 0;
2185    }
2186
2187    BXE_FWMB_UNLOCK(sc);
2188    return (rc);
2189}
2190
2191static uint32_t
2192bxe_fw_command(struct bxe_softc *sc,
2193               uint32_t         command,
2194               uint32_t         param)
2195{
2196    return (elink_cb_fw_command(sc, command, param));
2197}
2198
2199static void
2200__storm_memset_dma_mapping(struct bxe_softc *sc,
2201                           uint32_t         addr,
2202                           bus_addr_t       mapping)
2203{
2204    REG_WR(sc, addr, U64_LO(mapping));
2205    REG_WR(sc, (addr + 4), U64_HI(mapping));
2206}
2207
2208static void
2209storm_memset_spq_addr(struct bxe_softc *sc,
2210                      bus_addr_t       mapping,
2211                      uint16_t         abs_fid)
2212{
2213    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2214                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2215    __storm_memset_dma_mapping(sc, addr, mapping);
2216}
2217
2218static void
2219storm_memset_vf_to_pf(struct bxe_softc *sc,
2220                      uint16_t         abs_fid,
2221                      uint16_t         pf_id)
2222{
2223    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2224    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2225    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2226    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2227}
2228
2229static void
2230storm_memset_func_en(struct bxe_softc *sc,
2231                     uint16_t         abs_fid,
2232                     uint8_t          enable)
2233{
2234    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2235    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2236    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2237    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2238}
2239
2240static void
2241storm_memset_eq_data(struct bxe_softc       *sc,
2242                     struct event_ring_data *eq_data,
2243                     uint16_t               pfid)
2244{
2245    uint32_t addr;
2246    size_t size;
2247
2248    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2249    size = sizeof(struct event_ring_data);
2250    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2251}
2252
2253static void
2254storm_memset_eq_prod(struct bxe_softc *sc,
2255                     uint16_t         eq_prod,
2256                     uint16_t         pfid)
2257{
2258    uint32_t addr = (BAR_CSTRORM_INTMEM +
2259                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2260    REG_WR16(sc, addr, eq_prod);
2261}
2262
2263/*
2264 * Post a slowpath command.
2265 *
2266 * A slowpath command is used to propagate a configuration change through
2267 * the controller in a controlled manner, allowing each STORM processor and
2268 * other H/W blocks to phase in the change.  The commands sent on the
2269 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2270 * completion of the ramrod will occur in different ways.  Here's a
2271 * breakdown of ramrods and how they complete:
2272 *
2273 * RAMROD_CMD_ID_ETH_PORT_SETUP
2274 *   Used to setup the leading connection on a port.  Completes on the
2275 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2276 *
2277 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2278 *   Used to setup an additional connection on a port.  Completes on the
2279 *   RCQ of the multi-queue/RSS connection being initialized.
2280 *
2281 * RAMROD_CMD_ID_ETH_STAT_QUERY
2282 *   Used to force the storm processors to update the statistics database
2283 *   in host memory.  This ramrod is send on the leading connection CID and
2284 *   completes as an index increment of the CSTORM on the default status
2285 *   block.
2286 *
2287 * RAMROD_CMD_ID_ETH_UPDATE
2288 *   Used to update the state of the leading connection, usually to udpate
2289 *   the RSS indirection table.  Completes on the RCQ of the leading
2290 *   connection. (Not currently used under FreeBSD until OS support becomes
2291 *   available.)
2292 *
2293 * RAMROD_CMD_ID_ETH_HALT
2294 *   Used when tearing down a connection prior to driver unload.  Completes
2295 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2296 *   use this on the leading connection.
2297 *
2298 * RAMROD_CMD_ID_ETH_SET_MAC
2299 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2300 *   the RCQ of the leading connection.
2301 *
2302 * RAMROD_CMD_ID_ETH_CFC_DEL
2303 *   Used when tearing down a conneciton prior to driver unload.  Completes
2304 *   on the RCQ of the leading connection (since the current connection
2305 *   has been completely removed from controller memory).
2306 *
2307 * RAMROD_CMD_ID_ETH_PORT_DEL
2308 *   Used to tear down the leading connection prior to driver unload,
2309 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2310 *   default status block.
2311 *
2312 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2313 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2314 *   RSS connection that is being offloaded.  (Not currently used under
2315 *   FreeBSD.)
2316 *
2317 * There can only be one command pending per function.
2318 *
2319 * Returns:
2320 *   0 = Success, !0 = Failure.
2321 */
2322
2323/* must be called under the spq lock */
2324static inline
2325struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2326{
2327    struct eth_spe *next_spe = sc->spq_prod_bd;
2328
2329    if (sc->spq_prod_bd == sc->spq_last_bd) {
2330        /* wrap back to the first eth_spq */
2331        sc->spq_prod_bd = sc->spq;
2332        sc->spq_prod_idx = 0;
2333    } else {
2334        sc->spq_prod_bd++;
2335        sc->spq_prod_idx++;
2336    }
2337
2338    return (next_spe);
2339}
2340
2341/* must be called under the spq lock */
2342static inline
2343void bxe_sp_prod_update(struct bxe_softc *sc)
2344{
2345    int func = SC_FUNC(sc);
2346
2347    /*
2348     * Make sure that BD data is updated before writing the producer.
2349     * BD data is written to the memory, the producer is read from the
2350     * memory, thus we need a full memory barrier to ensure the ordering.
2351     */
2352    mb();
2353
2354    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2355             sc->spq_prod_idx);
2356
2357    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2358                      BUS_SPACE_BARRIER_WRITE);
2359}
2360
2361/**
2362 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2363 *
2364 * @cmd:      command to check
2365 * @cmd_type: command type
2366 */
2367static inline
2368int bxe_is_contextless_ramrod(int cmd,
2369                              int cmd_type)
2370{
2371    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2372        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2373        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2374        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2375        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2376        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2377        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2378        return (TRUE);
2379    } else {
2380        return (FALSE);
2381    }
2382}
2383
2384/**
2385 * bxe_sp_post - place a single command on an SP ring
2386 *
2387 * @sc:         driver handle
2388 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2389 * @cid:        SW CID the command is related to
2390 * @data_hi:    command private data address (high 32 bits)
2391 * @data_lo:    command private data address (low 32 bits)
2392 * @cmd_type:   command type (e.g. NONE, ETH)
2393 *
2394 * SP data is handled as if it's always an address pair, thus data fields are
2395 * not swapped to little endian in upper functions. Instead this function swaps
2396 * data as if it's two uint32 fields.
2397 */
2398int
2399bxe_sp_post(struct bxe_softc *sc,
2400            int              command,
2401            int              cid,
2402            uint32_t         data_hi,
2403            uint32_t         data_lo,
2404            int              cmd_type)
2405{
2406    struct eth_spe *spe;
2407    uint16_t type;
2408    int common;
2409
2410    common = bxe_is_contextless_ramrod(command, cmd_type);
2411
2412    BXE_SP_LOCK(sc);
2413
2414    if (common) {
2415        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2416            BLOGE(sc, "EQ ring is full!\n");
2417            BXE_SP_UNLOCK(sc);
2418            return (-1);
2419        }
2420    } else {
2421        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2422            BLOGE(sc, "SPQ ring is full!\n");
2423            BXE_SP_UNLOCK(sc);
2424            return (-1);
2425        }
2426    }
2427
2428    spe = bxe_sp_get_next(sc);
2429
2430    /* CID needs port number to be encoded int it */
2431    spe->hdr.conn_and_cmd_data =
2432        htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2433
2434    type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2435
2436    /* TBD: Check if it works for VFs */
2437    type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2438             SPE_HDR_T_FUNCTION_ID);
2439
2440    spe->hdr.type = htole16(type);
2441
2442    spe->data.update_data_addr.hi = htole32(data_hi);
2443    spe->data.update_data_addr.lo = htole32(data_lo);
2444
2445    /*
2446     * It's ok if the actual decrement is issued towards the memory
2447     * somewhere between the lock and unlock. Thus no more explict
2448     * memory barrier is needed.
2449     */
2450    if (common) {
2451        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2452    } else {
2453        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2454    }
2455
2456    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2457    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2458          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2459    BLOGD(sc, DBG_SP,
2460          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2461          sc->spq_prod_idx,
2462          (uint32_t)U64_HI(sc->spq_dma.paddr),
2463          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2464          command,
2465          common,
2466          HW_CID(sc, cid),
2467          data_hi,
2468          data_lo,
2469          type,
2470          atomic_load_acq_long(&sc->cq_spq_left),
2471          atomic_load_acq_long(&sc->eq_spq_left));
2472
2473    bxe_sp_prod_update(sc);
2474
2475    BXE_SP_UNLOCK(sc);
2476    return (0);
2477}
2478
2479/**
2480 * bxe_debug_print_ind_table - prints the indirection table configuration.
2481 *
2482 * @sc: driver hanlde
2483 * @p:  pointer to rss configuration
2484 */
2485
2486/*
2487 * FreeBSD Device probe function.
2488 *
2489 * Compares the device found to the driver's list of supported devices and
2490 * reports back to the bsd loader whether this is the right driver for the device.
2491 * This is the driver entry function called from the "kldload" command.
2492 *
2493 * Returns:
2494 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2495 */
2496static int
2497bxe_probe(device_t dev)
2498{
2499    struct bxe_device_type *t;
2500    char *descbuf;
2501    uint16_t did, sdid, svid, vid;
2502
2503    /* Find our device structure */
2504    t = bxe_devs;
2505
2506    /* Get the data for the device to be probed. */
2507    vid  = pci_get_vendor(dev);
2508    did  = pci_get_device(dev);
2509    svid = pci_get_subvendor(dev);
2510    sdid = pci_get_subdevice(dev);
2511
2512    /* Look through the list of known devices for a match. */
2513    while (t->bxe_name != NULL) {
2514        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2515            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2516            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2517            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2518            if (descbuf == NULL)
2519                return (ENOMEM);
2520
2521            /* Print out the device identity. */
2522            snprintf(descbuf, BXE_DEVDESC_MAX,
2523                     "%s (%c%d) BXE v:%s", t->bxe_name,
2524                     (((pci_read_config(dev, PCIR_REVID, 4) &
2525                        0xf0) >> 4) + 'A'),
2526                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2527                     BXE_DRIVER_VERSION);
2528
2529            device_set_desc_copy(dev, descbuf);
2530            free(descbuf, M_TEMP);
2531            return (BUS_PROBE_DEFAULT);
2532        }
2533        t++;
2534    }
2535
2536    return (ENXIO);
2537}
2538
2539static void
2540bxe_init_mutexes(struct bxe_softc *sc)
2541{
2542#ifdef BXE_CORE_LOCK_SX
2543    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2544             "bxe%d_core_lock", sc->unit);
2545    sx_init(&sc->core_sx, sc->core_sx_name);
2546#else
2547    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2548             "bxe%d_core_lock", sc->unit);
2549    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2550#endif
2551
2552    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2553             "bxe%d_sp_lock", sc->unit);
2554    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2555
2556    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2557             "bxe%d_dmae_lock", sc->unit);
2558    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2559
2560    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2561             "bxe%d_phy_lock", sc->unit);
2562    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2563
2564    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2565             "bxe%d_fwmb_lock", sc->unit);
2566    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2567
2568    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2569             "bxe%d_print_lock", sc->unit);
2570    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2571
2572    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2573             "bxe%d_stats_lock", sc->unit);
2574    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2575
2576    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2577             "bxe%d_mcast_lock", sc->unit);
2578    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2579}
2580
2581static void
2582bxe_release_mutexes(struct bxe_softc *sc)
2583{
2584#ifdef BXE_CORE_LOCK_SX
2585    sx_destroy(&sc->core_sx);
2586#else
2587    if (mtx_initialized(&sc->core_mtx)) {
2588        mtx_destroy(&sc->core_mtx);
2589    }
2590#endif
2591
2592    if (mtx_initialized(&sc->sp_mtx)) {
2593        mtx_destroy(&sc->sp_mtx);
2594    }
2595
2596    if (mtx_initialized(&sc->dmae_mtx)) {
2597        mtx_destroy(&sc->dmae_mtx);
2598    }
2599
2600    if (mtx_initialized(&sc->port.phy_mtx)) {
2601        mtx_destroy(&sc->port.phy_mtx);
2602    }
2603
2604    if (mtx_initialized(&sc->fwmb_mtx)) {
2605        mtx_destroy(&sc->fwmb_mtx);
2606    }
2607
2608    if (mtx_initialized(&sc->print_mtx)) {
2609        mtx_destroy(&sc->print_mtx);
2610    }
2611
2612    if (mtx_initialized(&sc->stats_mtx)) {
2613        mtx_destroy(&sc->stats_mtx);
2614    }
2615
2616    if (mtx_initialized(&sc->mcast_mtx)) {
2617        mtx_destroy(&sc->mcast_mtx);
2618    }
2619}
2620
2621static void
2622bxe_tx_disable(struct bxe_softc* sc)
2623{
2624    if_t ifp = sc->ifp;
2625
2626    /* tell the stack the driver is stopped and TX queue is full */
2627    if (ifp !=  NULL) {
2628        if_setdrvflags(ifp, 0);
2629    }
2630}
2631
2632static void
2633bxe_drv_pulse(struct bxe_softc *sc)
2634{
2635    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2636             sc->fw_drv_pulse_wr_seq);
2637}
2638
2639static inline uint16_t
2640bxe_tx_avail(struct bxe_softc *sc,
2641             struct bxe_fastpath *fp)
2642{
2643    int16_t  used;
2644    uint16_t prod;
2645    uint16_t cons;
2646
2647    prod = fp->tx_bd_prod;
2648    cons = fp->tx_bd_cons;
2649
2650    used = SUB_S16(prod, cons);
2651
2652    return (int16_t)(sc->tx_ring_size) - used;
2653}
2654
2655static inline int
2656bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2657{
2658    uint16_t hw_cons;
2659
2660    mb(); /* status block fields can change */
2661    hw_cons = le16toh(*fp->tx_cons_sb);
2662    return (hw_cons != fp->tx_pkt_cons);
2663}
2664
2665static inline uint8_t
2666bxe_has_tx_work(struct bxe_fastpath *fp)
2667{
2668    /* expand this for multi-cos if ever supported */
2669    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2670}
2671
2672static inline int
2673bxe_has_rx_work(struct bxe_fastpath *fp)
2674{
2675    uint16_t rx_cq_cons_sb;
2676
2677    mb(); /* status block fields can change */
2678    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2679    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2680        rx_cq_cons_sb++;
2681    return (fp->rx_cq_cons != rx_cq_cons_sb);
2682}
2683
2684static void
2685bxe_sp_event(struct bxe_softc    *sc,
2686             struct bxe_fastpath *fp,
2687             union eth_rx_cqe    *rr_cqe)
2688{
2689    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2690    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2691    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2692    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2693
2694    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2695          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2696
2697    switch (command) {
2698    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2699        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2700        drv_cmd = ECORE_Q_CMD_UPDATE;
2701        break;
2702
2703    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2704        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2705        drv_cmd = ECORE_Q_CMD_SETUP;
2706        break;
2707
2708    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2709        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2710        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2711        break;
2712
2713    case (RAMROD_CMD_ID_ETH_HALT):
2714        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2715        drv_cmd = ECORE_Q_CMD_HALT;
2716        break;
2717
2718    case (RAMROD_CMD_ID_ETH_TERMINATE):
2719        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2720        drv_cmd = ECORE_Q_CMD_TERMINATE;
2721        break;
2722
2723    case (RAMROD_CMD_ID_ETH_EMPTY):
2724        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2725        drv_cmd = ECORE_Q_CMD_EMPTY;
2726        break;
2727
2728    default:
2729        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2730              command, fp->index);
2731        return;
2732    }
2733
2734    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2735        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2736        /*
2737         * q_obj->complete_cmd() failure means that this was
2738         * an unexpected completion.
2739         *
2740         * In this case we don't want to increase the sc->spq_left
2741         * because apparently we haven't sent this command the first
2742         * place.
2743         */
2744        // bxe_panic(sc, ("Unexpected SP completion\n"));
2745        return;
2746    }
2747
2748    atomic_add_acq_long(&sc->cq_spq_left, 1);
2749
2750    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2751          atomic_load_acq_long(&sc->cq_spq_left));
2752}
2753
2754/*
2755 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2756 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2757 * the current aggregation queue as in-progress.
2758 */
2759static void
2760bxe_tpa_start(struct bxe_softc            *sc,
2761              struct bxe_fastpath         *fp,
2762              uint16_t                    queue,
2763              uint16_t                    cons,
2764              uint16_t                    prod,
2765              struct eth_fast_path_rx_cqe *cqe)
2766{
2767    struct bxe_sw_rx_bd tmp_bd;
2768    struct bxe_sw_rx_bd *rx_buf;
2769    struct eth_rx_bd *rx_bd;
2770    int max_agg_queues;
2771    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2772    uint16_t index;
2773
2774    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2775                       "cons=%d prod=%d\n",
2776          fp->index, queue, cons, prod);
2777
2778    max_agg_queues = MAX_AGG_QS(sc);
2779
2780    KASSERT((queue < max_agg_queues),
2781            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2782             fp->index, queue, max_agg_queues));
2783
2784    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2785            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2786             fp->index, queue));
2787
2788    /* copy the existing mbuf and mapping from the TPA pool */
2789    tmp_bd = tpa_info->bd;
2790
2791    if (tmp_bd.m == NULL) {
2792        uint32_t *tmp;
2793
2794        tmp = (uint32_t *)cqe;
2795
2796        BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2797              fp->index, queue, cons, prod);
2798        BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2799            *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2800
2801        /* XXX Error handling? */
2802        return;
2803    }
2804
2805    /* change the TPA queue to the start state */
2806    tpa_info->state            = BXE_TPA_STATE_START;
2807    tpa_info->placement_offset = cqe->placement_offset;
2808    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2809    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2810    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2811
2812    fp->rx_tpa_queue_used |= (1 << queue);
2813
2814    /*
2815     * If all the buffer descriptors are filled with mbufs then fill in
2816     * the current consumer index with a new BD. Else if a maximum Rx
2817     * buffer limit is imposed then fill in the next producer index.
2818     */
2819    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2820                prod : cons;
2821
2822    /* move the received mbuf and mapping to TPA pool */
2823    tpa_info->bd = fp->rx_mbuf_chain[cons];
2824
2825    /* release any existing RX BD mbuf mappings */
2826    if (cons != index) {
2827        rx_buf = &fp->rx_mbuf_chain[cons];
2828
2829        if (rx_buf->m_map != NULL) {
2830            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2831                            BUS_DMASYNC_POSTREAD);
2832            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2833        }
2834
2835        /*
2836         * We get here when the maximum number of rx buffers is less than
2837         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2838         * it out here without concern of a memory leak.
2839         */
2840        fp->rx_mbuf_chain[cons].m = NULL;
2841    }
2842
2843    /* update the Rx SW BD with the mbuf info from the TPA pool */
2844    fp->rx_mbuf_chain[index] = tmp_bd;
2845
2846    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2847    rx_bd = &fp->rx_chain[index];
2848    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2849    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2850}
2851
2852/*
2853 * When a TPA aggregation is completed, loop through the individual mbufs
2854 * of the aggregation, combining them into a single mbuf which will be sent
2855 * up the stack. Refill all freed SGEs with mbufs as we go along.
2856 */
2857static int
2858bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2859                   struct bxe_fastpath       *fp,
2860                   struct bxe_sw_tpa_info    *tpa_info,
2861                   uint16_t                  queue,
2862                   uint16_t                  pages,
2863                   struct mbuf               *m,
2864			       struct eth_end_agg_rx_cqe *cqe,
2865                   uint16_t                  cqe_idx)
2866{
2867    struct mbuf *m_frag;
2868    uint32_t frag_len, frag_size, i;
2869    uint16_t sge_idx;
2870    int rc = 0;
2871    int j;
2872
2873    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2874
2875    BLOGD(sc, DBG_LRO,
2876          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2877          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2878
2879    /* make sure the aggregated frame is not too big to handle */
2880    if (pages > 8 * PAGES_PER_SGE) {
2881
2882        uint32_t *tmp = (uint32_t *)cqe;
2883
2884        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2885                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2886              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2887              tpa_info->len_on_bd, frag_size);
2888
2889        BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2890            *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2891
2892        bxe_panic(sc, ("sge page count error\n"));
2893        return (EINVAL);
2894    }
2895
2896    /*
2897     * Scan through the scatter gather list pulling individual mbufs into a
2898     * single mbuf for the host stack.
2899     */
2900    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2901        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2902
2903        /*
2904         * Firmware gives the indices of the SGE as if the ring is an array
2905         * (meaning that the "next" element will consume 2 indices).
2906         */
2907        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2908
2909        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2910                           "sge_idx=%d frag_size=%d frag_len=%d\n",
2911              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2912
2913        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2914
2915        /* allocate a new mbuf for the SGE */
2916        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2917        if (rc) {
2918            /* Leave all remaining SGEs in the ring! */
2919            return (rc);
2920        }
2921
2922        /* update the fragment length */
2923        m_frag->m_len = frag_len;
2924
2925        /* concatenate the fragment to the head mbuf */
2926        m_cat(m, m_frag);
2927        fp->eth_q_stats.mbuf_alloc_sge--;
2928
2929        /* update the TPA mbuf size and remaining fragment size */
2930        m->m_pkthdr.len += frag_len;
2931        frag_size -= frag_len;
2932    }
2933
2934    BLOGD(sc, DBG_LRO,
2935          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2936          fp->index, queue, frag_size);
2937
2938    return (rc);
2939}
2940
2941static inline void
2942bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2943{
2944    int i, j;
2945
2946    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2947        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2948
2949        for (j = 0; j < 2; j++) {
2950            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2951            idx--;
2952        }
2953    }
2954}
2955
2956static inline void
2957bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2958{
2959    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2960    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2961
2962    /*
2963     * Clear the two last indices in the page to 1. These are the indices that
2964     * correspond to the "next" element, hence will never be indicated and
2965     * should be removed from the calculations.
2966     */
2967    bxe_clear_sge_mask_next_elems(fp);
2968}
2969
2970static inline void
2971bxe_update_last_max_sge(struct bxe_fastpath *fp,
2972                        uint16_t            idx)
2973{
2974    uint16_t last_max = fp->last_max_sge;
2975
2976    if (SUB_S16(idx, last_max) > 0) {
2977        fp->last_max_sge = idx;
2978    }
2979}
2980
2981static inline void
2982bxe_update_sge_prod(struct bxe_softc          *sc,
2983                    struct bxe_fastpath       *fp,
2984                    uint16_t                  sge_len,
2985                    union eth_sgl_or_raw_data *cqe)
2986{
2987    uint16_t last_max, last_elem, first_elem;
2988    uint16_t delta = 0;
2989    uint16_t i;
2990
2991    if (!sge_len) {
2992        return;
2993    }
2994
2995    /* first mark all used pages */
2996    for (i = 0; i < sge_len; i++) {
2997        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2998                            RX_SGE(le16toh(cqe->sgl[i])));
2999    }
3000
3001    BLOGD(sc, DBG_LRO,
3002          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3003          fp->index, sge_len - 1,
3004          le16toh(cqe->sgl[sge_len - 1]));
3005
3006    /* assume that the last SGE index is the biggest */
3007    bxe_update_last_max_sge(fp,
3008                            le16toh(cqe->sgl[sge_len - 1]));
3009
3010    last_max = RX_SGE(fp->last_max_sge);
3011    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3012    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3013
3014    /* if ring is not full */
3015    if (last_elem + 1 != first_elem) {
3016        last_elem++;
3017    }
3018
3019    /* now update the prod */
3020    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3021        if (__predict_true(fp->sge_mask[i])) {
3022            break;
3023        }
3024
3025        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3026        delta += BIT_VEC64_ELEM_SZ;
3027    }
3028
3029    if (delta > 0) {
3030        fp->rx_sge_prod += delta;
3031        /* clear page-end entries */
3032        bxe_clear_sge_mask_next_elems(fp);
3033    }
3034
3035    BLOGD(sc, DBG_LRO,
3036          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3037          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3038}
3039
3040/*
3041 * The aggregation on the current TPA queue has completed. Pull the individual
3042 * mbuf fragments together into a single mbuf, perform all necessary checksum
3043 * calculations, and send the resuting mbuf to the stack.
3044 */
3045static void
3046bxe_tpa_stop(struct bxe_softc          *sc,
3047             struct bxe_fastpath       *fp,
3048             struct bxe_sw_tpa_info    *tpa_info,
3049             uint16_t                  queue,
3050             uint16_t                  pages,
3051			 struct eth_end_agg_rx_cqe *cqe,
3052             uint16_t                  cqe_idx)
3053{
3054    if_t ifp = sc->ifp;
3055    struct mbuf *m;
3056    int rc = 0;
3057
3058    BLOGD(sc, DBG_LRO,
3059          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3060          fp->index, queue, tpa_info->placement_offset,
3061          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3062
3063    m = tpa_info->bd.m;
3064
3065    /* allocate a replacement before modifying existing mbuf */
3066    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3067    if (rc) {
3068        /* drop the frame and log an error */
3069        fp->eth_q_stats.rx_soft_errors++;
3070        goto bxe_tpa_stop_exit;
3071    }
3072
3073    /* we have a replacement, fixup the current mbuf */
3074    m_adj(m, tpa_info->placement_offset);
3075    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3076
3077    /* mark the checksums valid (taken care of by the firmware) */
3078    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3079    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3080    m->m_pkthdr.csum_data = 0xffff;
3081    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3082                               CSUM_IP_VALID   |
3083                               CSUM_DATA_VALID |
3084                               CSUM_PSEUDO_HDR);
3085
3086    /* aggregate all of the SGEs into a single mbuf */
3087    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3088    if (rc) {
3089        /* drop the packet and log an error */
3090        fp->eth_q_stats.rx_soft_errors++;
3091        m_freem(m);
3092    } else {
3093        if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3094            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3095            m->m_flags |= M_VLANTAG;
3096        }
3097
3098        /* assign packet to this interface interface */
3099        if_setrcvif(m, ifp);
3100
3101        /* specify what RSS queue was used for this flow */
3102        m->m_pkthdr.flowid = fp->index;
3103        BXE_SET_FLOWID(m);
3104
3105        if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3106        fp->eth_q_stats.rx_tpa_pkts++;
3107
3108        /* pass the frame to the stack */
3109        if_input(ifp, m);
3110    }
3111
3112    /* we passed an mbuf up the stack or dropped the frame */
3113    fp->eth_q_stats.mbuf_alloc_tpa--;
3114
3115bxe_tpa_stop_exit:
3116
3117    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3118    fp->rx_tpa_queue_used &= ~(1 << queue);
3119}
3120
3121static uint8_t
3122bxe_service_rxsgl(
3123                 struct bxe_fastpath *fp,
3124                 uint16_t len,
3125                 uint16_t lenonbd,
3126                 struct mbuf *m,
3127                 struct eth_fast_path_rx_cqe *cqe_fp)
3128{
3129    struct mbuf *m_frag;
3130    uint16_t frags, frag_len;
3131    uint16_t sge_idx = 0;
3132    uint16_t j;
3133    uint8_t i, rc = 0;
3134    uint32_t frag_size;
3135
3136    /* adjust the mbuf */
3137    m->m_len = lenonbd;
3138
3139    frag_size =  len - lenonbd;
3140    frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3141
3142    for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3143        sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3144
3145        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3146        frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3147        m_frag->m_len = frag_len;
3148
3149       /* allocate a new mbuf for the SGE */
3150        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3151        if (rc) {
3152            /* Leave all remaining SGEs in the ring! */
3153            return (rc);
3154        }
3155        fp->eth_q_stats.mbuf_alloc_sge--;
3156
3157        /* concatenate the fragment to the head mbuf */
3158        m_cat(m, m_frag);
3159
3160        frag_size -= frag_len;
3161    }
3162
3163    bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3164
3165    return rc;
3166}
3167
3168static uint8_t
3169bxe_rxeof(struct bxe_softc    *sc,
3170          struct bxe_fastpath *fp)
3171{
3172    if_t ifp = sc->ifp;
3173    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3174    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3175    int rx_pkts = 0;
3176    int rc = 0;
3177
3178    BXE_FP_RX_LOCK(fp);
3179
3180    /* CQ "next element" is of the size of the regular element */
3181    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3182    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3183        hw_cq_cons++;
3184    }
3185
3186    bd_cons = fp->rx_bd_cons;
3187    bd_prod = fp->rx_bd_prod;
3188    bd_prod_fw = bd_prod;
3189    sw_cq_cons = fp->rx_cq_cons;
3190    sw_cq_prod = fp->rx_cq_prod;
3191
3192    /*
3193     * Memory barrier necessary as speculative reads of the rx
3194     * buffer can be ahead of the index in the status block
3195     */
3196    rmb();
3197
3198    BLOGD(sc, DBG_RX,
3199          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3200          fp->index, hw_cq_cons, sw_cq_cons);
3201
3202    while (sw_cq_cons != hw_cq_cons) {
3203        struct bxe_sw_rx_bd *rx_buf = NULL;
3204        union eth_rx_cqe *cqe;
3205        struct eth_fast_path_rx_cqe *cqe_fp;
3206        uint8_t cqe_fp_flags;
3207        enum eth_rx_cqe_type cqe_fp_type;
3208        uint16_t len, lenonbd,  pad;
3209        struct mbuf *m = NULL;
3210
3211        comp_ring_cons = RCQ(sw_cq_cons);
3212        bd_prod = RX_BD(bd_prod);
3213        bd_cons = RX_BD(bd_cons);
3214
3215        cqe          = &fp->rcq_chain[comp_ring_cons];
3216        cqe_fp       = &cqe->fast_path_cqe;
3217        cqe_fp_flags = cqe_fp->type_error_flags;
3218        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3219
3220        BLOGD(sc, DBG_RX,
3221              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3222              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3223              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3224              fp->index,
3225              hw_cq_cons,
3226              sw_cq_cons,
3227              bd_prod,
3228              bd_cons,
3229              CQE_TYPE(cqe_fp_flags),
3230              cqe_fp_flags,
3231              cqe_fp->status_flags,
3232              le32toh(cqe_fp->rss_hash_result),
3233              le16toh(cqe_fp->vlan_tag),
3234              le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3235              le16toh(cqe_fp->len_on_bd));
3236
3237        /* is this a slowpath msg? */
3238        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3239            bxe_sp_event(sc, fp, cqe);
3240            goto next_cqe;
3241        }
3242
3243        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3244
3245        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3246            struct bxe_sw_tpa_info *tpa_info;
3247            uint16_t frag_size, pages;
3248            uint8_t queue;
3249
3250            if (CQE_TYPE_START(cqe_fp_type)) {
3251                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3252                              bd_cons, bd_prod, cqe_fp);
3253                m = NULL; /* packet not ready yet */
3254                goto next_rx;
3255            }
3256
3257            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3258                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3259
3260            queue = cqe->end_agg_cqe.queue_index;
3261            tpa_info = &fp->rx_tpa_info[queue];
3262
3263            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3264                  fp->index, queue);
3265
3266            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3267                         tpa_info->len_on_bd);
3268            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3269
3270            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3271                         &cqe->end_agg_cqe, comp_ring_cons);
3272
3273            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3274
3275            goto next_cqe;
3276        }
3277
3278        /* non TPA */
3279
3280        /* is this an error packet? */
3281        if (__predict_false(cqe_fp_flags &
3282                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3283            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3284            fp->eth_q_stats.rx_soft_errors++;
3285            goto next_rx;
3286        }
3287
3288        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3289        lenonbd = le16toh(cqe_fp->len_on_bd);
3290        pad = cqe_fp->placement_offset;
3291
3292        m = rx_buf->m;
3293
3294        if (__predict_false(m == NULL)) {
3295            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3296                  bd_cons, fp->index);
3297            goto next_rx;
3298        }
3299
3300        /* XXX double copy if packet length under a threshold */
3301
3302        /*
3303         * If all the buffer descriptors are filled with mbufs then fill in
3304         * the current consumer index with a new BD. Else if a maximum Rx
3305         * buffer limit is imposed then fill in the next producer index.
3306         */
3307        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3308                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3309                                      bd_prod : bd_cons);
3310        if (rc != 0) {
3311
3312            /* we simply reuse the received mbuf and don't post it to the stack */
3313            m = NULL;
3314
3315            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3316                  fp->index, rc);
3317            fp->eth_q_stats.rx_soft_errors++;
3318
3319            if (sc->max_rx_bufs != RX_BD_USABLE) {
3320                /* copy this consumer index to the producer index */
3321                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3322                       sizeof(struct bxe_sw_rx_bd));
3323                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3324            }
3325
3326            goto next_rx;
3327        }
3328
3329        /* current mbuf was detached from the bd */
3330        fp->eth_q_stats.mbuf_alloc_rx--;
3331
3332        /* we allocated a replacement mbuf, fixup the current one */
3333        m_adj(m, pad);
3334        m->m_pkthdr.len = m->m_len = len;
3335
3336        if ((len > 60) && (len > lenonbd)) {
3337            fp->eth_q_stats.rx_bxe_service_rxsgl++;
3338            rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3339            if (rc)
3340                break;
3341            fp->eth_q_stats.rx_jumbo_sge_pkts++;
3342        } else if (lenonbd < len) {
3343            fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3344        }
3345
3346        /* assign packet to this interface interface */
3347	if_setrcvif(m, ifp);
3348
3349        /* assume no hardware checksum has complated */
3350        m->m_pkthdr.csum_flags = 0;
3351
3352        /* validate checksum if offload enabled */
3353        if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3354            /* check for a valid IP frame */
3355            if (!(cqe->fast_path_cqe.status_flags &
3356                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3357                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3358                if (__predict_false(cqe_fp_flags &
3359                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3360                    fp->eth_q_stats.rx_hw_csum_errors++;
3361                } else {
3362                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3363                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3364                }
3365            }
3366
3367            /* check for a valid TCP/UDP frame */
3368            if (!(cqe->fast_path_cqe.status_flags &
3369                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3370                if (__predict_false(cqe_fp_flags &
3371                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3372                    fp->eth_q_stats.rx_hw_csum_errors++;
3373                } else {
3374                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3375                    m->m_pkthdr.csum_data = 0xFFFF;
3376                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3377                                               CSUM_PSEUDO_HDR);
3378                }
3379            }
3380        }
3381
3382        /* if there is a VLAN tag then flag that info */
3383        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3384            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3385            m->m_flags |= M_VLANTAG;
3386        }
3387
3388        /* specify what RSS queue was used for this flow */
3389        m->m_pkthdr.flowid = fp->index;
3390        BXE_SET_FLOWID(m);
3391
3392next_rx:
3393
3394        bd_cons    = RX_BD_NEXT(bd_cons);
3395        bd_prod    = RX_BD_NEXT(bd_prod);
3396        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3397
3398        /* pass the frame to the stack */
3399        if (__predict_true(m != NULL)) {
3400            if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3401            rx_pkts++;
3402            if_input(ifp, m);
3403        }
3404
3405next_cqe:
3406
3407        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3408        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3409
3410        /* limit spinning on the queue */
3411        if (rc != 0)
3412            break;
3413
3414        if (rx_pkts == sc->rx_budget) {
3415            fp->eth_q_stats.rx_budget_reached++;
3416            break;
3417        }
3418    } /* while work to do */
3419
3420    fp->rx_bd_cons = bd_cons;
3421    fp->rx_bd_prod = bd_prod_fw;
3422    fp->rx_cq_cons = sw_cq_cons;
3423    fp->rx_cq_prod = sw_cq_prod;
3424
3425    /* Update producers */
3426    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3427
3428    fp->eth_q_stats.rx_pkts += rx_pkts;
3429    fp->eth_q_stats.rx_calls++;
3430
3431    BXE_FP_RX_UNLOCK(fp);
3432
3433    return (sw_cq_cons != hw_cq_cons);
3434}
3435
3436static uint16_t
3437bxe_free_tx_pkt(struct bxe_softc    *sc,
3438                struct bxe_fastpath *fp,
3439                uint16_t            idx)
3440{
3441    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3442    struct eth_tx_start_bd *tx_start_bd;
3443    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3444    uint16_t new_cons;
3445    int nbd;
3446
3447    /* unmap the mbuf from non-paged memory */
3448    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3449
3450    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3451    nbd = le16toh(tx_start_bd->nbd) - 1;
3452
3453    new_cons = (tx_buf->first_bd + nbd);
3454
3455    /* free the mbuf */
3456    if (__predict_true(tx_buf->m != NULL)) {
3457        m_freem(tx_buf->m);
3458        fp->eth_q_stats.mbuf_alloc_tx--;
3459    } else {
3460        fp->eth_q_stats.tx_chain_lost_mbuf++;
3461    }
3462
3463    tx_buf->m = NULL;
3464    tx_buf->first_bd = 0;
3465
3466    return (new_cons);
3467}
3468
3469/* transmit timeout watchdog */
3470static int
3471bxe_watchdog(struct bxe_softc    *sc,
3472             struct bxe_fastpath *fp)
3473{
3474    BXE_FP_TX_LOCK(fp);
3475
3476    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3477        BXE_FP_TX_UNLOCK(fp);
3478        return (0);
3479    }
3480
3481    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3482
3483    BXE_FP_TX_UNLOCK(fp);
3484    BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
3485    taskqueue_enqueue_timeout(taskqueue_thread,
3486        &sc->sp_err_timeout_task, hz/10);
3487
3488    return (-1);
3489}
3490
3491/* processes transmit completions */
3492static uint8_t
3493bxe_txeof(struct bxe_softc    *sc,
3494          struct bxe_fastpath *fp)
3495{
3496    if_t ifp = sc->ifp;
3497    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3498    uint16_t tx_bd_avail;
3499
3500    BXE_FP_TX_LOCK_ASSERT(fp);
3501
3502    bd_cons = fp->tx_bd_cons;
3503    hw_cons = le16toh(*fp->tx_cons_sb);
3504    sw_cons = fp->tx_pkt_cons;
3505
3506    while (sw_cons != hw_cons) {
3507        pkt_cons = TX_BD(sw_cons);
3508
3509        BLOGD(sc, DBG_TX,
3510              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3511              fp->index, hw_cons, sw_cons, pkt_cons);
3512
3513        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3514
3515        sw_cons++;
3516    }
3517
3518    fp->tx_pkt_cons = sw_cons;
3519    fp->tx_bd_cons  = bd_cons;
3520
3521    BLOGD(sc, DBG_TX,
3522          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3523          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3524
3525    mb();
3526
3527    tx_bd_avail = bxe_tx_avail(sc, fp);
3528
3529    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3530        if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3531    } else {
3532        if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3533    }
3534
3535    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3536        /* reset the watchdog timer if there are pending transmits */
3537        fp->watchdog_timer = BXE_TX_TIMEOUT;
3538        return (TRUE);
3539    } else {
3540        /* clear watchdog when there are no pending transmits */
3541        fp->watchdog_timer = 0;
3542        return (FALSE);
3543    }
3544}
3545
3546static void
3547bxe_drain_tx_queues(struct bxe_softc *sc)
3548{
3549    struct bxe_fastpath *fp;
3550    int i, count;
3551
3552    /* wait until all TX fastpath tasks have completed */
3553    for (i = 0; i < sc->num_queues; i++) {
3554        fp = &sc->fp[i];
3555
3556        count = 1000;
3557
3558        while (bxe_has_tx_work(fp)) {
3559
3560            BXE_FP_TX_LOCK(fp);
3561            bxe_txeof(sc, fp);
3562            BXE_FP_TX_UNLOCK(fp);
3563
3564            if (count == 0) {
3565                BLOGE(sc, "Timeout waiting for fp[%d] "
3566                          "transmits to complete!\n", i);
3567                bxe_panic(sc, ("tx drain failure\n"));
3568                return;
3569            }
3570
3571            count--;
3572            DELAY(1000);
3573            rmb();
3574        }
3575    }
3576
3577    return;
3578}
3579
3580static int
3581bxe_del_all_macs(struct bxe_softc          *sc,
3582                 struct ecore_vlan_mac_obj *mac_obj,
3583                 int                       mac_type,
3584                 uint8_t                   wait_for_comp)
3585{
3586    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3587    int rc;
3588
3589    /* wait for completion of requested */
3590    if (wait_for_comp) {
3591        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3592    }
3593
3594    /* Set the mac type of addresses we want to clear */
3595    bxe_set_bit(mac_type, &vlan_mac_flags);
3596
3597    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3598    if (rc < 0) {
3599        BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3600            rc, mac_type, wait_for_comp);
3601    }
3602
3603    return (rc);
3604}
3605
3606static int
3607bxe_fill_accept_flags(struct bxe_softc *sc,
3608                      uint32_t         rx_mode,
3609                      unsigned long    *rx_accept_flags,
3610                      unsigned long    *tx_accept_flags)
3611{
3612    /* Clear the flags first */
3613    *rx_accept_flags = 0;
3614    *tx_accept_flags = 0;
3615
3616    switch (rx_mode) {
3617    case BXE_RX_MODE_NONE:
3618        /*
3619         * 'drop all' supersedes any accept flags that may have been
3620         * passed to the function.
3621         */
3622        break;
3623
3624    case BXE_RX_MODE_NORMAL:
3625        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3626        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3627        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3628
3629        /* internal switching mode */
3630        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3631        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3632        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3633
3634        break;
3635
3636    case BXE_RX_MODE_ALLMULTI:
3637        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3638        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3639        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3640
3641        /* internal switching mode */
3642        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3643        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3644        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3645
3646        break;
3647
3648    case BXE_RX_MODE_PROMISC:
3649        /*
3650         * According to deffinition of SI mode, iface in promisc mode
3651         * should receive matched and unmatched (in resolution of port)
3652         * unicast packets.
3653         */
3654        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3655        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3656        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3657        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3658
3659        /* internal switching mode */
3660        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3661        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3662
3663        if (IS_MF_SI(sc)) {
3664            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3665        } else {
3666            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3667        }
3668
3669        break;
3670
3671    default:
3672        BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3673        return (-1);
3674    }
3675
3676    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3677    if (rx_mode != BXE_RX_MODE_NONE) {
3678        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3679        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3680    }
3681
3682    return (0);
3683}
3684
3685static int
3686bxe_set_q_rx_mode(struct bxe_softc *sc,
3687                  uint8_t          cl_id,
3688                  unsigned long    rx_mode_flags,
3689                  unsigned long    rx_accept_flags,
3690                  unsigned long    tx_accept_flags,
3691                  unsigned long    ramrod_flags)
3692{
3693    struct ecore_rx_mode_ramrod_params ramrod_param;
3694    int rc;
3695
3696    memset(&ramrod_param, 0, sizeof(ramrod_param));
3697
3698    /* Prepare ramrod parameters */
3699    ramrod_param.cid = 0;
3700    ramrod_param.cl_id = cl_id;
3701    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3702    ramrod_param.func_id = SC_FUNC(sc);
3703
3704    ramrod_param.pstate = &sc->sp_state;
3705    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3706
3707    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3708    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3709
3710    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3711
3712    ramrod_param.ramrod_flags = ramrod_flags;
3713    ramrod_param.rx_mode_flags = rx_mode_flags;
3714
3715    ramrod_param.rx_accept_flags = rx_accept_flags;
3716    ramrod_param.tx_accept_flags = tx_accept_flags;
3717
3718    rc = ecore_config_rx_mode(sc, &ramrod_param);
3719    if (rc < 0) {
3720        BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3721            "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3722            "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3723            (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3724            (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3725        return (rc);
3726    }
3727
3728    return (0);
3729}
3730
3731static int
3732bxe_set_storm_rx_mode(struct bxe_softc *sc)
3733{
3734    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3735    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3736    int rc;
3737
3738    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3739                               &tx_accept_flags);
3740    if (rc) {
3741        return (rc);
3742    }
3743
3744    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3745    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3746
3747    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3748    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3749                              rx_accept_flags, tx_accept_flags,
3750                              ramrod_flags));
3751}
3752
3753/* returns the "mcp load_code" according to global load_count array */
3754static int
3755bxe_nic_load_no_mcp(struct bxe_softc *sc)
3756{
3757    int path = SC_PATH(sc);
3758    int port = SC_PORT(sc);
3759
3760    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3761          path, load_count[path][0], load_count[path][1],
3762          load_count[path][2]);
3763    load_count[path][0]++;
3764    load_count[path][1 + port]++;
3765    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3766          path, load_count[path][0], load_count[path][1],
3767          load_count[path][2]);
3768    if (load_count[path][0] == 1) {
3769        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3770    } else if (load_count[path][1 + port] == 1) {
3771        return (FW_MSG_CODE_DRV_LOAD_PORT);
3772    } else {
3773        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3774    }
3775}
3776
3777/* returns the "mcp load_code" according to global load_count array */
3778static int
3779bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3780{
3781    int port = SC_PORT(sc);
3782    int path = SC_PATH(sc);
3783
3784    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3785          path, load_count[path][0], load_count[path][1],
3786          load_count[path][2]);
3787    load_count[path][0]--;
3788    load_count[path][1 + port]--;
3789    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3790          path, load_count[path][0], load_count[path][1],
3791          load_count[path][2]);
3792    if (load_count[path][0] == 0) {
3793        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3794    } else if (load_count[path][1 + port] == 0) {
3795        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3796    } else {
3797        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3798    }
3799}
3800
3801/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3802static uint32_t
3803bxe_send_unload_req(struct bxe_softc *sc,
3804                    int              unload_mode)
3805{
3806    uint32_t reset_code = 0;
3807
3808    /* Select the UNLOAD request mode */
3809    if (unload_mode == UNLOAD_NORMAL) {
3810        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3811    } else {
3812        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3813    }
3814
3815    /* Send the request to the MCP */
3816    if (!BXE_NOMCP(sc)) {
3817        reset_code = bxe_fw_command(sc, reset_code, 0);
3818    } else {
3819        reset_code = bxe_nic_unload_no_mcp(sc);
3820    }
3821
3822    return (reset_code);
3823}
3824
3825/* send UNLOAD_DONE command to the MCP */
3826static void
3827bxe_send_unload_done(struct bxe_softc *sc,
3828                     uint8_t          keep_link)
3829{
3830    uint32_t reset_param =
3831        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3832
3833    /* Report UNLOAD_DONE to MCP */
3834    if (!BXE_NOMCP(sc)) {
3835        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3836    }
3837}
3838
3839static int
3840bxe_func_wait_started(struct bxe_softc *sc)
3841{
3842    int tout = 50;
3843
3844    if (!sc->port.pmf) {
3845        return (0);
3846    }
3847
3848    /*
3849     * (assumption: No Attention from MCP at this stage)
3850     * PMF probably in the middle of TX disable/enable transaction
3851     * 1. Sync IRS for default SB
3852     * 2. Sync SP queue - this guarantees us that attention handling started
3853     * 3. Wait, that TX disable/enable transaction completes
3854     *
3855     * 1+2 guarantee that if DCBX attention was scheduled it already changed
3856     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3857     * received completion for the transaction the state is TX_STOPPED.
3858     * State will return to STARTED after completion of TX_STOPPED-->STARTED
3859     * transaction.
3860     */
3861
3862    /* XXX make sure default SB ISR is done */
3863    /* need a way to synchronize an irq (intr_mtx?) */
3864
3865    /* XXX flush any work queues */
3866
3867    while (ecore_func_get_state(sc, &sc->func_obj) !=
3868           ECORE_F_STATE_STARTED && tout--) {
3869        DELAY(20000);
3870    }
3871
3872    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3873        /*
3874         * Failed to complete the transaction in a "good way"
3875         * Force both transactions with CLR bit.
3876         */
3877        struct ecore_func_state_params func_params = { NULL };
3878
3879        BLOGE(sc, "Unexpected function state! "
3880                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3881
3882        func_params.f_obj = &sc->func_obj;
3883        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3884
3885        /* STARTED-->TX_STOPPED */
3886        func_params.cmd = ECORE_F_CMD_TX_STOP;
3887        ecore_func_state_change(sc, &func_params);
3888
3889        /* TX_STOPPED-->STARTED */
3890        func_params.cmd = ECORE_F_CMD_TX_START;
3891        return (ecore_func_state_change(sc, &func_params));
3892    }
3893
3894    return (0);
3895}
3896
3897static int
3898bxe_stop_queue(struct bxe_softc *sc,
3899               int              index)
3900{
3901    struct bxe_fastpath *fp = &sc->fp[index];
3902    struct ecore_queue_state_params q_params = { NULL };
3903    int rc;
3904
3905    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3906
3907    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3908    /* We want to wait for completion in this context */
3909    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3910
3911    /* Stop the primary connection: */
3912
3913    /* ...halt the connection */
3914    q_params.cmd = ECORE_Q_CMD_HALT;
3915    rc = ecore_queue_state_change(sc, &q_params);
3916    if (rc) {
3917        return (rc);
3918    }
3919
3920    /* ...terminate the connection */
3921    q_params.cmd = ECORE_Q_CMD_TERMINATE;
3922    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3923    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3924    rc = ecore_queue_state_change(sc, &q_params);
3925    if (rc) {
3926        return (rc);
3927    }
3928
3929    /* ...delete cfc entry */
3930    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3931    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3932    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3933    return (ecore_queue_state_change(sc, &q_params));
3934}
3935
3936/* wait for the outstanding SP commands */
3937static inline uint8_t
3938bxe_wait_sp_comp(struct bxe_softc *sc,
3939                 unsigned long    mask)
3940{
3941    unsigned long tmp;
3942    int tout = 5000; /* wait for 5 secs tops */
3943
3944    while (tout--) {
3945        mb();
3946        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3947            return (TRUE);
3948        }
3949
3950        DELAY(1000);
3951    }
3952
3953    mb();
3954
3955    tmp = atomic_load_acq_long(&sc->sp_state);
3956    if (tmp & mask) {
3957        BLOGE(sc, "Filtering completion timed out: "
3958                  "sp_state 0x%lx, mask 0x%lx\n",
3959              tmp, mask);
3960        return (FALSE);
3961    }
3962
3963    return (FALSE);
3964}
3965
3966static int
3967bxe_func_stop(struct bxe_softc *sc)
3968{
3969    struct ecore_func_state_params func_params = { NULL };
3970    int rc;
3971
3972    /* prepare parameters for function state transitions */
3973    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3974    func_params.f_obj = &sc->func_obj;
3975    func_params.cmd = ECORE_F_CMD_STOP;
3976
3977    /*
3978     * Try to stop the function the 'good way'. If it fails (in case
3979     * of a parity error during bxe_chip_cleanup()) and we are
3980     * not in a debug mode, perform a state transaction in order to
3981     * enable further HW_RESET transaction.
3982     */
3983    rc = ecore_func_state_change(sc, &func_params);
3984    if (rc) {
3985        BLOGE(sc, "FUNC_STOP ramrod failed. "
3986                  "Running a dry transaction (%d)\n", rc);
3987        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3988        return (ecore_func_state_change(sc, &func_params));
3989    }
3990
3991    return (0);
3992}
3993
3994static int
3995bxe_reset_hw(struct bxe_softc *sc,
3996             uint32_t         load_code)
3997{
3998    struct ecore_func_state_params func_params = { NULL };
3999
4000    /* Prepare parameters for function state transitions */
4001    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4002
4003    func_params.f_obj = &sc->func_obj;
4004    func_params.cmd = ECORE_F_CMD_HW_RESET;
4005
4006    func_params.params.hw_init.load_phase = load_code;
4007
4008    return (ecore_func_state_change(sc, &func_params));
4009}
4010
4011static void
4012bxe_int_disable_sync(struct bxe_softc *sc,
4013                     int              disable_hw)
4014{
4015    if (disable_hw) {
4016        /* prevent the HW from sending interrupts */
4017        bxe_int_disable(sc);
4018    }
4019
4020    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4021    /* make sure all ISRs are done */
4022
4023    /* XXX make sure sp_task is not running */
4024    /* cancel and flush work queues */
4025}
4026
4027static void
4028bxe_chip_cleanup(struct bxe_softc *sc,
4029                 uint32_t         unload_mode,
4030                 uint8_t          keep_link)
4031{
4032    int port = SC_PORT(sc);
4033    struct ecore_mcast_ramrod_params rparam = { NULL };
4034    uint32_t reset_code;
4035    int i, rc = 0;
4036
4037    bxe_drain_tx_queues(sc);
4038
4039    /* give HW time to discard old tx messages */
4040    DELAY(1000);
4041
4042    /* Clean all ETH MACs */
4043    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4044    if (rc < 0) {
4045        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4046    }
4047
4048    /* Clean up UC list  */
4049    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4050    if (rc < 0) {
4051        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4052    }
4053
4054    /* Disable LLH */
4055    if (!CHIP_IS_E1(sc)) {
4056        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4057    }
4058
4059    /* Set "drop all" to stop Rx */
4060
4061    /*
4062     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4063     * a race between the completion code and this code.
4064     */
4065    BXE_MCAST_LOCK(sc);
4066
4067    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4068        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4069    } else {
4070        bxe_set_storm_rx_mode(sc);
4071    }
4072
4073    /* Clean up multicast configuration */
4074    rparam.mcast_obj = &sc->mcast_obj;
4075    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4076    if (rc < 0) {
4077        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4078    }
4079
4080    BXE_MCAST_UNLOCK(sc);
4081
4082    // XXX bxe_iov_chip_cleanup(sc);
4083
4084    /*
4085     * Send the UNLOAD_REQUEST to the MCP. This will return if
4086     * this function should perform FUNCTION, PORT, or COMMON HW
4087     * reset.
4088     */
4089    reset_code = bxe_send_unload_req(sc, unload_mode);
4090
4091    /*
4092     * (assumption: No Attention from MCP at this stage)
4093     * PMF probably in the middle of TX disable/enable transaction
4094     */
4095    rc = bxe_func_wait_started(sc);
4096    if (rc) {
4097        BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4098    }
4099
4100    /*
4101     * Close multi and leading connections
4102     * Completions for ramrods are collected in a synchronous way
4103     */
4104    for (i = 0; i < sc->num_queues; i++) {
4105        if (bxe_stop_queue(sc, i)) {
4106            goto unload_error;
4107        }
4108    }
4109
4110    /*
4111     * If SP settings didn't get completed so far - something
4112     * very wrong has happen.
4113     */
4114    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4115        BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4116    }
4117
4118unload_error:
4119
4120    rc = bxe_func_stop(sc);
4121    if (rc) {
4122        BLOGE(sc, "Function stop failed!(%d)\n", rc);
4123    }
4124
4125    /* disable HW interrupts */
4126    bxe_int_disable_sync(sc, TRUE);
4127
4128    /* detach interrupts */
4129    bxe_interrupt_detach(sc);
4130
4131    /* Reset the chip */
4132    rc = bxe_reset_hw(sc, reset_code);
4133    if (rc) {
4134        BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4135    }
4136
4137    /* Report UNLOAD_DONE to MCP */
4138    bxe_send_unload_done(sc, keep_link);
4139}
4140
4141static void
4142bxe_disable_close_the_gate(struct bxe_softc *sc)
4143{
4144    uint32_t val;
4145    int port = SC_PORT(sc);
4146
4147    BLOGD(sc, DBG_LOAD,
4148          "Disabling 'close the gates'\n");
4149
4150    if (CHIP_IS_E1(sc)) {
4151        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4152                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4153        val = REG_RD(sc, addr);
4154        val &= ~(0x300);
4155        REG_WR(sc, addr, val);
4156    } else {
4157        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4158        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4159                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4160        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4161    }
4162}
4163
4164/*
4165 * Cleans the object that have internal lists without sending
4166 * ramrods. Should be run when interrutps are disabled.
4167 */
4168static void
4169bxe_squeeze_objects(struct bxe_softc *sc)
4170{
4171    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4172    struct ecore_mcast_ramrod_params rparam = { NULL };
4173    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4174    int rc;
4175
4176    /* Cleanup MACs' object first... */
4177
4178    /* Wait for completion of requested */
4179    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4180    /* Perform a dry cleanup */
4181    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4182
4183    /* Clean ETH primary MAC */
4184    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4185    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4186                             &ramrod_flags);
4187    if (rc != 0) {
4188        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4189    }
4190
4191    /* Cleanup UC list */
4192    vlan_mac_flags = 0;
4193    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4194    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4195                             &ramrod_flags);
4196    if (rc != 0) {
4197        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4198    }
4199
4200    /* Now clean mcast object... */
4201
4202    rparam.mcast_obj = &sc->mcast_obj;
4203    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4204
4205    /* Add a DEL command... */
4206    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4207    if (rc < 0) {
4208        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4209    }
4210
4211    /* now wait until all pending commands are cleared */
4212
4213    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4214    while (rc != 0) {
4215        if (rc < 0) {
4216            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4217            return;
4218        }
4219
4220        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4221    }
4222}
4223
4224/* stop the controller */
4225static __noinline int
4226bxe_nic_unload(struct bxe_softc *sc,
4227               uint32_t         unload_mode,
4228               uint8_t          keep_link)
4229{
4230    uint8_t global = FALSE;
4231    uint32_t val;
4232    int i;
4233
4234    BXE_CORE_LOCK_ASSERT(sc);
4235
4236    if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4237
4238    for (i = 0; i < sc->num_queues; i++) {
4239        struct bxe_fastpath *fp;
4240
4241        fp = &sc->fp[i];
4242	fp->watchdog_timer = 0;
4243        BXE_FP_TX_LOCK(fp);
4244        BXE_FP_TX_UNLOCK(fp);
4245    }
4246
4247    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4248
4249    /* mark driver as unloaded in shmem2 */
4250    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4251        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4252        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4253                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4254    }
4255
4256    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4257        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4258
4259	if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
4260            /*
4261             * We can get here if the driver has been unloaded
4262             * during parity error recovery and is either waiting for a
4263             * leader to complete or for other functions to unload and
4264             * then ifconfig down has been issued. In this case we want to
4265             * unload and let other functions to complete a recovery
4266             * process.
4267             */
4268            sc->recovery_state = BXE_RECOVERY_DONE;
4269            sc->is_leader = 0;
4270            bxe_release_leader_lock(sc);
4271            mb();
4272            BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4273	}
4274        BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4275            " state = 0x%x\n", sc->recovery_state, sc->state);
4276        return (-1);
4277    }
4278
4279    /*
4280     * Nothing to do during unload if previous bxe_nic_load()
4281     * did not completed successfully - all resourses are released.
4282     */
4283    if ((sc->state == BXE_STATE_CLOSED) ||
4284        (sc->state == BXE_STATE_ERROR)) {
4285        return (0);
4286    }
4287
4288    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4289    mb();
4290
4291    /* stop tx */
4292    bxe_tx_disable(sc);
4293
4294    sc->rx_mode = BXE_RX_MODE_NONE;
4295    /* XXX set rx mode ??? */
4296
4297    if (IS_PF(sc) && !sc->grcdump_done) {
4298        /* set ALWAYS_ALIVE bit in shmem */
4299        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4300
4301        bxe_drv_pulse(sc);
4302
4303        bxe_stats_handle(sc, STATS_EVENT_STOP);
4304        bxe_save_statistics(sc);
4305    }
4306
4307    /* wait till consumers catch up with producers in all queues */
4308    bxe_drain_tx_queues(sc);
4309
4310    /* if VF indicate to PF this function is going down (PF will delete sp
4311     * elements and clear initializations
4312     */
4313    if (IS_VF(sc)) {
4314        ; /* bxe_vfpf_close_vf(sc); */
4315    } else if (unload_mode != UNLOAD_RECOVERY) {
4316        /* if this is a normal/close unload need to clean up chip */
4317        if (!sc->grcdump_done)
4318            bxe_chip_cleanup(sc, unload_mode, keep_link);
4319    } else {
4320        /* Send the UNLOAD_REQUEST to the MCP */
4321        bxe_send_unload_req(sc, unload_mode);
4322
4323        /*
4324         * Prevent transactions to host from the functions on the
4325         * engine that doesn't reset global blocks in case of global
4326         * attention once gloabl blocks are reset and gates are opened
4327         * (the engine which leader will perform the recovery
4328         * last).
4329         */
4330        if (!CHIP_IS_E1x(sc)) {
4331            bxe_pf_disable(sc);
4332        }
4333
4334        /* disable HW interrupts */
4335        bxe_int_disable_sync(sc, TRUE);
4336
4337        /* detach interrupts */
4338        bxe_interrupt_detach(sc);
4339
4340        /* Report UNLOAD_DONE to MCP */
4341        bxe_send_unload_done(sc, FALSE);
4342    }
4343
4344    /*
4345     * At this stage no more interrupts will arrive so we may safely clean
4346     * the queue'able objects here in case they failed to get cleaned so far.
4347     */
4348    if (IS_PF(sc)) {
4349        bxe_squeeze_objects(sc);
4350    }
4351
4352    /* There should be no more pending SP commands at this stage */
4353    sc->sp_state = 0;
4354
4355    sc->port.pmf = 0;
4356
4357    bxe_free_fp_buffers(sc);
4358
4359    if (IS_PF(sc)) {
4360        bxe_free_mem(sc);
4361    }
4362
4363    bxe_free_fw_stats_mem(sc);
4364
4365    sc->state = BXE_STATE_CLOSED;
4366
4367    /*
4368     * Check if there are pending parity attentions. If there are - set
4369     * RECOVERY_IN_PROGRESS.
4370     */
4371    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4372        bxe_set_reset_in_progress(sc);
4373
4374        /* Set RESET_IS_GLOBAL if needed */
4375        if (global) {
4376            bxe_set_reset_global(sc);
4377        }
4378    }
4379
4380    /*
4381     * The last driver must disable a "close the gate" if there is no
4382     * parity attention or "process kill" pending.
4383     */
4384    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4385        bxe_reset_is_done(sc, SC_PATH(sc))) {
4386        bxe_disable_close_the_gate(sc);
4387    }
4388
4389    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4390
4391    bxe_link_report(sc);
4392
4393    return (0);
4394}
4395
4396/*
4397 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4398 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4399 */
4400static int
4401bxe_ifmedia_update(struct ifnet  *ifp)
4402{
4403    struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4404    struct ifmedia *ifm;
4405
4406    ifm = &sc->ifmedia;
4407
4408    /* We only support Ethernet media type. */
4409    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4410        return (EINVAL);
4411    }
4412
4413    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4414    case IFM_AUTO:
4415         break;
4416    case IFM_10G_CX4:
4417    case IFM_10G_SR:
4418    case IFM_10G_T:
4419    case IFM_10G_TWINAX:
4420    default:
4421        /* We don't support changing the media type. */
4422        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4423              IFM_SUBTYPE(ifm->ifm_media));
4424        return (EINVAL);
4425    }
4426
4427    return (0);
4428}
4429
4430/*
4431 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4432 */
4433static void
4434bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4435{
4436    struct bxe_softc *sc = if_getsoftc(ifp);
4437
4438    /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
4439       line if the IFM_AVALID flag is *NOT* set. So we need to set this
4440       flag unconditionally (irrespective of the admininistrative
4441       'up/down' state of the interface) to ensure that that line is always
4442       displayed.
4443    */
4444    ifmr->ifm_status = IFM_AVALID;
4445
4446    /* Setup the default interface info. */
4447    ifmr->ifm_active = IFM_ETHER;
4448
4449    /* Report link down if the driver isn't running. */
4450    if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4451        ifmr->ifm_active |= IFM_NONE;
4452        BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
4453        BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
4454                __func__, sc->link_vars.link_up);
4455        return;
4456    }
4457
4458
4459    if (sc->link_vars.link_up) {
4460        ifmr->ifm_status |= IFM_ACTIVE;
4461        ifmr->ifm_active |= IFM_FDX;
4462    } else {
4463        ifmr->ifm_active |= IFM_NONE;
4464        BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
4465                __func__);
4466        return;
4467    }
4468
4469    ifmr->ifm_active |= sc->media;
4470    return;
4471}
4472
4473static void
4474bxe_handle_chip_tq(void *context,
4475                   int  pending)
4476{
4477    struct bxe_softc *sc = (struct bxe_softc *)context;
4478    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4479
4480    switch (work)
4481    {
4482
4483    case CHIP_TQ_REINIT:
4484        if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4485            /* restart the interface */
4486            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4487            bxe_periodic_stop(sc);
4488            BXE_CORE_LOCK(sc);
4489            bxe_stop_locked(sc);
4490            bxe_init_locked(sc);
4491            BXE_CORE_UNLOCK(sc);
4492        }
4493        break;
4494
4495    default:
4496        break;
4497    }
4498}
4499
4500/*
4501 * Handles any IOCTL calls from the operating system.
4502 *
4503 * Returns:
4504 *   0 = Success, >0 Failure
4505 */
4506static int
4507bxe_ioctl(if_t ifp,
4508          u_long       command,
4509          caddr_t      data)
4510{
4511    struct bxe_softc *sc = if_getsoftc(ifp);
4512    struct ifreq *ifr = (struct ifreq *)data;
4513    int mask = 0;
4514    int reinit = 0;
4515    int error = 0;
4516
4517    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4518    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4519
4520    switch (command)
4521    {
4522    case SIOCSIFMTU:
4523        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4524              ifr->ifr_mtu);
4525
4526        if (sc->mtu == ifr->ifr_mtu) {
4527            /* nothing to change */
4528            break;
4529        }
4530
4531        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4532            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4533                  ifr->ifr_mtu, mtu_min, mtu_max);
4534            error = EINVAL;
4535            break;
4536        }
4537
4538        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4539                             (unsigned long)ifr->ifr_mtu);
4540	/*
4541        atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4542                              (unsigned long)ifr->ifr_mtu);
4543	XXX - Not sure why it needs to be atomic
4544	*/
4545	if_setmtu(ifp, ifr->ifr_mtu);
4546        reinit = 1;
4547        break;
4548
4549    case SIOCSIFFLAGS:
4550        /* toggle the interface state up or down */
4551        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4552
4553	BXE_CORE_LOCK(sc);
4554        /* check if the interface is up */
4555        if (if_getflags(ifp) & IFF_UP) {
4556            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4557                /* set the receive mode flags */
4558                bxe_set_rx_mode(sc);
4559            } else if(sc->state != BXE_STATE_DISABLED) {
4560		bxe_init_locked(sc);
4561            }
4562        } else {
4563            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4564		bxe_periodic_stop(sc);
4565		bxe_stop_locked(sc);
4566            }
4567        }
4568	BXE_CORE_UNLOCK(sc);
4569
4570        break;
4571
4572    case SIOCADDMULTI:
4573    case SIOCDELMULTI:
4574        /* add/delete multicast addresses */
4575        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4576
4577        /* check if the interface is up */
4578        if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4579            /* set the receive mode flags */
4580	    BXE_CORE_LOCK(sc);
4581            bxe_set_rx_mode(sc);
4582	    BXE_CORE_UNLOCK(sc);
4583        }
4584
4585        break;
4586
4587    case SIOCSIFCAP:
4588        /* find out which capabilities have changed */
4589        mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4590
4591        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4592              mask);
4593
4594        /* toggle the LRO capabilites enable flag */
4595        if (mask & IFCAP_LRO) {
4596	    if_togglecapenable(ifp, IFCAP_LRO);
4597            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4598                  (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4599            reinit = 1;
4600        }
4601
4602        /* toggle the TXCSUM checksum capabilites enable flag */
4603        if (mask & IFCAP_TXCSUM) {
4604	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4605            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4606                  (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4607            if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4608                if_sethwassistbits(ifp, (CSUM_IP      |
4609                                    CSUM_TCP      |
4610                                    CSUM_UDP      |
4611                                    CSUM_TSO      |
4612                                    CSUM_TCP_IPV6 |
4613                                    CSUM_UDP_IPV6), 0);
4614            } else {
4615		if_clearhwassist(ifp); /* XXX */
4616            }
4617        }
4618
4619        /* toggle the RXCSUM checksum capabilities enable flag */
4620        if (mask & IFCAP_RXCSUM) {
4621	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4622            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4623                  (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4624            if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4625                if_sethwassistbits(ifp, (CSUM_IP      |
4626                                    CSUM_TCP      |
4627                                    CSUM_UDP      |
4628                                    CSUM_TSO      |
4629                                    CSUM_TCP_IPV6 |
4630                                    CSUM_UDP_IPV6), 0);
4631            } else {
4632		if_clearhwassist(ifp); /* XXX */
4633            }
4634        }
4635
4636        /* toggle TSO4 capabilities enabled flag */
4637        if (mask & IFCAP_TSO4) {
4638            if_togglecapenable(ifp, IFCAP_TSO4);
4639            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4640                  (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4641        }
4642
4643        /* toggle TSO6 capabilities enabled flag */
4644        if (mask & IFCAP_TSO6) {
4645	    if_togglecapenable(ifp, IFCAP_TSO6);
4646            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4647                  (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4648        }
4649
4650        /* toggle VLAN_HWTSO capabilities enabled flag */
4651        if (mask & IFCAP_VLAN_HWTSO) {
4652
4653	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4654            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4655                  (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4656        }
4657
4658        /* toggle VLAN_HWCSUM capabilities enabled flag */
4659        if (mask & IFCAP_VLAN_HWCSUM) {
4660            /* XXX investigate this... */
4661            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4662            error = EINVAL;
4663        }
4664
4665        /* toggle VLAN_MTU capabilities enable flag */
4666        if (mask & IFCAP_VLAN_MTU) {
4667            /* XXX investigate this... */
4668            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4669            error = EINVAL;
4670        }
4671
4672        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4673        if (mask & IFCAP_VLAN_HWTAGGING) {
4674            /* XXX investigate this... */
4675            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4676            error = EINVAL;
4677        }
4678
4679        /* toggle VLAN_HWFILTER capabilities enabled flag */
4680        if (mask & IFCAP_VLAN_HWFILTER) {
4681            /* XXX investigate this... */
4682            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4683            error = EINVAL;
4684        }
4685
4686        /* XXX not yet...
4687         * IFCAP_WOL_MAGIC
4688         */
4689
4690        break;
4691
4692    case SIOCSIFMEDIA:
4693    case SIOCGIFMEDIA:
4694        /* set/get interface media */
4695        BLOGD(sc, DBG_IOCTL,
4696              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4697              (command & 0xff));
4698        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4699        break;
4700
4701    default:
4702        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4703              (command & 0xff));
4704        error = ether_ioctl(ifp, command, data);
4705        break;
4706    }
4707
4708    if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4709        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4710              "Re-initializing hardware from IOCTL change\n");
4711	bxe_periodic_stop(sc);
4712	BXE_CORE_LOCK(sc);
4713	bxe_stop_locked(sc);
4714	bxe_init_locked(sc);
4715	BXE_CORE_UNLOCK(sc);
4716    }
4717
4718    return (error);
4719}
4720
4721static __noinline void
4722bxe_dump_mbuf(struct bxe_softc *sc,
4723              struct mbuf      *m,
4724              uint8_t          contents)
4725{
4726    char * type;
4727    int i = 0;
4728
4729    if (!(sc->debug & DBG_MBUF)) {
4730        return;
4731    }
4732
4733    if (m == NULL) {
4734        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4735        return;
4736    }
4737
4738    while (m) {
4739
4740        BLOGD(sc, DBG_MBUF,
4741              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4742              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4743
4744        if (m->m_flags & M_PKTHDR) {
4745             BLOGD(sc, DBG_MBUF,
4746                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4747                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4748                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4749        }
4750
4751        if (m->m_flags & M_EXT) {
4752            switch (m->m_ext.ext_type) {
4753            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4754            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4755            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4756            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4757            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4758            case EXT_PACKET:     type = "EXT_PACKET";     break;
4759            case EXT_MBUF:       type = "EXT_MBUF";       break;
4760            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4761            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4762            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4763            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4764            default:             type = "UNKNOWN";        break;
4765            }
4766
4767            BLOGD(sc, DBG_MBUF,
4768                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
4769                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4770        }
4771
4772        if (contents) {
4773            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4774        }
4775
4776        m = m->m_next;
4777        i++;
4778    }
4779}
4780
4781/*
4782 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4783 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4784 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4785 * The headers comes in a separate bd in FreeBSD so 13-3=10.
4786 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4787 */
4788static int
4789bxe_chktso_window(struct bxe_softc  *sc,
4790                  int               nsegs,
4791                  bus_dma_segment_t *segs,
4792                  struct mbuf       *m)
4793{
4794    uint32_t num_wnds, wnd_size, wnd_sum;
4795    int32_t frag_idx, wnd_idx;
4796    unsigned short lso_mss;
4797    int defrag;
4798
4799    defrag = 0;
4800    wnd_sum = 0;
4801    wnd_size = 10;
4802    num_wnds = nsegs - wnd_size;
4803    lso_mss = htole16(m->m_pkthdr.tso_segsz);
4804
4805    /*
4806     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4807     * first window sum of data while skipping the first assuming it is the
4808     * header in FreeBSD.
4809     */
4810    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4811        wnd_sum += htole16(segs[frag_idx].ds_len);
4812    }
4813
4814    /* check the first 10 bd window size */
4815    if (wnd_sum < lso_mss) {
4816        return (1);
4817    }
4818
4819    /* run through the windows */
4820    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4821        /* subtract the first mbuf->m_len of the last wndw(-header) */
4822        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4823        /* add the next mbuf len to the len of our new window */
4824        wnd_sum += htole16(segs[frag_idx].ds_len);
4825        if (wnd_sum < lso_mss) {
4826            return (1);
4827        }
4828    }
4829
4830    return (0);
4831}
4832
4833static uint8_t
4834bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4835                    struct mbuf         *m,
4836                    uint32_t            *parsing_data)
4837{
4838    struct ether_vlan_header *eh = NULL;
4839    struct ip *ip4 = NULL;
4840    struct ip6_hdr *ip6 = NULL;
4841    caddr_t ip = NULL;
4842    struct tcphdr *th = NULL;
4843    int e_hlen, ip_hlen, l4_off;
4844    uint16_t proto;
4845
4846    if (m->m_pkthdr.csum_flags == CSUM_IP) {
4847        /* no L4 checksum offload needed */
4848        return (0);
4849    }
4850
4851    /* get the Ethernet header */
4852    eh = mtod(m, struct ether_vlan_header *);
4853
4854    /* handle VLAN encapsulation if present */
4855    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4856        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4857        proto  = ntohs(eh->evl_proto);
4858    } else {
4859        e_hlen = ETHER_HDR_LEN;
4860        proto  = ntohs(eh->evl_encap_proto);
4861    }
4862
4863    switch (proto) {
4864    case ETHERTYPE_IP:
4865        /* get the IP header, if mbuf len < 20 then header in next mbuf */
4866        ip4 = (m->m_len < sizeof(struct ip)) ?
4867                  (struct ip *)m->m_next->m_data :
4868                  (struct ip *)(m->m_data + e_hlen);
4869        /* ip_hl is number of 32-bit words */
4870        ip_hlen = (ip4->ip_hl << 2);
4871        ip = (caddr_t)ip4;
4872        break;
4873    case ETHERTYPE_IPV6:
4874        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4875        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4876                  (struct ip6_hdr *)m->m_next->m_data :
4877                  (struct ip6_hdr *)(m->m_data + e_hlen);
4878        /* XXX cannot support offload with IPv6 extensions */
4879        ip_hlen = sizeof(struct ip6_hdr);
4880        ip = (caddr_t)ip6;
4881        break;
4882    default:
4883        /* We can't offload in this case... */
4884        /* XXX error stat ??? */
4885        return (0);
4886    }
4887
4888    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4889    l4_off = (e_hlen + ip_hlen);
4890
4891    *parsing_data |=
4892        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4893         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4894
4895    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4896                                  CSUM_TSO |
4897                                  CSUM_TCP_IPV6)) {
4898        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4899        th = (struct tcphdr *)(ip + ip_hlen);
4900        /* th_off is number of 32-bit words */
4901        *parsing_data |= ((th->th_off <<
4902                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4903                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4904        return (l4_off + (th->th_off << 2)); /* entire header length */
4905    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4906                                         CSUM_UDP_IPV6)) {
4907        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4908        return (l4_off + sizeof(struct udphdr)); /* entire header length */
4909    } else {
4910        /* XXX error stat ??? */
4911        return (0);
4912    }
4913}
4914
4915static uint8_t
4916bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4917                 struct mbuf                *m,
4918                 struct eth_tx_parse_bd_e1x *pbd)
4919{
4920    struct ether_vlan_header *eh = NULL;
4921    struct ip *ip4 = NULL;
4922    struct ip6_hdr *ip6 = NULL;
4923    caddr_t ip = NULL;
4924    struct tcphdr *th = NULL;
4925    struct udphdr *uh = NULL;
4926    int e_hlen, ip_hlen;
4927    uint16_t proto;
4928    uint8_t hlen;
4929    uint16_t tmp_csum;
4930    uint32_t *tmp_uh;
4931
4932    /* get the Ethernet header */
4933    eh = mtod(m, struct ether_vlan_header *);
4934
4935    /* handle VLAN encapsulation if present */
4936    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4937        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4938        proto  = ntohs(eh->evl_proto);
4939    } else {
4940        e_hlen = ETHER_HDR_LEN;
4941        proto  = ntohs(eh->evl_encap_proto);
4942    }
4943
4944    switch (proto) {
4945    case ETHERTYPE_IP:
4946        /* get the IP header, if mbuf len < 20 then header in next mbuf */
4947        ip4 = (m->m_len < sizeof(struct ip)) ?
4948                  (struct ip *)m->m_next->m_data :
4949                  (struct ip *)(m->m_data + e_hlen);
4950        /* ip_hl is number of 32-bit words */
4951        ip_hlen = (ip4->ip_hl << 1);
4952        ip = (caddr_t)ip4;
4953        break;
4954    case ETHERTYPE_IPV6:
4955        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4956        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4957                  (struct ip6_hdr *)m->m_next->m_data :
4958                  (struct ip6_hdr *)(m->m_data + e_hlen);
4959        /* XXX cannot support offload with IPv6 extensions */
4960        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4961        ip = (caddr_t)ip6;
4962        break;
4963    default:
4964        /* We can't offload in this case... */
4965        /* XXX error stat ??? */
4966        return (0);
4967    }
4968
4969    hlen = (e_hlen >> 1);
4970
4971    /* note that rest of global_data is indirectly zeroed here */
4972    if (m->m_flags & M_VLANTAG) {
4973        pbd->global_data =
4974            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4975    } else {
4976        pbd->global_data = htole16(hlen);
4977    }
4978
4979    pbd->ip_hlen_w = ip_hlen;
4980
4981    hlen += pbd->ip_hlen_w;
4982
4983    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4984
4985    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4986                                  CSUM_TSO |
4987                                  CSUM_TCP_IPV6)) {
4988        th = (struct tcphdr *)(ip + (ip_hlen << 1));
4989        /* th_off is number of 32-bit words */
4990        hlen += (uint16_t)(th->th_off << 1);
4991    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4992                                         CSUM_UDP_IPV6)) {
4993        uh = (struct udphdr *)(ip + (ip_hlen << 1));
4994        hlen += (sizeof(struct udphdr) / 2);
4995    } else {
4996        /* valid case as only CSUM_IP was set */
4997        return (0);
4998    }
4999
5000    pbd->total_hlen_w = htole16(hlen);
5001
5002    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5003                                  CSUM_TSO |
5004                                  CSUM_TCP_IPV6)) {
5005        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5006        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5007    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5008                                         CSUM_UDP_IPV6)) {
5009        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5010
5011        /*
5012         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5013         * checksums and does not know anything about the UDP header and where
5014         * the checksum field is located. It only knows about TCP. Therefore
5015         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5016         * offload. Since the checksum field offset for TCP is 16 bytes and
5017         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5018         * bytes less than the start of the UDP header. This allows the
5019         * hardware to write the checksum in the correct spot. But the
5020         * hardware will compute a checksum which includes the last 10 bytes
5021         * of the IP header. To correct this we tweak the stack computed
5022         * pseudo checksum by folding in the calculation of the inverse
5023         * checksum for those final 10 bytes of the IP header. This allows
5024         * the correct checksum to be computed by the hardware.
5025         */
5026
5027        /* set pointer 10 bytes before UDP header */
5028        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5029
5030        /* calculate a pseudo header checksum over the first 10 bytes */
5031        tmp_csum = in_pseudo(*tmp_uh,
5032                             *(tmp_uh + 1),
5033                             *(uint16_t *)(tmp_uh + 2));
5034
5035        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5036    }
5037
5038    return (hlen * 2); /* entire header length, number of bytes */
5039}
5040
5041static void
5042bxe_set_pbd_lso_e2(struct mbuf *m,
5043                   uint32_t    *parsing_data)
5044{
5045    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5046                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5047                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5048
5049    /* XXX test for IPv6 with extension header... */
5050}
5051
5052static void
5053bxe_set_pbd_lso(struct mbuf                *m,
5054                struct eth_tx_parse_bd_e1x *pbd)
5055{
5056    struct ether_vlan_header *eh = NULL;
5057    struct ip *ip = NULL;
5058    struct tcphdr *th = NULL;
5059    int e_hlen;
5060
5061    /* get the Ethernet header */
5062    eh = mtod(m, struct ether_vlan_header *);
5063
5064    /* handle VLAN encapsulation if present */
5065    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5066                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5067
5068    /* get the IP and TCP header, with LSO entire header in first mbuf */
5069    /* XXX assuming IPv4 */
5070    ip = (struct ip *)(m->m_data + e_hlen);
5071    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5072
5073    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5074    pbd->tcp_send_seq = ntohl(th->th_seq);
5075    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5076
5077#if 1
5078        /* XXX IPv4 */
5079        pbd->ip_id = ntohs(ip->ip_id);
5080        pbd->tcp_pseudo_csum =
5081            ntohs(in_pseudo(ip->ip_src.s_addr,
5082                            ip->ip_dst.s_addr,
5083                            htons(IPPROTO_TCP)));
5084#else
5085        /* XXX IPv6 */
5086        pbd->tcp_pseudo_csum =
5087            ntohs(in_pseudo(&ip6->ip6_src,
5088                            &ip6->ip6_dst,
5089                            htons(IPPROTO_TCP)));
5090#endif
5091
5092    pbd->global_data |=
5093        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5094}
5095
5096/*
5097 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5098 * visible to the controller.
5099 *
5100 * If an mbuf is submitted to this routine and cannot be given to the
5101 * controller (e.g. it has too many fragments) then the function may free
5102 * the mbuf and return to the caller.
5103 *
5104 * Returns:
5105 *   0 = Success, !0 = Failure
5106 *   Note the side effect that an mbuf may be freed if it causes a problem.
5107 */
5108static int
5109bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5110{
5111    bus_dma_segment_t segs[32];
5112    struct mbuf *m0;
5113    struct bxe_sw_tx_bd *tx_buf;
5114    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5115    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5116    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5117    struct eth_tx_bd *tx_data_bd;
5118    struct eth_tx_bd *tx_total_pkt_size_bd;
5119    struct eth_tx_start_bd *tx_start_bd;
5120    uint16_t bd_prod, pkt_prod, total_pkt_size;
5121    uint8_t mac_type;
5122    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5123    struct bxe_softc *sc;
5124    uint16_t tx_bd_avail;
5125    struct ether_vlan_header *eh;
5126    uint32_t pbd_e2_parsing_data = 0;
5127    uint8_t hlen = 0;
5128    int tmp_bd;
5129    int i;
5130
5131    sc = fp->sc;
5132
5133    M_ASSERTPKTHDR(*m_head);
5134
5135    m0 = *m_head;
5136    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5137    tx_start_bd = NULL;
5138    tx_data_bd = NULL;
5139    tx_total_pkt_size_bd = NULL;
5140
5141    /* get the H/W pointer for packets and BDs */
5142    pkt_prod = fp->tx_pkt_prod;
5143    bd_prod = fp->tx_bd_prod;
5144
5145    mac_type = UNICAST_ADDRESS;
5146
5147    /* map the mbuf into the next open DMAable memory */
5148    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5149    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5150                                    tx_buf->m_map, m0,
5151                                    segs, &nsegs, BUS_DMA_NOWAIT);
5152
5153    /* mapping errors */
5154    if(__predict_false(error != 0)) {
5155        fp->eth_q_stats.tx_dma_mapping_failure++;
5156        if (error == ENOMEM) {
5157            /* resource issue, try again later */
5158            rc = ENOMEM;
5159        } else if (error == EFBIG) {
5160            /* possibly recoverable with defragmentation */
5161            fp->eth_q_stats.mbuf_defrag_attempts++;
5162            m0 = m_defrag(*m_head, M_NOWAIT);
5163            if (m0 == NULL) {
5164                fp->eth_q_stats.mbuf_defrag_failures++;
5165                rc = ENOBUFS;
5166            } else {
5167                /* defrag successful, try mapping again */
5168                *m_head = m0;
5169                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5170                                                tx_buf->m_map, m0,
5171                                                segs, &nsegs, BUS_DMA_NOWAIT);
5172                if (error) {
5173                    fp->eth_q_stats.tx_dma_mapping_failure++;
5174                    rc = error;
5175                }
5176            }
5177        } else {
5178            /* unknown, unrecoverable mapping error */
5179            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5180            bxe_dump_mbuf(sc, m0, FALSE);
5181            rc = error;
5182        }
5183
5184        goto bxe_tx_encap_continue;
5185    }
5186
5187    tx_bd_avail = bxe_tx_avail(sc, fp);
5188
5189    /* make sure there is enough room in the send queue */
5190    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5191        /* Recoverable, try again later. */
5192        fp->eth_q_stats.tx_hw_queue_full++;
5193        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5194        rc = ENOMEM;
5195        goto bxe_tx_encap_continue;
5196    }
5197
5198    /* capture the current H/W TX chain high watermark */
5199    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5200                        (TX_BD_USABLE - tx_bd_avail))) {
5201        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5202    }
5203
5204    /* make sure it fits in the packet window */
5205    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5206        /*
5207         * The mbuf may be to big for the controller to handle. If the frame
5208         * is a TSO frame we'll need to do an additional check.
5209         */
5210        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5211            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5212                goto bxe_tx_encap_continue; /* OK to send */
5213            } else {
5214                fp->eth_q_stats.tx_window_violation_tso++;
5215            }
5216        } else {
5217            fp->eth_q_stats.tx_window_violation_std++;
5218        }
5219
5220        /* lets try to defragment this mbuf and remap it */
5221        fp->eth_q_stats.mbuf_defrag_attempts++;
5222        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5223
5224        m0 = m_defrag(*m_head, M_NOWAIT);
5225        if (m0 == NULL) {
5226            fp->eth_q_stats.mbuf_defrag_failures++;
5227            /* Ugh, just drop the frame... :( */
5228            rc = ENOBUFS;
5229        } else {
5230            /* defrag successful, try mapping again */
5231            *m_head = m0;
5232            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5233                                            tx_buf->m_map, m0,
5234                                            segs, &nsegs, BUS_DMA_NOWAIT);
5235            if (error) {
5236                fp->eth_q_stats.tx_dma_mapping_failure++;
5237                /* No sense in trying to defrag/copy chain, drop it. :( */
5238                rc = error;
5239            } else {
5240               /* if the chain is still too long then drop it */
5241                if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5242                    /*
5243                     * in case TSO is enabled nsegs should be checked against
5244                     * BXE_TSO_MAX_SEGMENTS
5245                     */
5246                    if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5247                        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5248                        fp->eth_q_stats.nsegs_path1_errors++;
5249                        rc = ENODEV;
5250                    }
5251                } else {
5252                    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5253                        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5254                        fp->eth_q_stats.nsegs_path2_errors++;
5255                        rc = ENODEV;
5256                    }
5257                }
5258            }
5259        }
5260    }
5261
5262bxe_tx_encap_continue:
5263
5264    /* Check for errors */
5265    if (rc) {
5266        if (rc == ENOMEM) {
5267            /* recoverable try again later  */
5268        } else {
5269            fp->eth_q_stats.tx_soft_errors++;
5270            fp->eth_q_stats.mbuf_alloc_tx--;
5271            m_freem(*m_head);
5272            *m_head = NULL;
5273        }
5274
5275        return (rc);
5276    }
5277
5278    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5279    if (m0->m_flags & M_BCAST) {
5280        mac_type = BROADCAST_ADDRESS;
5281    } else if (m0->m_flags & M_MCAST) {
5282        mac_type = MULTICAST_ADDRESS;
5283    }
5284
5285    /* store the mbuf into the mbuf ring */
5286    tx_buf->m        = m0;
5287    tx_buf->first_bd = fp->tx_bd_prod;
5288    tx_buf->flags    = 0;
5289
5290    /* prepare the first transmit (start) BD for the mbuf */
5291    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5292
5293    BLOGD(sc, DBG_TX,
5294          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5295          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5296
5297    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5298    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5299    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5300    total_pkt_size += tx_start_bd->nbytes;
5301    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5302
5303    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5304
5305    /* all frames have at least Start BD + Parsing BD */
5306    nbds = nsegs + 1;
5307    tx_start_bd->nbd = htole16(nbds);
5308
5309    if (m0->m_flags & M_VLANTAG) {
5310        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5311        tx_start_bd->bd_flags.as_bitfield |=
5312            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5313    } else {
5314        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5315        if (IS_VF(sc)) {
5316            /* map ethernet header to find type and header length */
5317            eh = mtod(m0, struct ether_vlan_header *);
5318            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5319        } else {
5320            /* used by FW for packet accounting */
5321            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5322        }
5323    }
5324
5325    /*
5326     * add a parsing BD from the chain. The parsing BD is always added
5327     * though it is only used for TSO and chksum
5328     */
5329    bd_prod = TX_BD_NEXT(bd_prod);
5330
5331    if (m0->m_pkthdr.csum_flags) {
5332        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5333            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5334            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5335        }
5336
5337        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5338            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5339                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5340        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5341            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5342                                                  ETH_TX_BD_FLAGS_IS_UDP |
5343                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5344        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5345                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5346            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5347        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5348            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5349                                                  ETH_TX_BD_FLAGS_IS_UDP);
5350        }
5351    }
5352
5353    if (!CHIP_IS_E1x(sc)) {
5354        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5355        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5356
5357        if (m0->m_pkthdr.csum_flags) {
5358            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5359        }
5360
5361        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5362                 mac_type);
5363    } else {
5364        uint16_t global_data = 0;
5365
5366        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5367        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5368
5369        if (m0->m_pkthdr.csum_flags) {
5370            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5371        }
5372
5373        SET_FLAG(global_data,
5374                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5375        pbd_e1x->global_data |= htole16(global_data);
5376    }
5377
5378    /* setup the parsing BD with TSO specific info */
5379    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5380        fp->eth_q_stats.tx_ofld_frames_lso++;
5381        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5382
5383        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5384            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5385
5386            /* split the first BD into header/data making the fw job easy */
5387            nbds++;
5388            tx_start_bd->nbd = htole16(nbds);
5389            tx_start_bd->nbytes = htole16(hlen);
5390
5391            bd_prod = TX_BD_NEXT(bd_prod);
5392
5393            /* new transmit BD after the tx_parse_bd */
5394            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5395            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5396            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5397            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5398            if (tx_total_pkt_size_bd == NULL) {
5399                tx_total_pkt_size_bd = tx_data_bd;
5400            }
5401
5402            BLOGD(sc, DBG_TX,
5403                  "TSO split header size is %d (%x:%x) nbds %d\n",
5404                  le16toh(tx_start_bd->nbytes),
5405                  le32toh(tx_start_bd->addr_hi),
5406                  le32toh(tx_start_bd->addr_lo),
5407                  nbds);
5408        }
5409
5410        if (!CHIP_IS_E1x(sc)) {
5411            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5412        } else {
5413            bxe_set_pbd_lso(m0, pbd_e1x);
5414        }
5415    }
5416
5417    if (pbd_e2_parsing_data) {
5418        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5419    }
5420
5421    /* prepare remaining BDs, start tx bd contains first seg/frag */
5422    for (i = 1; i < nsegs ; i++) {
5423        bd_prod = TX_BD_NEXT(bd_prod);
5424        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5425        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5426        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5427        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5428        if (tx_total_pkt_size_bd == NULL) {
5429            tx_total_pkt_size_bd = tx_data_bd;
5430        }
5431        total_pkt_size += tx_data_bd->nbytes;
5432    }
5433
5434    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5435
5436    if (tx_total_pkt_size_bd != NULL) {
5437        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5438    }
5439
5440    if (__predict_false(sc->debug & DBG_TX)) {
5441        tmp_bd = tx_buf->first_bd;
5442        for (i = 0; i < nbds; i++)
5443        {
5444            if (i == 0) {
5445                BLOGD(sc, DBG_TX,
5446                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5447                      "bd_flags=0x%x hdr_nbds=%d\n",
5448                      tx_start_bd,
5449                      tmp_bd,
5450                      le16toh(tx_start_bd->nbd),
5451                      le16toh(tx_start_bd->vlan_or_ethertype),
5452                      tx_start_bd->bd_flags.as_bitfield,
5453                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5454            } else if (i == 1) {
5455                if (pbd_e1x) {
5456                    BLOGD(sc, DBG_TX,
5457                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5458                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5459                          "tcp_seq=%u total_hlen_w=%u\n",
5460                          pbd_e1x,
5461                          tmp_bd,
5462                          pbd_e1x->global_data,
5463                          pbd_e1x->ip_hlen_w,
5464                          pbd_e1x->ip_id,
5465                          pbd_e1x->lso_mss,
5466                          pbd_e1x->tcp_flags,
5467                          pbd_e1x->tcp_pseudo_csum,
5468                          pbd_e1x->tcp_send_seq,
5469                          le16toh(pbd_e1x->total_hlen_w));
5470                } else { /* if (pbd_e2) */
5471                    BLOGD(sc, DBG_TX,
5472                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5473                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5474                          pbd_e2,
5475                          tmp_bd,
5476                          pbd_e2->data.mac_addr.dst_hi,
5477                          pbd_e2->data.mac_addr.dst_mid,
5478                          pbd_e2->data.mac_addr.dst_lo,
5479                          pbd_e2->data.mac_addr.src_hi,
5480                          pbd_e2->data.mac_addr.src_mid,
5481                          pbd_e2->data.mac_addr.src_lo,
5482                          pbd_e2->parsing_data);
5483                }
5484            }
5485
5486            if (i != 1) { /* skip parse db as it doesn't hold data */
5487                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5488                BLOGD(sc, DBG_TX,
5489                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5490                      tx_data_bd,
5491                      tmp_bd,
5492                      le16toh(tx_data_bd->nbytes),
5493                      le32toh(tx_data_bd->addr_hi),
5494                      le32toh(tx_data_bd->addr_lo));
5495            }
5496
5497            tmp_bd = TX_BD_NEXT(tmp_bd);
5498        }
5499    }
5500
5501    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5502
5503    /* update TX BD producer index value for next TX */
5504    bd_prod = TX_BD_NEXT(bd_prod);
5505
5506    /*
5507     * If the chain of tx_bd's describing this frame is adjacent to or spans
5508     * an eth_tx_next_bd element then we need to increment the nbds value.
5509     */
5510    if (TX_BD_IDX(bd_prod) < nbds) {
5511        nbds++;
5512    }
5513
5514    /* don't allow reordering of writes for nbd and packets */
5515    mb();
5516
5517    fp->tx_db.data.prod += nbds;
5518
5519    /* producer points to the next free tx_bd at this point */
5520    fp->tx_pkt_prod++;
5521    fp->tx_bd_prod = bd_prod;
5522
5523    DOORBELL(sc, fp->index, fp->tx_db.raw);
5524
5525    fp->eth_q_stats.tx_pkts++;
5526
5527    /* Prevent speculative reads from getting ahead of the status block. */
5528    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5529                      0, 0, BUS_SPACE_BARRIER_READ);
5530
5531    /* Prevent speculative reads from getting ahead of the doorbell. */
5532    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5533                      0, 0, BUS_SPACE_BARRIER_READ);
5534
5535    return (0);
5536}
5537
5538static void
5539bxe_tx_start_locked(struct bxe_softc *sc,
5540                    if_t ifp,
5541                    struct bxe_fastpath *fp)
5542{
5543    struct mbuf *m = NULL;
5544    int tx_count = 0;
5545    uint16_t tx_bd_avail;
5546
5547    BXE_FP_TX_LOCK_ASSERT(fp);
5548
5549    /* keep adding entries while there are frames to send */
5550    while (!if_sendq_empty(ifp)) {
5551
5552        /*
5553         * check for any frames to send
5554         * dequeue can still be NULL even if queue is not empty
5555         */
5556        m = if_dequeue(ifp);
5557        if (__predict_false(m == NULL)) {
5558            break;
5559        }
5560
5561        /* the mbuf now belongs to us */
5562        fp->eth_q_stats.mbuf_alloc_tx++;
5563
5564        /*
5565         * Put the frame into the transmit ring. If we don't have room,
5566         * place the mbuf back at the head of the TX queue, set the
5567         * OACTIVE flag, and wait for the NIC to drain the chain.
5568         */
5569        if (__predict_false(bxe_tx_encap(fp, &m))) {
5570            fp->eth_q_stats.tx_encap_failures++;
5571            if (m != NULL) {
5572                /* mark the TX queue as full and return the frame */
5573                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5574		if_sendq_prepend(ifp, m);
5575                fp->eth_q_stats.mbuf_alloc_tx--;
5576                fp->eth_q_stats.tx_queue_xoff++;
5577            }
5578
5579            /* stop looking for more work */
5580            break;
5581        }
5582
5583        /* the frame was enqueued successfully */
5584        tx_count++;
5585
5586        /* send a copy of the frame to any BPF listeners. */
5587        if_etherbpfmtap(ifp, m);
5588
5589        tx_bd_avail = bxe_tx_avail(sc, fp);
5590
5591        /* handle any completions if we're running low */
5592        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5593            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5594            bxe_txeof(sc, fp);
5595            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5596                break;
5597            }
5598        }
5599    }
5600
5601    /* all TX packets were dequeued and/or the tx ring is full */
5602    if (tx_count > 0) {
5603        /* reset the TX watchdog timeout timer */
5604        fp->watchdog_timer = BXE_TX_TIMEOUT;
5605    }
5606}
5607
5608/* Legacy (non-RSS) dispatch routine */
5609static void
5610bxe_tx_start(if_t ifp)
5611{
5612    struct bxe_softc *sc;
5613    struct bxe_fastpath *fp;
5614
5615    sc = if_getsoftc(ifp);
5616
5617    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5618        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5619        return;
5620    }
5621
5622    if (!sc->link_vars.link_up) {
5623        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5624        return;
5625    }
5626
5627    fp = &sc->fp[0];
5628
5629    if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5630        fp->eth_q_stats.tx_queue_full_return++;
5631        return;
5632    }
5633
5634    BXE_FP_TX_LOCK(fp);
5635    bxe_tx_start_locked(sc, ifp, fp);
5636    BXE_FP_TX_UNLOCK(fp);
5637}
5638
5639static int
5640bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5641                       if_t                ifp,
5642                       struct bxe_fastpath *fp,
5643                       struct mbuf         *m)
5644{
5645    struct buf_ring *tx_br = fp->tx_br;
5646    struct mbuf *next;
5647    int depth, rc, tx_count;
5648    uint16_t tx_bd_avail;
5649
5650    rc = tx_count = 0;
5651
5652    BXE_FP_TX_LOCK_ASSERT(fp);
5653
5654    if (sc->state != BXE_STATE_OPEN)  {
5655        fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5656        return ENETDOWN;
5657    }
5658
5659    if (!tx_br) {
5660        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5661        return (EINVAL);
5662    }
5663
5664    if (m != NULL) {
5665        rc = drbr_enqueue(ifp, tx_br, m);
5666        if (rc != 0) {
5667            fp->eth_q_stats.tx_soft_errors++;
5668            goto bxe_tx_mq_start_locked_exit;
5669        }
5670    }
5671
5672    if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5673        fp->eth_q_stats.tx_request_link_down_failures++;
5674        goto bxe_tx_mq_start_locked_exit;
5675    }
5676
5677    /* fetch the depth of the driver queue */
5678    depth = drbr_inuse_drv(ifp, tx_br);
5679    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5680        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5681    }
5682
5683    /* keep adding entries while there are frames to send */
5684    while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5685        /* handle any completions if we're running low */
5686        tx_bd_avail = bxe_tx_avail(sc, fp);
5687        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5688            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5689            bxe_txeof(sc, fp);
5690            tx_bd_avail = bxe_tx_avail(sc, fp);
5691            if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5692                fp->eth_q_stats.bd_avail_too_less_failures++;
5693                m_freem(next);
5694                drbr_advance(ifp, tx_br);
5695                rc = ENOBUFS;
5696                break;
5697            }
5698        }
5699
5700        /* the mbuf now belongs to us */
5701        fp->eth_q_stats.mbuf_alloc_tx++;
5702
5703        /*
5704         * Put the frame into the transmit ring. If we don't have room,
5705         * place the mbuf back at the head of the TX queue, set the
5706         * OACTIVE flag, and wait for the NIC to drain the chain.
5707         */
5708        rc = bxe_tx_encap(fp, &next);
5709        if (__predict_false(rc != 0)) {
5710            fp->eth_q_stats.tx_encap_failures++;
5711            if (next != NULL) {
5712                /* mark the TX queue as full and save the frame */
5713                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5714                drbr_putback(ifp, tx_br, next);
5715                fp->eth_q_stats.mbuf_alloc_tx--;
5716                fp->eth_q_stats.tx_frames_deferred++;
5717            } else
5718                drbr_advance(ifp, tx_br);
5719
5720            /* stop looking for more work */
5721            break;
5722        }
5723
5724        /* the transmit frame was enqueued successfully */
5725        tx_count++;
5726
5727        /* send a copy of the frame to any BPF listeners */
5728	if_etherbpfmtap(ifp, next);
5729
5730        drbr_advance(ifp, tx_br);
5731    }
5732
5733    /* all TX packets were dequeued and/or the tx ring is full */
5734    if (tx_count > 0) {
5735        /* reset the TX watchdog timeout timer */
5736        fp->watchdog_timer = BXE_TX_TIMEOUT;
5737    }
5738
5739bxe_tx_mq_start_locked_exit:
5740    /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5741    if (!drbr_empty(ifp, tx_br)) {
5742        fp->eth_q_stats.tx_mq_not_empty++;
5743        taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5744    }
5745
5746    return (rc);
5747}
5748
5749static void
5750bxe_tx_mq_start_deferred(void *arg,
5751                         int pending)
5752{
5753    struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5754    struct bxe_softc *sc = fp->sc;
5755    if_t ifp = sc->ifp;
5756
5757    BXE_FP_TX_LOCK(fp);
5758    bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5759    BXE_FP_TX_UNLOCK(fp);
5760}
5761
5762/* Multiqueue (TSS) dispatch routine. */
5763static int
5764bxe_tx_mq_start(struct ifnet *ifp,
5765                struct mbuf  *m)
5766{
5767    struct bxe_softc *sc = if_getsoftc(ifp);
5768    struct bxe_fastpath *fp;
5769    int fp_index, rc;
5770
5771    fp_index = 0; /* default is the first queue */
5772
5773    /* check if flowid is set */
5774
5775    if (BXE_VALID_FLOWID(m))
5776        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5777
5778    fp = &sc->fp[fp_index];
5779
5780    if (sc->state != BXE_STATE_OPEN)  {
5781        fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5782        return ENETDOWN;
5783    }
5784
5785    if (BXE_FP_TX_TRYLOCK(fp)) {
5786        rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5787        BXE_FP_TX_UNLOCK(fp);
5788    } else {
5789        rc = drbr_enqueue(ifp, fp->tx_br, m);
5790        taskqueue_enqueue(fp->tq, &fp->tx_task);
5791    }
5792
5793    return (rc);
5794}
5795
5796static void
5797bxe_mq_flush(struct ifnet *ifp)
5798{
5799    struct bxe_softc *sc = if_getsoftc(ifp);
5800    struct bxe_fastpath *fp;
5801    struct mbuf *m;
5802    int i;
5803
5804    for (i = 0; i < sc->num_queues; i++) {
5805        fp = &sc->fp[i];
5806
5807        if (fp->state != BXE_FP_STATE_IRQ) {
5808            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5809                  fp->index, fp->state);
5810            continue;
5811        }
5812
5813        if (fp->tx_br != NULL) {
5814            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5815            BXE_FP_TX_LOCK(fp);
5816            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5817                m_freem(m);
5818            }
5819            BXE_FP_TX_UNLOCK(fp);
5820        }
5821    }
5822
5823    if_qflush(ifp);
5824}
5825
5826static uint16_t
5827bxe_cid_ilt_lines(struct bxe_softc *sc)
5828{
5829    if (IS_SRIOV(sc)) {
5830        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5831    }
5832    return (L2_ILT_LINES(sc));
5833}
5834
5835static void
5836bxe_ilt_set_info(struct bxe_softc *sc)
5837{
5838    struct ilt_client_info *ilt_client;
5839    struct ecore_ilt *ilt = sc->ilt;
5840    uint16_t line = 0;
5841
5842    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5843    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5844
5845    /* CDU */
5846    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5847    ilt_client->client_num = ILT_CLIENT_CDU;
5848    ilt_client->page_size = CDU_ILT_PAGE_SZ;
5849    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5850    ilt_client->start = line;
5851    line += bxe_cid_ilt_lines(sc);
5852
5853    if (CNIC_SUPPORT(sc)) {
5854        line += CNIC_ILT_LINES;
5855    }
5856
5857    ilt_client->end = (line - 1);
5858
5859    BLOGD(sc, DBG_LOAD,
5860          "ilt client[CDU]: start %d, end %d, "
5861          "psz 0x%x, flags 0x%x, hw psz %d\n",
5862          ilt_client->start, ilt_client->end,
5863          ilt_client->page_size,
5864          ilt_client->flags,
5865          ilog2(ilt_client->page_size >> 12));
5866
5867    /* QM */
5868    if (QM_INIT(sc->qm_cid_count)) {
5869        ilt_client = &ilt->clients[ILT_CLIENT_QM];
5870        ilt_client->client_num = ILT_CLIENT_QM;
5871        ilt_client->page_size = QM_ILT_PAGE_SZ;
5872        ilt_client->flags = 0;
5873        ilt_client->start = line;
5874
5875        /* 4 bytes for each cid */
5876        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5877                             QM_ILT_PAGE_SZ);
5878
5879        ilt_client->end = (line - 1);
5880
5881        BLOGD(sc, DBG_LOAD,
5882              "ilt client[QM]: start %d, end %d, "
5883              "psz 0x%x, flags 0x%x, hw psz %d\n",
5884              ilt_client->start, ilt_client->end,
5885              ilt_client->page_size, ilt_client->flags,
5886              ilog2(ilt_client->page_size >> 12));
5887    }
5888
5889    if (CNIC_SUPPORT(sc)) {
5890        /* SRC */
5891        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5892        ilt_client->client_num = ILT_CLIENT_SRC;
5893        ilt_client->page_size = SRC_ILT_PAGE_SZ;
5894        ilt_client->flags = 0;
5895        ilt_client->start = line;
5896        line += SRC_ILT_LINES;
5897        ilt_client->end = (line - 1);
5898
5899        BLOGD(sc, DBG_LOAD,
5900              "ilt client[SRC]: start %d, end %d, "
5901              "psz 0x%x, flags 0x%x, hw psz %d\n",
5902              ilt_client->start, ilt_client->end,
5903              ilt_client->page_size, ilt_client->flags,
5904              ilog2(ilt_client->page_size >> 12));
5905
5906        /* TM */
5907        ilt_client = &ilt->clients[ILT_CLIENT_TM];
5908        ilt_client->client_num = ILT_CLIENT_TM;
5909        ilt_client->page_size = TM_ILT_PAGE_SZ;
5910        ilt_client->flags = 0;
5911        ilt_client->start = line;
5912        line += TM_ILT_LINES;
5913        ilt_client->end = (line - 1);
5914
5915        BLOGD(sc, DBG_LOAD,
5916              "ilt client[TM]: start %d, end %d, "
5917              "psz 0x%x, flags 0x%x, hw psz %d\n",
5918              ilt_client->start, ilt_client->end,
5919              ilt_client->page_size, ilt_client->flags,
5920              ilog2(ilt_client->page_size >> 12));
5921    }
5922
5923    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5924}
5925
5926static void
5927bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5928{
5929    int i;
5930    uint32_t rx_buf_size;
5931
5932    rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5933
5934    for (i = 0; i < sc->num_queues; i++) {
5935        if(rx_buf_size <= MCLBYTES){
5936            sc->fp[i].rx_buf_size = rx_buf_size;
5937            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5938        }else if (rx_buf_size <= MJUMPAGESIZE){
5939            sc->fp[i].rx_buf_size = rx_buf_size;
5940            sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5941        }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5942            sc->fp[i].rx_buf_size = MCLBYTES;
5943            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5944        }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5945            sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5946            sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5947        }else {
5948            sc->fp[i].rx_buf_size = MCLBYTES;
5949            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5950        }
5951    }
5952}
5953
5954static int
5955bxe_alloc_ilt_mem(struct bxe_softc *sc)
5956{
5957    int rc = 0;
5958
5959    if ((sc->ilt =
5960         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5961                                    M_BXE_ILT,
5962                                    (M_NOWAIT | M_ZERO))) == NULL) {
5963        rc = 1;
5964    }
5965
5966    return (rc);
5967}
5968
5969static int
5970bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5971{
5972    int rc = 0;
5973
5974    if ((sc->ilt->lines =
5975         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5976                                    M_BXE_ILT,
5977                                    (M_NOWAIT | M_ZERO))) == NULL) {
5978        rc = 1;
5979    }
5980
5981    return (rc);
5982}
5983
5984static void
5985bxe_free_ilt_mem(struct bxe_softc *sc)
5986{
5987    if (sc->ilt != NULL) {
5988        free(sc->ilt, M_BXE_ILT);
5989        sc->ilt = NULL;
5990    }
5991}
5992
5993static void
5994bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5995{
5996    if (sc->ilt->lines != NULL) {
5997        free(sc->ilt->lines, M_BXE_ILT);
5998        sc->ilt->lines = NULL;
5999    }
6000}
6001
6002static void
6003bxe_free_mem(struct bxe_softc *sc)
6004{
6005    int i;
6006
6007    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6008        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6009        sc->context[i].vcxt = NULL;
6010        sc->context[i].size = 0;
6011    }
6012
6013    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6014
6015    bxe_free_ilt_lines_mem(sc);
6016
6017}
6018
6019static int
6020bxe_alloc_mem(struct bxe_softc *sc)
6021{
6022
6023    int context_size;
6024    int allocated;
6025    int i;
6026
6027    /*
6028     * Allocate memory for CDU context:
6029     * This memory is allocated separately and not in the generic ILT
6030     * functions because CDU differs in few aspects:
6031     * 1. There can be multiple entities allocating memory for context -
6032     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6033     * its own ILT lines.
6034     * 2. Since CDU page-size is not a single 4KB page (which is the case
6035     * for the other ILT clients), to be efficient we want to support
6036     * allocation of sub-page-size in the last entry.
6037     * 3. Context pointers are used by the driver to pass to FW / update
6038     * the context (for the other ILT clients the pointers are used just to
6039     * free the memory during unload).
6040     */
6041    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6042    for (i = 0, allocated = 0; allocated < context_size; i++) {
6043        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6044                                  (context_size - allocated));
6045
6046        if (bxe_dma_alloc(sc, sc->context[i].size,
6047                          &sc->context[i].vcxt_dma,
6048                          "cdu context") != 0) {
6049            bxe_free_mem(sc);
6050            return (-1);
6051        }
6052
6053        sc->context[i].vcxt =
6054            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6055
6056        allocated += sc->context[i].size;
6057    }
6058
6059    bxe_alloc_ilt_lines_mem(sc);
6060
6061    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6062          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6063    {
6064        for (i = 0; i < 4; i++) {
6065            BLOGD(sc, DBG_LOAD,
6066                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6067                  i,
6068                  sc->ilt->clients[i].page_size,
6069                  sc->ilt->clients[i].start,
6070                  sc->ilt->clients[i].end,
6071                  sc->ilt->clients[i].client_num,
6072                  sc->ilt->clients[i].flags);
6073        }
6074    }
6075    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6076        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6077        bxe_free_mem(sc);
6078        return (-1);
6079    }
6080
6081    return (0);
6082}
6083
6084static void
6085bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6086{
6087    struct bxe_softc *sc;
6088    int i;
6089
6090    sc = fp->sc;
6091
6092    if (fp->rx_mbuf_tag == NULL) {
6093        return;
6094    }
6095
6096    /* free all mbufs and unload all maps */
6097    for (i = 0; i < RX_BD_TOTAL; i++) {
6098        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6099            bus_dmamap_sync(fp->rx_mbuf_tag,
6100                            fp->rx_mbuf_chain[i].m_map,
6101                            BUS_DMASYNC_POSTREAD);
6102            bus_dmamap_unload(fp->rx_mbuf_tag,
6103                              fp->rx_mbuf_chain[i].m_map);
6104        }
6105
6106        if (fp->rx_mbuf_chain[i].m != NULL) {
6107            m_freem(fp->rx_mbuf_chain[i].m);
6108            fp->rx_mbuf_chain[i].m = NULL;
6109            fp->eth_q_stats.mbuf_alloc_rx--;
6110        }
6111    }
6112}
6113
6114static void
6115bxe_free_tpa_pool(struct bxe_fastpath *fp)
6116{
6117    struct bxe_softc *sc;
6118    int i, max_agg_queues;
6119
6120    sc = fp->sc;
6121
6122    if (fp->rx_mbuf_tag == NULL) {
6123        return;
6124    }
6125
6126    max_agg_queues = MAX_AGG_QS(sc);
6127
6128    /* release all mbufs and unload all DMA maps in the TPA pool */
6129    for (i = 0; i < max_agg_queues; i++) {
6130        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6131            bus_dmamap_sync(fp->rx_mbuf_tag,
6132                            fp->rx_tpa_info[i].bd.m_map,
6133                            BUS_DMASYNC_POSTREAD);
6134            bus_dmamap_unload(fp->rx_mbuf_tag,
6135                              fp->rx_tpa_info[i].bd.m_map);
6136        }
6137
6138        if (fp->rx_tpa_info[i].bd.m != NULL) {
6139            m_freem(fp->rx_tpa_info[i].bd.m);
6140            fp->rx_tpa_info[i].bd.m = NULL;
6141            fp->eth_q_stats.mbuf_alloc_tpa--;
6142        }
6143    }
6144}
6145
6146static void
6147bxe_free_sge_chain(struct bxe_fastpath *fp)
6148{
6149    struct bxe_softc *sc;
6150    int i;
6151
6152    sc = fp->sc;
6153
6154    if (fp->rx_sge_mbuf_tag == NULL) {
6155        return;
6156    }
6157
6158    /* rree all mbufs and unload all maps */
6159    for (i = 0; i < RX_SGE_TOTAL; i++) {
6160        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6161            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6162                            fp->rx_sge_mbuf_chain[i].m_map,
6163                            BUS_DMASYNC_POSTREAD);
6164            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6165                              fp->rx_sge_mbuf_chain[i].m_map);
6166        }
6167
6168        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6169            m_freem(fp->rx_sge_mbuf_chain[i].m);
6170            fp->rx_sge_mbuf_chain[i].m = NULL;
6171            fp->eth_q_stats.mbuf_alloc_sge--;
6172        }
6173    }
6174}
6175
6176static void
6177bxe_free_fp_buffers(struct bxe_softc *sc)
6178{
6179    struct bxe_fastpath *fp;
6180    int i;
6181
6182    for (i = 0; i < sc->num_queues; i++) {
6183        fp = &sc->fp[i];
6184
6185        if (fp->tx_br != NULL) {
6186            /* just in case bxe_mq_flush() wasn't called */
6187            if (mtx_initialized(&fp->tx_mtx)) {
6188                struct mbuf *m;
6189
6190                BXE_FP_TX_LOCK(fp);
6191                while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6192                    m_freem(m);
6193                BXE_FP_TX_UNLOCK(fp);
6194            }
6195        }
6196
6197        /* free all RX buffers */
6198        bxe_free_rx_bd_chain(fp);
6199        bxe_free_tpa_pool(fp);
6200        bxe_free_sge_chain(fp);
6201
6202        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6203            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6204                  fp->eth_q_stats.mbuf_alloc_rx);
6205        }
6206
6207        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6208            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6209                  fp->eth_q_stats.mbuf_alloc_sge);
6210        }
6211
6212        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6213            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6214                  fp->eth_q_stats.mbuf_alloc_tpa);
6215        }
6216
6217        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6218            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6219                  fp->eth_q_stats.mbuf_alloc_tx);
6220        }
6221
6222        /* XXX verify all mbufs were reclaimed */
6223    }
6224}
6225
6226static int
6227bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6228                     uint16_t            prev_index,
6229                     uint16_t            index)
6230{
6231    struct bxe_sw_rx_bd *rx_buf;
6232    struct eth_rx_bd *rx_bd;
6233    bus_dma_segment_t segs[1];
6234    bus_dmamap_t map;
6235    struct mbuf *m;
6236    int nsegs, rc;
6237
6238    rc = 0;
6239
6240    /* allocate the new RX BD mbuf */
6241    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6242    if (__predict_false(m == NULL)) {
6243        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6244        return (ENOBUFS);
6245    }
6246
6247    fp->eth_q_stats.mbuf_alloc_rx++;
6248
6249    /* initialize the mbuf buffer length */
6250    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6251
6252    /* map the mbuf into non-paged pool */
6253    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6254                                 fp->rx_mbuf_spare_map,
6255                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6256    if (__predict_false(rc != 0)) {
6257        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6258        m_freem(m);
6259        fp->eth_q_stats.mbuf_alloc_rx--;
6260        return (rc);
6261    }
6262
6263    /* all mbufs must map to a single segment */
6264    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6265
6266    /* release any existing RX BD mbuf mappings */
6267
6268    if (prev_index != index) {
6269        rx_buf = &fp->rx_mbuf_chain[prev_index];
6270
6271        if (rx_buf->m_map != NULL) {
6272            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6273                            BUS_DMASYNC_POSTREAD);
6274            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6275        }
6276
6277        /*
6278         * We only get here from bxe_rxeof() when the maximum number
6279         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6280         * holds the mbuf in the prev_index so it's OK to NULL it out
6281         * here without concern of a memory leak.
6282         */
6283        fp->rx_mbuf_chain[prev_index].m = NULL;
6284    }
6285
6286    rx_buf = &fp->rx_mbuf_chain[index];
6287
6288    if (rx_buf->m_map != NULL) {
6289        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6290                        BUS_DMASYNC_POSTREAD);
6291        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6292    }
6293
6294    /* save the mbuf and mapping info for a future packet */
6295    map = (prev_index != index) ?
6296              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6297    rx_buf->m_map = fp->rx_mbuf_spare_map;
6298    fp->rx_mbuf_spare_map = map;
6299    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6300                    BUS_DMASYNC_PREREAD);
6301    rx_buf->m = m;
6302
6303    rx_bd = &fp->rx_chain[index];
6304    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6305    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6306
6307    return (rc);
6308}
6309
6310static int
6311bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6312                      int                 queue)
6313{
6314    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6315    bus_dma_segment_t segs[1];
6316    bus_dmamap_t map;
6317    struct mbuf *m;
6318    int nsegs;
6319    int rc = 0;
6320
6321    /* allocate the new TPA mbuf */
6322    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6323    if (__predict_false(m == NULL)) {
6324        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6325        return (ENOBUFS);
6326    }
6327
6328    fp->eth_q_stats.mbuf_alloc_tpa++;
6329
6330    /* initialize the mbuf buffer length */
6331    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6332
6333    /* map the mbuf into non-paged pool */
6334    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6335                                 fp->rx_tpa_info_mbuf_spare_map,
6336                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6337    if (__predict_false(rc != 0)) {
6338        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6339        m_free(m);
6340        fp->eth_q_stats.mbuf_alloc_tpa--;
6341        return (rc);
6342    }
6343
6344    /* all mbufs must map to a single segment */
6345    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6346
6347    /* release any existing TPA mbuf mapping */
6348    if (tpa_info->bd.m_map != NULL) {
6349        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6350                        BUS_DMASYNC_POSTREAD);
6351        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6352    }
6353
6354    /* save the mbuf and mapping info for the TPA mbuf */
6355    map = tpa_info->bd.m_map;
6356    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6357    fp->rx_tpa_info_mbuf_spare_map = map;
6358    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6359                    BUS_DMASYNC_PREREAD);
6360    tpa_info->bd.m = m;
6361    tpa_info->seg = segs[0];
6362
6363    return (rc);
6364}
6365
6366/*
6367 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6368 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6369 * chain.
6370 */
6371static int
6372bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6373                      uint16_t            index)
6374{
6375    struct bxe_sw_rx_bd *sge_buf;
6376    struct eth_rx_sge *sge;
6377    bus_dma_segment_t segs[1];
6378    bus_dmamap_t map;
6379    struct mbuf *m;
6380    int nsegs;
6381    int rc = 0;
6382
6383    /* allocate a new SGE mbuf */
6384    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6385    if (__predict_false(m == NULL)) {
6386        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6387        return (ENOMEM);
6388    }
6389
6390    fp->eth_q_stats.mbuf_alloc_sge++;
6391
6392    /* initialize the mbuf buffer length */
6393    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6394
6395    /* map the SGE mbuf into non-paged pool */
6396    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6397                                 fp->rx_sge_mbuf_spare_map,
6398                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6399    if (__predict_false(rc != 0)) {
6400        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6401        m_freem(m);
6402        fp->eth_q_stats.mbuf_alloc_sge--;
6403        return (rc);
6404    }
6405
6406    /* all mbufs must map to a single segment */
6407    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6408
6409    sge_buf = &fp->rx_sge_mbuf_chain[index];
6410
6411    /* release any existing SGE mbuf mapping */
6412    if (sge_buf->m_map != NULL) {
6413        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6414                        BUS_DMASYNC_POSTREAD);
6415        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6416    }
6417
6418    /* save the mbuf and mapping info for a future packet */
6419    map = sge_buf->m_map;
6420    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6421    fp->rx_sge_mbuf_spare_map = map;
6422    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6423                    BUS_DMASYNC_PREREAD);
6424    sge_buf->m = m;
6425
6426    sge = &fp->rx_sge_chain[index];
6427    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6428    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6429
6430    return (rc);
6431}
6432
6433static __noinline int
6434bxe_alloc_fp_buffers(struct bxe_softc *sc)
6435{
6436    struct bxe_fastpath *fp;
6437    int i, j, rc = 0;
6438    int ring_prod, cqe_ring_prod;
6439    int max_agg_queues;
6440
6441    for (i = 0; i < sc->num_queues; i++) {
6442        fp = &sc->fp[i];
6443
6444        ring_prod = cqe_ring_prod = 0;
6445        fp->rx_bd_cons = 0;
6446        fp->rx_cq_cons = 0;
6447
6448        /* allocate buffers for the RX BDs in RX BD chain */
6449        for (j = 0; j < sc->max_rx_bufs; j++) {
6450            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6451            if (rc != 0) {
6452                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6453                      i, rc);
6454                goto bxe_alloc_fp_buffers_error;
6455            }
6456
6457            ring_prod     = RX_BD_NEXT(ring_prod);
6458            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6459        }
6460
6461        fp->rx_bd_prod = ring_prod;
6462        fp->rx_cq_prod = cqe_ring_prod;
6463        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6464
6465        max_agg_queues = MAX_AGG_QS(sc);
6466
6467        fp->tpa_enable = TRUE;
6468
6469        /* fill the TPA pool */
6470        for (j = 0; j < max_agg_queues; j++) {
6471            rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6472            if (rc != 0) {
6473                BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6474                          i, j);
6475                fp->tpa_enable = FALSE;
6476                goto bxe_alloc_fp_buffers_error;
6477            }
6478
6479            fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6480        }
6481
6482        if (fp->tpa_enable) {
6483            /* fill the RX SGE chain */
6484            ring_prod = 0;
6485            for (j = 0; j < RX_SGE_USABLE; j++) {
6486                rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6487                if (rc != 0) {
6488                    BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6489                              i, ring_prod);
6490                    fp->tpa_enable = FALSE;
6491                    ring_prod = 0;
6492                    goto bxe_alloc_fp_buffers_error;
6493                }
6494
6495                ring_prod = RX_SGE_NEXT(ring_prod);
6496            }
6497
6498            fp->rx_sge_prod = ring_prod;
6499        }
6500    }
6501
6502    return (0);
6503
6504bxe_alloc_fp_buffers_error:
6505
6506    /* unwind what was already allocated */
6507    bxe_free_rx_bd_chain(fp);
6508    bxe_free_tpa_pool(fp);
6509    bxe_free_sge_chain(fp);
6510
6511    return (ENOBUFS);
6512}
6513
6514static void
6515bxe_free_fw_stats_mem(struct bxe_softc *sc)
6516{
6517    bxe_dma_free(sc, &sc->fw_stats_dma);
6518
6519    sc->fw_stats_num = 0;
6520
6521    sc->fw_stats_req_size = 0;
6522    sc->fw_stats_req = NULL;
6523    sc->fw_stats_req_mapping = 0;
6524
6525    sc->fw_stats_data_size = 0;
6526    sc->fw_stats_data = NULL;
6527    sc->fw_stats_data_mapping = 0;
6528}
6529
6530static int
6531bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6532{
6533    uint8_t num_queue_stats;
6534    int num_groups;
6535
6536    /* number of queues for statistics is number of eth queues */
6537    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6538
6539    /*
6540     * Total number of FW statistics requests =
6541     *   1 for port stats + 1 for PF stats + num of queues
6542     */
6543    sc->fw_stats_num = (2 + num_queue_stats);
6544
6545    /*
6546     * Request is built from stats_query_header and an array of
6547     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6548     * rules. The real number or requests is configured in the
6549     * stats_query_header.
6550     */
6551    num_groups =
6552        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6553         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6554
6555    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6556          sc->fw_stats_num, num_groups);
6557
6558    sc->fw_stats_req_size =
6559        (sizeof(struct stats_query_header) +
6560         (num_groups * sizeof(struct stats_query_cmd_group)));
6561
6562    /*
6563     * Data for statistics requests + stats_counter.
6564     * stats_counter holds per-STORM counters that are incremented when
6565     * STORM has finished with the current request. Memory for FCoE
6566     * offloaded statistics are counted anyway, even if they will not be sent.
6567     * VF stats are not accounted for here as the data of VF stats is stored
6568     * in memory allocated by the VF, not here.
6569     */
6570    sc->fw_stats_data_size =
6571        (sizeof(struct stats_counter) +
6572         sizeof(struct per_port_stats) +
6573         sizeof(struct per_pf_stats) +
6574         /* sizeof(struct fcoe_statistics_params) + */
6575         (sizeof(struct per_queue_stats) * num_queue_stats));
6576
6577    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6578                      &sc->fw_stats_dma, "fw stats") != 0) {
6579        bxe_free_fw_stats_mem(sc);
6580        return (-1);
6581    }
6582
6583    /* set up the shortcuts */
6584
6585    sc->fw_stats_req =
6586        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6587    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6588
6589    sc->fw_stats_data =
6590        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6591                                     sc->fw_stats_req_size);
6592    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6593                                 sc->fw_stats_req_size);
6594
6595    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6596          (uintmax_t)sc->fw_stats_req_mapping);
6597
6598    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6599          (uintmax_t)sc->fw_stats_data_mapping);
6600
6601    return (0);
6602}
6603
6604/*
6605 * Bits map:
6606 * 0-7  - Engine0 load counter.
6607 * 8-15 - Engine1 load counter.
6608 * 16   - Engine0 RESET_IN_PROGRESS bit.
6609 * 17   - Engine1 RESET_IN_PROGRESS bit.
6610 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6611 *        function on the engine
6612 * 19   - Engine1 ONE_IS_LOADED.
6613 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6614 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6615 *        for just the one belonging to its engine).
6616 */
6617#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6618#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6619#define BXE_PATH0_LOAD_CNT_SHIFT  0
6620#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6621#define BXE_PATH1_LOAD_CNT_SHIFT  8
6622#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6623#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6624#define BXE_GLOBAL_RESET_BIT      0x00040000
6625
6626/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6627static void
6628bxe_set_reset_global(struct bxe_softc *sc)
6629{
6630    uint32_t val;
6631    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6632    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6633    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6634    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6635}
6636
6637/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6638static void
6639bxe_clear_reset_global(struct bxe_softc *sc)
6640{
6641    uint32_t val;
6642    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6643    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6644    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6645    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6646}
6647
6648/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6649static uint8_t
6650bxe_reset_is_global(struct bxe_softc *sc)
6651{
6652    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6653    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6654    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6655}
6656
6657/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6658static void
6659bxe_set_reset_done(struct bxe_softc *sc)
6660{
6661    uint32_t val;
6662    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6663                                 BXE_PATH0_RST_IN_PROG_BIT;
6664
6665    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6666
6667    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6668    /* Clear the bit */
6669    val &= ~bit;
6670    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6671
6672    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6673}
6674
6675/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6676static void
6677bxe_set_reset_in_progress(struct bxe_softc *sc)
6678{
6679    uint32_t val;
6680    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6681                                 BXE_PATH0_RST_IN_PROG_BIT;
6682
6683    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6684
6685    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6686    /* Set the bit */
6687    val |= bit;
6688    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6689
6690    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6691}
6692
6693/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6694static uint8_t
6695bxe_reset_is_done(struct bxe_softc *sc,
6696                  int              engine)
6697{
6698    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6699    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6700                            BXE_PATH0_RST_IN_PROG_BIT;
6701
6702    /* return false if bit is set */
6703    return (val & bit) ? FALSE : TRUE;
6704}
6705
6706/* get the load status for an engine, should be run under rtnl lock */
6707static uint8_t
6708bxe_get_load_status(struct bxe_softc *sc,
6709                    int              engine)
6710{
6711    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6712                             BXE_PATH0_LOAD_CNT_MASK;
6713    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6714                              BXE_PATH0_LOAD_CNT_SHIFT;
6715    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6716
6717    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6718
6719    val = ((val & mask) >> shift);
6720
6721    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6722
6723    return (val != 0);
6724}
6725
6726/* set pf load mark */
6727/* XXX needs to be under rtnl lock */
6728static void
6729bxe_set_pf_load(struct bxe_softc *sc)
6730{
6731    uint32_t val;
6732    uint32_t val1;
6733    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6734                                  BXE_PATH0_LOAD_CNT_MASK;
6735    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6736                                   BXE_PATH0_LOAD_CNT_SHIFT;
6737
6738    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6739
6740    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6741    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6742
6743    /* get the current counter value */
6744    val1 = ((val & mask) >> shift);
6745
6746    /* set bit of this PF */
6747    val1 |= (1 << SC_ABS_FUNC(sc));
6748
6749    /* clear the old value */
6750    val &= ~mask;
6751
6752    /* set the new one */
6753    val |= ((val1 << shift) & mask);
6754
6755    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6756
6757    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6758}
6759
6760/* clear pf load mark */
6761/* XXX needs to be under rtnl lock */
6762static uint8_t
6763bxe_clear_pf_load(struct bxe_softc *sc)
6764{
6765    uint32_t val1, val;
6766    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6767                                  BXE_PATH0_LOAD_CNT_MASK;
6768    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6769                                   BXE_PATH0_LOAD_CNT_SHIFT;
6770
6771    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6772    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6773    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6774
6775    /* get the current counter value */
6776    val1 = (val & mask) >> shift;
6777
6778    /* clear bit of that PF */
6779    val1 &= ~(1 << SC_ABS_FUNC(sc));
6780
6781    /* clear the old value */
6782    val &= ~mask;
6783
6784    /* set the new one */
6785    val |= ((val1 << shift) & mask);
6786
6787    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6788    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6789    return (val1 != 0);
6790}
6791
6792/* send load requrest to mcp and analyze response */
6793static int
6794bxe_nic_load_request(struct bxe_softc *sc,
6795                     uint32_t         *load_code)
6796{
6797    /* init fw_seq */
6798    sc->fw_seq =
6799        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6800         DRV_MSG_SEQ_NUMBER_MASK);
6801
6802    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6803
6804    /* get the current FW pulse sequence */
6805    sc->fw_drv_pulse_wr_seq =
6806        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6807         DRV_PULSE_SEQ_MASK);
6808
6809    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6810          sc->fw_drv_pulse_wr_seq);
6811
6812    /* load request */
6813    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6814                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6815
6816    /* if the MCP fails to respond we must abort */
6817    if (!(*load_code)) {
6818        BLOGE(sc, "MCP response failure!\n");
6819        return (-1);
6820    }
6821
6822    /* if MCP refused then must abort */
6823    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6824        BLOGE(sc, "MCP refused load request\n");
6825        return (-1);
6826    }
6827
6828    return (0);
6829}
6830
6831/*
6832 * Check whether another PF has already loaded FW to chip. In virtualized
6833 * environments a pf from anoth VM may have already initialized the device
6834 * including loading FW.
6835 */
6836static int
6837bxe_nic_load_analyze_req(struct bxe_softc *sc,
6838                         uint32_t         load_code)
6839{
6840    uint32_t my_fw, loaded_fw;
6841
6842    /* is another pf loaded on this engine? */
6843    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6844        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6845        /* build my FW version dword */
6846        my_fw = (BCM_5710_FW_MAJOR_VERSION +
6847                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
6848                 (BCM_5710_FW_REVISION_VERSION << 16) +
6849                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
6850
6851        /* read loaded FW from chip */
6852        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6853        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6854              loaded_fw, my_fw);
6855
6856        /* abort nic load if version mismatch */
6857        if (my_fw != loaded_fw) {
6858            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6859                  loaded_fw, my_fw);
6860            return (-1);
6861        }
6862    }
6863
6864    return (0);
6865}
6866
6867/* mark PMF if applicable */
6868static void
6869bxe_nic_load_pmf(struct bxe_softc *sc,
6870                 uint32_t         load_code)
6871{
6872    uint32_t ncsi_oem_data_addr;
6873
6874    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6875        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6876        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6877        /*
6878         * Barrier here for ordering between the writing to sc->port.pmf here
6879         * and reading it from the periodic task.
6880         */
6881        sc->port.pmf = 1;
6882        mb();
6883    } else {
6884        sc->port.pmf = 0;
6885    }
6886
6887    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6888
6889    /* XXX needed? */
6890    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6891        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6892            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6893            if (ncsi_oem_data_addr) {
6894                REG_WR(sc,
6895                       (ncsi_oem_data_addr +
6896                        offsetof(struct glob_ncsi_oem_data, driver_version)),
6897                       0);
6898            }
6899        }
6900    }
6901}
6902
6903static void
6904bxe_read_mf_cfg(struct bxe_softc *sc)
6905{
6906    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6907    int abs_func;
6908    int vn;
6909
6910    if (BXE_NOMCP(sc)) {
6911        return; /* what should be the default bvalue in this case */
6912    }
6913
6914    /*
6915     * The formula for computing the absolute function number is...
6916     * For 2 port configuration (4 functions per port):
6917     *   abs_func = 2 * vn + SC_PORT + SC_PATH
6918     * For 4 port configuration (2 functions per port):
6919     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6920     */
6921    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6922        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6923        if (abs_func >= E1H_FUNC_MAX) {
6924            break;
6925        }
6926        sc->devinfo.mf_info.mf_config[vn] =
6927            MFCFG_RD(sc, func_mf_config[abs_func].config);
6928    }
6929
6930    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6931        FUNC_MF_CFG_FUNC_DISABLED) {
6932        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6933        sc->flags |= BXE_MF_FUNC_DIS;
6934    } else {
6935        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6936        sc->flags &= ~BXE_MF_FUNC_DIS;
6937    }
6938}
6939
6940/* acquire split MCP access lock register */
6941static int bxe_acquire_alr(struct bxe_softc *sc)
6942{
6943    uint32_t j, val;
6944
6945    for (j = 0; j < 1000; j++) {
6946        val = (1UL << 31);
6947        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6948        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6949        if (val & (1L << 31))
6950            break;
6951
6952        DELAY(5000);
6953    }
6954
6955    if (!(val & (1L << 31))) {
6956        BLOGE(sc, "Cannot acquire MCP access lock register\n");
6957        return (-1);
6958    }
6959
6960    return (0);
6961}
6962
6963/* release split MCP access lock register */
6964static void bxe_release_alr(struct bxe_softc *sc)
6965{
6966    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6967}
6968
6969static void
6970bxe_fan_failure(struct bxe_softc *sc)
6971{
6972    int port = SC_PORT(sc);
6973    uint32_t ext_phy_config;
6974
6975    /* mark the failure */
6976    ext_phy_config =
6977        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6978
6979    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6980    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6981    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6982             ext_phy_config);
6983
6984    /* log the failure */
6985    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6986              "the card to prevent permanent damage. "
6987              "Please contact OEM Support for assistance\n");
6988
6989    /* XXX */
6990#if 1
6991    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6992#else
6993    /*
6994     * Schedule device reset (unload)
6995     * This is due to some boards consuming sufficient power when driver is
6996     * up to overheat if fan fails.
6997     */
6998    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6999    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7000#endif
7001}
7002
7003/* this function is called upon a link interrupt */
7004static void
7005bxe_link_attn(struct bxe_softc *sc)
7006{
7007    uint32_t pause_enabled = 0;
7008    struct host_port_stats *pstats;
7009    int cmng_fns;
7010    struct bxe_fastpath *fp;
7011    int i;
7012
7013    /* Make sure that we are synced with the current statistics */
7014    bxe_stats_handle(sc, STATS_EVENT_STOP);
7015    BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
7016    elink_link_update(&sc->link_params, &sc->link_vars);
7017
7018    if (sc->link_vars.link_up) {
7019
7020        /* dropless flow control */
7021        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7022            pause_enabled = 0;
7023
7024            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7025                pause_enabled = 1;
7026            }
7027
7028            REG_WR(sc,
7029                   (BAR_USTRORM_INTMEM +
7030                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7031                   pause_enabled);
7032        }
7033
7034        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7035            pstats = BXE_SP(sc, port_stats);
7036            /* reset old mac stats */
7037            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7038        }
7039
7040        if (sc->state == BXE_STATE_OPEN) {
7041            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7042	    /* Restart tx when the link comes back. */
7043	    FOR_EACH_ETH_QUEUE(sc, i) {
7044		fp = &sc->fp[i];
7045		taskqueue_enqueue(fp->tq, &fp->tx_task);
7046	    }
7047        }
7048
7049    }
7050
7051    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7052        cmng_fns = bxe_get_cmng_fns_mode(sc);
7053
7054        if (cmng_fns != CMNG_FNS_NONE) {
7055            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7056            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7057        } else {
7058            /* rate shaping and fairness are disabled */
7059            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7060        }
7061    }
7062
7063    bxe_link_report_locked(sc);
7064
7065    if (IS_MF(sc)) {
7066        ; // XXX bxe_link_sync_notify(sc);
7067    }
7068}
7069
7070static void
7071bxe_attn_int_asserted(struct bxe_softc *sc,
7072                      uint32_t         asserted)
7073{
7074    int port = SC_PORT(sc);
7075    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7076                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7077    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7078                                        NIG_REG_MASK_INTERRUPT_PORT0;
7079    uint32_t aeu_mask;
7080    uint32_t nig_mask = 0;
7081    uint32_t reg_addr;
7082    uint32_t igu_acked;
7083    uint32_t cnt;
7084
7085    if (sc->attn_state & asserted) {
7086        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7087    }
7088
7089    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7090
7091    aeu_mask = REG_RD(sc, aeu_addr);
7092
7093    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7094          aeu_mask, asserted);
7095
7096    aeu_mask &= ~(asserted & 0x3ff);
7097
7098    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7099
7100    REG_WR(sc, aeu_addr, aeu_mask);
7101
7102    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7103
7104    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7105    sc->attn_state |= asserted;
7106    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7107
7108    if (asserted & ATTN_HARD_WIRED_MASK) {
7109        if (asserted & ATTN_NIG_FOR_FUNC) {
7110
7111	    bxe_acquire_phy_lock(sc);
7112            /* save nig interrupt mask */
7113            nig_mask = REG_RD(sc, nig_int_mask_addr);
7114
7115            /* If nig_mask is not set, no need to call the update function */
7116            if (nig_mask) {
7117                REG_WR(sc, nig_int_mask_addr, 0);
7118
7119                bxe_link_attn(sc);
7120            }
7121
7122            /* handle unicore attn? */
7123        }
7124
7125        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7126            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7127        }
7128
7129        if (asserted & GPIO_2_FUNC) {
7130            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7131        }
7132
7133        if (asserted & GPIO_3_FUNC) {
7134            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7135        }
7136
7137        if (asserted & GPIO_4_FUNC) {
7138            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7139        }
7140
7141        if (port == 0) {
7142            if (asserted & ATTN_GENERAL_ATTN_1) {
7143                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7144                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7145            }
7146            if (asserted & ATTN_GENERAL_ATTN_2) {
7147                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7148                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7149            }
7150            if (asserted & ATTN_GENERAL_ATTN_3) {
7151                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7152                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7153            }
7154        } else {
7155            if (asserted & ATTN_GENERAL_ATTN_4) {
7156                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7157                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7158            }
7159            if (asserted & ATTN_GENERAL_ATTN_5) {
7160                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7161                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7162            }
7163            if (asserted & ATTN_GENERAL_ATTN_6) {
7164                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7165                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7166            }
7167        }
7168    } /* hardwired */
7169
7170    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7171        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7172    } else {
7173        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7174    }
7175
7176    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7177          asserted,
7178          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7179    REG_WR(sc, reg_addr, asserted);
7180
7181    /* now set back the mask */
7182    if (asserted & ATTN_NIG_FOR_FUNC) {
7183        /*
7184         * Verify that IGU ack through BAR was written before restoring
7185         * NIG mask. This loop should exit after 2-3 iterations max.
7186         */
7187        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7188            cnt = 0;
7189
7190            do {
7191                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7192            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7193                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7194
7195            if (!igu_acked) {
7196                BLOGE(sc, "Failed to verify IGU ack on time\n");
7197            }
7198
7199            mb();
7200        }
7201
7202        REG_WR(sc, nig_int_mask_addr, nig_mask);
7203
7204	bxe_release_phy_lock(sc);
7205    }
7206}
7207
7208static void
7209bxe_print_next_block(struct bxe_softc *sc,
7210                     int              idx,
7211                     const char       *blk)
7212{
7213    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7214}
7215
7216static int
7217bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7218                              uint32_t         sig,
7219                              int              par_num,
7220                              uint8_t          print)
7221{
7222    uint32_t cur_bit = 0;
7223    int i = 0;
7224
7225    for (i = 0; sig; i++) {
7226        cur_bit = ((uint32_t)0x1 << i);
7227        if (sig & cur_bit) {
7228            switch (cur_bit) {
7229            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7230                if (print)
7231                    bxe_print_next_block(sc, par_num++, "BRB");
7232                break;
7233            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7234                if (print)
7235                    bxe_print_next_block(sc, par_num++, "PARSER");
7236                break;
7237            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7238                if (print)
7239                    bxe_print_next_block(sc, par_num++, "TSDM");
7240                break;
7241            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7242                if (print)
7243                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7244                break;
7245            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7246                if (print)
7247                    bxe_print_next_block(sc, par_num++, "TCM");
7248                break;
7249            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7250                if (print)
7251                    bxe_print_next_block(sc, par_num++, "TSEMI");
7252                break;
7253            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7254                if (print)
7255                    bxe_print_next_block(sc, par_num++, "XPB");
7256                break;
7257            }
7258
7259            /* Clear the bit */
7260            sig &= ~cur_bit;
7261        }
7262    }
7263
7264    return (par_num);
7265}
7266
7267static int
7268bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7269                              uint32_t         sig,
7270                              int              par_num,
7271                              uint8_t          *global,
7272                              uint8_t          print)
7273{
7274    int i = 0;
7275    uint32_t cur_bit = 0;
7276    for (i = 0; sig; i++) {
7277        cur_bit = ((uint32_t)0x1 << i);
7278        if (sig & cur_bit) {
7279            switch (cur_bit) {
7280            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7281                if (print)
7282                    bxe_print_next_block(sc, par_num++, "PBF");
7283                break;
7284            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7285                if (print)
7286                    bxe_print_next_block(sc, par_num++, "QM");
7287                break;
7288            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7289                if (print)
7290                    bxe_print_next_block(sc, par_num++, "TM");
7291                break;
7292            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7293                if (print)
7294                    bxe_print_next_block(sc, par_num++, "XSDM");
7295                break;
7296            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7297                if (print)
7298                    bxe_print_next_block(sc, par_num++, "XCM");
7299                break;
7300            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7301                if (print)
7302                    bxe_print_next_block(sc, par_num++, "XSEMI");
7303                break;
7304            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7305                if (print)
7306                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7307                break;
7308            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7309                if (print)
7310                    bxe_print_next_block(sc, par_num++, "NIG");
7311                break;
7312            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7313                if (print)
7314                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7315                *global = TRUE;
7316                break;
7317            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7318                if (print)
7319                    bxe_print_next_block(sc, par_num++, "DEBUG");
7320                break;
7321            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7322                if (print)
7323                    bxe_print_next_block(sc, par_num++, "USDM");
7324                break;
7325            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7326                if (print)
7327                    bxe_print_next_block(sc, par_num++, "UCM");
7328                break;
7329            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7330                if (print)
7331                    bxe_print_next_block(sc, par_num++, "USEMI");
7332                break;
7333            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7334                if (print)
7335                    bxe_print_next_block(sc, par_num++, "UPB");
7336                break;
7337            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7338                if (print)
7339                    bxe_print_next_block(sc, par_num++, "CSDM");
7340                break;
7341            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7342                if (print)
7343                    bxe_print_next_block(sc, par_num++, "CCM");
7344                break;
7345            }
7346
7347            /* Clear the bit */
7348            sig &= ~cur_bit;
7349        }
7350    }
7351
7352    return (par_num);
7353}
7354
7355static int
7356bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7357                              uint32_t         sig,
7358                              int              par_num,
7359                              uint8_t          print)
7360{
7361    uint32_t cur_bit = 0;
7362    int i = 0;
7363
7364    for (i = 0; sig; i++) {
7365        cur_bit = ((uint32_t)0x1 << i);
7366        if (sig & cur_bit) {
7367            switch (cur_bit) {
7368            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7369                if (print)
7370                    bxe_print_next_block(sc, par_num++, "CSEMI");
7371                break;
7372            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7373                if (print)
7374                    bxe_print_next_block(sc, par_num++, "PXP");
7375                break;
7376            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7377                if (print)
7378                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7379                break;
7380            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7381                if (print)
7382                    bxe_print_next_block(sc, par_num++, "CFC");
7383                break;
7384            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7385                if (print)
7386                    bxe_print_next_block(sc, par_num++, "CDU");
7387                break;
7388            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7389                if (print)
7390                    bxe_print_next_block(sc, par_num++, "DMAE");
7391                break;
7392            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7393                if (print)
7394                    bxe_print_next_block(sc, par_num++, "IGU");
7395                break;
7396            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7397                if (print)
7398                    bxe_print_next_block(sc, par_num++, "MISC");
7399                break;
7400            }
7401
7402            /* Clear the bit */
7403            sig &= ~cur_bit;
7404        }
7405    }
7406
7407    return (par_num);
7408}
7409
7410static int
7411bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7412                              uint32_t         sig,
7413                              int              par_num,
7414                              uint8_t          *global,
7415                              uint8_t          print)
7416{
7417    uint32_t cur_bit = 0;
7418    int i = 0;
7419
7420    for (i = 0; sig; i++) {
7421        cur_bit = ((uint32_t)0x1 << i);
7422        if (sig & cur_bit) {
7423            switch (cur_bit) {
7424            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7425                if (print)
7426                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7427                *global = TRUE;
7428                break;
7429            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7430                if (print)
7431                    bxe_print_next_block(sc, par_num++,
7432                              "MCP UMP RX");
7433                *global = TRUE;
7434                break;
7435            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7436                if (print)
7437                    bxe_print_next_block(sc, par_num++,
7438                              "MCP UMP TX");
7439                *global = TRUE;
7440                break;
7441            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7442                if (print)
7443                    bxe_print_next_block(sc, par_num++,
7444                              "MCP SCPAD");
7445                *global = TRUE;
7446                break;
7447            }
7448
7449            /* Clear the bit */
7450            sig &= ~cur_bit;
7451        }
7452    }
7453
7454    return (par_num);
7455}
7456
7457static int
7458bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7459                              uint32_t         sig,
7460                              int              par_num,
7461                              uint8_t          print)
7462{
7463    uint32_t cur_bit = 0;
7464    int i = 0;
7465
7466    for (i = 0; sig; i++) {
7467        cur_bit = ((uint32_t)0x1 << i);
7468        if (sig & cur_bit) {
7469            switch (cur_bit) {
7470            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7471                if (print)
7472                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7473                break;
7474            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7475                if (print)
7476                    bxe_print_next_block(sc, par_num++, "ATC");
7477                break;
7478            }
7479
7480            /* Clear the bit */
7481            sig &= ~cur_bit;
7482        }
7483    }
7484
7485    return (par_num);
7486}
7487
7488static uint8_t
7489bxe_parity_attn(struct bxe_softc *sc,
7490                uint8_t          *global,
7491                uint8_t          print,
7492                uint32_t         *sig)
7493{
7494    int par_num = 0;
7495
7496    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7497        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7498        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7499        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7500        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7501        BLOGE(sc, "Parity error: HW block parity attention:\n"
7502                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7503              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7504              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7505              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7506              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7507              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7508
7509        if (print)
7510            BLOGI(sc, "Parity errors detected in blocks: ");
7511
7512        par_num =
7513            bxe_check_blocks_with_parity0(sc, sig[0] &
7514                                          HW_PRTY_ASSERT_SET_0,
7515                                          par_num, print);
7516        par_num =
7517            bxe_check_blocks_with_parity1(sc, sig[1] &
7518                                          HW_PRTY_ASSERT_SET_1,
7519                                          par_num, global, print);
7520        par_num =
7521            bxe_check_blocks_with_parity2(sc, sig[2] &
7522                                          HW_PRTY_ASSERT_SET_2,
7523                                          par_num, print);
7524        par_num =
7525            bxe_check_blocks_with_parity3(sc, sig[3] &
7526                                          HW_PRTY_ASSERT_SET_3,
7527                                          par_num, global, print);
7528        par_num =
7529            bxe_check_blocks_with_parity4(sc, sig[4] &
7530                                          HW_PRTY_ASSERT_SET_4,
7531                                          par_num, print);
7532
7533        if (print)
7534            BLOGI(sc, "\n");
7535
7536	if( *global == TRUE ) {
7537                BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
7538        }
7539
7540        return (TRUE);
7541    }
7542
7543    return (FALSE);
7544}
7545
7546static uint8_t
7547bxe_chk_parity_attn(struct bxe_softc *sc,
7548                    uint8_t          *global,
7549                    uint8_t          print)
7550{
7551    struct attn_route attn = { {0} };
7552    int port = SC_PORT(sc);
7553
7554    if(sc->state != BXE_STATE_OPEN)
7555        return FALSE;
7556
7557    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7558    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7559    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7560    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7561
7562    /*
7563     * Since MCP attentions can't be disabled inside the block, we need to
7564     * read AEU registers to see whether they're currently disabled
7565     */
7566    attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7567                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7568                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7569                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7570
7571
7572    if (!CHIP_IS_E1x(sc))
7573        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7574
7575    return (bxe_parity_attn(sc, global, print, attn.sig));
7576}
7577
7578static void
7579bxe_attn_int_deasserted4(struct bxe_softc *sc,
7580                         uint32_t         attn)
7581{
7582    uint32_t val;
7583    boolean_t err_flg = FALSE;
7584
7585    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7586        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7587        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7588        err_flg = TRUE;
7589        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7590            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7591        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7592            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7593        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7594            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7595        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7596            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7597        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7598            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7599        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7600            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7601        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7602            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7603        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7604            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7605        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7606            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7607    }
7608
7609    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7610        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7611        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7612	err_flg = TRUE;
7613        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7614            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7615        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7616            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7617        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7618            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7619        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7620            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7621        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7622            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7623        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7624            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7625    }
7626
7627    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7628                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7629        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7630              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7631                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7632	err_flg = TRUE;
7633    }
7634    if (err_flg) {
7635	BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
7636	taskqueue_enqueue_timeout(taskqueue_thread,
7637	    &sc->sp_err_timeout_task, hz/10);
7638    }
7639
7640}
7641
7642static void
7643bxe_e1h_disable(struct bxe_softc *sc)
7644{
7645    int port = SC_PORT(sc);
7646
7647    bxe_tx_disable(sc);
7648
7649    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7650}
7651
7652static void
7653bxe_e1h_enable(struct bxe_softc *sc)
7654{
7655    int port = SC_PORT(sc);
7656
7657    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7658
7659    // XXX bxe_tx_enable(sc);
7660}
7661
7662/*
7663 * called due to MCP event (on pmf):
7664 *   reread new bandwidth configuration
7665 *   configure FW
7666 *   notify others function about the change
7667 */
7668static void
7669bxe_config_mf_bw(struct bxe_softc *sc)
7670{
7671    if (sc->link_vars.link_up) {
7672        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7673        // XXX bxe_link_sync_notify(sc);
7674    }
7675
7676    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7677}
7678
7679static void
7680bxe_set_mf_bw(struct bxe_softc *sc)
7681{
7682    bxe_config_mf_bw(sc);
7683    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7684}
7685
7686static void
7687bxe_handle_eee_event(struct bxe_softc *sc)
7688{
7689    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7690    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7691}
7692
7693#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7694
7695static void
7696bxe_drv_info_ether_stat(struct bxe_softc *sc)
7697{
7698    struct eth_stats_info *ether_stat =
7699        &sc->sp->drv_info_to_mcp.ether_stat;
7700
7701    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7702            ETH_STAT_INFO_VERSION_LEN);
7703
7704    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7705    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7706                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7707                                          ether_stat->mac_local + MAC_PAD,
7708                                          MAC_PAD, ETH_ALEN);
7709
7710    ether_stat->mtu_size = sc->mtu;
7711
7712    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7713    if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7714        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7715    }
7716
7717    // XXX ether_stat->feature_flags |= ???;
7718
7719    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7720
7721    ether_stat->txq_size = sc->tx_ring_size;
7722    ether_stat->rxq_size = sc->rx_ring_size;
7723}
7724
7725static void
7726bxe_handle_drv_info_req(struct bxe_softc *sc)
7727{
7728    enum drv_info_opcode op_code;
7729    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7730
7731    /* if drv_info version supported by MFW doesn't match - send NACK */
7732    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7733        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7734        return;
7735    }
7736
7737    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7738               DRV_INFO_CONTROL_OP_CODE_SHIFT);
7739
7740    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7741
7742    switch (op_code) {
7743    case ETH_STATS_OPCODE:
7744        bxe_drv_info_ether_stat(sc);
7745        break;
7746    case FCOE_STATS_OPCODE:
7747    case ISCSI_STATS_OPCODE:
7748    default:
7749        /* if op code isn't supported - send NACK */
7750        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7751        return;
7752    }
7753
7754    /*
7755     * If we got drv_info attn from MFW then these fields are defined in
7756     * shmem2 for sure
7757     */
7758    SHMEM2_WR(sc, drv_info_host_addr_lo,
7759              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7760    SHMEM2_WR(sc, drv_info_host_addr_hi,
7761              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7762
7763    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7764}
7765
7766static void
7767bxe_dcc_event(struct bxe_softc *sc,
7768              uint32_t         dcc_event)
7769{
7770    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7771
7772    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7773        /*
7774         * This is the only place besides the function initialization
7775         * where the sc->flags can change so it is done without any
7776         * locks
7777         */
7778        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7779            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7780            sc->flags |= BXE_MF_FUNC_DIS;
7781            bxe_e1h_disable(sc);
7782        } else {
7783            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7784            sc->flags &= ~BXE_MF_FUNC_DIS;
7785            bxe_e1h_enable(sc);
7786        }
7787        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7788    }
7789
7790    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7791        bxe_config_mf_bw(sc);
7792        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7793    }
7794
7795    /* Report results to MCP */
7796    if (dcc_event)
7797        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7798    else
7799        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7800}
7801
7802static void
7803bxe_pmf_update(struct bxe_softc *sc)
7804{
7805    int port = SC_PORT(sc);
7806    uint32_t val;
7807
7808    sc->port.pmf = 1;
7809    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7810
7811    /*
7812     * We need the mb() to ensure the ordering between the writing to
7813     * sc->port.pmf here and reading it from the bxe_periodic_task().
7814     */
7815    mb();
7816
7817    /* queue a periodic task */
7818    // XXX schedule task...
7819
7820    // XXX bxe_dcbx_pmf_update(sc);
7821
7822    /* enable nig attention */
7823    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7824    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7825        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7826        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7827    } else if (!CHIP_IS_E1x(sc)) {
7828        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7829        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7830    }
7831
7832    bxe_stats_handle(sc, STATS_EVENT_PMF);
7833}
7834
7835static int
7836bxe_mc_assert(struct bxe_softc *sc)
7837{
7838    char last_idx;
7839    int i, rc = 0;
7840    uint32_t row0, row1, row2, row3;
7841
7842    /* XSTORM */
7843    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7844    if (last_idx)
7845        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7846
7847    /* print the asserts */
7848    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7849
7850        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7851        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7852        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7853        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7854
7855        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7856            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7857                  i, row3, row2, row1, row0);
7858            rc++;
7859        } else {
7860            break;
7861        }
7862    }
7863
7864    /* TSTORM */
7865    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7866    if (last_idx) {
7867        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7868    }
7869
7870    /* print the asserts */
7871    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7872
7873        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7874        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7875        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7876        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7877
7878        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7879            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7880                  i, row3, row2, row1, row0);
7881            rc++;
7882        } else {
7883            break;
7884        }
7885    }
7886
7887    /* CSTORM */
7888    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7889    if (last_idx) {
7890        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7891    }
7892
7893    /* print the asserts */
7894    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7895
7896        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7897        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7898        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7899        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7900
7901        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7902            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7903                  i, row3, row2, row1, row0);
7904            rc++;
7905        } else {
7906            break;
7907        }
7908    }
7909
7910    /* USTORM */
7911    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7912    if (last_idx) {
7913        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7914    }
7915
7916    /* print the asserts */
7917    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7918
7919        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7920        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7921        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7922        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7923
7924        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7925            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7926                  i, row3, row2, row1, row0);
7927            rc++;
7928        } else {
7929            break;
7930        }
7931    }
7932
7933    return (rc);
7934}
7935
7936static void
7937bxe_attn_int_deasserted3(struct bxe_softc *sc,
7938                         uint32_t         attn)
7939{
7940    int func = SC_FUNC(sc);
7941    uint32_t val;
7942
7943    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7944
7945        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7946
7947            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7948            bxe_read_mf_cfg(sc);
7949            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7950                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7951            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7952
7953            if (val & DRV_STATUS_DCC_EVENT_MASK)
7954                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7955
7956            if (val & DRV_STATUS_SET_MF_BW)
7957                bxe_set_mf_bw(sc);
7958
7959            if (val & DRV_STATUS_DRV_INFO_REQ)
7960                bxe_handle_drv_info_req(sc);
7961
7962            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7963                bxe_pmf_update(sc);
7964
7965            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7966                bxe_handle_eee_event(sc);
7967
7968            if (sc->link_vars.periodic_flags &
7969                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7970                /* sync with link */
7971		bxe_acquire_phy_lock(sc);
7972                sc->link_vars.periodic_flags &=
7973                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7974		bxe_release_phy_lock(sc);
7975                if (IS_MF(sc))
7976                    ; // XXX bxe_link_sync_notify(sc);
7977                bxe_link_report(sc);
7978            }
7979
7980            /*
7981             * Always call it here: bxe_link_report() will
7982             * prevent the link indication duplication.
7983             */
7984            bxe_link_status_update(sc);
7985
7986        } else if (attn & BXE_MC_ASSERT_BITS) {
7987
7988            BLOGE(sc, "MC assert!\n");
7989            bxe_mc_assert(sc);
7990            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7991            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7992            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7993            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7994            bxe_int_disable(sc);
7995            BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
7996            taskqueue_enqueue_timeout(taskqueue_thread,
7997                &sc->sp_err_timeout_task, hz/10);
7998
7999        } else if (attn & BXE_MCP_ASSERT) {
8000
8001            BLOGE(sc, "MCP assert!\n");
8002            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8003            BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
8004            taskqueue_enqueue_timeout(taskqueue_thread,
8005                &sc->sp_err_timeout_task, hz/10);
8006            bxe_int_disable(sc);  /*avoid repetive assert alert */
8007
8008
8009        } else {
8010            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8011        }
8012    }
8013
8014    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8015        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8016        if (attn & BXE_GRC_TIMEOUT) {
8017            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8018            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8019        }
8020        if (attn & BXE_GRC_RSV) {
8021            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8022            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8023        }
8024        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8025    }
8026}
8027
8028static void
8029bxe_attn_int_deasserted2(struct bxe_softc *sc,
8030                         uint32_t         attn)
8031{
8032    int port = SC_PORT(sc);
8033    int reg_offset;
8034    uint32_t val0, mask0, val1, mask1;
8035    uint32_t val;
8036    boolean_t err_flg = FALSE;
8037
8038    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8039        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8040        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8041        /* CFC error attention */
8042        if (val & 0x2) {
8043            BLOGE(sc, "FATAL error from CFC\n");
8044	    err_flg = TRUE;
8045        }
8046    }
8047
8048    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8049        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8050        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8051        /* RQ_USDMDP_FIFO_OVERFLOW */
8052        if (val & 0x18000) {
8053            BLOGE(sc, "FATAL error from PXP\n");
8054	    err_flg = TRUE;
8055        }
8056
8057        if (!CHIP_IS_E1x(sc)) {
8058            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8059            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8060	    err_flg = TRUE;
8061        }
8062    }
8063
8064#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8065#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8066
8067    if (attn & AEU_PXP2_HW_INT_BIT) {
8068        /*  CQ47854 workaround do not panic on
8069         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8070         */
8071        if (!CHIP_IS_E1x(sc)) {
8072            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8073            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8074            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8075            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8076            /*
8077             * If the only PXP2_EOP_ERROR_BIT is set in
8078             * STS0 and STS1 - clear it
8079             *
8080             * probably we lose additional attentions between
8081             * STS0 and STS_CLR0, in this case user will not
8082             * be notified about them
8083             */
8084            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8085                !(val1 & mask1))
8086                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8087
8088            /* print the register, since no one can restore it */
8089            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8090
8091            /*
8092             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8093             * then notify
8094             */
8095            if (val0 & PXP2_EOP_ERROR_BIT) {
8096                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8097		err_flg = TRUE;
8098
8099                /*
8100                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8101                 * set then clear attention from PXP2 block without panic
8102                 */
8103                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8104                    ((val1 & mask1) == 0))
8105                    attn &= ~AEU_PXP2_HW_INT_BIT;
8106            }
8107        }
8108    }
8109
8110    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8111        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8112                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8113
8114        val = REG_RD(sc, reg_offset);
8115        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8116        REG_WR(sc, reg_offset, val);
8117
8118        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8119              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8120	err_flg = TRUE;
8121        bxe_panic(sc, ("HW block attention set2\n"));
8122    }
8123    if(err_flg) {
8124        BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
8125        taskqueue_enqueue_timeout(taskqueue_thread,
8126           &sc->sp_err_timeout_task, hz/10);
8127    }
8128
8129}
8130
8131static void
8132bxe_attn_int_deasserted1(struct bxe_softc *sc,
8133                         uint32_t         attn)
8134{
8135    int port = SC_PORT(sc);
8136    int reg_offset;
8137    uint32_t val;
8138    boolean_t err_flg = FALSE;
8139
8140    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8141        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8142        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8143        /* DORQ discard attention */
8144        if (val & 0x2) {
8145            BLOGE(sc, "FATAL error from DORQ\n");
8146	    err_flg = TRUE;
8147        }
8148    }
8149
8150    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8151        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8152                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8153
8154        val = REG_RD(sc, reg_offset);
8155        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8156        REG_WR(sc, reg_offset, val);
8157
8158        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8159              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8160        err_flg = TRUE;
8161        bxe_panic(sc, ("HW block attention set1\n"));
8162    }
8163    if(err_flg) {
8164        BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8165        taskqueue_enqueue_timeout(taskqueue_thread,
8166           &sc->sp_err_timeout_task, hz/10);
8167    }
8168
8169}
8170
8171static void
8172bxe_attn_int_deasserted0(struct bxe_softc *sc,
8173                         uint32_t         attn)
8174{
8175    int port = SC_PORT(sc);
8176    int reg_offset;
8177    uint32_t val;
8178
8179    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8180                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8181
8182    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8183        val = REG_RD(sc, reg_offset);
8184        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8185        REG_WR(sc, reg_offset, val);
8186
8187        BLOGW(sc, "SPIO5 hw attention\n");
8188
8189        /* Fan failure attention */
8190        elink_hw_reset_phy(&sc->link_params);
8191        bxe_fan_failure(sc);
8192    }
8193
8194    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8195	bxe_acquire_phy_lock(sc);
8196        elink_handle_module_detect_int(&sc->link_params);
8197	bxe_release_phy_lock(sc);
8198    }
8199
8200    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8201        val = REG_RD(sc, reg_offset);
8202        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8203        REG_WR(sc, reg_offset, val);
8204
8205
8206        BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8207        taskqueue_enqueue_timeout(taskqueue_thread,
8208           &sc->sp_err_timeout_task, hz/10);
8209
8210        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8211                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8212    }
8213}
8214
8215static void
8216bxe_attn_int_deasserted(struct bxe_softc *sc,
8217                        uint32_t         deasserted)
8218{
8219    struct attn_route attn;
8220    struct attn_route *group_mask;
8221    int port = SC_PORT(sc);
8222    int index;
8223    uint32_t reg_addr;
8224    uint32_t val;
8225    uint32_t aeu_mask;
8226    uint8_t global = FALSE;
8227
8228    /*
8229     * Need to take HW lock because MCP or other port might also
8230     * try to handle this event.
8231     */
8232    bxe_acquire_alr(sc);
8233
8234    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8235        /* XXX
8236         * In case of parity errors don't handle attentions so that
8237         * other function would "see" parity errors.
8238         */
8239        // XXX schedule a recovery task...
8240        /* disable HW interrupts */
8241        bxe_int_disable(sc);
8242        BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
8243        taskqueue_enqueue_timeout(taskqueue_thread,
8244           &sc->sp_err_timeout_task, hz/10);
8245        bxe_release_alr(sc);
8246        return;
8247    }
8248
8249    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8250    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8251    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8252    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8253    if (!CHIP_IS_E1x(sc)) {
8254        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8255    } else {
8256        attn.sig[4] = 0;
8257    }
8258
8259    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8260          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8261
8262    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8263        if (deasserted & (1 << index)) {
8264            group_mask = &sc->attn_group[index];
8265
8266            BLOGD(sc, DBG_INTR,
8267                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8268                  group_mask->sig[0], group_mask->sig[1],
8269                  group_mask->sig[2], group_mask->sig[3],
8270                  group_mask->sig[4]);
8271
8272            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8273            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8274            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8275            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8276            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8277        }
8278    }
8279
8280    bxe_release_alr(sc);
8281
8282    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8283        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8284                    COMMAND_REG_ATTN_BITS_CLR);
8285    } else {
8286        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8287    }
8288
8289    val = ~deasserted;
8290    BLOGD(sc, DBG_INTR,
8291          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8292          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8293    REG_WR(sc, reg_addr, val);
8294
8295    if (~sc->attn_state & deasserted) {
8296        BLOGE(sc, "IGU error\n");
8297    }
8298
8299    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8300                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8301
8302    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8303
8304    aeu_mask = REG_RD(sc, reg_addr);
8305
8306    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8307          aeu_mask, deasserted);
8308    aeu_mask |= (deasserted & 0x3ff);
8309    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8310
8311    REG_WR(sc, reg_addr, aeu_mask);
8312    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8313
8314    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8315    sc->attn_state &= ~deasserted;
8316    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8317}
8318
8319static void
8320bxe_attn_int(struct bxe_softc *sc)
8321{
8322    /* read local copy of bits */
8323    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8324    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8325    uint32_t attn_state = sc->attn_state;
8326
8327    /* look for changed bits */
8328    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8329    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8330
8331    BLOGD(sc, DBG_INTR,
8332          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8333          attn_bits, attn_ack, asserted, deasserted);
8334
8335    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8336        BLOGE(sc, "BAD attention state\n");
8337    }
8338
8339    /* handle bits that were raised */
8340    if (asserted) {
8341        bxe_attn_int_asserted(sc, asserted);
8342    }
8343
8344    if (deasserted) {
8345        bxe_attn_int_deasserted(sc, deasserted);
8346    }
8347}
8348
8349static uint16_t
8350bxe_update_dsb_idx(struct bxe_softc *sc)
8351{
8352    struct host_sp_status_block *def_sb = sc->def_sb;
8353    uint16_t rc = 0;
8354
8355    mb(); /* status block is written to by the chip */
8356
8357    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8358        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8359        rc |= BXE_DEF_SB_ATT_IDX;
8360    }
8361
8362    if (sc->def_idx != def_sb->sp_sb.running_index) {
8363        sc->def_idx = def_sb->sp_sb.running_index;
8364        rc |= BXE_DEF_SB_IDX;
8365    }
8366
8367    mb();
8368
8369    return (rc);
8370}
8371
8372static inline struct ecore_queue_sp_obj *
8373bxe_cid_to_q_obj(struct bxe_softc *sc,
8374                 uint32_t         cid)
8375{
8376    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8377    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8378}
8379
8380static void
8381bxe_handle_mcast_eqe(struct bxe_softc *sc)
8382{
8383    struct ecore_mcast_ramrod_params rparam;
8384    int rc;
8385
8386    memset(&rparam, 0, sizeof(rparam));
8387
8388    rparam.mcast_obj = &sc->mcast_obj;
8389
8390    BXE_MCAST_LOCK(sc);
8391
8392    /* clear pending state for the last command */
8393    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8394
8395    /* if there are pending mcast commands - send them */
8396    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8397        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8398        if (rc < 0) {
8399            BLOGD(sc, DBG_SP,
8400                "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8401        }
8402    }
8403
8404    BXE_MCAST_UNLOCK(sc);
8405}
8406
8407static void
8408bxe_handle_classification_eqe(struct bxe_softc      *sc,
8409                              union event_ring_elem *elem)
8410{
8411    unsigned long ramrod_flags = 0;
8412    int rc = 0;
8413    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8414    struct ecore_vlan_mac_obj *vlan_mac_obj;
8415
8416    /* always push next commands out, don't wait here */
8417    bit_set(&ramrod_flags, RAMROD_CONT);
8418
8419    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8420    case ECORE_FILTER_MAC_PENDING:
8421        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8422        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8423        break;
8424
8425    case ECORE_FILTER_MCAST_PENDING:
8426        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8427        /*
8428         * This is only relevant for 57710 where multicast MACs are
8429         * configured as unicast MACs using the same ramrod.
8430         */
8431        bxe_handle_mcast_eqe(sc);
8432        return;
8433
8434    default:
8435        BLOGE(sc, "Unsupported classification command: %d\n",
8436              elem->message.data.eth_event.echo);
8437        return;
8438    }
8439
8440    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8441
8442    if (rc < 0) {
8443        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8444    } else if (rc > 0) {
8445        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8446    }
8447}
8448
8449static void
8450bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8451                       union event_ring_elem *elem)
8452{
8453    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8454
8455    /* send rx_mode command again if was requested */
8456    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8457                               &sc->sp_state)) {
8458        bxe_set_storm_rx_mode(sc);
8459    }
8460}
8461
8462static void
8463bxe_update_eq_prod(struct bxe_softc *sc,
8464                   uint16_t         prod)
8465{
8466    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8467    wmb(); /* keep prod updates ordered */
8468}
8469
8470static void
8471bxe_eq_int(struct bxe_softc *sc)
8472{
8473    uint16_t hw_cons, sw_cons, sw_prod;
8474    union event_ring_elem *elem;
8475    uint8_t echo;
8476    uint32_t cid;
8477    uint8_t opcode;
8478    int spqe_cnt = 0;
8479    struct ecore_queue_sp_obj *q_obj;
8480    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8481    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8482
8483    hw_cons = le16toh(*sc->eq_cons_sb);
8484
8485    /*
8486     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8487     * when we get to the next-page we need to adjust so the loop
8488     * condition below will be met. The next element is the size of a
8489     * regular element and hence incrementing by 1
8490     */
8491    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8492        hw_cons++;
8493    }
8494
8495    /*
8496     * This function may never run in parallel with itself for a
8497     * specific sc and no need for a read memory barrier here.
8498     */
8499    sw_cons = sc->eq_cons;
8500    sw_prod = sc->eq_prod;
8501
8502    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8503          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8504
8505    for (;
8506         sw_cons != hw_cons;
8507         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8508
8509        elem = &sc->eq[EQ_DESC(sw_cons)];
8510
8511        /* elem CID originates from FW, actually LE */
8512        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8513        opcode = elem->message.opcode;
8514
8515        /* handle eq element */
8516        switch (opcode) {
8517
8518        case EVENT_RING_OPCODE_STAT_QUERY:
8519            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8520                  sc->stats_comp++);
8521            /* nothing to do with stats comp */
8522            goto next_spqe;
8523
8524        case EVENT_RING_OPCODE_CFC_DEL:
8525            /* handle according to cid range */
8526            /* we may want to verify here that the sc state is HALTING */
8527            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8528            q_obj = bxe_cid_to_q_obj(sc, cid);
8529            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8530                break;
8531            }
8532            goto next_spqe;
8533
8534        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8535            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8536            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8537                break;
8538            }
8539            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8540            goto next_spqe;
8541
8542        case EVENT_RING_OPCODE_START_TRAFFIC:
8543            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8544            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8545                break;
8546            }
8547            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8548            goto next_spqe;
8549
8550        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8551            echo = elem->message.data.function_update_event.echo;
8552            if (echo == SWITCH_UPDATE) {
8553                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8554                if (f_obj->complete_cmd(sc, f_obj,
8555                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8556                    break;
8557                }
8558            }
8559            else {
8560                BLOGD(sc, DBG_SP,
8561                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8562            }
8563            goto next_spqe;
8564
8565        case EVENT_RING_OPCODE_FORWARD_SETUP:
8566            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8567            if (q_obj->complete_cmd(sc, q_obj,
8568                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8569                break;
8570            }
8571            goto next_spqe;
8572
8573        case EVENT_RING_OPCODE_FUNCTION_START:
8574            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8575            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8576                break;
8577            }
8578            goto next_spqe;
8579
8580        case EVENT_RING_OPCODE_FUNCTION_STOP:
8581            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8582            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8583                break;
8584            }
8585            goto next_spqe;
8586        }
8587
8588        switch (opcode | sc->state) {
8589        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8590        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8591            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8592            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8593            rss_raw->clear_pending(rss_raw);
8594            break;
8595
8596        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8597        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8598        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8599        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8600        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8601        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8602            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8603            bxe_handle_classification_eqe(sc, elem);
8604            break;
8605
8606        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8607        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8608        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8609            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8610            bxe_handle_mcast_eqe(sc);
8611            break;
8612
8613        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8614        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8615        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8616            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8617            bxe_handle_rx_mode_eqe(sc, elem);
8618            break;
8619
8620        default:
8621            /* unknown event log error and continue */
8622            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8623                  elem->message.opcode, sc->state);
8624        }
8625
8626next_spqe:
8627        spqe_cnt++;
8628    } /* for */
8629
8630    mb();
8631    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8632
8633    sc->eq_cons = sw_cons;
8634    sc->eq_prod = sw_prod;
8635
8636    /* make sure that above mem writes were issued towards the memory */
8637    wmb();
8638
8639    /* update producer */
8640    bxe_update_eq_prod(sc, sc->eq_prod);
8641}
8642
8643static void
8644bxe_handle_sp_tq(void *context,
8645                 int  pending)
8646{
8647    struct bxe_softc *sc = (struct bxe_softc *)context;
8648    uint16_t status;
8649
8650    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8651
8652    /* what work needs to be performed? */
8653    status = bxe_update_dsb_idx(sc);
8654
8655    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8656
8657    /* HW attentions */
8658    if (status & BXE_DEF_SB_ATT_IDX) {
8659        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8660        bxe_attn_int(sc);
8661        status &= ~BXE_DEF_SB_ATT_IDX;
8662    }
8663
8664    /* SP events: STAT_QUERY and others */
8665    if (status & BXE_DEF_SB_IDX) {
8666        /* handle EQ completions */
8667        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8668        bxe_eq_int(sc);
8669        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8670                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8671        status &= ~BXE_DEF_SB_IDX;
8672    }
8673
8674    /* if status is non zero then something went wrong */
8675    if (__predict_false(status)) {
8676        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8677    }
8678
8679    /* ack status block only if something was actually handled */
8680    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8681               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8682
8683    /*
8684     * Must be called after the EQ processing (since eq leads to sriov
8685     * ramrod completion flows).
8686     * This flow may have been scheduled by the arrival of a ramrod
8687     * completion, or by the sriov code rescheduling itself.
8688     */
8689    // XXX bxe_iov_sp_task(sc);
8690
8691}
8692
8693static void
8694bxe_handle_fp_tq(void *context,
8695                 int  pending)
8696{
8697    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8698    struct bxe_softc *sc = fp->sc;
8699    uint8_t more_tx = FALSE;
8700    uint8_t more_rx = FALSE;
8701
8702    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8703
8704    /* XXX
8705     * IFF_DRV_RUNNING state can't be checked here since we process
8706     * slowpath events on a client queue during setup. Instead
8707     * we need to add a "process/continue" flag here that the driver
8708     * can use to tell the task here not to do anything.
8709     */
8710#if 0
8711    if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8712        return;
8713    }
8714#endif
8715
8716    /* update the fastpath index */
8717    bxe_update_fp_sb_idx(fp);
8718
8719    /* XXX add loop here if ever support multiple tx CoS */
8720    /* fp->txdata[cos] */
8721    if (bxe_has_tx_work(fp)) {
8722        BXE_FP_TX_LOCK(fp);
8723        more_tx = bxe_txeof(sc, fp);
8724        BXE_FP_TX_UNLOCK(fp);
8725    }
8726
8727    if (bxe_has_rx_work(fp)) {
8728        more_rx = bxe_rxeof(sc, fp);
8729    }
8730
8731    if (more_rx /*|| more_tx*/) {
8732        /* still more work to do */
8733        taskqueue_enqueue(fp->tq, &fp->tq_task);
8734        return;
8735    }
8736
8737    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8738               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8739}
8740
8741static void
8742bxe_task_fp(struct bxe_fastpath *fp)
8743{
8744    struct bxe_softc *sc = fp->sc;
8745    uint8_t more_tx = FALSE;
8746    uint8_t more_rx = FALSE;
8747
8748    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8749
8750    /* update the fastpath index */
8751    bxe_update_fp_sb_idx(fp);
8752
8753    /* XXX add loop here if ever support multiple tx CoS */
8754    /* fp->txdata[cos] */
8755    if (bxe_has_tx_work(fp)) {
8756        BXE_FP_TX_LOCK(fp);
8757        more_tx = bxe_txeof(sc, fp);
8758        BXE_FP_TX_UNLOCK(fp);
8759    }
8760
8761    if (bxe_has_rx_work(fp)) {
8762        more_rx = bxe_rxeof(sc, fp);
8763    }
8764
8765    if (more_rx /*|| more_tx*/) {
8766        /* still more work to do, bail out if this ISR and process later */
8767        taskqueue_enqueue(fp->tq, &fp->tq_task);
8768        return;
8769    }
8770
8771    /*
8772     * Here we write the fastpath index taken before doing any tx or rx work.
8773     * It is very well possible other hw events occurred up to this point and
8774     * they were actually processed accordingly above. Since we're going to
8775     * write an older fastpath index, an interrupt is coming which we might
8776     * not do any work in.
8777     */
8778    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8779               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8780}
8781
8782/*
8783 * Legacy interrupt entry point.
8784 *
8785 * Verifies that the controller generated the interrupt and
8786 * then calls a separate routine to handle the various
8787 * interrupt causes: link, RX, and TX.
8788 */
8789static void
8790bxe_intr_legacy(void *xsc)
8791{
8792    struct bxe_softc *sc = (struct bxe_softc *)xsc;
8793    struct bxe_fastpath *fp;
8794    uint16_t status, mask;
8795    int i;
8796
8797    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8798
8799    /*
8800     * 0 for ustorm, 1 for cstorm
8801     * the bits returned from ack_int() are 0-15
8802     * bit 0 = attention status block
8803     * bit 1 = fast path status block
8804     * a mask of 0x2 or more = tx/rx event
8805     * a mask of 1 = slow path event
8806     */
8807
8808    status = bxe_ack_int(sc);
8809
8810    /* the interrupt is not for us */
8811    if (__predict_false(status == 0)) {
8812        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8813        return;
8814    }
8815
8816    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8817
8818    FOR_EACH_ETH_QUEUE(sc, i) {
8819        fp = &sc->fp[i];
8820        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8821        if (status & mask) {
8822            /* acknowledge and disable further fastpath interrupts */
8823            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8824            bxe_task_fp(fp);
8825            status &= ~mask;
8826        }
8827    }
8828
8829    if (__predict_false(status & 0x1)) {
8830        /* acknowledge and disable further slowpath interrupts */
8831        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8832
8833        /* schedule slowpath handler */
8834        taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8835
8836        status &= ~0x1;
8837    }
8838
8839    if (__predict_false(status)) {
8840        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8841    }
8842}
8843
8844/* slowpath interrupt entry point */
8845static void
8846bxe_intr_sp(void *xsc)
8847{
8848    struct bxe_softc *sc = (struct bxe_softc *)xsc;
8849
8850    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8851
8852    /* acknowledge and disable further slowpath interrupts */
8853    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8854
8855    /* schedule slowpath handler */
8856    taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8857}
8858
8859/* fastpath interrupt entry point */
8860static void
8861bxe_intr_fp(void *xfp)
8862{
8863    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8864    struct bxe_softc *sc = fp->sc;
8865
8866    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8867
8868    BLOGD(sc, DBG_INTR,
8869          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8870          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8871
8872    /* acknowledge and disable further fastpath interrupts */
8873    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8874
8875    bxe_task_fp(fp);
8876}
8877
8878/* Release all interrupts allocated by the driver. */
8879static void
8880bxe_interrupt_free(struct bxe_softc *sc)
8881{
8882    int i;
8883
8884    switch (sc->interrupt_mode) {
8885    case INTR_MODE_INTX:
8886        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8887        if (sc->intr[0].resource != NULL) {
8888            bus_release_resource(sc->dev,
8889                                 SYS_RES_IRQ,
8890                                 sc->intr[0].rid,
8891                                 sc->intr[0].resource);
8892        }
8893        break;
8894    case INTR_MODE_MSI:
8895        for (i = 0; i < sc->intr_count; i++) {
8896            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8897            if (sc->intr[i].resource && sc->intr[i].rid) {
8898                bus_release_resource(sc->dev,
8899                                     SYS_RES_IRQ,
8900                                     sc->intr[i].rid,
8901                                     sc->intr[i].resource);
8902            }
8903        }
8904        pci_release_msi(sc->dev);
8905        break;
8906    case INTR_MODE_MSIX:
8907        for (i = 0; i < sc->intr_count; i++) {
8908            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8909            if (sc->intr[i].resource && sc->intr[i].rid) {
8910                bus_release_resource(sc->dev,
8911                                     SYS_RES_IRQ,
8912                                     sc->intr[i].rid,
8913                                     sc->intr[i].resource);
8914            }
8915        }
8916        pci_release_msi(sc->dev);
8917        break;
8918    default:
8919        /* nothing to do as initial allocation failed */
8920        break;
8921    }
8922}
8923
8924/*
8925 * This function determines and allocates the appropriate
8926 * interrupt based on system capabilites and user request.
8927 *
8928 * The user may force a particular interrupt mode, specify
8929 * the number of receive queues, specify the method for
8930 * distribuitng received frames to receive queues, or use
8931 * the default settings which will automatically select the
8932 * best supported combination.  In addition, the OS may or
8933 * may not support certain combinations of these settings.
8934 * This routine attempts to reconcile the settings requested
8935 * by the user with the capabilites available from the system
8936 * to select the optimal combination of features.
8937 *
8938 * Returns:
8939 *   0 = Success, !0 = Failure.
8940 */
8941static int
8942bxe_interrupt_alloc(struct bxe_softc *sc)
8943{
8944    int msix_count = 0;
8945    int msi_count = 0;
8946    int num_requested = 0;
8947    int num_allocated = 0;
8948    int rid, i, j;
8949    int rc;
8950
8951    /* get the number of available MSI/MSI-X interrupts from the OS */
8952    if (sc->interrupt_mode > 0) {
8953        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8954            msix_count = pci_msix_count(sc->dev);
8955        }
8956
8957        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8958            msi_count = pci_msi_count(sc->dev);
8959        }
8960
8961        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8962              msi_count, msix_count);
8963    }
8964
8965    do { /* try allocating MSI-X interrupt resources (at least 2) */
8966        if (sc->interrupt_mode != INTR_MODE_MSIX) {
8967            break;
8968        }
8969
8970        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8971            (msix_count < 2)) {
8972            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8973            break;
8974        }
8975
8976        /* ask for the necessary number of MSI-X vectors */
8977        num_requested = min((sc->num_queues + 1), msix_count);
8978
8979        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8980
8981        num_allocated = num_requested;
8982        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8983            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8984            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8985            break;
8986        }
8987
8988        if (num_allocated < 2) { /* possible? */
8989            BLOGE(sc, "MSI-X allocation less than 2!\n");
8990            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8991            pci_release_msi(sc->dev);
8992            break;
8993        }
8994
8995        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8996              num_requested, num_allocated);
8997
8998        /* best effort so use the number of vectors allocated to us */
8999        sc->intr_count = num_allocated;
9000        sc->num_queues = num_allocated - 1;
9001
9002        rid = 1; /* initial resource identifier */
9003
9004        /* allocate the MSI-X vectors */
9005        for (i = 0; i < num_allocated; i++) {
9006            sc->intr[i].rid = (rid + i);
9007
9008            if ((sc->intr[i].resource =
9009                 bus_alloc_resource_any(sc->dev,
9010                                        SYS_RES_IRQ,
9011                                        &sc->intr[i].rid,
9012                                        RF_ACTIVE)) == NULL) {
9013                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9014                      i, (rid + i));
9015
9016                for (j = (i - 1); j >= 0; j--) {
9017                    bus_release_resource(sc->dev,
9018                                         SYS_RES_IRQ,
9019                                         sc->intr[j].rid,
9020                                         sc->intr[j].resource);
9021                }
9022
9023                sc->intr_count = 0;
9024                sc->num_queues = 0;
9025                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9026                pci_release_msi(sc->dev);
9027                break;
9028            }
9029
9030            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9031        }
9032    } while (0);
9033
9034    do { /* try allocating MSI vector resources (at least 2) */
9035        if (sc->interrupt_mode != INTR_MODE_MSI) {
9036            break;
9037        }
9038
9039        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9040            (msi_count < 1)) {
9041            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9042            break;
9043        }
9044
9045        /* ask for a single MSI vector */
9046        num_requested = 1;
9047
9048        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9049
9050        num_allocated = num_requested;
9051        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9052            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9053            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9054            break;
9055        }
9056
9057        if (num_allocated != 1) { /* possible? */
9058            BLOGE(sc, "MSI allocation is not 1!\n");
9059            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9060            pci_release_msi(sc->dev);
9061            break;
9062        }
9063
9064        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9065              num_requested, num_allocated);
9066
9067        /* best effort so use the number of vectors allocated to us */
9068        sc->intr_count = num_allocated;
9069        sc->num_queues = num_allocated;
9070
9071        rid = 1; /* initial resource identifier */
9072
9073        sc->intr[0].rid = rid;
9074
9075        if ((sc->intr[0].resource =
9076             bus_alloc_resource_any(sc->dev,
9077                                    SYS_RES_IRQ,
9078                                    &sc->intr[0].rid,
9079                                    RF_ACTIVE)) == NULL) {
9080            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9081            sc->intr_count = 0;
9082            sc->num_queues = 0;
9083            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9084            pci_release_msi(sc->dev);
9085            break;
9086        }
9087
9088        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9089    } while (0);
9090
9091    do { /* try allocating INTx vector resources */
9092        if (sc->interrupt_mode != INTR_MODE_INTX) {
9093            break;
9094        }
9095
9096        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9097
9098        /* only one vector for INTx */
9099        sc->intr_count = 1;
9100        sc->num_queues = 1;
9101
9102        rid = 0; /* initial resource identifier */
9103
9104        sc->intr[0].rid = rid;
9105
9106        if ((sc->intr[0].resource =
9107             bus_alloc_resource_any(sc->dev,
9108                                    SYS_RES_IRQ,
9109                                    &sc->intr[0].rid,
9110                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9111            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9112            sc->intr_count = 0;
9113            sc->num_queues = 0;
9114            sc->interrupt_mode = -1; /* Failed! */
9115            break;
9116        }
9117
9118        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9119    } while (0);
9120
9121    if (sc->interrupt_mode == -1) {
9122        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9123        rc = 1;
9124    } else {
9125        BLOGD(sc, DBG_LOAD,
9126              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9127              sc->interrupt_mode, sc->num_queues);
9128        rc = 0;
9129    }
9130
9131    return (rc);
9132}
9133
9134static void
9135bxe_interrupt_detach(struct bxe_softc *sc)
9136{
9137    struct bxe_fastpath *fp;
9138    int i;
9139
9140    /* release interrupt resources */
9141    for (i = 0; i < sc->intr_count; i++) {
9142        if (sc->intr[i].resource && sc->intr[i].tag) {
9143            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9144            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9145        }
9146    }
9147
9148    for (i = 0; i < sc->num_queues; i++) {
9149        fp = &sc->fp[i];
9150        if (fp->tq) {
9151            taskqueue_drain(fp->tq, &fp->tq_task);
9152            taskqueue_drain(fp->tq, &fp->tx_task);
9153            while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9154                NULL))
9155                taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9156        }
9157
9158        for (i = 0; i < sc->num_queues; i++) {
9159            fp = &sc->fp[i];
9160            if (fp->tq != NULL) {
9161                taskqueue_free(fp->tq);
9162                fp->tq = NULL;
9163            }
9164        }
9165    }
9166
9167    if (sc->sp_tq) {
9168        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9169        taskqueue_free(sc->sp_tq);
9170        sc->sp_tq = NULL;
9171    }
9172}
9173
9174/*
9175 * Enables interrupts and attach to the ISR.
9176 *
9177 * When using multiple MSI/MSI-X vectors the first vector
9178 * is used for slowpath operations while all remaining
9179 * vectors are used for fastpath operations.  If only a
9180 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9181 * ISR must look for both slowpath and fastpath completions.
9182 */
9183static int
9184bxe_interrupt_attach(struct bxe_softc *sc)
9185{
9186    struct bxe_fastpath *fp;
9187    int rc = 0;
9188    int i;
9189
9190    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9191             "bxe%d_sp_tq", sc->unit);
9192    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9193    sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9194                                 taskqueue_thread_enqueue,
9195                                 &sc->sp_tq);
9196    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9197                            "%s", sc->sp_tq_name);
9198
9199
9200    for (i = 0; i < sc->num_queues; i++) {
9201        fp = &sc->fp[i];
9202        snprintf(fp->tq_name, sizeof(fp->tq_name),
9203                 "bxe%d_fp%d_tq", sc->unit, i);
9204        NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9205        TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9206        fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9207                                  taskqueue_thread_enqueue,
9208                                  &fp->tq);
9209        TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9210                          bxe_tx_mq_start_deferred, fp);
9211        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9212                                "%s", fp->tq_name);
9213    }
9214
9215    /* setup interrupt handlers */
9216    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9217        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9218
9219        /*
9220         * Setup the interrupt handler. Note that we pass the driver instance
9221         * to the interrupt handler for the slowpath.
9222         */
9223        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9224                                 (INTR_TYPE_NET | INTR_MPSAFE),
9225                                 NULL, bxe_intr_sp, sc,
9226                                 &sc->intr[0].tag)) != 0) {
9227            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9228            goto bxe_interrupt_attach_exit;
9229        }
9230
9231        bus_describe_intr(sc->dev, sc->intr[0].resource,
9232                          sc->intr[0].tag, "sp");
9233
9234        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9235
9236        /* initialize the fastpath vectors (note the first was used for sp) */
9237        for (i = 0; i < sc->num_queues; i++) {
9238            fp = &sc->fp[i];
9239            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9240
9241            /*
9242             * Setup the interrupt handler. Note that we pass the
9243             * fastpath context to the interrupt handler in this
9244             * case.
9245             */
9246            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9247                                     (INTR_TYPE_NET | INTR_MPSAFE),
9248                                     NULL, bxe_intr_fp, fp,
9249                                     &sc->intr[i + 1].tag)) != 0) {
9250                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9251                      (i + 1), rc);
9252                goto bxe_interrupt_attach_exit;
9253            }
9254
9255            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9256                              sc->intr[i + 1].tag, "fp%02d", i);
9257
9258            /* bind the fastpath instance to a cpu */
9259            if (sc->num_queues > 1) {
9260                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9261            }
9262
9263            fp->state = BXE_FP_STATE_IRQ;
9264        }
9265    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9266        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9267
9268        /*
9269         * Setup the interrupt handler. Note that we pass the
9270         * driver instance to the interrupt handler which
9271         * will handle both the slowpath and fastpath.
9272         */
9273        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9274                                 (INTR_TYPE_NET | INTR_MPSAFE),
9275                                 NULL, bxe_intr_legacy, sc,
9276                                 &sc->intr[0].tag)) != 0) {
9277            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9278            goto bxe_interrupt_attach_exit;
9279        }
9280
9281    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9282        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9283
9284        /*
9285         * Setup the interrupt handler. Note that we pass the
9286         * driver instance to the interrupt handler which
9287         * will handle both the slowpath and fastpath.
9288         */
9289        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9290                                 (INTR_TYPE_NET | INTR_MPSAFE),
9291                                 NULL, bxe_intr_legacy, sc,
9292                                 &sc->intr[0].tag)) != 0) {
9293            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9294            goto bxe_interrupt_attach_exit;
9295        }
9296    }
9297
9298bxe_interrupt_attach_exit:
9299
9300    return (rc);
9301}
9302
9303static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9304static int  bxe_init_hw_common(struct bxe_softc *sc);
9305static int  bxe_init_hw_port(struct bxe_softc *sc);
9306static int  bxe_init_hw_func(struct bxe_softc *sc);
9307static void bxe_reset_common(struct bxe_softc *sc);
9308static void bxe_reset_port(struct bxe_softc *sc);
9309static void bxe_reset_func(struct bxe_softc *sc);
9310static int  bxe_gunzip_init(struct bxe_softc *sc);
9311static void bxe_gunzip_end(struct bxe_softc *sc);
9312static int  bxe_init_firmware(struct bxe_softc *sc);
9313static void bxe_release_firmware(struct bxe_softc *sc);
9314
9315static struct
9316ecore_func_sp_drv_ops bxe_func_sp_drv = {
9317    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9318    .init_hw_cmn      = bxe_init_hw_common,
9319    .init_hw_port     = bxe_init_hw_port,
9320    .init_hw_func     = bxe_init_hw_func,
9321
9322    .reset_hw_cmn     = bxe_reset_common,
9323    .reset_hw_port    = bxe_reset_port,
9324    .reset_hw_func    = bxe_reset_func,
9325
9326    .gunzip_init      = bxe_gunzip_init,
9327    .gunzip_end       = bxe_gunzip_end,
9328
9329    .init_fw          = bxe_init_firmware,
9330    .release_fw       = bxe_release_firmware,
9331};
9332
9333static void
9334bxe_init_func_obj(struct bxe_softc *sc)
9335{
9336    sc->dmae_ready = 0;
9337
9338    ecore_init_func_obj(sc,
9339                        &sc->func_obj,
9340                        BXE_SP(sc, func_rdata),
9341                        BXE_SP_MAPPING(sc, func_rdata),
9342                        BXE_SP(sc, func_afex_rdata),
9343                        BXE_SP_MAPPING(sc, func_afex_rdata),
9344                        &bxe_func_sp_drv);
9345}
9346
9347static int
9348bxe_init_hw(struct bxe_softc *sc,
9349            uint32_t         load_code)
9350{
9351    struct ecore_func_state_params func_params = { NULL };
9352    int rc;
9353
9354    /* prepare the parameters for function state transitions */
9355    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9356
9357    func_params.f_obj = &sc->func_obj;
9358    func_params.cmd = ECORE_F_CMD_HW_INIT;
9359
9360    func_params.params.hw_init.load_phase = load_code;
9361
9362    /*
9363     * Via a plethora of function pointers, we will eventually reach
9364     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9365     */
9366    rc = ecore_func_state_change(sc, &func_params);
9367
9368    return (rc);
9369}
9370
9371static void
9372bxe_fill(struct bxe_softc *sc,
9373         uint32_t         addr,
9374         int              fill,
9375         uint32_t         len)
9376{
9377    uint32_t i;
9378
9379    if (!(len % 4) && !(addr % 4)) {
9380        for (i = 0; i < len; i += 4) {
9381            REG_WR(sc, (addr + i), fill);
9382        }
9383    } else {
9384        for (i = 0; i < len; i++) {
9385            REG_WR8(sc, (addr + i), fill);
9386        }
9387    }
9388}
9389
9390/* writes FP SP data to FW - data_size in dwords */
9391static void
9392bxe_wr_fp_sb_data(struct bxe_softc *sc,
9393                  int              fw_sb_id,
9394                  uint32_t         *sb_data_p,
9395                  uint32_t         data_size)
9396{
9397    int index;
9398
9399    for (index = 0; index < data_size; index++) {
9400        REG_WR(sc,
9401               (BAR_CSTRORM_INTMEM +
9402                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9403                (sizeof(uint32_t) * index)),
9404               *(sb_data_p + index));
9405    }
9406}
9407
9408static void
9409bxe_zero_fp_sb(struct bxe_softc *sc,
9410               int              fw_sb_id)
9411{
9412    struct hc_status_block_data_e2 sb_data_e2;
9413    struct hc_status_block_data_e1x sb_data_e1x;
9414    uint32_t *sb_data_p;
9415    uint32_t data_size = 0;
9416
9417    if (!CHIP_IS_E1x(sc)) {
9418        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9419        sb_data_e2.common.state = SB_DISABLED;
9420        sb_data_e2.common.p_func.vf_valid = FALSE;
9421        sb_data_p = (uint32_t *)&sb_data_e2;
9422        data_size = (sizeof(struct hc_status_block_data_e2) /
9423                     sizeof(uint32_t));
9424    } else {
9425        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9426        sb_data_e1x.common.state = SB_DISABLED;
9427        sb_data_e1x.common.p_func.vf_valid = FALSE;
9428        sb_data_p = (uint32_t *)&sb_data_e1x;
9429        data_size = (sizeof(struct hc_status_block_data_e1x) /
9430                     sizeof(uint32_t));
9431    }
9432
9433    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9434
9435    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9436             0, CSTORM_STATUS_BLOCK_SIZE);
9437    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9438             0, CSTORM_SYNC_BLOCK_SIZE);
9439}
9440
9441static void
9442bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9443                  struct hc_sp_status_block_data *sp_sb_data)
9444{
9445    int i;
9446
9447    for (i = 0;
9448         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9449         i++) {
9450        REG_WR(sc,
9451               (BAR_CSTRORM_INTMEM +
9452                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9453                (i * sizeof(uint32_t))),
9454               *((uint32_t *)sp_sb_data + i));
9455    }
9456}
9457
9458static void
9459bxe_zero_sp_sb(struct bxe_softc *sc)
9460{
9461    struct hc_sp_status_block_data sp_sb_data;
9462
9463    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9464
9465    sp_sb_data.state           = SB_DISABLED;
9466    sp_sb_data.p_func.vf_valid = FALSE;
9467
9468    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9469
9470    bxe_fill(sc,
9471             (BAR_CSTRORM_INTMEM +
9472              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9473              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9474    bxe_fill(sc,
9475             (BAR_CSTRORM_INTMEM +
9476              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9477              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9478}
9479
9480static void
9481bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9482                             int                       igu_sb_id,
9483                             int                       igu_seg_id)
9484{
9485    hc_sm->igu_sb_id      = igu_sb_id;
9486    hc_sm->igu_seg_id     = igu_seg_id;
9487    hc_sm->timer_value    = 0xFF;
9488    hc_sm->time_to_expire = 0xFFFFFFFF;
9489}
9490
9491static void
9492bxe_map_sb_state_machines(struct hc_index_data *index_data)
9493{
9494    /* zero out state machine indices */
9495
9496    /* rx indices */
9497    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9498
9499    /* tx indices */
9500    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9501    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9502    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9503    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9504
9505    /* map indices */
9506
9507    /* rx indices */
9508    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9509        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9510
9511    /* tx indices */
9512    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9513        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9514    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9515        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9516    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9517        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9518    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9519        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9520}
9521
9522static void
9523bxe_init_sb(struct bxe_softc *sc,
9524            bus_addr_t       busaddr,
9525            int              vfid,
9526            uint8_t          vf_valid,
9527            int              fw_sb_id,
9528            int              igu_sb_id)
9529{
9530    struct hc_status_block_data_e2  sb_data_e2;
9531    struct hc_status_block_data_e1x sb_data_e1x;
9532    struct hc_status_block_sm       *hc_sm_p;
9533    uint32_t *sb_data_p;
9534    int igu_seg_id;
9535    int data_size;
9536
9537    if (CHIP_INT_MODE_IS_BC(sc)) {
9538        igu_seg_id = HC_SEG_ACCESS_NORM;
9539    } else {
9540        igu_seg_id = IGU_SEG_ACCESS_NORM;
9541    }
9542
9543    bxe_zero_fp_sb(sc, fw_sb_id);
9544
9545    if (!CHIP_IS_E1x(sc)) {
9546        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9547        sb_data_e2.common.state = SB_ENABLED;
9548        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9549        sb_data_e2.common.p_func.vf_id = vfid;
9550        sb_data_e2.common.p_func.vf_valid = vf_valid;
9551        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9552        sb_data_e2.common.same_igu_sb_1b = TRUE;
9553        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9554        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9555        hc_sm_p = sb_data_e2.common.state_machine;
9556        sb_data_p = (uint32_t *)&sb_data_e2;
9557        data_size = (sizeof(struct hc_status_block_data_e2) /
9558                     sizeof(uint32_t));
9559        bxe_map_sb_state_machines(sb_data_e2.index_data);
9560    } else {
9561        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9562        sb_data_e1x.common.state = SB_ENABLED;
9563        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9564        sb_data_e1x.common.p_func.vf_id = 0xff;
9565        sb_data_e1x.common.p_func.vf_valid = FALSE;
9566        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9567        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9568        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9569        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9570        hc_sm_p = sb_data_e1x.common.state_machine;
9571        sb_data_p = (uint32_t *)&sb_data_e1x;
9572        data_size = (sizeof(struct hc_status_block_data_e1x) /
9573                     sizeof(uint32_t));
9574        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9575    }
9576
9577    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9578    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9579
9580    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9581
9582    /* write indices to HW - PCI guarantees endianity of regpairs */
9583    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9584}
9585
9586static inline uint8_t
9587bxe_fp_qzone_id(struct bxe_fastpath *fp)
9588{
9589    if (CHIP_IS_E1x(fp->sc)) {
9590        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9591    } else {
9592        return (fp->cl_id);
9593    }
9594}
9595
9596static inline uint32_t
9597bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9598                           struct bxe_fastpath *fp)
9599{
9600    uint32_t offset = BAR_USTRORM_INTMEM;
9601
9602    if (!CHIP_IS_E1x(sc)) {
9603        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9604    } else {
9605        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9606    }
9607
9608    return (offset);
9609}
9610
9611static void
9612bxe_init_eth_fp(struct bxe_softc *sc,
9613                int              idx)
9614{
9615    struct bxe_fastpath *fp = &sc->fp[idx];
9616    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9617    unsigned long q_type = 0;
9618    int cos;
9619
9620    fp->sc    = sc;
9621    fp->index = idx;
9622
9623    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9624    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9625
9626    fp->cl_id = (CHIP_IS_E1x(sc)) ?
9627                    (SC_L_ID(sc) + idx) :
9628                    /* want client ID same as IGU SB ID for non-E1 */
9629                    fp->igu_sb_id;
9630    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9631
9632    /* setup sb indices */
9633    if (!CHIP_IS_E1x(sc)) {
9634        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9635        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9636    } else {
9637        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9638        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9639    }
9640
9641    /* init shortcut */
9642    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9643
9644    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9645
9646    /*
9647     * XXX If multiple CoS is ever supported then each fastpath structure
9648     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9649     */
9650    for (cos = 0; cos < sc->max_cos; cos++) {
9651        cids[cos] = idx;
9652    }
9653    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9654
9655    /* nothing more for a VF to do */
9656    if (IS_VF(sc)) {
9657        return;
9658    }
9659
9660    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9661                fp->fw_sb_id, fp->igu_sb_id);
9662
9663    bxe_update_fp_sb_idx(fp);
9664
9665    /* Configure Queue State object */
9666    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9667    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9668
9669    ecore_init_queue_obj(sc,
9670                         &sc->sp_objs[idx].q_obj,
9671                         fp->cl_id,
9672                         cids,
9673                         sc->max_cos,
9674                         SC_FUNC(sc),
9675                         BXE_SP(sc, q_rdata),
9676                         BXE_SP_MAPPING(sc, q_rdata),
9677                         q_type);
9678
9679    /* configure classification DBs */
9680    ecore_init_mac_obj(sc,
9681                       &sc->sp_objs[idx].mac_obj,
9682                       fp->cl_id,
9683                       idx,
9684                       SC_FUNC(sc),
9685                       BXE_SP(sc, mac_rdata),
9686                       BXE_SP_MAPPING(sc, mac_rdata),
9687                       ECORE_FILTER_MAC_PENDING,
9688                       &sc->sp_state,
9689                       ECORE_OBJ_TYPE_RX_TX,
9690                       &sc->macs_pool);
9691
9692    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9693          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9694}
9695
9696static inline void
9697bxe_update_rx_prod(struct bxe_softc    *sc,
9698                   struct bxe_fastpath *fp,
9699                   uint16_t            rx_bd_prod,
9700                   uint16_t            rx_cq_prod,
9701                   uint16_t            rx_sge_prod)
9702{
9703    struct ustorm_eth_rx_producers rx_prods = { 0 };
9704    uint32_t i;
9705
9706    /* update producers */
9707    rx_prods.bd_prod  = rx_bd_prod;
9708    rx_prods.cqe_prod = rx_cq_prod;
9709    rx_prods.sge_prod = rx_sge_prod;
9710
9711    /*
9712     * Make sure that the BD and SGE data is updated before updating the
9713     * producers since FW might read the BD/SGE right after the producer
9714     * is updated.
9715     * This is only applicable for weak-ordered memory model archs such
9716     * as IA-64. The following barrier is also mandatory since FW will
9717     * assumes BDs must have buffers.
9718     */
9719    wmb();
9720
9721    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9722        REG_WR(sc,
9723               (fp->ustorm_rx_prods_offset + (i * 4)),
9724               ((uint32_t *)&rx_prods)[i]);
9725    }
9726
9727    wmb(); /* keep prod updates ordered */
9728
9729    BLOGD(sc, DBG_RX,
9730          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9731          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9732}
9733
9734static void
9735bxe_init_rx_rings(struct bxe_softc *sc)
9736{
9737    struct bxe_fastpath *fp;
9738    int i;
9739
9740    for (i = 0; i < sc->num_queues; i++) {
9741        fp = &sc->fp[i];
9742
9743        fp->rx_bd_cons = 0;
9744
9745        /*
9746         * Activate the BD ring...
9747         * Warning, this will generate an interrupt (to the TSTORM)
9748         * so this can only be done after the chip is initialized
9749         */
9750        bxe_update_rx_prod(sc, fp,
9751                           fp->rx_bd_prod,
9752                           fp->rx_cq_prod,
9753                           fp->rx_sge_prod);
9754
9755        if (i != 0) {
9756            continue;
9757        }
9758
9759        if (CHIP_IS_E1(sc)) {
9760            REG_WR(sc,
9761                   (BAR_USTRORM_INTMEM +
9762                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9763                   U64_LO(fp->rcq_dma.paddr));
9764            REG_WR(sc,
9765                   (BAR_USTRORM_INTMEM +
9766                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9767                   U64_HI(fp->rcq_dma.paddr));
9768        }
9769    }
9770}
9771
9772static void
9773bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9774{
9775    SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9776    fp->tx_db.data.zero_fill1 = 0;
9777    fp->tx_db.data.prod = 0;
9778
9779    fp->tx_pkt_prod = 0;
9780    fp->tx_pkt_cons = 0;
9781    fp->tx_bd_prod = 0;
9782    fp->tx_bd_cons = 0;
9783    fp->eth_q_stats.tx_pkts = 0;
9784}
9785
9786static inline void
9787bxe_init_tx_rings(struct bxe_softc *sc)
9788{
9789    int i;
9790
9791    for (i = 0; i < sc->num_queues; i++) {
9792        bxe_init_tx_ring_one(&sc->fp[i]);
9793    }
9794}
9795
9796static void
9797bxe_init_def_sb(struct bxe_softc *sc)
9798{
9799    struct host_sp_status_block *def_sb = sc->def_sb;
9800    bus_addr_t mapping = sc->def_sb_dma.paddr;
9801    int igu_sp_sb_index;
9802    int igu_seg_id;
9803    int port = SC_PORT(sc);
9804    int func = SC_FUNC(sc);
9805    int reg_offset, reg_offset_en5;
9806    uint64_t section;
9807    int index, sindex;
9808    struct hc_sp_status_block_data sp_sb_data;
9809
9810    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9811
9812    if (CHIP_INT_MODE_IS_BC(sc)) {
9813        igu_sp_sb_index = DEF_SB_IGU_ID;
9814        igu_seg_id = HC_SEG_ACCESS_DEF;
9815    } else {
9816        igu_sp_sb_index = sc->igu_dsb_id;
9817        igu_seg_id = IGU_SEG_ACCESS_DEF;
9818    }
9819
9820    /* attentions */
9821    section = ((uint64_t)mapping +
9822               offsetof(struct host_sp_status_block, atten_status_block));
9823    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9824    sc->attn_state = 0;
9825
9826    reg_offset = (port) ?
9827                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9828                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9829    reg_offset_en5 = (port) ?
9830                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9831                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9832
9833    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9834        /* take care of sig[0]..sig[4] */
9835        for (sindex = 0; sindex < 4; sindex++) {
9836            sc->attn_group[index].sig[sindex] =
9837                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9838        }
9839
9840        if (!CHIP_IS_E1x(sc)) {
9841            /*
9842             * enable5 is separate from the rest of the registers,
9843             * and the address skip is 4 and not 16 between the
9844             * different groups
9845             */
9846            sc->attn_group[index].sig[4] =
9847                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9848        } else {
9849            sc->attn_group[index].sig[4] = 0;
9850        }
9851    }
9852
9853    if (sc->devinfo.int_block == INT_BLOCK_HC) {
9854        reg_offset = (port) ?
9855                         HC_REG_ATTN_MSG1_ADDR_L :
9856                         HC_REG_ATTN_MSG0_ADDR_L;
9857        REG_WR(sc, reg_offset, U64_LO(section));
9858        REG_WR(sc, (reg_offset + 4), U64_HI(section));
9859    } else if (!CHIP_IS_E1x(sc)) {
9860        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9861        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9862    }
9863
9864    section = ((uint64_t)mapping +
9865               offsetof(struct host_sp_status_block, sp_sb));
9866
9867    bxe_zero_sp_sb(sc);
9868
9869    /* PCI guarantees endianity of regpair */
9870    sp_sb_data.state           = SB_ENABLED;
9871    sp_sb_data.host_sb_addr.lo = U64_LO(section);
9872    sp_sb_data.host_sb_addr.hi = U64_HI(section);
9873    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9874    sp_sb_data.igu_seg_id      = igu_seg_id;
9875    sp_sb_data.p_func.pf_id    = func;
9876    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9877    sp_sb_data.p_func.vf_id    = 0xff;
9878
9879    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9880
9881    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9882}
9883
9884static void
9885bxe_init_sp_ring(struct bxe_softc *sc)
9886{
9887    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9888    sc->spq_prod_idx = 0;
9889    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9890    sc->spq_prod_bd = sc->spq;
9891    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9892}
9893
9894static void
9895bxe_init_eq_ring(struct bxe_softc *sc)
9896{
9897    union event_ring_elem *elem;
9898    int i;
9899
9900    for (i = 1; i <= NUM_EQ_PAGES; i++) {
9901        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9902
9903        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9904                                                 BCM_PAGE_SIZE *
9905                                                 (i % NUM_EQ_PAGES)));
9906        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9907                                                 BCM_PAGE_SIZE *
9908                                                 (i % NUM_EQ_PAGES)));
9909    }
9910
9911    sc->eq_cons    = 0;
9912    sc->eq_prod    = NUM_EQ_DESC;
9913    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9914
9915    atomic_store_rel_long(&sc->eq_spq_left,
9916                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9917                               NUM_EQ_DESC) - 1));
9918}
9919
9920static void
9921bxe_init_internal_common(struct bxe_softc *sc)
9922{
9923    int i;
9924
9925    /*
9926     * Zero this manually as its initialization is currently missing
9927     * in the initTool.
9928     */
9929    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9930        REG_WR(sc,
9931               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9932               0);
9933    }
9934
9935    if (!CHIP_IS_E1x(sc)) {
9936        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9937                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9938    }
9939}
9940
9941static void
9942bxe_init_internal(struct bxe_softc *sc,
9943                  uint32_t         load_code)
9944{
9945    switch (load_code) {
9946    case FW_MSG_CODE_DRV_LOAD_COMMON:
9947    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9948        bxe_init_internal_common(sc);
9949        /* no break */
9950
9951    case FW_MSG_CODE_DRV_LOAD_PORT:
9952        /* nothing to do */
9953        /* no break */
9954
9955    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9956        /* internal memory per function is initialized inside bxe_pf_init */
9957        break;
9958
9959    default:
9960        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9961        break;
9962    }
9963}
9964
9965static void
9966storm_memset_func_cfg(struct bxe_softc                         *sc,
9967                      struct tstorm_eth_function_common_config *tcfg,
9968                      uint16_t                                  abs_fid)
9969{
9970    uint32_t addr;
9971    size_t size;
9972
9973    addr = (BAR_TSTRORM_INTMEM +
9974            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9975    size = sizeof(struct tstorm_eth_function_common_config);
9976    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9977}
9978
9979static void
9980bxe_func_init(struct bxe_softc            *sc,
9981              struct bxe_func_init_params *p)
9982{
9983    struct tstorm_eth_function_common_config tcfg = { 0 };
9984
9985    if (CHIP_IS_E1x(sc)) {
9986        storm_memset_func_cfg(sc, &tcfg, p->func_id);
9987    }
9988
9989    /* Enable the function in the FW */
9990    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9991    storm_memset_func_en(sc, p->func_id, 1);
9992
9993    /* spq */
9994    if (p->func_flgs & FUNC_FLG_SPQ) {
9995        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9996        REG_WR(sc,
9997               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9998               p->spq_prod);
9999    }
10000}
10001
10002/*
10003 * Calculates the sum of vn_min_rates.
10004 * It's needed for further normalizing of the min_rates.
10005 * Returns:
10006 *   sum of vn_min_rates.
10007 *     or
10008 *   0 - if all the min_rates are 0.
10009 * In the later case fainess algorithm should be deactivated.
10010 * If all min rates are not zero then those that are zeroes will be set to 1.
10011 */
10012static void
10013bxe_calc_vn_min(struct bxe_softc       *sc,
10014                struct cmng_init_input *input)
10015{
10016    uint32_t vn_cfg;
10017    uint32_t vn_min_rate;
10018    int all_zero = 1;
10019    int vn;
10020
10021    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10022        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10023        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10024                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10025
10026        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10027            /* skip hidden VNs */
10028            vn_min_rate = 0;
10029        } else if (!vn_min_rate) {
10030            /* If min rate is zero - set it to 100 */
10031            vn_min_rate = DEF_MIN_RATE;
10032        } else {
10033            all_zero = 0;
10034        }
10035
10036        input->vnic_min_rate[vn] = vn_min_rate;
10037    }
10038
10039    /* if ETS or all min rates are zeros - disable fairness */
10040    if (BXE_IS_ETS_ENABLED(sc)) {
10041        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10042        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10043    } else if (all_zero) {
10044        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10045        BLOGD(sc, DBG_LOAD,
10046              "Fariness disabled (all MIN values are zeroes)\n");
10047    } else {
10048        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10049    }
10050}
10051
10052static inline uint16_t
10053bxe_extract_max_cfg(struct bxe_softc *sc,
10054                    uint32_t         mf_cfg)
10055{
10056    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10057                        FUNC_MF_CFG_MAX_BW_SHIFT);
10058
10059    if (!max_cfg) {
10060        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10061        max_cfg = 100;
10062    }
10063
10064    return (max_cfg);
10065}
10066
10067static void
10068bxe_calc_vn_max(struct bxe_softc       *sc,
10069                int                    vn,
10070                struct cmng_init_input *input)
10071{
10072    uint16_t vn_max_rate;
10073    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10074    uint32_t max_cfg;
10075
10076    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10077        vn_max_rate = 0;
10078    } else {
10079        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10080
10081        if (IS_MF_SI(sc)) {
10082            /* max_cfg in percents of linkspeed */
10083            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10084        } else { /* SD modes */
10085            /* max_cfg is absolute in 100Mb units */
10086            vn_max_rate = (max_cfg * 100);
10087        }
10088    }
10089
10090    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10091
10092    input->vnic_max_rate[vn] = vn_max_rate;
10093}
10094
10095static void
10096bxe_cmng_fns_init(struct bxe_softc *sc,
10097                  uint8_t          read_cfg,
10098                  uint8_t          cmng_type)
10099{
10100    struct cmng_init_input input;
10101    int vn;
10102
10103    memset(&input, 0, sizeof(struct cmng_init_input));
10104
10105    input.port_rate = sc->link_vars.line_speed;
10106
10107    if (cmng_type == CMNG_FNS_MINMAX) {
10108        /* read mf conf from shmem */
10109        if (read_cfg) {
10110            bxe_read_mf_cfg(sc);
10111        }
10112
10113        /* get VN min rate and enable fairness if not 0 */
10114        bxe_calc_vn_min(sc, &input);
10115
10116        /* get VN max rate */
10117        if (sc->port.pmf) {
10118            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10119                bxe_calc_vn_max(sc, vn, &input);
10120            }
10121        }
10122
10123        /* always enable rate shaping and fairness */
10124        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10125
10126        ecore_init_cmng(&input, &sc->cmng);
10127        return;
10128    }
10129
10130    /* rate shaping and fairness are disabled */
10131    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10132}
10133
10134static int
10135bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10136{
10137    if (CHIP_REV_IS_SLOW(sc)) {
10138        return (CMNG_FNS_NONE);
10139    }
10140
10141    if (IS_MF(sc)) {
10142        return (CMNG_FNS_MINMAX);
10143    }
10144
10145    return (CMNG_FNS_NONE);
10146}
10147
10148static void
10149storm_memset_cmng(struct bxe_softc *sc,
10150                  struct cmng_init *cmng,
10151                  uint8_t          port)
10152{
10153    int vn;
10154    int func;
10155    uint32_t addr;
10156    size_t size;
10157
10158    addr = (BAR_XSTRORM_INTMEM +
10159            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10160    size = sizeof(struct cmng_struct_per_port);
10161    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10162
10163    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10164        func = func_by_vn(sc, vn);
10165
10166        addr = (BAR_XSTRORM_INTMEM +
10167                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10168        size = sizeof(struct rate_shaping_vars_per_vn);
10169        ecore_storm_memset_struct(sc, addr, size,
10170                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10171
10172        addr = (BAR_XSTRORM_INTMEM +
10173                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10174        size = sizeof(struct fairness_vars_per_vn);
10175        ecore_storm_memset_struct(sc, addr, size,
10176                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10177    }
10178}
10179
10180static void
10181bxe_pf_init(struct bxe_softc *sc)
10182{
10183    struct bxe_func_init_params func_init = { 0 };
10184    struct event_ring_data eq_data = { { 0 } };
10185    uint16_t flags;
10186
10187    if (!CHIP_IS_E1x(sc)) {
10188        /* reset IGU PF statistics: MSIX + ATTN */
10189        /* PF */
10190        REG_WR(sc,
10191               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10192                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10193                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10194               0);
10195        /* ATTN */
10196        REG_WR(sc,
10197               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10198                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10199                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10200                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10201               0);
10202    }
10203
10204    /* function setup flags */
10205    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10206
10207    /*
10208     * This flag is relevant for E1x only.
10209     * E2 doesn't have a TPA configuration in a function level.
10210     */
10211    flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10212
10213    func_init.func_flgs = flags;
10214    func_init.pf_id     = SC_FUNC(sc);
10215    func_init.func_id   = SC_FUNC(sc);
10216    func_init.spq_map   = sc->spq_dma.paddr;
10217    func_init.spq_prod  = sc->spq_prod_idx;
10218
10219    bxe_func_init(sc, &func_init);
10220
10221    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10222
10223    /*
10224     * Congestion management values depend on the link rate.
10225     * There is no active link so initial link rate is set to 10Gbps.
10226     * When the link comes up the congestion management values are
10227     * re-calculated according to the actual link rate.
10228     */
10229    sc->link_vars.line_speed = SPEED_10000;
10230    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10231
10232    /* Only the PMF sets the HW */
10233    if (sc->port.pmf) {
10234        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10235    }
10236
10237    /* init Event Queue - PCI bus guarantees correct endainity */
10238    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10239    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10240    eq_data.producer     = sc->eq_prod;
10241    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10242    eq_data.sb_id        = DEF_SB_ID;
10243    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10244}
10245
10246static void
10247bxe_hc_int_enable(struct bxe_softc *sc)
10248{
10249    int port = SC_PORT(sc);
10250    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10251    uint32_t val = REG_RD(sc, addr);
10252    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10253    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10254                           (sc->intr_count == 1)) ? TRUE : FALSE;
10255    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10256
10257    if (msix) {
10258        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10259                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10260        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10261                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10262        if (single_msix) {
10263            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10264        }
10265    } else if (msi) {
10266        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10267        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10268                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10269                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10270    } else {
10271        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10272                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10273                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10274                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10275
10276        if (!CHIP_IS_E1(sc)) {
10277            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10278                  val, port, addr);
10279
10280            REG_WR(sc, addr, val);
10281
10282            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10283        }
10284    }
10285
10286    if (CHIP_IS_E1(sc)) {
10287        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10288    }
10289
10290    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10291          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10292
10293    REG_WR(sc, addr, val);
10294
10295    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10296    mb();
10297
10298    if (!CHIP_IS_E1(sc)) {
10299        /* init leading/trailing edge */
10300        if (IS_MF(sc)) {
10301            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10302            if (sc->port.pmf) {
10303                /* enable nig and gpio3 attention */
10304                val |= 0x1100;
10305            }
10306        } else {
10307            val = 0xffff;
10308        }
10309
10310        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10311        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10312    }
10313
10314    /* make sure that interrupts are indeed enabled from here on */
10315    mb();
10316}
10317
10318static void
10319bxe_igu_int_enable(struct bxe_softc *sc)
10320{
10321    uint32_t val;
10322    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10323    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10324                           (sc->intr_count == 1)) ? TRUE : FALSE;
10325    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10326
10327    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10328
10329    if (msix) {
10330        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10331                 IGU_PF_CONF_SINGLE_ISR_EN);
10332        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10333                IGU_PF_CONF_ATTN_BIT_EN);
10334        if (single_msix) {
10335            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10336        }
10337    } else if (msi) {
10338        val &= ~IGU_PF_CONF_INT_LINE_EN;
10339        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10340                IGU_PF_CONF_ATTN_BIT_EN |
10341                IGU_PF_CONF_SINGLE_ISR_EN);
10342    } else {
10343        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10344        val |= (IGU_PF_CONF_INT_LINE_EN |
10345                IGU_PF_CONF_ATTN_BIT_EN |
10346                IGU_PF_CONF_SINGLE_ISR_EN);
10347    }
10348
10349    /* clean previous status - need to configure igu prior to ack*/
10350    if ((!msix) || single_msix) {
10351        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10352        bxe_ack_int(sc);
10353    }
10354
10355    val |= IGU_PF_CONF_FUNC_EN;
10356
10357    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10358          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10359
10360    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10361
10362    mb();
10363
10364    /* init leading/trailing edge */
10365    if (IS_MF(sc)) {
10366        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10367        if (sc->port.pmf) {
10368            /* enable nig and gpio3 attention */
10369            val |= 0x1100;
10370        }
10371    } else {
10372        val = 0xffff;
10373    }
10374
10375    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10376    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10377
10378    /* make sure that interrupts are indeed enabled from here on */
10379    mb();
10380}
10381
10382static void
10383bxe_int_enable(struct bxe_softc *sc)
10384{
10385    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10386        bxe_hc_int_enable(sc);
10387    } else {
10388        bxe_igu_int_enable(sc);
10389    }
10390}
10391
10392static void
10393bxe_hc_int_disable(struct bxe_softc *sc)
10394{
10395    int port = SC_PORT(sc);
10396    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10397    uint32_t val = REG_RD(sc, addr);
10398
10399    /*
10400     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10401     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10402     * block
10403     */
10404    if (CHIP_IS_E1(sc)) {
10405        /*
10406         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10407         * to prevent from HC sending interrupts after we exit the function
10408         */
10409        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10410
10411        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10412                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10413                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10414    } else {
10415        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10416                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10417                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10418                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10419    }
10420
10421    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10422
10423    /* flush all outstanding writes */
10424    mb();
10425
10426    REG_WR(sc, addr, val);
10427    if (REG_RD(sc, addr) != val) {
10428        BLOGE(sc, "proper val not read from HC IGU!\n");
10429    }
10430}
10431
10432static void
10433bxe_igu_int_disable(struct bxe_softc *sc)
10434{
10435    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10436
10437    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10438             IGU_PF_CONF_INT_LINE_EN |
10439             IGU_PF_CONF_ATTN_BIT_EN);
10440
10441    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10442
10443    /* flush all outstanding writes */
10444    mb();
10445
10446    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10447    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10448        BLOGE(sc, "proper val not read from IGU!\n");
10449    }
10450}
10451
10452static void
10453bxe_int_disable(struct bxe_softc *sc)
10454{
10455    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10456        bxe_hc_int_disable(sc);
10457    } else {
10458        bxe_igu_int_disable(sc);
10459    }
10460}
10461
10462static void
10463bxe_nic_init(struct bxe_softc *sc,
10464             int              load_code)
10465{
10466    int i;
10467
10468    for (i = 0; i < sc->num_queues; i++) {
10469        bxe_init_eth_fp(sc, i);
10470    }
10471
10472    rmb(); /* ensure status block indices were read */
10473
10474    bxe_init_rx_rings(sc);
10475    bxe_init_tx_rings(sc);
10476
10477    if (IS_VF(sc)) {
10478        return;
10479    }
10480
10481    /* initialize MOD_ABS interrupts */
10482    elink_init_mod_abs_int(sc, &sc->link_vars,
10483                           sc->devinfo.chip_id,
10484                           sc->devinfo.shmem_base,
10485                           sc->devinfo.shmem2_base,
10486                           SC_PORT(sc));
10487
10488    bxe_init_def_sb(sc);
10489    bxe_update_dsb_idx(sc);
10490    bxe_init_sp_ring(sc);
10491    bxe_init_eq_ring(sc);
10492    bxe_init_internal(sc, load_code);
10493    bxe_pf_init(sc);
10494    bxe_stats_init(sc);
10495
10496    /* flush all before enabling interrupts */
10497    mb();
10498
10499    bxe_int_enable(sc);
10500
10501    /* check for SPIO5 */
10502    bxe_attn_int_deasserted0(sc,
10503                             REG_RD(sc,
10504                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10505                                     SC_PORT(sc)*4)) &
10506                             AEU_INPUTS_ATTN_BITS_SPIO5);
10507}
10508
10509static inline void
10510bxe_init_objs(struct bxe_softc *sc)
10511{
10512    /* mcast rules must be added to tx if tx switching is enabled */
10513    ecore_obj_type o_type =
10514        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10515                                         ECORE_OBJ_TYPE_RX;
10516
10517    /* RX_MODE controlling object */
10518    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10519
10520    /* multicast configuration controlling object */
10521    ecore_init_mcast_obj(sc,
10522                         &sc->mcast_obj,
10523                         sc->fp[0].cl_id,
10524                         sc->fp[0].index,
10525                         SC_FUNC(sc),
10526                         SC_FUNC(sc),
10527                         BXE_SP(sc, mcast_rdata),
10528                         BXE_SP_MAPPING(sc, mcast_rdata),
10529                         ECORE_FILTER_MCAST_PENDING,
10530                         &sc->sp_state,
10531                         o_type);
10532
10533    /* Setup CAM credit pools */
10534    ecore_init_mac_credit_pool(sc,
10535                               &sc->macs_pool,
10536                               SC_FUNC(sc),
10537                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10538                                                 VNICS_PER_PATH(sc));
10539
10540    ecore_init_vlan_credit_pool(sc,
10541                                &sc->vlans_pool,
10542                                SC_ABS_FUNC(sc) >> 1,
10543                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10544                                                  VNICS_PER_PATH(sc));
10545
10546    /* RSS configuration object */
10547    ecore_init_rss_config_obj(sc,
10548                              &sc->rss_conf_obj,
10549                              sc->fp[0].cl_id,
10550                              sc->fp[0].index,
10551                              SC_FUNC(sc),
10552                              SC_FUNC(sc),
10553                              BXE_SP(sc, rss_rdata),
10554                              BXE_SP_MAPPING(sc, rss_rdata),
10555                              ECORE_FILTER_RSS_CONF_PENDING,
10556                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10557}
10558
10559/*
10560 * Initialize the function. This must be called before sending CLIENT_SETUP
10561 * for the first client.
10562 */
10563static inline int
10564bxe_func_start(struct bxe_softc *sc)
10565{
10566    struct ecore_func_state_params func_params = { NULL };
10567    struct ecore_func_start_params *start_params = &func_params.params.start;
10568
10569    /* Prepare parameters for function state transitions */
10570    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10571
10572    func_params.f_obj = &sc->func_obj;
10573    func_params.cmd = ECORE_F_CMD_START;
10574
10575    /* Function parameters */
10576    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10577    start_params->sd_vlan_tag = OVLAN(sc);
10578
10579    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10580        start_params->network_cos_mode = STATIC_COS;
10581    } else { /* CHIP_IS_E1X */
10582        start_params->network_cos_mode = FW_WRR;
10583    }
10584
10585    //start_params->gre_tunnel_mode = 0;
10586    //start_params->gre_tunnel_rss  = 0;
10587
10588    return (ecore_func_state_change(sc, &func_params));
10589}
10590
10591static int
10592bxe_set_power_state(struct bxe_softc *sc,
10593                    uint8_t          state)
10594{
10595    uint16_t pmcsr;
10596
10597    /* If there is no power capability, silently succeed */
10598    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10599        BLOGW(sc, "No power capability\n");
10600        return (0);
10601    }
10602
10603    pmcsr = pci_read_config(sc->dev,
10604                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10605                            2);
10606
10607    switch (state) {
10608    case PCI_PM_D0:
10609        pci_write_config(sc->dev,
10610                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10611                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10612
10613        if (pmcsr & PCIM_PSTAT_DMASK) {
10614            /* delay required during transition out of D3hot */
10615            DELAY(20000);
10616        }
10617
10618        break;
10619
10620    case PCI_PM_D3hot:
10621        /* XXX if there are other clients above don't shut down the power */
10622
10623        /* don't shut down the power for emulation and FPGA */
10624        if (CHIP_REV_IS_SLOW(sc)) {
10625            return (0);
10626        }
10627
10628        pmcsr &= ~PCIM_PSTAT_DMASK;
10629        pmcsr |= PCIM_PSTAT_D3;
10630
10631        if (sc->wol) {
10632            pmcsr |= PCIM_PSTAT_PMEENABLE;
10633        }
10634
10635        pci_write_config(sc->dev,
10636                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10637                         pmcsr, 4);
10638
10639        /*
10640         * No more memory access after this point until device is brought back
10641         * to D0 state.
10642         */
10643        break;
10644
10645    default:
10646        BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10647            state, pmcsr);
10648        return (-1);
10649    }
10650
10651    return (0);
10652}
10653
10654
10655/* return true if succeeded to acquire the lock */
10656static uint8_t
10657bxe_trylock_hw_lock(struct bxe_softc *sc,
10658                    uint32_t         resource)
10659{
10660    uint32_t lock_status;
10661    uint32_t resource_bit = (1 << resource);
10662    int func = SC_FUNC(sc);
10663    uint32_t hw_lock_control_reg;
10664
10665    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10666
10667    /* Validating that the resource is within range */
10668    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10669        BLOGD(sc, DBG_LOAD,
10670              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10671              resource, HW_LOCK_MAX_RESOURCE_VALUE);
10672        return (FALSE);
10673    }
10674
10675    if (func <= 5) {
10676        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10677    } else {
10678        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10679    }
10680
10681    /* try to acquire the lock */
10682    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10683    lock_status = REG_RD(sc, hw_lock_control_reg);
10684    if (lock_status & resource_bit) {
10685        return (TRUE);
10686    }
10687
10688    BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10689        "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10690        lock_status, resource_bit);
10691
10692    return (FALSE);
10693}
10694
10695/*
10696 * Get the recovery leader resource id according to the engine this function
10697 * belongs to. Currently only only 2 engines is supported.
10698 */
10699static int
10700bxe_get_leader_lock_resource(struct bxe_softc *sc)
10701{
10702    if (SC_PATH(sc)) {
10703        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10704    } else {
10705        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10706    }
10707}
10708
10709/* try to acquire a leader lock for current engine */
10710static uint8_t
10711bxe_trylock_leader_lock(struct bxe_softc *sc)
10712{
10713    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10714}
10715
10716static int
10717bxe_release_leader_lock(struct bxe_softc *sc)
10718{
10719    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10720}
10721
10722/* close gates #2, #3 and #4 */
10723static void
10724bxe_set_234_gates(struct bxe_softc *sc,
10725                  uint8_t          close)
10726{
10727    uint32_t val;
10728
10729    /* gates #2 and #4a are closed/opened for "not E1" only */
10730    if (!CHIP_IS_E1(sc)) {
10731        /* #4 */
10732        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10733        /* #2 */
10734        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10735    }
10736
10737    /* #3 */
10738    if (CHIP_IS_E1x(sc)) {
10739        /* prevent interrupts from HC on both ports */
10740        val = REG_RD(sc, HC_REG_CONFIG_1);
10741        REG_WR(sc, HC_REG_CONFIG_1,
10742               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10743               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10744
10745        val = REG_RD(sc, HC_REG_CONFIG_0);
10746        REG_WR(sc, HC_REG_CONFIG_0,
10747               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10748               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10749    } else {
10750        /* Prevent incoming interrupts in IGU */
10751        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10752
10753        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10754               (!close) ?
10755               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10756               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10757    }
10758
10759    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10760          close ? "closing" : "opening");
10761
10762    wmb();
10763}
10764
10765/* poll for pending writes bit, it should get cleared in no more than 1s */
10766static int
10767bxe_er_poll_igu_vq(struct bxe_softc *sc)
10768{
10769    uint32_t cnt = 1000;
10770    uint32_t pend_bits = 0;
10771
10772    do {
10773        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10774
10775        if (pend_bits == 0) {
10776            break;
10777        }
10778
10779        DELAY(1000);
10780    } while (--cnt > 0);
10781
10782    if (cnt == 0) {
10783        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10784        return (-1);
10785    }
10786
10787    return (0);
10788}
10789
10790#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10791
10792static void
10793bxe_clp_reset_prep(struct bxe_softc *sc,
10794                   uint32_t         *magic_val)
10795{
10796    /* Do some magic... */
10797    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10798    *magic_val = val & SHARED_MF_CLP_MAGIC;
10799    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10800}
10801
10802/* restore the value of the 'magic' bit */
10803static void
10804bxe_clp_reset_done(struct bxe_softc *sc,
10805                   uint32_t         magic_val)
10806{
10807    /* Restore the 'magic' bit value... */
10808    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10809    MFCFG_WR(sc, shared_mf_config.clp_mb,
10810              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10811}
10812
10813/* prepare for MCP reset, takes care of CLP configurations */
10814static void
10815bxe_reset_mcp_prep(struct bxe_softc *sc,
10816                   uint32_t         *magic_val)
10817{
10818    uint32_t shmem;
10819    uint32_t validity_offset;
10820
10821    /* set `magic' bit in order to save MF config */
10822    if (!CHIP_IS_E1(sc)) {
10823        bxe_clp_reset_prep(sc, magic_val);
10824    }
10825
10826    /* get shmem offset */
10827    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10828    validity_offset =
10829        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10830
10831    /* Clear validity map flags */
10832    if (shmem > 0) {
10833        REG_WR(sc, shmem + validity_offset, 0);
10834    }
10835}
10836
10837#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10838#define MCP_ONE_TIMEOUT  100    /* 100 ms */
10839
10840static void
10841bxe_mcp_wait_one(struct bxe_softc *sc)
10842{
10843    /* special handling for emulation and FPGA (10 times longer) */
10844    if (CHIP_REV_IS_SLOW(sc)) {
10845        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10846    } else {
10847        DELAY((MCP_ONE_TIMEOUT) * 1000);
10848    }
10849}
10850
10851/* initialize shmem_base and waits for validity signature to appear */
10852static int
10853bxe_init_shmem(struct bxe_softc *sc)
10854{
10855    int cnt = 0;
10856    uint32_t val = 0;
10857
10858    do {
10859        sc->devinfo.shmem_base     =
10860        sc->link_params.shmem_base =
10861            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10862
10863        if (sc->devinfo.shmem_base) {
10864            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10865            if (val & SHR_MEM_VALIDITY_MB)
10866                return (0);
10867        }
10868
10869        bxe_mcp_wait_one(sc);
10870
10871    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10872
10873    BLOGE(sc, "BAD MCP validity signature\n");
10874
10875    return (-1);
10876}
10877
10878static int
10879bxe_reset_mcp_comp(struct bxe_softc *sc,
10880                   uint32_t         magic_val)
10881{
10882    int rc = bxe_init_shmem(sc);
10883
10884    /* Restore the `magic' bit value */
10885    if (!CHIP_IS_E1(sc)) {
10886        bxe_clp_reset_done(sc, magic_val);
10887    }
10888
10889    return (rc);
10890}
10891
10892static void
10893bxe_pxp_prep(struct bxe_softc *sc)
10894{
10895    if (!CHIP_IS_E1(sc)) {
10896        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10897        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10898        wmb();
10899    }
10900}
10901
10902/*
10903 * Reset the whole chip except for:
10904 *      - PCIE core
10905 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10906 *      - IGU
10907 *      - MISC (including AEU)
10908 *      - GRC
10909 *      - RBCN, RBCP
10910 */
10911static void
10912bxe_process_kill_chip_reset(struct bxe_softc *sc,
10913                            uint8_t          global)
10914{
10915    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10916    uint32_t global_bits2, stay_reset2;
10917
10918    /*
10919     * Bits that have to be set in reset_mask2 if we want to reset 'global'
10920     * (per chip) blocks.
10921     */
10922    global_bits2 =
10923        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10924        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10925
10926    /*
10927     * Don't reset the following blocks.
10928     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10929     *            reset, as in 4 port device they might still be owned
10930     *            by the MCP (there is only one leader per path).
10931     */
10932    not_reset_mask1 =
10933        MISC_REGISTERS_RESET_REG_1_RST_HC |
10934        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10935        MISC_REGISTERS_RESET_REG_1_RST_PXP;
10936
10937    not_reset_mask2 =
10938        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10939        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10940        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10941        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10942        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10943        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10944        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10945        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10946        MISC_REGISTERS_RESET_REG_2_RST_ATC |
10947        MISC_REGISTERS_RESET_REG_2_PGLC |
10948        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10949        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10950        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10951        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10952        MISC_REGISTERS_RESET_REG_2_UMAC0 |
10953        MISC_REGISTERS_RESET_REG_2_UMAC1;
10954
10955    /*
10956     * Keep the following blocks in reset:
10957     *  - all xxMACs are handled by the elink code.
10958     */
10959    stay_reset2 =
10960        MISC_REGISTERS_RESET_REG_2_XMAC |
10961        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10962
10963    /* Full reset masks according to the chip */
10964    reset_mask1 = 0xffffffff;
10965
10966    if (CHIP_IS_E1(sc))
10967        reset_mask2 = 0xffff;
10968    else if (CHIP_IS_E1H(sc))
10969        reset_mask2 = 0x1ffff;
10970    else if (CHIP_IS_E2(sc))
10971        reset_mask2 = 0xfffff;
10972    else /* CHIP_IS_E3 */
10973        reset_mask2 = 0x3ffffff;
10974
10975    /* Don't reset global blocks unless we need to */
10976    if (!global)
10977        reset_mask2 &= ~global_bits2;
10978
10979    /*
10980     * In case of attention in the QM, we need to reset PXP
10981     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10982     * because otherwise QM reset would release 'close the gates' shortly
10983     * before resetting the PXP, then the PSWRQ would send a write
10984     * request to PGLUE. Then when PXP is reset, PGLUE would try to
10985     * read the payload data from PSWWR, but PSWWR would not
10986     * respond. The write queue in PGLUE would stuck, dmae commands
10987     * would not return. Therefore it's important to reset the second
10988     * reset register (containing the
10989     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10990     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10991     * bit).
10992     */
10993    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10994           reset_mask2 & (~not_reset_mask2));
10995
10996    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10997           reset_mask1 & (~not_reset_mask1));
10998
10999    mb();
11000    wmb();
11001
11002    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11003           reset_mask2 & (~stay_reset2));
11004
11005    mb();
11006    wmb();
11007
11008    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11009    wmb();
11010}
11011
11012static int
11013bxe_process_kill(struct bxe_softc *sc,
11014                 uint8_t          global)
11015{
11016    int cnt = 1000;
11017    uint32_t val = 0;
11018    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11019    uint32_t tags_63_32 = 0;
11020
11021    /* Empty the Tetris buffer, wait for 1s */
11022    do {
11023        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11024        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11025        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11026        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11027        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11028        if (CHIP_IS_E3(sc)) {
11029            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11030        }
11031
11032        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11033            ((port_is_idle_0 & 0x1) == 0x1) &&
11034            ((port_is_idle_1 & 0x1) == 0x1) &&
11035            (pgl_exp_rom2 == 0xffffffff) &&
11036            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11037            break;
11038        DELAY(1000);
11039    } while (cnt-- > 0);
11040
11041    if (cnt <= 0) {
11042        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11043                  "are still outstanding read requests after 1s! "
11044                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11045                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11046              sr_cnt, blk_cnt, port_is_idle_0,
11047              port_is_idle_1, pgl_exp_rom2);
11048        return (-1);
11049    }
11050
11051    mb();
11052
11053    /* Close gates #2, #3 and #4 */
11054    bxe_set_234_gates(sc, TRUE);
11055
11056    /* Poll for IGU VQs for 57712 and newer chips */
11057    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11058        return (-1);
11059    }
11060
11061    /* XXX indicate that "process kill" is in progress to MCP */
11062
11063    /* clear "unprepared" bit */
11064    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11065    mb();
11066
11067    /* Make sure all is written to the chip before the reset */
11068    wmb();
11069
11070    /*
11071     * Wait for 1ms to empty GLUE and PCI-E core queues,
11072     * PSWHST, GRC and PSWRD Tetris buffer.
11073     */
11074    DELAY(1000);
11075
11076    /* Prepare to chip reset: */
11077    /* MCP */
11078    if (global) {
11079        bxe_reset_mcp_prep(sc, &val);
11080    }
11081
11082    /* PXP */
11083    bxe_pxp_prep(sc);
11084    mb();
11085
11086    /* reset the chip */
11087    bxe_process_kill_chip_reset(sc, global);
11088    mb();
11089
11090    /* clear errors in PGB */
11091    if (!CHIP_IS_E1(sc))
11092        REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11093
11094    /* Recover after reset: */
11095    /* MCP */
11096    if (global && bxe_reset_mcp_comp(sc, val)) {
11097        return (-1);
11098    }
11099
11100    /* XXX add resetting the NO_MCP mode DB here */
11101
11102    /* Open the gates #2, #3 and #4 */
11103    bxe_set_234_gates(sc, FALSE);
11104
11105    /* XXX
11106     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11107     * re-enable attentions
11108     */
11109
11110    return (0);
11111}
11112
11113static int
11114bxe_leader_reset(struct bxe_softc *sc)
11115{
11116    int rc = 0;
11117    uint8_t global = bxe_reset_is_global(sc);
11118    uint32_t load_code;
11119
11120    /*
11121     * If not going to reset MCP, load "fake" driver to reset HW while
11122     * driver is owner of the HW.
11123     */
11124    if (!global && !BXE_NOMCP(sc)) {
11125        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11126                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11127        if (!load_code) {
11128            BLOGE(sc, "MCP response failure, aborting\n");
11129            rc = -1;
11130            goto exit_leader_reset;
11131        }
11132
11133        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11134            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11135            BLOGE(sc, "MCP unexpected response, aborting\n");
11136            rc = -1;
11137            goto exit_leader_reset2;
11138        }
11139
11140        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11141        if (!load_code) {
11142            BLOGE(sc, "MCP response failure, aborting\n");
11143            rc = -1;
11144            goto exit_leader_reset2;
11145        }
11146    }
11147
11148    /* try to recover after the failure */
11149    if (bxe_process_kill(sc, global)) {
11150        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11151        rc = -1;
11152        goto exit_leader_reset2;
11153    }
11154
11155    /*
11156     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11157     * state.
11158     */
11159    bxe_set_reset_done(sc);
11160    if (global) {
11161        bxe_clear_reset_global(sc);
11162    }
11163
11164exit_leader_reset2:
11165
11166    /* unload "fake driver" if it was loaded */
11167    if (!global && !BXE_NOMCP(sc)) {
11168        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11169        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11170    }
11171
11172exit_leader_reset:
11173
11174    sc->is_leader = 0;
11175    bxe_release_leader_lock(sc);
11176
11177    mb();
11178    return (rc);
11179}
11180
11181/*
11182 * prepare INIT transition, parameters configured:
11183 *   - HC configuration
11184 *   - Queue's CDU context
11185 */
11186static void
11187bxe_pf_q_prep_init(struct bxe_softc               *sc,
11188                   struct bxe_fastpath            *fp,
11189                   struct ecore_queue_init_params *init_params)
11190{
11191    uint8_t cos;
11192    int cxt_index, cxt_offset;
11193
11194    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11195    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11196
11197    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11198    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11199
11200    /* HC rate */
11201    init_params->rx.hc_rate =
11202        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11203    init_params->tx.hc_rate =
11204        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11205
11206    /* FW SB ID */
11207    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11208
11209    /* CQ index among the SB indices */
11210    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11211    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11212
11213    /* set maximum number of COSs supported by this queue */
11214    init_params->max_cos = sc->max_cos;
11215
11216    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11217          fp->index, init_params->max_cos);
11218
11219    /* set the context pointers queue object */
11220    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11221        /* XXX change index/cid here if ever support multiple tx CoS */
11222        /* fp->txdata[cos]->cid */
11223        cxt_index = fp->index / ILT_PAGE_CIDS;
11224        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11225        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11226    }
11227}
11228
11229/* set flags that are common for the Tx-only and not normal connections */
11230static unsigned long
11231bxe_get_common_flags(struct bxe_softc    *sc,
11232                     struct bxe_fastpath *fp,
11233                     uint8_t             zero_stats)
11234{
11235    unsigned long flags = 0;
11236
11237    /* PF driver will always initialize the Queue to an ACTIVE state */
11238    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11239
11240    /*
11241     * tx only connections collect statistics (on the same index as the
11242     * parent connection). The statistics are zeroed when the parent
11243     * connection is initialized.
11244     */
11245
11246    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11247    if (zero_stats) {
11248        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11249    }
11250
11251    /*
11252     * tx only connections can support tx-switching, though their
11253     * CoS-ness doesn't survive the loopback
11254     */
11255    if (sc->flags & BXE_TX_SWITCHING) {
11256        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11257    }
11258
11259    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11260
11261    return (flags);
11262}
11263
11264static unsigned long
11265bxe_get_q_flags(struct bxe_softc    *sc,
11266                struct bxe_fastpath *fp,
11267                uint8_t             leading)
11268{
11269    unsigned long flags = 0;
11270
11271    if (IS_MF_SD(sc)) {
11272        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11273    }
11274
11275    if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11276        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11277        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11278    }
11279
11280    if (leading) {
11281        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11282        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11283    }
11284
11285    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11286
11287    /* merge with common flags */
11288    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11289}
11290
11291static void
11292bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11293                      struct bxe_fastpath               *fp,
11294                      struct ecore_general_setup_params *gen_init,
11295                      uint8_t                           cos)
11296{
11297    gen_init->stat_id = bxe_stats_id(fp);
11298    gen_init->spcl_id = fp->cl_id;
11299    gen_init->mtu = sc->mtu;
11300    gen_init->cos = cos;
11301}
11302
11303static void
11304bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11305                 struct bxe_fastpath           *fp,
11306                 struct rxq_pause_params       *pause,
11307                 struct ecore_rxq_setup_params *rxq_init)
11308{
11309    uint8_t max_sge = 0;
11310    uint16_t sge_sz = 0;
11311    uint16_t tpa_agg_size = 0;
11312
11313    pause->sge_th_lo = SGE_TH_LO(sc);
11314    pause->sge_th_hi = SGE_TH_HI(sc);
11315
11316    /* validate SGE ring has enough to cross high threshold */
11317    if (sc->dropless_fc &&
11318            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11319            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11320        BLOGW(sc, "sge ring threshold limit\n");
11321    }
11322
11323    /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11324    tpa_agg_size = (2 * sc->mtu);
11325    if (tpa_agg_size < sc->max_aggregation_size) {
11326        tpa_agg_size = sc->max_aggregation_size;
11327    }
11328
11329    max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11330    max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11331                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11332    sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11333
11334    /* pause - not for e1 */
11335    if (!CHIP_IS_E1(sc)) {
11336        pause->bd_th_lo = BD_TH_LO(sc);
11337        pause->bd_th_hi = BD_TH_HI(sc);
11338
11339        pause->rcq_th_lo = RCQ_TH_LO(sc);
11340        pause->rcq_th_hi = RCQ_TH_HI(sc);
11341
11342        /* validate rings have enough entries to cross high thresholds */
11343        if (sc->dropless_fc &&
11344            pause->bd_th_hi + FW_PREFETCH_CNT >
11345            sc->rx_ring_size) {
11346            BLOGW(sc, "rx bd ring threshold limit\n");
11347        }
11348
11349        if (sc->dropless_fc &&
11350            pause->rcq_th_hi + FW_PREFETCH_CNT >
11351            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11352            BLOGW(sc, "rcq ring threshold limit\n");
11353        }
11354
11355        pause->pri_map = 1;
11356    }
11357
11358    /* rxq setup */
11359    rxq_init->dscr_map   = fp->rx_dma.paddr;
11360    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11361    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11362    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11363
11364    /*
11365     * This should be a maximum number of data bytes that may be
11366     * placed on the BD (not including paddings).
11367     */
11368    rxq_init->buf_sz = (fp->rx_buf_size -
11369                        IP_HEADER_ALIGNMENT_PADDING);
11370
11371    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11372    rxq_init->tpa_agg_sz      = tpa_agg_size;
11373    rxq_init->sge_buf_sz      = sge_sz;
11374    rxq_init->max_sges_pkt    = max_sge;
11375    rxq_init->rss_engine_id   = SC_FUNC(sc);
11376    rxq_init->mcast_engine_id = SC_FUNC(sc);
11377
11378    /*
11379     * Maximum number or simultaneous TPA aggregation for this Queue.
11380     * For PF Clients it should be the maximum available number.
11381     * VF driver(s) may want to define it to a smaller value.
11382     */
11383    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11384
11385    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11386    rxq_init->fw_sb_id = fp->fw_sb_id;
11387
11388    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11389
11390    /*
11391     * configure silent vlan removal
11392     * if multi function mode is afex, then mask default vlan
11393     */
11394    if (IS_MF_AFEX(sc)) {
11395        rxq_init->silent_removal_value =
11396            sc->devinfo.mf_info.afex_def_vlan_tag;
11397        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11398    }
11399}
11400
11401static void
11402bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11403                 struct bxe_fastpath           *fp,
11404                 struct ecore_txq_setup_params *txq_init,
11405                 uint8_t                       cos)
11406{
11407    /*
11408     * XXX If multiple CoS is ever supported then each fastpath structure
11409     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11410     * fp->txdata[cos]->tx_dma.paddr;
11411     */
11412    txq_init->dscr_map     = fp->tx_dma.paddr;
11413    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11414    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11415    txq_init->fw_sb_id     = fp->fw_sb_id;
11416
11417    /*
11418     * set the TSS leading client id for TX classfication to the
11419     * leading RSS client id
11420     */
11421    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11422}
11423
11424/*
11425 * This function performs 2 steps in a queue state machine:
11426 *   1) RESET->INIT
11427 *   2) INIT->SETUP
11428 */
11429static int
11430bxe_setup_queue(struct bxe_softc    *sc,
11431                struct bxe_fastpath *fp,
11432                uint8_t             leading)
11433{
11434    struct ecore_queue_state_params q_params = { NULL };
11435    struct ecore_queue_setup_params *setup_params =
11436                        &q_params.params.setup;
11437    int rc;
11438
11439    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11440
11441    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11442
11443    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11444
11445    /* we want to wait for completion in this context */
11446    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11447
11448    /* prepare the INIT parameters */
11449    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11450
11451    /* Set the command */
11452    q_params.cmd = ECORE_Q_CMD_INIT;
11453
11454    /* Change the state to INIT */
11455    rc = ecore_queue_state_change(sc, &q_params);
11456    if (rc) {
11457        BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11458        return (rc);
11459    }
11460
11461    BLOGD(sc, DBG_LOAD, "init complete\n");
11462
11463    /* now move the Queue to the SETUP state */
11464    memset(setup_params, 0, sizeof(*setup_params));
11465
11466    /* set Queue flags */
11467    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11468
11469    /* set general SETUP parameters */
11470    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11471                          FIRST_TX_COS_INDEX);
11472
11473    bxe_pf_rx_q_prep(sc, fp,
11474                     &setup_params->pause_params,
11475                     &setup_params->rxq_params);
11476
11477    bxe_pf_tx_q_prep(sc, fp,
11478                     &setup_params->txq_params,
11479                     FIRST_TX_COS_INDEX);
11480
11481    /* Set the command */
11482    q_params.cmd = ECORE_Q_CMD_SETUP;
11483
11484    /* change the state to SETUP */
11485    rc = ecore_queue_state_change(sc, &q_params);
11486    if (rc) {
11487        BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11488        return (rc);
11489    }
11490
11491    return (rc);
11492}
11493
11494static int
11495bxe_setup_leading(struct bxe_softc *sc)
11496{
11497    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11498}
11499
11500static int
11501bxe_config_rss_pf(struct bxe_softc            *sc,
11502                  struct ecore_rss_config_obj *rss_obj,
11503                  uint8_t                     config_hash)
11504{
11505    struct ecore_config_rss_params params = { NULL };
11506    int i;
11507
11508    /*
11509     * Although RSS is meaningless when there is a single HW queue we
11510     * still need it enabled in order to have HW Rx hash generated.
11511     */
11512
11513    params.rss_obj = rss_obj;
11514
11515    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11516
11517    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11518
11519    /* RSS configuration */
11520    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11521    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11522    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11523    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11524    if (rss_obj->udp_rss_v4) {
11525        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11526    }
11527    if (rss_obj->udp_rss_v6) {
11528        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11529    }
11530
11531    /* Hash bits */
11532    params.rss_result_mask = MULTI_MASK;
11533
11534    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11535
11536    if (config_hash) {
11537        /* RSS keys */
11538        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11539            params.rss_key[i] = arc4random();
11540        }
11541
11542        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11543    }
11544
11545    return (ecore_config_rss(sc, &params));
11546}
11547
11548static int
11549bxe_config_rss_eth(struct bxe_softc *sc,
11550                   uint8_t          config_hash)
11551{
11552    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11553}
11554
11555static int
11556bxe_init_rss_pf(struct bxe_softc *sc)
11557{
11558    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11559    int i;
11560
11561    /*
11562     * Prepare the initial contents of the indirection table if
11563     * RSS is enabled
11564     */
11565    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11566        sc->rss_conf_obj.ind_table[i] =
11567            (sc->fp->cl_id + (i % num_eth_queues));
11568    }
11569
11570    if (sc->udp_rss) {
11571        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11572    }
11573
11574    /*
11575     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11576     * per-port, so if explicit configuration is needed, do it only
11577     * for a PMF.
11578     *
11579     * For 57712 and newer it's a per-function configuration.
11580     */
11581    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11582}
11583
11584static int
11585bxe_set_mac_one(struct bxe_softc          *sc,
11586                uint8_t                   *mac,
11587                struct ecore_vlan_mac_obj *obj,
11588                uint8_t                   set,
11589                int                       mac_type,
11590                unsigned long             *ramrod_flags)
11591{
11592    struct ecore_vlan_mac_ramrod_params ramrod_param;
11593    int rc;
11594
11595    memset(&ramrod_param, 0, sizeof(ramrod_param));
11596
11597    /* fill in general parameters */
11598    ramrod_param.vlan_mac_obj = obj;
11599    ramrod_param.ramrod_flags = *ramrod_flags;
11600
11601    /* fill a user request section if needed */
11602    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11603        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11604
11605        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11606
11607        /* Set the command: ADD or DEL */
11608        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11609                                            ECORE_VLAN_MAC_DEL;
11610    }
11611
11612    rc = ecore_config_vlan_mac(sc, &ramrod_param);
11613
11614    if (rc == ECORE_EXISTS) {
11615        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11616        /* do not treat adding same MAC as error */
11617        rc = 0;
11618    } else if (rc < 0) {
11619        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11620    }
11621
11622    return (rc);
11623}
11624
11625static int
11626bxe_set_eth_mac(struct bxe_softc *sc,
11627                uint8_t          set)
11628{
11629    unsigned long ramrod_flags = 0;
11630
11631    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11632
11633    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11634
11635    /* Eth MAC is set on RSS leading client (fp[0]) */
11636    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11637                            &sc->sp_objs->mac_obj,
11638                            set, ECORE_ETH_MAC, &ramrod_flags));
11639}
11640
11641static int
11642bxe_get_cur_phy_idx(struct bxe_softc *sc)
11643{
11644    uint32_t sel_phy_idx = 0;
11645
11646    if (sc->link_params.num_phys <= 1) {
11647        return (ELINK_INT_PHY);
11648    }
11649
11650    if (sc->link_vars.link_up) {
11651        sel_phy_idx = ELINK_EXT_PHY1;
11652        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11653        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11654            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11655             ELINK_SUPPORTED_FIBRE))
11656            sel_phy_idx = ELINK_EXT_PHY2;
11657    } else {
11658        switch (elink_phy_selection(&sc->link_params)) {
11659        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11660        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11661        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11662               sel_phy_idx = ELINK_EXT_PHY1;
11663               break;
11664        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11665        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11666               sel_phy_idx = ELINK_EXT_PHY2;
11667               break;
11668        }
11669    }
11670
11671    return (sel_phy_idx);
11672}
11673
11674static int
11675bxe_get_link_cfg_idx(struct bxe_softc *sc)
11676{
11677    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11678
11679    /*
11680     * The selected activated PHY is always after swapping (in case PHY
11681     * swapping is enabled). So when swapping is enabled, we need to reverse
11682     * the configuration
11683     */
11684
11685    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11686        if (sel_phy_idx == ELINK_EXT_PHY1)
11687            sel_phy_idx = ELINK_EXT_PHY2;
11688        else if (sel_phy_idx == ELINK_EXT_PHY2)
11689            sel_phy_idx = ELINK_EXT_PHY1;
11690    }
11691
11692    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11693}
11694
11695static void
11696bxe_set_requested_fc(struct bxe_softc *sc)
11697{
11698    /*
11699     * Initialize link parameters structure variables
11700     * It is recommended to turn off RX FC for jumbo frames
11701     * for better performance
11702     */
11703    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11704        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11705    } else {
11706        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11707    }
11708}
11709
11710static void
11711bxe_calc_fc_adv(struct bxe_softc *sc)
11712{
11713    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11714
11715
11716    sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11717                                           ADVERTISED_Pause);
11718
11719    switch (sc->link_vars.ieee_fc &
11720            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11721
11722    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11723        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11724                                          ADVERTISED_Pause);
11725        break;
11726
11727    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11728        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11729        break;
11730
11731    default:
11732        break;
11733
11734    }
11735}
11736
11737static uint16_t
11738bxe_get_mf_speed(struct bxe_softc *sc)
11739{
11740    uint16_t line_speed = sc->link_vars.line_speed;
11741    if (IS_MF(sc)) {
11742        uint16_t maxCfg =
11743            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11744
11745        /* calculate the current MAX line speed limit for the MF devices */
11746        if (IS_MF_SI(sc)) {
11747            line_speed = (line_speed * maxCfg) / 100;
11748        } else { /* SD mode */
11749            uint16_t vn_max_rate = maxCfg * 100;
11750
11751            if (vn_max_rate < line_speed) {
11752                line_speed = vn_max_rate;
11753            }
11754        }
11755    }
11756
11757    return (line_speed);
11758}
11759
11760static void
11761bxe_fill_report_data(struct bxe_softc            *sc,
11762                     struct bxe_link_report_data *data)
11763{
11764    uint16_t line_speed = bxe_get_mf_speed(sc);
11765
11766    memset(data, 0, sizeof(*data));
11767
11768    /* fill the report data with the effective line speed */
11769    data->line_speed = line_speed;
11770
11771    /* Link is down */
11772    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11773        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11774    }
11775
11776    /* Full DUPLEX */
11777    if (sc->link_vars.duplex == DUPLEX_FULL) {
11778        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11779    }
11780
11781    /* Rx Flow Control is ON */
11782    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11783        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11784    }
11785
11786    /* Tx Flow Control is ON */
11787    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11788        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11789    }
11790}
11791
11792/* report link status to OS, should be called under phy_lock */
11793static void
11794bxe_link_report_locked(struct bxe_softc *sc)
11795{
11796    struct bxe_link_report_data cur_data;
11797
11798    /* reread mf_cfg */
11799    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11800        bxe_read_mf_cfg(sc);
11801    }
11802
11803    /* Read the current link report info */
11804    bxe_fill_report_data(sc, &cur_data);
11805
11806    /* Don't report link down or exactly the same link status twice */
11807    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11808        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11809                      &sc->last_reported_link.link_report_flags) &&
11810         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11811                      &cur_data.link_report_flags))) {
11812        return;
11813    }
11814
11815	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11816					cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11817    sc->link_cnt++;
11818
11819	ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11820    /* report new link params and remember the state for the next time */
11821    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11822
11823    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11824                     &cur_data.link_report_flags)) {
11825        if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11826    } else {
11827        const char *duplex;
11828        const char *flow;
11829
11830        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11831                                   &cur_data.link_report_flags)) {
11832            duplex = "full";
11833			ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11834        } else {
11835            duplex = "half";
11836			ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11837        }
11838
11839        /*
11840         * Handle the FC at the end so that only these flags would be
11841         * possibly set. This way we may easily check if there is no FC
11842         * enabled.
11843         */
11844        if (cur_data.link_report_flags) {
11845            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11846                             &cur_data.link_report_flags) &&
11847                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11848                             &cur_data.link_report_flags)) {
11849                flow = "ON - receive & transmit";
11850            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11851                                    &cur_data.link_report_flags) &&
11852                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11853                                     &cur_data.link_report_flags)) {
11854                flow = "ON - receive";
11855            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11856                                     &cur_data.link_report_flags) &&
11857                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11858                                    &cur_data.link_report_flags)) {
11859                flow = "ON - transmit";
11860            } else {
11861                flow = "none"; /* possible? */
11862            }
11863        } else {
11864            flow = "none";
11865        }
11866
11867        if_link_state_change(sc->ifp, LINK_STATE_UP);
11868        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11869              cur_data.line_speed, duplex, flow);
11870    }
11871}
11872
11873static void
11874bxe_link_report(struct bxe_softc *sc)
11875{
11876    bxe_acquire_phy_lock(sc);
11877    bxe_link_report_locked(sc);
11878    bxe_release_phy_lock(sc);
11879}
11880
11881static void
11882bxe_link_status_update(struct bxe_softc *sc)
11883{
11884    if (sc->state != BXE_STATE_OPEN) {
11885        return;
11886    }
11887
11888    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11889        elink_link_status_update(&sc->link_params, &sc->link_vars);
11890    } else {
11891        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11892                                  ELINK_SUPPORTED_10baseT_Full |
11893                                  ELINK_SUPPORTED_100baseT_Half |
11894                                  ELINK_SUPPORTED_100baseT_Full |
11895                                  ELINK_SUPPORTED_1000baseT_Full |
11896                                  ELINK_SUPPORTED_2500baseX_Full |
11897                                  ELINK_SUPPORTED_10000baseT_Full |
11898                                  ELINK_SUPPORTED_TP |
11899                                  ELINK_SUPPORTED_FIBRE |
11900                                  ELINK_SUPPORTED_Autoneg |
11901                                  ELINK_SUPPORTED_Pause |
11902                                  ELINK_SUPPORTED_Asym_Pause);
11903        sc->port.advertising[0] = sc->port.supported[0];
11904
11905        sc->link_params.sc                = sc;
11906        sc->link_params.port              = SC_PORT(sc);
11907        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11908        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11909        sc->link_params.req_line_speed[0] = SPEED_10000;
11910        sc->link_params.speed_cap_mask[0] = 0x7f0000;
11911        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11912
11913        if (CHIP_REV_IS_FPGA(sc)) {
11914            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11915            sc->link_vars.line_speed  = ELINK_SPEED_1000;
11916            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11917                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11918        } else {
11919            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11920            sc->link_vars.line_speed  = ELINK_SPEED_10000;
11921            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11922                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11923        }
11924
11925        sc->link_vars.link_up = 1;
11926
11927        sc->link_vars.duplex    = DUPLEX_FULL;
11928        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11929
11930        if (IS_PF(sc)) {
11931            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11932            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11933            bxe_link_report(sc);
11934        }
11935    }
11936
11937    if (IS_PF(sc)) {
11938        if (sc->link_vars.link_up) {
11939            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11940        } else {
11941            bxe_stats_handle(sc, STATS_EVENT_STOP);
11942        }
11943        bxe_link_report(sc);
11944    } else {
11945        bxe_link_report(sc);
11946        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11947    }
11948}
11949
11950static int
11951bxe_initial_phy_init(struct bxe_softc *sc,
11952                     int              load_mode)
11953{
11954    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11955    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11956    struct elink_params *lp = &sc->link_params;
11957
11958    bxe_set_requested_fc(sc);
11959
11960    if (CHIP_REV_IS_SLOW(sc)) {
11961        uint32_t bond = CHIP_BOND_ID(sc);
11962        uint32_t feat = 0;
11963
11964        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11965            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11966        } else if (bond & 0x4) {
11967            if (CHIP_IS_E3(sc)) {
11968                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11969            } else {
11970                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11971            }
11972        } else if (bond & 0x8) {
11973            if (CHIP_IS_E3(sc)) {
11974                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11975            } else {
11976                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11977            }
11978        }
11979
11980        /* disable EMAC for E3 and above */
11981        if (bond & 0x2) {
11982            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11983        }
11984
11985        sc->link_params.feature_config_flags |= feat;
11986    }
11987
11988    bxe_acquire_phy_lock(sc);
11989
11990    if (load_mode == LOAD_DIAG) {
11991        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11992        /* Prefer doing PHY loopback at 10G speed, if possible */
11993        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11994            if (lp->speed_cap_mask[cfg_idx] &
11995                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11996                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11997            } else {
11998                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11999            }
12000        }
12001    }
12002
12003    if (load_mode == LOAD_LOOPBACK_EXT) {
12004        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12005    }
12006
12007    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12008
12009    bxe_release_phy_lock(sc);
12010
12011    bxe_calc_fc_adv(sc);
12012
12013    if (sc->link_vars.link_up) {
12014        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12015        bxe_link_report(sc);
12016    }
12017
12018    if (!CHIP_REV_IS_SLOW(sc)) {
12019        bxe_periodic_start(sc);
12020    }
12021
12022    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12023    return (rc);
12024}
12025
12026static u_int
12027bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12028{
12029    struct ecore_mcast_list_elem *mc_mac = arg;
12030
12031    mc_mac += cnt;
12032    mc_mac->mac = (uint8_t *)LLADDR(sdl);
12033
12034    return (1);
12035}
12036
12037static int
12038bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12039                         struct ecore_mcast_ramrod_params *p)
12040{
12041    if_t ifp = sc->ifp;
12042    int mc_count;
12043    struct ecore_mcast_list_elem *mc_mac;
12044
12045    ECORE_LIST_INIT(&p->mcast_list);
12046    p->mcast_list_len = 0;
12047
12048    /* XXXGL: multicast count may change later */
12049    mc_count = if_llmaddr_count(ifp);
12050
12051    if (!mc_count) {
12052        return (0);
12053    }
12054
12055    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12056                    (M_NOWAIT | M_ZERO));
12057    if (!mc_mac) {
12058        BLOGE(sc, "Failed to allocate temp mcast list\n");
12059        return (-1);
12060    }
12061    bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12062    if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
12063
12064    for (int i = 0; i < mc_count; i ++) {
12065        ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
12066        BLOGD(sc, DBG_LOAD,
12067              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
12068              mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
12069              mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
12070              mc_count);
12071    }
12072
12073    p->mcast_list_len = mc_count;
12074
12075    return (0);
12076}
12077
12078static void
12079bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12080{
12081    struct ecore_mcast_list_elem *mc_mac =
12082        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12083                               struct ecore_mcast_list_elem,
12084                               link);
12085
12086    if (mc_mac) {
12087        /* only a single free as all mc_macs are in the same heap array */
12088        free(mc_mac, M_DEVBUF);
12089    }
12090}
12091static int
12092bxe_set_mc_list(struct bxe_softc *sc)
12093{
12094    struct ecore_mcast_ramrod_params rparam = { NULL };
12095    int rc = 0;
12096
12097    rparam.mcast_obj = &sc->mcast_obj;
12098
12099    BXE_MCAST_LOCK(sc);
12100
12101    /* first, clear all configured multicast MACs */
12102    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12103    if (rc < 0) {
12104        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12105        /* Manual backport parts of FreeBSD upstream r284470. */
12106        BXE_MCAST_UNLOCK(sc);
12107        return (rc);
12108    }
12109
12110    /* configure a new MACs list */
12111    rc = bxe_init_mcast_macs_list(sc, &rparam);
12112    if (rc) {
12113        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12114        BXE_MCAST_UNLOCK(sc);
12115        return (rc);
12116    }
12117
12118    /* Now add the new MACs */
12119    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12120    if (rc < 0) {
12121        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12122    }
12123
12124    bxe_free_mcast_macs_list(&rparam);
12125
12126    BXE_MCAST_UNLOCK(sc);
12127
12128    return (rc);
12129}
12130
12131struct bxe_set_addr_ctx {
12132   struct bxe_softc *sc;
12133   unsigned long ramrod_flags;
12134   int rc;
12135};
12136
12137static u_int
12138bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12139{
12140    struct bxe_set_addr_ctx *ctx = arg;
12141    struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
12142    int rc;
12143
12144    if (ctx->rc < 0)
12145	return (0);
12146
12147    rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
12148                         ECORE_UC_LIST_MAC, &ctx->ramrod_flags);
12149
12150    /* do not treat adding same MAC as an error */
12151    if (rc == -EEXIST)
12152	BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12153    else if (rc < 0) {
12154            BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
12155            ctx->rc = rc;
12156    }
12157
12158    return (1);
12159}
12160
12161static int
12162bxe_set_uc_list(struct bxe_softc *sc)
12163{
12164    if_t ifp = sc->ifp;
12165    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12166    struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
12167    int rc;
12168
12169    /* first schedule a cleanup up of old configuration */
12170    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12171    if (rc < 0) {
12172        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12173        return (rc);
12174    }
12175
12176    if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
12177    if (ctx.rc < 0)
12178	return (ctx.rc);
12179
12180    /* Execute the pending commands */
12181    bit_set(&ctx.ramrod_flags, RAMROD_CONT);
12182    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12183                            ECORE_UC_LIST_MAC, &ctx.ramrod_flags));
12184}
12185
12186static void
12187bxe_set_rx_mode(struct bxe_softc *sc)
12188{
12189    if_t ifp = sc->ifp;
12190    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12191
12192    if (sc->state != BXE_STATE_OPEN) {
12193        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12194        return;
12195    }
12196
12197    BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12198
12199    if (if_getflags(ifp) & IFF_PROMISC) {
12200        rx_mode = BXE_RX_MODE_PROMISC;
12201    } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12202               ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12203                CHIP_IS_E1(sc))) {
12204        rx_mode = BXE_RX_MODE_ALLMULTI;
12205    } else {
12206        if (IS_PF(sc)) {
12207            /* some multicasts */
12208            if (bxe_set_mc_list(sc) < 0) {
12209                rx_mode = BXE_RX_MODE_ALLMULTI;
12210            }
12211            if (bxe_set_uc_list(sc) < 0) {
12212                rx_mode = BXE_RX_MODE_PROMISC;
12213            }
12214        }
12215    }
12216
12217    sc->rx_mode = rx_mode;
12218
12219    /* schedule the rx_mode command */
12220    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12221        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12222        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12223        return;
12224    }
12225
12226    if (IS_PF(sc)) {
12227        bxe_set_storm_rx_mode(sc);
12228    }
12229}
12230
12231
12232/* update flags in shmem */
12233static void
12234bxe_update_drv_flags(struct bxe_softc *sc,
12235                     uint32_t         flags,
12236                     uint32_t         set)
12237{
12238    uint32_t drv_flags;
12239
12240    if (SHMEM2_HAS(sc, drv_flags)) {
12241        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12242        drv_flags = SHMEM2_RD(sc, drv_flags);
12243
12244        if (set) {
12245            SET_FLAGS(drv_flags, flags);
12246        } else {
12247            RESET_FLAGS(drv_flags, flags);
12248        }
12249
12250        SHMEM2_WR(sc, drv_flags, drv_flags);
12251        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12252
12253        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12254    }
12255}
12256
12257/* periodic timer callout routine, only runs when the interface is up */
12258
12259static void
12260bxe_periodic_callout_func(void *xsc)
12261{
12262    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12263    int i;
12264
12265    if (!BXE_CORE_TRYLOCK(sc)) {
12266        /* just bail and try again next time */
12267
12268        if ((sc->state == BXE_STATE_OPEN) &&
12269            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12270            /* schedule the next periodic callout */
12271            callout_reset(&sc->periodic_callout, hz,
12272                          bxe_periodic_callout_func, sc);
12273        }
12274
12275        return;
12276    }
12277
12278    if ((sc->state != BXE_STATE_OPEN) ||
12279        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12280        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12281        BXE_CORE_UNLOCK(sc);
12282        return;
12283        }
12284
12285
12286    /* Check for TX timeouts on any fastpath. */
12287    FOR_EACH_QUEUE(sc, i) {
12288        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12289            /* Ruh-Roh, chip was reset! */
12290            break;
12291        }
12292    }
12293
12294    if (!CHIP_REV_IS_SLOW(sc)) {
12295        /*
12296         * This barrier is needed to ensure the ordering between the writing
12297         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12298         * the reading here.
12299         */
12300        mb();
12301        if (sc->port.pmf) {
12302	    bxe_acquire_phy_lock(sc);
12303            elink_period_func(&sc->link_params, &sc->link_vars);
12304	    bxe_release_phy_lock(sc);
12305        }
12306    }
12307
12308    if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12309        int mb_idx = SC_FW_MB_IDX(sc);
12310        uint32_t drv_pulse;
12311        uint32_t mcp_pulse;
12312
12313        ++sc->fw_drv_pulse_wr_seq;
12314        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12315
12316        drv_pulse = sc->fw_drv_pulse_wr_seq;
12317        bxe_drv_pulse(sc);
12318
12319        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12320                     MCP_PULSE_SEQ_MASK);
12321
12322        /*
12323         * The delta between driver pulse and mcp response should
12324         * be 1 (before mcp response) or 0 (after mcp response).
12325         */
12326        if ((drv_pulse != mcp_pulse) &&
12327            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12328            /* someone lost a heartbeat... */
12329            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12330                  drv_pulse, mcp_pulse);
12331        }
12332    }
12333
12334    /* state is BXE_STATE_OPEN */
12335    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12336
12337    BXE_CORE_UNLOCK(sc);
12338
12339    if ((sc->state == BXE_STATE_OPEN) &&
12340        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12341        /* schedule the next periodic callout */
12342        callout_reset(&sc->periodic_callout, hz,
12343                      bxe_periodic_callout_func, sc);
12344    }
12345}
12346
12347static void
12348bxe_periodic_start(struct bxe_softc *sc)
12349{
12350    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12351    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12352}
12353
12354static void
12355bxe_periodic_stop(struct bxe_softc *sc)
12356{
12357    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12358    callout_drain(&sc->periodic_callout);
12359}
12360
12361void
12362bxe_parity_recover(struct bxe_softc *sc)
12363{
12364    uint8_t global = FALSE;
12365    uint32_t error_recovered, error_unrecovered;
12366    bool is_parity;
12367
12368
12369    if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12370        (sc->state == BXE_STATE_ERROR)) {
12371        BLOGE(sc, "RECOVERY failed, "
12372            "stack notified driver is NOT running! "
12373            "Please reboot/power cycle the system.\n");
12374        return;
12375    }
12376
12377    while (1) {
12378        BLOGD(sc, DBG_SP,
12379           "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
12380            __func__, sc, sc->state, sc->recovery_state, sc->error_status);
12381
12382        switch(sc->recovery_state) {
12383
12384        case BXE_RECOVERY_INIT:
12385            is_parity = bxe_chk_parity_attn(sc, &global, FALSE);
12386
12387            if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
12388                (sc->error_status & BXE_ERR_MCP_ASSERT) ||
12389                (sc->error_status & BXE_ERR_GLOBAL)) {
12390
12391                BXE_CORE_LOCK(sc);
12392                if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12393                    bxe_periodic_stop(sc);
12394                }
12395                bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
12396                sc->state = BXE_STATE_ERROR;
12397                sc->recovery_state = BXE_RECOVERY_FAILED;
12398                BLOGE(sc, " No Recovery tried for error 0x%x"
12399                    " stack notified driver is NOT running!"
12400                    " Please reboot/power cycle the system.\n",
12401                    sc->error_status);
12402                BXE_CORE_UNLOCK(sc);
12403                return;
12404            }
12405
12406
12407           /* Try to get a LEADER_LOCK HW lock */
12408            if (bxe_trylock_leader_lock(sc)) {
12409
12410                bxe_set_reset_in_progress(sc);
12411                /*
12412                 * Check if there is a global attention and if
12413                 * there was a global attention, set the global
12414                 * reset bit.
12415                 */
12416                if (global) {
12417                    bxe_set_reset_global(sc);
12418                }
12419                sc->is_leader = 1;
12420            }
12421
12422            /* If interface has been removed - break */
12423
12424            if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12425                bxe_periodic_stop(sc);
12426            }
12427
12428            BXE_CORE_LOCK(sc);
12429            bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
12430            sc->recovery_state = BXE_RECOVERY_WAIT;
12431            BXE_CORE_UNLOCK(sc);
12432
12433            /*
12434             * Ensure "is_leader", MCP command sequence and
12435             * "recovery_state" update values are seen on other
12436             * CPUs.
12437             */
12438            mb();
12439            break;
12440        case BXE_RECOVERY_WAIT:
12441
12442            if (sc->is_leader) {
12443                int other_engine = SC_PATH(sc) ? 0 : 1;
12444                bool other_load_status =
12445                    bxe_get_load_status(sc, other_engine);
12446                bool load_status =
12447                    bxe_get_load_status(sc, SC_PATH(sc));
12448                global = bxe_reset_is_global(sc);
12449
12450                /*
12451                 * In case of a parity in a global block, let
12452                 * the first leader that performs a
12453                 * leader_reset() reset the global blocks in
12454                 * order to clear global attentions. Otherwise
12455                 * the gates will remain closed for that
12456                 * engine.
12457                 */
12458                if (load_status ||
12459                    (global && other_load_status)) {
12460                    /*
12461                     * Wait until all other functions get
12462                     * down.
12463                     */
12464                    taskqueue_enqueue_timeout(taskqueue_thread,
12465                        &sc->sp_err_timeout_task, hz/10);
12466                    return;
12467                } else {
12468                    /*
12469                     * If all other functions got down
12470                     * try to bring the chip back to
12471                     * normal. In any case it's an exit
12472                     * point for a leader.
12473                     */
12474                    if (bxe_leader_reset(sc)) {
12475                        BLOGE(sc, "RECOVERY failed, "
12476                            "stack notified driver is NOT running!\n");
12477                        sc->recovery_state = BXE_RECOVERY_FAILED;
12478                        sc->state = BXE_STATE_ERROR;
12479                        mb();
12480                        return;
12481                    }
12482
12483                    /*
12484                     * If we are here, means that the
12485                     * leader has succeeded and doesn't
12486                     * want to be a leader any more. Try
12487                     * to continue as a none-leader.
12488                     */
12489                break;
12490                }
12491
12492            } else { /* non-leader */
12493                if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
12494                    /*
12495                     * Try to get a LEADER_LOCK HW lock as
12496                     * long as a former leader may have
12497                     * been unloaded by the user or
12498                     * released a leadership by another
12499                     * reason.
12500                     */
12501                    if (bxe_trylock_leader_lock(sc)) {
12502                        /*
12503                         * I'm a leader now! Restart a
12504                         * switch case.
12505                         */
12506                        sc->is_leader = 1;
12507                        break;
12508                    }
12509
12510                    taskqueue_enqueue_timeout(taskqueue_thread,
12511                        &sc->sp_err_timeout_task, hz/10);
12512                    return;
12513
12514                } else {
12515                    /*
12516                     * If there was a global attention, wait
12517                     * for it to be cleared.
12518                     */
12519                    if (bxe_reset_is_global(sc)) {
12520                        taskqueue_enqueue_timeout(taskqueue_thread,
12521                            &sc->sp_err_timeout_task, hz/10);
12522                        return;
12523                     }
12524
12525                     error_recovered =
12526                         sc->eth_stats.recoverable_error;
12527                     error_unrecovered =
12528                         sc->eth_stats.unrecoverable_error;
12529                     BXE_CORE_LOCK(sc);
12530                     sc->recovery_state =
12531                         BXE_RECOVERY_NIC_LOADING;
12532                     if (bxe_nic_load(sc, LOAD_NORMAL)) {
12533                         error_unrecovered++;
12534                         sc->recovery_state = BXE_RECOVERY_FAILED;
12535                         sc->state = BXE_STATE_ERROR;
12536                         BLOGE(sc, "Recovery is NOT successfull, "
12537                            " state=0x%x recovery_state=0x%x error=%x\n",
12538                            sc->state, sc->recovery_state, sc->error_status);
12539                         sc->error_status = 0;
12540                     } else {
12541                         sc->recovery_state =
12542                             BXE_RECOVERY_DONE;
12543                         error_recovered++;
12544                         BLOGI(sc, "Recovery is successfull from errors %x,"
12545                            " state=0x%x"
12546                            " recovery_state=0x%x \n", sc->error_status,
12547                            sc->state, sc->recovery_state);
12548                         mb();
12549                     }
12550                     sc->error_status = 0;
12551                     BXE_CORE_UNLOCK(sc);
12552                     sc->eth_stats.recoverable_error =
12553                         error_recovered;
12554                     sc->eth_stats.unrecoverable_error =
12555                         error_unrecovered;
12556
12557                     return;
12558                 }
12559             }
12560         default:
12561             return;
12562         }
12563    }
12564}
12565void
12566bxe_handle_error(struct bxe_softc * sc)
12567{
12568
12569    if(sc->recovery_state == BXE_RECOVERY_WAIT) {
12570        return;
12571    }
12572    if(sc->error_status) {
12573        if (sc->state == BXE_STATE_OPEN)  {
12574            bxe_int_disable(sc);
12575        }
12576        if (sc->link_vars.link_up) {
12577            if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12578        }
12579        sc->recovery_state = BXE_RECOVERY_INIT;
12580        BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
12581            sc->unit, sc->error_status, sc->recovery_state);
12582        bxe_parity_recover(sc);
12583   }
12584}
12585
12586static void
12587bxe_sp_err_timeout_task(void *arg, int pending)
12588{
12589
12590    struct bxe_softc *sc = (struct bxe_softc *)arg;
12591
12592    BLOGD(sc, DBG_SP,
12593        "%s state = 0x%x rec state=0x%x error_status=%x\n",
12594        __func__, sc->state, sc->recovery_state, sc->error_status);
12595
12596    if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12597       (sc->state == BXE_STATE_ERROR)) {
12598        return;
12599    }
12600    /* if can be taken */
12601    if ((sc->error_status) && (sc->trigger_grcdump)) {
12602        bxe_grc_dump(sc);
12603    }
12604    if (sc->recovery_state != BXE_RECOVERY_DONE) {
12605        bxe_handle_error(sc);
12606        bxe_parity_recover(sc);
12607    } else if (sc->error_status) {
12608        bxe_handle_error(sc);
12609    }
12610
12611    return;
12612}
12613
12614/* start the controller */
12615static __noinline int
12616bxe_nic_load(struct bxe_softc *sc,
12617             int              load_mode)
12618{
12619    uint32_t val;
12620    int load_code = 0;
12621    int i, rc = 0;
12622
12623    BXE_CORE_LOCK_ASSERT(sc);
12624
12625    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12626
12627    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12628
12629    if (IS_PF(sc)) {
12630        /* must be called before memory allocation and HW init */
12631        bxe_ilt_set_info(sc);
12632    }
12633
12634    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12635
12636    bxe_set_fp_rx_buf_size(sc);
12637
12638    if (bxe_alloc_fp_buffers(sc) != 0) {
12639        BLOGE(sc, "Failed to allocate fastpath memory\n");
12640        sc->state = BXE_STATE_CLOSED;
12641        rc = ENOMEM;
12642        goto bxe_nic_load_error0;
12643    }
12644
12645    if (bxe_alloc_mem(sc) != 0) {
12646        sc->state = BXE_STATE_CLOSED;
12647        rc = ENOMEM;
12648        goto bxe_nic_load_error0;
12649    }
12650
12651    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12652        sc->state = BXE_STATE_CLOSED;
12653        rc = ENOMEM;
12654        goto bxe_nic_load_error0;
12655    }
12656
12657    if (IS_PF(sc)) {
12658        /* set pf load just before approaching the MCP */
12659        bxe_set_pf_load(sc);
12660
12661        /* if MCP exists send load request and analyze response */
12662        if (!BXE_NOMCP(sc)) {
12663            /* attempt to load pf */
12664            if (bxe_nic_load_request(sc, &load_code) != 0) {
12665                sc->state = BXE_STATE_CLOSED;
12666                rc = ENXIO;
12667                goto bxe_nic_load_error1;
12668            }
12669
12670            /* what did the MCP say? */
12671            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12672                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12673                sc->state = BXE_STATE_CLOSED;
12674                rc = ENXIO;
12675                goto bxe_nic_load_error2;
12676            }
12677        } else {
12678            BLOGI(sc, "Device has no MCP!\n");
12679            load_code = bxe_nic_load_no_mcp(sc);
12680        }
12681
12682        /* mark PMF if applicable */
12683        bxe_nic_load_pmf(sc, load_code);
12684
12685        /* Init Function state controlling object */
12686        bxe_init_func_obj(sc);
12687
12688        /* Initialize HW */
12689        if (bxe_init_hw(sc, load_code) != 0) {
12690            BLOGE(sc, "HW init failed\n");
12691            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12692            sc->state = BXE_STATE_CLOSED;
12693            rc = ENXIO;
12694            goto bxe_nic_load_error2;
12695        }
12696    }
12697
12698    /* set ALWAYS_ALIVE bit in shmem */
12699    sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12700    bxe_drv_pulse(sc);
12701    sc->flags |= BXE_NO_PULSE;
12702
12703    /* attach interrupts */
12704    if (bxe_interrupt_attach(sc) != 0) {
12705        sc->state = BXE_STATE_CLOSED;
12706        rc = ENXIO;
12707        goto bxe_nic_load_error2;
12708    }
12709
12710    bxe_nic_init(sc, load_code);
12711
12712    /* Init per-function objects */
12713    if (IS_PF(sc)) {
12714        bxe_init_objs(sc);
12715        // XXX bxe_iov_nic_init(sc);
12716
12717        /* set AFEX default VLAN tag to an invalid value */
12718        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12719        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12720
12721        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12722        rc = bxe_func_start(sc);
12723        if (rc) {
12724            BLOGE(sc, "Function start failed! rc = %d\n", rc);
12725            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12726            sc->state = BXE_STATE_ERROR;
12727            goto bxe_nic_load_error3;
12728        }
12729
12730        /* send LOAD_DONE command to MCP */
12731        if (!BXE_NOMCP(sc)) {
12732            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12733            if (!load_code) {
12734                BLOGE(sc, "MCP response failure, aborting\n");
12735                sc->state = BXE_STATE_ERROR;
12736                rc = ENXIO;
12737                goto bxe_nic_load_error3;
12738            }
12739        }
12740
12741        rc = bxe_setup_leading(sc);
12742        if (rc) {
12743            BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12744            sc->state = BXE_STATE_ERROR;
12745            goto bxe_nic_load_error3;
12746        }
12747
12748        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12749            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12750            if (rc) {
12751                BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12752                sc->state = BXE_STATE_ERROR;
12753                goto bxe_nic_load_error3;
12754            }
12755        }
12756
12757        rc = bxe_init_rss_pf(sc);
12758        if (rc) {
12759            BLOGE(sc, "PF RSS init failed\n");
12760            sc->state = BXE_STATE_ERROR;
12761            goto bxe_nic_load_error3;
12762        }
12763    }
12764    /* XXX VF */
12765
12766    /* now when Clients are configured we are ready to work */
12767    sc->state = BXE_STATE_OPEN;
12768
12769    /* Configure a ucast MAC */
12770    if (IS_PF(sc)) {
12771        rc = bxe_set_eth_mac(sc, TRUE);
12772    }
12773    if (rc) {
12774        BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12775        sc->state = BXE_STATE_ERROR;
12776        goto bxe_nic_load_error3;
12777    }
12778
12779    if (sc->port.pmf) {
12780        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12781        if (rc) {
12782            sc->state = BXE_STATE_ERROR;
12783            goto bxe_nic_load_error3;
12784        }
12785    }
12786
12787    sc->link_params.feature_config_flags &=
12788        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12789
12790    /* start fast path */
12791
12792    /* Initialize Rx filter */
12793    bxe_set_rx_mode(sc);
12794
12795    /* start the Tx */
12796    switch (/* XXX load_mode */LOAD_OPEN) {
12797    case LOAD_NORMAL:
12798    case LOAD_OPEN:
12799        break;
12800
12801    case LOAD_DIAG:
12802    case LOAD_LOOPBACK_EXT:
12803        sc->state = BXE_STATE_DIAG;
12804        break;
12805
12806    default:
12807        break;
12808    }
12809
12810    if (sc->port.pmf) {
12811        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12812    } else {
12813        bxe_link_status_update(sc);
12814    }
12815
12816    /* start the periodic timer callout */
12817    bxe_periodic_start(sc);
12818
12819    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12820        /* mark driver is loaded in shmem2 */
12821        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12822        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12823                  (val |
12824                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12825                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
12826    }
12827
12828    /* wait for all pending SP commands to complete */
12829    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12830        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12831        bxe_periodic_stop(sc);
12832        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12833        return (ENXIO);
12834    }
12835
12836    /* Tell the stack the driver is running! */
12837    if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12838
12839    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12840
12841    return (0);
12842
12843bxe_nic_load_error3:
12844
12845    if (IS_PF(sc)) {
12846        bxe_int_disable_sync(sc, 1);
12847
12848        /* clean out queued objects */
12849        bxe_squeeze_objects(sc);
12850    }
12851
12852    bxe_interrupt_detach(sc);
12853
12854bxe_nic_load_error2:
12855
12856    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12857        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12858        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12859    }
12860
12861    sc->port.pmf = 0;
12862
12863bxe_nic_load_error1:
12864
12865    /* clear pf_load status, as it was already set */
12866    if (IS_PF(sc)) {
12867        bxe_clear_pf_load(sc);
12868    }
12869
12870bxe_nic_load_error0:
12871
12872    bxe_free_fw_stats_mem(sc);
12873    bxe_free_fp_buffers(sc);
12874    bxe_free_mem(sc);
12875
12876    return (rc);
12877}
12878
12879static int
12880bxe_init_locked(struct bxe_softc *sc)
12881{
12882    int other_engine = SC_PATH(sc) ? 0 : 1;
12883    uint8_t other_load_status, load_status;
12884    uint8_t global = FALSE;
12885    int rc;
12886
12887    BXE_CORE_LOCK_ASSERT(sc);
12888
12889    /* check if the driver is already running */
12890    if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12891        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12892        return (0);
12893    }
12894
12895    if((sc->state == BXE_STATE_ERROR) &&
12896        (sc->recovery_state == BXE_RECOVERY_FAILED)) {
12897        BLOGE(sc, "Initialization not done, "
12898                  "as previous recovery failed."
12899                  "Reboot/Power-cycle the system\n" );
12900        return (ENXIO);
12901    }
12902
12903
12904    bxe_set_power_state(sc, PCI_PM_D0);
12905
12906    /*
12907     * If parity occurred during the unload, then attentions and/or
12908     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12909     * loaded on the current engine to complete the recovery. Parity recovery
12910     * is only relevant for PF driver.
12911     */
12912    if (IS_PF(sc)) {
12913        other_load_status = bxe_get_load_status(sc, other_engine);
12914        load_status = bxe_get_load_status(sc, SC_PATH(sc));
12915
12916        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12917            bxe_chk_parity_attn(sc, &global, TRUE)) {
12918            do {
12919                /*
12920                 * If there are attentions and they are in global blocks, set
12921                 * the GLOBAL_RESET bit regardless whether it will be this
12922                 * function that will complete the recovery or not.
12923                 */
12924                if (global) {
12925                    bxe_set_reset_global(sc);
12926                }
12927
12928                /*
12929                 * Only the first function on the current engine should try
12930                 * to recover in open. In case of attentions in global blocks
12931                 * only the first in the chip should try to recover.
12932                 */
12933                if ((!load_status && (!global || !other_load_status)) &&
12934                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12935                    BLOGI(sc, "Recovered during init\n");
12936                    break;
12937                }
12938
12939                /* recovery has failed... */
12940                bxe_set_power_state(sc, PCI_PM_D3hot);
12941                sc->recovery_state = BXE_RECOVERY_FAILED;
12942
12943                BLOGE(sc, "Recovery flow hasn't properly "
12944                          "completed yet, try again later. "
12945                          "If you still see this message after a "
12946                          "few retries then power cycle is required.\n");
12947
12948                rc = ENXIO;
12949                goto bxe_init_locked_done;
12950            } while (0);
12951        }
12952    }
12953
12954    sc->recovery_state = BXE_RECOVERY_DONE;
12955
12956    rc = bxe_nic_load(sc, LOAD_OPEN);
12957
12958bxe_init_locked_done:
12959
12960    if (rc) {
12961        /* Tell the stack the driver is NOT running! */
12962        BLOGE(sc, "Initialization failed, "
12963                  "stack notified driver is NOT running!\n");
12964	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12965    }
12966
12967    return (rc);
12968}
12969
12970static int
12971bxe_stop_locked(struct bxe_softc *sc)
12972{
12973    BXE_CORE_LOCK_ASSERT(sc);
12974    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12975}
12976
12977/*
12978 * Handles controller initialization when called from an unlocked routine.
12979 * ifconfig calls this function.
12980 *
12981 * Returns:
12982 *   void
12983 */
12984static void
12985bxe_init(void *xsc)
12986{
12987    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12988
12989    BXE_CORE_LOCK(sc);
12990    bxe_init_locked(sc);
12991    BXE_CORE_UNLOCK(sc);
12992}
12993
12994static int
12995bxe_init_ifnet(struct bxe_softc *sc)
12996{
12997    if_t ifp;
12998    int capabilities;
12999
13000    /* ifconfig entrypoint for media type/status reporting */
13001    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13002                 bxe_ifmedia_update,
13003                 bxe_ifmedia_status);
13004
13005    /* set the default interface values */
13006    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13007    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13008    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13009
13010    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13011	BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
13012
13013    /* allocate the ifnet structure */
13014    if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13015        BLOGE(sc, "Interface allocation failed!\n");
13016        return (ENXIO);
13017    }
13018
13019    if_setsoftc(ifp, sc);
13020    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13021    if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13022    if_setioctlfn(ifp, bxe_ioctl);
13023    if_setstartfn(ifp, bxe_tx_start);
13024    if_setgetcounterfn(ifp, bxe_get_counter);
13025    if_settransmitfn(ifp, bxe_tx_mq_start);
13026    if_setqflushfn(ifp, bxe_mq_flush);
13027    if_setinitfn(ifp, bxe_init);
13028    if_setmtu(ifp, sc->mtu);
13029    if_sethwassist(ifp, (CSUM_IP      |
13030                        CSUM_TCP      |
13031                        CSUM_UDP      |
13032                        CSUM_TSO      |
13033                        CSUM_TCP_IPV6 |
13034                        CSUM_UDP_IPV6));
13035
13036    capabilities =
13037        (IFCAP_VLAN_MTU       |
13038         IFCAP_VLAN_HWTAGGING |
13039         IFCAP_VLAN_HWTSO     |
13040         IFCAP_VLAN_HWFILTER  |
13041         IFCAP_VLAN_HWCSUM    |
13042         IFCAP_HWCSUM         |
13043         IFCAP_JUMBO_MTU      |
13044         IFCAP_LRO            |
13045         IFCAP_TSO4           |
13046         IFCAP_TSO6           |
13047         IFCAP_WOL_MAGIC);
13048    if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13049    if_setcapenable(ifp, if_getcapabilities(ifp));
13050    if_setbaudrate(ifp, IF_Gbps(10));
13051/* XXX */
13052    if_setsendqlen(ifp, sc->tx_ring_size);
13053    if_setsendqready(ifp);
13054/* XXX */
13055
13056    sc->ifp = ifp;
13057
13058    /* attach to the Ethernet interface list */
13059    ether_ifattach(ifp, sc->link_params.mac_addr);
13060
13061    /* Attach driver debugnet methods. */
13062    DEBUGNET_SET(ifp, bxe);
13063
13064    return (0);
13065}
13066
13067static void
13068bxe_deallocate_bars(struct bxe_softc *sc)
13069{
13070    int i;
13071
13072    for (i = 0; i < MAX_BARS; i++) {
13073        if (sc->bar[i].resource != NULL) {
13074            bus_release_resource(sc->dev,
13075                                 SYS_RES_MEMORY,
13076                                 sc->bar[i].rid,
13077                                 sc->bar[i].resource);
13078            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13079                  i, PCIR_BAR(i));
13080        }
13081    }
13082}
13083
13084static int
13085bxe_allocate_bars(struct bxe_softc *sc)
13086{
13087    u_int flags;
13088    int i;
13089
13090    memset(sc->bar, 0, sizeof(sc->bar));
13091
13092    for (i = 0; i < MAX_BARS; i++) {
13093
13094        /* memory resources reside at BARs 0, 2, 4 */
13095        /* Run `pciconf -lb` to see mappings */
13096        if ((i != 0) && (i != 2) && (i != 4)) {
13097            continue;
13098        }
13099
13100        sc->bar[i].rid = PCIR_BAR(i);
13101
13102        flags = RF_ACTIVE;
13103        if (i == 0) {
13104            flags |= RF_SHAREABLE;
13105        }
13106
13107        if ((sc->bar[i].resource =
13108             bus_alloc_resource_any(sc->dev,
13109                                    SYS_RES_MEMORY,
13110                                    &sc->bar[i].rid,
13111                                    flags)) == NULL) {
13112            return (0);
13113        }
13114
13115        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13116        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13117        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13118
13119        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
13120              i, PCIR_BAR(i),
13121              rman_get_start(sc->bar[i].resource),
13122              rman_get_end(sc->bar[i].resource),
13123              rman_get_size(sc->bar[i].resource),
13124              (uintmax_t)sc->bar[i].kva);
13125    }
13126
13127    return (0);
13128}
13129
13130static void
13131bxe_get_function_num(struct bxe_softc *sc)
13132{
13133    uint32_t val = 0;
13134
13135    /*
13136     * Read the ME register to get the function number. The ME register
13137     * holds the relative-function number and absolute-function number. The
13138     * absolute-function number appears only in E2 and above. Before that
13139     * these bits always contained zero, therefore we cannot blindly use them.
13140     */
13141
13142    val = REG_RD(sc, BAR_ME_REGISTER);
13143
13144    sc->pfunc_rel =
13145        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13146    sc->path_id =
13147        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13148
13149    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13150        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13151    } else {
13152        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13153    }
13154
13155    BLOGD(sc, DBG_LOAD,
13156          "Relative function %d, Absolute function %d, Path %d\n",
13157          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13158}
13159
13160static uint32_t
13161bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13162{
13163    uint32_t shmem2_size;
13164    uint32_t offset;
13165    uint32_t mf_cfg_offset_value;
13166
13167    /* Non 57712 */
13168    offset = (SHMEM_RD(sc, func_mb) +
13169              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13170
13171    /* 57712 plus */
13172    if (sc->devinfo.shmem2_base != 0) {
13173        shmem2_size = SHMEM2_RD(sc, size);
13174        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13175            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13176            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13177                offset = mf_cfg_offset_value;
13178            }
13179        }
13180    }
13181
13182    return (offset);
13183}
13184
13185static uint32_t
13186bxe_pcie_capability_read(struct bxe_softc *sc,
13187                         int    reg,
13188                         int    width)
13189{
13190    int pcie_reg;
13191
13192    /* ensure PCIe capability is enabled */
13193    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13194        if (pcie_reg != 0) {
13195            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13196            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13197        }
13198    }
13199
13200    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13201
13202    return (0);
13203}
13204
13205static uint8_t
13206bxe_is_pcie_pending(struct bxe_softc *sc)
13207{
13208    return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) &
13209            PCIEM_STA_TRANSACTION_PND);
13210}
13211
13212/*
13213 * Walk the PCI capabiites list for the device to find what features are
13214 * supported. These capabilites may be enabled/disabled by firmware so it's
13215 * best to walk the list rather than make assumptions.
13216 */
13217static void
13218bxe_probe_pci_caps(struct bxe_softc *sc)
13219{
13220    uint16_t link_status;
13221    int reg;
13222
13223    /* check if PCI Power Management is enabled */
13224    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13225        if (reg != 0) {
13226            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13227
13228            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13229            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13230        }
13231    }
13232
13233    link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2);
13234
13235    /* handle PCIe 2.0 workarounds for 57710 */
13236    if (CHIP_IS_E1(sc)) {
13237        /* workaround for 57710 errata E4_57710_27462 */
13238        sc->devinfo.pcie_link_speed =
13239            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13240
13241        /* workaround for 57710 errata E4_57710_27488 */
13242        sc->devinfo.pcie_link_width =
13243            ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13244        if (sc->devinfo.pcie_link_speed > 1) {
13245            sc->devinfo.pcie_link_width =
13246                ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1;
13247        }
13248    } else {
13249        sc->devinfo.pcie_link_speed =
13250            (link_status & PCIEM_LINK_STA_SPEED);
13251        sc->devinfo.pcie_link_width =
13252            ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13253    }
13254
13255    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13256          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13257
13258    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13259    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13260
13261    /* check if MSI capability is enabled */
13262    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13263        if (reg != 0) {
13264            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13265
13266            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13267            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13268        }
13269    }
13270
13271    /* check if MSI-X capability is enabled */
13272    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13273        if (reg != 0) {
13274            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13275
13276            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13277            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13278        }
13279    }
13280}
13281
13282static int
13283bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13284{
13285    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13286    uint32_t val;
13287
13288    /* get the outer vlan if we're in switch-dependent mode */
13289
13290    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13291    mf_info->ext_id = (uint16_t)val;
13292
13293    mf_info->multi_vnics_mode = 1;
13294
13295    if (!VALID_OVLAN(mf_info->ext_id)) {
13296        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13297        return (1);
13298    }
13299
13300    /* get the capabilities */
13301    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13302        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13303        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13304    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13305               FUNC_MF_CFG_PROTOCOL_FCOE) {
13306        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13307    } else {
13308        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13309    }
13310
13311    mf_info->vnics_per_port =
13312        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13313
13314    return (0);
13315}
13316
13317static uint32_t
13318bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13319{
13320    uint32_t retval = 0;
13321    uint32_t val;
13322
13323    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13324
13325    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13326        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13327            retval |= MF_PROTO_SUPPORT_ETHERNET;
13328        }
13329        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13330            retval |= MF_PROTO_SUPPORT_ISCSI;
13331        }
13332        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13333            retval |= MF_PROTO_SUPPORT_FCOE;
13334        }
13335    }
13336
13337    return (retval);
13338}
13339
13340static int
13341bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13342{
13343    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13344    uint32_t val;
13345
13346    /*
13347     * There is no outer vlan if we're in switch-independent mode.
13348     * If the mac is valid then assume multi-function.
13349     */
13350
13351    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13352
13353    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13354
13355    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13356
13357    mf_info->vnics_per_port =
13358        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13359
13360    return (0);
13361}
13362
13363static int
13364bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13365{
13366    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13367    uint32_t e1hov_tag;
13368    uint32_t func_config;
13369    uint32_t niv_config;
13370
13371    mf_info->multi_vnics_mode = 1;
13372
13373    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13374    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13375    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13376
13377    mf_info->ext_id =
13378        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13379                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13380
13381    mf_info->default_vlan =
13382        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13383                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13384
13385    mf_info->niv_allowed_priorities =
13386        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13387                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13388
13389    mf_info->niv_default_cos =
13390        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13391                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13392
13393    mf_info->afex_vlan_mode =
13394        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13395         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13396
13397    mf_info->niv_mba_enabled =
13398        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13399         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13400
13401    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13402
13403    mf_info->vnics_per_port =
13404        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13405
13406    return (0);
13407}
13408
13409static int
13410bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13411{
13412    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13413    uint32_t mf_cfg1;
13414    uint32_t mf_cfg2;
13415    uint32_t ovlan1;
13416    uint32_t ovlan2;
13417    uint8_t i, j;
13418
13419    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13420          SC_PORT(sc));
13421    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13422          mf_info->mf_config[SC_VN(sc)]);
13423    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13424          mf_info->multi_vnics_mode);
13425    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13426          mf_info->vnics_per_port);
13427    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13428          mf_info->ext_id);
13429    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13430          mf_info->min_bw[0], mf_info->min_bw[1],
13431          mf_info->min_bw[2], mf_info->min_bw[3]);
13432    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13433          mf_info->max_bw[0], mf_info->max_bw[1],
13434          mf_info->max_bw[2], mf_info->max_bw[3]);
13435    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13436          sc->mac_addr_str);
13437
13438    /* various MF mode sanity checks... */
13439
13440    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13441        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13442              SC_PORT(sc));
13443        return (1);
13444    }
13445
13446    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13447        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13448              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13449        return (1);
13450    }
13451
13452    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13453        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13454        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13455            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13456                  SC_VN(sc), OVLAN(sc));
13457            return (1);
13458        }
13459
13460        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13461            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13462                  mf_info->multi_vnics_mode, OVLAN(sc));
13463            return (1);
13464        }
13465
13466        /*
13467         * Verify all functions are either MF or SF mode. If MF, make sure
13468         * sure that all non-hidden functions have a valid ovlan. If SF,
13469         * make sure that all non-hidden functions have an invalid ovlan.
13470         */
13471        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13472            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13473            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13474            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13475                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13476                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13477                BLOGE(sc, "mf_mode=SD function %d MF config "
13478                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13479                      i, mf_info->multi_vnics_mode, ovlan1);
13480                return (1);
13481            }
13482        }
13483
13484        /* Verify all funcs on the same port each have a different ovlan. */
13485        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13486            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13487            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13488            /* iterate from the next function on the port to the max func */
13489            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13490                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13491                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13492                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13493                    VALID_OVLAN(ovlan1) &&
13494                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13495                    VALID_OVLAN(ovlan2) &&
13496                    (ovlan1 == ovlan2)) {
13497                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13498                              "have the same ovlan (%d)\n",
13499                          i, j, ovlan1);
13500                    return (1);
13501                }
13502            }
13503        }
13504    } /* MULTI_FUNCTION_SD */
13505
13506    return (0);
13507}
13508
13509static int
13510bxe_get_mf_cfg_info(struct bxe_softc *sc)
13511{
13512    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13513    uint32_t val, mac_upper;
13514    uint8_t i, vnic;
13515
13516    /* initialize mf_info defaults */
13517    mf_info->vnics_per_port   = 1;
13518    mf_info->multi_vnics_mode = FALSE;
13519    mf_info->path_has_ovlan   = FALSE;
13520    mf_info->mf_mode          = SINGLE_FUNCTION;
13521
13522    if (!CHIP_IS_MF_CAP(sc)) {
13523        return (0);
13524    }
13525
13526    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13527        BLOGE(sc, "Invalid mf_cfg_base!\n");
13528        return (1);
13529    }
13530
13531    /* get the MF mode (switch dependent / independent / single-function) */
13532
13533    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13534
13535    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13536    {
13537    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13538
13539        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13540
13541        /* check for legal upper mac bytes */
13542        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13543            mf_info->mf_mode = MULTI_FUNCTION_SI;
13544        } else {
13545            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13546        }
13547
13548        break;
13549
13550    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13551    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13552
13553        /* get outer vlan configuration */
13554        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13555
13556        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13557            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13558            mf_info->mf_mode = MULTI_FUNCTION_SD;
13559        } else {
13560            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13561        }
13562
13563        break;
13564
13565    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13566
13567        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13568        return (0);
13569
13570    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13571
13572        /*
13573         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13574         * and the MAC address is valid.
13575         */
13576        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13577
13578        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13579            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13580            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13581        } else {
13582            BLOGE(sc, "Invalid config for AFEX mode\n");
13583        }
13584
13585        break;
13586
13587    default:
13588
13589        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13590              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13591
13592        return (1);
13593    }
13594
13595    /* set path mf_mode (which could be different than function mf_mode) */
13596    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13597        mf_info->path_has_ovlan = TRUE;
13598    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13599        /*
13600         * Decide on path multi vnics mode. If we're not in MF mode and in
13601         * 4-port mode, this is good enough to check vnic-0 of the other port
13602         * on the same path
13603         */
13604        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13605            uint8_t other_port = !(PORT_ID(sc) & 1);
13606            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13607
13608            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13609
13610            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13611        }
13612    }
13613
13614    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13615        /* invalid MF config */
13616        if (SC_VN(sc) >= 1) {
13617            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13618            return (1);
13619        }
13620
13621        return (0);
13622    }
13623
13624    /* get the MF configuration */
13625    mf_info->mf_config[SC_VN(sc)] =
13626        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13627
13628    switch(mf_info->mf_mode)
13629    {
13630    case MULTI_FUNCTION_SD:
13631
13632        bxe_get_shmem_mf_cfg_info_sd(sc);
13633        break;
13634
13635    case MULTI_FUNCTION_SI:
13636
13637        bxe_get_shmem_mf_cfg_info_si(sc);
13638        break;
13639
13640    case MULTI_FUNCTION_AFEX:
13641
13642        bxe_get_shmem_mf_cfg_info_niv(sc);
13643        break;
13644
13645    default:
13646
13647        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13648              mf_info->mf_mode);
13649        return (1);
13650    }
13651
13652    /* get the congestion management parameters */
13653
13654    vnic = 0;
13655    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13656        /* get min/max bw */
13657        val = MFCFG_RD(sc, func_mf_config[i].config);
13658        mf_info->min_bw[vnic] =
13659            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13660        mf_info->max_bw[vnic] =
13661            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13662        vnic++;
13663    }
13664
13665    return (bxe_check_valid_mf_cfg(sc));
13666}
13667
13668static int
13669bxe_get_shmem_info(struct bxe_softc *sc)
13670{
13671    int port;
13672    uint32_t mac_hi, mac_lo, val;
13673
13674    port = SC_PORT(sc);
13675    mac_hi = mac_lo = 0;
13676
13677    sc->link_params.sc   = sc;
13678    sc->link_params.port = port;
13679
13680    /* get the hardware config info */
13681    sc->devinfo.hw_config =
13682        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13683    sc->devinfo.hw_config2 =
13684        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13685
13686    sc->link_params.hw_led_mode =
13687        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13688         SHARED_HW_CFG_LED_MODE_SHIFT);
13689
13690    /* get the port feature config */
13691    sc->port.config =
13692        SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13693
13694    /* get the link params */
13695    sc->link_params.speed_cap_mask[0] =
13696        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13697    sc->link_params.speed_cap_mask[1] =
13698        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13699
13700    /* get the lane config */
13701    sc->link_params.lane_config =
13702        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13703
13704    /* get the link config */
13705    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13706    sc->port.link_config[ELINK_INT_PHY] = val;
13707    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13708    sc->port.link_config[ELINK_EXT_PHY1] =
13709        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13710
13711    /* get the override preemphasis flag and enable it or turn it off */
13712    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13713    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13714        sc->link_params.feature_config_flags |=
13715            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13716    } else {
13717        sc->link_params.feature_config_flags &=
13718            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13719    }
13720
13721    /* get the initial value of the link params */
13722    sc->link_params.multi_phy_config =
13723        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13724
13725    /* get external phy info */
13726    sc->port.ext_phy_config =
13727        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13728
13729    /* get the multifunction configuration */
13730    bxe_get_mf_cfg_info(sc);
13731
13732    /* get the mac address */
13733    if (IS_MF(sc)) {
13734        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13735        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13736    } else {
13737        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13738        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13739    }
13740
13741    if ((mac_lo == 0) && (mac_hi == 0)) {
13742        *sc->mac_addr_str = 0;
13743        BLOGE(sc, "No Ethernet address programmed!\n");
13744    } else {
13745        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13746        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13747        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13748        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13749        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13750        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13751        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13752                 "%02x:%02x:%02x:%02x:%02x:%02x",
13753                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13754                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13755                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13756        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13757    }
13758
13759    return (0);
13760}
13761
13762static void
13763bxe_get_tunable_params(struct bxe_softc *sc)
13764{
13765    /* sanity checks */
13766
13767    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13768        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13769        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13770        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13771        bxe_interrupt_mode = INTR_MODE_MSIX;
13772    }
13773
13774    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13775        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13776        bxe_queue_count = 0;
13777    }
13778
13779    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13780        if (bxe_max_rx_bufs == 0) {
13781            bxe_max_rx_bufs = RX_BD_USABLE;
13782        } else {
13783            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13784            bxe_max_rx_bufs = 2048;
13785        }
13786    }
13787
13788    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13789        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13790        bxe_hc_rx_ticks = 25;
13791    }
13792
13793    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13794        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13795        bxe_hc_tx_ticks = 50;
13796    }
13797
13798    if (bxe_max_aggregation_size == 0) {
13799        bxe_max_aggregation_size = TPA_AGG_SIZE;
13800    }
13801
13802    if (bxe_max_aggregation_size > 0xffff) {
13803        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13804              bxe_max_aggregation_size);
13805        bxe_max_aggregation_size = TPA_AGG_SIZE;
13806    }
13807
13808    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13809        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13810        bxe_mrrs = -1;
13811    }
13812
13813    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13814        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13815        bxe_autogreeen = 0;
13816    }
13817
13818    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13819        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13820        bxe_udp_rss = 0;
13821    }
13822
13823    /* pull in user settings */
13824
13825    sc->interrupt_mode       = bxe_interrupt_mode;
13826    sc->max_rx_bufs          = bxe_max_rx_bufs;
13827    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13828    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13829    sc->max_aggregation_size = bxe_max_aggregation_size;
13830    sc->mrrs                 = bxe_mrrs;
13831    sc->autogreeen           = bxe_autogreeen;
13832    sc->udp_rss              = bxe_udp_rss;
13833
13834    if (bxe_interrupt_mode == INTR_MODE_INTX) {
13835        sc->num_queues = 1;
13836    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13837        sc->num_queues =
13838            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13839                MAX_RSS_CHAINS);
13840        if (sc->num_queues > mp_ncpus) {
13841            sc->num_queues = mp_ncpus;
13842        }
13843    }
13844
13845    BLOGD(sc, DBG_LOAD,
13846          "User Config: "
13847          "debug=0x%lx "
13848          "interrupt_mode=%d "
13849          "queue_count=%d "
13850          "hc_rx_ticks=%d "
13851          "hc_tx_ticks=%d "
13852          "rx_budget=%d "
13853          "max_aggregation_size=%d "
13854          "mrrs=%d "
13855          "autogreeen=%d "
13856          "udp_rss=%d\n",
13857          bxe_debug,
13858          sc->interrupt_mode,
13859          sc->num_queues,
13860          sc->hc_rx_ticks,
13861          sc->hc_tx_ticks,
13862          bxe_rx_budget,
13863          sc->max_aggregation_size,
13864          sc->mrrs,
13865          sc->autogreeen,
13866          sc->udp_rss);
13867}
13868
13869static int
13870bxe_media_detect(struct bxe_softc *sc)
13871{
13872    int port_type;
13873    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13874
13875    switch (sc->link_params.phy[phy_idx].media_type) {
13876    case ELINK_ETH_PHY_SFPP_10G_FIBER:
13877    case ELINK_ETH_PHY_XFP_FIBER:
13878        BLOGI(sc, "Found 10Gb Fiber media.\n");
13879        sc->media = IFM_10G_SR;
13880        port_type = PORT_FIBRE;
13881        break;
13882    case ELINK_ETH_PHY_SFP_1G_FIBER:
13883        BLOGI(sc, "Found 1Gb Fiber media.\n");
13884        sc->media = IFM_1000_SX;
13885        port_type = PORT_FIBRE;
13886        break;
13887    case ELINK_ETH_PHY_KR:
13888    case ELINK_ETH_PHY_CX4:
13889        BLOGI(sc, "Found 10GBase-CX4 media.\n");
13890        sc->media = IFM_10G_CX4;
13891        port_type = PORT_FIBRE;
13892        break;
13893    case ELINK_ETH_PHY_DA_TWINAX:
13894        BLOGI(sc, "Found 10Gb Twinax media.\n");
13895        sc->media = IFM_10G_TWINAX;
13896        port_type = PORT_DA;
13897        break;
13898    case ELINK_ETH_PHY_BASE_T:
13899        if (sc->link_params.speed_cap_mask[0] &
13900            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13901            BLOGI(sc, "Found 10GBase-T media.\n");
13902            sc->media = IFM_10G_T;
13903            port_type = PORT_TP;
13904        } else {
13905            BLOGI(sc, "Found 1000Base-T media.\n");
13906            sc->media = IFM_1000_T;
13907            port_type = PORT_TP;
13908        }
13909        break;
13910    case ELINK_ETH_PHY_NOT_PRESENT:
13911        BLOGI(sc, "Media not present.\n");
13912        sc->media = 0;
13913        port_type = PORT_OTHER;
13914        break;
13915    case ELINK_ETH_PHY_UNSPECIFIED:
13916    default:
13917        BLOGI(sc, "Unknown media!\n");
13918        sc->media = 0;
13919        port_type = PORT_OTHER;
13920        break;
13921    }
13922    return port_type;
13923}
13924
13925#define GET_FIELD(value, fname)                     \
13926    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13927#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13928#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13929
13930static int
13931bxe_get_igu_cam_info(struct bxe_softc *sc)
13932{
13933    int pfid = SC_FUNC(sc);
13934    int igu_sb_id;
13935    uint32_t val;
13936    uint8_t fid, igu_sb_cnt = 0;
13937
13938    sc->igu_base_sb = 0xff;
13939
13940    if (CHIP_INT_MODE_IS_BC(sc)) {
13941        int vn = SC_VN(sc);
13942        igu_sb_cnt = sc->igu_sb_cnt;
13943        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13944                           FP_SB_MAX_E1x);
13945        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13946                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13947        return (0);
13948    }
13949
13950    /* IGU in normal mode - read CAM */
13951    for (igu_sb_id = 0;
13952         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13953         igu_sb_id++) {
13954        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13955        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13956            continue;
13957        }
13958        fid = IGU_FID(val);
13959        if ((fid & IGU_FID_ENCODE_IS_PF)) {
13960            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13961                continue;
13962            }
13963            if (IGU_VEC(val) == 0) {
13964                /* default status block */
13965                sc->igu_dsb_id = igu_sb_id;
13966            } else {
13967                if (sc->igu_base_sb == 0xff) {
13968                    sc->igu_base_sb = igu_sb_id;
13969                }
13970                igu_sb_cnt++;
13971            }
13972        }
13973    }
13974
13975    /*
13976     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13977     * that number of CAM entries will not be equal to the value advertised in
13978     * PCI. Driver should use the minimal value of both as the actual status
13979     * block count
13980     */
13981    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13982
13983    if (igu_sb_cnt == 0) {
13984        BLOGE(sc, "CAM configuration error\n");
13985        return (-1);
13986    }
13987
13988    return (0);
13989}
13990
13991/*
13992 * Gather various information from the device config space, the device itself,
13993 * shmem, and the user input.
13994 */
13995static int
13996bxe_get_device_info(struct bxe_softc *sc)
13997{
13998    uint32_t val;
13999    int rc;
14000
14001    /* Get the data for the device */
14002    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14003    sc->devinfo.device_id    = pci_get_device(sc->dev);
14004    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14005    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14006
14007    /* get the chip revision (chip metal comes from pci config space) */
14008    sc->devinfo.chip_id     =
14009    sc->link_params.chip_id =
14010        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14011         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14012         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14013         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14014
14015    /* force 57811 according to MISC register */
14016    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14017        if (CHIP_IS_57810(sc)) {
14018            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14019                                   (sc->devinfo.chip_id & 0x0000ffff));
14020        } else if (CHIP_IS_57810_MF(sc)) {
14021            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14022                                   (sc->devinfo.chip_id & 0x0000ffff));
14023        }
14024        sc->devinfo.chip_id |= 0x1;
14025    }
14026
14027    BLOGD(sc, DBG_LOAD,
14028          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14029          sc->devinfo.chip_id,
14030          ((sc->devinfo.chip_id >> 16) & 0xffff),
14031          ((sc->devinfo.chip_id >> 12) & 0xf),
14032          ((sc->devinfo.chip_id >>  4) & 0xff),
14033          ((sc->devinfo.chip_id >>  0) & 0xf));
14034
14035    val = (REG_RD(sc, 0x2874) & 0x55);
14036    if ((sc->devinfo.chip_id & 0x1) ||
14037        (CHIP_IS_E1(sc) && val) ||
14038        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14039        sc->flags |= BXE_ONE_PORT_FLAG;
14040        BLOGD(sc, DBG_LOAD, "single port device\n");
14041    }
14042
14043    /* set the doorbell size */
14044    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14045
14046    /* determine whether the device is in 2 port or 4 port mode */
14047    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14048    if (CHIP_IS_E2E3(sc)) {
14049        /*
14050         * Read port4mode_en_ovwr[0]:
14051         *   If 1, four port mode is in port4mode_en_ovwr[1].
14052         *   If 0, four port mode is in port4mode_en[0].
14053         */
14054        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14055        if (val & 1) {
14056            val = ((val >> 1) & 1);
14057        } else {
14058            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14059        }
14060
14061        sc->devinfo.chip_port_mode =
14062            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14063
14064        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14065    }
14066
14067    /* get the function and path info for the device */
14068    bxe_get_function_num(sc);
14069
14070    /* get the shared memory base address */
14071    sc->devinfo.shmem_base     =
14072    sc->link_params.shmem_base =
14073        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14074    sc->devinfo.shmem2_base =
14075        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14076                                  MISC_REG_GENERIC_CR_0));
14077
14078    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14079          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14080
14081    if (!sc->devinfo.shmem_base) {
14082        /* this should ONLY prevent upcoming shmem reads */
14083        BLOGI(sc, "MCP not active\n");
14084        sc->flags |= BXE_NO_MCP_FLAG;
14085        return (0);
14086    }
14087
14088    /* make sure the shared memory contents are valid */
14089    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14090    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14091        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14092        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14093        return (0);
14094    }
14095    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14096
14097    /* get the bootcode version */
14098    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14099    snprintf(sc->devinfo.bc_ver_str,
14100             sizeof(sc->devinfo.bc_ver_str),
14101             "%d.%d.%d",
14102             ((sc->devinfo.bc_ver >> 24) & 0xff),
14103             ((sc->devinfo.bc_ver >> 16) & 0xff),
14104             ((sc->devinfo.bc_ver >>  8) & 0xff));
14105    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14106
14107    /* get the bootcode shmem address */
14108    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14109    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14110
14111    /* clean indirect addresses as they're not used */
14112    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14113    if (IS_PF(sc)) {
14114        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14115        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14116        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14117        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14118        if (CHIP_IS_E1x(sc)) {
14119            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14120            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14121            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14122            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14123        }
14124
14125        /*
14126         * Enable internal target-read (in case we are probed after PF
14127         * FLR). Must be done prior to any BAR read access. Only for
14128         * 57712 and up
14129         */
14130        if (!CHIP_IS_E1x(sc)) {
14131            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14132        }
14133    }
14134
14135    /* get the nvram size */
14136    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14137    sc->devinfo.flash_size =
14138        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14139    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14140
14141    /* get PCI capabilites */
14142    bxe_probe_pci_caps(sc);
14143
14144    bxe_set_power_state(sc, PCI_PM_D0);
14145
14146    /* get various configuration parameters from shmem */
14147    bxe_get_shmem_info(sc);
14148
14149    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14150        val = pci_read_config(sc->dev,
14151                              (sc->devinfo.pcie_msix_cap_reg +
14152                               PCIR_MSIX_CTRL),
14153                              2);
14154        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14155    } else {
14156        sc->igu_sb_cnt = 1;
14157    }
14158
14159    sc->igu_base_addr = BAR_IGU_INTMEM;
14160
14161    /* initialize IGU parameters */
14162    if (CHIP_IS_E1x(sc)) {
14163        sc->devinfo.int_block = INT_BLOCK_HC;
14164        sc->igu_dsb_id = DEF_SB_IGU_ID;
14165        sc->igu_base_sb = 0;
14166    } else {
14167        sc->devinfo.int_block = INT_BLOCK_IGU;
14168
14169        /* do not allow device reset during IGU info preocessing */
14170        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14171
14172        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14173
14174        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14175            int tout = 5000;
14176
14177            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14178
14179            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14180            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14181            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14182
14183            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14184                tout--;
14185                DELAY(1000);
14186            }
14187
14188            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14189                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14190                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14191                return (-1);
14192            }
14193        }
14194
14195        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14196            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14197            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14198        } else {
14199            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14200        }
14201
14202        rc = bxe_get_igu_cam_info(sc);
14203
14204        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14205
14206        if (rc) {
14207            return (rc);
14208        }
14209    }
14210
14211    /*
14212     * Get base FW non-default (fast path) status block ID. This value is
14213     * used to initialize the fw_sb_id saved on the fp/queue structure to
14214     * determine the id used by the FW.
14215     */
14216    if (CHIP_IS_E1x(sc)) {
14217        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14218    } else {
14219        /*
14220         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14221         * the same queue are indicated on the same IGU SB). So we prefer
14222         * FW and IGU SBs to be the same value.
14223         */
14224        sc->base_fw_ndsb = sc->igu_base_sb;
14225    }
14226
14227    BLOGD(sc, DBG_LOAD,
14228          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14229          sc->igu_dsb_id, sc->igu_base_sb,
14230          sc->igu_sb_cnt, sc->base_fw_ndsb);
14231
14232    elink_phy_probe(&sc->link_params);
14233
14234    return (0);
14235}
14236
14237static void
14238bxe_link_settings_supported(struct bxe_softc *sc,
14239                            uint32_t         switch_cfg)
14240{
14241    uint32_t cfg_size = 0;
14242    uint32_t idx;
14243    uint8_t port = SC_PORT(sc);
14244
14245    /* aggregation of supported attributes of all external phys */
14246    sc->port.supported[0] = 0;
14247    sc->port.supported[1] = 0;
14248
14249    switch (sc->link_params.num_phys) {
14250    case 1:
14251        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14252        cfg_size = 1;
14253        break;
14254    case 2:
14255        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14256        cfg_size = 1;
14257        break;
14258    case 3:
14259        if (sc->link_params.multi_phy_config &
14260            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14261            sc->port.supported[1] =
14262                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14263            sc->port.supported[0] =
14264                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14265        } else {
14266            sc->port.supported[0] =
14267                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14268            sc->port.supported[1] =
14269                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14270        }
14271        cfg_size = 2;
14272        break;
14273    }
14274
14275    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14276        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14277              SHMEM_RD(sc,
14278                       dev_info.port_hw_config[port].external_phy_config),
14279              SHMEM_RD(sc,
14280                       dev_info.port_hw_config[port].external_phy_config2));
14281        return;
14282    }
14283
14284    if (CHIP_IS_E3(sc))
14285        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14286    else {
14287        switch (switch_cfg) {
14288        case ELINK_SWITCH_CFG_1G:
14289            sc->port.phy_addr =
14290                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14291            break;
14292        case ELINK_SWITCH_CFG_10G:
14293            sc->port.phy_addr =
14294                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14295            break;
14296        default:
14297            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14298                  sc->port.link_config[0]);
14299            return;
14300        }
14301    }
14302
14303    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14304
14305    /* mask what we support according to speed_cap_mask per configuration */
14306    for (idx = 0; idx < cfg_size; idx++) {
14307        if (!(sc->link_params.speed_cap_mask[idx] &
14308              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14309            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14310        }
14311
14312        if (!(sc->link_params.speed_cap_mask[idx] &
14313              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14314            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14315        }
14316
14317        if (!(sc->link_params.speed_cap_mask[idx] &
14318              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14319            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14320        }
14321
14322        if (!(sc->link_params.speed_cap_mask[idx] &
14323              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14324            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14325        }
14326
14327        if (!(sc->link_params.speed_cap_mask[idx] &
14328              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14329            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14330        }
14331
14332        if (!(sc->link_params.speed_cap_mask[idx] &
14333              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14334            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14335        }
14336
14337        if (!(sc->link_params.speed_cap_mask[idx] &
14338              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14339            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14340        }
14341
14342        if (!(sc->link_params.speed_cap_mask[idx] &
14343              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14344            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14345        }
14346    }
14347
14348    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14349          sc->port.supported[0], sc->port.supported[1]);
14350	ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14351					sc->port.supported[0], sc->port.supported[1]);
14352}
14353
14354static void
14355bxe_link_settings_requested(struct bxe_softc *sc)
14356{
14357    uint32_t link_config;
14358    uint32_t idx;
14359    uint32_t cfg_size = 0;
14360
14361    sc->port.advertising[0] = 0;
14362    sc->port.advertising[1] = 0;
14363
14364    switch (sc->link_params.num_phys) {
14365    case 1:
14366    case 2:
14367        cfg_size = 1;
14368        break;
14369    case 3:
14370        cfg_size = 2;
14371        break;
14372    }
14373
14374    for (idx = 0; idx < cfg_size; idx++) {
14375        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14376        link_config = sc->port.link_config[idx];
14377
14378        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14379        case PORT_FEATURE_LINK_SPEED_AUTO:
14380            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14381                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14382                sc->port.advertising[idx] |= sc->port.supported[idx];
14383                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14384                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14385                    sc->port.advertising[idx] |=
14386                        (ELINK_SUPPORTED_100baseT_Half |
14387                         ELINK_SUPPORTED_100baseT_Full);
14388            } else {
14389                /* force 10G, no AN */
14390                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14391                sc->port.advertising[idx] |=
14392                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14393                continue;
14394            }
14395            break;
14396
14397        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14398            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14399                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14400                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14401                                              ADVERTISED_TP);
14402            } else {
14403                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14404                          "speed_cap_mask=0x%08x\n",
14405                      link_config, sc->link_params.speed_cap_mask[idx]);
14406                return;
14407            }
14408            break;
14409
14410        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14411            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14412                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14413                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14414                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14415                                              ADVERTISED_TP);
14416				ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14417								sc->link_params.req_duplex[idx]);
14418            } else {
14419                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14420                          "speed_cap_mask=0x%08x\n",
14421                      link_config, sc->link_params.speed_cap_mask[idx]);
14422                return;
14423            }
14424            break;
14425
14426        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14427            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14428                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14429                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14430                                              ADVERTISED_TP);
14431            } else {
14432                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14433                          "speed_cap_mask=0x%08x\n",
14434                      link_config, sc->link_params.speed_cap_mask[idx]);
14435                return;
14436            }
14437            break;
14438
14439        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14440            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14441                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14442                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14443                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14444                                              ADVERTISED_TP);
14445            } else {
14446                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14447                          "speed_cap_mask=0x%08x\n",
14448                      link_config, sc->link_params.speed_cap_mask[idx]);
14449                return;
14450            }
14451            break;
14452
14453        case PORT_FEATURE_LINK_SPEED_1G:
14454            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14455                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14456                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14457                                              ADVERTISED_TP);
14458            } else {
14459                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14460                          "speed_cap_mask=0x%08x\n",
14461                      link_config, sc->link_params.speed_cap_mask[idx]);
14462                return;
14463            }
14464            break;
14465
14466        case PORT_FEATURE_LINK_SPEED_2_5G:
14467            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14468                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14469                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14470                                              ADVERTISED_TP);
14471            } else {
14472                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14473                          "speed_cap_mask=0x%08x\n",
14474                      link_config, sc->link_params.speed_cap_mask[idx]);
14475                return;
14476            }
14477            break;
14478
14479        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14480            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14481                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14482                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14483                                              ADVERTISED_FIBRE);
14484            } else {
14485                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14486                          "speed_cap_mask=0x%08x\n",
14487                      link_config, sc->link_params.speed_cap_mask[idx]);
14488                return;
14489            }
14490            break;
14491
14492        case PORT_FEATURE_LINK_SPEED_20G:
14493            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14494            break;
14495
14496        default:
14497            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14498                      "speed_cap_mask=0x%08x\n",
14499                  link_config, sc->link_params.speed_cap_mask[idx]);
14500            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14501            sc->port.advertising[idx] = sc->port.supported[idx];
14502            break;
14503        }
14504
14505        sc->link_params.req_flow_ctrl[idx] =
14506            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14507
14508        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14509            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14510                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14511            } else {
14512                bxe_set_requested_fc(sc);
14513            }
14514        }
14515
14516        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14517                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14518              sc->link_params.req_line_speed[idx],
14519              sc->link_params.req_duplex[idx],
14520              sc->link_params.req_flow_ctrl[idx],
14521              sc->port.advertising[idx]);
14522		ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14523						"advertising=0x%x\n",
14524						sc->link_params.req_line_speed[idx],
14525						sc->link_params.req_duplex[idx],
14526						sc->port.advertising[idx]);
14527    }
14528}
14529
14530static void
14531bxe_get_phy_info(struct bxe_softc *sc)
14532{
14533    uint8_t port = SC_PORT(sc);
14534    uint32_t config = sc->port.config;
14535    uint32_t eee_mode;
14536
14537    /* shmem data already read in bxe_get_shmem_info() */
14538
14539    ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14540                        "link_config0=0x%08x\n",
14541               sc->link_params.lane_config,
14542               sc->link_params.speed_cap_mask[0],
14543               sc->port.link_config[0]);
14544
14545
14546    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14547    bxe_link_settings_requested(sc);
14548
14549    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14550        sc->link_params.feature_config_flags |=
14551            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14552    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14553        sc->link_params.feature_config_flags &=
14554            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14555    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14556        sc->link_params.feature_config_flags |=
14557            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14558    }
14559
14560    /* configure link feature according to nvram value */
14561    eee_mode =
14562        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14563          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14564         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14565    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14566        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14567                                    ELINK_EEE_MODE_ENABLE_LPI |
14568                                    ELINK_EEE_MODE_OUTPUT_TIME);
14569    } else {
14570        sc->link_params.eee_mode = 0;
14571    }
14572
14573    /* get the media type */
14574    bxe_media_detect(sc);
14575	ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14576}
14577
14578static void
14579bxe_get_params(struct bxe_softc *sc)
14580{
14581    /* get user tunable params */
14582    bxe_get_tunable_params(sc);
14583
14584    /* select the RX and TX ring sizes */
14585    sc->tx_ring_size = TX_BD_USABLE;
14586    sc->rx_ring_size = RX_BD_USABLE;
14587
14588    /* XXX disable WoL */
14589    sc->wol = 0;
14590}
14591
14592static void
14593bxe_set_modes_bitmap(struct bxe_softc *sc)
14594{
14595    uint32_t flags = 0;
14596
14597    if (CHIP_REV_IS_FPGA(sc)) {
14598        SET_FLAGS(flags, MODE_FPGA);
14599    } else if (CHIP_REV_IS_EMUL(sc)) {
14600        SET_FLAGS(flags, MODE_EMUL);
14601    } else {
14602        SET_FLAGS(flags, MODE_ASIC);
14603    }
14604
14605    if (CHIP_IS_MODE_4_PORT(sc)) {
14606        SET_FLAGS(flags, MODE_PORT4);
14607    } else {
14608        SET_FLAGS(flags, MODE_PORT2);
14609    }
14610
14611    if (CHIP_IS_E2(sc)) {
14612        SET_FLAGS(flags, MODE_E2);
14613    } else if (CHIP_IS_E3(sc)) {
14614        SET_FLAGS(flags, MODE_E3);
14615        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14616            SET_FLAGS(flags, MODE_E3_A0);
14617        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14618            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14619        }
14620    }
14621
14622    if (IS_MF(sc)) {
14623        SET_FLAGS(flags, MODE_MF);
14624        switch (sc->devinfo.mf_info.mf_mode) {
14625        case MULTI_FUNCTION_SD:
14626            SET_FLAGS(flags, MODE_MF_SD);
14627            break;
14628        case MULTI_FUNCTION_SI:
14629            SET_FLAGS(flags, MODE_MF_SI);
14630            break;
14631        case MULTI_FUNCTION_AFEX:
14632            SET_FLAGS(flags, MODE_MF_AFEX);
14633            break;
14634        }
14635    } else {
14636        SET_FLAGS(flags, MODE_SF);
14637    }
14638
14639#if defined(__LITTLE_ENDIAN)
14640    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14641#else /* __BIG_ENDIAN */
14642    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14643#endif
14644
14645    INIT_MODE_FLAGS(sc) = flags;
14646}
14647
14648static int
14649bxe_alloc_hsi_mem(struct bxe_softc *sc)
14650{
14651    struct bxe_fastpath *fp;
14652    bus_addr_t busaddr;
14653    int max_agg_queues;
14654    int max_segments;
14655    bus_size_t max_size;
14656    bus_size_t max_seg_size;
14657    char buf[32];
14658    int rc;
14659    int i, j;
14660
14661    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14662
14663    /* allocate the parent bus DMA tag */
14664    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14665                            1,                        /* alignment */
14666                            0,                        /* boundary limit */
14667                            BUS_SPACE_MAXADDR,        /* restricted low */
14668                            BUS_SPACE_MAXADDR,        /* restricted hi */
14669                            NULL,                     /* addr filter() */
14670                            NULL,                     /* addr filter() arg */
14671                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14672                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14673                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14674                            0,                        /* flags */
14675                            NULL,                     /* lock() */
14676                            NULL,                     /* lock() arg */
14677                            &sc->parent_dma_tag);     /* returned dma tag */
14678    if (rc != 0) {
14679        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14680        return (1);
14681    }
14682
14683    /************************/
14684    /* DEFAULT STATUS BLOCK */
14685    /************************/
14686
14687    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14688                      &sc->def_sb_dma, "default status block") != 0) {
14689        /* XXX */
14690        bus_dma_tag_destroy(sc->parent_dma_tag);
14691        return (1);
14692    }
14693
14694    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14695
14696    /***************/
14697    /* EVENT QUEUE */
14698    /***************/
14699
14700    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14701                      &sc->eq_dma, "event queue") != 0) {
14702        /* XXX */
14703        bxe_dma_free(sc, &sc->def_sb_dma);
14704        sc->def_sb = NULL;
14705        bus_dma_tag_destroy(sc->parent_dma_tag);
14706        return (1);
14707    }
14708
14709    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14710
14711    /*************/
14712    /* SLOW PATH */
14713    /*************/
14714
14715    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14716                      &sc->sp_dma, "slow path") != 0) {
14717        /* XXX */
14718        bxe_dma_free(sc, &sc->eq_dma);
14719        sc->eq = NULL;
14720        bxe_dma_free(sc, &sc->def_sb_dma);
14721        sc->def_sb = NULL;
14722        bus_dma_tag_destroy(sc->parent_dma_tag);
14723        return (1);
14724    }
14725
14726    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14727
14728    /*******************/
14729    /* SLOW PATH QUEUE */
14730    /*******************/
14731
14732    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14733                      &sc->spq_dma, "slow path queue") != 0) {
14734        /* XXX */
14735        bxe_dma_free(sc, &sc->sp_dma);
14736        sc->sp = NULL;
14737        bxe_dma_free(sc, &sc->eq_dma);
14738        sc->eq = NULL;
14739        bxe_dma_free(sc, &sc->def_sb_dma);
14740        sc->def_sb = NULL;
14741        bus_dma_tag_destroy(sc->parent_dma_tag);
14742        return (1);
14743    }
14744
14745    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14746
14747    /***************************/
14748    /* FW DECOMPRESSION BUFFER */
14749    /***************************/
14750
14751    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14752                      "fw decompression buffer") != 0) {
14753        /* XXX */
14754        bxe_dma_free(sc, &sc->spq_dma);
14755        sc->spq = NULL;
14756        bxe_dma_free(sc, &sc->sp_dma);
14757        sc->sp = NULL;
14758        bxe_dma_free(sc, &sc->eq_dma);
14759        sc->eq = NULL;
14760        bxe_dma_free(sc, &sc->def_sb_dma);
14761        sc->def_sb = NULL;
14762        bus_dma_tag_destroy(sc->parent_dma_tag);
14763        return (1);
14764    }
14765
14766    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14767
14768    if ((sc->gz_strm =
14769         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14770        /* XXX */
14771        bxe_dma_free(sc, &sc->gz_buf_dma);
14772        sc->gz_buf = NULL;
14773        bxe_dma_free(sc, &sc->spq_dma);
14774        sc->spq = NULL;
14775        bxe_dma_free(sc, &sc->sp_dma);
14776        sc->sp = NULL;
14777        bxe_dma_free(sc, &sc->eq_dma);
14778        sc->eq = NULL;
14779        bxe_dma_free(sc, &sc->def_sb_dma);
14780        sc->def_sb = NULL;
14781        bus_dma_tag_destroy(sc->parent_dma_tag);
14782        return (1);
14783    }
14784
14785    /*************/
14786    /* FASTPATHS */
14787    /*************/
14788
14789    /* allocate DMA memory for each fastpath structure */
14790    for (i = 0; i < sc->num_queues; i++) {
14791        fp = &sc->fp[i];
14792        fp->sc    = sc;
14793        fp->index = i;
14794
14795        /*******************/
14796        /* FP STATUS BLOCK */
14797        /*******************/
14798
14799        snprintf(buf, sizeof(buf), "fp %d status block", i);
14800        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14801                          &fp->sb_dma, buf) != 0) {
14802            /* XXX unwind and free previous fastpath allocations */
14803            BLOGE(sc, "Failed to alloc %s\n", buf);
14804            return (1);
14805        } else {
14806            if (CHIP_IS_E2E3(sc)) {
14807                fp->status_block.e2_sb =
14808                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14809            } else {
14810                fp->status_block.e1x_sb =
14811                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14812            }
14813        }
14814
14815        /******************/
14816        /* FP TX BD CHAIN */
14817        /******************/
14818
14819        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14820        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14821                          &fp->tx_dma, buf) != 0) {
14822            /* XXX unwind and free previous fastpath allocations */
14823            BLOGE(sc, "Failed to alloc %s\n", buf);
14824            return (1);
14825        } else {
14826            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14827        }
14828
14829        /* link together the tx bd chain pages */
14830        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14831            /* index into the tx bd chain array to last entry per page */
14832            struct eth_tx_next_bd *tx_next_bd =
14833                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14834            /* point to the next page and wrap from last page */
14835            busaddr = (fp->tx_dma.paddr +
14836                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14837            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14838            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14839        }
14840
14841        /******************/
14842        /* FP RX BD CHAIN */
14843        /******************/
14844
14845        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14846        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14847                          &fp->rx_dma, buf) != 0) {
14848            /* XXX unwind and free previous fastpath allocations */
14849            BLOGE(sc, "Failed to alloc %s\n", buf);
14850            return (1);
14851        } else {
14852            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14853        }
14854
14855        /* link together the rx bd chain pages */
14856        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14857            /* index into the rx bd chain array to last entry per page */
14858            struct eth_rx_bd *rx_bd =
14859                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14860            /* point to the next page and wrap from last page */
14861            busaddr = (fp->rx_dma.paddr +
14862                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14863            rx_bd->addr_hi = htole32(U64_HI(busaddr));
14864            rx_bd->addr_lo = htole32(U64_LO(busaddr));
14865        }
14866
14867        /*******************/
14868        /* FP RX RCQ CHAIN */
14869        /*******************/
14870
14871        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14872        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14873                          &fp->rcq_dma, buf) != 0) {
14874            /* XXX unwind and free previous fastpath allocations */
14875            BLOGE(sc, "Failed to alloc %s\n", buf);
14876            return (1);
14877        } else {
14878            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14879        }
14880
14881        /* link together the rcq chain pages */
14882        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14883            /* index into the rcq chain array to last entry per page */
14884            struct eth_rx_cqe_next_page *rx_cqe_next =
14885                (struct eth_rx_cqe_next_page *)
14886                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14887            /* point to the next page and wrap from last page */
14888            busaddr = (fp->rcq_dma.paddr +
14889                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14890            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14891            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14892        }
14893
14894        /*******************/
14895        /* FP RX SGE CHAIN */
14896        /*******************/
14897
14898        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14899        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14900                          &fp->rx_sge_dma, buf) != 0) {
14901            /* XXX unwind and free previous fastpath allocations */
14902            BLOGE(sc, "Failed to alloc %s\n", buf);
14903            return (1);
14904        } else {
14905            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14906        }
14907
14908        /* link together the sge chain pages */
14909        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14910            /* index into the rcq chain array to last entry per page */
14911            struct eth_rx_sge *rx_sge =
14912                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14913            /* point to the next page and wrap from last page */
14914            busaddr = (fp->rx_sge_dma.paddr +
14915                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14916            rx_sge->addr_hi = htole32(U64_HI(busaddr));
14917            rx_sge->addr_lo = htole32(U64_LO(busaddr));
14918        }
14919
14920        /***********************/
14921        /* FP TX MBUF DMA MAPS */
14922        /***********************/
14923
14924        /* set required sizes before mapping to conserve resources */
14925        if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14926            max_size     = BXE_TSO_MAX_SIZE;
14927            max_segments = BXE_TSO_MAX_SEGMENTS;
14928            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14929        } else {
14930            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14931            max_segments = BXE_MAX_SEGMENTS;
14932            max_seg_size = MCLBYTES;
14933        }
14934
14935        /* create a dma tag for the tx mbufs */
14936        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14937                                1,                  /* alignment */
14938                                0,                  /* boundary limit */
14939                                BUS_SPACE_MAXADDR,  /* restricted low */
14940                                BUS_SPACE_MAXADDR,  /* restricted hi */
14941                                NULL,               /* addr filter() */
14942                                NULL,               /* addr filter() arg */
14943                                max_size,           /* max map size */
14944                                max_segments,       /* num discontinuous */
14945                                max_seg_size,       /* max seg size */
14946                                0,                  /* flags */
14947                                NULL,               /* lock() */
14948                                NULL,               /* lock() arg */
14949                                &fp->tx_mbuf_tag);  /* returned dma tag */
14950        if (rc != 0) {
14951            /* XXX unwind and free previous fastpath allocations */
14952            BLOGE(sc, "Failed to create dma tag for "
14953                      "'fp %d tx mbufs' (%d)\n", i, rc);
14954            return (1);
14955        }
14956
14957        /* create dma maps for each of the tx mbuf clusters */
14958        for (j = 0; j < TX_BD_TOTAL; j++) {
14959            if (bus_dmamap_create(fp->tx_mbuf_tag,
14960                                  BUS_DMA_NOWAIT,
14961                                  &fp->tx_mbuf_chain[j].m_map)) {
14962                /* XXX unwind and free previous fastpath allocations */
14963                BLOGE(sc, "Failed to create dma map for "
14964                          "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14965                return (1);
14966            }
14967        }
14968
14969        /***********************/
14970        /* FP RX MBUF DMA MAPS */
14971        /***********************/
14972
14973        /* create a dma tag for the rx mbufs */
14974        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14975                                1,                  /* alignment */
14976                                0,                  /* boundary limit */
14977                                BUS_SPACE_MAXADDR,  /* restricted low */
14978                                BUS_SPACE_MAXADDR,  /* restricted hi */
14979                                NULL,               /* addr filter() */
14980                                NULL,               /* addr filter() arg */
14981                                MJUM9BYTES,         /* max map size */
14982                                1,                  /* num discontinuous */
14983                                MJUM9BYTES,         /* max seg size */
14984                                0,                  /* flags */
14985                                NULL,               /* lock() */
14986                                NULL,               /* lock() arg */
14987                                &fp->rx_mbuf_tag);  /* returned dma tag */
14988        if (rc != 0) {
14989            /* XXX unwind and free previous fastpath allocations */
14990            BLOGE(sc, "Failed to create dma tag for "
14991                      "'fp %d rx mbufs' (%d)\n", i, rc);
14992            return (1);
14993        }
14994
14995        /* create dma maps for each of the rx mbuf clusters */
14996        for (j = 0; j < RX_BD_TOTAL; j++) {
14997            if (bus_dmamap_create(fp->rx_mbuf_tag,
14998                                  BUS_DMA_NOWAIT,
14999                                  &fp->rx_mbuf_chain[j].m_map)) {
15000                /* XXX unwind and free previous fastpath allocations */
15001                BLOGE(sc, "Failed to create dma map for "
15002                          "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
15003                return (1);
15004            }
15005        }
15006
15007        /* create dma map for the spare rx mbuf cluster */
15008        if (bus_dmamap_create(fp->rx_mbuf_tag,
15009                              BUS_DMA_NOWAIT,
15010                              &fp->rx_mbuf_spare_map)) {
15011            /* XXX unwind and free previous fastpath allocations */
15012            BLOGE(sc, "Failed to create dma map for "
15013                      "'fp %d spare rx mbuf' (%d)\n", i, rc);
15014            return (1);
15015        }
15016
15017        /***************************/
15018        /* FP RX SGE MBUF DMA MAPS */
15019        /***************************/
15020
15021        /* create a dma tag for the rx sge mbufs */
15022        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15023                                1,                  /* alignment */
15024                                0,                  /* boundary limit */
15025                                BUS_SPACE_MAXADDR,  /* restricted low */
15026                                BUS_SPACE_MAXADDR,  /* restricted hi */
15027                                NULL,               /* addr filter() */
15028                                NULL,               /* addr filter() arg */
15029                                BCM_PAGE_SIZE,      /* max map size */
15030                                1,                  /* num discontinuous */
15031                                BCM_PAGE_SIZE,      /* max seg size */
15032                                0,                  /* flags */
15033                                NULL,               /* lock() */
15034                                NULL,               /* lock() arg */
15035                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15036        if (rc != 0) {
15037            /* XXX unwind and free previous fastpath allocations */
15038            BLOGE(sc, "Failed to create dma tag for "
15039                      "'fp %d rx sge mbufs' (%d)\n", i, rc);
15040            return (1);
15041        }
15042
15043        /* create dma maps for the rx sge mbuf clusters */
15044        for (j = 0; j < RX_SGE_TOTAL; j++) {
15045            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15046                                  BUS_DMA_NOWAIT,
15047                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15048                /* XXX unwind and free previous fastpath allocations */
15049                BLOGE(sc, "Failed to create dma map for "
15050                          "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
15051                return (1);
15052            }
15053        }
15054
15055        /* create dma map for the spare rx sge mbuf cluster */
15056        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15057                              BUS_DMA_NOWAIT,
15058                              &fp->rx_sge_mbuf_spare_map)) {
15059            /* XXX unwind and free previous fastpath allocations */
15060            BLOGE(sc, "Failed to create dma map for "
15061                      "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
15062            return (1);
15063        }
15064
15065        /***************************/
15066        /* FP RX TPA MBUF DMA MAPS */
15067        /***************************/
15068
15069        /* create dma maps for the rx tpa mbuf clusters */
15070        max_agg_queues = MAX_AGG_QS(sc);
15071
15072        for (j = 0; j < max_agg_queues; j++) {
15073            if (bus_dmamap_create(fp->rx_mbuf_tag,
15074                                  BUS_DMA_NOWAIT,
15075                                  &fp->rx_tpa_info[j].bd.m_map)) {
15076                /* XXX unwind and free previous fastpath allocations */
15077                BLOGE(sc, "Failed to create dma map for "
15078                          "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
15079                return (1);
15080            }
15081        }
15082
15083        /* create dma map for the spare rx tpa mbuf cluster */
15084        if (bus_dmamap_create(fp->rx_mbuf_tag,
15085                              BUS_DMA_NOWAIT,
15086                              &fp->rx_tpa_info_mbuf_spare_map)) {
15087            /* XXX unwind and free previous fastpath allocations */
15088            BLOGE(sc, "Failed to create dma map for "
15089                      "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
15090            return (1);
15091        }
15092
15093        bxe_init_sge_ring_bit_mask(fp);
15094    }
15095
15096    return (0);
15097}
15098
15099static void
15100bxe_free_hsi_mem(struct bxe_softc *sc)
15101{
15102    struct bxe_fastpath *fp;
15103    int max_agg_queues;
15104    int i, j;
15105
15106    if (sc->parent_dma_tag == NULL) {
15107        return; /* assume nothing was allocated */
15108    }
15109
15110    for (i = 0; i < sc->num_queues; i++) {
15111        fp = &sc->fp[i];
15112
15113        /*******************/
15114        /* FP STATUS BLOCK */
15115        /*******************/
15116
15117        bxe_dma_free(sc, &fp->sb_dma);
15118        memset(&fp->status_block, 0, sizeof(fp->status_block));
15119
15120        /******************/
15121        /* FP TX BD CHAIN */
15122        /******************/
15123
15124        bxe_dma_free(sc, &fp->tx_dma);
15125        fp->tx_chain = NULL;
15126
15127        /******************/
15128        /* FP RX BD CHAIN */
15129        /******************/
15130
15131        bxe_dma_free(sc, &fp->rx_dma);
15132        fp->rx_chain = NULL;
15133
15134        /*******************/
15135        /* FP RX RCQ CHAIN */
15136        /*******************/
15137
15138        bxe_dma_free(sc, &fp->rcq_dma);
15139        fp->rcq_chain = NULL;
15140
15141        /*******************/
15142        /* FP RX SGE CHAIN */
15143        /*******************/
15144
15145        bxe_dma_free(sc, &fp->rx_sge_dma);
15146        fp->rx_sge_chain = NULL;
15147
15148        /***********************/
15149        /* FP TX MBUF DMA MAPS */
15150        /***********************/
15151
15152        if (fp->tx_mbuf_tag != NULL) {
15153            for (j = 0; j < TX_BD_TOTAL; j++) {
15154                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15155                    bus_dmamap_unload(fp->tx_mbuf_tag,
15156                                      fp->tx_mbuf_chain[j].m_map);
15157                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15158                                       fp->tx_mbuf_chain[j].m_map);
15159                }
15160            }
15161
15162            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15163            fp->tx_mbuf_tag = NULL;
15164        }
15165
15166        /***********************/
15167        /* FP RX MBUF DMA MAPS */
15168        /***********************/
15169
15170        if (fp->rx_mbuf_tag != NULL) {
15171            for (j = 0; j < RX_BD_TOTAL; j++) {
15172                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15173                    bus_dmamap_unload(fp->rx_mbuf_tag,
15174                                      fp->rx_mbuf_chain[j].m_map);
15175                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15176                                       fp->rx_mbuf_chain[j].m_map);
15177                }
15178            }
15179
15180            if (fp->rx_mbuf_spare_map != NULL) {
15181                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15182                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15183            }
15184
15185            /***************************/
15186            /* FP RX TPA MBUF DMA MAPS */
15187            /***************************/
15188
15189            max_agg_queues = MAX_AGG_QS(sc);
15190
15191            for (j = 0; j < max_agg_queues; j++) {
15192                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15193                    bus_dmamap_unload(fp->rx_mbuf_tag,
15194                                      fp->rx_tpa_info[j].bd.m_map);
15195                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15196                                       fp->rx_tpa_info[j].bd.m_map);
15197                }
15198            }
15199
15200            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15201                bus_dmamap_unload(fp->rx_mbuf_tag,
15202                                  fp->rx_tpa_info_mbuf_spare_map);
15203                bus_dmamap_destroy(fp->rx_mbuf_tag,
15204                                   fp->rx_tpa_info_mbuf_spare_map);
15205            }
15206
15207            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15208            fp->rx_mbuf_tag = NULL;
15209        }
15210
15211        /***************************/
15212        /* FP RX SGE MBUF DMA MAPS */
15213        /***************************/
15214
15215        if (fp->rx_sge_mbuf_tag != NULL) {
15216            for (j = 0; j < RX_SGE_TOTAL; j++) {
15217                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15218                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15219                                      fp->rx_sge_mbuf_chain[j].m_map);
15220                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15221                                       fp->rx_sge_mbuf_chain[j].m_map);
15222                }
15223            }
15224
15225            if (fp->rx_sge_mbuf_spare_map != NULL) {
15226                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15227                                  fp->rx_sge_mbuf_spare_map);
15228                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15229                                   fp->rx_sge_mbuf_spare_map);
15230            }
15231
15232            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15233            fp->rx_sge_mbuf_tag = NULL;
15234        }
15235    }
15236
15237    /***************************/
15238    /* FW DECOMPRESSION BUFFER */
15239    /***************************/
15240
15241    bxe_dma_free(sc, &sc->gz_buf_dma);
15242    sc->gz_buf = NULL;
15243    free(sc->gz_strm, M_DEVBUF);
15244    sc->gz_strm = NULL;
15245
15246    /*******************/
15247    /* SLOW PATH QUEUE */
15248    /*******************/
15249
15250    bxe_dma_free(sc, &sc->spq_dma);
15251    sc->spq = NULL;
15252
15253    /*************/
15254    /* SLOW PATH */
15255    /*************/
15256
15257    bxe_dma_free(sc, &sc->sp_dma);
15258    sc->sp = NULL;
15259
15260    /***************/
15261    /* EVENT QUEUE */
15262    /***************/
15263
15264    bxe_dma_free(sc, &sc->eq_dma);
15265    sc->eq = NULL;
15266
15267    /************************/
15268    /* DEFAULT STATUS BLOCK */
15269    /************************/
15270
15271    bxe_dma_free(sc, &sc->def_sb_dma);
15272    sc->def_sb = NULL;
15273
15274    bus_dma_tag_destroy(sc->parent_dma_tag);
15275    sc->parent_dma_tag = NULL;
15276}
15277
15278/*
15279 * Previous driver DMAE transaction may have occurred when pre-boot stage
15280 * ended and boot began. This would invalidate the addresses of the
15281 * transaction, resulting in was-error bit set in the PCI causing all
15282 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15283 * the interrupt which detected this from the pglueb and the was-done bit
15284 */
15285static void
15286bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15287{
15288    uint32_t val;
15289
15290    if (!CHIP_IS_E1x(sc)) {
15291        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15292        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15293            BLOGD(sc, DBG_LOAD,
15294                  "Clearing 'was-error' bit that was set in pglueb");
15295            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15296        }
15297    }
15298}
15299
15300static int
15301bxe_prev_mcp_done(struct bxe_softc *sc)
15302{
15303    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15304                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15305    if (!rc) {
15306        BLOGE(sc, "MCP response failure, aborting\n");
15307        return (-1);
15308    }
15309
15310    return (0);
15311}
15312
15313static struct bxe_prev_list_node *
15314bxe_prev_path_get_entry(struct bxe_softc *sc)
15315{
15316    struct bxe_prev_list_node *tmp;
15317
15318    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15319        if ((sc->pcie_bus == tmp->bus) &&
15320            (sc->pcie_device == tmp->slot) &&
15321            (SC_PATH(sc) == tmp->path)) {
15322            return (tmp);
15323        }
15324    }
15325
15326    return (NULL);
15327}
15328
15329static uint8_t
15330bxe_prev_is_path_marked(struct bxe_softc *sc)
15331{
15332    struct bxe_prev_list_node *tmp;
15333    int rc = FALSE;
15334
15335    mtx_lock(&bxe_prev_mtx);
15336
15337    tmp = bxe_prev_path_get_entry(sc);
15338    if (tmp) {
15339        if (tmp->aer) {
15340            BLOGD(sc, DBG_LOAD,
15341                  "Path %d/%d/%d was marked by AER\n",
15342                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15343        } else {
15344            rc = TRUE;
15345            BLOGD(sc, DBG_LOAD,
15346                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15347                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15348        }
15349    }
15350
15351    mtx_unlock(&bxe_prev_mtx);
15352
15353    return (rc);
15354}
15355
15356static int
15357bxe_prev_mark_path(struct bxe_softc *sc,
15358                   uint8_t          after_undi)
15359{
15360    struct bxe_prev_list_node *tmp;
15361
15362    mtx_lock(&bxe_prev_mtx);
15363
15364    /* Check whether the entry for this path already exists */
15365    tmp = bxe_prev_path_get_entry(sc);
15366    if (tmp) {
15367        if (!tmp->aer) {
15368            BLOGD(sc, DBG_LOAD,
15369                  "Re-marking AER in path %d/%d/%d\n",
15370                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15371        } else {
15372            BLOGD(sc, DBG_LOAD,
15373                  "Removing AER indication from path %d/%d/%d\n",
15374                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15375            tmp->aer = 0;
15376        }
15377
15378        mtx_unlock(&bxe_prev_mtx);
15379        return (0);
15380    }
15381
15382    mtx_unlock(&bxe_prev_mtx);
15383
15384    /* Create an entry for this path and add it */
15385    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15386                 (M_NOWAIT | M_ZERO));
15387    if (!tmp) {
15388        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15389        return (-1);
15390    }
15391
15392    tmp->bus  = sc->pcie_bus;
15393    tmp->slot = sc->pcie_device;
15394    tmp->path = SC_PATH(sc);
15395    tmp->aer  = 0;
15396    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15397
15398    mtx_lock(&bxe_prev_mtx);
15399
15400    BLOGD(sc, DBG_LOAD,
15401          "Marked path %d/%d/%d - finished previous unload\n",
15402          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15403    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15404
15405    mtx_unlock(&bxe_prev_mtx);
15406
15407    return (0);
15408}
15409
15410static int
15411bxe_do_flr(struct bxe_softc *sc)
15412{
15413    int i;
15414
15415    /* only E2 and onwards support FLR */
15416    if (CHIP_IS_E1x(sc)) {
15417        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15418        return (-1);
15419    }
15420
15421    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15422    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15423        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15424              sc->devinfo.bc_ver);
15425        return (-1);
15426    }
15427
15428    /* Wait for Transaction Pending bit clean */
15429    for (i = 0; i < 4; i++) {
15430        if (i) {
15431            DELAY(((1 << (i - 1)) * 100) * 1000);
15432        }
15433
15434        if (!bxe_is_pcie_pending(sc)) {
15435            goto clear;
15436        }
15437    }
15438
15439    BLOGE(sc, "PCIE transaction is not cleared, "
15440              "proceeding with reset anyway\n");
15441
15442clear:
15443
15444    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15445    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15446
15447    return (0);
15448}
15449
15450struct bxe_mac_vals {
15451    uint32_t xmac_addr;
15452    uint32_t xmac_val;
15453    uint32_t emac_addr;
15454    uint32_t emac_val;
15455    uint32_t umac_addr;
15456    uint32_t umac_val;
15457    uint32_t bmac_addr;
15458    uint32_t bmac_val[2];
15459};
15460
15461static void
15462bxe_prev_unload_close_mac(struct bxe_softc *sc,
15463                          struct bxe_mac_vals *vals)
15464{
15465    uint32_t val, base_addr, offset, mask, reset_reg;
15466    uint8_t mac_stopped = FALSE;
15467    uint8_t port = SC_PORT(sc);
15468    uint32_t wb_data[2];
15469
15470    /* reset addresses as they also mark which values were changed */
15471    vals->bmac_addr = 0;
15472    vals->umac_addr = 0;
15473    vals->xmac_addr = 0;
15474    vals->emac_addr = 0;
15475
15476    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15477
15478    if (!CHIP_IS_E3(sc)) {
15479        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15480        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15481        if ((mask & reset_reg) && val) {
15482            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15483            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15484                                    : NIG_REG_INGRESS_BMAC0_MEM;
15485            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15486                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15487
15488            /*
15489             * use rd/wr since we cannot use dmae. This is safe
15490             * since MCP won't access the bus due to the request
15491             * to unload, and no function on the path can be
15492             * loaded at this time.
15493             */
15494            wb_data[0] = REG_RD(sc, base_addr + offset);
15495            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15496            vals->bmac_addr = base_addr + offset;
15497            vals->bmac_val[0] = wb_data[0];
15498            vals->bmac_val[1] = wb_data[1];
15499            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15500            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15501            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15502        }
15503
15504        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15505        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15506        vals->emac_val = REG_RD(sc, vals->emac_addr);
15507        REG_WR(sc, vals->emac_addr, 0);
15508        mac_stopped = TRUE;
15509    } else {
15510        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15511            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15512            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15513            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15514            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15515            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15516            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15517            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15518            REG_WR(sc, vals->xmac_addr, 0);
15519            mac_stopped = TRUE;
15520        }
15521
15522        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15523        if (mask & reset_reg) {
15524            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15525            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15526            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15527            vals->umac_val = REG_RD(sc, vals->umac_addr);
15528            REG_WR(sc, vals->umac_addr, 0);
15529            mac_stopped = TRUE;
15530        }
15531    }
15532
15533    if (mac_stopped) {
15534        DELAY(20000);
15535    }
15536}
15537
15538#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15539#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15540#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15541#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15542
15543static void
15544bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15545                         uint8_t          port,
15546                         uint8_t          inc)
15547{
15548    uint16_t rcq, bd;
15549    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15550
15551    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15552    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15553
15554    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15555    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15556
15557    BLOGD(sc, DBG_LOAD,
15558          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15559          port, bd, rcq);
15560}
15561
15562static int
15563bxe_prev_unload_common(struct bxe_softc *sc)
15564{
15565    uint32_t reset_reg, tmp_reg = 0, rc;
15566    uint8_t prev_undi = FALSE;
15567    struct bxe_mac_vals mac_vals;
15568    uint32_t timer_count = 1000;
15569    uint32_t prev_brb;
15570
15571    /*
15572     * It is possible a previous function received 'common' answer,
15573     * but hasn't loaded yet, therefore creating a scenario of
15574     * multiple functions receiving 'common' on the same path.
15575     */
15576    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15577
15578    memset(&mac_vals, 0, sizeof(mac_vals));
15579
15580    if (bxe_prev_is_path_marked(sc)) {
15581        return (bxe_prev_mcp_done(sc));
15582    }
15583
15584    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15585
15586    /* Reset should be performed after BRB is emptied */
15587    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15588        /* Close the MAC Rx to prevent BRB from filling up */
15589        bxe_prev_unload_close_mac(sc, &mac_vals);
15590
15591        /* close LLH filters towards the BRB */
15592        elink_set_rx_filter(&sc->link_params, 0);
15593
15594        /*
15595         * Check if the UNDI driver was previously loaded.
15596         * UNDI driver initializes CID offset for normal bell to 0x7
15597         */
15598        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15599            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15600            if (tmp_reg == 0x7) {
15601                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15602                prev_undi = TRUE;
15603                /* clear the UNDI indication */
15604                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15605                /* clear possible idle check errors */
15606                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15607            }
15608        }
15609
15610        /* wait until BRB is empty */
15611        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15612        while (timer_count) {
15613            prev_brb = tmp_reg;
15614
15615            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15616            if (!tmp_reg) {
15617                break;
15618            }
15619
15620            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15621
15622            /* reset timer as long as BRB actually gets emptied */
15623            if (prev_brb > tmp_reg) {
15624                timer_count = 1000;
15625            } else {
15626                timer_count--;
15627            }
15628
15629            /* If UNDI resides in memory, manually increment it */
15630            if (prev_undi) {
15631                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15632            }
15633
15634            DELAY(10);
15635        }
15636
15637        if (!timer_count) {
15638            BLOGE(sc, "Failed to empty BRB\n");
15639        }
15640    }
15641
15642    /* No packets are in the pipeline, path is ready for reset */
15643    bxe_reset_common(sc);
15644
15645    if (mac_vals.xmac_addr) {
15646        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15647    }
15648    if (mac_vals.umac_addr) {
15649        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15650    }
15651    if (mac_vals.emac_addr) {
15652        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15653    }
15654    if (mac_vals.bmac_addr) {
15655        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15656        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15657    }
15658
15659    rc = bxe_prev_mark_path(sc, prev_undi);
15660    if (rc) {
15661        bxe_prev_mcp_done(sc);
15662        return (rc);
15663    }
15664
15665    return (bxe_prev_mcp_done(sc));
15666}
15667
15668static int
15669bxe_prev_unload_uncommon(struct bxe_softc *sc)
15670{
15671    int rc;
15672
15673    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15674
15675    /* Test if previous unload process was already finished for this path */
15676    if (bxe_prev_is_path_marked(sc)) {
15677        return (bxe_prev_mcp_done(sc));
15678    }
15679
15680    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15681
15682    /*
15683     * If function has FLR capabilities, and existing FW version matches
15684     * the one required, then FLR will be sufficient to clean any residue
15685     * left by previous driver
15686     */
15687    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15688    if (!rc) {
15689        /* fw version is good */
15690        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15691        rc = bxe_do_flr(sc);
15692    }
15693
15694    if (!rc) {
15695        /* FLR was performed */
15696        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15697        return (0);
15698    }
15699
15700    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15701
15702    /* Close the MCP request, return failure*/
15703    rc = bxe_prev_mcp_done(sc);
15704    if (!rc) {
15705        rc = BXE_PREV_WAIT_NEEDED;
15706    }
15707
15708    return (rc);
15709}
15710
15711static int
15712bxe_prev_unload(struct bxe_softc *sc)
15713{
15714    int time_counter = 10;
15715    uint32_t fw, hw_lock_reg, hw_lock_val;
15716    uint32_t rc = 0;
15717
15718    /*
15719     * Clear HW from errors which may have resulted from an interrupted
15720     * DMAE transaction.
15721     */
15722    bxe_prev_interrupted_dmae(sc);
15723
15724    /* Release previously held locks */
15725    hw_lock_reg =
15726        (SC_FUNC(sc) <= 5) ?
15727            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15728            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15729
15730    hw_lock_val = (REG_RD(sc, hw_lock_reg));
15731    if (hw_lock_val) {
15732        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15733            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15734            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15735                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15736        }
15737        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15738        REG_WR(sc, hw_lock_reg, 0xffffffff);
15739    } else {
15740        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15741    }
15742
15743    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15744        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15745        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15746    }
15747
15748    do {
15749        /* Lock MCP using an unload request */
15750        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15751        if (!fw) {
15752            BLOGE(sc, "MCP response failure, aborting\n");
15753            rc = -1;
15754            break;
15755        }
15756
15757        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15758            rc = bxe_prev_unload_common(sc);
15759            break;
15760        }
15761
15762        /* non-common reply from MCP night require looping */
15763        rc = bxe_prev_unload_uncommon(sc);
15764        if (rc != BXE_PREV_WAIT_NEEDED) {
15765            break;
15766        }
15767
15768        DELAY(20000);
15769    } while (--time_counter);
15770
15771    if (!time_counter || rc) {
15772        BLOGE(sc, "Failed to unload previous driver!"
15773            " time_counter %d rc %d\n", time_counter, rc);
15774        rc = -1;
15775    }
15776
15777    return (rc);
15778}
15779
15780void
15781bxe_dcbx_set_state(struct bxe_softc *sc,
15782                   uint8_t          dcb_on,
15783                   uint32_t         dcbx_enabled)
15784{
15785    if (!CHIP_IS_E1x(sc)) {
15786        sc->dcb_state = dcb_on;
15787        sc->dcbx_enabled = dcbx_enabled;
15788    } else {
15789        sc->dcb_state = FALSE;
15790        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15791    }
15792    BLOGD(sc, DBG_LOAD,
15793          "DCB state [%s:%s]\n",
15794          dcb_on ? "ON" : "OFF",
15795          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15796          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15797          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15798          "on-chip with negotiation" : "invalid");
15799}
15800
15801/* must be called after sriov-enable */
15802static int
15803bxe_set_qm_cid_count(struct bxe_softc *sc)
15804{
15805    int cid_count = BXE_L2_MAX_CID(sc);
15806
15807    if (IS_SRIOV(sc)) {
15808        cid_count += BXE_VF_CIDS;
15809    }
15810
15811    if (CNIC_SUPPORT(sc)) {
15812        cid_count += CNIC_CID_MAX;
15813    }
15814
15815    return (roundup(cid_count, QM_CID_ROUND));
15816}
15817
15818static void
15819bxe_init_multi_cos(struct bxe_softc *sc)
15820{
15821    int pri, cos;
15822
15823    uint32_t pri_map = 0; /* XXX change to user config */
15824
15825    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15826        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15827        if (cos < sc->max_cos) {
15828            sc->prio_to_cos[pri] = cos;
15829        } else {
15830            BLOGW(sc, "Invalid COS %d for priority %d "
15831                      "(max COS is %d), setting to 0\n",
15832                  cos, pri, (sc->max_cos - 1));
15833            sc->prio_to_cos[pri] = 0;
15834        }
15835    }
15836}
15837
15838static int
15839bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15840{
15841    struct bxe_softc *sc;
15842    int error, result;
15843
15844    result = 0;
15845    error = sysctl_handle_int(oidp, &result, 0, req);
15846
15847    if (error || !req->newptr) {
15848        return (error);
15849    }
15850
15851    if (result == 1) {
15852        uint32_t  temp;
15853        sc = (struct bxe_softc *)arg1;
15854
15855        BLOGI(sc, "... dumping driver state ...\n");
15856        temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15857        BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15858    }
15859
15860    return (error);
15861}
15862
15863static int
15864bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15865{
15866    struct bxe_softc *sc = (struct bxe_softc *)arg1;
15867    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15868    uint32_t *offset;
15869    uint64_t value = 0;
15870    int index = (int)arg2;
15871
15872    if (index >= BXE_NUM_ETH_STATS) {
15873        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15874        return (-1);
15875    }
15876
15877    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15878
15879    switch (bxe_eth_stats_arr[index].size) {
15880    case 4:
15881        value = (uint64_t)*offset;
15882        break;
15883    case 8:
15884        value = HILO_U64(*offset, *(offset + 1));
15885        break;
15886    default:
15887        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15888              index, bxe_eth_stats_arr[index].size);
15889        return (-1);
15890    }
15891
15892    return (sysctl_handle_64(oidp, &value, 0, req));
15893}
15894
15895static int
15896bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15897{
15898    struct bxe_softc *sc = (struct bxe_softc *)arg1;
15899    uint32_t *eth_stats;
15900    uint32_t *offset;
15901    uint64_t value = 0;
15902    uint32_t q_stat = (uint32_t)arg2;
15903    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15904    uint32_t index = (q_stat & 0xffff);
15905
15906    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15907
15908    if (index >= BXE_NUM_ETH_Q_STATS) {
15909        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15910        return (-1);
15911    }
15912
15913    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15914
15915    switch (bxe_eth_q_stats_arr[index].size) {
15916    case 4:
15917        value = (uint64_t)*offset;
15918        break;
15919    case 8:
15920        value = HILO_U64(*offset, *(offset + 1));
15921        break;
15922    default:
15923        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15924              index, bxe_eth_q_stats_arr[index].size);
15925        return (-1);
15926    }
15927
15928    return (sysctl_handle_64(oidp, &value, 0, req));
15929}
15930
15931static void bxe_force_link_reset(struct bxe_softc *sc)
15932{
15933
15934        bxe_acquire_phy_lock(sc);
15935        elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15936        bxe_release_phy_lock(sc);
15937}
15938
15939static int
15940bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15941{
15942        struct bxe_softc *sc = (struct bxe_softc *)arg1;
15943        uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15944        int rc = 0;
15945        int error;
15946        int result;
15947
15948
15949        error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15950
15951        if (error || !req->newptr) {
15952                return (error);
15953        }
15954        if ((sc->bxe_pause_param < 0) ||  (sc->bxe_pause_param > 8)) {
15955                BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param);
15956                sc->bxe_pause_param = 8;
15957        }
15958
15959        result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15960
15961
15962        if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg))  {
15963                        BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15964                        return -EINVAL;
15965        }
15966
15967        if(IS_MF(sc))
15968                return 0;
15969       sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15970        if(result & ELINK_FLOW_CTRL_RX)
15971                sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15972
15973        if(result & ELINK_FLOW_CTRL_TX)
15974                sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15975        if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15976                sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15977
15978        if(result & 0x400) {
15979                if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15980                        sc->link_params.req_flow_ctrl[cfg_idx] =
15981                                ELINK_FLOW_CTRL_AUTO;
15982                }
15983                sc->link_params.req_fc_auto_adv = 0;
15984                if (result & ELINK_FLOW_CTRL_RX)
15985                        sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15986
15987                if (result & ELINK_FLOW_CTRL_TX)
15988                        sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15989                if (!sc->link_params.req_fc_auto_adv)
15990                        sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15991        }
15992         if (IS_PF(sc)) {
15993                        if (sc->link_vars.link_up) {
15994                                bxe_stats_handle(sc, STATS_EVENT_STOP);
15995                        }
15996			if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15997                        bxe_force_link_reset(sc);
15998                        bxe_acquire_phy_lock(sc);
15999
16000                        rc = elink_phy_init(&sc->link_params, &sc->link_vars);
16001
16002                        bxe_release_phy_lock(sc);
16003
16004                        bxe_calc_fc_adv(sc);
16005                        }
16006        }
16007        return rc;
16008}
16009
16010
16011static void
16012bxe_add_sysctls(struct bxe_softc *sc)
16013{
16014    struct sysctl_ctx_list *ctx;
16015    struct sysctl_oid_list *children;
16016    struct sysctl_oid *queue_top, *queue;
16017    struct sysctl_oid_list *queue_top_children, *queue_children;
16018    char queue_num_buf[32];
16019    uint32_t q_stat;
16020    int i, j;
16021
16022    ctx = device_get_sysctl_ctx(sc->dev);
16023    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16024
16025    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16026                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16027                      "version");
16028
16029    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16030             BCM_5710_FW_MAJOR_VERSION,
16031             BCM_5710_FW_MINOR_VERSION,
16032             BCM_5710_FW_REVISION_VERSION,
16033             BCM_5710_FW_ENGINEERING_VERSION);
16034
16035    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16036        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16037         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16038         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16039         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16040                                                                "Unknown"));
16041    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16042                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16043                    "multifunction vnics per port");
16044
16045    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16046        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16047         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16048         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16049                                              "???GT/s"),
16050        sc->devinfo.pcie_link_width);
16051
16052    sc->debug = bxe_debug;
16053
16054    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16055                      CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16056                      "bootcode version");
16057    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16058                      CTLFLAG_RD, sc->fw_ver_str, 0,
16059                      "firmware version");
16060    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16061                      CTLFLAG_RD, sc->mf_mode_str, 0,
16062                      "multifunction mode");
16063    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16064                      CTLFLAG_RD, sc->mac_addr_str, 0,
16065                      "mac address");
16066    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16067                      CTLFLAG_RD, sc->pci_link_str, 0,
16068                      "pci link status");
16069    SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16070                    CTLFLAG_RW, &sc->debug,
16071                    "debug logging mode");
16072
16073    sc->trigger_grcdump = 0;
16074    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16075                   CTLFLAG_RW, &sc->trigger_grcdump, 0,
16076                   "trigger grcdump should be invoked"
16077                   "  before collecting grcdump");
16078
16079    sc->grcdump_started = 0;
16080    sc->grcdump_done = 0;
16081    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
16082                   CTLFLAG_RD, &sc->grcdump_done, 0,
16083                   "set by driver when grcdump is done");
16084
16085    sc->rx_budget = bxe_rx_budget;
16086    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16087                    CTLFLAG_RW, &sc->rx_budget, 0,
16088                    "rx processing budget");
16089
16090    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
16091        CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
16092        bxe_sysctl_pauseparam, "IU",
16093        "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
16094
16095
16096    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16097        CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
16098        bxe_sysctl_state, "IU", "dump driver state");
16099
16100    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16101        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16102            bxe_eth_stats_arr[i].string,
16103            CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
16104            bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string);
16105    }
16106
16107    /* add a new parent node for all queues "dev.bxe.#.queue" */
16108    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16109        CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue");
16110    queue_top_children = SYSCTL_CHILDREN(queue_top);
16111
16112    for (i = 0; i < sc->num_queues; i++) {
16113        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16114        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16115        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16116            queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue");
16117        queue_children = SYSCTL_CHILDREN(queue);
16118
16119        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16120            q_stat = ((i << 16) | j);
16121            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16122                 bxe_eth_q_stats_arr[j].string,
16123                 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, q_stat,
16124                 bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string);
16125        }
16126    }
16127}
16128
16129static int
16130bxe_alloc_buf_rings(struct bxe_softc *sc)
16131{
16132    int i;
16133    struct bxe_fastpath *fp;
16134
16135    for (i = 0; i < sc->num_queues; i++) {
16136
16137        fp = &sc->fp[i];
16138
16139        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
16140                                   M_NOWAIT, &fp->tx_mtx);
16141        if (fp->tx_br == NULL)
16142            return (-1);
16143    }
16144
16145    return (0);
16146}
16147
16148static void
16149bxe_free_buf_rings(struct bxe_softc *sc)
16150{
16151    int i;
16152    struct bxe_fastpath *fp;
16153
16154    for (i = 0; i < sc->num_queues; i++) {
16155
16156        fp = &sc->fp[i];
16157
16158        if (fp->tx_br) {
16159            buf_ring_free(fp->tx_br, M_DEVBUF);
16160            fp->tx_br = NULL;
16161        }
16162    }
16163}
16164
16165static void
16166bxe_init_fp_mutexs(struct bxe_softc *sc)
16167{
16168    int i;
16169    struct bxe_fastpath *fp;
16170
16171    for (i = 0; i < sc->num_queues; i++) {
16172
16173        fp = &sc->fp[i];
16174
16175        snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
16176            "bxe%d_fp%d_tx_lock", sc->unit, i);
16177        mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
16178
16179        snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
16180            "bxe%d_fp%d_rx_lock", sc->unit, i);
16181        mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
16182    }
16183}
16184
16185static void
16186bxe_destroy_fp_mutexs(struct bxe_softc *sc)
16187{
16188    int i;
16189    struct bxe_fastpath *fp;
16190
16191    for (i = 0; i < sc->num_queues; i++) {
16192
16193        fp = &sc->fp[i];
16194
16195        if (mtx_initialized(&fp->tx_mtx)) {
16196            mtx_destroy(&fp->tx_mtx);
16197        }
16198
16199        if (mtx_initialized(&fp->rx_mtx)) {
16200            mtx_destroy(&fp->rx_mtx);
16201        }
16202    }
16203}
16204
16205
16206/*
16207 * Device attach function.
16208 *
16209 * Allocates device resources, performs secondary chip identification, and
16210 * initializes driver instance variables. This function is called from driver
16211 * load after a successful probe.
16212 *
16213 * Returns:
16214 *   0 = Success, >0 = Failure
16215 */
16216static int
16217bxe_attach(device_t dev)
16218{
16219    struct bxe_softc *sc;
16220
16221    sc = device_get_softc(dev);
16222
16223    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16224
16225    sc->state = BXE_STATE_CLOSED;
16226
16227    sc->dev  = dev;
16228    sc->unit = device_get_unit(dev);
16229
16230    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16231
16232    sc->pcie_bus    = pci_get_bus(dev);
16233    sc->pcie_device = pci_get_slot(dev);
16234    sc->pcie_func   = pci_get_function(dev);
16235
16236    /* enable bus master capability */
16237    pci_enable_busmaster(dev);
16238
16239    /* get the BARs */
16240    if (bxe_allocate_bars(sc) != 0) {
16241        return (ENXIO);
16242    }
16243
16244    /* initialize the mutexes */
16245    bxe_init_mutexes(sc);
16246
16247    /* prepare the periodic callout */
16248    callout_init(&sc->periodic_callout, 0);
16249
16250    /* prepare the chip taskqueue */
16251    sc->chip_tq_flags = CHIP_TQ_NONE;
16252    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16253             "bxe%d_chip_tq", sc->unit);
16254    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16255    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16256                                   taskqueue_thread_enqueue,
16257                                   &sc->chip_tq);
16258    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16259                            "%s", sc->chip_tq_name);
16260
16261    TIMEOUT_TASK_INIT(taskqueue_thread,
16262        &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task,  sc);
16263
16264
16265    /* get device info and set params */
16266    if (bxe_get_device_info(sc) != 0) {
16267        BLOGE(sc, "getting device info\n");
16268        bxe_deallocate_bars(sc);
16269        pci_disable_busmaster(dev);
16270        return (ENXIO);
16271    }
16272
16273    /* get final misc params */
16274    bxe_get_params(sc);
16275
16276    /* set the default MTU (changed via ifconfig) */
16277    sc->mtu = ETHERMTU;
16278
16279    bxe_set_modes_bitmap(sc);
16280
16281    /* XXX
16282     * If in AFEX mode and the function is configured for FCoE
16283     * then bail... no L2 allowed.
16284     */
16285
16286    /* get phy settings from shmem and 'and' against admin settings */
16287    bxe_get_phy_info(sc);
16288
16289    /* initialize the FreeBSD ifnet interface */
16290    if (bxe_init_ifnet(sc) != 0) {
16291        bxe_release_mutexes(sc);
16292        bxe_deallocate_bars(sc);
16293        pci_disable_busmaster(dev);
16294        return (ENXIO);
16295    }
16296
16297    if (bxe_add_cdev(sc) != 0) {
16298        if (sc->ifp != NULL) {
16299            ether_ifdetach(sc->ifp);
16300        }
16301        ifmedia_removeall(&sc->ifmedia);
16302        bxe_release_mutexes(sc);
16303        bxe_deallocate_bars(sc);
16304        pci_disable_busmaster(dev);
16305        return (ENXIO);
16306    }
16307
16308    /* allocate device interrupts */
16309    if (bxe_interrupt_alloc(sc) != 0) {
16310        bxe_del_cdev(sc);
16311        if (sc->ifp != NULL) {
16312            ether_ifdetach(sc->ifp);
16313        }
16314        ifmedia_removeall(&sc->ifmedia);
16315        bxe_release_mutexes(sc);
16316        bxe_deallocate_bars(sc);
16317        pci_disable_busmaster(dev);
16318        return (ENXIO);
16319    }
16320
16321    bxe_init_fp_mutexs(sc);
16322
16323    if (bxe_alloc_buf_rings(sc) != 0) {
16324	bxe_free_buf_rings(sc);
16325        bxe_interrupt_free(sc);
16326        bxe_del_cdev(sc);
16327        if (sc->ifp != NULL) {
16328            ether_ifdetach(sc->ifp);
16329        }
16330        ifmedia_removeall(&sc->ifmedia);
16331        bxe_release_mutexes(sc);
16332        bxe_deallocate_bars(sc);
16333        pci_disable_busmaster(dev);
16334        return (ENXIO);
16335    }
16336
16337    /* allocate ilt */
16338    if (bxe_alloc_ilt_mem(sc) != 0) {
16339	bxe_free_buf_rings(sc);
16340        bxe_interrupt_free(sc);
16341        bxe_del_cdev(sc);
16342        if (sc->ifp != NULL) {
16343            ether_ifdetach(sc->ifp);
16344        }
16345        ifmedia_removeall(&sc->ifmedia);
16346        bxe_release_mutexes(sc);
16347        bxe_deallocate_bars(sc);
16348        pci_disable_busmaster(dev);
16349        return (ENXIO);
16350    }
16351
16352    /* allocate the host hardware/software hsi structures */
16353    if (bxe_alloc_hsi_mem(sc) != 0) {
16354        bxe_free_ilt_mem(sc);
16355	bxe_free_buf_rings(sc);
16356        bxe_interrupt_free(sc);
16357        bxe_del_cdev(sc);
16358        if (sc->ifp != NULL) {
16359            ether_ifdetach(sc->ifp);
16360        }
16361        ifmedia_removeall(&sc->ifmedia);
16362        bxe_release_mutexes(sc);
16363        bxe_deallocate_bars(sc);
16364        pci_disable_busmaster(dev);
16365        return (ENXIO);
16366    }
16367
16368    /* need to reset chip if UNDI was active */
16369    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16370        /* init fw_seq */
16371        sc->fw_seq =
16372            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16373             DRV_MSG_SEQ_NUMBER_MASK);
16374        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16375        bxe_prev_unload(sc);
16376    }
16377
16378#if 1
16379    /* XXX */
16380    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16381#else
16382    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16383        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16384        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16385        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16386        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16387        bxe_dcbx_init_params(sc);
16388    } else {
16389        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16390    }
16391#endif
16392
16393    /* calculate qm_cid_count */
16394    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16395    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16396
16397    sc->max_cos = 1;
16398    bxe_init_multi_cos(sc);
16399
16400    bxe_add_sysctls(sc);
16401
16402    return (0);
16403}
16404
16405/*
16406 * Device detach function.
16407 *
16408 * Stops the controller, resets the controller, and releases resources.
16409 *
16410 * Returns:
16411 *   0 = Success, >0 = Failure
16412 */
16413static int
16414bxe_detach(device_t dev)
16415{
16416    struct bxe_softc *sc;
16417    if_t ifp;
16418
16419    sc = device_get_softc(dev);
16420
16421    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16422
16423    ifp = sc->ifp;
16424    if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16425        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16426        return(EBUSY);
16427    }
16428
16429    bxe_del_cdev(sc);
16430
16431    /* stop the periodic callout */
16432    bxe_periodic_stop(sc);
16433
16434    /* stop the chip taskqueue */
16435    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16436    if (sc->chip_tq) {
16437        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16438        taskqueue_free(sc->chip_tq);
16439        sc->chip_tq = NULL;
16440        taskqueue_drain_timeout(taskqueue_thread,
16441            &sc->sp_err_timeout_task);
16442    }
16443
16444    /* stop and reset the controller if it was open */
16445    if (sc->state != BXE_STATE_CLOSED) {
16446        BXE_CORE_LOCK(sc);
16447        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16448        sc->state = BXE_STATE_DISABLED;
16449        BXE_CORE_UNLOCK(sc);
16450    }
16451
16452    /* release the network interface */
16453    if (ifp != NULL) {
16454        ether_ifdetach(ifp);
16455    }
16456    ifmedia_removeall(&sc->ifmedia);
16457
16458    /* XXX do the following based on driver state... */
16459
16460    /* free the host hardware/software hsi structures */
16461    bxe_free_hsi_mem(sc);
16462
16463    /* free ilt */
16464    bxe_free_ilt_mem(sc);
16465
16466    bxe_free_buf_rings(sc);
16467
16468    /* release the interrupts */
16469    bxe_interrupt_free(sc);
16470
16471    /* Release the mutexes*/
16472    bxe_destroy_fp_mutexs(sc);
16473    bxe_release_mutexes(sc);
16474
16475
16476    /* Release the PCIe BAR mapped memory */
16477    bxe_deallocate_bars(sc);
16478
16479    /* Release the FreeBSD interface. */
16480    if (sc->ifp != NULL) {
16481        if_free(sc->ifp);
16482    }
16483
16484    pci_disable_busmaster(dev);
16485
16486    return (0);
16487}
16488
16489/*
16490 * Device shutdown function.
16491 *
16492 * Stops and resets the controller.
16493 *
16494 * Returns:
16495 *   Nothing
16496 */
16497static int
16498bxe_shutdown(device_t dev)
16499{
16500    struct bxe_softc *sc;
16501
16502    sc = device_get_softc(dev);
16503
16504    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16505
16506    /* stop the periodic callout */
16507    bxe_periodic_stop(sc);
16508
16509    if (sc->state != BXE_STATE_CLOSED) {
16510    	BXE_CORE_LOCK(sc);
16511    	bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16512    	BXE_CORE_UNLOCK(sc);
16513    }
16514
16515    return (0);
16516}
16517
16518void
16519bxe_igu_ack_sb(struct bxe_softc *sc,
16520               uint8_t          igu_sb_id,
16521               uint8_t          segment,
16522               uint16_t         index,
16523               uint8_t          op,
16524               uint8_t          update)
16525{
16526    uint32_t igu_addr = sc->igu_base_addr;
16527    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16528    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16529}
16530
16531static void
16532bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16533                     uint8_t          func,
16534                     uint8_t          idu_sb_id,
16535                     uint8_t          is_pf)
16536{
16537    uint32_t data, ctl, cnt = 100;
16538    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16539    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16540    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16541    uint32_t sb_bit =  1 << (idu_sb_id%32);
16542    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16543    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16544
16545    /* Not supported in BC mode */
16546    if (CHIP_INT_MODE_IS_BC(sc)) {
16547        return;
16548    }
16549
16550    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16551             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16552            IGU_REGULAR_CLEANUP_SET |
16553            IGU_REGULAR_BCLEANUP);
16554
16555    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16556           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16557           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16558
16559    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16560            data, igu_addr_data);
16561    REG_WR(sc, igu_addr_data, data);
16562
16563    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16564                      BUS_SPACE_BARRIER_WRITE);
16565    mb();
16566
16567    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16568            ctl, igu_addr_ctl);
16569    REG_WR(sc, igu_addr_ctl, ctl);
16570
16571    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16572                      BUS_SPACE_BARRIER_WRITE);
16573    mb();
16574
16575    /* wait for clean up to finish */
16576    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16577        DELAY(20000);
16578    }
16579
16580    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16581        BLOGD(sc, DBG_LOAD,
16582              "Unable to finish IGU cleanup: "
16583              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16584              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16585    }
16586}
16587
16588static void
16589bxe_igu_clear_sb(struct bxe_softc *sc,
16590                 uint8_t          idu_sb_id)
16591{
16592    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16593}
16594
16595
16596
16597
16598
16599
16600
16601/*******************/
16602/* ECORE CALLBACKS */
16603/*******************/
16604
16605static void
16606bxe_reset_common(struct bxe_softc *sc)
16607{
16608    uint32_t val = 0x1400;
16609
16610    /* reset_common */
16611    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16612
16613    if (CHIP_IS_E3(sc)) {
16614        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16615        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16616    }
16617
16618    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16619}
16620
16621static void
16622bxe_common_init_phy(struct bxe_softc *sc)
16623{
16624    uint32_t shmem_base[2];
16625    uint32_t shmem2_base[2];
16626
16627    /* Avoid common init in case MFW supports LFA */
16628    if (SHMEM2_RD(sc, size) >
16629        (uint32_t)offsetof(struct shmem2_region,
16630                           lfa_host_addr[SC_PORT(sc)])) {
16631        return;
16632    }
16633
16634    shmem_base[0]  = sc->devinfo.shmem_base;
16635    shmem2_base[0] = sc->devinfo.shmem2_base;
16636
16637    if (!CHIP_IS_E1x(sc)) {
16638        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16639        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16640    }
16641
16642    bxe_acquire_phy_lock(sc);
16643    elink_common_init_phy(sc, shmem_base, shmem2_base,
16644                          sc->devinfo.chip_id, 0);
16645    bxe_release_phy_lock(sc);
16646}
16647
16648static void
16649bxe_pf_disable(struct bxe_softc *sc)
16650{
16651    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16652
16653    val &= ~IGU_PF_CONF_FUNC_EN;
16654
16655    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16656    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16657    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16658}
16659
16660static void
16661bxe_init_pxp(struct bxe_softc *sc)
16662{
16663    uint16_t devctl;
16664    int r_order, w_order;
16665
16666    devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2);
16667
16668    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16669
16670    w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5);
16671
16672    if (sc->mrrs == -1) {
16673        r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12);
16674    } else {
16675        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16676        r_order = sc->mrrs;
16677    }
16678
16679    ecore_init_pxp_arb(sc, r_order, w_order);
16680}
16681
16682static uint32_t
16683bxe_get_pretend_reg(struct bxe_softc *sc)
16684{
16685    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16686    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16687    return (base + (SC_ABS_FUNC(sc)) * stride);
16688}
16689
16690/*
16691 * Called only on E1H or E2.
16692 * When pretending to be PF, the pretend value is the function number 0..7.
16693 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16694 * combination.
16695 */
16696static int
16697bxe_pretend_func(struct bxe_softc *sc,
16698                 uint16_t         pretend_func_val)
16699{
16700    uint32_t pretend_reg;
16701
16702    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16703        return (-1);
16704    }
16705
16706    /* get my own pretend register */
16707    pretend_reg = bxe_get_pretend_reg(sc);
16708    REG_WR(sc, pretend_reg, pretend_func_val);
16709    REG_RD(sc, pretend_reg);
16710    return (0);
16711}
16712
16713static void
16714bxe_iov_init_dmae(struct bxe_softc *sc)
16715{
16716    return;
16717}
16718
16719static void
16720bxe_iov_init_dq(struct bxe_softc *sc)
16721{
16722    return;
16723}
16724
16725/* send a NIG loopback debug packet */
16726static void
16727bxe_lb_pckt(struct bxe_softc *sc)
16728{
16729    uint32_t wb_write[3];
16730
16731    /* Ethernet source and destination addresses */
16732    wb_write[0] = 0x55555555;
16733    wb_write[1] = 0x55555555;
16734    wb_write[2] = 0x20;     /* SOP */
16735    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16736
16737    /* NON-IP protocol */
16738    wb_write[0] = 0x09000000;
16739    wb_write[1] = 0x55555555;
16740    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16741    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16742}
16743
16744/*
16745 * Some of the internal memories are not directly readable from the driver.
16746 * To test them we send debug packets.
16747 */
16748static int
16749bxe_int_mem_test(struct bxe_softc *sc)
16750{
16751    int factor;
16752    int count, i;
16753    uint32_t val = 0;
16754
16755    if (CHIP_REV_IS_FPGA(sc)) {
16756        factor = 120;
16757    } else if (CHIP_REV_IS_EMUL(sc)) {
16758        factor = 200;
16759    } else {
16760        factor = 1;
16761    }
16762
16763    /* disable inputs of parser neighbor blocks */
16764    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16765    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16766    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16767    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16768
16769    /*  write 0 to parser credits for CFC search request */
16770    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16771
16772    /* send Ethernet packet */
16773    bxe_lb_pckt(sc);
16774
16775    /* TODO do i reset NIG statistic? */
16776    /* Wait until NIG register shows 1 packet of size 0x10 */
16777    count = 1000 * factor;
16778    while (count) {
16779        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16780        val = *BXE_SP(sc, wb_data[0]);
16781        if (val == 0x10) {
16782            break;
16783        }
16784
16785        DELAY(10000);
16786        count--;
16787    }
16788
16789    if (val != 0x10) {
16790        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16791        return (-1);
16792    }
16793
16794    /* wait until PRS register shows 1 packet */
16795    count = (1000 * factor);
16796    while (count) {
16797        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16798        if (val == 1) {
16799            break;
16800        }
16801
16802        DELAY(10000);
16803        count--;
16804    }
16805
16806    if (val != 0x1) {
16807        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16808        return (-2);
16809    }
16810
16811    /* Reset and init BRB, PRS */
16812    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16813    DELAY(50000);
16814    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16815    DELAY(50000);
16816    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16817    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16818
16819    /* Disable inputs of parser neighbor blocks */
16820    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16821    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16822    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16823    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16824
16825    /* Write 0 to parser credits for CFC search request */
16826    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16827
16828    /* send 10 Ethernet packets */
16829    for (i = 0; i < 10; i++) {
16830        bxe_lb_pckt(sc);
16831    }
16832
16833    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16834    count = (1000 * factor);
16835    while (count) {
16836        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16837        val = *BXE_SP(sc, wb_data[0]);
16838        if (val == 0xb0) {
16839            break;
16840        }
16841
16842        DELAY(10000);
16843        count--;
16844    }
16845
16846    if (val != 0xb0) {
16847        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16848        return (-3);
16849    }
16850
16851    /* Wait until PRS register shows 2 packets */
16852    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16853    if (val != 2) {
16854        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16855    }
16856
16857    /* Write 1 to parser credits for CFC search request */
16858    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16859
16860    /* Wait until PRS register shows 3 packets */
16861    DELAY(10000 * factor);
16862
16863    /* Wait until NIG register shows 1 packet of size 0x10 */
16864    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16865    if (val != 3) {
16866        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16867    }
16868
16869    /* clear NIG EOP FIFO */
16870    for (i = 0; i < 11; i++) {
16871        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16872    }
16873
16874    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16875    if (val != 1) {
16876        BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16877        return (-4);
16878    }
16879
16880    /* Reset and init BRB, PRS, NIG */
16881    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16882    DELAY(50000);
16883    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16884    DELAY(50000);
16885    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16886    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16887    if (!CNIC_SUPPORT(sc)) {
16888        /* set NIC mode */
16889        REG_WR(sc, PRS_REG_NIC_MODE, 1);
16890    }
16891
16892    /* Enable inputs of parser neighbor blocks */
16893    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16894    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16895    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16896    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16897
16898    return (0);
16899}
16900
16901static void
16902bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16903{
16904    int is_required;
16905    uint32_t val;
16906    int port;
16907
16908    is_required = 0;
16909    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16910           SHARED_HW_CFG_FAN_FAILURE_MASK);
16911
16912    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16913        is_required = 1;
16914    }
16915    /*
16916     * The fan failure mechanism is usually related to the PHY type since
16917     * the power consumption of the board is affected by the PHY. Currently,
16918     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16919     */
16920    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16921        for (port = PORT_0; port < PORT_MAX; port++) {
16922            is_required |= elink_fan_failure_det_req(sc,
16923                                                     sc->devinfo.shmem_base,
16924                                                     sc->devinfo.shmem2_base,
16925                                                     port);
16926        }
16927    }
16928
16929    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16930
16931    if (is_required == 0) {
16932        return;
16933    }
16934
16935    /* Fan failure is indicated by SPIO 5 */
16936    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16937
16938    /* set to active low mode */
16939    val = REG_RD(sc, MISC_REG_SPIO_INT);
16940    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16941    REG_WR(sc, MISC_REG_SPIO_INT, val);
16942
16943    /* enable interrupt to signal the IGU */
16944    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16945    val |= MISC_SPIO_SPIO5;
16946    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16947}
16948
16949static void
16950bxe_enable_blocks_attention(struct bxe_softc *sc)
16951{
16952    uint32_t val;
16953
16954    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16955    if (!CHIP_IS_E1x(sc)) {
16956        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16957    } else {
16958        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16959    }
16960    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16961    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16962    /*
16963     * mask read length error interrupts in brb for parser
16964     * (parsing unit and 'checksum and crc' unit)
16965     * these errors are legal (PU reads fixed length and CAC can cause
16966     * read length error on truncated packets)
16967     */
16968    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16969    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16970    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16971    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16972    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16973    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16974/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16975/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16976    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16977    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16978    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16979/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16980/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16981    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16982    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16983    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16984    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16985/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16986/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16987
16988    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16989           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16990           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16991    if (!CHIP_IS_E1x(sc)) {
16992        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16993                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16994    }
16995    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16996
16997    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16998    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16999    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17000/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17001
17002    if (!CHIP_IS_E1x(sc)) {
17003        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17004        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17005    }
17006
17007    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17008    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17009/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17010    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17011}
17012
17013/**
17014 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17015 *
17016 * @sc:     driver handle
17017 */
17018static int
17019bxe_init_hw_common(struct bxe_softc *sc)
17020{
17021    uint8_t abs_func_id;
17022    uint32_t val;
17023
17024    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17025          SC_ABS_FUNC(sc));
17026
17027    /*
17028     * take the RESET lock to protect undi_unload flow from accessing
17029     * registers while we are resetting the chip
17030     */
17031    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17032
17033    bxe_reset_common(sc);
17034
17035    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17036
17037    val = 0xfffc;
17038    if (CHIP_IS_E3(sc)) {
17039        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17040        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17041    }
17042
17043    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17044
17045    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17046
17047    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17048    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17049
17050    if (!CHIP_IS_E1x(sc)) {
17051        /*
17052         * 4-port mode or 2-port mode we need to turn off master-enable for
17053         * everyone. After that we turn it back on for self. So, we disregard
17054         * multi-function, and always disable all functions on the given path,
17055         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17056         */
17057        for (abs_func_id = SC_PATH(sc);
17058             abs_func_id < (E2_FUNC_MAX * 2);
17059             abs_func_id += 2) {
17060            if (abs_func_id == SC_ABS_FUNC(sc)) {
17061                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17062                continue;
17063            }
17064
17065            bxe_pretend_func(sc, abs_func_id);
17066
17067            /* clear pf enable */
17068            bxe_pf_disable(sc);
17069
17070            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17071        }
17072    }
17073
17074    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17075
17076    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17077
17078    if (CHIP_IS_E1(sc)) {
17079        /*
17080         * enable HW interrupt from PXP on USDM overflow
17081         * bit 16 on INT_MASK_0
17082         */
17083        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17084    }
17085
17086    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17087    bxe_init_pxp(sc);
17088
17089#ifdef __BIG_ENDIAN
17090    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17091    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17092    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17093    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17094    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17095    /* make sure this value is 0 */
17096    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17097
17098    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17099    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17100    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17101    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17102    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17103#endif
17104
17105    ecore_ilt_init_page_size(sc, INITOP_SET);
17106
17107    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17108        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17109    }
17110
17111    /* let the HW do it's magic... */
17112    DELAY(100000);
17113
17114    /* finish PXP init */
17115    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17116    if (val != 1) {
17117        BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
17118            val);
17119        return (-1);
17120    }
17121    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17122    if (val != 1) {
17123        BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
17124        return (-1);
17125    }
17126
17127    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17128
17129    /*
17130     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17131     * entries with value "0" and valid bit on. This needs to be done by the
17132     * first PF that is loaded in a path (i.e. common phase)
17133     */
17134    if (!CHIP_IS_E1x(sc)) {
17135/*
17136 * In E2 there is a bug in the timers block that can cause function 6 / 7
17137 * (i.e. vnic3) to start even if it is marked as "scan-off".
17138 * This occurs when a different function (func2,3) is being marked
17139 * as "scan-off". Real-life scenario for example: if a driver is being
17140 * load-unloaded while func6,7 are down. This will cause the timer to access
17141 * the ilt, translate to a logical address and send a request to read/write.
17142 * Since the ilt for the function that is down is not valid, this will cause
17143 * a translation error which is unrecoverable.
17144 * The Workaround is intended to make sure that when this happens nothing
17145 * fatal will occur. The workaround:
17146 *  1.  First PF driver which loads on a path will:
17147 *      a.  After taking the chip out of reset, by using pretend,
17148 *          it will write "0" to the following registers of
17149 *          the other vnics.
17150 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17151 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17152 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17153 *          And for itself it will write '1' to
17154 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17155 *          dmae-operations (writing to pram for example.)
17156 *          note: can be done for only function 6,7 but cleaner this
17157 *            way.
17158 *      b.  Write zero+valid to the entire ILT.
17159 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17160 *          VNIC3 (of that port). The range allocated will be the
17161 *          entire ILT. This is needed to prevent  ILT range error.
17162 *  2.  Any PF driver load flow:
17163 *      a.  ILT update with the physical addresses of the allocated
17164 *          logical pages.
17165 *      b.  Wait 20msec. - note that this timeout is needed to make
17166 *          sure there are no requests in one of the PXP internal
17167 *          queues with "old" ILT addresses.
17168 *      c.  PF enable in the PGLC.
17169 *      d.  Clear the was_error of the PF in the PGLC. (could have
17170 *          occurred while driver was down)
17171 *      e.  PF enable in the CFC (WEAK + STRONG)
17172 *      f.  Timers scan enable
17173 *  3.  PF driver unload flow:
17174 *      a.  Clear the Timers scan_en.
17175 *      b.  Polling for scan_on=0 for that PF.
17176 *      c.  Clear the PF enable bit in the PXP.
17177 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17178 *      e.  Write zero+valid to all ILT entries (The valid bit must
17179 *          stay set)
17180 *      f.  If this is VNIC 3 of a port then also init
17181 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17182 *          to the last enrty in the ILT.
17183 *
17184 *      Notes:
17185 *      Currently the PF error in the PGLC is non recoverable.
17186 *      In the future the there will be a recovery routine for this error.
17187 *      Currently attention is masked.
17188 *      Having an MCP lock on the load/unload process does not guarantee that
17189 *      there is no Timer disable during Func6/7 enable. This is because the
17190 *      Timers scan is currently being cleared by the MCP on FLR.
17191 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17192 *      there is error before clearing it. But the flow above is simpler and
17193 *      more general.
17194 *      All ILT entries are written by zero+valid and not just PF6/7
17195 *      ILT entries since in the future the ILT entries allocation for
17196 *      PF-s might be dynamic.
17197 */
17198        struct ilt_client_info ilt_cli;
17199        struct ecore_ilt ilt;
17200
17201        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17202        memset(&ilt, 0, sizeof(struct ecore_ilt));
17203
17204        /* initialize dummy TM client */
17205        ilt_cli.start      = 0;
17206        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17207        ilt_cli.client_num = ILT_CLIENT_TM;
17208
17209        /*
17210         * Step 1: set zeroes to all ilt page entries with valid bit on
17211         * Step 2: set the timers first/last ilt entry to point
17212         * to the entire range to prevent ILT range error for 3rd/4th
17213         * vnic (this code assumes existence of the vnic)
17214         *
17215         * both steps performed by call to ecore_ilt_client_init_op()
17216         * with dummy TM client
17217         *
17218         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17219         * and his brother are split registers
17220         */
17221
17222        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17223        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17224        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17225
17226        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17227        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17228        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17229    }
17230
17231    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17232    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17233
17234    if (!CHIP_IS_E1x(sc)) {
17235        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17236                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17237
17238        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17239        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17240
17241        /* let the HW do it's magic... */
17242        do {
17243            DELAY(200000);
17244            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17245        } while (factor-- && (val != 1));
17246
17247        if (val != 1) {
17248            BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
17249            return (-1);
17250        }
17251    }
17252
17253    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17254
17255    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17256
17257    bxe_iov_init_dmae(sc);
17258
17259    /* clean the DMAE memory */
17260    sc->dmae_ready = 1;
17261    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17262
17263    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17264
17265    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17266
17267    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17268
17269    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17270
17271    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17272    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17273    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17274    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17275
17276    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17277
17278    /* QM queues pointers table */
17279    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17280
17281    /* soft reset pulse */
17282    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17283    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17284
17285    if (CNIC_SUPPORT(sc))
17286        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17287
17288    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17289    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17290    if (!CHIP_REV_IS_SLOW(sc)) {
17291        /* enable hw interrupt from doorbell Q */
17292        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17293    }
17294
17295    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17296
17297    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17298    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17299
17300    if (!CHIP_IS_E1(sc)) {
17301        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17302    }
17303
17304    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17305        if (IS_MF_AFEX(sc)) {
17306            /*
17307             * configure that AFEX and VLAN headers must be
17308             * received in AFEX mode
17309             */
17310            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17311            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17312            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17313            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17314            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17315        } else {
17316            /*
17317             * Bit-map indicating which L2 hdrs may appear
17318             * after the basic Ethernet header
17319             */
17320            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17321                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17322        }
17323    }
17324
17325    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17326    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17327    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17328    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17329
17330    if (!CHIP_IS_E1x(sc)) {
17331        /* reset VFC memories */
17332        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17333               VFC_MEMORIES_RST_REG_CAM_RST |
17334               VFC_MEMORIES_RST_REG_RAM_RST);
17335        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17336               VFC_MEMORIES_RST_REG_CAM_RST |
17337               VFC_MEMORIES_RST_REG_RAM_RST);
17338
17339        DELAY(20000);
17340    }
17341
17342    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17343    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17344    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17345    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17346
17347    /* sync semi rtc */
17348    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17349           0x80000000);
17350    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17351           0x80000000);
17352
17353    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17354    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17355    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17356
17357    if (!CHIP_IS_E1x(sc)) {
17358        if (IS_MF_AFEX(sc)) {
17359            /*
17360             * configure that AFEX and VLAN headers must be
17361             * sent in AFEX mode
17362             */
17363            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17364            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17365            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17366            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17367            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17368        } else {
17369            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17370                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17371        }
17372    }
17373
17374    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17375
17376    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17377
17378    if (CNIC_SUPPORT(sc)) {
17379        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17380        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17381        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17382        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17383        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17384        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17385        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17386        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17387        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17388        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17389    }
17390    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17391
17392    if (sizeof(union cdu_context) != 1024) {
17393        /* we currently assume that a context is 1024 bytes */
17394        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17395              (long)sizeof(union cdu_context));
17396    }
17397
17398    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17399    val = (4 << 24) + (0 << 12) + 1024;
17400    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17401
17402    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17403
17404    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17405    /* enable context validation interrupt from CFC */
17406    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17407
17408    /* set the thresholds to prevent CFC/CDU race */
17409    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17410    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17411
17412    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17413        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17414    }
17415
17416    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17417    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17418
17419    /* Reset PCIE errors for debug */
17420    REG_WR(sc, 0x2814, 0xffffffff);
17421    REG_WR(sc, 0x3820, 0xffffffff);
17422
17423    if (!CHIP_IS_E1x(sc)) {
17424        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17425               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17426                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17427        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17428               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17429                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17430                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17431        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17432               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17433                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17434                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17435    }
17436
17437    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17438
17439    if (!CHIP_IS_E1(sc)) {
17440        /* in E3 this done in per-port section */
17441        if (!CHIP_IS_E3(sc))
17442            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17443    }
17444
17445    if (CHIP_IS_E1H(sc)) {
17446        /* not applicable for E2 (and above ...) */
17447        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17448    }
17449
17450    if (CHIP_REV_IS_SLOW(sc)) {
17451        DELAY(200000);
17452    }
17453
17454    /* finish CFC init */
17455    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17456    if (val != 1) {
17457        BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17458        return (-1);
17459    }
17460    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17461    if (val != 1) {
17462        BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17463        return (-1);
17464    }
17465    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17466    if (val != 1) {
17467        BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17468        return (-1);
17469    }
17470    REG_WR(sc, CFC_REG_DEBUG0, 0);
17471
17472    if (CHIP_IS_E1(sc)) {
17473        /* read NIG statistic to see if this is our first up since powerup */
17474        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17475        val = *BXE_SP(sc, wb_data[0]);
17476
17477        /* do internal memory self test */
17478        if ((val == 0) && bxe_int_mem_test(sc)) {
17479            BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17480            return (-1);
17481        }
17482    }
17483
17484    bxe_setup_fan_failure_detection(sc);
17485
17486    /* clear PXP2 attentions */
17487    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17488
17489    bxe_enable_blocks_attention(sc);
17490
17491    if (!CHIP_REV_IS_SLOW(sc)) {
17492        ecore_enable_blocks_parity(sc);
17493    }
17494
17495    if (!BXE_NOMCP(sc)) {
17496        if (CHIP_IS_E1x(sc)) {
17497            bxe_common_init_phy(sc);
17498        }
17499    }
17500
17501    return (0);
17502}
17503
17504/**
17505 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17506 *
17507 * @sc:     driver handle
17508 */
17509static int
17510bxe_init_hw_common_chip(struct bxe_softc *sc)
17511{
17512    int rc = bxe_init_hw_common(sc);
17513
17514    if (rc) {
17515        BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17516        return (rc);
17517    }
17518
17519    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17520    if (!BXE_NOMCP(sc)) {
17521        bxe_common_init_phy(sc);
17522    }
17523
17524    return (0);
17525}
17526
17527static int
17528bxe_init_hw_port(struct bxe_softc *sc)
17529{
17530    int port = SC_PORT(sc);
17531    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17532    uint32_t low, high;
17533    uint32_t val;
17534
17535    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17536
17537    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17538
17539    ecore_init_block(sc, BLOCK_MISC, init_phase);
17540    ecore_init_block(sc, BLOCK_PXP, init_phase);
17541    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17542
17543    /*
17544     * Timers bug workaround: disables the pf_master bit in pglue at
17545     * common phase, we need to enable it here before any dmae access are
17546     * attempted. Therefore we manually added the enable-master to the
17547     * port phase (it also happens in the function phase)
17548     */
17549    if (!CHIP_IS_E1x(sc)) {
17550        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17551    }
17552
17553    ecore_init_block(sc, BLOCK_ATC, init_phase);
17554    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17555    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17556    ecore_init_block(sc, BLOCK_QM, init_phase);
17557
17558    ecore_init_block(sc, BLOCK_TCM, init_phase);
17559    ecore_init_block(sc, BLOCK_UCM, init_phase);
17560    ecore_init_block(sc, BLOCK_CCM, init_phase);
17561    ecore_init_block(sc, BLOCK_XCM, init_phase);
17562
17563    /* QM cid (connection) count */
17564    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17565
17566    if (CNIC_SUPPORT(sc)) {
17567        ecore_init_block(sc, BLOCK_TM, init_phase);
17568        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17569        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17570    }
17571
17572    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17573
17574    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17575
17576    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17577        if (IS_MF(sc)) {
17578            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17579        } else if (sc->mtu > 4096) {
17580            if (BXE_ONE_PORT(sc)) {
17581                low = 160;
17582            } else {
17583                val = sc->mtu;
17584                /* (24*1024 + val*4)/256 */
17585                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17586            }
17587        } else {
17588            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17589        }
17590        high = (low + 56); /* 14*1024/256 */
17591        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17592        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17593    }
17594
17595    if (CHIP_IS_MODE_4_PORT(sc)) {
17596        REG_WR(sc, SC_PORT(sc) ?
17597               BRB1_REG_MAC_GUARANTIED_1 :
17598               BRB1_REG_MAC_GUARANTIED_0, 40);
17599    }
17600
17601    ecore_init_block(sc, BLOCK_PRS, init_phase);
17602    if (CHIP_IS_E3B0(sc)) {
17603        if (IS_MF_AFEX(sc)) {
17604            /* configure headers for AFEX mode */
17605            REG_WR(sc, SC_PORT(sc) ?
17606                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17607                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17608            REG_WR(sc, SC_PORT(sc) ?
17609                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17610                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17611            REG_WR(sc, SC_PORT(sc) ?
17612                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17613                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17614        } else {
17615            /* Ovlan exists only if we are in multi-function +
17616             * switch-dependent mode, in switch-independent there
17617             * is no ovlan headers
17618             */
17619            REG_WR(sc, SC_PORT(sc) ?
17620                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17621                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17622                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17623        }
17624    }
17625
17626    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17627    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17628    ecore_init_block(sc, BLOCK_USDM, init_phase);
17629    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17630
17631    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17632    ecore_init_block(sc, BLOCK_USEM, init_phase);
17633    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17634    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17635
17636    ecore_init_block(sc, BLOCK_UPB, init_phase);
17637    ecore_init_block(sc, BLOCK_XPB, init_phase);
17638
17639    ecore_init_block(sc, BLOCK_PBF, init_phase);
17640
17641    if (CHIP_IS_E1x(sc)) {
17642        /* configure PBF to work without PAUSE mtu 9000 */
17643        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17644
17645        /* update threshold */
17646        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17647        /* update init credit */
17648        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17649
17650        /* probe changes */
17651        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17652        DELAY(50);
17653        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17654    }
17655
17656    if (CNIC_SUPPORT(sc)) {
17657        ecore_init_block(sc, BLOCK_SRC, init_phase);
17658    }
17659
17660    ecore_init_block(sc, BLOCK_CDU, init_phase);
17661    ecore_init_block(sc, BLOCK_CFC, init_phase);
17662
17663    if (CHIP_IS_E1(sc)) {
17664        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17665        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17666    }
17667    ecore_init_block(sc, BLOCK_HC, init_phase);
17668
17669    ecore_init_block(sc, BLOCK_IGU, init_phase);
17670
17671    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17672    /* init aeu_mask_attn_func_0/1:
17673     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17674     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17675     *             bits 4-7 are used for "per vn group attention" */
17676    val = IS_MF(sc) ? 0xF7 : 0x7;
17677    /* Enable DCBX attention for all but E1 */
17678    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17679    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17680
17681    ecore_init_block(sc, BLOCK_NIG, init_phase);
17682
17683    if (!CHIP_IS_E1x(sc)) {
17684        /* Bit-map indicating which L2 hdrs may appear after the
17685         * basic Ethernet header
17686         */
17687        if (IS_MF_AFEX(sc)) {
17688            REG_WR(sc, SC_PORT(sc) ?
17689                   NIG_REG_P1_HDRS_AFTER_BASIC :
17690                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17691        } else {
17692            REG_WR(sc, SC_PORT(sc) ?
17693                   NIG_REG_P1_HDRS_AFTER_BASIC :
17694                   NIG_REG_P0_HDRS_AFTER_BASIC,
17695                   IS_MF_SD(sc) ? 7 : 6);
17696        }
17697
17698        if (CHIP_IS_E3(sc)) {
17699            REG_WR(sc, SC_PORT(sc) ?
17700                   NIG_REG_LLH1_MF_MODE :
17701                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17702        }
17703    }
17704    if (!CHIP_IS_E3(sc)) {
17705        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17706    }
17707
17708    if (!CHIP_IS_E1(sc)) {
17709        /* 0x2 disable mf_ov, 0x1 enable */
17710        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17711               (IS_MF_SD(sc) ? 0x1 : 0x2));
17712
17713        if (!CHIP_IS_E1x(sc)) {
17714            val = 0;
17715            switch (sc->devinfo.mf_info.mf_mode) {
17716            case MULTI_FUNCTION_SD:
17717                val = 1;
17718                break;
17719            case MULTI_FUNCTION_SI:
17720            case MULTI_FUNCTION_AFEX:
17721                val = 2;
17722                break;
17723            }
17724
17725            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17726                        NIG_REG_LLH0_CLS_TYPE), val);
17727        }
17728        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17729        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17730        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17731    }
17732
17733    /* If SPIO5 is set to generate interrupts, enable it for this port */
17734    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17735    if (val & MISC_SPIO_SPIO5) {
17736        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17737                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17738        val = REG_RD(sc, reg_addr);
17739        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17740        REG_WR(sc, reg_addr, val);
17741    }
17742
17743    return (0);
17744}
17745
17746static uint32_t
17747bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17748                       uint32_t         reg,
17749                       uint32_t         expected,
17750                       uint32_t         poll_count)
17751{
17752    uint32_t cur_cnt = poll_count;
17753    uint32_t val;
17754
17755    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17756        DELAY(FLR_WAIT_INTERVAL);
17757    }
17758
17759    return (val);
17760}
17761
17762static int
17763bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17764                              uint32_t         reg,
17765                              char             *msg,
17766                              uint32_t         poll_cnt)
17767{
17768    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17769
17770    if (val != 0) {
17771        BLOGE(sc, "%s usage count=%d\n", msg, val);
17772        return (1);
17773    }
17774
17775    return (0);
17776}
17777
17778/* Common routines with VF FLR cleanup */
17779static uint32_t
17780bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17781{
17782    /* adjust polling timeout */
17783    if (CHIP_REV_IS_EMUL(sc)) {
17784        return (FLR_POLL_CNT * 2000);
17785    }
17786
17787    if (CHIP_REV_IS_FPGA(sc)) {
17788        return (FLR_POLL_CNT * 120);
17789    }
17790
17791    return (FLR_POLL_CNT);
17792}
17793
17794static int
17795bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17796                           uint32_t         poll_cnt)
17797{
17798    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17799    if (bxe_flr_clnup_poll_hw_counter(sc,
17800                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17801                                      "CFC PF usage counter timed out",
17802                                      poll_cnt)) {
17803        return (1);
17804    }
17805
17806    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17807    if (bxe_flr_clnup_poll_hw_counter(sc,
17808                                      DORQ_REG_PF_USAGE_CNT,
17809                                      "DQ PF usage counter timed out",
17810                                      poll_cnt)) {
17811        return (1);
17812    }
17813
17814    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17815    if (bxe_flr_clnup_poll_hw_counter(sc,
17816                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17817                                      "QM PF usage counter timed out",
17818                                      poll_cnt)) {
17819        return (1);
17820    }
17821
17822    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17823    if (bxe_flr_clnup_poll_hw_counter(sc,
17824                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17825                                      "Timers VNIC usage counter timed out",
17826                                      poll_cnt)) {
17827        return (1);
17828    }
17829
17830    if (bxe_flr_clnup_poll_hw_counter(sc,
17831                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17832                                      "Timers NUM_SCANS usage counter timed out",
17833                                      poll_cnt)) {
17834        return (1);
17835    }
17836
17837    /* Wait DMAE PF usage counter to zero */
17838    if (bxe_flr_clnup_poll_hw_counter(sc,
17839                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17840                                      "DMAE dommand register timed out",
17841                                      poll_cnt)) {
17842        return (1);
17843    }
17844
17845    return (0);
17846}
17847
17848#define OP_GEN_PARAM(param)                                            \
17849    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17850#define OP_GEN_TYPE(type)                                           \
17851    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17852#define OP_GEN_AGG_VECT(index)                                             \
17853    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17854
17855static int
17856bxe_send_final_clnup(struct bxe_softc *sc,
17857                     uint8_t          clnup_func,
17858                     uint32_t         poll_cnt)
17859{
17860    uint32_t op_gen_command = 0;
17861    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17862                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17863    int ret = 0;
17864
17865    if (REG_RD(sc, comp_addr)) {
17866        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17867        return (1);
17868    }
17869
17870    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17871    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17872    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17873    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17874
17875    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17876    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17877
17878    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17879        BLOGE(sc, "FW final cleanup did not succeed\n");
17880        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17881              (REG_RD(sc, comp_addr)));
17882        bxe_panic(sc, ("FLR cleanup failed\n"));
17883        return (1);
17884    }
17885
17886    /* Zero completion for nxt FLR */
17887    REG_WR(sc, comp_addr, 0);
17888
17889    return (ret);
17890}
17891
17892static void
17893bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17894                       struct pbf_pN_buf_regs *regs,
17895                       uint32_t               poll_count)
17896{
17897    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17898    uint32_t cur_cnt = poll_count;
17899
17900    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17901    crd = crd_start = REG_RD(sc, regs->crd);
17902    init_crd = REG_RD(sc, regs->init_crd);
17903
17904    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17905    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17906    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17907
17908    while ((crd != init_crd) &&
17909           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17910            (init_crd - crd_start))) {
17911        if (cur_cnt--) {
17912            DELAY(FLR_WAIT_INTERVAL);
17913            crd = REG_RD(sc, regs->crd);
17914            crd_freed = REG_RD(sc, regs->crd_freed);
17915        } else {
17916            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17917            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17918            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17919            break;
17920        }
17921    }
17922
17923    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17924          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17925}
17926
17927static void
17928bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17929                       struct pbf_pN_cmd_regs *regs,
17930                       uint32_t               poll_count)
17931{
17932    uint32_t occup, to_free, freed, freed_start;
17933    uint32_t cur_cnt = poll_count;
17934
17935    occup = to_free = REG_RD(sc, regs->lines_occup);
17936    freed = freed_start = REG_RD(sc, regs->lines_freed);
17937
17938    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17939    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17940
17941    while (occup &&
17942           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17943        if (cur_cnt--) {
17944            DELAY(FLR_WAIT_INTERVAL);
17945            occup = REG_RD(sc, regs->lines_occup);
17946            freed = REG_RD(sc, regs->lines_freed);
17947        } else {
17948            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17949            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17950            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17951            break;
17952        }
17953    }
17954
17955    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17956          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17957}
17958
17959static void
17960bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17961{
17962    struct pbf_pN_cmd_regs cmd_regs[] = {
17963        {0, (CHIP_IS_E3B0(sc)) ?
17964            PBF_REG_TQ_OCCUPANCY_Q0 :
17965            PBF_REG_P0_TQ_OCCUPANCY,
17966            (CHIP_IS_E3B0(sc)) ?
17967            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17968            PBF_REG_P0_TQ_LINES_FREED_CNT},
17969        {1, (CHIP_IS_E3B0(sc)) ?
17970            PBF_REG_TQ_OCCUPANCY_Q1 :
17971            PBF_REG_P1_TQ_OCCUPANCY,
17972            (CHIP_IS_E3B0(sc)) ?
17973            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17974            PBF_REG_P1_TQ_LINES_FREED_CNT},
17975        {4, (CHIP_IS_E3B0(sc)) ?
17976            PBF_REG_TQ_OCCUPANCY_LB_Q :
17977            PBF_REG_P4_TQ_OCCUPANCY,
17978            (CHIP_IS_E3B0(sc)) ?
17979            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17980            PBF_REG_P4_TQ_LINES_FREED_CNT}
17981    };
17982
17983    struct pbf_pN_buf_regs buf_regs[] = {
17984        {0, (CHIP_IS_E3B0(sc)) ?
17985            PBF_REG_INIT_CRD_Q0 :
17986            PBF_REG_P0_INIT_CRD ,
17987            (CHIP_IS_E3B0(sc)) ?
17988            PBF_REG_CREDIT_Q0 :
17989            PBF_REG_P0_CREDIT,
17990            (CHIP_IS_E3B0(sc)) ?
17991            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17992            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17993        {1, (CHIP_IS_E3B0(sc)) ?
17994            PBF_REG_INIT_CRD_Q1 :
17995            PBF_REG_P1_INIT_CRD,
17996            (CHIP_IS_E3B0(sc)) ?
17997            PBF_REG_CREDIT_Q1 :
17998            PBF_REG_P1_CREDIT,
17999            (CHIP_IS_E3B0(sc)) ?
18000            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18001            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18002        {4, (CHIP_IS_E3B0(sc)) ?
18003            PBF_REG_INIT_CRD_LB_Q :
18004            PBF_REG_P4_INIT_CRD,
18005            (CHIP_IS_E3B0(sc)) ?
18006            PBF_REG_CREDIT_LB_Q :
18007            PBF_REG_P4_CREDIT,
18008            (CHIP_IS_E3B0(sc)) ?
18009            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18010            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18011    };
18012
18013    int i;
18014
18015    /* Verify the command queues are flushed P0, P1, P4 */
18016    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18017        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18018    }
18019
18020    /* Verify the transmission buffers are flushed P0, P1, P4 */
18021    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18022        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18023    }
18024}
18025
18026static void
18027bxe_hw_enable_status(struct bxe_softc *sc)
18028{
18029    uint32_t val;
18030
18031    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18032    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18033
18034    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18035    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18036
18037    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18038    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18039
18040    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18041    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18042
18043    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18044    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18045
18046    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18047    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18048
18049    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18050    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18051
18052    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18053    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18054}
18055
18056static int
18057bxe_pf_flr_clnup(struct bxe_softc *sc)
18058{
18059    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18060
18061    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18062
18063    /* Re-enable PF target read access */
18064    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18065
18066    /* Poll HW usage counters */
18067    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18068    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18069        return (-1);
18070    }
18071
18072    /* Zero the igu 'trailing edge' and 'leading edge' */
18073
18074    /* Send the FW cleanup command */
18075    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18076        return (-1);
18077    }
18078
18079    /* ATC cleanup */
18080
18081    /* Verify TX hw is flushed */
18082    bxe_tx_hw_flushed(sc, poll_cnt);
18083
18084    /* Wait 100ms (not adjusted according to platform) */
18085    DELAY(100000);
18086
18087    /* Verify no pending pci transactions */
18088    if (bxe_is_pcie_pending(sc)) {
18089        BLOGE(sc, "PCIE Transactions still pending\n");
18090    }
18091
18092    /* Debug */
18093    bxe_hw_enable_status(sc);
18094
18095    /*
18096     * Master enable - Due to WB DMAE writes performed before this
18097     * register is re-initialized as part of the regular function init
18098     */
18099    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18100
18101    return (0);
18102}
18103
18104static int
18105bxe_init_hw_func(struct bxe_softc *sc)
18106{
18107    int port = SC_PORT(sc);
18108    int func = SC_FUNC(sc);
18109    int init_phase = PHASE_PF0 + func;
18110    struct ecore_ilt *ilt = sc->ilt;
18111    uint16_t cdu_ilt_start;
18112    uint32_t addr, val;
18113    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18114    int i, main_mem_width, rc;
18115
18116    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18117
18118    /* FLR cleanup */
18119    if (!CHIP_IS_E1x(sc)) {
18120        rc = bxe_pf_flr_clnup(sc);
18121        if (rc) {
18122            BLOGE(sc, "FLR cleanup failed!\n");
18123            // XXX bxe_fw_dump(sc);
18124            // XXX bxe_idle_chk(sc);
18125            return (rc);
18126        }
18127    }
18128
18129    /* set MSI reconfigure capability */
18130    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18131        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18132        val = REG_RD(sc, addr);
18133        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18134        REG_WR(sc, addr, val);
18135    }
18136
18137    ecore_init_block(sc, BLOCK_PXP, init_phase);
18138    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18139
18140    ilt = sc->ilt;
18141    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18142
18143    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18144        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18145        ilt->lines[cdu_ilt_start + i].page_mapping =
18146            sc->context[i].vcxt_dma.paddr;
18147        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18148    }
18149    ecore_ilt_init_op(sc, INITOP_SET);
18150
18151    /* Set NIC mode */
18152    REG_WR(sc, PRS_REG_NIC_MODE, 1);
18153    BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18154
18155    if (!CHIP_IS_E1x(sc)) {
18156        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18157
18158        /* Turn on a single ISR mode in IGU if driver is going to use
18159         * INT#x or MSI
18160         */
18161        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18162            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18163        }
18164
18165        /*
18166         * Timers workaround bug: function init part.
18167         * Need to wait 20msec after initializing ILT,
18168         * needed to make sure there are no requests in
18169         * one of the PXP internal queues with "old" ILT addresses
18170         */
18171        DELAY(20000);
18172
18173        /*
18174         * Master enable - Due to WB DMAE writes performed before this
18175         * register is re-initialized as part of the regular function
18176         * init
18177         */
18178        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18179        /* Enable the function in IGU */
18180        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18181    }
18182
18183    sc->dmae_ready = 1;
18184
18185    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18186
18187    if (!CHIP_IS_E1x(sc))
18188        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18189
18190    ecore_init_block(sc, BLOCK_ATC, init_phase);
18191    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18192    ecore_init_block(sc, BLOCK_NIG, init_phase);
18193    ecore_init_block(sc, BLOCK_SRC, init_phase);
18194    ecore_init_block(sc, BLOCK_MISC, init_phase);
18195    ecore_init_block(sc, BLOCK_TCM, init_phase);
18196    ecore_init_block(sc, BLOCK_UCM, init_phase);
18197    ecore_init_block(sc, BLOCK_CCM, init_phase);
18198    ecore_init_block(sc, BLOCK_XCM, init_phase);
18199    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18200    ecore_init_block(sc, BLOCK_USEM, init_phase);
18201    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18202    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18203
18204    if (!CHIP_IS_E1x(sc))
18205        REG_WR(sc, QM_REG_PF_EN, 1);
18206
18207    if (!CHIP_IS_E1x(sc)) {
18208        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18209        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18210        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18211        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18212    }
18213    ecore_init_block(sc, BLOCK_QM, init_phase);
18214
18215    ecore_init_block(sc, BLOCK_TM, init_phase);
18216    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18217
18218    bxe_iov_init_dq(sc);
18219
18220    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18221    ecore_init_block(sc, BLOCK_PRS, init_phase);
18222    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18223    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18224    ecore_init_block(sc, BLOCK_USDM, init_phase);
18225    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18226    ecore_init_block(sc, BLOCK_UPB, init_phase);
18227    ecore_init_block(sc, BLOCK_XPB, init_phase);
18228    ecore_init_block(sc, BLOCK_PBF, init_phase);
18229    if (!CHIP_IS_E1x(sc))
18230        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18231
18232    ecore_init_block(sc, BLOCK_CDU, init_phase);
18233
18234    ecore_init_block(sc, BLOCK_CFC, init_phase);
18235
18236    if (!CHIP_IS_E1x(sc))
18237        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18238
18239    if (IS_MF(sc)) {
18240        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18241        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18242    }
18243
18244    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18245
18246    /* HC init per function */
18247    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18248        if (CHIP_IS_E1H(sc)) {
18249            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18250
18251            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18252            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18253        }
18254        ecore_init_block(sc, BLOCK_HC, init_phase);
18255
18256    } else {
18257        int num_segs, sb_idx, prod_offset;
18258
18259        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18260
18261        if (!CHIP_IS_E1x(sc)) {
18262            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18263            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18264        }
18265
18266        ecore_init_block(sc, BLOCK_IGU, init_phase);
18267
18268        if (!CHIP_IS_E1x(sc)) {
18269            int dsb_idx = 0;
18270            /**
18271             * Producer memory:
18272             * E2 mode: address 0-135 match to the mapping memory;
18273             * 136 - PF0 default prod; 137 - PF1 default prod;
18274             * 138 - PF2 default prod; 139 - PF3 default prod;
18275             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18276             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18277             * 144-147 reserved.
18278             *
18279             * E1.5 mode - In backward compatible mode;
18280             * for non default SB; each even line in the memory
18281             * holds the U producer and each odd line hold
18282             * the C producer. The first 128 producers are for
18283             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18284             * producers are for the DSB for each PF.
18285             * Each PF has five segments: (the order inside each
18286             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18287             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18288             * 144-147 attn prods;
18289             */
18290            /* non-default-status-blocks */
18291            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18292                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18293            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18294                prod_offset = (sc->igu_base_sb + sb_idx) *
18295                    num_segs;
18296
18297                for (i = 0; i < num_segs; i++) {
18298                    addr = IGU_REG_PROD_CONS_MEMORY +
18299                            (prod_offset + i) * 4;
18300                    REG_WR(sc, addr, 0);
18301                }
18302                /* send consumer update with value 0 */
18303                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18304                           USTORM_ID, 0, IGU_INT_NOP, 1);
18305                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18306            }
18307
18308            /* default-status-blocks */
18309            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18310                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18311
18312            if (CHIP_IS_MODE_4_PORT(sc))
18313                dsb_idx = SC_FUNC(sc);
18314            else
18315                dsb_idx = SC_VN(sc);
18316
18317            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18318                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18319                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18320
18321            /*
18322             * igu prods come in chunks of E1HVN_MAX (4) -
18323             * does not matters what is the current chip mode
18324             */
18325            for (i = 0; i < (num_segs * E1HVN_MAX);
18326                 i += E1HVN_MAX) {
18327                addr = IGU_REG_PROD_CONS_MEMORY +
18328                            (prod_offset + i)*4;
18329                REG_WR(sc, addr, 0);
18330            }
18331            /* send consumer update with 0 */
18332            if (CHIP_INT_MODE_IS_BC(sc)) {
18333                bxe_ack_sb(sc, sc->igu_dsb_id,
18334                           USTORM_ID, 0, IGU_INT_NOP, 1);
18335                bxe_ack_sb(sc, sc->igu_dsb_id,
18336                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18337                bxe_ack_sb(sc, sc->igu_dsb_id,
18338                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18339                bxe_ack_sb(sc, sc->igu_dsb_id,
18340                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18341                bxe_ack_sb(sc, sc->igu_dsb_id,
18342                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18343            } else {
18344                bxe_ack_sb(sc, sc->igu_dsb_id,
18345                           USTORM_ID, 0, IGU_INT_NOP, 1);
18346                bxe_ack_sb(sc, sc->igu_dsb_id,
18347                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18348            }
18349            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18350
18351            /* !!! these should become driver const once
18352               rf-tool supports split-68 const */
18353            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18354            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18355            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18356            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18357            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18358            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18359        }
18360    }
18361
18362    /* Reset PCIE errors for debug */
18363    REG_WR(sc, 0x2114, 0xffffffff);
18364    REG_WR(sc, 0x2120, 0xffffffff);
18365
18366    if (CHIP_IS_E1x(sc)) {
18367        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18368        main_mem_base = HC_REG_MAIN_MEMORY +
18369                SC_PORT(sc) * (main_mem_size * 4);
18370        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18371        main_mem_width = 8;
18372
18373        val = REG_RD(sc, main_mem_prty_clr);
18374        if (val) {
18375            BLOGD(sc, DBG_LOAD,
18376                  "Parity errors in HC block during function init (0x%x)!\n",
18377                  val);
18378        }
18379
18380        /* Clear "false" parity errors in MSI-X table */
18381        for (i = main_mem_base;
18382             i < main_mem_base + main_mem_size * 4;
18383             i += main_mem_width) {
18384            bxe_read_dmae(sc, i, main_mem_width / 4);
18385            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18386                           i, main_mem_width / 4);
18387        }
18388        /* Clear HC parity attention */
18389        REG_RD(sc, main_mem_prty_clr);
18390    }
18391
18392#if 1
18393    /* Enable STORMs SP logging */
18394    REG_WR8(sc, BAR_USTRORM_INTMEM +
18395           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18396    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18397           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18398    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18399           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18400    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18401           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18402#endif
18403
18404    elink_phy_probe(&sc->link_params);
18405
18406    return (0);
18407}
18408
18409static void
18410bxe_link_reset(struct bxe_softc *sc)
18411{
18412    if (!BXE_NOMCP(sc)) {
18413	bxe_acquire_phy_lock(sc);
18414        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18415	bxe_release_phy_lock(sc);
18416    } else {
18417        if (!CHIP_REV_IS_SLOW(sc)) {
18418            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18419        }
18420    }
18421}
18422
18423static void
18424bxe_reset_port(struct bxe_softc *sc)
18425{
18426    int port = SC_PORT(sc);
18427    uint32_t val;
18428
18429	ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18430    /* reset physical Link */
18431    bxe_link_reset(sc);
18432
18433    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18434
18435    /* Do not rcv packets to BRB */
18436    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18437    /* Do not direct rcv packets that are not for MCP to the BRB */
18438    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18439               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18440
18441    /* Configure AEU */
18442    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18443
18444    DELAY(100000);
18445
18446    /* Check for BRB port occupancy */
18447    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18448    if (val) {
18449        BLOGD(sc, DBG_LOAD,
18450              "BRB1 is not empty, %d blocks are occupied\n", val);
18451    }
18452
18453    /* TODO: Close Doorbell port? */
18454}
18455
18456static void
18457bxe_ilt_wr(struct bxe_softc *sc,
18458           uint32_t         index,
18459           bus_addr_t       addr)
18460{
18461    int reg;
18462    uint32_t wb_write[2];
18463
18464    if (CHIP_IS_E1(sc)) {
18465        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18466    } else {
18467        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18468    }
18469
18470    wb_write[0] = ONCHIP_ADDR1(addr);
18471    wb_write[1] = ONCHIP_ADDR2(addr);
18472    REG_WR_DMAE(sc, reg, wb_write, 2);
18473}
18474
18475static void
18476bxe_clear_func_ilt(struct bxe_softc *sc,
18477                   uint32_t         func)
18478{
18479    uint32_t i, base = FUNC_ILT_BASE(func);
18480    for (i = base; i < base + ILT_PER_FUNC; i++) {
18481        bxe_ilt_wr(sc, i, 0);
18482    }
18483}
18484
18485static void
18486bxe_reset_func(struct bxe_softc *sc)
18487{
18488    struct bxe_fastpath *fp;
18489    int port = SC_PORT(sc);
18490    int func = SC_FUNC(sc);
18491    int i;
18492
18493    /* Disable the function in the FW */
18494    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18495    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18496    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18497    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18498
18499    /* FP SBs */
18500    FOR_EACH_ETH_QUEUE(sc, i) {
18501        fp = &sc->fp[i];
18502        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18503                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18504                SB_DISABLED);
18505    }
18506
18507    /* SP SB */
18508    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18509            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18510            SB_DISABLED);
18511
18512    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18513        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18514    }
18515
18516    /* Configure IGU */
18517    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18518        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18519        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18520    } else {
18521        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18522        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18523    }
18524
18525    if (CNIC_LOADED(sc)) {
18526        /* Disable Timer scan */
18527        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18528        /*
18529         * Wait for at least 10ms and up to 2 second for the timers
18530         * scan to complete
18531         */
18532        for (i = 0; i < 200; i++) {
18533            DELAY(10000);
18534            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18535                break;
18536        }
18537    }
18538
18539    /* Clear ILT */
18540    bxe_clear_func_ilt(sc, func);
18541
18542    /*
18543     * Timers workaround bug for E2: if this is vnic-3,
18544     * we need to set the entire ilt range for this timers.
18545     */
18546    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18547        struct ilt_client_info ilt_cli;
18548        /* use dummy TM client */
18549        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18550        ilt_cli.start = 0;
18551        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18552        ilt_cli.client_num = ILT_CLIENT_TM;
18553
18554        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18555    }
18556
18557    /* this assumes that reset_port() called before reset_func()*/
18558    if (!CHIP_IS_E1x(sc)) {
18559        bxe_pf_disable(sc);
18560    }
18561
18562    sc->dmae_ready = 0;
18563}
18564
18565static int
18566bxe_gunzip_init(struct bxe_softc *sc)
18567{
18568    return (0);
18569}
18570
18571static void
18572bxe_gunzip_end(struct bxe_softc *sc)
18573{
18574    return;
18575}
18576
18577static int
18578bxe_init_firmware(struct bxe_softc *sc)
18579{
18580    if (CHIP_IS_E1(sc)) {
18581        ecore_init_e1_firmware(sc);
18582        sc->iro_array = e1_iro_arr;
18583    } else if (CHIP_IS_E1H(sc)) {
18584        ecore_init_e1h_firmware(sc);
18585        sc->iro_array = e1h_iro_arr;
18586    } else if (!CHIP_IS_E1x(sc)) {
18587        ecore_init_e2_firmware(sc);
18588        sc->iro_array = e2_iro_arr;
18589    } else {
18590        BLOGE(sc, "Unsupported chip revision\n");
18591        return (-1);
18592    }
18593
18594    return (0);
18595}
18596
18597static void
18598bxe_release_firmware(struct bxe_softc *sc)
18599{
18600    /* Do nothing */
18601    return;
18602}
18603
18604static int
18605ecore_gunzip(struct bxe_softc *sc,
18606             const uint8_t    *zbuf,
18607             int              len)
18608{
18609    /* XXX : Implement... */
18610    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18611    return (FALSE);
18612}
18613
18614static void
18615ecore_reg_wr_ind(struct bxe_softc *sc,
18616                 uint32_t         addr,
18617                 uint32_t         val)
18618{
18619    bxe_reg_wr_ind(sc, addr, val);
18620}
18621
18622static void
18623ecore_write_dmae_phys_len(struct bxe_softc *sc,
18624                          bus_addr_t       phys_addr,
18625                          uint32_t         addr,
18626                          uint32_t         len)
18627{
18628    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18629}
18630
18631void
18632ecore_storm_memset_struct(struct bxe_softc *sc,
18633                          uint32_t         addr,
18634                          size_t           size,
18635                          uint32_t         *data)
18636{
18637    uint8_t i;
18638    for (i = 0; i < size/4; i++) {
18639        REG_WR(sc, addr + (i * 4), data[i]);
18640    }
18641}
18642
18643
18644/*
18645 * character device - ioctl interface definitions
18646 */
18647
18648
18649#include "bxe_dump.h"
18650#include "bxe_ioctl.h"
18651#include <sys/conf.h>
18652
18653static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18654                struct thread *td);
18655
18656static struct cdevsw bxe_cdevsw = {
18657    .d_version = D_VERSION,
18658    .d_ioctl = bxe_eioctl,
18659    .d_name = "bxecnic",
18660};
18661
18662#define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18663
18664
18665#define DUMP_ALL_PRESETS        0x1FFF
18666#define DUMP_MAX_PRESETS        13
18667#define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18668#define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18669#define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18670#define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18671#define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18672
18673#define IS_REG_IN_PRESET(presets, idx)  \
18674                ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18675
18676
18677static int
18678bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18679{
18680    if (CHIP_IS_E1(sc))
18681        return dump_num_registers[0][preset-1];
18682    else if (CHIP_IS_E1H(sc))
18683        return dump_num_registers[1][preset-1];
18684    else if (CHIP_IS_E2(sc))
18685        return dump_num_registers[2][preset-1];
18686    else if (CHIP_IS_E3A0(sc))
18687        return dump_num_registers[3][preset-1];
18688    else if (CHIP_IS_E3B0(sc))
18689        return dump_num_registers[4][preset-1];
18690    else
18691        return 0;
18692}
18693
18694static int
18695bxe_get_total_regs_len32(struct bxe_softc *sc)
18696{
18697    uint32_t preset_idx;
18698    int regdump_len32 = 0;
18699
18700
18701    /* Calculate the total preset regs length */
18702    for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18703        regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18704    }
18705
18706    return regdump_len32;
18707}
18708
18709static const uint32_t *
18710__bxe_get_page_addr_ar(struct bxe_softc *sc)
18711{
18712    if (CHIP_IS_E2(sc))
18713        return page_vals_e2;
18714    else if (CHIP_IS_E3(sc))
18715        return page_vals_e3;
18716    else
18717        return NULL;
18718}
18719
18720static uint32_t
18721__bxe_get_page_reg_num(struct bxe_softc *sc)
18722{
18723    if (CHIP_IS_E2(sc))
18724        return PAGE_MODE_VALUES_E2;
18725    else if (CHIP_IS_E3(sc))
18726        return PAGE_MODE_VALUES_E3;
18727    else
18728        return 0;
18729}
18730
18731static const uint32_t *
18732__bxe_get_page_write_ar(struct bxe_softc *sc)
18733{
18734    if (CHIP_IS_E2(sc))
18735        return page_write_regs_e2;
18736    else if (CHIP_IS_E3(sc))
18737        return page_write_regs_e3;
18738    else
18739        return NULL;
18740}
18741
18742static uint32_t
18743__bxe_get_page_write_num(struct bxe_softc *sc)
18744{
18745    if (CHIP_IS_E2(sc))
18746        return PAGE_WRITE_REGS_E2;
18747    else if (CHIP_IS_E3(sc))
18748        return PAGE_WRITE_REGS_E3;
18749    else
18750        return 0;
18751}
18752
18753static const struct reg_addr *
18754__bxe_get_page_read_ar(struct bxe_softc *sc)
18755{
18756    if (CHIP_IS_E2(sc))
18757        return page_read_regs_e2;
18758    else if (CHIP_IS_E3(sc))
18759        return page_read_regs_e3;
18760    else
18761        return NULL;
18762}
18763
18764static uint32_t
18765__bxe_get_page_read_num(struct bxe_softc *sc)
18766{
18767    if (CHIP_IS_E2(sc))
18768        return PAGE_READ_REGS_E2;
18769    else if (CHIP_IS_E3(sc))
18770        return PAGE_READ_REGS_E3;
18771    else
18772        return 0;
18773}
18774
18775static bool
18776bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18777{
18778    if (CHIP_IS_E1(sc))
18779        return IS_E1_REG(reg_info->chips);
18780    else if (CHIP_IS_E1H(sc))
18781        return IS_E1H_REG(reg_info->chips);
18782    else if (CHIP_IS_E2(sc))
18783        return IS_E2_REG(reg_info->chips);
18784    else if (CHIP_IS_E3A0(sc))
18785        return IS_E3A0_REG(reg_info->chips);
18786    else if (CHIP_IS_E3B0(sc))
18787        return IS_E3B0_REG(reg_info->chips);
18788    else
18789        return 0;
18790}
18791
18792static bool
18793bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18794{
18795    if (CHIP_IS_E1(sc))
18796        return IS_E1_REG(wreg_info->chips);
18797    else if (CHIP_IS_E1H(sc))
18798        return IS_E1H_REG(wreg_info->chips);
18799    else if (CHIP_IS_E2(sc))
18800        return IS_E2_REG(wreg_info->chips);
18801    else if (CHIP_IS_E3A0(sc))
18802        return IS_E3A0_REG(wreg_info->chips);
18803    else if (CHIP_IS_E3B0(sc))
18804        return IS_E3B0_REG(wreg_info->chips);
18805    else
18806        return 0;
18807}
18808
18809/**
18810 * bxe_read_pages_regs - read "paged" registers
18811 *
18812 * @bp          device handle
18813 * @p           output buffer
18814 *
18815 * Reads "paged" memories: memories that may only be read by first writing to a
18816 * specific address ("write address") and then reading from a specific address
18817 * ("read address"). There may be more than one write address per "page" and
18818 * more than one read address per write address.
18819 */
18820static void
18821bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18822{
18823    uint32_t i, j, k, n;
18824
18825    /* addresses of the paged registers */
18826    const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18827    /* number of paged registers */
18828    int num_pages = __bxe_get_page_reg_num(sc);
18829    /* write addresses */
18830    const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18831    /* number of write addresses */
18832    int write_num = __bxe_get_page_write_num(sc);
18833    /* read addresses info */
18834    const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18835    /* number of read addresses */
18836    int read_num = __bxe_get_page_read_num(sc);
18837    uint32_t addr, size;
18838
18839    for (i = 0; i < num_pages; i++) {
18840        for (j = 0; j < write_num; j++) {
18841            REG_WR(sc, write_addr[j], page_addr[i]);
18842
18843            for (k = 0; k < read_num; k++) {
18844                if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18845                    size = read_addr[k].size;
18846                    for (n = 0; n < size; n++) {
18847                        addr = read_addr[k].addr + n*4;
18848                        *p++ = REG_RD(sc, addr);
18849                    }
18850                }
18851            }
18852        }
18853    }
18854    return;
18855}
18856
18857
18858static int
18859bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18860{
18861    uint32_t i, j, addr;
18862    const struct wreg_addr *wreg_addr_p = NULL;
18863
18864    if (CHIP_IS_E1(sc))
18865        wreg_addr_p = &wreg_addr_e1;
18866    else if (CHIP_IS_E1H(sc))
18867        wreg_addr_p = &wreg_addr_e1h;
18868    else if (CHIP_IS_E2(sc))
18869        wreg_addr_p = &wreg_addr_e2;
18870    else if (CHIP_IS_E3A0(sc))
18871        wreg_addr_p = &wreg_addr_e3;
18872    else if (CHIP_IS_E3B0(sc))
18873        wreg_addr_p = &wreg_addr_e3b0;
18874    else
18875        return (-1);
18876
18877    /* Read the idle_chk registers */
18878    for (i = 0; i < IDLE_REGS_COUNT; i++) {
18879        if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18880            IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18881            for (j = 0; j < idle_reg_addrs[i].size; j++)
18882                *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18883        }
18884    }
18885
18886    /* Read the regular registers */
18887    for (i = 0; i < REGS_COUNT; i++) {
18888        if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18889            IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18890            for (j = 0; j < reg_addrs[i].size; j++)
18891                *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18892        }
18893    }
18894
18895    /* Read the CAM registers */
18896    if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18897        IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18898        for (i = 0; i < wreg_addr_p->size; i++) {
18899            *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18900
18901            /* In case of wreg_addr register, read additional
18902               registers from read_regs array
18903             */
18904            for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18905                addr = *(wreg_addr_p->read_regs);
18906                *p++ = REG_RD(sc, addr + j*4);
18907            }
18908        }
18909    }
18910
18911    /* Paged registers are supported in E2 & E3 only */
18912    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18913        /* Read "paged" registers */
18914        bxe_read_pages_regs(sc, p, preset);
18915    }
18916
18917    return 0;
18918}
18919
18920int
18921bxe_grc_dump(struct bxe_softc *sc)
18922{
18923    int rval = 0;
18924    uint32_t preset_idx;
18925    uint8_t *buf;
18926    uint32_t size;
18927    struct  dump_header *d_hdr;
18928    uint32_t i;
18929    uint32_t reg_val;
18930    uint32_t reg_addr;
18931    uint32_t cmd_offset;
18932    struct ecore_ilt *ilt = SC_ILT(sc);
18933    struct bxe_fastpath *fp;
18934    struct ilt_client_info *ilt_cli;
18935    int grc_dump_size;
18936
18937
18938    if (sc->grcdump_done || sc->grcdump_started)
18939	return (rval);
18940
18941    sc->grcdump_started = 1;
18942    BLOGI(sc, "Started collecting grcdump\n");
18943
18944    grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18945                sizeof(struct  dump_header);
18946
18947    sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18948
18949    if (sc->grc_dump == NULL) {
18950        BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18951        return(ENOMEM);
18952    }
18953
18954
18955
18956    /* Disable parity attentions as long as following dump may
18957     * cause false alarms by reading never written registers. We
18958     * will re-enable parity attentions right after the dump.
18959     */
18960
18961    /* Disable parity on path 0 */
18962    bxe_pretend_func(sc, 0);
18963
18964    ecore_disable_blocks_parity(sc);
18965
18966    /* Disable parity on path 1 */
18967    bxe_pretend_func(sc, 1);
18968    ecore_disable_blocks_parity(sc);
18969
18970    /* Return to current function */
18971    bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18972
18973    buf = sc->grc_dump;
18974    d_hdr = sc->grc_dump;
18975
18976    d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18977    d_hdr->version = BNX2X_DUMP_VERSION;
18978    d_hdr->preset = DUMP_ALL_PRESETS;
18979
18980    if (CHIP_IS_E1(sc)) {
18981        d_hdr->dump_meta_data = DUMP_CHIP_E1;
18982    } else if (CHIP_IS_E1H(sc)) {
18983        d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18984    } else if (CHIP_IS_E2(sc)) {
18985        d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18986                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18987    } else if (CHIP_IS_E3A0(sc)) {
18988        d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18989                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18990    } else if (CHIP_IS_E3B0(sc)) {
18991        d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18992                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18993    }
18994
18995    buf += sizeof(struct  dump_header);
18996
18997    for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18998
18999        /* Skip presets with IOR */
19000        if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
19001            (preset_idx == 11))
19002            continue;
19003
19004        rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
19005
19006	if (rval)
19007            break;
19008
19009        size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
19010
19011        buf += size;
19012    }
19013
19014    bxe_pretend_func(sc, 0);
19015    ecore_clear_blocks_parity(sc);
19016    ecore_enable_blocks_parity(sc);
19017
19018    bxe_pretend_func(sc, 1);
19019    ecore_clear_blocks_parity(sc);
19020    ecore_enable_blocks_parity(sc);
19021
19022    /* Return to current function */
19023    bxe_pretend_func(sc, SC_ABS_FUNC(sc));
19024
19025
19026
19027    if(sc->state == BXE_STATE_OPEN) {
19028        if(sc->fw_stats_req  != NULL) {
19029    		BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
19030        			(uintmax_t)sc->fw_stats_req_mapping,
19031        			(uintmax_t)sc->fw_stats_data_mapping,
19032        			sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
19033		}
19034		if(sc->def_sb != NULL) {
19035			BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
19036        			(void *)sc->def_sb_dma.paddr, sc->def_sb,
19037        			sizeof(struct host_sp_status_block));
19038		}
19039		if(sc->eq_dma.vaddr != NULL) {
19040    		BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
19041        			(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
19042		}
19043		if(sc->sp_dma.vaddr != NULL) {
19044    		BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
19045        			(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
19046        			sizeof(struct bxe_slowpath));
19047		}
19048		if(sc->spq_dma.vaddr != NULL) {
19049    		BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
19050        			(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
19051		}
19052		if(sc->gz_buf_dma.vaddr != NULL) {
19053    		BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
19054        			(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
19055        			FW_BUF_SIZE);
19056		}
19057    	for (i = 0; i < sc->num_queues; i++) {
19058        	fp = &sc->fp[i];
19059			if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
19060                        fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
19061                        fp->rx_sge_dma.vaddr != NULL) {
19062
19063				BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19064            			(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
19065            			sizeof(union bxe_host_hc_status_block));
19066				BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19067            			(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
19068            			(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
19069        		BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19070            			(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
19071            			(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
19072        		BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19073            			(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
19074            			(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
19075        		BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19076            			(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
19077            			(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
19078    		}
19079		}
19080		if(ilt != NULL ) {
19081    		ilt_cli = &ilt->clients[1];
19082			if(ilt->lines != NULL) {
19083    		for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
19084        		BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
19085            			(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
19086            			((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
19087    		}
19088			}
19089		}
19090
19091
19092    	cmd_offset = DMAE_REG_CMD_MEM;
19093    	for (i = 0; i < 224; i++) {
19094        	reg_addr = (cmd_offset +(i * 4));
19095        	reg_val = REG_RD(sc, reg_addr);
19096        	BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
19097            			reg_addr, reg_val);
19098    	}
19099	}
19100
19101    BLOGI(sc, "Collection of grcdump done\n");
19102    sc->grcdump_done = 1;
19103    return(rval);
19104}
19105
19106static int
19107bxe_add_cdev(struct bxe_softc *sc)
19108{
19109    sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
19110
19111    if (sc->eeprom == NULL) {
19112        BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
19113        return (-1);
19114    }
19115
19116    sc->ioctl_dev = make_dev(&bxe_cdevsw,
19117                            sc->ifp->if_dunit,
19118                            UID_ROOT,
19119                            GID_WHEEL,
19120                            0600,
19121                            "%s",
19122                            if_name(sc->ifp));
19123
19124    if (sc->ioctl_dev == NULL) {
19125        free(sc->eeprom, M_DEVBUF);
19126        sc->eeprom = NULL;
19127        return (-1);
19128    }
19129
19130    sc->ioctl_dev->si_drv1 = sc;
19131
19132    return (0);
19133}
19134
19135static void
19136bxe_del_cdev(struct bxe_softc *sc)
19137{
19138    if (sc->ioctl_dev != NULL)
19139        destroy_dev(sc->ioctl_dev);
19140
19141    if (sc->eeprom != NULL) {
19142        free(sc->eeprom, M_DEVBUF);
19143        sc->eeprom = NULL;
19144    }
19145    sc->ioctl_dev = NULL;
19146
19147    return;
19148}
19149
19150static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
19151{
19152
19153    if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
19154        return FALSE;
19155
19156    return TRUE;
19157}
19158
19159
19160static int
19161bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19162{
19163    int rval = 0;
19164
19165    if(!bxe_is_nvram_accessible(sc)) {
19166        BLOGW(sc, "Cannot access eeprom when interface is down\n");
19167        return (-EAGAIN);
19168    }
19169    rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
19170
19171
19172   return (rval);
19173}
19174
19175static int
19176bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19177{
19178    int rval = 0;
19179
19180    if(!bxe_is_nvram_accessible(sc)) {
19181        BLOGW(sc, "Cannot access eeprom when interface is down\n");
19182        return (-EAGAIN);
19183    }
19184    rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
19185
19186   return (rval);
19187}
19188
19189static int
19190bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
19191{
19192    int rval = 0;
19193
19194    switch (eeprom->eeprom_cmd) {
19195
19196    case BXE_EEPROM_CMD_SET_EEPROM:
19197
19198        rval = copyin(eeprom->eeprom_data, sc->eeprom,
19199                       eeprom->eeprom_data_len);
19200
19201        if (rval)
19202            break;
19203
19204        rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19205                       eeprom->eeprom_data_len);
19206        break;
19207
19208    case BXE_EEPROM_CMD_GET_EEPROM:
19209
19210        rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19211                       eeprom->eeprom_data_len);
19212
19213        if (rval) {
19214            break;
19215        }
19216
19217        rval = copyout(sc->eeprom, eeprom->eeprom_data,
19218                       eeprom->eeprom_data_len);
19219        break;
19220
19221    default:
19222            rval = EINVAL;
19223            break;
19224    }
19225
19226    if (rval) {
19227        BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
19228    }
19229
19230    return (rval);
19231}
19232
19233static int
19234bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
19235{
19236    uint32_t ext_phy_config;
19237    int port = SC_PORT(sc);
19238    int cfg_idx = bxe_get_link_cfg_idx(sc);
19239
19240    dev_p->supported = sc->port.supported[cfg_idx] |
19241            (sc->port.supported[cfg_idx ^ 1] &
19242            (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
19243    dev_p->advertising = sc->port.advertising[cfg_idx];
19244    if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
19245        ELINK_ETH_PHY_SFP_1G_FIBER) {
19246        dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
19247        dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
19248    }
19249    if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
19250        !(sc->flags & BXE_MF_FUNC_DIS)) {
19251        dev_p->duplex = sc->link_vars.duplex;
19252        if (IS_MF(sc) && !BXE_NOMCP(sc))
19253            dev_p->speed = bxe_get_mf_speed(sc);
19254        else
19255            dev_p->speed = sc->link_vars.line_speed;
19256    } else {
19257        dev_p->duplex = DUPLEX_UNKNOWN;
19258        dev_p->speed = SPEED_UNKNOWN;
19259    }
19260
19261    dev_p->port = bxe_media_detect(sc);
19262
19263    ext_phy_config = SHMEM_RD(sc,
19264                         dev_info.port_hw_config[port].external_phy_config);
19265    if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
19266        PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
19267        dev_p->phy_address =  sc->port.phy_addr;
19268    else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19269            PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
19270        ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19271            PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
19272        dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19273    else
19274        dev_p->phy_address = 0;
19275
19276    if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19277        dev_p->autoneg = AUTONEG_ENABLE;
19278    else
19279       dev_p->autoneg = AUTONEG_DISABLE;
19280
19281
19282    return 0;
19283}
19284
19285static int
19286bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19287        struct thread *td)
19288{
19289    struct bxe_softc    *sc;
19290    int                 rval = 0;
19291    device_t            pci_dev;
19292    bxe_grcdump_t       *dump = NULL;
19293    int grc_dump_size;
19294    bxe_drvinfo_t   *drv_infop = NULL;
19295    bxe_dev_setting_t  *dev_p;
19296    bxe_dev_setting_t  dev_set;
19297    bxe_get_regs_t  *reg_p;
19298    bxe_reg_rdw_t *reg_rdw_p;
19299    bxe_pcicfg_rdw_t *cfg_rdw_p;
19300    bxe_perm_mac_addr_t *mac_addr_p;
19301
19302
19303    if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19304        return ENXIO;
19305
19306    pci_dev= sc->dev;
19307
19308    dump = (bxe_grcdump_t *)data;
19309
19310    switch(cmd) {
19311
19312        case BXE_GRC_DUMP_SIZE:
19313            dump->pci_func = sc->pcie_func;
19314            dump->grcdump_size =
19315                (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19316                     sizeof(struct  dump_header);
19317            break;
19318
19319        case BXE_GRC_DUMP:
19320
19321            grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19322                                sizeof(struct  dump_header);
19323            if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19324                (dump->grcdump_size < grc_dump_size)) {
19325                rval = EINVAL;
19326                break;
19327            }
19328
19329            if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19330                (!sc->grcdump_started)) {
19331                rval =  bxe_grc_dump(sc);
19332            }
19333
19334            if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19335                (sc->grc_dump != NULL))  {
19336                dump->grcdump_dwords = grc_dump_size >> 2;
19337                rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19338                free(sc->grc_dump, M_DEVBUF);
19339                sc->grc_dump = NULL;
19340                sc->grcdump_started = 0;
19341                sc->grcdump_done = 0;
19342            }
19343
19344            break;
19345
19346        case BXE_DRV_INFO:
19347            drv_infop = (bxe_drvinfo_t *)data;
19348            snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19349            snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19350                BXE_DRIVER_VERSION);
19351            snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19352                sc->devinfo.bc_ver_str);
19353            snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19354                "%s", sc->fw_ver_str);
19355            drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19356            drv_infop->reg_dump_len =
19357                (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19358                    + sizeof(struct  dump_header);
19359            snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19360                sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19361            break;
19362
19363        case BXE_DEV_SETTING:
19364            dev_p = (bxe_dev_setting_t *)data;
19365            bxe_get_settings(sc, &dev_set);
19366            dev_p->supported = dev_set.supported;
19367            dev_p->advertising = dev_set.advertising;
19368            dev_p->speed = dev_set.speed;
19369            dev_p->duplex = dev_set.duplex;
19370            dev_p->port = dev_set.port;
19371            dev_p->phy_address = dev_set.phy_address;
19372            dev_p->autoneg = dev_set.autoneg;
19373
19374            break;
19375
19376        case BXE_GET_REGS:
19377
19378            reg_p = (bxe_get_regs_t *)data;
19379            grc_dump_size = reg_p->reg_buf_len;
19380
19381            if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19382                bxe_grc_dump(sc);
19383            }
19384            if((sc->grcdump_done) && (sc->grcdump_started) &&
19385                (sc->grc_dump != NULL))  {
19386                rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19387                free(sc->grc_dump, M_DEVBUF);
19388                sc->grc_dump = NULL;
19389                sc->grcdump_started = 0;
19390                sc->grcdump_done = 0;
19391            }
19392
19393            break;
19394
19395        case BXE_RDW_REG:
19396            reg_rdw_p = (bxe_reg_rdw_t *)data;
19397            if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19398                (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19399                reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19400
19401            if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19402                (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19403                REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19404
19405            break;
19406
19407        case BXE_RDW_PCICFG:
19408            cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19409            if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19410
19411                cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19412                                         cfg_rdw_p->cfg_width);
19413
19414            } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19415                pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19416                            cfg_rdw_p->cfg_width);
19417            } else {
19418                BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19419            }
19420            break;
19421
19422        case BXE_MAC_ADDR:
19423            mac_addr_p = (bxe_perm_mac_addr_t *)data;
19424            snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19425                sc->mac_addr_str);
19426            break;
19427
19428        case BXE_EEPROM:
19429            rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19430            break;
19431
19432
19433        default:
19434            break;
19435    }
19436
19437    return (rval);
19438}
19439
19440#ifdef DEBUGNET
19441static void
19442bxe_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
19443{
19444	struct bxe_softc *sc;
19445
19446	sc = if_getsoftc(ifp);
19447	BXE_CORE_LOCK(sc);
19448	*nrxr = sc->num_queues;
19449	*ncl = DEBUGNET_MAX_IN_FLIGHT;
19450	*clsize = sc->fp[0].mbuf_alloc_size;
19451	BXE_CORE_UNLOCK(sc);
19452}
19453
19454static void
19455bxe_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused)
19456{
19457}
19458
19459static int
19460bxe_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
19461{
19462	struct bxe_softc *sc;
19463	int error;
19464
19465	sc = if_getsoftc(ifp);
19466	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
19467	    IFF_DRV_RUNNING || !sc->link_vars.link_up)
19468		return (ENOENT);
19469
19470	error = bxe_tx_encap(&sc->fp[0], &m);
19471	if (error != 0 && m != NULL)
19472		m_freem(m);
19473	return (error);
19474}
19475
19476static int
19477bxe_debugnet_poll(struct ifnet *ifp, int count)
19478{
19479	struct bxe_softc *sc;
19480	int i;
19481
19482	sc = if_getsoftc(ifp);
19483	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
19484	    !sc->link_vars.link_up)
19485		return (ENOENT);
19486
19487	for (i = 0; i < sc->num_queues; i++)
19488		(void)bxe_rxeof(sc, &sc->fp[i]);
19489	(void)bxe_txeof(sc, &sc->fp[0]);
19490	return (0);
19491}
19492#endif /* DEBUGNET */
19493