1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer,
12 *    without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 *    redistribution must be conditioned upon including a substantially
16 *    similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35/*
36 * Driver for the Atheros Wireless LAN controller.
37 *
38 * This software is derived from work of Atsushi Onoe; his contribution
39 * is greatly appreciated.
40 */
41
42#include "opt_inet.h"
43#include "opt_ath.h"
44/*
45 * This is needed for register operations which are performed
46 * by the driver - eg, calls to ath_hal_gettsf32().
47 *
48 * It's also required for any AH_DEBUG checks in here, eg the
49 * module dependencies.
50 */
51#include "opt_ah.h"
52#include "opt_wlan.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysctl.h>
57#include <sys/mbuf.h>
58#include <sys/malloc.h>
59#include <sys/lock.h>
60#include <sys/mutex.h>
61#include <sys/kernel.h>
62#include <sys/socket.h>
63#include <sys/sockio.h>
64#include <sys/errno.h>
65#include <sys/callout.h>
66#include <sys/bus.h>
67#include <sys/endian.h>
68#include <sys/kthread.h>
69#include <sys/taskqueue.h>
70#include <sys/priv.h>
71#include <sys/module.h>
72#include <sys/ktr.h>
73#include <sys/smp.h>	/* for mp_ncpus */
74
75#include <machine/bus.h>
76
77#include <net/if.h>
78#include <net/if_var.h>
79#include <net/if_dl.h>
80#include <net/if_media.h>
81#include <net/if_types.h>
82#include <net/if_arp.h>
83#include <net/ethernet.h>
84#include <net/if_llc.h>
85
86#include <net80211/ieee80211_var.h>
87#include <net80211/ieee80211_regdomain.h>
88#ifdef IEEE80211_SUPPORT_SUPERG
89#include <net80211/ieee80211_superg.h>
90#endif
91#ifdef IEEE80211_SUPPORT_TDMA
92#include <net80211/ieee80211_tdma.h>
93#endif
94
95#include <net/bpf.h>
96
97#ifdef INET
98#include <netinet/in.h>
99#include <netinet/if_ether.h>
100#endif
101
102#include <dev/ath/if_athvar.h>
103#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
104#include <dev/ath/ath_hal/ah_diagcodes.h>
105
106#include <dev/ath/if_ath_debug.h>
107#include <dev/ath/if_ath_misc.h>
108#include <dev/ath/if_ath_tsf.h>
109#include <dev/ath/if_ath_tx.h>
110#include <dev/ath/if_ath_sysctl.h>
111#include <dev/ath/if_ath_led.h>
112#include <dev/ath/if_ath_keycache.h>
113#include <dev/ath/if_ath_rx.h>
114#include <dev/ath/if_ath_rx_edma.h>
115#include <dev/ath/if_ath_tx_edma.h>
116#include <dev/ath/if_ath_beacon.h>
117#include <dev/ath/if_ath_btcoex.h>
118#include <dev/ath/if_ath_btcoex_mci.h>
119#include <dev/ath/if_ath_spectral.h>
120#include <dev/ath/if_ath_lna_div.h>
121#include <dev/ath/if_athdfs.h>
122#include <dev/ath/if_ath_ioctl.h>
123#include <dev/ath/if_ath_descdma.h>
124
125#ifdef ATH_TX99_DIAG
126#include <dev/ath/ath_tx99/ath_tx99.h>
127#endif
128
129#ifdef	ATH_DEBUG_ALQ
130#include <dev/ath/if_ath_alq.h>
131#endif
132
133/*
134 * Only enable this if you're working on PS-POLL support.
135 */
136#define	ATH_SW_PSQ
137
138/*
139 * ATH_BCBUF determines the number of vap's that can transmit
140 * beacons and also (currently) the number of vap's that can
141 * have unique mac addresses/bssid.  When staggering beacons
142 * 4 is probably a good max as otherwise the beacons become
143 * very closely spaced and there is limited time for cab q traffic
144 * to go out.  You can burst beacons instead but that is not good
145 * for stations in power save and at some point you really want
146 * another radio (and channel).
147 *
148 * The limit on the number of mac addresses is tied to our use of
149 * the U/L bit and tracking addresses in a byte; it would be
150 * worthwhile to allow more for applications like proxy sta.
151 */
152CTASSERT(ATH_BCBUF <= 8);
153
154static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
155		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
156		    const uint8_t [IEEE80211_ADDR_LEN],
157		    const uint8_t [IEEE80211_ADDR_LEN]);
158static void	ath_vap_delete(struct ieee80211vap *);
159static int	ath_init(struct ath_softc *);
160static void	ath_stop(struct ath_softc *);
161static int	ath_reset_vap(struct ieee80211vap *, u_long);
162static int	ath_transmit(struct ieee80211com *, struct mbuf *);
163static void	ath_watchdog(void *);
164static void	ath_parent(struct ieee80211com *);
165static void	ath_fatal_proc(void *, int);
166static void	ath_bmiss_vap(struct ieee80211vap *);
167static void	ath_bmiss_proc(void *, int);
168static void	ath_key_update_begin(struct ieee80211vap *);
169static void	ath_key_update_end(struct ieee80211vap *);
170static void	ath_update_mcast_hw(struct ath_softc *);
171static void	ath_update_mcast(struct ieee80211com *);
172static void	ath_update_promisc(struct ieee80211com *);
173static void	ath_updateslot(struct ieee80211com *);
174static void	ath_bstuck_proc(void *, int);
175static void	ath_reset_proc(void *, int);
176static int	ath_desc_alloc(struct ath_softc *);
177static void	ath_desc_free(struct ath_softc *);
178static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
179			const uint8_t [IEEE80211_ADDR_LEN]);
180static void	ath_node_cleanup(struct ieee80211_node *);
181static void	ath_node_free(struct ieee80211_node *);
182static void	ath_node_getsignal(const struct ieee80211_node *,
183			int8_t *, int8_t *);
184static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
185static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
186static int	ath_tx_setup(struct ath_softc *, int, int);
187static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
188static void	ath_tx_cleanup(struct ath_softc *);
189static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
190		    int dosched);
191static void	ath_tx_proc_q0(void *, int);
192static void	ath_tx_proc_q0123(void *, int);
193static void	ath_tx_proc(void *, int);
194static void	ath_txq_sched_tasklet(void *, int);
195static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
196static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
197static void	ath_scan_start(struct ieee80211com *);
198static void	ath_scan_end(struct ieee80211com *);
199static void	ath_set_channel(struct ieee80211com *);
200#ifdef	ATH_ENABLE_11N
201static void	ath_update_chw(struct ieee80211com *);
202#endif	/* ATH_ENABLE_11N */
203static int	ath_set_quiet_ie(struct ieee80211_node *, uint8_t *);
204static void	ath_calibrate(void *);
205static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
206static void	ath_setup_stationkey(struct ieee80211_node *);
207static void	ath_newassoc(struct ieee80211_node *, int);
208static int	ath_setregdomain(struct ieee80211com *,
209		    struct ieee80211_regdomain *, int,
210		    struct ieee80211_channel []);
211static void	ath_getradiocaps(struct ieee80211com *, int, int *,
212		    struct ieee80211_channel []);
213static int	ath_getchannels(struct ath_softc *);
214
215static int	ath_rate_setup(struct ath_softc *, u_int mode);
216static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
217
218static void	ath_announce(struct ath_softc *);
219
220static void	ath_dfs_tasklet(void *, int);
221static void	ath_node_powersave(struct ieee80211_node *, int);
222static int	ath_node_set_tim(struct ieee80211_node *, int);
223static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
224
225#ifdef IEEE80211_SUPPORT_TDMA
226#include <dev/ath/if_ath_tdma.h>
227#endif
228
229SYSCTL_DECL(_hw_ath);
230
231/* XXX validate sysctl values */
232static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
233SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
234	    0, "long chip calibration interval (secs)");
235static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
236SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
237	    0, "short chip calibration interval (msecs)");
238static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
239SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
240	    0, "reset chip calibration results (secs)");
241static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
242SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
243	    0, "ANI calibration (msecs)");
244
245int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
246SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
247	    0, "rx buffers allocated");
248int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
249SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
250	    0, "tx buffers allocated");
251int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
252SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
253	    0, "tx (mgmt) buffers allocated");
254
255int ath_bstuck_threshold = 4;		/* max missed beacons */
256SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
257	    0, "max missed beacon xmits before chip reset");
258
259MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
260
261void
262ath_legacy_attach_comp_func(struct ath_softc *sc)
263{
264
265	/*
266	 * Special case certain configurations.  Note the
267	 * CAB queue is handled by these specially so don't
268	 * include them when checking the txq setup mask.
269	 */
270	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
271	case 0x01:
272		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
273		break;
274	case 0x0f:
275		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
276		break;
277	default:
278		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
279		break;
280	}
281}
282
283/*
284 * Set the target power mode.
285 *
286 * If this is called during a point in time where
287 * the hardware is being programmed elsewhere, it will
288 * simply store it away and update it when all current
289 * uses of the hardware are completed.
290 *
291 * If the chip is going into network sleep or power off, then
292 * we will wait until all uses of the chip are done before
293 * going into network sleep or power off.
294 *
295 * If the chip is being programmed full-awake, then immediately
296 * program it full-awake so we can actually stay awake rather than
297 * the chip potentially going to sleep underneath us.
298 */
299void
300_ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen,
301    const char *file, int line)
302{
303	ATH_LOCK_ASSERT(sc);
304
305	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n",
306	    __func__,
307	    file,
308	    line,
309	    power_state,
310	    sc->sc_powersave_refcnt,
311	    sc->sc_target_powerstate,
312	    sc->sc_cur_powerstate);
313
314	sc->sc_target_powerstate = power_state;
315
316	/*
317	 * Don't program the chip into network sleep if the chip
318	 * is being programmed elsewhere.
319	 *
320	 * However, if the chip is being programmed /awake/, force
321	 * the chip awake so we stay awake.
322	 */
323	if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) &&
324	    power_state != sc->sc_cur_powerstate) {
325		sc->sc_cur_powerstate = power_state;
326		ath_hal_setpower(sc->sc_ah, power_state);
327
328		/*
329		 * If the NIC is force-awake, then set the
330		 * self-gen frame state appropriately.
331		 *
332		 * If the nic is in network sleep or full-sleep,
333		 * we let the above call leave the self-gen
334		 * state as "sleep".
335		 */
336		if (selfgen &&
337		    sc->sc_cur_powerstate == HAL_PM_AWAKE &&
338		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
339			ath_hal_setselfgenpower(sc->sc_ah,
340			    sc->sc_target_selfgen_state);
341		}
342	}
343}
344
345/*
346 * Set the current self-generated frames state.
347 *
348 * This is separate from the target power mode.  The chip may be
349 * awake but the desired state is "sleep", so frames sent to the
350 * destination has PWRMGT=1 in the 802.11 header.  The NIC also
351 * needs to know to set PWRMGT=1 in self-generated frames.
352 */
353void
354_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
355{
356
357	ATH_LOCK_ASSERT(sc);
358
359	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
360	    __func__,
361	    file,
362	    line,
363	    power_state,
364	    sc->sc_target_selfgen_state);
365
366	sc->sc_target_selfgen_state = power_state;
367
368	/*
369	 * If the NIC is force-awake, then set the power state.
370	 * Network-state and full-sleep will already transition it to
371	 * mark self-gen frames as sleeping - and we can't
372	 * guarantee the NIC is awake to program the self-gen frame
373	 * setting anyway.
374	 */
375	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
376		ath_hal_setselfgenpower(sc->sc_ah, power_state);
377	}
378}
379
380/*
381 * Set the hardware power mode and take a reference.
382 *
383 * This doesn't update the target power mode in the driver;
384 * it just updates the hardware power state.
385 *
386 * XXX it should only ever force the hardware awake; it should
387 * never be called to set it asleep.
388 */
389void
390_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
391{
392	ATH_LOCK_ASSERT(sc);
393
394	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
395	    __func__,
396	    file,
397	    line,
398	    power_state,
399	    sc->sc_powersave_refcnt);
400
401	sc->sc_powersave_refcnt++;
402
403	/*
404	 * Only do the power state change if we're not programming
405	 * it elsewhere.
406	 */
407	if (power_state != sc->sc_cur_powerstate) {
408		ath_hal_setpower(sc->sc_ah, power_state);
409		sc->sc_cur_powerstate = power_state;
410		/*
411		 * Adjust the self-gen powerstate if appropriate.
412		 */
413		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
414		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
415			ath_hal_setselfgenpower(sc->sc_ah,
416			    sc->sc_target_selfgen_state);
417		}
418	}
419}
420
421/*
422 * Restore the power save mode to what it once was.
423 *
424 * This will decrement the reference counter and once it hits
425 * zero, it'll restore the powersave state.
426 */
427void
428_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
429{
430
431	ATH_LOCK_ASSERT(sc);
432
433	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
434	    __func__,
435	    file,
436	    line,
437	    sc->sc_powersave_refcnt,
438	    sc->sc_target_powerstate);
439
440	if (sc->sc_powersave_refcnt == 0)
441		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
442	else
443		sc->sc_powersave_refcnt--;
444
445	if (sc->sc_powersave_refcnt == 0 &&
446	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
447		sc->sc_cur_powerstate = sc->sc_target_powerstate;
448		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
449	}
450
451	/*
452	 * Adjust the self-gen powerstate if appropriate.
453	 */
454	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
455	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
456		ath_hal_setselfgenpower(sc->sc_ah,
457		    sc->sc_target_selfgen_state);
458	}
459
460}
461
462/*
463 * Configure the initial HAL configuration values based on bus
464 * specific parameters.
465 *
466 * Some PCI IDs and other information may need tweaking.
467 *
468 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
469 * if BT antenna diversity isn't enabled.
470 *
471 * So, let's also figure out how to enable BT diversity for AR9485.
472 */
473static void
474ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
475{
476	/* XXX TODO: only for PCI devices? */
477
478	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
479		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
480		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
481		ah_config->ath_hal_min_gainidx = AH_TRUE;
482		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
483		/* XXX low_rssi_thresh */
484		/* XXX fast_div_bias */
485		device_printf(sc->sc_dev, "configuring for %s\n",
486		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
487		    "CUS198" : "CUS230");
488	}
489
490	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
491		device_printf(sc->sc_dev, "CUS217 card detected\n");
492
493	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
494		device_printf(sc->sc_dev, "CUS252 card detected\n");
495
496	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
497		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
498
499	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
500		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
501
502	if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV)
503		device_printf(sc->sc_dev,
504		    "Bluetooth Antenna Diversity card detected\n");
505
506	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
507		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
508
509#if 0
510        /*
511         * Some WB335 cards do not support antenna diversity. Since
512         * we use a hardcoded value for AR9565 instead of using the
513         * EEPROM/OTP data, remove the combining feature from
514         * the HW capabilities bitmap.
515         */
516        if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
517                if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
518                        pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
519        }
520
521        if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
522                pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
523                device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
524        }
525#endif
526
527        if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
528                ah_config->ath_hal_pcie_waen = 0x0040473b;
529                device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
530        }
531
532#if 0
533        if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
534                ah->config.no_pll_pwrsave = true;
535                device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
536        }
537#endif
538
539}
540
541/*
542 * Attempt to fetch the MAC address from the kernel environment.
543 *
544 * Returns 0, macaddr in macaddr if successful; -1 otherwise.
545 */
546static int
547ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
548{
549	char devid_str[32];
550	int local_mac = 0;
551	char *local_macstr;
552
553	/*
554	 * Fetch from the kenv rather than using hints.
555	 *
556	 * Hints would be nice but the transition to dynamic
557	 * hints/kenv doesn't happen early enough for this
558	 * to work reliably (eg on anything embedded.)
559	 */
560	snprintf(devid_str, 32, "hint.%s.%d.macaddr",
561	    device_get_name(sc->sc_dev),
562	    device_get_unit(sc->sc_dev));
563
564	if ((local_macstr = kern_getenv(devid_str)) != NULL) {
565		uint32_t tmpmac[ETHER_ADDR_LEN];
566		int count;
567		int i;
568
569		/* Have a MAC address; should use it */
570		device_printf(sc->sc_dev,
571		    "Overriding MAC address from environment: '%s'\n",
572		    local_macstr);
573
574		/* Extract out the MAC address */
575		count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
576		    &tmpmac[0], &tmpmac[1],
577		    &tmpmac[2], &tmpmac[3],
578		    &tmpmac[4], &tmpmac[5]);
579		if (count == 6) {
580			/* Valid! */
581			local_mac = 1;
582			for (i = 0; i < ETHER_ADDR_LEN; i++)
583				macaddr[i] = tmpmac[i];
584		}
585		/* Done! */
586		freeenv(local_macstr);
587		local_macstr = NULL;
588	}
589
590	if (local_mac)
591		return (0);
592	return (-1);
593}
594
595#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
596#define	HAL_MODE_HT40 \
597	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
598	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
599int
600ath_attach(u_int16_t devid, struct ath_softc *sc)
601{
602	struct ieee80211com *ic = &sc->sc_ic;
603	struct ath_hal *ah = NULL;
604	HAL_STATUS status;
605	int error = 0, i;
606	u_int wmodes;
607	int rx_chainmask, tx_chainmask;
608	HAL_OPS_CONFIG ah_config;
609
610	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
611
612	ic->ic_softc = sc;
613	ic->ic_name = device_get_nameunit(sc->sc_dev);
614
615	/*
616	 * Configure the initial configuration data.
617	 *
618	 * This is stuff that may be needed early during attach
619	 * rather than done via configuration calls later.
620	 */
621	bzero(&ah_config, sizeof(ah_config));
622	ath_setup_hal_config(sc, &ah_config);
623
624	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
625	    sc->sc_eepromdata, &ah_config, &status);
626	if (ah == NULL) {
627		device_printf(sc->sc_dev,
628		    "unable to attach hardware; HAL status %u\n", status);
629		error = ENXIO;
630		goto bad;
631	}
632	sc->sc_ah = ah;
633	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
634#ifdef	ATH_DEBUG
635	sc->sc_debug = ath_debug;
636#endif
637
638	/*
639	 * Force the chip awake during setup, just to keep
640	 * the HAL/driver power tracking happy.
641	 *
642	 * There are some methods (eg ath_hal_setmac())
643	 * that poke the hardware.
644	 */
645	ATH_LOCK(sc);
646	ath_power_setpower(sc, HAL_PM_AWAKE, 1);
647	ATH_UNLOCK(sc);
648
649	/*
650	 * Setup the DMA/EDMA functions based on the current
651	 * hardware support.
652	 *
653	 * This is required before the descriptors are allocated.
654	 */
655	if (ath_hal_hasedma(sc->sc_ah)) {
656		sc->sc_isedma = 1;
657		ath_recv_setup_edma(sc);
658		ath_xmit_setup_edma(sc);
659	} else {
660		ath_recv_setup_legacy(sc);
661		ath_xmit_setup_legacy(sc);
662	}
663
664	if (ath_hal_hasmybeacon(sc->sc_ah)) {
665		sc->sc_do_mybeacon = 1;
666	}
667
668	/*
669	 * Check if the MAC has multi-rate retry support.
670	 * We do this by trying to setup a fake extended
671	 * descriptor.  MAC's that don't have support will
672	 * return false w/o doing anything.  MAC's that do
673	 * support it will return true w/o doing anything.
674	 */
675	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
676
677	/*
678	 * Check if the device has hardware counters for PHY
679	 * errors.  If so we need to enable the MIB interrupt
680	 * so we can act on stat triggers.
681	 */
682	if (ath_hal_hwphycounters(ah))
683		sc->sc_needmib = 1;
684
685	/*
686	 * Get the hardware key cache size.
687	 */
688	sc->sc_keymax = ath_hal_keycachesize(ah);
689	if (sc->sc_keymax > ATH_KEYMAX) {
690		device_printf(sc->sc_dev,
691		    "Warning, using only %u of %u key cache slots\n",
692		    ATH_KEYMAX, sc->sc_keymax);
693		sc->sc_keymax = ATH_KEYMAX;
694	}
695	/*
696	 * Reset the key cache since some parts do not
697	 * reset the contents on initial power up.
698	 */
699	for (i = 0; i < sc->sc_keymax; i++)
700		ath_hal_keyreset(ah, i);
701
702	/*
703	 * Collect the default channel list.
704	 */
705	error = ath_getchannels(sc);
706	if (error != 0)
707		goto bad;
708
709	/*
710	 * Setup rate tables for all potential media types.
711	 */
712	ath_rate_setup(sc, IEEE80211_MODE_11A);
713	ath_rate_setup(sc, IEEE80211_MODE_11B);
714	ath_rate_setup(sc, IEEE80211_MODE_11G);
715	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
716	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
717	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
718	ath_rate_setup(sc, IEEE80211_MODE_11NA);
719	ath_rate_setup(sc, IEEE80211_MODE_11NG);
720	ath_rate_setup(sc, IEEE80211_MODE_HALF);
721	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
722
723	/* NB: setup here so ath_rate_update is happy */
724	ath_setcurmode(sc, IEEE80211_MODE_11A);
725
726	/*
727	 * Allocate TX descriptors and populate the lists.
728	 */
729	error = ath_desc_alloc(sc);
730	if (error != 0) {
731		device_printf(sc->sc_dev,
732		    "failed to allocate TX descriptors: %d\n", error);
733		goto bad;
734	}
735	error = ath_txdma_setup(sc);
736	if (error != 0) {
737		device_printf(sc->sc_dev,
738		    "failed to allocate TX descriptors: %d\n", error);
739		goto bad;
740	}
741
742	/*
743	 * Allocate RX descriptors and populate the lists.
744	 */
745	error = ath_rxdma_setup(sc);
746	if (error != 0) {
747		device_printf(sc->sc_dev,
748		     "failed to allocate RX descriptors: %d\n", error);
749		goto bad;
750	}
751
752	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
753	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
754
755	ATH_TXBUF_LOCK_INIT(sc);
756
757	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
758		taskqueue_thread_enqueue, &sc->sc_tq);
759	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
760	    device_get_nameunit(sc->sc_dev));
761
762	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
763	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
764	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
765	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
766	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
767	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
768
769	/*
770	 * Allocate hardware transmit queues: one queue for
771	 * beacon frames and one data queue for each QoS
772	 * priority.  Note that the hal handles resetting
773	 * these queues at the needed time.
774	 *
775	 * XXX PS-Poll
776	 */
777	sc->sc_bhalq = ath_beaconq_setup(sc);
778	if (sc->sc_bhalq == (u_int) -1) {
779		device_printf(sc->sc_dev,
780		    "unable to setup a beacon xmit queue!\n");
781		error = EIO;
782		goto bad2;
783	}
784	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
785	if (sc->sc_cabq == NULL) {
786		device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
787		error = EIO;
788		goto bad2;
789	}
790	/* NB: insure BK queue is the lowest priority h/w queue */
791	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
792		device_printf(sc->sc_dev,
793		    "unable to setup xmit queue for %s traffic!\n",
794		    ieee80211_wme_acnames[WME_AC_BK]);
795		error = EIO;
796		goto bad2;
797	}
798	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
799	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
800	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
801		/*
802		 * Not enough hardware tx queues to properly do WME;
803		 * just punt and assign them all to the same h/w queue.
804		 * We could do a better job of this if, for example,
805		 * we allocate queues when we switch from station to
806		 * AP mode.
807		 */
808		if (sc->sc_ac2q[WME_AC_VI] != NULL)
809			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
810		if (sc->sc_ac2q[WME_AC_BE] != NULL)
811			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
812		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
813		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
814		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
815	}
816
817	/*
818	 * Attach the TX completion function.
819	 *
820	 * The non-EDMA chips may have some special case optimisations;
821	 * this method gives everyone a chance to attach cleanly.
822	 */
823	sc->sc_tx.xmit_attach_comp_func(sc);
824
825	/*
826	 * Setup rate control.  Some rate control modules
827	 * call back to change the anntena state so expose
828	 * the necessary entry points.
829	 * XXX maybe belongs in struct ath_ratectrl?
830	 */
831	sc->sc_setdefantenna = ath_setdefantenna;
832	sc->sc_rc = ath_rate_attach(sc);
833	if (sc->sc_rc == NULL) {
834		error = EIO;
835		goto bad2;
836	}
837
838	/* Attach DFS module */
839	if (! ath_dfs_attach(sc)) {
840		device_printf(sc->sc_dev,
841		    "%s: unable to attach DFS\n", __func__);
842		error = EIO;
843		goto bad2;
844	}
845
846	/* Attach spectral module */
847	if (ath_spectral_attach(sc) < 0) {
848		device_printf(sc->sc_dev,
849		    "%s: unable to attach spectral\n", __func__);
850		error = EIO;
851		goto bad2;
852	}
853
854	/* Attach bluetooth coexistence module */
855	if (ath_btcoex_attach(sc) < 0) {
856		device_printf(sc->sc_dev,
857		    "%s: unable to attach bluetooth coexistence\n", __func__);
858		error = EIO;
859		goto bad2;
860	}
861
862	/* Attach LNA diversity module */
863	if (ath_lna_div_attach(sc) < 0) {
864		device_printf(sc->sc_dev,
865		    "%s: unable to attach LNA diversity\n", __func__);
866		error = EIO;
867		goto bad2;
868	}
869
870	/* Start DFS processing tasklet */
871	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
872
873	/* Configure LED state */
874	sc->sc_blinking = 0;
875	sc->sc_ledstate = 1;
876	sc->sc_ledon = 0;			/* low true */
877	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
878	callout_init(&sc->sc_ledtimer, 1);
879
880	/*
881	 * Don't setup hardware-based blinking.
882	 *
883	 * Although some NICs may have this configured in the
884	 * default reset register values, the user may wish
885	 * to alter which pins have which function.
886	 *
887	 * The reference driver attaches the MAC network LED to GPIO1 and
888	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
889	 * NIC has these reversed.
890	 */
891	sc->sc_hardled = (1 == 0);
892	sc->sc_led_net_pin = -1;
893	sc->sc_led_pwr_pin = -1;
894	/*
895	 * Auto-enable soft led processing for IBM cards and for
896	 * 5211 minipci cards.  Users can also manually enable/disable
897	 * support with a sysctl.
898	 */
899	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
900	ath_led_config(sc);
901	ath_hal_setledstate(ah, HAL_LED_INIT);
902
903	/* XXX not right but it's not used anywhere important */
904	ic->ic_phytype = IEEE80211_T_OFDM;
905	ic->ic_opmode = IEEE80211_M_STA;
906	ic->ic_caps =
907		  IEEE80211_C_STA		/* station mode */
908		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
909		| IEEE80211_C_HOSTAP		/* hostap mode */
910		| IEEE80211_C_MONITOR		/* monitor mode */
911		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
912		| IEEE80211_C_WDS		/* 4-address traffic works */
913		| IEEE80211_C_MBSS		/* mesh point link mode */
914		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
915		| IEEE80211_C_SHSLOT		/* short slot time supported */
916		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
917#ifndef	ATH_ENABLE_11N
918		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
919#endif
920		| IEEE80211_C_TXFRAG		/* handle tx frags */
921#ifdef	ATH_ENABLE_DFS
922		| IEEE80211_C_DFS		/* Enable radar detection */
923#endif
924		| IEEE80211_C_PMGT		/* Station side power mgmt */
925		| IEEE80211_C_SWSLEEP
926		;
927	/*
928	 * Query the hal to figure out h/w crypto support.
929	 */
930	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
931		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
932	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
933		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
934	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
935		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
936	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
937		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
938	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
939		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
940		/*
941		 * Check if h/w does the MIC and/or whether the
942		 * separate key cache entries are required to
943		 * handle both tx+rx MIC keys.
944		 */
945		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
946			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
947		/*
948		 * If the h/w supports storing tx+rx MIC keys
949		 * in one cache slot automatically enable use.
950		 */
951		if (ath_hal_hastkipsplit(ah) ||
952		    !ath_hal_settkipsplit(ah, AH_FALSE))
953			sc->sc_splitmic = 1;
954		/*
955		 * If the h/w can do TKIP MIC together with WME then
956		 * we use it; otherwise we force the MIC to be done
957		 * in software by the net80211 layer.
958		 */
959		if (ath_hal_haswmetkipmic(ah))
960			sc->sc_wmetkipmic = 1;
961	}
962	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
963	/*
964	 * Check for multicast key search support.
965	 */
966	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
967	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
968		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
969	}
970	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
971	/*
972	 * Mark key cache slots associated with global keys
973	 * as in use.  If we knew TKIP was not to be used we
974	 * could leave the +32, +64, and +32+64 slots free.
975	 */
976	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
977		setbit(sc->sc_keymap, i);
978		setbit(sc->sc_keymap, i+64);
979		if (sc->sc_splitmic) {
980			setbit(sc->sc_keymap, i+32);
981			setbit(sc->sc_keymap, i+32+64);
982		}
983	}
984	/*
985	 * TPC support can be done either with a global cap or
986	 * per-packet support.  The latter is not available on
987	 * all parts.  We're a bit pedantic here as all parts
988	 * support a global cap.
989	 */
990	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
991		ic->ic_caps |= IEEE80211_C_TXPMGT;
992
993	/*
994	 * Mark WME capability only if we have sufficient
995	 * hardware queues to do proper priority scheduling.
996	 */
997	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
998		ic->ic_caps |= IEEE80211_C_WME;
999	/*
1000	 * Check for misc other capabilities.
1001	 */
1002	if (ath_hal_hasbursting(ah))
1003		ic->ic_caps |= IEEE80211_C_BURST;
1004	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
1005	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
1006	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
1007	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
1008
1009	/* XXX TODO: just make this a "store tx/rx timestamp length" operation */
1010	if (ath_hal_get_rx_tsf_prec(ah, &i)) {
1011		if (i == 32) {
1012			sc->sc_rxtsf32 = 1;
1013		}
1014		if (bootverbose)
1015			device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i);
1016	}
1017	if (ath_hal_get_tx_tsf_prec(ah, &i)) {
1018		if (bootverbose)
1019			device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i);
1020	}
1021
1022	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
1023	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
1024	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
1025
1026	/*
1027	 * Some WB335 cards do not support antenna diversity. Since
1028	 * we use a hardcoded value for AR9565 instead of using the
1029	 * EEPROM/OTP data, remove the combining feature from
1030	 * the HW capabilities bitmap.
1031	 */
1032	/*
1033	 * XXX TODO: check reference driver and ath9k for what to do
1034	 * here for WB335.  I think we have to actually disable the
1035	 * LNA div processing in the HAL and instead use the hard
1036	 * coded values; and then use BT diversity.
1037	 *
1038	 * .. but also need to setup MCI too for WB335..
1039	 */
1040#if 0
1041	if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
1042		device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n",
1043		    __func__);
1044		sc->sc_dolnadiv = 0;
1045	}
1046#endif
1047
1048	if (ath_hal_hasfastframes(ah))
1049		ic->ic_caps |= IEEE80211_C_FF;
1050	wmodes = ath_hal_getwirelessmodes(ah);
1051	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
1052		ic->ic_caps |= IEEE80211_C_TURBOP;
1053#ifdef IEEE80211_SUPPORT_TDMA
1054	if (ath_hal_macversion(ah) > 0x78) {
1055		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
1056		ic->ic_tdma_update = ath_tdma_update;
1057	}
1058#endif
1059
1060	/*
1061	 * TODO: enforce that at least this many frames are available
1062	 * in the txbuf list before allowing data frames (raw or
1063	 * otherwise) to be transmitted.
1064	 */
1065	sc->sc_txq_data_minfree = 10;
1066
1067	/*
1068	 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever
1069	 * is smaller.
1070	 *
1071	 * Anything bigger can potentially see the cabq consume
1072	 * almost all buffers, starving everything else, only to
1073	 * see most fail to transmit in the given beacon interval.
1074	 */
1075	sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4);
1076
1077	/*
1078	 * How deep can the node software TX queue get whilst it's asleep.
1079	 */
1080	sc->sc_txq_node_psq_maxdepth = 16;
1081
1082	/*
1083	 * Default the maximum queue to 1/4'th the TX buffers, or
1084	 * 64, whichever is smaller.
1085	 */
1086	sc->sc_txq_node_maxdepth = MIN(64, ath_txbuf / 4);
1087
1088	/* Enable CABQ by default */
1089	sc->sc_cabq_enable = 1;
1090
1091	/*
1092	 * Allow the TX and RX chainmasks to be overridden by
1093	 * environment variables and/or device.hints.
1094	 *
1095	 * This must be done early - before the hardware is
1096	 * calibrated or before the 802.11n stream calculation
1097	 * is done.
1098	 */
1099	if (resource_int_value(device_get_name(sc->sc_dev),
1100	    device_get_unit(sc->sc_dev), "rx_chainmask",
1101	    &rx_chainmask) == 0) {
1102		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1103		    rx_chainmask);
1104		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1105	}
1106	if (resource_int_value(device_get_name(sc->sc_dev),
1107	    device_get_unit(sc->sc_dev), "tx_chainmask",
1108	    &tx_chainmask) == 0) {
1109		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1110		    tx_chainmask);
1111		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1112	}
1113
1114	/*
1115	 * Query the TX/RX chainmask configuration.
1116	 *
1117	 * This is only relevant for 11n devices.
1118	 */
1119	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1120	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1121
1122	/*
1123	 * Disable MRR with protected frames by default.
1124	 * Only 802.11n series NICs can handle this.
1125	 */
1126	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1127
1128	/*
1129	 * Query the enterprise mode information the HAL.
1130	 */
1131	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1132	    &sc->sc_ent_cfg) == HAL_OK)
1133		sc->sc_use_ent = 1;
1134
1135#ifdef	ATH_ENABLE_11N
1136	/*
1137	 * Query HT capabilities
1138	 */
1139	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1140	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1141		uint32_t rxs, txs;
1142		uint32_t ldpc;
1143
1144		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1145
1146		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1147
1148		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1149			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1150			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1151			    | IEEE80211_HTCAP_MAXAMSDU_3839
1152			    				/* max A-MSDU length */
1153			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1154
1155		/*
1156		 * Enable short-GI for HT20 only if the hardware
1157		 * advertises support.
1158		 * Notably, anything earlier than the AR9287 doesn't.
1159		 */
1160		if ((ath_hal_getcapability(ah,
1161		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1162		    (wmodes & HAL_MODE_HT20)) {
1163			device_printf(sc->sc_dev,
1164			    "[HT] enabling short-GI in 20MHz mode\n");
1165			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1166		}
1167
1168		if (wmodes & HAL_MODE_HT40)
1169			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1170			    |  IEEE80211_HTCAP_SHORTGI40;
1171
1172		/*
1173		 * TX/RX streams need to be taken into account when
1174		 * negotiating which MCS rates it'll receive and
1175		 * what MCS rates are available for TX.
1176		 */
1177		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1178		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1179		ic->ic_txstream = txs;
1180		ic->ic_rxstream = rxs;
1181
1182		/*
1183		 * Setup TX and RX STBC based on what the HAL allows and
1184		 * the currently configured chainmask set.
1185		 * Ie - don't enable STBC TX if only one chain is enabled.
1186		 * STBC RX is fine on a single RX chain; it just won't
1187		 * provide any real benefit.
1188		 */
1189		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1190		    NULL) == HAL_OK) {
1191			sc->sc_rx_stbc = 1;
1192			device_printf(sc->sc_dev,
1193			    "[HT] 1 stream STBC receive enabled\n");
1194			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1195		}
1196		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1197		    NULL) == HAL_OK) {
1198			sc->sc_tx_stbc = 1;
1199			device_printf(sc->sc_dev,
1200			    "[HT] 1 stream STBC transmit enabled\n");
1201			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1202		}
1203
1204		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1205		    &sc->sc_rts_aggr_limit);
1206		if (sc->sc_rts_aggr_limit != (64 * 1024))
1207			device_printf(sc->sc_dev,
1208			    "[HT] RTS aggregates limited to %d KiB\n",
1209			    sc->sc_rts_aggr_limit / 1024);
1210
1211		/*
1212		 * LDPC
1213		 */
1214		if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc))
1215		    == HAL_OK && (ldpc == 1)) {
1216			sc->sc_has_ldpc = 1;
1217			device_printf(sc->sc_dev,
1218			    "[HT] LDPC transmit/receive enabled\n");
1219			ic->ic_htcaps |= IEEE80211_HTCAP_LDPC |
1220					 IEEE80211_HTC_TXLDPC;
1221		}
1222
1223		device_printf(sc->sc_dev,
1224		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1225	}
1226#endif
1227
1228	/*
1229	 * Initial aggregation settings.
1230	 */
1231	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1232	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1233	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1234	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1235	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1236	sc->sc_delim_min_pad = 0;
1237
1238	/*
1239	 * Check if the hardware requires PCI register serialisation.
1240	 * Some of the Owl based MACs require this.
1241	 */
1242	if (mp_ncpus > 1 &&
1243	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1244	     0, NULL) == HAL_OK) {
1245		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1246		device_printf(sc->sc_dev,
1247		    "Enabling register serialisation\n");
1248	}
1249
1250	/*
1251	 * Initialise the deferred completed RX buffer list.
1252	 */
1253	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1254	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1255
1256	/*
1257	 * Indicate we need the 802.11 header padded to a
1258	 * 32-bit boundary for 4-address and QoS frames.
1259	 */
1260	ic->ic_flags |= IEEE80211_F_DATAPAD;
1261
1262	/*
1263	 * Query the hal about antenna support.
1264	 */
1265	sc->sc_defant = ath_hal_getdefantenna(ah);
1266
1267	/*
1268	 * Not all chips have the VEOL support we want to
1269	 * use with IBSS beacons; check here for it.
1270	 */
1271	sc->sc_hasveol = ath_hal_hasveol(ah);
1272
1273	/* get mac address from kenv first, then hardware */
1274	if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
1275		/* Tell the HAL now about the new MAC */
1276		ath_hal_setmac(ah, ic->ic_macaddr);
1277	} else {
1278		ath_hal_getmac(ah, ic->ic_macaddr);
1279	}
1280
1281	if (sc->sc_hasbmask)
1282		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1283
1284	/* NB: used to size node table key mapping array */
1285	ic->ic_max_keyix = sc->sc_keymax;
1286	/* call MI attach routine. */
1287	ieee80211_ifattach(ic);
1288	ic->ic_setregdomain = ath_setregdomain;
1289	ic->ic_getradiocaps = ath_getradiocaps;
1290	sc->sc_opmode = HAL_M_STA;
1291
1292	/* override default methods */
1293	ic->ic_ioctl = ath_ioctl;
1294	ic->ic_parent = ath_parent;
1295	ic->ic_transmit = ath_transmit;
1296	ic->ic_newassoc = ath_newassoc;
1297	ic->ic_updateslot = ath_updateslot;
1298	ic->ic_wme.wme_update = ath_wme_update;
1299	ic->ic_vap_create = ath_vap_create;
1300	ic->ic_vap_delete = ath_vap_delete;
1301	ic->ic_raw_xmit = ath_raw_xmit;
1302	ic->ic_update_mcast = ath_update_mcast;
1303	ic->ic_update_promisc = ath_update_promisc;
1304	ic->ic_node_alloc = ath_node_alloc;
1305	sc->sc_node_free = ic->ic_node_free;
1306	ic->ic_node_free = ath_node_free;
1307	sc->sc_node_cleanup = ic->ic_node_cleanup;
1308	ic->ic_node_cleanup = ath_node_cleanup;
1309	ic->ic_node_getsignal = ath_node_getsignal;
1310	ic->ic_scan_start = ath_scan_start;
1311	ic->ic_scan_end = ath_scan_end;
1312	ic->ic_set_channel = ath_set_channel;
1313#ifdef	ATH_ENABLE_11N
1314	/* 802.11n specific - but just override anyway */
1315	sc->sc_addba_request = ic->ic_addba_request;
1316	sc->sc_addba_response = ic->ic_addba_response;
1317	sc->sc_addba_stop = ic->ic_addba_stop;
1318	sc->sc_bar_response = ic->ic_bar_response;
1319	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1320
1321	ic->ic_addba_request = ath_addba_request;
1322	ic->ic_addba_response = ath_addba_response;
1323	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1324	ic->ic_addba_stop = ath_addba_stop;
1325	ic->ic_bar_response = ath_bar_response;
1326
1327	ic->ic_update_chw = ath_update_chw;
1328#endif	/* ATH_ENABLE_11N */
1329	ic->ic_set_quiet = ath_set_quiet_ie;
1330
1331#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1332	/*
1333	 * There's one vendor bitmap entry in the RX radiotap
1334	 * header; make sure that's taken into account.
1335	 */
1336	ieee80211_radiotap_attachv(ic,
1337	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1338		ATH_TX_RADIOTAP_PRESENT,
1339	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1340		ATH_RX_RADIOTAP_PRESENT);
1341#else
1342	/*
1343	 * No vendor bitmap/extensions are present.
1344	 */
1345	ieee80211_radiotap_attach(ic,
1346	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1347		ATH_TX_RADIOTAP_PRESENT,
1348	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1349		ATH_RX_RADIOTAP_PRESENT);
1350#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1351
1352	/*
1353	 * Setup the ALQ logging if required
1354	 */
1355#ifdef	ATH_DEBUG_ALQ
1356	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1357	if_ath_alq_setcfg(&sc->sc_alq,
1358	    sc->sc_ah->ah_macVersion,
1359	    sc->sc_ah->ah_macRev,
1360	    sc->sc_ah->ah_phyRev,
1361	    sc->sc_ah->ah_magic);
1362#endif
1363
1364	/*
1365	 * Setup dynamic sysctl's now that country code and
1366	 * regdomain are available from the hal.
1367	 */
1368	ath_sysctlattach(sc);
1369	ath_sysctl_stats_attach(sc);
1370	ath_sysctl_hal_attach(sc);
1371
1372	if (bootverbose)
1373		ieee80211_announce(ic);
1374	ath_announce(sc);
1375
1376	/*
1377	 * Put it to sleep for now.
1378	 */
1379	ATH_LOCK(sc);
1380	ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
1381	ATH_UNLOCK(sc);
1382
1383	return 0;
1384bad2:
1385	ath_tx_cleanup(sc);
1386	ath_desc_free(sc);
1387	ath_txdma_teardown(sc);
1388	ath_rxdma_teardown(sc);
1389
1390bad:
1391	if (ah)
1392		ath_hal_detach(ah);
1393	sc->sc_invalid = 1;
1394	return error;
1395}
1396
1397int
1398ath_detach(struct ath_softc *sc)
1399{
1400
1401	/*
1402	 * NB: the order of these is important:
1403	 * o stop the chip so no more interrupts will fire
1404	 * o call the 802.11 layer before detaching the hal to
1405	 *   insure callbacks into the driver to delete global
1406	 *   key cache entries can be handled
1407	 * o free the taskqueue which drains any pending tasks
1408	 * o reclaim the tx queue data structures after calling
1409	 *   the 802.11 layer as we'll get called back to reclaim
1410	 *   node state and potentially want to use them
1411	 * o to cleanup the tx queues the hal is called, so detach
1412	 *   it last
1413	 * Other than that, it's straightforward...
1414	 */
1415
1416	/*
1417	 * XXX Wake the hardware up first.  ath_stop() will still
1418	 * wake it up first, but I'd rather do it here just to
1419	 * ensure it's awake.
1420	 */
1421	ATH_LOCK(sc);
1422	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1423	ath_power_setpower(sc, HAL_PM_AWAKE, 1);
1424
1425	/*
1426	 * Stop things cleanly.
1427	 */
1428	ath_stop(sc);
1429	ATH_UNLOCK(sc);
1430
1431	ieee80211_ifdetach(&sc->sc_ic);
1432	taskqueue_free(sc->sc_tq);
1433#ifdef ATH_TX99_DIAG
1434	if (sc->sc_tx99 != NULL)
1435		sc->sc_tx99->detach(sc->sc_tx99);
1436#endif
1437	ath_rate_detach(sc->sc_rc);
1438#ifdef	ATH_DEBUG_ALQ
1439	if_ath_alq_tidyup(&sc->sc_alq);
1440#endif
1441	ath_lna_div_detach(sc);
1442	ath_btcoex_detach(sc);
1443	ath_spectral_detach(sc);
1444	ath_dfs_detach(sc);
1445	ath_desc_free(sc);
1446	ath_txdma_teardown(sc);
1447	ath_rxdma_teardown(sc);
1448	ath_tx_cleanup(sc);
1449	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1450
1451	return 0;
1452}
1453
1454/*
1455 * MAC address handling for multiple BSS on the same radio.
1456 * The first vap uses the MAC address from the EEPROM.  For
1457 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1458 * address and use the next six bits as an index.
1459 */
1460static void
1461assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1462{
1463	int i;
1464
1465	if (clone && sc->sc_hasbmask) {
1466		/* NB: we only do this if h/w supports multiple bssid */
1467		for (i = 0; i < 8; i++)
1468			if ((sc->sc_bssidmask & (1<<i)) == 0)
1469				break;
1470		if (i != 0)
1471			mac[0] |= (i << 2)|0x2;
1472	} else
1473		i = 0;
1474	sc->sc_bssidmask |= 1<<i;
1475	sc->sc_hwbssidmask[0] &= ~mac[0];
1476	if (i == 0)
1477		sc->sc_nbssid0++;
1478}
1479
1480static void
1481reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1482{
1483	int i = mac[0] >> 2;
1484	uint8_t mask;
1485
1486	if (i != 0 || --sc->sc_nbssid0 == 0) {
1487		sc->sc_bssidmask &= ~(1<<i);
1488		/* recalculate bssid mask from remaining addresses */
1489		mask = 0xff;
1490		for (i = 1; i < 8; i++)
1491			if (sc->sc_bssidmask & (1<<i))
1492				mask &= ~((i<<2)|0x2);
1493		sc->sc_hwbssidmask[0] |= mask;
1494	}
1495}
1496
1497/*
1498 * Assign a beacon xmit slot.  We try to space out
1499 * assignments so when beacons are staggered the
1500 * traffic coming out of the cab q has maximal time
1501 * to go out before the next beacon is scheduled.
1502 */
1503static int
1504assign_bslot(struct ath_softc *sc)
1505{
1506	u_int slot, free;
1507
1508	free = 0;
1509	for (slot = 0; slot < ATH_BCBUF; slot++)
1510		if (sc->sc_bslot[slot] == NULL) {
1511			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1512			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1513				return slot;
1514			free = slot;
1515			/* NB: keep looking for a double slot */
1516		}
1517	return free;
1518}
1519
1520static struct ieee80211vap *
1521ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1522    enum ieee80211_opmode opmode, int flags,
1523    const uint8_t bssid[IEEE80211_ADDR_LEN],
1524    const uint8_t mac0[IEEE80211_ADDR_LEN])
1525{
1526	struct ath_softc *sc = ic->ic_softc;
1527	struct ath_vap *avp;
1528	struct ieee80211vap *vap;
1529	uint8_t mac[IEEE80211_ADDR_LEN];
1530	int needbeacon, error;
1531	enum ieee80211_opmode ic_opmode;
1532
1533	avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1534	needbeacon = 0;
1535	IEEE80211_ADDR_COPY(mac, mac0);
1536
1537	ATH_LOCK(sc);
1538	ic_opmode = opmode;		/* default to opmode of new vap */
1539	switch (opmode) {
1540	case IEEE80211_M_STA:
1541		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1542			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1543			goto bad;
1544		}
1545		if (sc->sc_nvaps) {
1546			/*
1547			 * With multiple vaps we must fall back
1548			 * to s/w beacon miss handling.
1549			 */
1550			flags |= IEEE80211_CLONE_NOBEACONS;
1551		}
1552		if (flags & IEEE80211_CLONE_NOBEACONS) {
1553			/*
1554			 * Station mode w/o beacons are implemented w/ AP mode.
1555			 */
1556			ic_opmode = IEEE80211_M_HOSTAP;
1557		}
1558		break;
1559	case IEEE80211_M_IBSS:
1560		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1561			device_printf(sc->sc_dev,
1562			    "only 1 ibss vap supported\n");
1563			goto bad;
1564		}
1565		needbeacon = 1;
1566		break;
1567	case IEEE80211_M_AHDEMO:
1568#ifdef IEEE80211_SUPPORT_TDMA
1569		if (flags & IEEE80211_CLONE_TDMA) {
1570			if (sc->sc_nvaps != 0) {
1571				device_printf(sc->sc_dev,
1572				    "only 1 tdma vap supported\n");
1573				goto bad;
1574			}
1575			needbeacon = 1;
1576			flags |= IEEE80211_CLONE_NOBEACONS;
1577		}
1578		/* fall thru... */
1579#endif
1580	case IEEE80211_M_MONITOR:
1581		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1582			/*
1583			 * Adopt existing mode.  Adding a monitor or ahdemo
1584			 * vap to an existing configuration is of dubious
1585			 * value but should be ok.
1586			 */
1587			/* XXX not right for monitor mode */
1588			ic_opmode = ic->ic_opmode;
1589		}
1590		break;
1591	case IEEE80211_M_HOSTAP:
1592	case IEEE80211_M_MBSS:
1593		needbeacon = 1;
1594		break;
1595	case IEEE80211_M_WDS:
1596		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1597			device_printf(sc->sc_dev,
1598			    "wds not supported in sta mode\n");
1599			goto bad;
1600		}
1601		/*
1602		 * Silently remove any request for a unique
1603		 * bssid; WDS vap's always share the local
1604		 * mac address.
1605		 */
1606		flags &= ~IEEE80211_CLONE_BSSID;
1607		if (sc->sc_nvaps == 0)
1608			ic_opmode = IEEE80211_M_HOSTAP;
1609		else
1610			ic_opmode = ic->ic_opmode;
1611		break;
1612	default:
1613		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1614		goto bad;
1615	}
1616	/*
1617	 * Check that a beacon buffer is available; the code below assumes it.
1618	 */
1619	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1620		device_printf(sc->sc_dev, "no beacon buffer available\n");
1621		goto bad;
1622	}
1623
1624	/* STA, AHDEMO? */
1625	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) {
1626		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1627		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1628	}
1629
1630	vap = &avp->av_vap;
1631	/* XXX can't hold mutex across if_alloc */
1632	ATH_UNLOCK(sc);
1633	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1634	ATH_LOCK(sc);
1635	if (error != 0) {
1636		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1637		    __func__, error);
1638		goto bad2;
1639	}
1640
1641	/* h/w crypto support */
1642	vap->iv_key_alloc = ath_key_alloc;
1643	vap->iv_key_delete = ath_key_delete;
1644	vap->iv_key_set = ath_key_set;
1645	vap->iv_key_update_begin = ath_key_update_begin;
1646	vap->iv_key_update_end = ath_key_update_end;
1647
1648	/* override various methods */
1649	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1650	vap->iv_recv_mgmt = ath_recv_mgmt;
1651	vap->iv_reset = ath_reset_vap;
1652	vap->iv_update_beacon = ath_beacon_update;
1653	avp->av_newstate = vap->iv_newstate;
1654	vap->iv_newstate = ath_newstate;
1655	avp->av_bmiss = vap->iv_bmiss;
1656	vap->iv_bmiss = ath_bmiss_vap;
1657
1658	avp->av_node_ps = vap->iv_node_ps;
1659	vap->iv_node_ps = ath_node_powersave;
1660
1661	avp->av_set_tim = vap->iv_set_tim;
1662	vap->iv_set_tim = ath_node_set_tim;
1663
1664	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1665	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1666
1667	/* Set default parameters */
1668
1669	/*
1670	 * Anything earlier than some AR9300 series MACs don't
1671	 * support a smaller MPDU density.
1672	 */
1673	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1674	/*
1675	 * All NICs can handle the maximum size, however
1676	 * AR5416 based MACs can only TX aggregates w/ RTS
1677	 * protection when the total aggregate size is <= 8k.
1678	 * However, for now that's enforced by the TX path.
1679	 */
1680	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1681	vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1682
1683	avp->av_bslot = -1;
1684	if (needbeacon) {
1685		/*
1686		 * Allocate beacon state and setup the q for buffered
1687		 * multicast frames.  We know a beacon buffer is
1688		 * available because we checked above.
1689		 */
1690		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1691		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1692		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1693			/*
1694			 * Assign the vap to a beacon xmit slot.  As above
1695			 * this cannot fail to find a free one.
1696			 */
1697			avp->av_bslot = assign_bslot(sc);
1698			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1699			    ("beacon slot %u not empty", avp->av_bslot));
1700			sc->sc_bslot[avp->av_bslot] = vap;
1701			sc->sc_nbcnvaps++;
1702		}
1703		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1704			/*
1705			 * Multple vaps are to transmit beacons and we
1706			 * have h/w support for TSF adjusting; enable
1707			 * use of staggered beacons.
1708			 */
1709			sc->sc_stagbeacons = 1;
1710		}
1711		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1712	}
1713
1714	ic->ic_opmode = ic_opmode;
1715	if (opmode != IEEE80211_M_WDS) {
1716		sc->sc_nvaps++;
1717		if (opmode == IEEE80211_M_STA)
1718			sc->sc_nstavaps++;
1719		if (opmode == IEEE80211_M_MBSS)
1720			sc->sc_nmeshvaps++;
1721	}
1722	switch (ic_opmode) {
1723	case IEEE80211_M_IBSS:
1724		sc->sc_opmode = HAL_M_IBSS;
1725		break;
1726	case IEEE80211_M_STA:
1727		sc->sc_opmode = HAL_M_STA;
1728		break;
1729	case IEEE80211_M_AHDEMO:
1730#ifdef IEEE80211_SUPPORT_TDMA
1731		if (vap->iv_caps & IEEE80211_C_TDMA) {
1732			sc->sc_tdma = 1;
1733			/* NB: disable tsf adjust */
1734			sc->sc_stagbeacons = 0;
1735		}
1736		/*
1737		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1738		 * just ap mode.
1739		 */
1740		/* fall thru... */
1741#endif
1742	case IEEE80211_M_HOSTAP:
1743	case IEEE80211_M_MBSS:
1744		sc->sc_opmode = HAL_M_HOSTAP;
1745		break;
1746	case IEEE80211_M_MONITOR:
1747		sc->sc_opmode = HAL_M_MONITOR;
1748		break;
1749	default:
1750		/* XXX should not happen */
1751		break;
1752	}
1753	if (sc->sc_hastsfadd) {
1754		/*
1755		 * Configure whether or not TSF adjust should be done.
1756		 */
1757		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1758	}
1759	if (flags & IEEE80211_CLONE_NOBEACONS) {
1760		/*
1761		 * Enable s/w beacon miss handling.
1762		 */
1763		sc->sc_swbmiss = 1;
1764	}
1765	ATH_UNLOCK(sc);
1766
1767	/* complete setup */
1768	ieee80211_vap_attach(vap, ieee80211_media_change,
1769	    ieee80211_media_status, mac);
1770	return vap;
1771bad2:
1772	reclaim_address(sc, mac);
1773	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1774bad:
1775	free(avp, M_80211_VAP);
1776	ATH_UNLOCK(sc);
1777	return NULL;
1778}
1779
1780static void
1781ath_vap_delete(struct ieee80211vap *vap)
1782{
1783	struct ieee80211com *ic = vap->iv_ic;
1784	struct ath_softc *sc = ic->ic_softc;
1785	struct ath_hal *ah = sc->sc_ah;
1786	struct ath_vap *avp = ATH_VAP(vap);
1787
1788	ATH_LOCK(sc);
1789	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1790	ATH_UNLOCK(sc);
1791
1792	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1793	if (sc->sc_running) {
1794		/*
1795		 * Quiesce the hardware while we remove the vap.  In
1796		 * particular we need to reclaim all references to
1797		 * the vap state by any frames pending on the tx queues.
1798		 */
1799		ath_hal_intrset(ah, 0);		/* disable interrupts */
1800		/* XXX Do all frames from all vaps/nodes need draining here? */
1801		ath_stoprecv(sc, 1);		/* stop recv side */
1802		ath_rx_flush(sc);
1803		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1804	}
1805
1806	/* .. leave the hardware awake for now. */
1807
1808	ieee80211_vap_detach(vap);
1809
1810	/*
1811	 * XXX Danger Will Robinson! Danger!
1812	 *
1813	 * Because ieee80211_vap_detach() can queue a frame (the station
1814	 * diassociate message?) after we've drained the TXQ and
1815	 * flushed the software TXQ, we will end up with a frame queued
1816	 * to a node whose vap is about to be freed.
1817	 *
1818	 * To work around this, flush the hardware/software again.
1819	 * This may be racy - the ath task may be running and the packet
1820	 * may be being scheduled between sw->hw txq. Tsk.
1821	 *
1822	 * TODO: figure out why a new node gets allocated somewhere around
1823	 * here (after the ath_tx_swq() call; and after an ath_stop()
1824	 * call!)
1825	 */
1826
1827	ath_draintxq(sc, ATH_RESET_DEFAULT);
1828
1829	ATH_LOCK(sc);
1830	/*
1831	 * Reclaim beacon state.  Note this must be done before
1832	 * the vap instance is reclaimed as we may have a reference
1833	 * to it in the buffer for the beacon frame.
1834	 */
1835	if (avp->av_bcbuf != NULL) {
1836		if (avp->av_bslot != -1) {
1837			sc->sc_bslot[avp->av_bslot] = NULL;
1838			sc->sc_nbcnvaps--;
1839		}
1840		ath_beacon_return(sc, avp->av_bcbuf);
1841		avp->av_bcbuf = NULL;
1842		if (sc->sc_nbcnvaps == 0) {
1843			sc->sc_stagbeacons = 0;
1844			if (sc->sc_hastsfadd)
1845				ath_hal_settsfadjust(sc->sc_ah, 0);
1846		}
1847		/*
1848		 * Reclaim any pending mcast frames for the vap.
1849		 */
1850		ath_tx_draintxq(sc, &avp->av_mcastq);
1851	}
1852	/*
1853	 * Update bookkeeping.
1854	 */
1855	if (vap->iv_opmode == IEEE80211_M_STA) {
1856		sc->sc_nstavaps--;
1857		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1858			sc->sc_swbmiss = 0;
1859	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1860	    vap->iv_opmode == IEEE80211_M_STA ||
1861	    vap->iv_opmode == IEEE80211_M_MBSS) {
1862		reclaim_address(sc, vap->iv_myaddr);
1863		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1864		if (vap->iv_opmode == IEEE80211_M_MBSS)
1865			sc->sc_nmeshvaps--;
1866	}
1867	if (vap->iv_opmode != IEEE80211_M_WDS)
1868		sc->sc_nvaps--;
1869#ifdef IEEE80211_SUPPORT_TDMA
1870	/* TDMA operation ceases when the last vap is destroyed */
1871	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1872		sc->sc_tdma = 0;
1873		sc->sc_swbmiss = 0;
1874	}
1875#endif
1876	free(avp, M_80211_VAP);
1877
1878	if (sc->sc_running) {
1879		/*
1880		 * Restart rx+tx machines if still running (RUNNING will
1881		 * be reset if we just destroyed the last vap).
1882		 */
1883		if (ath_startrecv(sc) != 0)
1884			device_printf(sc->sc_dev,
1885			    "%s: unable to restart recv logic\n", __func__);
1886		if (sc->sc_beacons) {		/* restart beacons */
1887#ifdef IEEE80211_SUPPORT_TDMA
1888			if (sc->sc_tdma)
1889				ath_tdma_config(sc, NULL);
1890			else
1891#endif
1892				ath_beacon_config(sc, NULL);
1893		}
1894		ath_hal_intrset(ah, sc->sc_imask);
1895	}
1896
1897	/* Ok, let the hardware asleep. */
1898	ath_power_restore_power_state(sc);
1899	ATH_UNLOCK(sc);
1900}
1901
1902void
1903ath_suspend(struct ath_softc *sc)
1904{
1905	struct ieee80211com *ic = &sc->sc_ic;
1906
1907	sc->sc_resume_up = ic->ic_nrunning != 0;
1908
1909	ieee80211_suspend_all(ic);
1910	/*
1911	 * NB: don't worry about putting the chip in low power
1912	 * mode; pci will power off our socket on suspend and
1913	 * CardBus detaches the device.
1914	 *
1915	 * XXX TODO: well, that's great, except for non-cardbus
1916	 * devices!
1917	 */
1918
1919	/*
1920	 * XXX This doesn't wait until all pending taskqueue
1921	 * items and parallel transmit/receive/other threads
1922	 * are running!
1923	 */
1924	ath_hal_intrset(sc->sc_ah, 0);
1925	taskqueue_block(sc->sc_tq);
1926
1927	ATH_LOCK(sc);
1928	callout_stop(&sc->sc_cal_ch);
1929	ATH_UNLOCK(sc);
1930
1931	/*
1932	 * XXX ensure sc_invalid is 1
1933	 */
1934
1935	/* Disable the PCIe PHY, complete with workarounds */
1936	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1937}
1938
1939/*
1940 * Reset the key cache since some parts do not reset the
1941 * contents on resume.  First we clear all entries, then
1942 * re-load keys that the 802.11 layer assumes are setup
1943 * in h/w.
1944 */
1945static void
1946ath_reset_keycache(struct ath_softc *sc)
1947{
1948	struct ieee80211com *ic = &sc->sc_ic;
1949	struct ath_hal *ah = sc->sc_ah;
1950	int i;
1951
1952	ATH_LOCK(sc);
1953	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1954	for (i = 0; i < sc->sc_keymax; i++)
1955		ath_hal_keyreset(ah, i);
1956	ath_power_restore_power_state(sc);
1957	ATH_UNLOCK(sc);
1958	ieee80211_crypto_reload_keys(ic);
1959}
1960
1961/*
1962 * Fetch the current chainmask configuration based on the current
1963 * operating channel and options.
1964 */
1965static void
1966ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1967{
1968
1969	/*
1970	 * Set TX chainmask to the currently configured chainmask;
1971	 * the TX chainmask depends upon the current operating mode.
1972	 */
1973	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1974	if (IEEE80211_IS_CHAN_HT(chan)) {
1975		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1976	} else {
1977		sc->sc_cur_txchainmask = 1;
1978	}
1979
1980	DPRINTF(sc, ATH_DEBUG_RESET,
1981	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1982	    __func__,
1983	    sc->sc_cur_txchainmask,
1984	    sc->sc_cur_rxchainmask);
1985}
1986
1987void
1988ath_resume(struct ath_softc *sc)
1989{
1990	struct ieee80211com *ic = &sc->sc_ic;
1991	struct ath_hal *ah = sc->sc_ah;
1992	HAL_STATUS status;
1993
1994	ath_hal_enablepcie(ah, 0, 0);
1995
1996	/*
1997	 * Must reset the chip before we reload the
1998	 * keycache as we were powered down on suspend.
1999	 */
2000	ath_update_chainmasks(sc,
2001	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
2002	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2003	    sc->sc_cur_rxchainmask);
2004
2005	/* Ensure we set the current power state to on */
2006	ATH_LOCK(sc);
2007	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2008	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2009	ath_power_setpower(sc, HAL_PM_AWAKE, 1);
2010	ATH_UNLOCK(sc);
2011
2012	ath_hal_reset(ah, sc->sc_opmode,
2013	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
2014	    AH_FALSE, HAL_RESET_NORMAL, &status);
2015	ath_reset_keycache(sc);
2016
2017	ATH_RX_LOCK(sc);
2018	sc->sc_rx_stopped = 1;
2019	sc->sc_rx_resetted = 1;
2020	ATH_RX_UNLOCK(sc);
2021
2022	/* Let DFS at it in case it's a DFS channel */
2023	ath_dfs_radar_enable(sc, ic->ic_curchan);
2024
2025	/* Let spectral at in case spectral is enabled */
2026	ath_spectral_enable(sc, ic->ic_curchan);
2027
2028	/*
2029	 * Let bluetooth coexistence at in case it's needed for this channel
2030	 */
2031	ath_btcoex_enable(sc, ic->ic_curchan);
2032
2033	/*
2034	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2035	 * support it.
2036	 */
2037	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2038		ath_hal_setenforcetxop(sc->sc_ah, 1);
2039	else
2040		ath_hal_setenforcetxop(sc->sc_ah, 0);
2041
2042	/* Restore the LED configuration */
2043	ath_led_config(sc);
2044	ath_hal_setledstate(ah, HAL_LED_INIT);
2045
2046	if (sc->sc_resume_up)
2047		ieee80211_resume_all(ic);
2048
2049	ATH_LOCK(sc);
2050	ath_power_restore_power_state(sc);
2051	ATH_UNLOCK(sc);
2052
2053	/* XXX beacons ? */
2054}
2055
2056void
2057ath_shutdown(struct ath_softc *sc)
2058{
2059
2060	ATH_LOCK(sc);
2061	ath_stop(sc);
2062	ATH_UNLOCK(sc);
2063	/* NB: no point powering down chip as we're about to reboot */
2064}
2065
2066/*
2067 * Interrupt handler.  Most of the actual processing is deferred.
2068 */
2069void
2070ath_intr(void *arg)
2071{
2072	struct ath_softc *sc = arg;
2073	struct ath_hal *ah = sc->sc_ah;
2074	HAL_INT status = 0;
2075	uint32_t txqs;
2076
2077	/*
2078	 * If we're inside a reset path, just print a warning and
2079	 * clear the ISR. The reset routine will finish it for us.
2080	 */
2081	ATH_PCU_LOCK(sc);
2082	if (sc->sc_inreset_cnt) {
2083		HAL_INT status;
2084		ath_hal_getisr(ah, &status);	/* clear ISR */
2085		ath_hal_intrset(ah, 0);		/* disable further intr's */
2086		DPRINTF(sc, ATH_DEBUG_ANY,
2087		    "%s: in reset, ignoring: status=0x%x\n",
2088		    __func__, status);
2089		ATH_PCU_UNLOCK(sc);
2090		return;
2091	}
2092
2093	if (sc->sc_invalid) {
2094		/*
2095		 * The hardware is not ready/present, don't touch anything.
2096		 * Note this can happen early on if the IRQ is shared.
2097		 */
2098		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2099		ATH_PCU_UNLOCK(sc);
2100		return;
2101	}
2102	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2103		ATH_PCU_UNLOCK(sc);
2104		return;
2105	}
2106
2107	ATH_LOCK(sc);
2108	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2109	ATH_UNLOCK(sc);
2110
2111	if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
2112		HAL_INT status;
2113
2114		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
2115		    __func__, sc->sc_ic.ic_nrunning, sc->sc_running);
2116		ath_hal_getisr(ah, &status);	/* clear ISR */
2117		ath_hal_intrset(ah, 0);		/* disable further intr's */
2118		ATH_PCU_UNLOCK(sc);
2119
2120		ATH_LOCK(sc);
2121		ath_power_restore_power_state(sc);
2122		ATH_UNLOCK(sc);
2123		return;
2124	}
2125
2126	/*
2127	 * Figure out the reason(s) for the interrupt.  Note
2128	 * that the hal returns a pseudo-ISR that may include
2129	 * bits we haven't explicitly enabled so we mask the
2130	 * value to insure we only process bits we requested.
2131	 */
2132	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2133	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2134	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2135#ifdef	ATH_DEBUG_ALQ
2136	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2137	    ah->ah_syncstate);
2138#endif	/* ATH_DEBUG_ALQ */
2139#ifdef	ATH_KTR_INTR_DEBUG
2140	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2141	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2142	    ah->ah_intrstate[0],
2143	    ah->ah_intrstate[1],
2144	    ah->ah_intrstate[2],
2145	    ah->ah_intrstate[3],
2146	    ah->ah_intrstate[6]);
2147#endif
2148
2149	/* Squirrel away SYNC interrupt debugging */
2150	if (ah->ah_syncstate != 0) {
2151		int i;
2152		for (i = 0; i < 32; i++)
2153			if (ah->ah_syncstate & (1 << i))
2154				sc->sc_intr_stats.sync_intr[i]++;
2155	}
2156
2157	status &= sc->sc_imask;			/* discard unasked for bits */
2158
2159	/* Short-circuit un-handled interrupts */
2160	if (status == 0x0) {
2161		ATH_PCU_UNLOCK(sc);
2162
2163		ATH_LOCK(sc);
2164		ath_power_restore_power_state(sc);
2165		ATH_UNLOCK(sc);
2166
2167		return;
2168	}
2169
2170	/*
2171	 * Take a note that we're inside the interrupt handler, so
2172	 * the reset routines know to wait.
2173	 */
2174	sc->sc_intr_cnt++;
2175	ATH_PCU_UNLOCK(sc);
2176
2177	/*
2178	 * Handle the interrupt. We won't run concurrent with the reset
2179	 * or channel change routines as they'll wait for sc_intr_cnt
2180	 * to be 0 before continuing.
2181	 */
2182	if (status & HAL_INT_FATAL) {
2183		sc->sc_stats.ast_hardware++;
2184		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2185		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2186	} else {
2187		if (status & HAL_INT_SWBA) {
2188			/*
2189			 * Software beacon alert--time to send a beacon.
2190			 * Handle beacon transmission directly; deferring
2191			 * this is too slow to meet timing constraints
2192			 * under load.
2193			 */
2194#ifdef IEEE80211_SUPPORT_TDMA
2195			if (sc->sc_tdma) {
2196				if (sc->sc_tdmaswba == 0) {
2197					struct ieee80211com *ic = &sc->sc_ic;
2198					struct ieee80211vap *vap =
2199					    TAILQ_FIRST(&ic->ic_vaps);
2200					ath_tdma_beacon_send(sc, vap);
2201					sc->sc_tdmaswba =
2202					    vap->iv_tdma->tdma_bintval;
2203				} else
2204					sc->sc_tdmaswba--;
2205			} else
2206#endif
2207			{
2208				ath_beacon_proc(sc, 0);
2209#ifdef IEEE80211_SUPPORT_SUPERG
2210				/*
2211				 * Schedule the rx taskq in case there's no
2212				 * traffic so any frames held on the staging
2213				 * queue are aged and potentially flushed.
2214				 */
2215				sc->sc_rx.recv_sched(sc, 1);
2216#endif
2217			}
2218		}
2219		if (status & HAL_INT_RXEOL) {
2220			int imask;
2221			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2222			if (! sc->sc_isedma) {
2223				ATH_PCU_LOCK(sc);
2224				/*
2225				 * NB: the hardware should re-read the link when
2226				 *     RXE bit is written, but it doesn't work at
2227				 *     least on older hardware revs.
2228				 */
2229				sc->sc_stats.ast_rxeol++;
2230				/*
2231				 * Disable RXEOL/RXORN - prevent an interrupt
2232				 * storm until the PCU logic can be reset.
2233				 * In case the interface is reset some other
2234				 * way before "sc_kickpcu" is called, don't
2235				 * modify sc_imask - that way if it is reset
2236				 * by a call to ath_reset() somehow, the
2237				 * interrupt mask will be correctly reprogrammed.
2238				 */
2239				imask = sc->sc_imask;
2240				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2241				ath_hal_intrset(ah, imask);
2242				/*
2243				 * Only blank sc_rxlink if we've not yet kicked
2244				 * the PCU.
2245				 *
2246				 * This isn't entirely correct - the correct solution
2247				 * would be to have a PCU lock and engage that for
2248				 * the duration of the PCU fiddling; which would include
2249				 * running the RX process. Otherwise we could end up
2250				 * messing up the RX descriptor chain and making the
2251				 * RX desc list much shorter.
2252				 */
2253				if (! sc->sc_kickpcu)
2254					sc->sc_rxlink = NULL;
2255				sc->sc_kickpcu = 1;
2256				ATH_PCU_UNLOCK(sc);
2257			}
2258			/*
2259			 * Enqueue an RX proc to handle whatever
2260			 * is in the RX queue.
2261			 * This will then kick the PCU if required.
2262			 */
2263			sc->sc_rx.recv_sched(sc, 1);
2264		}
2265		if (status & HAL_INT_TXURN) {
2266			sc->sc_stats.ast_txurn++;
2267			/* bump tx trigger level */
2268			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2269		}
2270		/*
2271		 * Handle both the legacy and RX EDMA interrupt bits.
2272		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2273		 */
2274		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2275			sc->sc_stats.ast_rx_intr++;
2276			sc->sc_rx.recv_sched(sc, 1);
2277		}
2278		if (status & HAL_INT_TX) {
2279			sc->sc_stats.ast_tx_intr++;
2280			/*
2281			 * Grab all the currently set bits in the HAL txq bitmap
2282			 * and blank them. This is the only place we should be
2283			 * doing this.
2284			 */
2285			if (! sc->sc_isedma) {
2286				ATH_PCU_LOCK(sc);
2287				txqs = 0xffffffff;
2288				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2289				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2290				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2291				    txqs,
2292				    sc->sc_txq_active,
2293				    sc->sc_txq_active | txqs);
2294				sc->sc_txq_active |= txqs;
2295				ATH_PCU_UNLOCK(sc);
2296			}
2297			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2298		}
2299		if (status & HAL_INT_BMISS) {
2300			sc->sc_stats.ast_bmiss++;
2301			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2302		}
2303		if (status & HAL_INT_GTT)
2304			sc->sc_stats.ast_tx_timeout++;
2305		if (status & HAL_INT_CST)
2306			sc->sc_stats.ast_tx_cst++;
2307		if (status & HAL_INT_MIB) {
2308			sc->sc_stats.ast_mib++;
2309			ATH_PCU_LOCK(sc);
2310			/*
2311			 * Disable interrupts until we service the MIB
2312			 * interrupt; otherwise it will continue to fire.
2313			 */
2314			ath_hal_intrset(ah, 0);
2315			/*
2316			 * Let the hal handle the event.  We assume it will
2317			 * clear whatever condition caused the interrupt.
2318			 */
2319			ath_hal_mibevent(ah, &sc->sc_halstats);
2320			/*
2321			 * Don't reset the interrupt if we've just
2322			 * kicked the PCU, or we may get a nested
2323			 * RXEOL before the rxproc has had a chance
2324			 * to run.
2325			 */
2326			if (sc->sc_kickpcu == 0)
2327				ath_hal_intrset(ah, sc->sc_imask);
2328			ATH_PCU_UNLOCK(sc);
2329		}
2330		if (status & HAL_INT_RXORN) {
2331			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2332			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2333			sc->sc_stats.ast_rxorn++;
2334		}
2335		if (status & HAL_INT_TSFOOR) {
2336			/* out of range beacon - wake the chip up,
2337			 * but don't modify self-gen frame config */
2338			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2339			sc->sc_syncbeacon = 1;
2340			ATH_LOCK(sc);
2341			ath_power_setpower(sc, HAL_PM_AWAKE, 0);
2342			ATH_UNLOCK(sc);
2343		}
2344		if (status & HAL_INT_MCI) {
2345			ath_btcoex_mci_intr(sc);
2346		}
2347	}
2348	ATH_PCU_LOCK(sc);
2349	sc->sc_intr_cnt--;
2350	ATH_PCU_UNLOCK(sc);
2351
2352	ATH_LOCK(sc);
2353	ath_power_restore_power_state(sc);
2354	ATH_UNLOCK(sc);
2355}
2356
2357static void
2358ath_fatal_proc(void *arg, int pending)
2359{
2360	struct ath_softc *sc = arg;
2361	u_int32_t *state;
2362	u_int32_t len;
2363	void *sp;
2364
2365	if (sc->sc_invalid)
2366		return;
2367
2368	device_printf(sc->sc_dev, "hardware error; resetting\n");
2369	/*
2370	 * Fatal errors are unrecoverable.  Typically these
2371	 * are caused by DMA errors.  Collect h/w state from
2372	 * the hal so we can diagnose what's going on.
2373	 */
2374	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2375		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2376		state = sp;
2377		device_printf(sc->sc_dev,
2378		    "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
2379		    state[1] , state[2], state[3], state[4], state[5]);
2380	}
2381	ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2382}
2383
2384static void
2385ath_bmiss_vap(struct ieee80211vap *vap)
2386{
2387	struct ath_softc *sc = vap->iv_ic->ic_softc;
2388
2389	/*
2390	 * Workaround phantom bmiss interrupts by sanity-checking
2391	 * the time of our last rx'd frame.  If it is within the
2392	 * beacon miss interval then ignore the interrupt.  If it's
2393	 * truly a bmiss we'll get another interrupt soon and that'll
2394	 * be dispatched up for processing.  Note this applies only
2395	 * for h/w beacon miss events.
2396	 */
2397
2398	/*
2399	 * XXX TODO: Just read the TSF during the interrupt path;
2400	 * that way we don't have to wake up again just to read it
2401	 * again.
2402	 */
2403	ATH_LOCK(sc);
2404	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2405	ATH_UNLOCK(sc);
2406
2407	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2408		u_int64_t lastrx = sc->sc_lastrx;
2409		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2410		/* XXX should take a locked ref to iv_bss */
2411		u_int bmisstimeout =
2412			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2413
2414		DPRINTF(sc, ATH_DEBUG_BEACON,
2415		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2416		    __func__, (unsigned long long) tsf,
2417		    (unsigned long long)(tsf - lastrx),
2418		    (unsigned long long) lastrx, bmisstimeout);
2419
2420		if (tsf - lastrx <= bmisstimeout) {
2421			sc->sc_stats.ast_bmiss_phantom++;
2422
2423			ATH_LOCK(sc);
2424			ath_power_restore_power_state(sc);
2425			ATH_UNLOCK(sc);
2426
2427			return;
2428		}
2429	}
2430
2431	/*
2432	 * Keep the hardware awake if it's asleep (and leave self-gen
2433	 * frame config alone) until the next beacon, so we can resync
2434	 * against the next beacon.
2435	 *
2436	 * This handles three common beacon miss cases in STA powersave mode -
2437	 * (a) the beacon TBTT isnt a multiple of bintval;
2438	 * (b) the beacon was missed; and
2439	 * (c) the beacons are being delayed because the AP is busy and
2440	 *     isn't reliably able to meet its TBTT.
2441	 */
2442	ATH_LOCK(sc);
2443	ath_power_setpower(sc, HAL_PM_AWAKE, 0);
2444	ath_power_restore_power_state(sc);
2445	ATH_UNLOCK(sc);
2446	DPRINTF(sc, ATH_DEBUG_BEACON,
2447	    "%s: forced awake; force syncbeacon=1\n", __func__);
2448
2449	/*
2450	 * Attempt to force a beacon resync.
2451	 */
2452	sc->sc_syncbeacon = 1;
2453
2454	ATH_VAP(vap)->av_bmiss(vap);
2455}
2456
2457/* XXX this needs a force wakeup! */
2458int
2459ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2460{
2461	uint32_t rsize;
2462	void *sp;
2463
2464	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2465		return 0;
2466	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2467	*hangs = *(uint32_t *)sp;
2468	return 1;
2469}
2470
2471static void
2472ath_bmiss_proc(void *arg, int pending)
2473{
2474	struct ath_softc *sc = arg;
2475	uint32_t hangs;
2476
2477	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2478
2479	ATH_LOCK(sc);
2480	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2481	ATH_UNLOCK(sc);
2482
2483	ath_beacon_miss(sc);
2484
2485	/*
2486	 * Do a reset upon any becaon miss event.
2487	 *
2488	 * It may be a non-recognised RX clear hang which needs a reset
2489	 * to clear.
2490	 */
2491	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2492		ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC);
2493		device_printf(sc->sc_dev,
2494		    "bb hang detected (0x%x), resetting\n", hangs);
2495	} else {
2496		ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2497		ieee80211_beacon_miss(&sc->sc_ic);
2498	}
2499
2500	/* Force a beacon resync, in case they've drifted */
2501	sc->sc_syncbeacon = 1;
2502
2503	ATH_LOCK(sc);
2504	ath_power_restore_power_state(sc);
2505	ATH_UNLOCK(sc);
2506}
2507
2508/*
2509 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2510 * calcs together with WME.  If necessary disable the crypto
2511 * hardware and mark the 802.11 state so keys will be setup
2512 * with the MIC work done in software.
2513 */
2514static void
2515ath_settkipmic(struct ath_softc *sc)
2516{
2517	struct ieee80211com *ic = &sc->sc_ic;
2518
2519	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2520		if (ic->ic_flags & IEEE80211_F_WME) {
2521			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2522			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2523		} else {
2524			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2525			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2526		}
2527	}
2528}
2529
2530static void
2531ath_vap_clear_quiet_ie(struct ath_softc *sc)
2532{
2533	struct ieee80211com *ic = &sc->sc_ic;
2534	struct ieee80211vap *vap;
2535	struct ath_vap *avp;
2536
2537	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2538		avp = ATH_VAP(vap);
2539		/* Quiet time handling - ensure we resync */
2540		memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
2541	}
2542}
2543
2544static int
2545ath_init(struct ath_softc *sc)
2546{
2547	struct ieee80211com *ic = &sc->sc_ic;
2548	struct ath_hal *ah = sc->sc_ah;
2549	HAL_STATUS status;
2550
2551	ATH_LOCK_ASSERT(sc);
2552
2553	/*
2554	 * Force the sleep state awake.
2555	 */
2556	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2557	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2558	ath_power_setpower(sc, HAL_PM_AWAKE, 1);
2559
2560	/*
2561	 * Stop anything previously setup.  This is safe
2562	 * whether this is the first time through or not.
2563	 */
2564	ath_stop(sc);
2565
2566	/*
2567	 * The basic interface to setting the hardware in a good
2568	 * state is ``reset''.  On return the hardware is known to
2569	 * be powered up and with interrupts disabled.  This must
2570	 * be followed by initialization of the appropriate bits
2571	 * and then setup of the interrupt mask.
2572	 */
2573	ath_settkipmic(sc);
2574	ath_update_chainmasks(sc, ic->ic_curchan);
2575	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2576	    sc->sc_cur_rxchainmask);
2577
2578	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
2579	    HAL_RESET_NORMAL, &status)) {
2580		device_printf(sc->sc_dev,
2581		    "unable to reset hardware; hal status %u\n", status);
2582		return (ENODEV);
2583	}
2584
2585	ATH_RX_LOCK(sc);
2586	sc->sc_rx_stopped = 1;
2587	sc->sc_rx_resetted = 1;
2588	ATH_RX_UNLOCK(sc);
2589
2590	/* Clear quiet IE state for each VAP */
2591	ath_vap_clear_quiet_ie(sc);
2592
2593	ath_chan_change(sc, ic->ic_curchan);
2594
2595	/* Let DFS at it in case it's a DFS channel */
2596	ath_dfs_radar_enable(sc, ic->ic_curchan);
2597
2598	/* Let spectral at in case spectral is enabled */
2599	ath_spectral_enable(sc, ic->ic_curchan);
2600
2601	/*
2602	 * Let bluetooth coexistence at in case it's needed for this channel
2603	 */
2604	ath_btcoex_enable(sc, ic->ic_curchan);
2605
2606	/*
2607	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2608	 * support it.
2609	 */
2610	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2611		ath_hal_setenforcetxop(sc->sc_ah, 1);
2612	else
2613		ath_hal_setenforcetxop(sc->sc_ah, 0);
2614
2615	/*
2616	 * Likewise this is set during reset so update
2617	 * state cached in the driver.
2618	 */
2619	sc->sc_diversity = ath_hal_getdiversity(ah);
2620	sc->sc_lastlongcal = ticks;
2621	sc->sc_resetcal = 1;
2622	sc->sc_lastcalreset = 0;
2623	sc->sc_lastani = ticks;
2624	sc->sc_lastshortcal = ticks;
2625	sc->sc_doresetcal = AH_FALSE;
2626	/*
2627	 * Beacon timers were cleared here; give ath_newstate()
2628	 * a hint that the beacon timers should be poked when
2629	 * things transition to the RUN state.
2630	 */
2631	sc->sc_beacons = 0;
2632
2633	/*
2634	 * Setup the hardware after reset: the key cache
2635	 * is filled as needed and the receive engine is
2636	 * set going.  Frame transmit is handled entirely
2637	 * in the frame output path; there's nothing to do
2638	 * here except setup the interrupt mask.
2639	 */
2640	if (ath_startrecv(sc) != 0) {
2641		device_printf(sc->sc_dev, "unable to start recv logic\n");
2642		ath_power_restore_power_state(sc);
2643		return (ENODEV);
2644	}
2645
2646	/*
2647	 * Enable interrupts.
2648	 */
2649	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2650		  | HAL_INT_RXORN | HAL_INT_TXURN
2651		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2652
2653	/*
2654	 * Enable RX EDMA bits.  Note these overlap with
2655	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2656	 */
2657	if (sc->sc_isedma)
2658		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2659
2660	/*
2661	 * If we're an EDMA NIC, we don't care about RXEOL.
2662	 * Writing a new descriptor in will simply restart
2663	 * RX DMA.
2664	 */
2665	if (! sc->sc_isedma)
2666		sc->sc_imask |= HAL_INT_RXEOL;
2667
2668	/*
2669	 * Enable MCI interrupt for MCI devices.
2670	 */
2671	if (sc->sc_btcoex_mci)
2672		sc->sc_imask |= HAL_INT_MCI;
2673
2674	/*
2675	 * Enable MIB interrupts when there are hardware phy counters.
2676	 * Note we only do this (at the moment) for station mode.
2677	 */
2678	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2679		sc->sc_imask |= HAL_INT_MIB;
2680
2681	/*
2682	 * XXX add capability for this.
2683	 *
2684	 * If we're in STA mode (and maybe IBSS?) then register for
2685	 * TSFOOR interrupts.
2686	 */
2687	if (ic->ic_opmode == IEEE80211_M_STA)
2688		sc->sc_imask |= HAL_INT_TSFOOR;
2689
2690	/* Enable global TX timeout and carrier sense timeout if available */
2691	if (ath_hal_gtxto_supported(ah))
2692		sc->sc_imask |= HAL_INT_GTT;
2693
2694	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2695		__func__, sc->sc_imask);
2696
2697	sc->sc_running = 1;
2698	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2699	ath_hal_intrset(ah, sc->sc_imask);
2700
2701	ath_power_restore_power_state(sc);
2702
2703	return (0);
2704}
2705
2706static void
2707ath_stop(struct ath_softc *sc)
2708{
2709	struct ath_hal *ah = sc->sc_ah;
2710
2711	ATH_LOCK_ASSERT(sc);
2712
2713	/*
2714	 * Wake the hardware up before fiddling with it.
2715	 */
2716	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2717
2718	if (sc->sc_running) {
2719		/*
2720		 * Shutdown the hardware and driver:
2721		 *    reset 802.11 state machine
2722		 *    turn off timers
2723		 *    disable interrupts
2724		 *    turn off the radio
2725		 *    clear transmit machinery
2726		 *    clear receive machinery
2727		 *    drain and release tx queues
2728		 *    reclaim beacon resources
2729		 *    power down hardware
2730		 *
2731		 * Note that some of this work is not possible if the
2732		 * hardware is gone (invalid).
2733		 */
2734#ifdef ATH_TX99_DIAG
2735		if (sc->sc_tx99 != NULL)
2736			sc->sc_tx99->stop(sc->sc_tx99);
2737#endif
2738		callout_stop(&sc->sc_wd_ch);
2739		sc->sc_wd_timer = 0;
2740		sc->sc_running = 0;
2741		if (!sc->sc_invalid) {
2742			if (sc->sc_softled) {
2743				callout_stop(&sc->sc_ledtimer);
2744				ath_hal_gpioset(ah, sc->sc_ledpin,
2745					!sc->sc_ledon);
2746				sc->sc_blinking = 0;
2747			}
2748			ath_hal_intrset(ah, 0);
2749		}
2750		/* XXX we should stop RX regardless of whether it's valid */
2751		if (!sc->sc_invalid) {
2752			ath_stoprecv(sc, 1);
2753			ath_hal_phydisable(ah);
2754		} else
2755			sc->sc_rxlink = NULL;
2756		ath_draintxq(sc, ATH_RESET_DEFAULT);
2757		ath_beacon_free(sc);	/* XXX not needed */
2758	}
2759
2760	/* And now, restore the current power state */
2761	ath_power_restore_power_state(sc);
2762}
2763
2764/*
2765 * Wait until all pending TX/RX has completed.
2766 *
2767 * This waits until all existing transmit, receive and interrupts
2768 * have completed.  It's assumed that the caller has first
2769 * grabbed the reset lock so it doesn't try to do overlapping
2770 * chip resets.
2771 */
2772#define	MAX_TXRX_ITERATIONS	100
2773static void
2774ath_txrx_stop_locked(struct ath_softc *sc)
2775{
2776	int i = MAX_TXRX_ITERATIONS;
2777
2778	ATH_UNLOCK_ASSERT(sc);
2779	ATH_PCU_LOCK_ASSERT(sc);
2780
2781	/*
2782	 * Sleep until all the pending operations have completed.
2783	 *
2784	 * The caller must ensure that reset has been incremented
2785	 * or the pending operations may continue being queued.
2786	 */
2787	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2788	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2789		if (i <= 0)
2790			break;
2791		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2792		    msecs_to_ticks(10));
2793		i--;
2794	}
2795
2796	if (i <= 0)
2797		device_printf(sc->sc_dev,
2798		    "%s: didn't finish after %d iterations\n",
2799		    __func__, MAX_TXRX_ITERATIONS);
2800}
2801#undef	MAX_TXRX_ITERATIONS
2802
2803#if 0
2804static void
2805ath_txrx_stop(struct ath_softc *sc)
2806{
2807	ATH_UNLOCK_ASSERT(sc);
2808	ATH_PCU_UNLOCK_ASSERT(sc);
2809
2810	ATH_PCU_LOCK(sc);
2811	ath_txrx_stop_locked(sc);
2812	ATH_PCU_UNLOCK(sc);
2813}
2814#endif
2815
2816static void
2817ath_txrx_start(struct ath_softc *sc)
2818{
2819
2820	taskqueue_unblock(sc->sc_tq);
2821}
2822
2823/*
2824 * Grab the reset lock, and wait around until no one else
2825 * is trying to do anything with it.
2826 *
2827 * This is totally horrible but we can't hold this lock for
2828 * long enough to do TX/RX or we end up with net80211/ip stack
2829 * LORs and eventual deadlock.
2830 *
2831 * "dowait" signals whether to spin, waiting for the reset
2832 * lock count to reach 0. This should (for now) only be used
2833 * during the reset path, as the rest of the code may not
2834 * be locking-reentrant enough to behave correctly.
2835 *
2836 * Another, cleaner way should be found to serialise all of
2837 * these operations.
2838 */
2839#define	MAX_RESET_ITERATIONS	25
2840static int
2841ath_reset_grablock(struct ath_softc *sc, int dowait)
2842{
2843	int w = 0;
2844	int i = MAX_RESET_ITERATIONS;
2845
2846	ATH_PCU_LOCK_ASSERT(sc);
2847	do {
2848		if (sc->sc_inreset_cnt == 0) {
2849			w = 1;
2850			break;
2851		}
2852		if (dowait == 0) {
2853			w = 0;
2854			break;
2855		}
2856		ATH_PCU_UNLOCK(sc);
2857		/*
2858		 * 1 tick is likely not enough time for long calibrations
2859		 * to complete.  So we should wait quite a while.
2860		 */
2861		pause("ath_reset_grablock", msecs_to_ticks(100));
2862		i--;
2863		ATH_PCU_LOCK(sc);
2864	} while (i > 0);
2865
2866	/*
2867	 * We always increment the refcounter, regardless
2868	 * of whether we succeeded to get it in an exclusive
2869	 * way.
2870	 */
2871	sc->sc_inreset_cnt++;
2872
2873	if (i <= 0)
2874		device_printf(sc->sc_dev,
2875		    "%s: didn't finish after %d iterations\n",
2876		    __func__, MAX_RESET_ITERATIONS);
2877
2878	if (w == 0)
2879		device_printf(sc->sc_dev,
2880		    "%s: warning, recursive reset path!\n",
2881		    __func__);
2882
2883	return w;
2884}
2885#undef MAX_RESET_ITERATIONS
2886
2887/*
2888 * Reset the hardware w/o losing operational state.  This is
2889 * basically a more efficient way of doing ath_stop, ath_init,
2890 * followed by state transitions to the current 802.11
2891 * operational state.  Used to recover from various errors and
2892 * to reset or reload hardware state.
2893 */
2894int
2895ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type,
2896    HAL_RESET_TYPE ah_reset_type)
2897{
2898	struct ieee80211com *ic = &sc->sc_ic;
2899	struct ath_hal *ah = sc->sc_ah;
2900	HAL_STATUS status;
2901	int i;
2902
2903	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2904
2905	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2906	ATH_PCU_UNLOCK_ASSERT(sc);
2907	ATH_UNLOCK_ASSERT(sc);
2908
2909	/* Try to (stop any further TX/RX from occurring */
2910	taskqueue_block(sc->sc_tq);
2911
2912	/*
2913	 * Wake the hardware up.
2914	 */
2915	ATH_LOCK(sc);
2916	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2917	ATH_UNLOCK(sc);
2918
2919	ATH_PCU_LOCK(sc);
2920
2921	/*
2922	 * Grab the reset lock before TX/RX is stopped.
2923	 *
2924	 * This is needed to ensure that when the TX/RX actually does finish,
2925	 * no further TX/RX/reset runs in parallel with this.
2926	 */
2927	if (ath_reset_grablock(sc, 1) == 0) {
2928		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2929		    __func__);
2930	}
2931
2932	/* disable interrupts */
2933	ath_hal_intrset(ah, 0);
2934
2935	/*
2936	 * Now, ensure that any in progress TX/RX completes before we
2937	 * continue.
2938	 */
2939	ath_txrx_stop_locked(sc);
2940
2941	ATH_PCU_UNLOCK(sc);
2942
2943	/*
2944	 * Regardless of whether we're doing a no-loss flush or
2945	 * not, stop the PCU and handle what's in the RX queue.
2946	 * That way frames aren't dropped which shouldn't be.
2947	 */
2948	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2949	ath_rx_flush(sc);
2950
2951	/*
2952	 * Should now wait for pending TX/RX to complete
2953	 * and block future ones from occurring. This needs to be
2954	 * done before the TX queue is drained.
2955	 */
2956	ath_draintxq(sc, reset_type);	/* stop xmit side */
2957
2958	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2959	/* NB: indicate channel change so we do a full reset */
2960	ath_update_chainmasks(sc, ic->ic_curchan);
2961	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2962	    sc->sc_cur_rxchainmask);
2963	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE,
2964	    ah_reset_type, &status))
2965		device_printf(sc->sc_dev,
2966		    "%s: unable to reset hardware; hal status %u\n",
2967		    __func__, status);
2968	sc->sc_diversity = ath_hal_getdiversity(ah);
2969
2970	ATH_RX_LOCK(sc);
2971	sc->sc_rx_stopped = 1;
2972	sc->sc_rx_resetted = 1;
2973	ATH_RX_UNLOCK(sc);
2974
2975	/* Quiet time handling - ensure we resync */
2976	ath_vap_clear_quiet_ie(sc);
2977
2978	/* Let DFS at it in case it's a DFS channel */
2979	ath_dfs_radar_enable(sc, ic->ic_curchan);
2980
2981	/* Let spectral at in case spectral is enabled */
2982	ath_spectral_enable(sc, ic->ic_curchan);
2983
2984	/*
2985	 * Let bluetooth coexistence at in case it's needed for this channel
2986	 */
2987	ath_btcoex_enable(sc, ic->ic_curchan);
2988
2989	/*
2990	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2991	 * support it.
2992	 */
2993	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2994		ath_hal_setenforcetxop(sc->sc_ah, 1);
2995	else
2996		ath_hal_setenforcetxop(sc->sc_ah, 0);
2997
2998	if (ath_startrecv(sc) != 0)	/* restart recv */
2999		device_printf(sc->sc_dev,
3000		    "%s: unable to start recv logic\n", __func__);
3001	/*
3002	 * We may be doing a reset in response to an ioctl
3003	 * that changes the channel so update any state that
3004	 * might change as a result.
3005	 */
3006	ath_chan_change(sc, ic->ic_curchan);
3007	if (sc->sc_beacons) {		/* restart beacons */
3008#ifdef IEEE80211_SUPPORT_TDMA
3009		if (sc->sc_tdma)
3010			ath_tdma_config(sc, NULL);
3011		else
3012#endif
3013			ath_beacon_config(sc, NULL);
3014	}
3015
3016	/*
3017	 * Release the reset lock and re-enable interrupts here.
3018	 * If an interrupt was being processed in ath_intr(),
3019	 * it would disable interrupts at this point. So we have
3020	 * to atomically enable interrupts and decrement the
3021	 * reset counter - this way ath_intr() doesn't end up
3022	 * disabling interrupts without a corresponding enable
3023	 * in the rest or channel change path.
3024	 *
3025	 * Grab the TX reference in case we need to transmit.
3026	 * That way a parallel transmit doesn't.
3027	 */
3028	ATH_PCU_LOCK(sc);
3029	sc->sc_inreset_cnt--;
3030	sc->sc_txstart_cnt++;
3031	/* XXX only do this if sc_inreset_cnt == 0? */
3032	ath_hal_intrset(ah, sc->sc_imask);
3033	ATH_PCU_UNLOCK(sc);
3034
3035	/*
3036	 * TX and RX can be started here. If it were started with
3037	 * sc_inreset_cnt > 0, the TX and RX path would abort.
3038	 * Thus if this is a nested call through the reset or
3039	 * channel change code, TX completion will occur but
3040	 * RX completion and ath_start / ath_tx_start will not
3041	 * run.
3042	 */
3043
3044	/* Restart TX/RX as needed */
3045	ath_txrx_start(sc);
3046
3047	/* XXX TODO: we need to hold the tx refcount here! */
3048
3049	/* Restart TX completion and pending TX */
3050	if (reset_type == ATH_RESET_NOLOSS) {
3051		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3052			if (ATH_TXQ_SETUP(sc, i)) {
3053				ATH_TXQ_LOCK(&sc->sc_txq[i]);
3054				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
3055				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3056
3057				ATH_TX_LOCK(sc);
3058				ath_txq_sched(sc, &sc->sc_txq[i]);
3059				ATH_TX_UNLOCK(sc);
3060			}
3061		}
3062	}
3063
3064	ATH_LOCK(sc);
3065	ath_power_restore_power_state(sc);
3066	ATH_UNLOCK(sc);
3067
3068	ATH_PCU_LOCK(sc);
3069	sc->sc_txstart_cnt--;
3070	ATH_PCU_UNLOCK(sc);
3071
3072	/* Handle any frames in the TX queue */
3073	/*
3074	 * XXX should this be done by the caller, rather than
3075	 * ath_reset() ?
3076	 */
3077	ath_tx_kick(sc);		/* restart xmit */
3078	return 0;
3079}
3080
3081static int
3082ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3083{
3084	struct ieee80211com *ic = vap->iv_ic;
3085	struct ath_softc *sc = ic->ic_softc;
3086	struct ath_hal *ah = sc->sc_ah;
3087
3088	switch (cmd) {
3089	case IEEE80211_IOC_TXPOWER:
3090		/*
3091		 * If per-packet TPC is enabled, then we have nothing
3092		 * to do; otherwise we need to force the global limit.
3093		 * All this can happen directly; no need to reset.
3094		 */
3095		if (!ath_hal_gettpc(ah))
3096			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3097		return 0;
3098	}
3099	/* XXX? Full or NOLOSS? */
3100	return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL);
3101}
3102
3103struct ath_buf *
3104_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
3105{
3106	struct ath_buf *bf;
3107
3108	ATH_TXBUF_LOCK_ASSERT(sc);
3109
3110	if (btype == ATH_BUFTYPE_MGMT)
3111		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3112	else
3113		bf = TAILQ_FIRST(&sc->sc_txbuf);
3114
3115	if (bf == NULL) {
3116		sc->sc_stats.ast_tx_getnobuf++;
3117	} else {
3118		if (bf->bf_flags & ATH_BUF_BUSY) {
3119			sc->sc_stats.ast_tx_getbusybuf++;
3120			bf = NULL;
3121		}
3122	}
3123
3124	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3125		if (btype == ATH_BUFTYPE_MGMT)
3126			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3127		else {
3128			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3129			sc->sc_txbuf_cnt--;
3130
3131			/*
3132			 * This shuldn't happen; however just to be
3133			 * safe print a warning and fudge the txbuf
3134			 * count.
3135			 */
3136			if (sc->sc_txbuf_cnt < 0) {
3137				device_printf(sc->sc_dev,
3138				    "%s: sc_txbuf_cnt < 0?\n",
3139				    __func__);
3140				sc->sc_txbuf_cnt = 0;
3141			}
3142		}
3143	} else
3144		bf = NULL;
3145
3146	if (bf == NULL) {
3147		/* XXX should check which list, mgmt or otherwise */
3148		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3149		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3150			"out of xmit buffers" : "xmit buffer busy");
3151		return NULL;
3152	}
3153
3154	/* XXX TODO: should do this at buffer list initialisation */
3155	/* XXX (then, ensure the buffer has the right flag set) */
3156	bf->bf_flags = 0;
3157	if (btype == ATH_BUFTYPE_MGMT)
3158		bf->bf_flags |= ATH_BUF_MGMT;
3159	else
3160		bf->bf_flags &= (~ATH_BUF_MGMT);
3161
3162	/* Valid bf here; clear some basic fields */
3163	bf->bf_next = NULL;	/* XXX just to be sure */
3164	bf->bf_last = NULL;	/* XXX again, just to be sure */
3165	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3166	bzero(&bf->bf_state, sizeof(bf->bf_state));
3167
3168	/*
3169	 * Track the descriptor ID only if doing EDMA
3170	 */
3171	if (sc->sc_isedma) {
3172		bf->bf_descid = sc->sc_txbuf_descid;
3173		sc->sc_txbuf_descid++;
3174	}
3175
3176	return bf;
3177}
3178
3179/*
3180 * When retrying a software frame, buffers marked ATH_BUF_BUSY
3181 * can't be thrown back on the queue as they could still be
3182 * in use by the hardware.
3183 *
3184 * This duplicates the buffer, or returns NULL.
3185 *
3186 * The descriptor is also copied but the link pointers and
3187 * the DMA segments aren't copied; this frame should thus
3188 * be again passed through the descriptor setup/chain routines
3189 * so the link is correct.
3190 *
3191 * The caller must free the buffer using ath_freebuf().
3192 */
3193struct ath_buf *
3194ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3195{
3196	struct ath_buf *tbf;
3197
3198	tbf = ath_getbuf(sc,
3199	    (bf->bf_flags & ATH_BUF_MGMT) ?
3200	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3201	if (tbf == NULL)
3202		return NULL;	/* XXX failure? Why? */
3203
3204	/* Copy basics */
3205	tbf->bf_next = NULL;
3206	tbf->bf_nseg = bf->bf_nseg;
3207	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3208	tbf->bf_status = bf->bf_status;
3209	tbf->bf_m = bf->bf_m;
3210	tbf->bf_node = bf->bf_node;
3211	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3212	/* will be setup by the chain/setup function */
3213	tbf->bf_lastds = NULL;
3214	/* for now, last == self */
3215	tbf->bf_last = tbf;
3216	tbf->bf_comp = bf->bf_comp;
3217
3218	/* NOTE: DMA segments will be setup by the setup/chain functions */
3219
3220	/* The caller has to re-init the descriptor + links */
3221
3222	/*
3223	 * Free the DMA mapping here, before we NULL the mbuf.
3224	 * We must only call bus_dmamap_unload() once per mbuf chain
3225	 * or behaviour is undefined.
3226	 */
3227	if (bf->bf_m != NULL) {
3228		/*
3229		 * XXX is this POSTWRITE call required?
3230		 */
3231		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3232		    BUS_DMASYNC_POSTWRITE);
3233		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3234	}
3235
3236	bf->bf_m = NULL;
3237	bf->bf_node = NULL;
3238
3239	/* Copy state */
3240	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3241
3242	return tbf;
3243}
3244
3245struct ath_buf *
3246ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3247{
3248	struct ath_buf *bf;
3249
3250	ATH_TXBUF_LOCK(sc);
3251	bf = _ath_getbuf_locked(sc, btype);
3252	/*
3253	 * If a mgmt buffer was requested but we're out of those,
3254	 * try requesting a normal one.
3255	 */
3256	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3257		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3258	ATH_TXBUF_UNLOCK(sc);
3259	if (bf == NULL) {
3260		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3261		sc->sc_stats.ast_tx_qstop++;
3262	}
3263	return bf;
3264}
3265
3266/*
3267 * Transmit a single frame.
3268 *
3269 * net80211 will free the node reference if the transmit
3270 * fails, so don't free the node reference here.
3271 */
3272static int
3273ath_transmit(struct ieee80211com *ic, struct mbuf *m)
3274{
3275	struct ath_softc *sc = ic->ic_softc;
3276	struct ieee80211_node *ni;
3277	struct mbuf *next;
3278	struct ath_buf *bf;
3279	ath_bufhead frags;
3280	int retval = 0;
3281
3282	/*
3283	 * Tell the reset path that we're currently transmitting.
3284	 */
3285	ATH_PCU_LOCK(sc);
3286	if (sc->sc_inreset_cnt > 0) {
3287		DPRINTF(sc, ATH_DEBUG_XMIT,
3288		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3289		ATH_PCU_UNLOCK(sc);
3290		sc->sc_stats.ast_tx_qstop++;
3291		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3292		return (ENOBUFS);	/* XXX should be EINVAL or? */
3293	}
3294	sc->sc_txstart_cnt++;
3295	ATH_PCU_UNLOCK(sc);
3296
3297	/* Wake the hardware up already */
3298	ATH_LOCK(sc);
3299	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3300	ATH_UNLOCK(sc);
3301
3302	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3303	/*
3304	 * Grab the TX lock - it's ok to do this here; we haven't
3305	 * yet started transmitting.
3306	 */
3307	ATH_TX_LOCK(sc);
3308
3309	/*
3310	 * Node reference, if there's one.
3311	 */
3312	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3313
3314	/*
3315	 * Enforce how deep a node queue can get.
3316	 *
3317	 * XXX it would be nicer if we kept an mbuf queue per
3318	 * node and only whacked them into ath_bufs when we
3319	 * are ready to schedule some traffic from them.
3320	 * .. that may come later.
3321	 *
3322	 * XXX we should also track the per-node hardware queue
3323	 * depth so it is easy to limit the _SUM_ of the swq and
3324	 * hwq frames.  Since we only schedule two HWQ frames
3325	 * at a time, this should be OK for now.
3326	 */
3327	if ((!(m->m_flags & M_EAPOL)) &&
3328	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3329		sc->sc_stats.ast_tx_nodeq_overflow++;
3330		retval = ENOBUFS;
3331		goto finish;
3332	}
3333
3334	/*
3335	 * Check how many TX buffers are available.
3336	 *
3337	 * If this is for non-EAPOL traffic, just leave some
3338	 * space free in order for buffer cloning and raw
3339	 * frame transmission to occur.
3340	 *
3341	 * If it's for EAPOL traffic, ignore this for now.
3342	 * Management traffic will be sent via the raw transmit
3343	 * method which bypasses this check.
3344	 *
3345	 * This is needed to ensure that EAPOL frames during
3346	 * (re) keying have a chance to go out.
3347	 *
3348	 * See kern/138379 for more information.
3349	 */
3350	if ((!(m->m_flags & M_EAPOL)) &&
3351	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3352		sc->sc_stats.ast_tx_nobuf++;
3353		retval = ENOBUFS;
3354		goto finish;
3355	}
3356
3357	/*
3358	 * Grab a TX buffer and associated resources.
3359	 *
3360	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3361	 * That way even with temporary buffer exhaustion due to
3362	 * the data path doesn't leave us without the ability
3363	 * to transmit management frames.
3364	 *
3365	 * Otherwise allocate a normal buffer.
3366	 */
3367	if (m->m_flags & M_EAPOL)
3368		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3369	else
3370		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3371
3372	if (bf == NULL) {
3373		/*
3374		 * If we failed to allocate a buffer, fail.
3375		 *
3376		 * We shouldn't fail normally, due to the check
3377		 * above.
3378		 */
3379		sc->sc_stats.ast_tx_nobuf++;
3380		retval = ENOBUFS;
3381		goto finish;
3382	}
3383
3384	/*
3385	 * At this point we have a buffer; so we need to free it
3386	 * if we hit any error conditions.
3387	 */
3388
3389	/*
3390	 * Check for fragmentation.  If this frame
3391	 * has been broken up verify we have enough
3392	 * buffers to send all the fragments so all
3393	 * go out or none...
3394	 */
3395	TAILQ_INIT(&frags);
3396	if ((m->m_flags & M_FRAG) &&
3397	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3398		DPRINTF(sc, ATH_DEBUG_XMIT,
3399		    "%s: out of txfrag buffers\n", __func__);
3400		sc->sc_stats.ast_tx_nofrag++;
3401		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3402		/*
3403		 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
3404		 * we shouldn't free it but return back.
3405		 */
3406		ieee80211_free_mbuf(m);
3407		m = NULL;
3408		goto bad;
3409	}
3410
3411	/*
3412	 * At this point if we have any TX fragments, then we will
3413	 * have bumped the node reference once for each of those.
3414	 */
3415
3416	/*
3417	 * XXX Is there anything actually _enforcing_ that the
3418	 * fragments are being transmitted in one hit, rather than
3419	 * being interleaved with other transmissions on that
3420	 * hardware queue?
3421	 *
3422	 * The ATH TX output lock is the only thing serialising this
3423	 * right now.
3424	 */
3425
3426	/*
3427	 * Calculate the "next fragment" length field in ath_buf
3428	 * in order to let the transmit path know enough about
3429	 * what to next write to the hardware.
3430	 */
3431	if (m->m_flags & M_FRAG) {
3432		struct ath_buf *fbf = bf;
3433		struct ath_buf *n_fbf = NULL;
3434		struct mbuf *fm = m->m_nextpkt;
3435
3436		/*
3437		 * We need to walk the list of fragments and set
3438		 * the next size to the following buffer.
3439		 * However, the first buffer isn't in the frag
3440		 * list, so we have to do some gymnastics here.
3441		 */
3442		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3443			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3444			fbf = n_fbf;
3445			fm = fm->m_nextpkt;
3446		}
3447	}
3448
3449nextfrag:
3450	/*
3451	 * Pass the frame to the h/w for transmission.
3452	 * Fragmented frames have each frag chained together
3453	 * with m_nextpkt.  We know there are sufficient ath_buf's
3454	 * to send all the frags because of work done by
3455	 * ath_txfrag_setup.  We leave m_nextpkt set while
3456	 * calling ath_tx_start so it can use it to extend the
3457	 * the tx duration to cover the subsequent frag and
3458	 * so it can reclaim all the mbufs in case of an error;
3459	 * ath_tx_start clears m_nextpkt once it commits to
3460	 * handing the frame to the hardware.
3461	 *
3462	 * Note: if this fails, then the mbufs are freed but
3463	 * not the node reference.
3464	 *
3465	 * So, we now have to free the node reference ourselves here
3466	 * and return OK up to the stack.
3467	 */
3468	next = m->m_nextpkt;
3469	if (ath_tx_start(sc, ni, bf, m)) {
3470bad:
3471		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3472reclaim:
3473		bf->bf_m = NULL;
3474		bf->bf_node = NULL;
3475		ATH_TXBUF_LOCK(sc);
3476		ath_returnbuf_head(sc, bf);
3477		/*
3478		 * Free the rest of the node references and
3479		 * buffers for the fragment list.
3480		 */
3481		ath_txfrag_cleanup(sc, &frags, ni);
3482		ATH_TXBUF_UNLOCK(sc);
3483
3484		/*
3485		 * XXX: And free the node/return OK; ath_tx_start() may have
3486		 *      modified the buffer.  We currently have no way to
3487		 *      signify that the mbuf was freed but there was an error.
3488		 */
3489		ieee80211_free_node(ni);
3490		retval = 0;
3491		goto finish;
3492	}
3493
3494	/*
3495	 * Check here if the node is in power save state.
3496	 */
3497	ath_tx_update_tim(sc, ni, 1);
3498
3499	if (next != NULL) {
3500		/*
3501		 * Beware of state changing between frags.
3502		 * XXX check sta power-save state?
3503		 */
3504		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3505			DPRINTF(sc, ATH_DEBUG_XMIT,
3506			    "%s: flush fragmented packet, state %s\n",
3507			    __func__,
3508			    ieee80211_state_name[ni->ni_vap->iv_state]);
3509			/* XXX dmamap */
3510			ieee80211_free_mbuf(next);
3511			goto reclaim;
3512		}
3513		m = next;
3514		bf = TAILQ_FIRST(&frags);
3515		KASSERT(bf != NULL, ("no buf for txfrag"));
3516		TAILQ_REMOVE(&frags, bf, bf_list);
3517		goto nextfrag;
3518	}
3519
3520	/*
3521	 * Bump watchdog timer.
3522	 */
3523	sc->sc_wd_timer = 5;
3524
3525finish:
3526	ATH_TX_UNLOCK(sc);
3527
3528	/*
3529	 * Finished transmitting!
3530	 */
3531	ATH_PCU_LOCK(sc);
3532	sc->sc_txstart_cnt--;
3533	ATH_PCU_UNLOCK(sc);
3534
3535	/* Sleep the hardware if required */
3536	ATH_LOCK(sc);
3537	ath_power_restore_power_state(sc);
3538	ATH_UNLOCK(sc);
3539
3540	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3541
3542	return (retval);
3543}
3544
3545/*
3546 * Block/unblock tx+rx processing while a key change is done.
3547 * We assume the caller serializes key management operations
3548 * so we only need to worry about synchronization with other
3549 * uses that originate in the driver.
3550 */
3551static void
3552ath_key_update_begin(struct ieee80211vap *vap)
3553{
3554	struct ath_softc *sc = vap->iv_ic->ic_softc;
3555
3556	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3557	taskqueue_block(sc->sc_tq);
3558}
3559
3560static void
3561ath_key_update_end(struct ieee80211vap *vap)
3562{
3563	struct ath_softc *sc = vap->iv_ic->ic_softc;
3564
3565	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3566	taskqueue_unblock(sc->sc_tq);
3567}
3568
3569static void
3570ath_update_promisc(struct ieee80211com *ic)
3571{
3572	struct ath_softc *sc = ic->ic_softc;
3573	u_int32_t rfilt;
3574
3575	/* configure rx filter */
3576	ATH_LOCK(sc);
3577	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3578	rfilt = ath_calcrxfilter(sc);
3579	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3580	ath_power_restore_power_state(sc);
3581	ATH_UNLOCK(sc);
3582
3583	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3584}
3585
3586static u_int
3587ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3588{
3589	uint32_t val, *mfilt = arg;
3590	char *dl;
3591	uint8_t pos;
3592
3593	/* calculate XOR of eight 6bit values */
3594	dl = LLADDR(sdl);
3595	val = le32dec(dl + 0);
3596	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3597	val = le32dec(dl + 3);
3598	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3599	pos &= 0x3f;
3600	mfilt[pos / 32] |= (1 << (pos % 32));
3601
3602	return (1);
3603}
3604
3605/*
3606 * Driver-internal mcast update call.
3607 *
3608 * Assumes the hardware is already awake.
3609 */
3610static void
3611ath_update_mcast_hw(struct ath_softc *sc)
3612{
3613	struct ieee80211com *ic = &sc->sc_ic;
3614	u_int32_t mfilt[2];
3615
3616	/* calculate and install multicast filter */
3617	if (ic->ic_allmulti == 0) {
3618		struct ieee80211vap *vap;
3619
3620		/*
3621		 * Merge multicast addresses to form the hardware filter.
3622		 */
3623		mfilt[0] = mfilt[1] = 0;
3624		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
3625			if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt);
3626	} else
3627		mfilt[0] = mfilt[1] = ~0;
3628
3629	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3630
3631	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3632		__func__, mfilt[0], mfilt[1]);
3633}
3634
3635/*
3636 * Called from the net80211 layer - force the hardware
3637 * awake before operating.
3638 */
3639static void
3640ath_update_mcast(struct ieee80211com *ic)
3641{
3642	struct ath_softc *sc = ic->ic_softc;
3643
3644	ATH_LOCK(sc);
3645	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3646	ATH_UNLOCK(sc);
3647
3648	ath_update_mcast_hw(sc);
3649
3650	ATH_LOCK(sc);
3651	ath_power_restore_power_state(sc);
3652	ATH_UNLOCK(sc);
3653}
3654
3655void
3656ath_mode_init(struct ath_softc *sc)
3657{
3658	struct ieee80211com *ic = &sc->sc_ic;
3659	struct ath_hal *ah = sc->sc_ah;
3660	u_int32_t rfilt;
3661
3662	/* XXX power state? */
3663
3664	/* configure rx filter */
3665	rfilt = ath_calcrxfilter(sc);
3666	ath_hal_setrxfilter(ah, rfilt);
3667
3668	/* configure operational mode */
3669	ath_hal_setopmode(ah);
3670
3671	/* handle any link-level address change */
3672	ath_hal_setmac(ah, ic->ic_macaddr);
3673
3674	/* calculate and install multicast filter */
3675	ath_update_mcast_hw(sc);
3676}
3677
3678/*
3679 * Set the slot time based on the current setting.
3680 */
3681void
3682ath_setslottime(struct ath_softc *sc)
3683{
3684	struct ieee80211com *ic = &sc->sc_ic;
3685	struct ath_hal *ah = sc->sc_ah;
3686	u_int usec;
3687
3688	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3689		usec = 13;
3690	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3691		usec = 21;
3692	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3693		/* honor short/long slot time only in 11g */
3694		/* XXX shouldn't honor on pure g or turbo g channel */
3695		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3696			usec = HAL_SLOT_TIME_9;
3697		else
3698			usec = HAL_SLOT_TIME_20;
3699	} else
3700		usec = HAL_SLOT_TIME_9;
3701
3702	DPRINTF(sc, ATH_DEBUG_RESET,
3703	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3704	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3705	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3706
3707	/* Wake up the hardware first before updating the slot time */
3708	ATH_LOCK(sc);
3709	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3710	ath_hal_setslottime(ah, usec);
3711	ath_power_restore_power_state(sc);
3712	sc->sc_updateslot = OK;
3713	ATH_UNLOCK(sc);
3714}
3715
3716/*
3717 * Callback from the 802.11 layer to update the
3718 * slot time based on the current setting.
3719 */
3720static void
3721ath_updateslot(struct ieee80211com *ic)
3722{
3723	struct ath_softc *sc = ic->ic_softc;
3724
3725	/*
3726	 * When not coordinating the BSS, change the hardware
3727	 * immediately.  For other operation we defer the change
3728	 * until beacon updates have propagated to the stations.
3729	 *
3730	 * XXX sc_updateslot isn't changed behind a lock?
3731	 */
3732	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3733	    ic->ic_opmode == IEEE80211_M_MBSS)
3734		sc->sc_updateslot = UPDATE;
3735	else
3736		ath_setslottime(sc);
3737}
3738
3739/*
3740 * Append the contents of src to dst; both queues
3741 * are assumed to be locked.
3742 */
3743void
3744ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3745{
3746
3747	ATH_TXQ_LOCK_ASSERT(src);
3748	ATH_TXQ_LOCK_ASSERT(dst);
3749
3750	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3751	dst->axq_link = src->axq_link;
3752	src->axq_link = NULL;
3753	dst->axq_depth += src->axq_depth;
3754	dst->axq_aggr_depth += src->axq_aggr_depth;
3755	src->axq_depth = 0;
3756	src->axq_aggr_depth = 0;
3757}
3758
3759/*
3760 * Reset the hardware, with no loss.
3761 *
3762 * This can't be used for a general case reset.
3763 */
3764static void
3765ath_reset_proc(void *arg, int pending)
3766{
3767	struct ath_softc *sc = arg;
3768
3769#if 0
3770	device_printf(sc->sc_dev, "%s: resetting\n", __func__);
3771#endif
3772	ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
3773}
3774
3775/*
3776 * Reset the hardware after detecting beacons have stopped.
3777 */
3778static void
3779ath_bstuck_proc(void *arg, int pending)
3780{
3781	struct ath_softc *sc = arg;
3782	uint32_t hangs = 0;
3783
3784	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3785		device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
3786
3787#ifdef	ATH_DEBUG_ALQ
3788	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3789		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3790#endif
3791
3792	device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
3793	    sc->sc_bmisscount);
3794	sc->sc_stats.ast_bstuck++;
3795	/*
3796	 * This assumes that there's no simultaneous channel mode change
3797	 * occurring.
3798	 */
3799	ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
3800}
3801
3802static int
3803ath_desc_alloc(struct ath_softc *sc)
3804{
3805	int error;
3806
3807	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3808		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3809	if (error != 0) {
3810		return error;
3811	}
3812	sc->sc_txbuf_cnt = ath_txbuf;
3813
3814	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3815		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3816		    ATH_TXDESC);
3817	if (error != 0) {
3818		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3819		return error;
3820	}
3821
3822	/*
3823	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3824	 * flag doesn't have to be set in ath_getbuf_locked().
3825	 */
3826
3827	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3828			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3829	if (error != 0) {
3830		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3831		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3832		    &sc->sc_txbuf_mgmt);
3833		return error;
3834	}
3835	return 0;
3836}
3837
3838static void
3839ath_desc_free(struct ath_softc *sc)
3840{
3841
3842	if (sc->sc_bdma.dd_desc_len != 0)
3843		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3844	if (sc->sc_txdma.dd_desc_len != 0)
3845		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3846	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3847		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3848		    &sc->sc_txbuf_mgmt);
3849}
3850
3851static struct ieee80211_node *
3852ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3853{
3854	struct ieee80211com *ic = vap->iv_ic;
3855	struct ath_softc *sc = ic->ic_softc;
3856	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3857	struct ath_node *an;
3858
3859	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3860	if (an == NULL) {
3861		/* XXX stat+msg */
3862		return NULL;
3863	}
3864	ath_rate_node_init(sc, an);
3865
3866	/* Setup the mutex - there's no associd yet so set the name to NULL */
3867	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3868	    device_get_nameunit(sc->sc_dev), an);
3869	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3870
3871	/* XXX setup ath_tid */
3872	ath_tx_tid_init(sc, an);
3873
3874	an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
3875	an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
3876	an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
3877
3878	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3879	return &an->an_node;
3880}
3881
3882static void
3883ath_node_cleanup(struct ieee80211_node *ni)
3884{
3885	struct ieee80211com *ic = ni->ni_ic;
3886	struct ath_softc *sc = ic->ic_softc;
3887
3888	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3889	    ni->ni_macaddr, ":", ATH_NODE(ni));
3890
3891	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3892	ath_tx_node_flush(sc, ATH_NODE(ni));
3893	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3894	sc->sc_node_cleanup(ni);
3895}
3896
3897static void
3898ath_node_free(struct ieee80211_node *ni)
3899{
3900	struct ieee80211com *ic = ni->ni_ic;
3901	struct ath_softc *sc = ic->ic_softc;
3902
3903	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3904	    ni->ni_macaddr, ":", ATH_NODE(ni));
3905	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3906	sc->sc_node_free(ni);
3907}
3908
3909static void
3910ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3911{
3912	struct ieee80211com *ic = ni->ni_ic;
3913	struct ath_softc *sc = ic->ic_softc;
3914	struct ath_hal *ah = sc->sc_ah;
3915
3916	*rssi = ic->ic_node_getrssi(ni);
3917	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3918		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3919	else
3920		*noise = -95;		/* nominally correct */
3921}
3922
3923/*
3924 * Set the default antenna.
3925 */
3926void
3927ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3928{
3929	struct ath_hal *ah = sc->sc_ah;
3930
3931	/* XXX block beacon interrupts */
3932	ath_hal_setdefantenna(ah, antenna);
3933	if (sc->sc_defant != antenna)
3934		sc->sc_stats.ast_ant_defswitch++;
3935	sc->sc_defant = antenna;
3936	sc->sc_rxotherant = 0;
3937}
3938
3939static void
3940ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3941{
3942	txq->axq_qnum = qnum;
3943	txq->axq_ac = 0;
3944	txq->axq_depth = 0;
3945	txq->axq_aggr_depth = 0;
3946	txq->axq_intrcnt = 0;
3947	txq->axq_link = NULL;
3948	txq->axq_softc = sc;
3949	TAILQ_INIT(&txq->axq_q);
3950	TAILQ_INIT(&txq->axq_tidq);
3951	TAILQ_INIT(&txq->fifo.axq_q);
3952	ATH_TXQ_LOCK_INIT(sc, txq);
3953}
3954
3955/*
3956 * Setup a h/w transmit queue.
3957 */
3958static struct ath_txq *
3959ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3960{
3961	struct ath_hal *ah = sc->sc_ah;
3962	HAL_TXQ_INFO qi;
3963	int qnum;
3964
3965	memset(&qi, 0, sizeof(qi));
3966	qi.tqi_subtype = subtype;
3967	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3968	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3969	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3970	/*
3971	 * Enable interrupts only for EOL and DESC conditions.
3972	 * We mark tx descriptors to receive a DESC interrupt
3973	 * when a tx queue gets deep; otherwise waiting for the
3974	 * EOL to reap descriptors.  Note that this is done to
3975	 * reduce interrupt load and this only defers reaping
3976	 * descriptors, never transmitting frames.  Aside from
3977	 * reducing interrupts this also permits more concurrency.
3978	 * The only potential downside is if the tx queue backs
3979	 * up in which case the top half of the kernel may backup
3980	 * due to a lack of tx descriptors.
3981	 */
3982	if (sc->sc_isedma)
3983		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3984		    HAL_TXQ_TXOKINT_ENABLE;
3985	else
3986		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3987		    HAL_TXQ_TXDESCINT_ENABLE;
3988
3989	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3990	if (qnum == -1) {
3991		/*
3992		 * NB: don't print a message, this happens
3993		 * normally on parts with too few tx queues
3994		 */
3995		return NULL;
3996	}
3997	if (qnum >= nitems(sc->sc_txq)) {
3998		device_printf(sc->sc_dev,
3999			"hal qnum %u out of range, max %zu!\n",
4000			qnum, nitems(sc->sc_txq));
4001		ath_hal_releasetxqueue(ah, qnum);
4002		return NULL;
4003	}
4004	if (!ATH_TXQ_SETUP(sc, qnum)) {
4005		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4006		sc->sc_txqsetup |= 1<<qnum;
4007	}
4008	return &sc->sc_txq[qnum];
4009}
4010
4011/*
4012 * Setup a hardware data transmit queue for the specified
4013 * access control.  The hal may not support all requested
4014 * queues in which case it will return a reference to a
4015 * previously setup queue.  We record the mapping from ac's
4016 * to h/w queues for use by ath_tx_start and also track
4017 * the set of h/w queues being used to optimize work in the
4018 * transmit interrupt handler and related routines.
4019 */
4020static int
4021ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4022{
4023	struct ath_txq *txq;
4024
4025	if (ac >= nitems(sc->sc_ac2q)) {
4026		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4027			ac, nitems(sc->sc_ac2q));
4028		return 0;
4029	}
4030	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4031	if (txq != NULL) {
4032		txq->axq_ac = ac;
4033		sc->sc_ac2q[ac] = txq;
4034		return 1;
4035	} else
4036		return 0;
4037}
4038
4039/*
4040 * Update WME parameters for a transmit queue.
4041 */
4042static int
4043ath_txq_update(struct ath_softc *sc, int ac)
4044{
4045#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4046	struct ieee80211com *ic = &sc->sc_ic;
4047	struct ath_txq *txq = sc->sc_ac2q[ac];
4048	struct chanAccParams chp;
4049	struct wmeParams *wmep;
4050	struct ath_hal *ah = sc->sc_ah;
4051	HAL_TXQ_INFO qi;
4052
4053	ieee80211_wme_ic_getparams(ic, &chp);
4054	wmep = &chp.cap_wmeParams[ac];
4055
4056	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4057#ifdef IEEE80211_SUPPORT_TDMA
4058	if (sc->sc_tdma) {
4059		/*
4060		 * AIFS is zero so there's no pre-transmit wait.  The
4061		 * burst time defines the slot duration and is configured
4062		 * through net80211.  The QCU is setup to not do post-xmit
4063		 * back off, lockout all lower-priority QCU's, and fire
4064		 * off the DMA beacon alert timer which is setup based
4065		 * on the slot configuration.
4066		 */
4067		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4068			      | HAL_TXQ_TXERRINT_ENABLE
4069			      | HAL_TXQ_TXURNINT_ENABLE
4070			      | HAL_TXQ_TXEOLINT_ENABLE
4071			      | HAL_TXQ_DBA_GATED
4072			      | HAL_TXQ_BACKOFF_DISABLE
4073			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4074			      ;
4075		qi.tqi_aifs = 0;
4076		/* XXX +dbaprep? */
4077		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4078		qi.tqi_burstTime = qi.tqi_readyTime;
4079	} else {
4080#endif
4081		/*
4082		 * XXX shouldn't this just use the default flags
4083		 * used in the previous queue setup?
4084		 */
4085		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4086			      | HAL_TXQ_TXERRINT_ENABLE
4087			      | HAL_TXQ_TXDESCINT_ENABLE
4088			      | HAL_TXQ_TXURNINT_ENABLE
4089			      | HAL_TXQ_TXEOLINT_ENABLE
4090			      ;
4091		qi.tqi_aifs = wmep->wmep_aifsn;
4092		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4093		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4094		qi.tqi_readyTime = 0;
4095		qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
4096#ifdef IEEE80211_SUPPORT_TDMA
4097	}
4098#endif
4099
4100	DPRINTF(sc, ATH_DEBUG_RESET,
4101	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4102	    __func__, txq->axq_qnum, qi.tqi_qflags,
4103	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4104
4105	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4106		device_printf(sc->sc_dev, "unable to update hardware queue "
4107		    "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
4108		return 0;
4109	} else {
4110		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4111		return 1;
4112	}
4113#undef ATH_EXPONENT_TO_VALUE
4114}
4115
4116/*
4117 * Callback from the 802.11 layer to update WME parameters.
4118 */
4119int
4120ath_wme_update(struct ieee80211com *ic)
4121{
4122	struct ath_softc *sc = ic->ic_softc;
4123
4124	return !ath_txq_update(sc, WME_AC_BE) ||
4125	    !ath_txq_update(sc, WME_AC_BK) ||
4126	    !ath_txq_update(sc, WME_AC_VI) ||
4127	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4128}
4129
4130/*
4131 * Reclaim resources for a setup queue.
4132 */
4133static void
4134ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4135{
4136
4137	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4138	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4139	ATH_TXQ_LOCK_DESTROY(txq);
4140}
4141
4142/*
4143 * Reclaim all tx queue resources.
4144 */
4145static void
4146ath_tx_cleanup(struct ath_softc *sc)
4147{
4148	int i;
4149
4150	ATH_TXBUF_LOCK_DESTROY(sc);
4151	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4152		if (ATH_TXQ_SETUP(sc, i))
4153			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4154}
4155
4156/*
4157 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4158 * using the current rates in sc_rixmap.
4159 */
4160int
4161ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4162{
4163	int rix = sc->sc_rixmap[rate];
4164	/* NB: return lowest rix for invalid rate */
4165	return (rix == 0xff ? 0 : rix);
4166}
4167
4168static void
4169ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4170    struct ath_buf *bf)
4171{
4172	struct ieee80211_node *ni = bf->bf_node;
4173	struct ieee80211com *ic = &sc->sc_ic;
4174	int sr, lr, pri;
4175
4176	if (ts->ts_status == 0) {
4177		u_int8_t txant = ts->ts_antenna;
4178		sc->sc_stats.ast_ant_tx[txant]++;
4179		sc->sc_ant_tx[txant]++;
4180		if (ts->ts_finaltsi != 0)
4181			sc->sc_stats.ast_tx_altrate++;
4182
4183		/* XXX TODO: should do per-pri conuters */
4184		pri = M_WME_GETAC(bf->bf_m);
4185		if (pri >= WME_AC_VO)
4186			ic->ic_wme.wme_hipri_traffic++;
4187
4188		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4189			ni->ni_inact = ni->ni_inact_reload;
4190	} else {
4191		if (ts->ts_status & HAL_TXERR_XRETRY)
4192			sc->sc_stats.ast_tx_xretries++;
4193		if (ts->ts_status & HAL_TXERR_FIFO)
4194			sc->sc_stats.ast_tx_fifoerr++;
4195		if (ts->ts_status & HAL_TXERR_FILT)
4196			sc->sc_stats.ast_tx_filtered++;
4197		if (ts->ts_status & HAL_TXERR_XTXOP)
4198			sc->sc_stats.ast_tx_xtxop++;
4199		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4200			sc->sc_stats.ast_tx_timerexpired++;
4201
4202		if (bf->bf_m->m_flags & M_FF)
4203			sc->sc_stats.ast_ff_txerr++;
4204	}
4205	/* XXX when is this valid? */
4206	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4207		sc->sc_stats.ast_tx_desccfgerr++;
4208	/*
4209	 * This can be valid for successful frame transmission!
4210	 * If there's a TX FIFO underrun during aggregate transmission,
4211	 * the MAC will pad the rest of the aggregate with delimiters.
4212	 * If a BA is returned, the frame is marked as "OK" and it's up
4213	 * to the TX completion code to notice which frames weren't
4214	 * successfully transmitted.
4215	 */
4216	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4217		sc->sc_stats.ast_tx_data_underrun++;
4218	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4219		sc->sc_stats.ast_tx_delim_underrun++;
4220
4221	sr = ts->ts_shortretry;
4222	lr = ts->ts_longretry;
4223	sc->sc_stats.ast_tx_shortretry += sr;
4224	sc->sc_stats.ast_tx_longretry += lr;
4225
4226}
4227
4228/*
4229 * The default completion. If fail is 1, this means
4230 * "please don't retry the frame, and just return -1 status
4231 * to the net80211 stack.
4232 */
4233void
4234ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4235{
4236	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4237	int st;
4238
4239	if (fail == 1)
4240		st = -1;
4241	else
4242		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4243		    ts->ts_status : HAL_TXERR_XRETRY;
4244
4245#if 0
4246	if (bf->bf_state.bfs_dobaw)
4247		device_printf(sc->sc_dev,
4248		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4249		    __func__,
4250		    bf,
4251		    SEQNO(bf->bf_state.bfs_seqno));
4252#endif
4253	if (bf->bf_next != NULL)
4254		device_printf(sc->sc_dev,
4255		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4256		    __func__,
4257		    bf,
4258		    SEQNO(bf->bf_state.bfs_seqno));
4259
4260	/*
4261	 * Check if the node software queue is empty; if so
4262	 * then clear the TIM.
4263	 *
4264	 * This needs to be done before the buffer is freed as
4265	 * otherwise the node reference will have been released
4266	 * and the node may not actually exist any longer.
4267	 *
4268	 * XXX I don't like this belonging here, but it's cleaner
4269	 * to do it here right now then all the other places
4270	 * where ath_tx_default_comp() is called.
4271	 *
4272	 * XXX TODO: during drain, ensure that the callback is
4273	 * being called so we get a chance to update the TIM.
4274	 */
4275	if (bf->bf_node) {
4276		ATH_TX_LOCK(sc);
4277		ath_tx_update_tim(sc, bf->bf_node, 0);
4278		ATH_TX_UNLOCK(sc);
4279	}
4280
4281	/*
4282	 * Do any tx complete callback.  Note this must
4283	 * be done before releasing the node reference.
4284	 * This will free the mbuf, release the net80211
4285	 * node and recycle the ath_buf.
4286	 */
4287	ath_tx_freebuf(sc, bf, st);
4288}
4289
4290/*
4291 * Update rate control with the given completion status.
4292 */
4293void
4294ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4295    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4296    int rc_framelen, int nframes, int nbad)
4297{
4298	struct ath_node *an;
4299
4300	/* Only for unicast frames */
4301	if (ni == NULL)
4302		return;
4303
4304	an = ATH_NODE(ni);
4305	ATH_NODE_UNLOCK_ASSERT(an);
4306
4307	/*
4308	 * XXX TODO: teach the rate control about TXERR_FILT and
4309	 * see about handling it (eg see how many attempts were
4310	 * made before it got filtered and account for that.)
4311	 */
4312
4313	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4314		ATH_NODE_LOCK(an);
4315		ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen,
4316		    nframes, nbad);
4317		ATH_NODE_UNLOCK(an);
4318	}
4319}
4320
4321/*
4322 * Process the completion of the given buffer.
4323 *
4324 * This calls the rate control update and then the buffer completion.
4325 * This will either free the buffer or requeue it.  In any case, the
4326 * bf pointer should be treated as invalid after this function is called.
4327 */
4328void
4329ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4330    struct ath_tx_status *ts, struct ath_buf *bf)
4331{
4332	struct ieee80211_node *ni = bf->bf_node;
4333
4334	ATH_TX_UNLOCK_ASSERT(sc);
4335	ATH_TXQ_UNLOCK_ASSERT(txq);
4336
4337	/* If unicast frame, update general statistics */
4338	if (ni != NULL) {
4339		/* update statistics */
4340		ath_tx_update_stats(sc, ts, bf);
4341	}
4342
4343	/*
4344	 * Call the completion handler.
4345	 * The completion handler is responsible for
4346	 * calling the rate control code.
4347	 *
4348	 * Frames with no completion handler get the
4349	 * rate control code called here.
4350	 */
4351	if (bf->bf_comp == NULL) {
4352		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4353		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4354			/*
4355			 * XXX assume this isn't an aggregate
4356			 * frame.
4357			 *
4358			 * XXX TODO: also do this for filtered frames?
4359			 * Once rate control knows about them?
4360			 */
4361			ath_tx_update_ratectrl(sc, ni,
4362			     bf->bf_state.bfs_rc, ts,
4363			    bf->bf_state.bfs_pktlen,
4364			    bf->bf_state.bfs_pktlen,
4365			    1,
4366			    (ts->ts_status == 0 ? 0 : 1));
4367		}
4368		ath_tx_default_comp(sc, bf, 0);
4369	} else
4370		bf->bf_comp(sc, bf, 0);
4371}
4372
4373/*
4374 * Process completed xmit descriptors from the specified queue.
4375 * Kick the packet scheduler if needed. This can occur from this
4376 * particular task.
4377 */
4378static int
4379ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4380{
4381	struct ath_hal *ah = sc->sc_ah;
4382	struct ath_buf *bf;
4383	struct ath_desc *ds;
4384	struct ath_tx_status *ts;
4385	struct ieee80211_node *ni;
4386#ifdef	IEEE80211_SUPPORT_SUPERG
4387	struct ieee80211com *ic = &sc->sc_ic;
4388#endif	/* IEEE80211_SUPPORT_SUPERG */
4389	int nacked;
4390	HAL_STATUS status;
4391
4392	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4393		__func__, txq->axq_qnum,
4394		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4395		txq->axq_link);
4396
4397	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4398	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4399	    txq->axq_qnum,
4400	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4401	    txq->axq_link,
4402	    txq->axq_depth);
4403
4404	nacked = 0;
4405	for (;;) {
4406		ATH_TXQ_LOCK(txq);
4407		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4408		bf = TAILQ_FIRST(&txq->axq_q);
4409		if (bf == NULL) {
4410			ATH_TXQ_UNLOCK(txq);
4411			break;
4412		}
4413		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4414		ts = &bf->bf_status.ds_txstat;
4415
4416		status = ath_hal_txprocdesc(ah, ds, ts);
4417#ifdef ATH_DEBUG
4418		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4419			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4420			    status == HAL_OK);
4421		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4422			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4423			    status == HAL_OK);
4424#endif
4425#ifdef	ATH_DEBUG_ALQ
4426		if (if_ath_alq_checkdebug(&sc->sc_alq,
4427		    ATH_ALQ_EDMA_TXSTATUS)) {
4428			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4429			sc->sc_tx_statuslen,
4430			(char *) ds);
4431		}
4432#endif
4433
4434		if (status == HAL_EINPROGRESS) {
4435			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4436			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4437			    txq->axq_qnum, bf, ds);
4438			ATH_TXQ_UNLOCK(txq);
4439			break;
4440		}
4441		ATH_TXQ_REMOVE(txq, bf, bf_list);
4442
4443		/*
4444		 * Sanity check.
4445		 */
4446		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4447			device_printf(sc->sc_dev,
4448			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4449			    __func__,
4450			    txq->axq_qnum,
4451			    bf,
4452			    bf->bf_state.bfs_tx_queue);
4453		}
4454		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4455			device_printf(sc->sc_dev,
4456			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4457			    __func__,
4458			    txq->axq_qnum,
4459			    bf->bf_last,
4460			    bf->bf_last->bf_state.bfs_tx_queue);
4461		}
4462
4463#if 0
4464		if (txq->axq_depth > 0) {
4465			/*
4466			 * More frames follow.  Mark the buffer busy
4467			 * so it's not re-used while the hardware may
4468			 * still re-read the link field in the descriptor.
4469			 *
4470			 * Use the last buffer in an aggregate as that
4471			 * is where the hardware may be - intermediate
4472			 * descriptors won't be "busy".
4473			 */
4474			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4475		} else
4476			txq->axq_link = NULL;
4477#else
4478		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4479#endif
4480		if (bf->bf_state.bfs_aggr)
4481			txq->axq_aggr_depth--;
4482
4483		ni = bf->bf_node;
4484
4485		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4486		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4487		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4488		/*
4489		 * If unicast frame was ack'd update RSSI,
4490		 * including the last rx time used to
4491		 * workaround phantom bmiss interrupts.
4492		 */
4493		if (ni != NULL && ts->ts_status == 0 &&
4494		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4495			nacked++;
4496			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4497			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4498				ts->ts_rssi);
4499			ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi,
4500				ts->ts_rssi);
4501		}
4502		ATH_TXQ_UNLOCK(txq);
4503
4504		/*
4505		 * Update statistics and call completion
4506		 */
4507		ath_tx_process_buf_completion(sc, txq, ts, bf);
4508
4509		/* XXX at this point, bf and ni may be totally invalid */
4510	}
4511#ifdef IEEE80211_SUPPORT_SUPERG
4512	/*
4513	 * Flush fast-frame staging queue when traffic slows.
4514	 */
4515	if (txq->axq_depth <= 1)
4516		ieee80211_ff_flush(ic, txq->axq_ac);
4517#endif
4518
4519	/* Kick the software TXQ scheduler */
4520	if (dosched) {
4521		ATH_TX_LOCK(sc);
4522		ath_txq_sched(sc, txq);
4523		ATH_TX_UNLOCK(sc);
4524	}
4525
4526	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4527	    "ath_tx_processq: txq=%u: done",
4528	    txq->axq_qnum);
4529
4530	return nacked;
4531}
4532
4533#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4534
4535/*
4536 * Deferred processing of transmit interrupt; special-cased
4537 * for a single hardware transmit queue (e.g. 5210 and 5211).
4538 */
4539static void
4540ath_tx_proc_q0(void *arg, int npending)
4541{
4542	struct ath_softc *sc = arg;
4543	uint32_t txqs;
4544
4545	ATH_PCU_LOCK(sc);
4546	sc->sc_txproc_cnt++;
4547	txqs = sc->sc_txq_active;
4548	sc->sc_txq_active &= ~txqs;
4549	ATH_PCU_UNLOCK(sc);
4550
4551	ATH_LOCK(sc);
4552	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4553	ATH_UNLOCK(sc);
4554
4555	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4556	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4557
4558	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4559		/* XXX why is lastrx updated in tx code? */
4560		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4561	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4562		ath_tx_processq(sc, sc->sc_cabq, 1);
4563	sc->sc_wd_timer = 0;
4564
4565	if (sc->sc_softled)
4566		ath_led_event(sc, sc->sc_txrix);
4567
4568	ATH_PCU_LOCK(sc);
4569	sc->sc_txproc_cnt--;
4570	ATH_PCU_UNLOCK(sc);
4571
4572	ATH_LOCK(sc);
4573	ath_power_restore_power_state(sc);
4574	ATH_UNLOCK(sc);
4575
4576	ath_tx_kick(sc);
4577}
4578
4579/*
4580 * Deferred processing of transmit interrupt; special-cased
4581 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4582 */
4583static void
4584ath_tx_proc_q0123(void *arg, int npending)
4585{
4586	struct ath_softc *sc = arg;
4587	int nacked;
4588	uint32_t txqs;
4589
4590	ATH_PCU_LOCK(sc);
4591	sc->sc_txproc_cnt++;
4592	txqs = sc->sc_txq_active;
4593	sc->sc_txq_active &= ~txqs;
4594	ATH_PCU_UNLOCK(sc);
4595
4596	ATH_LOCK(sc);
4597	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4598	ATH_UNLOCK(sc);
4599
4600	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4601	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4602
4603	/*
4604	 * Process each active queue.
4605	 */
4606	nacked = 0;
4607	if (TXQACTIVE(txqs, 0))
4608		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4609	if (TXQACTIVE(txqs, 1))
4610		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4611	if (TXQACTIVE(txqs, 2))
4612		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4613	if (TXQACTIVE(txqs, 3))
4614		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4615	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4616		ath_tx_processq(sc, sc->sc_cabq, 1);
4617	if (nacked)
4618		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4619
4620	sc->sc_wd_timer = 0;
4621
4622	if (sc->sc_softled)
4623		ath_led_event(sc, sc->sc_txrix);
4624
4625	ATH_PCU_LOCK(sc);
4626	sc->sc_txproc_cnt--;
4627	ATH_PCU_UNLOCK(sc);
4628
4629	ATH_LOCK(sc);
4630	ath_power_restore_power_state(sc);
4631	ATH_UNLOCK(sc);
4632
4633	ath_tx_kick(sc);
4634}
4635
4636/*
4637 * Deferred processing of transmit interrupt.
4638 */
4639static void
4640ath_tx_proc(void *arg, int npending)
4641{
4642	struct ath_softc *sc = arg;
4643	int i, nacked;
4644	uint32_t txqs;
4645
4646	ATH_PCU_LOCK(sc);
4647	sc->sc_txproc_cnt++;
4648	txqs = sc->sc_txq_active;
4649	sc->sc_txq_active &= ~txqs;
4650	ATH_PCU_UNLOCK(sc);
4651
4652	ATH_LOCK(sc);
4653	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4654	ATH_UNLOCK(sc);
4655
4656	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4657
4658	/*
4659	 * Process each active queue.
4660	 */
4661	nacked = 0;
4662	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4663		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4664			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4665	if (nacked)
4666		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4667
4668	sc->sc_wd_timer = 0;
4669
4670	if (sc->sc_softled)
4671		ath_led_event(sc, sc->sc_txrix);
4672
4673	ATH_PCU_LOCK(sc);
4674	sc->sc_txproc_cnt--;
4675	ATH_PCU_UNLOCK(sc);
4676
4677	ATH_LOCK(sc);
4678	ath_power_restore_power_state(sc);
4679	ATH_UNLOCK(sc);
4680
4681	ath_tx_kick(sc);
4682}
4683#undef	TXQACTIVE
4684
4685/*
4686 * Deferred processing of TXQ rescheduling.
4687 */
4688static void
4689ath_txq_sched_tasklet(void *arg, int npending)
4690{
4691	struct ath_softc *sc = arg;
4692	int i;
4693
4694	/* XXX is skipping ok? */
4695	ATH_PCU_LOCK(sc);
4696#if 0
4697	if (sc->sc_inreset_cnt > 0) {
4698		device_printf(sc->sc_dev,
4699		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4700		ATH_PCU_UNLOCK(sc);
4701		return;
4702	}
4703#endif
4704	sc->sc_txproc_cnt++;
4705	ATH_PCU_UNLOCK(sc);
4706
4707	ATH_LOCK(sc);
4708	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4709	ATH_UNLOCK(sc);
4710
4711	ATH_TX_LOCK(sc);
4712	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4713		if (ATH_TXQ_SETUP(sc, i)) {
4714			ath_txq_sched(sc, &sc->sc_txq[i]);
4715		}
4716	}
4717	ATH_TX_UNLOCK(sc);
4718
4719	ATH_LOCK(sc);
4720	ath_power_restore_power_state(sc);
4721	ATH_UNLOCK(sc);
4722
4723	ATH_PCU_LOCK(sc);
4724	sc->sc_txproc_cnt--;
4725	ATH_PCU_UNLOCK(sc);
4726}
4727
4728void
4729ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4730{
4731
4732	ATH_TXBUF_LOCK_ASSERT(sc);
4733
4734	if (bf->bf_flags & ATH_BUF_MGMT)
4735		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4736	else {
4737		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4738		sc->sc_txbuf_cnt++;
4739		if (sc->sc_txbuf_cnt > ath_txbuf) {
4740			device_printf(sc->sc_dev,
4741			    "%s: sc_txbuf_cnt > %d?\n",
4742			    __func__,
4743			    ath_txbuf);
4744			sc->sc_txbuf_cnt = ath_txbuf;
4745		}
4746	}
4747}
4748
4749void
4750ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4751{
4752
4753	ATH_TXBUF_LOCK_ASSERT(sc);
4754
4755	if (bf->bf_flags & ATH_BUF_MGMT)
4756		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4757	else {
4758		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4759		sc->sc_txbuf_cnt++;
4760		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4761			device_printf(sc->sc_dev,
4762			    "%s: sc_txbuf_cnt > %d?\n",
4763			    __func__,
4764			    ATH_TXBUF);
4765			sc->sc_txbuf_cnt = ATH_TXBUF;
4766		}
4767	}
4768}
4769
4770/*
4771 * Free the holding buffer if it exists
4772 */
4773void
4774ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4775{
4776	ATH_TXBUF_UNLOCK_ASSERT(sc);
4777	ATH_TXQ_LOCK_ASSERT(txq);
4778
4779	if (txq->axq_holdingbf == NULL)
4780		return;
4781
4782	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4783
4784	ATH_TXBUF_LOCK(sc);
4785	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4786	ATH_TXBUF_UNLOCK(sc);
4787
4788	txq->axq_holdingbf = NULL;
4789}
4790
4791/*
4792 * Add this buffer to the holding queue, freeing the previous
4793 * one if it exists.
4794 */
4795static void
4796ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4797{
4798	struct ath_txq *txq;
4799
4800	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4801
4802	ATH_TXBUF_UNLOCK_ASSERT(sc);
4803	ATH_TXQ_LOCK_ASSERT(txq);
4804
4805	/* XXX assert ATH_BUF_BUSY is set */
4806
4807	/* XXX assert the tx queue is under the max number */
4808	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4809		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4810		    __func__,
4811		    bf,
4812		    bf->bf_state.bfs_tx_queue);
4813		bf->bf_flags &= ~ATH_BUF_BUSY;
4814		ath_returnbuf_tail(sc, bf);
4815		return;
4816	}
4817	ath_txq_freeholdingbuf(sc, txq);
4818	txq->axq_holdingbf = bf;
4819}
4820
4821/*
4822 * Return a buffer to the pool and update the 'busy' flag on the
4823 * previous 'tail' entry.
4824 *
4825 * This _must_ only be called when the buffer is involved in a completed
4826 * TX. The logic is that if it was part of an active TX, the previous
4827 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4828 * for restart (eg for TDMA.)
4829 *
4830 * The caller must free the mbuf and recycle the node reference.
4831 *
4832 * XXX This method of handling busy / holding buffers is insanely stupid.
4833 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4834 * be much nicer if buffers in the processq() methods would instead be
4835 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4836 * exactly what hardware queue they came from in the first place.
4837 */
4838void
4839ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4840{
4841	struct ath_txq *txq;
4842
4843	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4844
4845	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4846	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4847
4848	/*
4849	 * If this buffer is busy, push it onto the holding queue.
4850	 */
4851	if (bf->bf_flags & ATH_BUF_BUSY) {
4852		ATH_TXQ_LOCK(txq);
4853		ath_txq_addholdingbuf(sc, bf);
4854		ATH_TXQ_UNLOCK(txq);
4855		return;
4856	}
4857
4858	/*
4859	 * Not a busy buffer, so free normally
4860	 */
4861	ATH_TXBUF_LOCK(sc);
4862	ath_returnbuf_tail(sc, bf);
4863	ATH_TXBUF_UNLOCK(sc);
4864}
4865
4866/*
4867 * This is currently used by ath_tx_draintxq() and
4868 * ath_tx_tid_free_pkts().
4869 *
4870 * It recycles a single ath_buf.
4871 */
4872void
4873ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4874{
4875	struct ieee80211_node *ni = bf->bf_node;
4876	struct mbuf *m0 = bf->bf_m;
4877
4878	/*
4879	 * Make sure that we only sync/unload if there's an mbuf.
4880	 * If not (eg we cloned a buffer), the unload will have already
4881	 * occurred.
4882	 */
4883	if (bf->bf_m != NULL) {
4884		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4885		    BUS_DMASYNC_POSTWRITE);
4886		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4887	}
4888
4889	bf->bf_node = NULL;
4890	bf->bf_m = NULL;
4891
4892	/* Free the buffer, it's not needed any longer */
4893	ath_freebuf(sc, bf);
4894
4895	/* Pass the buffer back to net80211 - completing it */
4896	ieee80211_tx_complete(ni, m0, status);
4897}
4898
4899static struct ath_buf *
4900ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4901{
4902	struct ath_buf *bf;
4903
4904	ATH_TXQ_LOCK_ASSERT(txq);
4905
4906	/*
4907	 * Drain the FIFO queue first, then if it's
4908	 * empty, move to the normal frame queue.
4909	 */
4910	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4911	if (bf != NULL) {
4912		/*
4913		 * Is it the last buffer in this set?
4914		 * Decrement the FIFO counter.
4915		 */
4916		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4917			if (txq->axq_fifo_depth == 0) {
4918				device_printf(sc->sc_dev,
4919				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4920				    __func__,
4921				    txq->axq_qnum,
4922				    txq->fifo.axq_depth);
4923			} else
4924				txq->axq_fifo_depth--;
4925		}
4926		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4927		return (bf);
4928	}
4929
4930	/*
4931	 * Debugging!
4932	 */
4933	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4934		device_printf(sc->sc_dev,
4935		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4936		    __func__,
4937		    txq->axq_qnum,
4938		    txq->axq_fifo_depth,
4939		    txq->fifo.axq_depth);
4940	}
4941
4942	/*
4943	 * Now drain the pending queue.
4944	 */
4945	bf = TAILQ_FIRST(&txq->axq_q);
4946	if (bf == NULL) {
4947		txq->axq_link = NULL;
4948		return (NULL);
4949	}
4950	ATH_TXQ_REMOVE(txq, bf, bf_list);
4951	return (bf);
4952}
4953
4954void
4955ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4956{
4957#ifdef ATH_DEBUG
4958	struct ath_hal *ah = sc->sc_ah;
4959#endif
4960	struct ath_buf *bf;
4961	u_int ix;
4962
4963	/*
4964	 * NB: this assumes output has been stopped and
4965	 *     we do not need to block ath_tx_proc
4966	 */
4967	for (ix = 0;; ix++) {
4968		ATH_TXQ_LOCK(txq);
4969		bf = ath_tx_draintxq_get_one(sc, txq);
4970		if (bf == NULL) {
4971			ATH_TXQ_UNLOCK(txq);
4972			break;
4973		}
4974		if (bf->bf_state.bfs_aggr)
4975			txq->axq_aggr_depth--;
4976#ifdef ATH_DEBUG
4977		if (sc->sc_debug & ATH_DEBUG_RESET) {
4978			struct ieee80211com *ic = &sc->sc_ic;
4979			int status = 0;
4980
4981			/*
4982			 * EDMA operation has a TX completion FIFO
4983			 * separate from the TX descriptor, so this
4984			 * method of checking the "completion" status
4985			 * is wrong.
4986			 */
4987			if (! sc->sc_isedma) {
4988				status = (ath_hal_txprocdesc(ah,
4989				    bf->bf_lastds,
4990				    &bf->bf_status.ds_txstat) == HAL_OK);
4991			}
4992			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4993			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4994			    bf->bf_m->m_len, 0, -1);
4995		}
4996#endif /* ATH_DEBUG */
4997		/*
4998		 * Since we're now doing magic in the completion
4999		 * functions, we -must- call it for aggregation
5000		 * destinations or BAW tracking will get upset.
5001		 */
5002		/*
5003		 * Clear ATH_BUF_BUSY; the completion handler
5004		 * will free the buffer.
5005		 */
5006		ATH_TXQ_UNLOCK(txq);
5007		bf->bf_flags &= ~ATH_BUF_BUSY;
5008		if (bf->bf_comp)
5009			bf->bf_comp(sc, bf, 1);
5010		else
5011			ath_tx_default_comp(sc, bf, 1);
5012	}
5013
5014	/*
5015	 * Free the holding buffer if it exists
5016	 */
5017	ATH_TXQ_LOCK(txq);
5018	ath_txq_freeholdingbuf(sc, txq);
5019	ATH_TXQ_UNLOCK(txq);
5020
5021	/*
5022	 * Drain software queued frames which are on
5023	 * active TIDs.
5024	 */
5025	ath_tx_txq_drain(sc, txq);
5026}
5027
5028static void
5029ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5030{
5031	struct ath_hal *ah = sc->sc_ah;
5032
5033	ATH_TXQ_LOCK_ASSERT(txq);
5034
5035	DPRINTF(sc, ATH_DEBUG_RESET,
5036	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5037	    "link %p, holdingbf=%p\n",
5038	    __func__,
5039	    txq->axq_qnum,
5040	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5041	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5042	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5043	    txq->axq_flags,
5044	    txq->axq_link,
5045	    txq->axq_holdingbf);
5046
5047	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5048	/* We've stopped TX DMA, so mark this as stopped. */
5049	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5050
5051#ifdef	ATH_DEBUG
5052	if ((sc->sc_debug & ATH_DEBUG_RESET)
5053	    && (txq->axq_holdingbf != NULL)) {
5054		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5055	}
5056#endif
5057}
5058
5059int
5060ath_stoptxdma(struct ath_softc *sc)
5061{
5062	struct ath_hal *ah = sc->sc_ah;
5063	int i;
5064
5065	/* XXX return value */
5066	if (sc->sc_invalid)
5067		return 0;
5068
5069	if (!sc->sc_invalid) {
5070		/* don't touch the hardware if marked invalid */
5071		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5072		    __func__, sc->sc_bhalq,
5073		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5074		    NULL);
5075
5076		/* stop the beacon queue */
5077		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5078
5079		/* Stop the data queues */
5080		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5081			if (ATH_TXQ_SETUP(sc, i)) {
5082				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5083				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5084				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5085			}
5086		}
5087	}
5088
5089	return 1;
5090}
5091
5092#ifdef	ATH_DEBUG
5093void
5094ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5095{
5096	struct ath_hal *ah = sc->sc_ah;
5097	struct ath_buf *bf;
5098	int i = 0;
5099
5100	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5101		return;
5102
5103	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5104	    __func__, txq->axq_qnum);
5105	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5106		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5107			ath_hal_txprocdesc(ah, bf->bf_lastds,
5108			    &bf->bf_status.ds_txstat) == HAL_OK);
5109		i++;
5110	}
5111	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5112	    __func__, txq->axq_qnum);
5113}
5114#endif /* ATH_DEBUG */
5115
5116/*
5117 * Drain the transmit queues and reclaim resources.
5118 */
5119void
5120ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5121{
5122	struct ath_hal *ah = sc->sc_ah;
5123	struct ath_buf *bf_last;
5124	int i;
5125
5126	(void) ath_stoptxdma(sc);
5127
5128	/*
5129	 * Dump the queue contents
5130	 */
5131	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5132		/*
5133		 * XXX TODO: should we just handle the completed TX frames
5134		 * here, whether or not the reset is a full one or not?
5135		 */
5136		if (ATH_TXQ_SETUP(sc, i)) {
5137#ifdef	ATH_DEBUG
5138			if (sc->sc_debug & ATH_DEBUG_RESET)
5139				ath_tx_dump(sc, &sc->sc_txq[i]);
5140#endif	/* ATH_DEBUG */
5141			if (reset_type == ATH_RESET_NOLOSS) {
5142				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5143				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5144				/*
5145				 * Free the holding buffer; DMA is now
5146				 * stopped.
5147				 */
5148				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5149				/*
5150				 * Setup the link pointer to be the
5151				 * _last_ buffer/descriptor in the list.
5152				 * If there's nothing in the list, set it
5153				 * to NULL.
5154				 */
5155				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5156				    axq_q_s);
5157				if (bf_last != NULL) {
5158					ath_hal_gettxdesclinkptr(ah,
5159					    bf_last->bf_lastds,
5160					    &sc->sc_txq[i].axq_link);
5161				} else {
5162					sc->sc_txq[i].axq_link = NULL;
5163				}
5164				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5165			} else
5166				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5167		}
5168	}
5169#ifdef ATH_DEBUG
5170	if (sc->sc_debug & ATH_DEBUG_RESET) {
5171		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5172		if (bf != NULL && bf->bf_m != NULL) {
5173			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5174				ath_hal_txprocdesc(ah, bf->bf_lastds,
5175				    &bf->bf_status.ds_txstat) == HAL_OK);
5176			ieee80211_dump_pkt(&sc->sc_ic,
5177			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5178			    0, -1);
5179		}
5180	}
5181#endif /* ATH_DEBUG */
5182	sc->sc_wd_timer = 0;
5183}
5184
5185/*
5186 * Update internal state after a channel change.
5187 */
5188static void
5189ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5190{
5191	enum ieee80211_phymode mode;
5192
5193	/*
5194	 * Change channels and update the h/w rate map
5195	 * if we're switching; e.g. 11a to 11b/g.
5196	 */
5197	mode = ieee80211_chan2mode(chan);
5198	if (mode != sc->sc_curmode)
5199		ath_setcurmode(sc, mode);
5200	sc->sc_curchan = chan;
5201}
5202
5203/*
5204 * Set/change channels.  If the channel is really being changed,
5205 * it's done by resetting the chip.  To accomplish this we must
5206 * first cleanup any pending DMA, then restart stuff after a la
5207 * ath_init.
5208 */
5209static int
5210ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5211{
5212	struct ieee80211com *ic = &sc->sc_ic;
5213	struct ath_hal *ah = sc->sc_ah;
5214	int ret = 0;
5215
5216	/* Treat this as an interface reset */
5217	ATH_PCU_UNLOCK_ASSERT(sc);
5218	ATH_UNLOCK_ASSERT(sc);
5219
5220	/* (Try to) stop TX/RX from occurring */
5221	taskqueue_block(sc->sc_tq);
5222
5223	ATH_PCU_LOCK(sc);
5224
5225	/* Disable interrupts */
5226	ath_hal_intrset(ah, 0);
5227
5228	/* Stop new RX/TX/interrupt completion */
5229	if (ath_reset_grablock(sc, 1) == 0) {
5230		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5231		    __func__);
5232	}
5233
5234	/* Stop pending RX/TX completion */
5235	ath_txrx_stop_locked(sc);
5236
5237	ATH_PCU_UNLOCK(sc);
5238
5239	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5240	    __func__, ieee80211_chan2ieee(ic, chan),
5241	    chan->ic_freq, chan->ic_flags);
5242	if (chan != sc->sc_curchan) {
5243		HAL_STATUS status;
5244		/*
5245		 * To switch channels clear any pending DMA operations;
5246		 * wait long enough for the RX fifo to drain, reset the
5247		 * hardware at the new frequency, and then re-enable
5248		 * the relevant bits of the h/w.
5249		 */
5250#if 0
5251		ath_hal_intrset(ah, 0);		/* disable interrupts */
5252#endif
5253		ath_stoprecv(sc, 1);		/* turn off frame recv */
5254		/*
5255		 * First, handle completed TX/RX frames.
5256		 */
5257		ath_rx_flush(sc);
5258		ath_draintxq(sc, ATH_RESET_NOLOSS);
5259		/*
5260		 * Next, flush the non-scheduled frames.
5261		 */
5262		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5263
5264		ath_update_chainmasks(sc, chan);
5265		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5266		    sc->sc_cur_rxchainmask);
5267		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE,
5268		    HAL_RESET_NORMAL, &status)) {
5269			device_printf(sc->sc_dev, "%s: unable to reset "
5270			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5271			    __func__, ieee80211_chan2ieee(ic, chan),
5272			    chan->ic_freq, chan->ic_flags, status);
5273			ret = EIO;
5274			goto finish;
5275		}
5276		sc->sc_diversity = ath_hal_getdiversity(ah);
5277
5278		ATH_RX_LOCK(sc);
5279		sc->sc_rx_stopped = 1;
5280		sc->sc_rx_resetted = 1;
5281		ATH_RX_UNLOCK(sc);
5282
5283		/* Quiet time handling - ensure we resync */
5284		ath_vap_clear_quiet_ie(sc);
5285
5286		/* Let DFS at it in case it's a DFS channel */
5287		ath_dfs_radar_enable(sc, chan);
5288
5289		/* Let spectral at in case spectral is enabled */
5290		ath_spectral_enable(sc, chan);
5291
5292		/*
5293		 * Let bluetooth coexistence at in case it's needed for this
5294		 * channel
5295		 */
5296		ath_btcoex_enable(sc, ic->ic_curchan);
5297
5298		/*
5299		 * If we're doing TDMA, enforce the TXOP limitation for chips
5300		 * that support it.
5301		 */
5302		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5303			ath_hal_setenforcetxop(sc->sc_ah, 1);
5304		else
5305			ath_hal_setenforcetxop(sc->sc_ah, 0);
5306
5307		/*
5308		 * Re-enable rx framework.
5309		 */
5310		if (ath_startrecv(sc) != 0) {
5311			device_printf(sc->sc_dev,
5312			    "%s: unable to restart recv logic\n", __func__);
5313			ret = EIO;
5314			goto finish;
5315		}
5316
5317		/*
5318		 * Change channels and update the h/w rate map
5319		 * if we're switching; e.g. 11a to 11b/g.
5320		 */
5321		ath_chan_change(sc, chan);
5322
5323		/*
5324		 * Reset clears the beacon timers; reset them
5325		 * here if needed.
5326		 */
5327		if (sc->sc_beacons) {		/* restart beacons */
5328#ifdef IEEE80211_SUPPORT_TDMA
5329			if (sc->sc_tdma)
5330				ath_tdma_config(sc, NULL);
5331			else
5332#endif
5333			ath_beacon_config(sc, NULL);
5334		}
5335
5336		/*
5337		 * Re-enable interrupts.
5338		 */
5339#if 0
5340		ath_hal_intrset(ah, sc->sc_imask);
5341#endif
5342	}
5343
5344finish:
5345	ATH_PCU_LOCK(sc);
5346	sc->sc_inreset_cnt--;
5347	/* XXX only do this if sc_inreset_cnt == 0? */
5348	ath_hal_intrset(ah, sc->sc_imask);
5349	ATH_PCU_UNLOCK(sc);
5350
5351	ath_txrx_start(sc);
5352	/* XXX ath_start? */
5353
5354	return ret;
5355}
5356
5357/*
5358 * Periodically recalibrate the PHY to account
5359 * for temperature/environment changes.
5360 */
5361static void
5362ath_calibrate(void *arg)
5363{
5364	struct ath_softc *sc = arg;
5365	struct ath_hal *ah = sc->sc_ah;
5366	struct ieee80211com *ic = &sc->sc_ic;
5367	HAL_BOOL longCal, isCalDone = AH_TRUE;
5368	HAL_BOOL aniCal, shortCal = AH_FALSE;
5369	int nextcal;
5370
5371	ATH_LOCK_ASSERT(sc);
5372
5373	/*
5374	 * Force the hardware awake for ANI work.
5375	 */
5376	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5377
5378	/* Skip trying to do this if we're in reset */
5379	if (sc->sc_inreset_cnt)
5380		goto restart;
5381
5382	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5383		goto restart;
5384	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5385	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5386	if (sc->sc_doresetcal)
5387		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5388
5389	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5390	if (aniCal) {
5391		sc->sc_stats.ast_ani_cal++;
5392		sc->sc_lastani = ticks;
5393		ath_hal_ani_poll(ah, sc->sc_curchan);
5394	}
5395
5396	if (longCal) {
5397		sc->sc_stats.ast_per_cal++;
5398		sc->sc_lastlongcal = ticks;
5399		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5400			/*
5401			 * Rfgain is out of bounds, reset the chip
5402			 * to load new gain values.
5403			 */
5404			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5405				"%s: rfgain change\n", __func__);
5406			sc->sc_stats.ast_per_rfgain++;
5407			sc->sc_resetcal = 0;
5408			sc->sc_doresetcal = AH_TRUE;
5409			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5410			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5411			ath_power_restore_power_state(sc);
5412			return;
5413		}
5414		/*
5415		 * If this long cal is after an idle period, then
5416		 * reset the data collection state so we start fresh.
5417		 */
5418		if (sc->sc_resetcal) {
5419			(void) ath_hal_calreset(ah, sc->sc_curchan);
5420			sc->sc_lastcalreset = ticks;
5421			sc->sc_lastshortcal = ticks;
5422			sc->sc_resetcal = 0;
5423			sc->sc_doresetcal = AH_TRUE;
5424		}
5425	}
5426
5427	/* Only call if we're doing a short/long cal, not for ANI calibration */
5428	if (shortCal || longCal) {
5429		isCalDone = AH_FALSE;
5430		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5431			if (longCal) {
5432				/*
5433				 * Calibrate noise floor data again in case of change.
5434				 */
5435				ath_hal_process_noisefloor(ah);
5436			}
5437		} else {
5438			DPRINTF(sc, ATH_DEBUG_ANY,
5439				"%s: calibration of channel %u failed\n",
5440				__func__, sc->sc_curchan->ic_freq);
5441			sc->sc_stats.ast_per_calfail++;
5442		}
5443		/*
5444		 * XXX TODO: get the NF calibration results from the HAL.
5445		 * If we failed NF cal then schedule a hard reset to potentially
5446		 * un-freeze the PHY.
5447		 *
5448		 * Note we have to be careful here to not get stuck in an
5449		 * infinite NIC restart.  Ideally we'd not restart if we
5450		 * failed the first NF cal - that /can/ fail sometimes in
5451		 * a noisy environment.
5452		 *
5453		 * Instead, we should likely temporarily shorten the longCal
5454		 * period to happen pretty quickly and if a subsequent one
5455		 * fails, do a full reset.
5456		 */
5457		if (shortCal)
5458			sc->sc_lastshortcal = ticks;
5459	}
5460	if (!isCalDone) {
5461restart:
5462		/*
5463		 * Use a shorter interval to potentially collect multiple
5464		 * data samples required to complete calibration.  Once
5465		 * we're told the work is done we drop back to a longer
5466		 * interval between requests.  We're more aggressive doing
5467		 * work when operating as an AP to improve operation right
5468		 * after startup.
5469		 */
5470		sc->sc_lastshortcal = ticks;
5471		nextcal = ath_shortcalinterval*hz/1000;
5472		if (sc->sc_opmode != HAL_M_HOSTAP)
5473			nextcal *= 10;
5474		sc->sc_doresetcal = AH_TRUE;
5475	} else {
5476		/* nextcal should be the shortest time for next event */
5477		nextcal = ath_longcalinterval*hz;
5478		if (sc->sc_lastcalreset == 0)
5479			sc->sc_lastcalreset = sc->sc_lastlongcal;
5480		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5481			sc->sc_resetcal = 1;	/* setup reset next trip */
5482		sc->sc_doresetcal = AH_FALSE;
5483	}
5484	/* ANI calibration may occur more often than short/long/resetcal */
5485	if (ath_anicalinterval > 0)
5486		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5487
5488	if (nextcal != 0) {
5489		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5490		    __func__, nextcal, isCalDone ? "" : "!");
5491		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5492	} else {
5493		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5494		    __func__);
5495		/* NB: don't rearm timer */
5496	}
5497	/*
5498	 * Restore power state now that we're done.
5499	 */
5500	ath_power_restore_power_state(sc);
5501}
5502
5503static void
5504ath_scan_start(struct ieee80211com *ic)
5505{
5506	struct ath_softc *sc = ic->ic_softc;
5507	struct ath_hal *ah = sc->sc_ah;
5508	u_int32_t rfilt;
5509
5510	/* XXX calibration timer? */
5511	/* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
5512
5513	ATH_LOCK(sc);
5514	sc->sc_scanning = 1;
5515	sc->sc_syncbeacon = 0;
5516	rfilt = ath_calcrxfilter(sc);
5517	ATH_UNLOCK(sc);
5518
5519	ATH_PCU_LOCK(sc);
5520	ath_hal_setrxfilter(ah, rfilt);
5521	ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
5522	ATH_PCU_UNLOCK(sc);
5523
5524	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5525		 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
5526}
5527
5528static void
5529ath_scan_end(struct ieee80211com *ic)
5530{
5531	struct ath_softc *sc = ic->ic_softc;
5532	struct ath_hal *ah = sc->sc_ah;
5533	u_int32_t rfilt;
5534
5535	ATH_LOCK(sc);
5536	sc->sc_scanning = 0;
5537	rfilt = ath_calcrxfilter(sc);
5538	ATH_UNLOCK(sc);
5539
5540	ATH_PCU_LOCK(sc);
5541	ath_hal_setrxfilter(ah, rfilt);
5542	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5543
5544	ath_hal_process_noisefloor(ah);
5545	ATH_PCU_UNLOCK(sc);
5546
5547	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5548		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5549		 sc->sc_curaid);
5550}
5551
5552#ifdef	ATH_ENABLE_11N
5553/*
5554 * For now, just do a channel change.
5555 *
5556 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5557 * control state and resetting the hardware without dropping frames out
5558 * of the queue.
5559 *
5560 * The unfortunate trouble here is making absolutely sure that the
5561 * channel width change has propagated enough so the hardware
5562 * absolutely isn't handed bogus frames for it's current operating
5563 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5564 * does occur in parallel, we need to make certain we've blocked
5565 * any further ongoing TX (and RX, that can cause raw TX)
5566 * before we do this.
5567 */
5568static void
5569ath_update_chw(struct ieee80211com *ic)
5570{
5571	struct ath_softc *sc = ic->ic_softc;
5572
5573	//DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5574	device_printf(sc->sc_dev, "%s: called\n", __func__);
5575
5576	/*
5577	 * XXX TODO: schedule a tasklet that stops things without freeing,
5578	 * walks the now stopped TX queue(s) looking for frames to retry
5579	 * as if we TX filtered them (whch may mean dropping non-ampdu frames!)
5580	 * but okay) then place them back on the software queue so they
5581	 * can have the rate control lookup done again.
5582	 */
5583	ath_set_channel(ic);
5584}
5585#endif	/* ATH_ENABLE_11N */
5586
5587/*
5588 * This is called by the beacon parsing routine in the receive
5589 * path to update the current quiet time information provided by
5590 * an AP.
5591 *
5592 * This is STA specific, it doesn't take the AP TBTT/beacon slot
5593 * offset into account.
5594 *
5595 * The quiet IE doesn't control the /now/ beacon interval - it
5596 * controls the upcoming beacon interval.  So, when tbtt=1,
5597 * the quiet element programming shall be for the next beacon
5598 * interval.  There's no tbtt=0 behaviour defined, so don't.
5599 *
5600 * Since we're programming the next quiet interval, we have
5601 * to keep in mind what we will see when the next beacon
5602 * is received with potentially a quiet IE.  For example, if
5603 * quiet_period is 1, then we are always getting a quiet interval
5604 * each TBTT - so if we just program it in upon each beacon received,
5605 * it will constantly reflect the "next" TBTT and we will never
5606 * let the counter stay programmed correctly.
5607 *
5608 * So:
5609 * + the first time we see the quiet IE, program it and store
5610 *   the details somewhere;
5611 * + if the quiet parameters don't change (ie, period/duration/offset)
5612 *   then just leave the programming enabled;
5613 * + (we can "skip" beacons, so don't try to enforce tbttcount unless
5614 *   you're willing to also do the skipped beacon math);
5615 * + if the quiet IE is removed, then halt quiet time.
5616 */
5617static int
5618ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie)
5619{
5620	struct ieee80211_quiet_ie *q;
5621	struct ieee80211vap *vap = ni->ni_vap;
5622	struct ath_vap *avp = ATH_VAP(vap);
5623	struct ieee80211com *ic = vap->iv_ic;
5624	struct ath_softc *sc = ic->ic_softc;
5625
5626	if (vap->iv_opmode != IEEE80211_M_STA)
5627		return (0);
5628
5629	/* Verify we have a quiet time IE */
5630	if (ie == NULL) {
5631		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5632		    "%s: called; NULL IE, disabling\n", __func__);
5633
5634		ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE);
5635		memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
5636		return (0);
5637	}
5638
5639	/* If we do, verify it's actually legit */
5640	if (ie[0] != IEEE80211_ELEMID_QUIET)
5641		return 0;
5642	if (ie[1] != 6)
5643		return 0;
5644
5645	/* Note: this belongs in net80211, parsed out and everything */
5646	q = (void *) ie;
5647
5648	/*
5649	 * Compare what we have stored to what we last saw.
5650	 * If they're the same then don't program in anything.
5651	 */
5652	if ((q->period == avp->quiet_ie.period) &&
5653	    (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) &&
5654	    (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset)))
5655		return (0);
5656
5657	DPRINTF(sc, ATH_DEBUG_QUIETIE,
5658	    "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n",
5659	    __func__,
5660	    (int) q->tbttcount,
5661	    (int) q->period,
5662	    (int) le16dec(&q->duration),
5663	    (int) le16dec(&q->offset));
5664
5665	/*
5666	 * Don't program in garbage values.
5667	 */
5668	if ((le16dec(&q->duration) == 0) ||
5669	    (le16dec(&q->duration) >= ni->ni_intval)) {
5670		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5671		    "%s: invalid duration (%d)\n", __func__,
5672		    le16dec(&q->duration));
5673		    return (0);
5674	}
5675	/*
5676	 * Can have a 0 offset, but not a duration - so just check
5677	 * they don't exceed the intval.
5678	 */
5679	if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) {
5680		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5681		    "%s: invalid duration + offset (%d+%d)\n", __func__,
5682		    le16dec(&q->duration),
5683		    le16dec(&q->offset));
5684		    return (0);
5685	}
5686	if (q->tbttcount == 0) {
5687		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5688		    "%s: invalid tbttcount (0)\n", __func__);
5689		    return (0);
5690	}
5691	if (q->period == 0) {
5692		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5693		    "%s: invalid period (0)\n", __func__);
5694		    return (0);
5695	}
5696
5697	/*
5698	 * This is a new quiet time IE config, so wait until tbttcount
5699	 * is equal to 1, and program it in.
5700	 */
5701	if (q->tbttcount == 1) {
5702		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5703		    "%s: programming\n", __func__);
5704		ath_hal_set_quiet(sc->sc_ah,
5705		    q->period * ni->ni_intval,	/* convert to TU */
5706		    le16dec(&q->duration),	/* already in TU */
5707		    le16dec(&q->offset) + ni->ni_intval,
5708		    HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF);
5709		/*
5710		 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for
5711		 * STA mode
5712		 */
5713
5714		/* Update local state */
5715		memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie));
5716	}
5717
5718	return (0);
5719}
5720
5721static void
5722ath_set_channel(struct ieee80211com *ic)
5723{
5724	struct ath_softc *sc = ic->ic_softc;
5725
5726	ATH_LOCK(sc);
5727	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5728	ATH_UNLOCK(sc);
5729
5730	(void) ath_chan_set(sc, ic->ic_curchan);
5731	/*
5732	 * If we are returning to our bss channel then mark state
5733	 * so the next recv'd beacon's tsf will be used to sync the
5734	 * beacon timers.  Note that since we only hear beacons in
5735	 * sta/ibss mode this has no effect in other operating modes.
5736	 */
5737	ATH_LOCK(sc);
5738	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5739		sc->sc_syncbeacon = 1;
5740	ath_power_restore_power_state(sc);
5741	ATH_UNLOCK(sc);
5742}
5743
5744/*
5745 * Walk the vap list and check if there any vap's in RUN state.
5746 */
5747static int
5748ath_isanyrunningvaps(struct ieee80211vap *this)
5749{
5750	struct ieee80211com *ic = this->iv_ic;
5751	struct ieee80211vap *vap;
5752
5753	IEEE80211_LOCK_ASSERT(ic);
5754
5755	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5756		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5757			return 1;
5758	}
5759	return 0;
5760}
5761
5762static int
5763ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5764{
5765	struct ieee80211com *ic = vap->iv_ic;
5766	struct ath_softc *sc = ic->ic_softc;
5767	struct ath_vap *avp = ATH_VAP(vap);
5768	struct ath_hal *ah = sc->sc_ah;
5769	struct ieee80211_node *ni = NULL;
5770	int i, error, stamode;
5771	u_int32_t rfilt;
5772	int csa_run_transition = 0;
5773	enum ieee80211_state ostate = vap->iv_state;
5774
5775	static const HAL_LED_STATE leds[] = {
5776	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5777	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5778	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5779	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5780	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5781	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5782	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5783	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5784	};
5785
5786	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5787		ieee80211_state_name[ostate],
5788		ieee80211_state_name[nstate]);
5789
5790	/*
5791	 * net80211 _should_ have the comlock asserted at this point.
5792	 * There are some comments around the calls to vap->iv_newstate
5793	 * which indicate that it (newstate) may end up dropping the
5794	 * lock.  This and the subsequent lock assert check after newstate
5795	 * are an attempt to catch these and figure out how/why.
5796	 */
5797	IEEE80211_LOCK_ASSERT(ic);
5798
5799	/* Before we touch the hardware - wake it up */
5800	ATH_LOCK(sc);
5801	/*
5802	 * If the NIC is in anything other than SLEEP state,
5803	 * we need to ensure that self-generated frames are
5804	 * set for PWRMGT=0.  Otherwise we may end up with
5805	 * strange situations.
5806	 *
5807	 * XXX TODO: is this actually the case? :-)
5808	 */
5809	if (nstate != IEEE80211_S_SLEEP)
5810		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5811
5812	/*
5813	 * Now, wake the thing up.
5814	 */
5815	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5816
5817	/*
5818	 * And stop the calibration callout whilst we have
5819	 * ATH_LOCK held.
5820	 */
5821	callout_stop(&sc->sc_cal_ch);
5822	ATH_UNLOCK(sc);
5823
5824	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5825		csa_run_transition = 1;
5826
5827	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5828
5829	if (nstate == IEEE80211_S_SCAN) {
5830		/*
5831		 * Scanning: turn off beacon miss and don't beacon.
5832		 * Mark beacon state so when we reach RUN state we'll
5833		 * [re]setup beacons.  Unblock the task q thread so
5834		 * deferred interrupt processing is done.
5835		 */
5836
5837		/* Ensure we stay awake during scan */
5838		ATH_LOCK(sc);
5839		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5840		ath_power_setpower(sc, HAL_PM_AWAKE, 1);
5841		ATH_UNLOCK(sc);
5842
5843		ath_hal_intrset(ah,
5844		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5845		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5846		sc->sc_beacons = 0;
5847		taskqueue_unblock(sc->sc_tq);
5848	}
5849
5850	ni = ieee80211_ref_node(vap->iv_bss);
5851	rfilt = ath_calcrxfilter(sc);
5852	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5853		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5854		   vap->iv_opmode == IEEE80211_M_IBSS);
5855
5856	/*
5857	 * XXX Dont need to do this (and others) if we've transitioned
5858	 * from SLEEP->RUN.
5859	 */
5860	if (stamode && nstate == IEEE80211_S_RUN) {
5861		sc->sc_curaid = ni->ni_associd;
5862		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5863		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5864	}
5865	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5866	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5867	ath_hal_setrxfilter(ah, rfilt);
5868
5869	/* XXX is this to restore keycache on resume? */
5870	if (vap->iv_opmode != IEEE80211_M_STA &&
5871	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5872		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5873			if (ath_hal_keyisvalid(ah, i))
5874				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5875	}
5876
5877	/*
5878	 * Invoke the parent method to do net80211 work.
5879	 */
5880	error = avp->av_newstate(vap, nstate, arg);
5881	if (error != 0)
5882		goto bad;
5883
5884	/*
5885	 * See above: ensure av_newstate() doesn't drop the lock
5886	 * on us.
5887	 */
5888	IEEE80211_LOCK_ASSERT(ic);
5889
5890	/*
5891	 * XXX TODO: if nstate is _S_CAC, then we should disable
5892	 * ACK processing until CAC is completed.
5893	 */
5894
5895	/*
5896	 * XXX TODO: if we're on a passive channel, then we should
5897	 * not allow any ACKs or self-generated frames until we hear
5898	 * a beacon.  Unfortunately there isn't a notification from
5899	 * net80211 so perhaps we could slot that particular check
5900	 * into the mgmt receive path and just ensure that we clear
5901	 * it on RX of beacons in passive mode (and only clear it
5902	 * once, obviously.)
5903	 */
5904
5905	/*
5906	 * XXX TODO: net80211 should be tracking whether channels
5907	 * have heard beacons and are thus considered "OK" for
5908	 * transmitting - and then inform the driver about this
5909	 * state change.  That way if we hear an AP go quiet
5910	 * (and nothing else is beaconing on a channel) the
5911	 * channel can go back to being passive until another
5912	 * beacon is heard.
5913	 */
5914
5915	/*
5916	 * XXX TODO: if nstate is _S_CAC, then we should disable
5917	 * ACK processing until CAC is completed.
5918	 */
5919
5920	/*
5921	 * XXX TODO: if we're on a passive channel, then we should
5922	 * not allow any ACKs or self-generated frames until we hear
5923	 * a beacon.  Unfortunately there isn't a notification from
5924	 * net80211 so perhaps we could slot that particular check
5925	 * into the mgmt receive path and just ensure that we clear
5926	 * it on RX of beacons in passive mode (and only clear it
5927	 * once, obviously.)
5928	 */
5929
5930	/*
5931	 * XXX TODO: net80211 should be tracking whether channels
5932	 * have heard beacons and are thus considered "OK" for
5933	 * transmitting - and then inform the driver about this
5934	 * state change.  That way if we hear an AP go quiet
5935	 * (and nothing else is beaconing on a channel) the
5936	 * channel can go back to being passive until another
5937	 * beacon is heard.
5938	 */
5939
5940	if (nstate == IEEE80211_S_RUN) {
5941		/* NB: collect bss node again, it may have changed */
5942		ieee80211_free_node(ni);
5943		ni = ieee80211_ref_node(vap->iv_bss);
5944
5945		DPRINTF(sc, ATH_DEBUG_STATE,
5946		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5947		    "capinfo 0x%04x chan %d\n", __func__,
5948		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5949		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5950
5951		switch (vap->iv_opmode) {
5952#ifdef IEEE80211_SUPPORT_TDMA
5953		case IEEE80211_M_AHDEMO:
5954			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5955				break;
5956			/* fall thru... */
5957#endif
5958		case IEEE80211_M_HOSTAP:
5959		case IEEE80211_M_IBSS:
5960		case IEEE80211_M_MBSS:
5961
5962			/*
5963			 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.)
5964			 * For channels that are in CAC, we may have disabled
5965			 * this during CAC to ensure we don't ACK frames
5966			 * sent to us.
5967			 */
5968
5969			/*
5970			 * Allocate and setup the beacon frame.
5971			 *
5972			 * Stop any previous beacon DMA.  This may be
5973			 * necessary, for example, when an ibss merge
5974			 * causes reconfiguration; there will be a state
5975			 * transition from RUN->RUN that means we may
5976			 * be called with beacon transmission active.
5977			 */
5978			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5979
5980			error = ath_beacon_alloc(sc, ni);
5981			if (error != 0)
5982				goto bad;
5983			/*
5984			 * If joining an adhoc network defer beacon timer
5985			 * configuration to the next beacon frame so we
5986			 * have a current TSF to use.  Otherwise we're
5987			 * starting an ibss/bss so there's no need to delay;
5988			 * if this is the first vap moving to RUN state, then
5989			 * beacon state needs to be [re]configured.
5990			 */
5991			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5992			    ni->ni_tstamp.tsf != 0) {
5993				sc->sc_syncbeacon = 1;
5994			} else if (!sc->sc_beacons) {
5995#ifdef IEEE80211_SUPPORT_TDMA
5996				if (vap->iv_caps & IEEE80211_C_TDMA)
5997					ath_tdma_config(sc, vap);
5998				else
5999#endif
6000					ath_beacon_config(sc, vap);
6001				sc->sc_beacons = 1;
6002			}
6003			break;
6004		case IEEE80211_M_STA:
6005			/*
6006			 * Defer beacon timer configuration to the next
6007			 * beacon frame so we have a current TSF to use
6008			 * (any TSF collected when scanning is likely old).
6009			 * However if it's due to a CSA -> RUN transition,
6010			 * force a beacon update so we pick up a lack of
6011			 * beacons from an AP in CAC and thus force a
6012			 * scan.
6013			 *
6014			 * And, there's also corner cases here where
6015			 * after a scan, the AP may have disappeared.
6016			 * In that case, we may not receive an actual
6017			 * beacon to update the beacon timer and thus we
6018			 * won't get notified of the missing beacons.
6019			 */
6020			if (ostate != IEEE80211_S_RUN &&
6021			    ostate != IEEE80211_S_SLEEP) {
6022				DPRINTF(sc, ATH_DEBUG_BEACON,
6023				    "%s: STA; syncbeacon=1\n", __func__);
6024				sc->sc_syncbeacon = 1;
6025
6026				/* Quiet time handling - ensure we resync */
6027				memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6028
6029				if (csa_run_transition)
6030					ath_beacon_config(sc, vap);
6031
6032			/*
6033			 * PR: kern/175227
6034			 *
6035			 * Reconfigure beacons during reset; as otherwise
6036			 * we won't get the beacon timers reprogrammed
6037			 * after a reset and thus we won't pick up a
6038			 * beacon miss interrupt.
6039			 *
6040			 * Hopefully we'll see a beacon before the BMISS
6041			 * timer fires (too often), leading to a STA
6042			 * disassociation.
6043			 */
6044				sc->sc_beacons = 1;
6045			}
6046			break;
6047		case IEEE80211_M_MONITOR:
6048			/*
6049			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6050			 * transitions so we must re-enable interrupts here to
6051			 * handle the case of a single monitor mode vap.
6052			 */
6053			ath_hal_intrset(ah, sc->sc_imask);
6054			break;
6055		case IEEE80211_M_WDS:
6056			break;
6057		default:
6058			break;
6059		}
6060		/*
6061		 * Let the hal process statistics collected during a
6062		 * scan so it can provide calibrated noise floor data.
6063		 */
6064		ath_hal_process_noisefloor(ah);
6065		/*
6066		 * Reset rssi stats; maybe not the best place...
6067		 */
6068		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6069		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6070		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6071
6072		/*
6073		 * Force awake for RUN mode.
6074		 */
6075		ATH_LOCK(sc);
6076		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6077		ath_power_setpower(sc, HAL_PM_AWAKE, 1);
6078
6079		/*
6080		 * Finally, start any timers and the task q thread
6081		 * (in case we didn't go through SCAN state).
6082		 */
6083		if (ath_longcalinterval != 0) {
6084			/* start periodic recalibration timer */
6085			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6086		} else {
6087			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6088			    "%s: calibration disabled\n", __func__);
6089		}
6090		ATH_UNLOCK(sc);
6091
6092		taskqueue_unblock(sc->sc_tq);
6093	} else if (nstate == IEEE80211_S_INIT) {
6094		/* Quiet time handling - ensure we resync */
6095		memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6096
6097		/*
6098		 * If there are no vaps left in RUN state then
6099		 * shutdown host/driver operation:
6100		 * o disable interrupts
6101		 * o disable the task queue thread
6102		 * o mark beacon processing as stopped
6103		 */
6104		if (!ath_isanyrunningvaps(vap)) {
6105			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6106			/* disable interrupts  */
6107			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6108			taskqueue_block(sc->sc_tq);
6109			sc->sc_beacons = 0;
6110		}
6111
6112		/*
6113		 * For at least STA mode we likely should clear the ANI
6114		 * and NF calibration state and allow the NIC/HAL to figure
6115		 * out optimal parameters at runtime.  Otherwise if we
6116		 * disassociate due to interference / deafness it may persist
6117		 * when we reconnect.
6118		 *
6119		 * Note: may need to do this for other states too, not just
6120		 * _S_INIT.
6121		 */
6122#ifdef IEEE80211_SUPPORT_TDMA
6123		ath_hal_setcca(ah, AH_TRUE);
6124#endif
6125	} else if (nstate == IEEE80211_S_SLEEP) {
6126		/* We're going to sleep, so transition appropriately */
6127		/* For now, only do this if we're a single STA vap */
6128		if (sc->sc_nvaps == 1 &&
6129		    vap->iv_opmode == IEEE80211_M_STA) {
6130			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6131			ATH_LOCK(sc);
6132			/*
6133			 * Always at least set the self-generated
6134			 * frame config to set PWRMGT=1.
6135			 */
6136			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6137
6138			/*
6139			 * If we're not syncing beacons, transition
6140			 * to NETWORK_SLEEP.
6141			 *
6142			 * We stay awake if syncbeacon > 0 in case
6143			 * we need to listen for some beacons otherwise
6144			 * our beacon timer config may be wrong.
6145			 */
6146			if (sc->sc_syncbeacon == 0) {
6147				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1);
6148			}
6149			ATH_UNLOCK(sc);
6150		}
6151
6152		/*
6153		 * Note - the ANI/calibration timer isn't re-enabled during
6154		 * network sleep for now.  One unfortunate side-effect is that
6155		 * the PHY/airtime statistics aren't gathered on the channel
6156		 * but I haven't yet tested to see if reading those registers
6157		 * CAN occur during network sleep.
6158		 *
6159		 * This should be revisited in a future commit, even if it's
6160		 * just to split out the airtime polling from ANI/calibration.
6161		 */
6162	} else if (nstate == IEEE80211_S_SCAN) {
6163		/* Quiet time handling - ensure we resync */
6164		memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6165
6166		/*
6167		 * If we're in scan mode then startpcureceive() is
6168		 * hopefully being called with "reset ANI" for this channel;
6169		 * but once we attempt to reassociate we program in the previous
6170		 * ANI values and.. not do any calibration until we're running.
6171		 * This may mean we stay deaf unless we can associate successfully.
6172		 *
6173		 * So do kick off the cal timer to get NF/ANI going.
6174		 */
6175		ATH_LOCK(sc);
6176		if (ath_longcalinterval != 0) {
6177			/* start periodic recalibration timer */
6178			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6179		} else {
6180			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6181			    "%s: calibration disabled\n", __func__);
6182		}
6183		ATH_UNLOCK(sc);
6184	}
6185bad:
6186	ieee80211_free_node(ni);
6187
6188	/*
6189	 * Restore the power state - either to what it was, or
6190	 * to network_sleep if it's alright.
6191	 */
6192	ATH_LOCK(sc);
6193	ath_power_restore_power_state(sc);
6194	ATH_UNLOCK(sc);
6195	return error;
6196}
6197
6198/*
6199 * Allocate a key cache slot to the station so we can
6200 * setup a mapping from key index to node. The key cache
6201 * slot is needed for managing antenna state and for
6202 * compression when stations do not use crypto.  We do
6203 * it uniliaterally here; if crypto is employed this slot
6204 * will be reassigned.
6205 */
6206static void
6207ath_setup_stationkey(struct ieee80211_node *ni)
6208{
6209	struct ieee80211vap *vap = ni->ni_vap;
6210	struct ath_softc *sc = vap->iv_ic->ic_softc;
6211	ieee80211_keyix keyix, rxkeyix;
6212
6213	/* XXX should take a locked ref to vap->iv_bss */
6214	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6215		/*
6216		 * Key cache is full; we'll fall back to doing
6217		 * the more expensive lookup in software.  Note
6218		 * this also means no h/w compression.
6219		 */
6220		/* XXX msg+statistic */
6221	} else {
6222		/* XXX locking? */
6223		ni->ni_ucastkey.wk_keyix = keyix;
6224		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6225		/* NB: must mark device key to get called back on delete */
6226		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6227		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6228		/* NB: this will create a pass-thru key entry */
6229		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6230	}
6231}
6232
6233/*
6234 * Setup driver-specific state for a newly associated node.
6235 * Note that we're called also on a re-associate, the isnew
6236 * param tells us if this is the first time or not.
6237 */
6238static void
6239ath_newassoc(struct ieee80211_node *ni, int isnew)
6240{
6241	struct ath_node *an = ATH_NODE(ni);
6242	struct ieee80211vap *vap = ni->ni_vap;
6243	struct ath_softc *sc = vap->iv_ic->ic_softc;
6244	const struct ieee80211_txparam *tp = ni->ni_txparms;
6245
6246	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6247	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6248
6249	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6250	    __func__,
6251	    ni->ni_macaddr,
6252	    ":",
6253	    isnew,
6254	    an->an_is_powersave);
6255
6256	ATH_NODE_LOCK(an);
6257	ath_rate_newassoc(sc, an, isnew);
6258	ATH_NODE_UNLOCK(an);
6259
6260	if (isnew &&
6261	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6262	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6263		ath_setup_stationkey(ni);
6264
6265	/*
6266	 * If we're reassociating, make sure that any paused queues
6267	 * get unpaused.
6268	 *
6269	 * Now, we may have frames in the hardware queue for this node.
6270	 * So if we are reassociating and there are frames in the queue,
6271	 * we need to go through the cleanup path to ensure that they're
6272	 * marked as non-aggregate.
6273	 */
6274	if (! isnew) {
6275		DPRINTF(sc, ATH_DEBUG_NODE,
6276		    "%s: %6D: reassoc; is_powersave=%d\n",
6277		    __func__,
6278		    ni->ni_macaddr,
6279		    ":",
6280		    an->an_is_powersave);
6281
6282		/* XXX for now, we can't hold the lock across assoc */
6283		ath_tx_node_reassoc(sc, an);
6284
6285		/* XXX for now, we can't hold the lock across wakeup */
6286		if (an->an_is_powersave)
6287			ath_tx_node_wakeup(sc, an);
6288	}
6289}
6290
6291static int
6292ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6293	int nchans, struct ieee80211_channel chans[])
6294{
6295	struct ath_softc *sc = ic->ic_softc;
6296	struct ath_hal *ah = sc->sc_ah;
6297	HAL_STATUS status;
6298
6299	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6300	    "%s: rd %u cc %u location %c%s\n",
6301	    __func__, reg->regdomain, reg->country, reg->location,
6302	    reg->ecm ? " ecm" : "");
6303
6304	status = ath_hal_set_channels(ah, chans, nchans,
6305	    reg->country, reg->regdomain);
6306	if (status != HAL_OK) {
6307		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6308		    __func__, status);
6309		return EINVAL;		/* XXX */
6310	}
6311
6312	return 0;
6313}
6314
6315static void
6316ath_getradiocaps(struct ieee80211com *ic,
6317	int maxchans, int *nchans, struct ieee80211_channel chans[])
6318{
6319	struct ath_softc *sc = ic->ic_softc;
6320	struct ath_hal *ah = sc->sc_ah;
6321
6322	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6323	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6324
6325	/* XXX check return */
6326	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6327	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6328
6329}
6330
6331static int
6332ath_getchannels(struct ath_softc *sc)
6333{
6334	struct ieee80211com *ic = &sc->sc_ic;
6335	struct ath_hal *ah = sc->sc_ah;
6336	HAL_STATUS status;
6337
6338	/*
6339	 * Collect channel set based on EEPROM contents.
6340	 */
6341	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6342	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6343	if (status != HAL_OK) {
6344		device_printf(sc->sc_dev,
6345		    "%s: unable to collect channel list from hal, status %d\n",
6346		    __func__, status);
6347		return EINVAL;
6348	}
6349	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6350	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6351	/* XXX map Atheros sku's to net80211 SKU's */
6352	/* XXX net80211 types too small */
6353	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6354	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6355	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6356	ic->ic_regdomain.isocc[1] = ' ';
6357
6358	ic->ic_regdomain.ecm = 1;
6359	ic->ic_regdomain.location = 'I';
6360
6361	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6362	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6363	    __func__, sc->sc_eerd, sc->sc_eecc,
6364	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6365	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6366	return 0;
6367}
6368
6369static int
6370ath_rate_setup(struct ath_softc *sc, u_int mode)
6371{
6372	struct ath_hal *ah = sc->sc_ah;
6373	const HAL_RATE_TABLE *rt;
6374
6375	switch (mode) {
6376	case IEEE80211_MODE_11A:
6377		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6378		break;
6379	case IEEE80211_MODE_HALF:
6380		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6381		break;
6382	case IEEE80211_MODE_QUARTER:
6383		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6384		break;
6385	case IEEE80211_MODE_11B:
6386		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6387		break;
6388	case IEEE80211_MODE_11G:
6389		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6390		break;
6391	case IEEE80211_MODE_TURBO_A:
6392		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6393		break;
6394	case IEEE80211_MODE_TURBO_G:
6395		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6396		break;
6397	case IEEE80211_MODE_STURBO_A:
6398		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6399		break;
6400	case IEEE80211_MODE_11NA:
6401		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6402		break;
6403	case IEEE80211_MODE_11NG:
6404		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6405		break;
6406	default:
6407		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6408			__func__, mode);
6409		return 0;
6410	}
6411	sc->sc_rates[mode] = rt;
6412	return (rt != NULL);
6413}
6414
6415static void
6416ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6417{
6418	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6419	static const struct {
6420		u_int		rate;		/* tx/rx 802.11 rate */
6421		u_int16_t	timeOn;		/* LED on time (ms) */
6422		u_int16_t	timeOff;	/* LED off time (ms) */
6423	} blinkrates[] = {
6424		{ 108,  40,  10 },
6425		{  96,  44,  11 },
6426		{  72,  50,  13 },
6427		{  48,  57,  14 },
6428		{  36,  67,  16 },
6429		{  24,  80,  20 },
6430		{  22, 100,  25 },
6431		{  18, 133,  34 },
6432		{  12, 160,  40 },
6433		{  10, 200,  50 },
6434		{   6, 240,  58 },
6435		{   4, 267,  66 },
6436		{   2, 400, 100 },
6437		{   0, 500, 130 },
6438		/* XXX half/quarter rates */
6439	};
6440	const HAL_RATE_TABLE *rt;
6441	int i, j;
6442
6443	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6444	rt = sc->sc_rates[mode];
6445	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6446	for (i = 0; i < rt->rateCount; i++) {
6447		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6448		if (rt->info[i].phy != IEEE80211_T_HT)
6449			sc->sc_rixmap[ieeerate] = i;
6450		else
6451			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6452	}
6453	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6454	for (i = 0; i < nitems(sc->sc_hwmap); i++) {
6455		if (i >= rt->rateCount) {
6456			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6457			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6458			continue;
6459		}
6460		sc->sc_hwmap[i].ieeerate =
6461			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6462		if (rt->info[i].phy == IEEE80211_T_HT)
6463			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6464		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6465		if (rt->info[i].shortPreamble ||
6466		    rt->info[i].phy == IEEE80211_T_OFDM)
6467			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6468		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6469		for (j = 0; j < nitems(blinkrates)-1; j++)
6470			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6471				break;
6472		/* NB: this uses the last entry if the rate isn't found */
6473		/* XXX beware of overlow */
6474		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6475		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6476	}
6477	sc->sc_currates = rt;
6478	sc->sc_curmode = mode;
6479	/*
6480	 * All protection frames are transmitted at 2Mb/s for
6481	 * 11g, otherwise at 1Mb/s.
6482	 */
6483	if (mode == IEEE80211_MODE_11G)
6484		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6485	else
6486		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6487	/* NB: caller is responsible for resetting rate control state */
6488}
6489
6490static void
6491ath_watchdog(void *arg)
6492{
6493	struct ath_softc *sc = arg;
6494	struct ieee80211com *ic = &sc->sc_ic;
6495	int do_reset = 0;
6496
6497	ATH_LOCK_ASSERT(sc);
6498
6499	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6500		uint32_t hangs;
6501
6502		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6503
6504		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6505		    hangs != 0) {
6506			device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
6507			    hangs & 0xff ? "bb" : "mac", hangs);
6508		} else
6509			device_printf(sc->sc_dev, "device timeout\n");
6510		do_reset = 1;
6511		counter_u64_add(ic->ic_oerrors, 1);
6512		sc->sc_stats.ast_watchdog++;
6513
6514		ath_power_restore_power_state(sc);
6515	}
6516
6517	/*
6518	 * We can't hold the lock across the ath_reset() call.
6519	 *
6520	 * And since this routine can't hold a lock and sleep,
6521	 * do the reset deferred.
6522	 */
6523	if (do_reset) {
6524		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6525	}
6526
6527	callout_schedule(&sc->sc_wd_ch, hz);
6528}
6529
6530static void
6531ath_parent(struct ieee80211com *ic)
6532{
6533	struct ath_softc *sc = ic->ic_softc;
6534	int error = EDOOFUS;
6535
6536	ATH_LOCK(sc);
6537	if (ic->ic_nrunning > 0) {
6538		/*
6539		 * To avoid rescanning another access point,
6540		 * do not call ath_init() here.  Instead,
6541		 * only reflect promisc mode settings.
6542		 */
6543		if (sc->sc_running) {
6544			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6545			ath_mode_init(sc);
6546			ath_power_restore_power_state(sc);
6547		} else if (!sc->sc_invalid) {
6548			/*
6549			 * Beware of being called during attach/detach
6550			 * to reset promiscuous mode.  In that case we
6551			 * will still be marked UP but not RUNNING.
6552			 * However trying to re-init the interface
6553			 * is the wrong thing to do as we've already
6554			 * torn down much of our state.  There's
6555			 * probably a better way to deal with this.
6556			 */
6557			error = ath_init(sc);
6558		}
6559	} else {
6560		ath_stop(sc);
6561		if (!sc->sc_invalid)
6562			ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
6563	}
6564	ATH_UNLOCK(sc);
6565
6566	if (error == 0) {
6567#ifdef ATH_TX99_DIAG
6568		if (sc->sc_tx99 != NULL)
6569			sc->sc_tx99->start(sc->sc_tx99);
6570		else
6571#endif
6572		ieee80211_start_all(ic);
6573	}
6574}
6575
6576/*
6577 * Announce various information on device/driver attach.
6578 */
6579static void
6580ath_announce(struct ath_softc *sc)
6581{
6582	struct ath_hal *ah = sc->sc_ah;
6583
6584	device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n",
6585		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6586		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6587	device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6588		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6589	if (bootverbose) {
6590		int i;
6591		for (i = 0; i <= WME_AC_VO; i++) {
6592			struct ath_txq *txq = sc->sc_ac2q[i];
6593			device_printf(sc->sc_dev,
6594			    "Use hw queue %u for %s traffic\n",
6595			    txq->axq_qnum, ieee80211_wme_acnames[i]);
6596		}
6597		device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
6598		    sc->sc_cabq->axq_qnum);
6599		device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
6600		    sc->sc_bhalq);
6601	}
6602	if (ath_rxbuf != ATH_RXBUF)
6603		device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
6604	if (ath_txbuf != ATH_TXBUF)
6605		device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
6606	if (sc->sc_mcastkey && bootverbose)
6607		device_printf(sc->sc_dev, "using multicast key search\n");
6608}
6609
6610static void
6611ath_dfs_tasklet(void *p, int npending)
6612{
6613	struct ath_softc *sc = (struct ath_softc *) p;
6614	struct ieee80211com *ic = &sc->sc_ic;
6615
6616	/*
6617	 * If previous processing has found a radar event,
6618	 * signal this to the net80211 layer to begin DFS
6619	 * processing.
6620	 */
6621	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6622		/* DFS event found, initiate channel change */
6623
6624		/*
6625		 * XXX TODO: immediately disable ACK processing
6626		 * on the current channel.  This would be done
6627		 * by setting AR_DIAG_ACK_DIS (AR5212; may be
6628		 * different for others) until we are out of
6629		 * CAC.
6630		 */
6631
6632		/*
6633		 * XXX doesn't currently tell us whether the event
6634		 * XXX was found in the primary or extension
6635		 * XXX channel!
6636		 */
6637		IEEE80211_LOCK(ic);
6638		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6639		IEEE80211_UNLOCK(ic);
6640	}
6641}
6642
6643/*
6644 * Enable/disable power save.  This must be called with
6645 * no TX driver locks currently held, so it should only
6646 * be called from the RX path (which doesn't hold any
6647 * TX driver locks.)
6648 */
6649static void
6650ath_node_powersave(struct ieee80211_node *ni, int enable)
6651{
6652#ifdef	ATH_SW_PSQ
6653	struct ath_node *an = ATH_NODE(ni);
6654	struct ieee80211com *ic = ni->ni_ic;
6655	struct ath_softc *sc = ic->ic_softc;
6656	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6657
6658	/* XXX and no TXQ locks should be held here */
6659
6660	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6661	    __func__,
6662	    ni->ni_macaddr,
6663	    ":",
6664	    !! enable);
6665
6666	/* Suspend or resume software queue handling */
6667	if (enable)
6668		ath_tx_node_sleep(sc, an);
6669	else
6670		ath_tx_node_wakeup(sc, an);
6671
6672	/* Update net80211 state */
6673	avp->av_node_ps(ni, enable);
6674#else
6675	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6676
6677	/* Update net80211 state */
6678	avp->av_node_ps(ni, enable);
6679#endif/* ATH_SW_PSQ */
6680}
6681
6682/*
6683 * Notification from net80211 that the powersave queue state has
6684 * changed.
6685 *
6686 * Since the software queue also may have some frames:
6687 *
6688 * + if the node software queue has frames and the TID state
6689 *   is 0, we set the TIM;
6690 * + if the node and the stack are both empty, we clear the TIM bit.
6691 * + If the stack tries to set the bit, always set it.
6692 * + If the stack tries to clear the bit, only clear it if the
6693 *   software queue in question is also cleared.
6694 *
6695 * TODO: this is called during node teardown; so let's ensure this
6696 * is all correctly handled and that the TIM bit is cleared.
6697 * It may be that the node flush is called _AFTER_ the net80211
6698 * stack clears the TIM.
6699 *
6700 * Here is the racy part.  Since it's possible >1 concurrent,
6701 * overlapping TXes will appear complete with a TX completion in
6702 * another thread, it's possible that the concurrent TIM calls will
6703 * clash.  We can't hold the node lock here because setting the
6704 * TIM grabs the net80211 comlock and this may cause a LOR.
6705 * The solution is either to totally serialise _everything_ at
6706 * this point (ie, all TX, completion and any reset/flush go into
6707 * one taskqueue) or a new "ath TIM lock" needs to be created that
6708 * just wraps the driver state change and this call to avp->av_set_tim().
6709 *
6710 * The same race exists in the net80211 power save queue handling
6711 * as well.  Since multiple transmitting threads may queue frames
6712 * into the driver, as well as ps-poll and the driver transmitting
6713 * frames (and thus clearing the psq), it's quite possible that
6714 * a packet entering the PSQ and a ps-poll being handled will
6715 * race, causing the TIM to be cleared and not re-set.
6716 */
6717static int
6718ath_node_set_tim(struct ieee80211_node *ni, int enable)
6719{
6720#ifdef	ATH_SW_PSQ
6721	struct ieee80211com *ic = ni->ni_ic;
6722	struct ath_softc *sc = ic->ic_softc;
6723	struct ath_node *an = ATH_NODE(ni);
6724	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6725	int changed = 0;
6726
6727	ATH_TX_LOCK(sc);
6728	an->an_stack_psq = enable;
6729
6730	/*
6731	 * This will get called for all operating modes,
6732	 * even if avp->av_set_tim is unset.
6733	 * It's currently set for hostap/ibss modes; but
6734	 * the same infrastructure is used for both STA
6735	 * and AP/IBSS node power save.
6736	 */
6737	if (avp->av_set_tim == NULL) {
6738		ATH_TX_UNLOCK(sc);
6739		return (0);
6740	}
6741
6742	/*
6743	 * If setting the bit, always set it here.
6744	 * If clearing the bit, only clear it if the
6745	 * software queue is also empty.
6746	 *
6747	 * If the node has left power save, just clear the TIM
6748	 * bit regardless of the state of the power save queue.
6749	 *
6750	 * XXX TODO: although atomics are used, it's quite possible
6751	 * that a race will occur between this and setting/clearing
6752	 * in another thread.  TX completion will occur always in
6753	 * one thread, however setting/clearing the TIM bit can come
6754	 * from a variety of different process contexts!
6755	 */
6756	if (enable && an->an_tim_set == 1) {
6757		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6758		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6759		    __func__,
6760		    ni->ni_macaddr,
6761		    ":",
6762		    enable);
6763		ATH_TX_UNLOCK(sc);
6764	} else if (enable) {
6765		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6766		    "%s: %6D: enable=%d, enabling TIM\n",
6767		    __func__,
6768		    ni->ni_macaddr,
6769		    ":",
6770		    enable);
6771		an->an_tim_set = 1;
6772		ATH_TX_UNLOCK(sc);
6773		changed = avp->av_set_tim(ni, enable);
6774	} else if (an->an_swq_depth == 0) {
6775		/* disable */
6776		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6777		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6778		    __func__,
6779		    ni->ni_macaddr,
6780		    ":",
6781		    enable);
6782		an->an_tim_set = 0;
6783		ATH_TX_UNLOCK(sc);
6784		changed = avp->av_set_tim(ni, enable);
6785	} else if (! an->an_is_powersave) {
6786		/*
6787		 * disable regardless; the node isn't in powersave now
6788		 */
6789		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6790		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6791		    __func__,
6792		    ni->ni_macaddr,
6793		    ":",
6794		    enable);
6795		an->an_tim_set = 0;
6796		ATH_TX_UNLOCK(sc);
6797		changed = avp->av_set_tim(ni, enable);
6798	} else {
6799		/*
6800		 * psq disable, node is currently in powersave, node
6801		 * software queue isn't empty, so don't clear the TIM bit
6802		 * for now.
6803		 */
6804		ATH_TX_UNLOCK(sc);
6805		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6806		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6807		    __func__,
6808		    ni->ni_macaddr,
6809		    ":",
6810		    enable);
6811		changed = 0;
6812	}
6813
6814	return (changed);
6815#else
6816	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6817
6818	/*
6819	 * Some operating modes don't set av_set_tim(), so don't
6820	 * update it here.
6821	 */
6822	if (avp->av_set_tim == NULL)
6823		return (0);
6824
6825	return (avp->av_set_tim(ni, enable));
6826#endif /* ATH_SW_PSQ */
6827}
6828
6829/*
6830 * Set or update the TIM from the software queue.
6831 *
6832 * Check the software queue depth before attempting to do lock
6833 * anything; that avoids trying to obtain the lock.  Then,
6834 * re-check afterwards to ensure nothing has changed in the
6835 * meantime.
6836 *
6837 * set:   This is designed to be called from the TX path, after
6838 *        a frame has been queued; to see if the swq > 0.
6839 *
6840 * clear: This is designed to be called from the buffer completion point
6841 *        (right now it's ath_tx_default_comp()) where the state of
6842 *        a software queue has changed.
6843 *
6844 * It makes sense to place it at buffer free / completion rather
6845 * than after each software queue operation, as there's no real
6846 * point in churning the TIM bit as the last frames in the software
6847 * queue are transmitted.  If they fail and we retry them, we'd
6848 * just be setting the TIM bit again anyway.
6849 */
6850void
6851ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6852     int enable)
6853{
6854#ifdef	ATH_SW_PSQ
6855	struct ath_node *an;
6856	struct ath_vap *avp;
6857
6858	/* Don't do this for broadcast/etc frames */
6859	if (ni == NULL)
6860		return;
6861
6862	an = ATH_NODE(ni);
6863	avp = ATH_VAP(ni->ni_vap);
6864
6865	/*
6866	 * And for operating modes without the TIM handler set, let's
6867	 * just skip those.
6868	 */
6869	if (avp->av_set_tim == NULL)
6870		return;
6871
6872	ATH_TX_LOCK_ASSERT(sc);
6873
6874	if (enable) {
6875		if (an->an_is_powersave &&
6876		    an->an_tim_set == 0 &&
6877		    an->an_swq_depth != 0) {
6878			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6879			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6880			    __func__,
6881			    ni->ni_macaddr,
6882			    ":");
6883			an->an_tim_set = 1;
6884			(void) avp->av_set_tim(ni, 1);
6885		}
6886	} else {
6887		/*
6888		 * Don't bother grabbing the lock unless the queue is empty.
6889		 */
6890		if (an->an_swq_depth != 0)
6891			return;
6892
6893		if (an->an_is_powersave &&
6894		    an->an_stack_psq == 0 &&
6895		    an->an_tim_set == 1 &&
6896		    an->an_swq_depth == 0) {
6897			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6898			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6899			    " clear!\n",
6900			    __func__,
6901			    ni->ni_macaddr,
6902			    ":");
6903			an->an_tim_set = 0;
6904			(void) avp->av_set_tim(ni, 0);
6905		}
6906	}
6907#else
6908	return;
6909#endif	/* ATH_SW_PSQ */
6910}
6911
6912/*
6913 * Received a ps-poll frame from net80211.
6914 *
6915 * Here we get a chance to serve out a software-queued frame ourselves
6916 * before we punt it to net80211 to transmit us one itself - either
6917 * because there's traffic in the net80211 psq, or a NULL frame to
6918 * indicate there's nothing else.
6919 */
6920static void
6921ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6922{
6923#ifdef	ATH_SW_PSQ
6924	struct ath_node *an;
6925	struct ath_vap *avp;
6926	struct ieee80211com *ic = ni->ni_ic;
6927	struct ath_softc *sc = ic->ic_softc;
6928	int tid;
6929
6930	/* Just paranoia */
6931	if (ni == NULL)
6932		return;
6933
6934	/*
6935	 * Unassociated (temporary node) station.
6936	 */
6937	if (ni->ni_associd == 0)
6938		return;
6939
6940	/*
6941	 * We do have an active node, so let's begin looking into it.
6942	 */
6943	an = ATH_NODE(ni);
6944	avp = ATH_VAP(ni->ni_vap);
6945
6946	/*
6947	 * For now, we just call the original ps-poll method.
6948	 * Once we're ready to flip this on:
6949	 *
6950	 * + Set leak to 1, as no matter what we're going to have
6951	 *   to send a frame;
6952	 * + Check the software queue and if there's something in it,
6953	 *   schedule the highest TID thas has traffic from this node.
6954	 *   Then make sure we schedule the software scheduler to
6955	 *   run so it picks up said frame.
6956	 *
6957	 * That way whatever happens, we'll at least send _a_ frame
6958	 * to the given node.
6959	 *
6960	 * Again, yes, it's crappy QoS if the node has multiple
6961	 * TIDs worth of traffic - but let's get it working first
6962	 * before we optimise it.
6963	 *
6964	 * Also yes, there's definitely latency here - we're not
6965	 * direct dispatching to the hardware in this path (and
6966	 * we're likely being called from the packet receive path,
6967	 * so going back into TX may be a little hairy!) but again
6968	 * I'd like to get this working first before optimising
6969	 * turn-around time.
6970	 */
6971
6972	ATH_TX_LOCK(sc);
6973
6974	/*
6975	 * Legacy - we're called and the node isn't asleep.
6976	 * Immediately punt.
6977	 */
6978	if (! an->an_is_powersave) {
6979		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6980		    "%s: %6D: not in powersave?\n",
6981		    __func__,
6982		    ni->ni_macaddr,
6983		    ":");
6984		ATH_TX_UNLOCK(sc);
6985		avp->av_recv_pspoll(ni, m);
6986		return;
6987	}
6988
6989	/*
6990	 * We're in powersave.
6991	 *
6992	 * Leak a frame.
6993	 */
6994	an->an_leak_count = 1;
6995
6996	/*
6997	 * Now, if there's no frames in the node, just punt to
6998	 * recv_pspoll.
6999	 *
7000	 * Don't bother checking if the TIM bit is set, we really
7001	 * only care if there are any frames here!
7002	 */
7003	if (an->an_swq_depth == 0) {
7004		ATH_TX_UNLOCK(sc);
7005		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7006		    "%s: %6D: SWQ empty; punting to net80211\n",
7007		    __func__,
7008		    ni->ni_macaddr,
7009		    ":");
7010		avp->av_recv_pspoll(ni, m);
7011		return;
7012	}
7013
7014	/*
7015	 * Ok, let's schedule the highest TID that has traffic
7016	 * and then schedule something.
7017	 */
7018	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7019		struct ath_tid *atid = &an->an_tid[tid];
7020		/*
7021		 * No frames? Skip.
7022		 */
7023		if (atid->axq_depth == 0)
7024			continue;
7025		ath_tx_tid_sched(sc, atid);
7026		/*
7027		 * XXX we could do a direct call to the TXQ
7028		 * scheduler code here to optimise latency
7029		 * at the expense of a REALLY deep callstack.
7030		 */
7031		ATH_TX_UNLOCK(sc);
7032		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7033		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7034		    "%s: %6D: leaking frame to TID %d\n",
7035		    __func__,
7036		    ni->ni_macaddr,
7037		    ":",
7038		    tid);
7039		return;
7040	}
7041
7042	ATH_TX_UNLOCK(sc);
7043
7044	/*
7045	 * XXX nothing in the TIDs at this point? Eek.
7046	 */
7047	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7048	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7049	    __func__,
7050	    ni->ni_macaddr,
7051	    ":");
7052	avp->av_recv_pspoll(ni, m);
7053#else
7054	avp->av_recv_pspoll(ni, m);
7055#endif	/* ATH_SW_PSQ */
7056}
7057
7058MODULE_VERSION(ath_main, 1);
7059MODULE_DEPEND(ath_main, wlan, 1, 1, 1);          /* 802.11 media layer */
7060MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1);
7061MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1);
7062MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1);
7063#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7064MODULE_DEPEND(ath_main, alq, 1, 1, 1);
7065#endif
7066