1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/endian.h>
39#include <sys/kernel.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/module.h>
43#include <sys/rman.h>
44#include <sys/queue.h>
45#include <sys/socket.h>
46#include <sys/sockio.h>
47#include <sys/sysctl.h>
48#include <sys/taskqueue.h>
49
50#include <net/bpf.h>
51#include <net/if.h>
52#include <net/if_var.h>
53#include <net/if_arp.h>
54#include <net/ethernet.h>
55#include <net/if_dl.h>
56#include <net/if_llc.h>
57#include <net/if_media.h>
58#include <net/if_types.h>
59#include <net/if_vlan_var.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/tcp.h>
65
66#include <dev/mii/mii.h>
67#include <dev/mii/miivar.h>
68
69#include <dev/pci/pcireg.h>
70#include <dev/pci/pcivar.h>
71
72#include <machine/bus.h>
73#include <machine/in_cksum.h>
74
75#include <dev/ale/if_alereg.h>
76#include <dev/ale/if_alevar.h>
77
78/* "device miibus" required.  See GENERIC if you get errors here. */
79#include "miibus_if.h"
80
81/* For more information about Tx checksum offload issues see ale_encap(). */
82#define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
83
84MODULE_DEPEND(ale, pci, 1, 1, 1);
85MODULE_DEPEND(ale, ether, 1, 1, 1);
86MODULE_DEPEND(ale, miibus, 1, 1, 1);
87
88/* Tunables. */
89static int msi_disable = 0;
90static int msix_disable = 0;
91TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
92TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
93
94/*
95 * Devices supported by this driver.
96 */
97static const struct ale_dev {
98	uint16_t	ale_vendorid;
99	uint16_t	ale_deviceid;
100	const char	*ale_name;
101} ale_devs[] = {
102    { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
103    "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
104};
105
106static int	ale_attach(device_t);
107static int	ale_check_boundary(struct ale_softc *);
108static int	ale_detach(device_t);
109static int	ale_dma_alloc(struct ale_softc *);
110static void	ale_dma_free(struct ale_softc *);
111static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
112static int	ale_encap(struct ale_softc *, struct mbuf **);
113static void	ale_get_macaddr(struct ale_softc *);
114static void	ale_init(void *);
115static void	ale_init_locked(struct ale_softc *);
116static void	ale_init_rx_pages(struct ale_softc *);
117static void	ale_init_tx_ring(struct ale_softc *);
118static void	ale_int_task(void *, int);
119static int	ale_intr(void *);
120static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
121static void	ale_mac_config(struct ale_softc *);
122static int	ale_miibus_readreg(device_t, int, int);
123static void	ale_miibus_statchg(device_t);
124static int	ale_miibus_writereg(device_t, int, int, int);
125static int	ale_mediachange(struct ifnet *);
126static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
127static void	ale_phy_reset(struct ale_softc *);
128static int	ale_probe(device_t);
129static void	ale_reset(struct ale_softc *);
130static int	ale_resume(device_t);
131static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
132    uint32_t, uint32_t *);
133static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
134static int	ale_rxeof(struct ale_softc *sc, int);
135static void	ale_rxfilter(struct ale_softc *);
136static void	ale_rxvlan(struct ale_softc *);
137static void	ale_setlinkspeed(struct ale_softc *);
138static void	ale_setwol(struct ale_softc *);
139static int	ale_shutdown(device_t);
140static void	ale_start(struct ifnet *);
141static void	ale_start_locked(struct ifnet *);
142static void	ale_stats_clear(struct ale_softc *);
143static void	ale_stats_update(struct ale_softc *);
144static void	ale_stop(struct ale_softc *);
145static void	ale_stop_mac(struct ale_softc *);
146static int	ale_suspend(device_t);
147static void	ale_sysctl_node(struct ale_softc *);
148static void	ale_tick(void *);
149static void	ale_txeof(struct ale_softc *);
150static void	ale_watchdog(struct ale_softc *);
151static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
152static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
153static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
154
155static device_method_t ale_methods[] = {
156	/* Device interface. */
157	DEVMETHOD(device_probe,		ale_probe),
158	DEVMETHOD(device_attach,	ale_attach),
159	DEVMETHOD(device_detach,	ale_detach),
160	DEVMETHOD(device_shutdown,	ale_shutdown),
161	DEVMETHOD(device_suspend,	ale_suspend),
162	DEVMETHOD(device_resume,	ale_resume),
163
164	/* MII interface. */
165	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
166	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
167	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
168
169	DEVMETHOD_END
170};
171
172static driver_t ale_driver = {
173	"ale",
174	ale_methods,
175	sizeof(struct ale_softc)
176};
177
178static devclass_t ale_devclass;
179
180DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
181MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
182    nitems(ale_devs));
183DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
184
185static struct resource_spec ale_res_spec_mem[] = {
186	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec ale_irq_spec_legacy[] = {
191	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec ale_irq_spec_msi[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec ale_irq_spec_msix[] = {
201	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202	{ -1,			0,		0 }
203};
204
205static int
206ale_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct ale_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
217		DELAY(5);
218		v = CSR_READ_4(sc, ALE_MDIO);
219		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220			break;
221	}
222
223	if (i == 0) {
224		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
225		return (0);
226	}
227
228	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229}
230
231static int
232ale_miibus_writereg(device_t dev, int phy, int reg, int val)
233{
234	struct ale_softc *sc;
235	uint32_t v;
236	int i;
237
238	sc = device_get_softc(dev);
239
240	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
241	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
242	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
243	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
244		DELAY(5);
245		v = CSR_READ_4(sc, ALE_MDIO);
246		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
247			break;
248	}
249
250	if (i == 0)
251		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
252
253	return (0);
254}
255
256static void
257ale_miibus_statchg(device_t dev)
258{
259	struct ale_softc *sc;
260	struct mii_data *mii;
261	struct ifnet *ifp;
262	uint32_t reg;
263
264	sc = device_get_softc(dev);
265	mii = device_get_softc(sc->ale_miibus);
266	ifp = sc->ale_ifp;
267	if (mii == NULL || ifp == NULL ||
268	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
269		return;
270
271	sc->ale_flags &= ~ALE_FLAG_LINK;
272	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
273	    (IFM_ACTIVE | IFM_AVALID)) {
274		switch (IFM_SUBTYPE(mii->mii_media_active)) {
275		case IFM_10_T:
276		case IFM_100_TX:
277			sc->ale_flags |= ALE_FLAG_LINK;
278			break;
279		case IFM_1000_T:
280			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
281				sc->ale_flags |= ALE_FLAG_LINK;
282			break;
283		default:
284			break;
285		}
286	}
287
288	/* Stop Rx/Tx MACs. */
289	ale_stop_mac(sc);
290
291	/* Program MACs with resolved speed/duplex/flow-control. */
292	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
293		ale_mac_config(sc);
294		/* Reenable Tx/Rx MACs. */
295		reg = CSR_READ_4(sc, ALE_MAC_CFG);
296		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
297		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
298	}
299}
300
301static void
302ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
303{
304	struct ale_softc *sc;
305	struct mii_data *mii;
306
307	sc = ifp->if_softc;
308	ALE_LOCK(sc);
309	if ((ifp->if_flags & IFF_UP) == 0) {
310		ALE_UNLOCK(sc);
311		return;
312	}
313	mii = device_get_softc(sc->ale_miibus);
314
315	mii_pollstat(mii);
316	ifmr->ifm_status = mii->mii_media_status;
317	ifmr->ifm_active = mii->mii_media_active;
318	ALE_UNLOCK(sc);
319}
320
321static int
322ale_mediachange(struct ifnet *ifp)
323{
324	struct ale_softc *sc;
325	struct mii_data *mii;
326	struct mii_softc *miisc;
327	int error;
328
329	sc = ifp->if_softc;
330	ALE_LOCK(sc);
331	mii = device_get_softc(sc->ale_miibus);
332	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
333		PHY_RESET(miisc);
334	error = mii_mediachg(mii);
335	ALE_UNLOCK(sc);
336
337	return (error);
338}
339
340static int
341ale_probe(device_t dev)
342{
343	const struct ale_dev *sp;
344	int i;
345	uint16_t vendor, devid;
346
347	vendor = pci_get_vendor(dev);
348	devid = pci_get_device(dev);
349	sp = ale_devs;
350	for (i = 0; i < nitems(ale_devs); i++) {
351		if (vendor == sp->ale_vendorid &&
352		    devid == sp->ale_deviceid) {
353			device_set_desc(dev, sp->ale_name);
354			return (BUS_PROBE_DEFAULT);
355		}
356		sp++;
357	}
358
359	return (ENXIO);
360}
361
362static void
363ale_get_macaddr(struct ale_softc *sc)
364{
365	uint32_t ea[2], reg;
366	int i, vpdc;
367
368	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
369	if ((reg & SPI_VPD_ENB) != 0) {
370		reg &= ~SPI_VPD_ENB;
371		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
372	}
373
374	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
375		/*
376		 * PCI VPD capability found, let TWSI reload EEPROM.
377		 * This will set ethernet address of controller.
378		 */
379		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
380		    TWSI_CTRL_SW_LD_START);
381		for (i = 100; i > 0; i--) {
382			DELAY(1000);
383			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
384			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
385				break;
386		}
387		if (i == 0)
388			device_printf(sc->ale_dev,
389			    "reloading EEPROM timeout!\n");
390	} else {
391		if (bootverbose)
392			device_printf(sc->ale_dev,
393			    "PCI VPD capability not found!\n");
394	}
395
396	ea[0] = CSR_READ_4(sc, ALE_PAR0);
397	ea[1] = CSR_READ_4(sc, ALE_PAR1);
398	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
399	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
400	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
401	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
402	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
403	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
404}
405
406static void
407ale_phy_reset(struct ale_softc *sc)
408{
409
410	/* Reset magic from Linux. */
411	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
412	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
413	    GPHY_CTRL_PHY_PLL_ON);
414	DELAY(1000);
415	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
416	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
417	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
418	DELAY(1000);
419
420#define	ATPHY_DBG_ADDR		0x1D
421#define	ATPHY_DBG_DATA		0x1E
422
423	/* Enable hibernation mode. */
424	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425	    ATPHY_DBG_ADDR, 0x0B);
426	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
427	    ATPHY_DBG_DATA, 0xBC00);
428	/* Set Class A/B for all modes. */
429	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430	    ATPHY_DBG_ADDR, 0x00);
431	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
432	    ATPHY_DBG_DATA, 0x02EF);
433	/* Enable 10BT power saving. */
434	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435	    ATPHY_DBG_ADDR, 0x12);
436	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
437	    ATPHY_DBG_DATA, 0x4C04);
438	/* Adjust 1000T power. */
439	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440	    ATPHY_DBG_ADDR, 0x04);
441	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
442	    ATPHY_DBG_ADDR, 0x8BBB);
443	/* 10BT center tap voltage. */
444	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
445	    ATPHY_DBG_ADDR, 0x05);
446	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
447	    ATPHY_DBG_ADDR, 0x2C46);
448
449#undef	ATPHY_DBG_ADDR
450#undef	ATPHY_DBG_DATA
451	DELAY(1000);
452}
453
454static int
455ale_attach(device_t dev)
456{
457	struct ale_softc *sc;
458	struct ifnet *ifp;
459	uint16_t burst;
460	int error, i, msic, msixc, pmc;
461	uint32_t rxf_len, txf_len;
462
463	error = 0;
464	sc = device_get_softc(dev);
465	sc->ale_dev = dev;
466
467	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
468	    MTX_DEF);
469	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
470	NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
471
472	/* Map the device. */
473	pci_enable_busmaster(dev);
474	sc->ale_res_spec = ale_res_spec_mem;
475	sc->ale_irq_spec = ale_irq_spec_legacy;
476	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
477	if (error != 0) {
478		device_printf(dev, "cannot allocate memory resources.\n");
479		goto fail;
480	}
481
482	/* Set PHY address. */
483	sc->ale_phyaddr = ALE_PHY_ADDR;
484
485	/* Reset PHY. */
486	ale_phy_reset(sc);
487
488	/* Reset the ethernet controller. */
489	ale_reset(sc);
490
491	/* Get PCI and chip id/revision. */
492	sc->ale_rev = pci_get_revid(dev);
493	if (sc->ale_rev >= 0xF0) {
494		/* L2E Rev. B. AR8114 */
495		sc->ale_flags |= ALE_FLAG_FASTETHER;
496	} else {
497		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
498			/* L1E AR8121 */
499			sc->ale_flags |= ALE_FLAG_JUMBO;
500		} else {
501			/* L2E Rev. A. AR8113 */
502			sc->ale_flags |= ALE_FLAG_FASTETHER;
503		}
504	}
505	/*
506	 * All known controllers seems to require 4 bytes alignment
507	 * of Tx buffers to make Tx checksum offload with custom
508	 * checksum generation method work.
509	 */
510	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
511	/*
512	 * All known controllers seems to have issues on Rx checksum
513	 * offload for fragmented IP datagrams.
514	 */
515	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
516	/*
517	 * Don't use Tx CMB. It is known to cause RRS update failure
518	 * under certain circumstances. Typical phenomenon of the
519	 * issue would be unexpected sequence number encountered in
520	 * Rx handler.
521	 */
522	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
523	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
524	    MASTER_CHIP_REV_SHIFT;
525	if (bootverbose) {
526		device_printf(dev, "PCI device revision : 0x%04x\n",
527		    sc->ale_rev);
528		device_printf(dev, "Chip id/revision : 0x%04x\n",
529		    sc->ale_chip_rev);
530	}
531	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
532	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
533	/*
534	 * Uninitialized hardware returns an invalid chip id/revision
535	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
536	 */
537	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
538	    rxf_len == 0xFFFFFFF) {
539		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
540		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
541		    txf_len, rxf_len);
542		error = ENXIO;
543		goto fail;
544	}
545	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
546
547	/* Allocate IRQ resources. */
548	msixc = pci_msix_count(dev);
549	msic = pci_msi_count(dev);
550	if (bootverbose) {
551		device_printf(dev, "MSIX count : %d\n", msixc);
552		device_printf(dev, "MSI count : %d\n", msic);
553	}
554
555	/* Prefer MSIX over MSI. */
556	if (msix_disable == 0 || msi_disable == 0) {
557		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
558		    pci_alloc_msix(dev, &msixc) == 0) {
559			if (msixc == ALE_MSIX_MESSAGES) {
560				device_printf(dev, "Using %d MSIX messages.\n",
561				    msixc);
562				sc->ale_flags |= ALE_FLAG_MSIX;
563				sc->ale_irq_spec = ale_irq_spec_msix;
564			} else
565				pci_release_msi(dev);
566		}
567		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
568		    msic == ALE_MSI_MESSAGES &&
569		    pci_alloc_msi(dev, &msic) == 0) {
570			if (msic == ALE_MSI_MESSAGES) {
571				device_printf(dev, "Using %d MSI messages.\n",
572				    msic);
573				sc->ale_flags |= ALE_FLAG_MSI;
574				sc->ale_irq_spec = ale_irq_spec_msi;
575			} else
576				pci_release_msi(dev);
577		}
578	}
579
580	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
581	if (error != 0) {
582		device_printf(dev, "cannot allocate IRQ resources.\n");
583		goto fail;
584	}
585
586	/* Get DMA parameters from PCIe device control register. */
587	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
588		sc->ale_flags |= ALE_FLAG_PCIE;
589		burst = pci_read_config(dev, i + 0x08, 2);
590		/* Max read request size. */
591		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
592		    DMA_CFG_RD_BURST_SHIFT;
593		/* Max payload size. */
594		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
595		    DMA_CFG_WR_BURST_SHIFT;
596		if (bootverbose) {
597			device_printf(dev, "Read request size : %d bytes.\n",
598			    128 << ((burst >> 12) & 0x07));
599			device_printf(dev, "TLP payload size : %d bytes.\n",
600			    128 << ((burst >> 5) & 0x07));
601		}
602	} else {
603		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
604		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
605	}
606
607	/* Create device sysctl node. */
608	ale_sysctl_node(sc);
609
610	if ((error = ale_dma_alloc(sc)) != 0)
611		goto fail;
612
613	/* Load station address. */
614	ale_get_macaddr(sc);
615
616	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
617	if (ifp == NULL) {
618		device_printf(dev, "cannot allocate ifnet structure.\n");
619		error = ENXIO;
620		goto fail;
621	}
622
623	ifp->if_softc = sc;
624	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
625	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
626	ifp->if_ioctl = ale_ioctl;
627	ifp->if_start = ale_start;
628	ifp->if_init = ale_init;
629	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
630	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
631	IFQ_SET_READY(&ifp->if_snd);
632	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
633	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
634	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
635		sc->ale_flags |= ALE_FLAG_PMCAP;
636		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
637	}
638	ifp->if_capenable = ifp->if_capabilities;
639
640	/* Set up MII bus. */
641	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
642	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
643	    MIIF_DOPAUSE);
644	if (error != 0) {
645		device_printf(dev, "attaching PHYs failed\n");
646		goto fail;
647	}
648
649	ether_ifattach(ifp, sc->ale_eaddr);
650
651	/* VLAN capability setup. */
652	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
653	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
654	ifp->if_capenable = ifp->if_capabilities;
655	/*
656	 * Even though controllers supported by ale(3) have Rx checksum
657	 * offload bug the workaround for fragmented frames seemed to
658	 * work so far. However it seems Rx checksum offload does not
659	 * work under certain conditions. So disable Rx checksum offload
660	 * until I find more clue about it but allow users to override it.
661	 */
662	ifp->if_capenable &= ~IFCAP_RXCSUM;
663
664	/* Tell the upper layer(s) we support long frames. */
665	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
666
667	/* Create local taskq. */
668	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
669	    taskqueue_thread_enqueue, &sc->ale_tq);
670	if (sc->ale_tq == NULL) {
671		device_printf(dev, "could not create taskqueue.\n");
672		ether_ifdetach(ifp);
673		error = ENXIO;
674		goto fail;
675	}
676	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
677	    device_get_nameunit(sc->ale_dev));
678
679	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
680		msic = ALE_MSIX_MESSAGES;
681	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
682		msic = ALE_MSI_MESSAGES;
683	else
684		msic = 1;
685	for (i = 0; i < msic; i++) {
686		error = bus_setup_intr(dev, sc->ale_irq[i],
687		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
688		    &sc->ale_intrhand[i]);
689		if (error != 0)
690			break;
691	}
692	if (error != 0) {
693		device_printf(dev, "could not set up interrupt handler.\n");
694		taskqueue_free(sc->ale_tq);
695		sc->ale_tq = NULL;
696		ether_ifdetach(ifp);
697		goto fail;
698	}
699
700fail:
701	if (error != 0)
702		ale_detach(dev);
703
704	return (error);
705}
706
707static int
708ale_detach(device_t dev)
709{
710	struct ale_softc *sc;
711	struct ifnet *ifp;
712	int i, msic;
713
714	sc = device_get_softc(dev);
715
716	ifp = sc->ale_ifp;
717	if (device_is_attached(dev)) {
718		ether_ifdetach(ifp);
719		ALE_LOCK(sc);
720		ale_stop(sc);
721		ALE_UNLOCK(sc);
722		callout_drain(&sc->ale_tick_ch);
723		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
724	}
725
726	if (sc->ale_tq != NULL) {
727		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
728		taskqueue_free(sc->ale_tq);
729		sc->ale_tq = NULL;
730	}
731
732	if (sc->ale_miibus != NULL) {
733		device_delete_child(dev, sc->ale_miibus);
734		sc->ale_miibus = NULL;
735	}
736	bus_generic_detach(dev);
737	ale_dma_free(sc);
738
739	if (ifp != NULL) {
740		if_free(ifp);
741		sc->ale_ifp = NULL;
742	}
743
744	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
745		msic = ALE_MSIX_MESSAGES;
746	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
747		msic = ALE_MSI_MESSAGES;
748	else
749		msic = 1;
750	for (i = 0; i < msic; i++) {
751		if (sc->ale_intrhand[i] != NULL) {
752			bus_teardown_intr(dev, sc->ale_irq[i],
753			    sc->ale_intrhand[i]);
754			sc->ale_intrhand[i] = NULL;
755		}
756	}
757
758	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
759	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
760		pci_release_msi(dev);
761	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
762	mtx_destroy(&sc->ale_mtx);
763
764	return (0);
765}
766
767#define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
768	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
769
770#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
771	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
772
773static void
774ale_sysctl_node(struct ale_softc *sc)
775{
776	struct sysctl_ctx_list *ctx;
777	struct sysctl_oid_list *child, *parent;
778	struct sysctl_oid *tree;
779	struct ale_hw_stats *stats;
780	int error;
781
782	stats = &sc->ale_stats;
783	ctx = device_get_sysctl_ctx(sc->ale_dev);
784	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
785
786	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
787	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod,
788	    0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
789	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
790	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod,
791	    0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
792	/* Pull in device tunables. */
793	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
794	error = resource_int_value(device_get_name(sc->ale_dev),
795	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
796	if (error == 0) {
797		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
798		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
799			device_printf(sc->ale_dev, "int_rx_mod value out of "
800			    "range; using default: %d\n",
801			    ALE_IM_RX_TIMER_DEFAULT);
802			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
803		}
804	}
805	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
806	error = resource_int_value(device_get_name(sc->ale_dev),
807	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
808	if (error == 0) {
809		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
810		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
811			device_printf(sc->ale_dev, "int_tx_mod value out of "
812			    "range; using default: %d\n",
813			    ALE_IM_TX_TIMER_DEFAULT);
814			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
815		}
816	}
817	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
818	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
819	    &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I",
820	    "max number of Rx events to process");
821	/* Pull in device tunables. */
822	sc->ale_process_limit = ALE_PROC_DEFAULT;
823	error = resource_int_value(device_get_name(sc->ale_dev),
824	    device_get_unit(sc->ale_dev), "process_limit",
825	    &sc->ale_process_limit);
826	if (error == 0) {
827		if (sc->ale_process_limit < ALE_PROC_MIN ||
828		    sc->ale_process_limit > ALE_PROC_MAX) {
829			device_printf(sc->ale_dev,
830			    "process_limit value out of range; "
831			    "using default: %d\n", ALE_PROC_DEFAULT);
832			sc->ale_process_limit = ALE_PROC_DEFAULT;
833		}
834	}
835
836	/* Misc statistics. */
837	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
838	    &stats->reset_brk_seq,
839	    "Controller resets due to broken Rx sequnce number");
840
841	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
842	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics");
843	parent = SYSCTL_CHILDREN(tree);
844
845	/* Rx statistics. */
846	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
847	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
848	child = SYSCTL_CHILDREN(tree);
849	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
850	    &stats->rx_frames, "Good frames");
851	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
852	    &stats->rx_bcast_frames, "Good broadcast frames");
853	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
854	    &stats->rx_mcast_frames, "Good multicast frames");
855	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
856	    &stats->rx_pause_frames, "Pause control frames");
857	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
858	    &stats->rx_control_frames, "Control frames");
859	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
860	    &stats->rx_crcerrs, "CRC errors");
861	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
862	    &stats->rx_lenerrs, "Frames with length mismatched");
863	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
864	    &stats->rx_bytes, "Good octets");
865	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
866	    &stats->rx_bcast_bytes, "Good broadcast octets");
867	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
868	    &stats->rx_mcast_bytes, "Good multicast octets");
869	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
870	    &stats->rx_runts, "Too short frames");
871	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
872	    &stats->rx_fragments, "Fragmented frames");
873	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
874	    &stats->rx_pkts_64, "64 bytes frames");
875	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
876	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
877	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
878	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
879	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
880	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
881	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
882	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
883	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
884	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
885	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
886	    &stats->rx_pkts_1519_max, "1519 to max frames");
887	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
888	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
889	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
890	    &stats->rx_fifo_oflows, "FIFO overflows");
891	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
892	    &stats->rx_rrs_errs, "Return status write-back errors");
893	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
894	    &stats->rx_alignerrs, "Alignment errors");
895	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
896	    &stats->rx_pkts_filtered,
897	    "Frames dropped due to address filtering");
898
899	/* Tx statistics. */
900	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
901	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
902	child = SYSCTL_CHILDREN(tree);
903	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
904	    &stats->tx_frames, "Good frames");
905	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
906	    &stats->tx_bcast_frames, "Good broadcast frames");
907	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
908	    &stats->tx_mcast_frames, "Good multicast frames");
909	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
910	    &stats->tx_pause_frames, "Pause control frames");
911	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
912	    &stats->tx_control_frames, "Control frames");
913	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
914	    &stats->tx_excess_defer, "Frames with excessive derferrals");
915	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
916	    &stats->tx_excess_defer, "Frames with derferrals");
917	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
918	    &stats->tx_bytes, "Good octets");
919	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
920	    &stats->tx_bcast_bytes, "Good broadcast octets");
921	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
922	    &stats->tx_mcast_bytes, "Good multicast octets");
923	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
924	    &stats->tx_pkts_64, "64 bytes frames");
925	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
926	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
927	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
928	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
929	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
930	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
931	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
932	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
933	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
934	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
935	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
936	    &stats->tx_pkts_1519_max, "1519 to max frames");
937	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
938	    &stats->tx_single_colls, "Single collisions");
939	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
940	    &stats->tx_multi_colls, "Multiple collisions");
941	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
942	    &stats->tx_late_colls, "Late collisions");
943	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
944	    &stats->tx_excess_colls, "Excessive collisions");
945	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
946	    &stats->tx_underrun, "FIFO underruns");
947	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
948	    &stats->tx_desc_underrun, "Descriptor write-back errors");
949	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
950	    &stats->tx_lenerrs, "Frames with length mismatched");
951	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
952	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
953}
954
955#undef ALE_SYSCTL_STAT_ADD32
956#undef ALE_SYSCTL_STAT_ADD64
957
958struct ale_dmamap_arg {
959	bus_addr_t	ale_busaddr;
960};
961
962static void
963ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
964{
965	struct ale_dmamap_arg *ctx;
966
967	if (error != 0)
968		return;
969
970	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
971
972	ctx = (struct ale_dmamap_arg *)arg;
973	ctx->ale_busaddr = segs[0].ds_addr;
974}
975
976/*
977 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
978 * which specifies high address region of DMA blocks. Therefore these
979 * blocks should have the same high address of given 4GB address
980 * space(i.e. crossing 4GB boundary is not allowed).
981 */
982static int
983ale_check_boundary(struct ale_softc *sc)
984{
985	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
986	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
987
988	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
989	    sc->ale_pagesize;
990	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
991	    sc->ale_pagesize;
992	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
993	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
994	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
995	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
996
997	if ((ALE_ADDR_HI(tx_ring_end) !=
998	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
999	    (ALE_ADDR_HI(rx_page_end[0]) !=
1000	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
1001	    (ALE_ADDR_HI(rx_page_end[1]) !=
1002	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1003	    (ALE_ADDR_HI(tx_cmb_end) !=
1004	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1005	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1006	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1007	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1008	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1009		return (EFBIG);
1010
1011	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1012	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1013	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1014	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1015	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1016		return (EFBIG);
1017
1018	return (0);
1019}
1020
1021static int
1022ale_dma_alloc(struct ale_softc *sc)
1023{
1024	struct ale_txdesc *txd;
1025	bus_addr_t lowaddr;
1026	struct ale_dmamap_arg ctx;
1027	int error, guard_size, i;
1028
1029	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1030		guard_size = ALE_JUMBO_FRAMELEN;
1031	else
1032		guard_size = ALE_MAX_FRAMELEN;
1033	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1034	    ALE_RX_PAGE_ALIGN);
1035	lowaddr = BUS_SPACE_MAXADDR;
1036again:
1037	/* Create parent DMA tag. */
1038	error = bus_dma_tag_create(
1039	    bus_get_dma_tag(sc->ale_dev), /* parent */
1040	    1, 0,			/* alignment, boundary */
1041	    lowaddr,			/* lowaddr */
1042	    BUS_SPACE_MAXADDR,		/* highaddr */
1043	    NULL, NULL,			/* filter, filterarg */
1044	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1045	    0,				/* nsegments */
1046	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1047	    0,				/* flags */
1048	    NULL, NULL,			/* lockfunc, lockarg */
1049	    &sc->ale_cdata.ale_parent_tag);
1050	if (error != 0) {
1051		device_printf(sc->ale_dev,
1052		    "could not create parent DMA tag.\n");
1053		goto fail;
1054	}
1055
1056	/* Create DMA tag for Tx descriptor ring. */
1057	error = bus_dma_tag_create(
1058	    sc->ale_cdata.ale_parent_tag, /* parent */
1059	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1060	    BUS_SPACE_MAXADDR,		/* lowaddr */
1061	    BUS_SPACE_MAXADDR,		/* highaddr */
1062	    NULL, NULL,			/* filter, filterarg */
1063	    ALE_TX_RING_SZ,		/* maxsize */
1064	    1,				/* nsegments */
1065	    ALE_TX_RING_SZ,		/* maxsegsize */
1066	    0,				/* flags */
1067	    NULL, NULL,			/* lockfunc, lockarg */
1068	    &sc->ale_cdata.ale_tx_ring_tag);
1069	if (error != 0) {
1070		device_printf(sc->ale_dev,
1071		    "could not create Tx ring DMA tag.\n");
1072		goto fail;
1073	}
1074
1075	/* Create DMA tag for Rx pages. */
1076	for (i = 0; i < ALE_RX_PAGES; i++) {
1077		error = bus_dma_tag_create(
1078		    sc->ale_cdata.ale_parent_tag, /* parent */
1079		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1080		    BUS_SPACE_MAXADDR,		/* lowaddr */
1081		    BUS_SPACE_MAXADDR,		/* highaddr */
1082		    NULL, NULL,			/* filter, filterarg */
1083		    sc->ale_pagesize,		/* maxsize */
1084		    1,				/* nsegments */
1085		    sc->ale_pagesize,		/* maxsegsize */
1086		    0,				/* flags */
1087		    NULL, NULL,			/* lockfunc, lockarg */
1088		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1089		if (error != 0) {
1090			device_printf(sc->ale_dev,
1091			    "could not create Rx page %d DMA tag.\n", i);
1092			goto fail;
1093		}
1094	}
1095
1096	/* Create DMA tag for Tx coalescing message block. */
1097	error = bus_dma_tag_create(
1098	    sc->ale_cdata.ale_parent_tag, /* parent */
1099	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1100	    BUS_SPACE_MAXADDR,		/* lowaddr */
1101	    BUS_SPACE_MAXADDR,		/* highaddr */
1102	    NULL, NULL,			/* filter, filterarg */
1103	    ALE_TX_CMB_SZ,		/* maxsize */
1104	    1,				/* nsegments */
1105	    ALE_TX_CMB_SZ,		/* maxsegsize */
1106	    0,				/* flags */
1107	    NULL, NULL,			/* lockfunc, lockarg */
1108	    &sc->ale_cdata.ale_tx_cmb_tag);
1109	if (error != 0) {
1110		device_printf(sc->ale_dev,
1111		    "could not create Tx CMB DMA tag.\n");
1112		goto fail;
1113	}
1114
1115	/* Create DMA tag for Rx coalescing message block. */
1116	for (i = 0; i < ALE_RX_PAGES; i++) {
1117		error = bus_dma_tag_create(
1118		    sc->ale_cdata.ale_parent_tag, /* parent */
1119		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1120		    BUS_SPACE_MAXADDR,		/* lowaddr */
1121		    BUS_SPACE_MAXADDR,		/* highaddr */
1122		    NULL, NULL,			/* filter, filterarg */
1123		    ALE_RX_CMB_SZ,		/* maxsize */
1124		    1,				/* nsegments */
1125		    ALE_RX_CMB_SZ,		/* maxsegsize */
1126		    0,				/* flags */
1127		    NULL, NULL,			/* lockfunc, lockarg */
1128		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1129		if (error != 0) {
1130			device_printf(sc->ale_dev,
1131			    "could not create Rx page %d CMB DMA tag.\n", i);
1132			goto fail;
1133		}
1134	}
1135
1136	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1137	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1138	    (void **)&sc->ale_cdata.ale_tx_ring,
1139	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1140	    &sc->ale_cdata.ale_tx_ring_map);
1141	if (error != 0) {
1142		device_printf(sc->ale_dev,
1143		    "could not allocate DMA'able memory for Tx ring.\n");
1144		goto fail;
1145	}
1146	ctx.ale_busaddr = 0;
1147	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1148	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1149	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1150	if (error != 0 || ctx.ale_busaddr == 0) {
1151		device_printf(sc->ale_dev,
1152		    "could not load DMA'able memory for Tx ring.\n");
1153		goto fail;
1154	}
1155	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1156
1157	/* Rx pages. */
1158	for (i = 0; i < ALE_RX_PAGES; i++) {
1159		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1160		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1161		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1162		    &sc->ale_cdata.ale_rx_page[i].page_map);
1163		if (error != 0) {
1164			device_printf(sc->ale_dev,
1165			    "could not allocate DMA'able memory for "
1166			    "Rx page %d.\n", i);
1167			goto fail;
1168		}
1169		ctx.ale_busaddr = 0;
1170		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1171		    sc->ale_cdata.ale_rx_page[i].page_map,
1172		    sc->ale_cdata.ale_rx_page[i].page_addr,
1173		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1174		if (error != 0 || ctx.ale_busaddr == 0) {
1175			device_printf(sc->ale_dev,
1176			    "could not load DMA'able memory for "
1177			    "Rx page %d.\n", i);
1178			goto fail;
1179		}
1180		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1181	}
1182
1183	/* Tx CMB. */
1184	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1185	    (void **)&sc->ale_cdata.ale_tx_cmb,
1186	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1187	    &sc->ale_cdata.ale_tx_cmb_map);
1188	if (error != 0) {
1189		device_printf(sc->ale_dev,
1190		    "could not allocate DMA'able memory for Tx CMB.\n");
1191		goto fail;
1192	}
1193	ctx.ale_busaddr = 0;
1194	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1195	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1196	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1197	if (error != 0 || ctx.ale_busaddr == 0) {
1198		device_printf(sc->ale_dev,
1199		    "could not load DMA'able memory for Tx CMB.\n");
1200		goto fail;
1201	}
1202	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1203
1204	/* Rx CMB. */
1205	for (i = 0; i < ALE_RX_PAGES; i++) {
1206		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1207		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1208		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1209		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1210		if (error != 0) {
1211			device_printf(sc->ale_dev, "could not allocate "
1212			    "DMA'able memory for Rx page %d CMB.\n", i);
1213			goto fail;
1214		}
1215		ctx.ale_busaddr = 0;
1216		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1217		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1218		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1219		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1220		if (error != 0 || ctx.ale_busaddr == 0) {
1221			device_printf(sc->ale_dev, "could not load DMA'able "
1222			    "memory for Rx page %d CMB.\n", i);
1223			goto fail;
1224		}
1225		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1226	}
1227
1228	/*
1229	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1230	 * high address region of 64bit DMA address space.
1231	 */
1232	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1233	    (error = ale_check_boundary(sc)) != 0) {
1234		device_printf(sc->ale_dev, "4GB boundary crossed, "
1235		    "switching to 32bit DMA addressing mode.\n");
1236		ale_dma_free(sc);
1237		/*
1238		 * Limit max allowable DMA address space to 32bit
1239		 * and try again.
1240		 */
1241		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1242		goto again;
1243	}
1244
1245	/*
1246	 * Create Tx buffer parent tag.
1247	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1248	 * needs separate parent DMA tag as parent DMA address space
1249	 * could be restricted to be within 32bit address space by
1250	 * 4GB boundary crossing.
1251	 */
1252	error = bus_dma_tag_create(
1253	    bus_get_dma_tag(sc->ale_dev), /* parent */
1254	    1, 0,			/* alignment, boundary */
1255	    BUS_SPACE_MAXADDR,		/* lowaddr */
1256	    BUS_SPACE_MAXADDR,		/* highaddr */
1257	    NULL, NULL,			/* filter, filterarg */
1258	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1259	    0,				/* nsegments */
1260	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1261	    0,				/* flags */
1262	    NULL, NULL,			/* lockfunc, lockarg */
1263	    &sc->ale_cdata.ale_buffer_tag);
1264	if (error != 0) {
1265		device_printf(sc->ale_dev,
1266		    "could not create parent buffer DMA tag.\n");
1267		goto fail;
1268	}
1269
1270	/* Create DMA tag for Tx buffers. */
1271	error = bus_dma_tag_create(
1272	    sc->ale_cdata.ale_buffer_tag, /* parent */
1273	    1, 0,			/* alignment, boundary */
1274	    BUS_SPACE_MAXADDR,		/* lowaddr */
1275	    BUS_SPACE_MAXADDR,		/* highaddr */
1276	    NULL, NULL,			/* filter, filterarg */
1277	    ALE_TSO_MAXSIZE,		/* maxsize */
1278	    ALE_MAXTXSEGS,		/* nsegments */
1279	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1280	    0,				/* flags */
1281	    NULL, NULL,			/* lockfunc, lockarg */
1282	    &sc->ale_cdata.ale_tx_tag);
1283	if (error != 0) {
1284		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1285		goto fail;
1286	}
1287
1288	/* Create DMA maps for Tx buffers. */
1289	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1290		txd = &sc->ale_cdata.ale_txdesc[i];
1291		txd->tx_m = NULL;
1292		txd->tx_dmamap = NULL;
1293		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1294		    &txd->tx_dmamap);
1295		if (error != 0) {
1296			device_printf(sc->ale_dev,
1297			    "could not create Tx dmamap.\n");
1298			goto fail;
1299		}
1300	}
1301
1302fail:
1303	return (error);
1304}
1305
1306static void
1307ale_dma_free(struct ale_softc *sc)
1308{
1309	struct ale_txdesc *txd;
1310	int i;
1311
1312	/* Tx buffers. */
1313	if (sc->ale_cdata.ale_tx_tag != NULL) {
1314		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1315			txd = &sc->ale_cdata.ale_txdesc[i];
1316			if (txd->tx_dmamap != NULL) {
1317				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1318				    txd->tx_dmamap);
1319				txd->tx_dmamap = NULL;
1320			}
1321		}
1322		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1323		sc->ale_cdata.ale_tx_tag = NULL;
1324	}
1325	/* Tx descriptor ring. */
1326	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1327		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1328			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1329			    sc->ale_cdata.ale_tx_ring_map);
1330		if (sc->ale_cdata.ale_tx_ring != NULL)
1331			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1332			    sc->ale_cdata.ale_tx_ring,
1333			    sc->ale_cdata.ale_tx_ring_map);
1334		sc->ale_cdata.ale_tx_ring_paddr = 0;
1335		sc->ale_cdata.ale_tx_ring = NULL;
1336		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1337		sc->ale_cdata.ale_tx_ring_tag = NULL;
1338	}
1339	/* Rx page block. */
1340	for (i = 0; i < ALE_RX_PAGES; i++) {
1341		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1342			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1343				bus_dmamap_unload(
1344				    sc->ale_cdata.ale_rx_page[i].page_tag,
1345				    sc->ale_cdata.ale_rx_page[i].page_map);
1346			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1347				bus_dmamem_free(
1348				    sc->ale_cdata.ale_rx_page[i].page_tag,
1349				    sc->ale_cdata.ale_rx_page[i].page_addr,
1350				    sc->ale_cdata.ale_rx_page[i].page_map);
1351			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1352			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1353			bus_dma_tag_destroy(
1354			    sc->ale_cdata.ale_rx_page[i].page_tag);
1355			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1356		}
1357	}
1358	/* Rx CMB. */
1359	for (i = 0; i < ALE_RX_PAGES; i++) {
1360		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1361			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1362				bus_dmamap_unload(
1363				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1364				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1365			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1366				bus_dmamem_free(
1367				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1368				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1369				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1370			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1371			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1372			bus_dma_tag_destroy(
1373			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1374			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1375		}
1376	}
1377	/* Tx CMB. */
1378	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1379		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1380			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1381			    sc->ale_cdata.ale_tx_cmb_map);
1382		if (sc->ale_cdata.ale_tx_cmb != NULL)
1383			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1384			    sc->ale_cdata.ale_tx_cmb,
1385			    sc->ale_cdata.ale_tx_cmb_map);
1386		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1387		sc->ale_cdata.ale_tx_cmb = NULL;
1388		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1389		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1390	}
1391	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1392		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1393		sc->ale_cdata.ale_buffer_tag = NULL;
1394	}
1395	if (sc->ale_cdata.ale_parent_tag != NULL) {
1396		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1397		sc->ale_cdata.ale_parent_tag = NULL;
1398	}
1399}
1400
1401static int
1402ale_shutdown(device_t dev)
1403{
1404
1405	return (ale_suspend(dev));
1406}
1407
1408/*
1409 * Note, this driver resets the link speed to 10/100Mbps by
1410 * restarting auto-negotiation in suspend/shutdown phase but we
1411 * don't know whether that auto-negotiation would succeed or not
1412 * as driver has no control after powering off/suspend operation.
1413 * If the renegotiation fail WOL may not work. Running at 1Gbps
1414 * will draw more power than 375mA at 3.3V which is specified in
1415 * PCI specification and that would result in complete
1416 * shutdowning power to ethernet controller.
1417 *
1418 * TODO
1419 * Save current negotiated media speed/duplex/flow-control to
1420 * softc and restore the same link again after resuming. PHY
1421 * handling such as power down/resetting to 100Mbps may be better
1422 * handled in suspend method in phy driver.
1423 */
1424static void
1425ale_setlinkspeed(struct ale_softc *sc)
1426{
1427	struct mii_data *mii;
1428	int aneg, i;
1429
1430	mii = device_get_softc(sc->ale_miibus);
1431	mii_pollstat(mii);
1432	aneg = 0;
1433	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1434	    (IFM_ACTIVE | IFM_AVALID)) {
1435		switch IFM_SUBTYPE(mii->mii_media_active) {
1436		case IFM_10_T:
1437		case IFM_100_TX:
1438			return;
1439		case IFM_1000_T:
1440			aneg++;
1441			break;
1442		default:
1443			break;
1444		}
1445	}
1446	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1447	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1448	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1449	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1450	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1451	DELAY(1000);
1452	if (aneg != 0) {
1453		/*
1454		 * Poll link state until ale(4) get a 10/100Mbps link.
1455		 */
1456		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1457			mii_pollstat(mii);
1458			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1459			    == (IFM_ACTIVE | IFM_AVALID)) {
1460				switch (IFM_SUBTYPE(
1461				    mii->mii_media_active)) {
1462				case IFM_10_T:
1463				case IFM_100_TX:
1464					ale_mac_config(sc);
1465					return;
1466				default:
1467					break;
1468				}
1469			}
1470			ALE_UNLOCK(sc);
1471			pause("alelnk", hz);
1472			ALE_LOCK(sc);
1473		}
1474		if (i == MII_ANEGTICKS_GIGE)
1475			device_printf(sc->ale_dev,
1476			    "establishing a link failed, WOL may not work!");
1477	}
1478	/*
1479	 * No link, force MAC to have 100Mbps, full-duplex link.
1480	 * This is the last resort and may/may not work.
1481	 */
1482	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1483	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1484	ale_mac_config(sc);
1485}
1486
1487static void
1488ale_setwol(struct ale_softc *sc)
1489{
1490	struct ifnet *ifp;
1491	uint32_t reg, pmcs;
1492	uint16_t pmstat;
1493	int pmc;
1494
1495	ALE_LOCK_ASSERT(sc);
1496
1497	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1498		/* Disable WOL. */
1499		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1500		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1501		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1502		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1503		/* Force PHY power down. */
1504		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1505		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1506		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1507		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1508		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1509		return;
1510	}
1511
1512	ifp = sc->ale_ifp;
1513	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1514		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1515			ale_setlinkspeed(sc);
1516	}
1517
1518	pmcs = 0;
1519	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1520		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1521	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1522	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1523	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1524	    MAC_CFG_BCAST);
1525	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1526		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1527	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1528		reg |= MAC_CFG_RX_ENB;
1529	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1530
1531	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1532		/* WOL disabled, PHY power down. */
1533		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1534		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1535		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1536		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1537		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1538		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1539		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1540		    GPHY_CTRL_PWDOWN_HW);
1541	}
1542	/* Request PME. */
1543	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1544	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1545	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1546		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1547	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1548}
1549
1550static int
1551ale_suspend(device_t dev)
1552{
1553	struct ale_softc *sc;
1554
1555	sc = device_get_softc(dev);
1556
1557	ALE_LOCK(sc);
1558	ale_stop(sc);
1559	ale_setwol(sc);
1560	ALE_UNLOCK(sc);
1561
1562	return (0);
1563}
1564
1565static int
1566ale_resume(device_t dev)
1567{
1568	struct ale_softc *sc;
1569	struct ifnet *ifp;
1570	int pmc;
1571	uint16_t pmstat;
1572
1573	sc = device_get_softc(dev);
1574
1575	ALE_LOCK(sc);
1576	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1577		/* Disable PME and clear PME status. */
1578		pmstat = pci_read_config(sc->ale_dev,
1579		    pmc + PCIR_POWER_STATUS, 2);
1580		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1581			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1582			pci_write_config(sc->ale_dev,
1583			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1584		}
1585	}
1586	/* Reset PHY. */
1587	ale_phy_reset(sc);
1588	ifp = sc->ale_ifp;
1589	if ((ifp->if_flags & IFF_UP) != 0) {
1590		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1591		ale_init_locked(sc);
1592	}
1593	ALE_UNLOCK(sc);
1594
1595	return (0);
1596}
1597
1598static int
1599ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1600{
1601	struct ale_txdesc *txd, *txd_last;
1602	struct tx_desc *desc;
1603	struct mbuf *m;
1604	struct ip *ip;
1605	struct tcphdr *tcp;
1606	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1607	bus_dmamap_t map;
1608	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1609	int error, i, nsegs, prod, si;
1610
1611	ALE_LOCK_ASSERT(sc);
1612
1613	M_ASSERTPKTHDR((*m_head));
1614
1615	m = *m_head;
1616	ip = NULL;
1617	tcp = NULL;
1618	cflags = vtag = 0;
1619	ip_off = poff = 0;
1620	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1621		/*
1622		 * AR81xx requires offset of TCP/UDP payload in its Tx
1623		 * descriptor to perform hardware Tx checksum offload.
1624		 * Additionally, TSO requires IP/TCP header size and
1625		 * modification of IP/TCP header in order to make TSO
1626		 * engine work. This kind of operation takes many CPU
1627		 * cycles on FreeBSD so fast host CPU is required to
1628		 * get smooth TSO performance.
1629		 */
1630		struct ether_header *eh;
1631
1632		if (M_WRITABLE(m) == 0) {
1633			/* Get a writable copy. */
1634			m = m_dup(*m_head, M_NOWAIT);
1635			/* Release original mbufs. */
1636			m_freem(*m_head);
1637			if (m == NULL) {
1638				*m_head = NULL;
1639				return (ENOBUFS);
1640			}
1641			*m_head = m;
1642		}
1643
1644		/*
1645		 * Buggy-controller requires 4 byte aligned Tx buffer
1646		 * to make custom checksum offload work.
1647		 */
1648		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1649		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1650		    (mtod(m, intptr_t) & 3) != 0) {
1651			m = m_defrag(*m_head, M_NOWAIT);
1652			if (m == NULL) {
1653				m_freem(*m_head);
1654				*m_head = NULL;
1655				return (ENOBUFS);
1656			}
1657			*m_head = m;
1658		}
1659
1660		ip_off = sizeof(struct ether_header);
1661		m = m_pullup(m, ip_off);
1662		if (m == NULL) {
1663			*m_head = NULL;
1664			return (ENOBUFS);
1665		}
1666		eh = mtod(m, struct ether_header *);
1667		/*
1668		 * Check if hardware VLAN insertion is off.
1669		 * Additional check for LLC/SNAP frame?
1670		 */
1671		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1672			ip_off = sizeof(struct ether_vlan_header);
1673			m = m_pullup(m, ip_off);
1674			if (m == NULL) {
1675				*m_head = NULL;
1676				return (ENOBUFS);
1677			}
1678		}
1679		m = m_pullup(m, ip_off + sizeof(struct ip));
1680		if (m == NULL) {
1681			*m_head = NULL;
1682			return (ENOBUFS);
1683		}
1684		ip = (struct ip *)(mtod(m, char *) + ip_off);
1685		poff = ip_off + (ip->ip_hl << 2);
1686		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1687			/*
1688			 * XXX
1689			 * AR81xx requires the first descriptor should
1690			 * not include any TCP playload for TSO case.
1691			 * (i.e. ethernet header + IP + TCP header only)
1692			 * m_pullup(9) above will ensure this too.
1693			 * However it's not correct if the first mbuf
1694			 * of the chain does not use cluster.
1695			 */
1696			m = m_pullup(m, poff + sizeof(struct tcphdr));
1697			if (m == NULL) {
1698				*m_head = NULL;
1699				return (ENOBUFS);
1700			}
1701			ip = (struct ip *)(mtod(m, char *) + ip_off);
1702			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1703			m = m_pullup(m, poff + (tcp->th_off << 2));
1704			if (m == NULL) {
1705				*m_head = NULL;
1706				return (ENOBUFS);
1707			}
1708			/*
1709			 * AR81xx requires IP/TCP header size and offset as
1710			 * well as TCP pseudo checksum which complicates
1711			 * TSO configuration. I guess this comes from the
1712			 * adherence to Microsoft NDIS Large Send
1713			 * specification which requires insertion of
1714			 * pseudo checksum by upper stack. The pseudo
1715			 * checksum that NDIS refers to doesn't include
1716			 * TCP payload length so ale(4) should recompute
1717			 * the pseudo checksum here. Hopefully this wouldn't
1718			 * be much burden on modern CPUs.
1719			 * Reset IP checksum and recompute TCP pseudo
1720			 * checksum as NDIS specification said.
1721			 */
1722			ip->ip_sum = 0;
1723			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1724			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1725		}
1726		*m_head = m;
1727	}
1728
1729	si = prod = sc->ale_cdata.ale_tx_prod;
1730	txd = &sc->ale_cdata.ale_txdesc[prod];
1731	txd_last = txd;
1732	map = txd->tx_dmamap;
1733
1734	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1735	    *m_head, txsegs, &nsegs, 0);
1736	if (error == EFBIG) {
1737		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1738		if (m == NULL) {
1739			m_freem(*m_head);
1740			*m_head = NULL;
1741			return (ENOMEM);
1742		}
1743		*m_head = m;
1744		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1745		    *m_head, txsegs, &nsegs, 0);
1746		if (error != 0) {
1747			m_freem(*m_head);
1748			*m_head = NULL;
1749			return (error);
1750		}
1751	} else if (error != 0)
1752		return (error);
1753	if (nsegs == 0) {
1754		m_freem(*m_head);
1755		*m_head = NULL;
1756		return (EIO);
1757	}
1758
1759	/* Check descriptor overrun. */
1760	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1761		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1762		return (ENOBUFS);
1763	}
1764	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1765
1766	m = *m_head;
1767	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1768		/* Request TSO and set MSS. */
1769		cflags |= ALE_TD_TSO;
1770		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1771		/* Set IP/TCP header size. */
1772		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1773		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1774	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1775		/*
1776		 * AR81xx supports Tx custom checksum offload feature
1777		 * that offloads single 16bit checksum computation.
1778		 * So you can choose one among IP, TCP and UDP.
1779		 * Normally driver sets checksum start/insertion
1780		 * position from the information of TCP/UDP frame as
1781		 * TCP/UDP checksum takes more time than that of IP.
1782		 * However it seems that custom checksum offload
1783		 * requires 4 bytes aligned Tx buffers due to hardware
1784		 * bug.
1785		 * AR81xx also supports explicit Tx checksum computation
1786		 * if it is told that the size of IP header and TCP
1787		 * header(for UDP, the header size does not matter
1788		 * because it's fixed length). However with this scheme
1789		 * TSO does not work so you have to choose one either
1790		 * TSO or explicit Tx checksum offload. I chosen TSO
1791		 * plus custom checksum offload with work-around which
1792		 * will cover most common usage for this consumer
1793		 * ethernet controller. The work-around takes a lot of
1794		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1795		 * boundary, though.
1796		 */
1797		cflags |= ALE_TD_CXSUM;
1798		/* Set checksum start offset. */
1799		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1800		/* Set checksum insertion position of TCP/UDP. */
1801		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1802		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1803	}
1804
1805	/* Configure VLAN hardware tag insertion. */
1806	if ((m->m_flags & M_VLANTAG) != 0) {
1807		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1808		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1809		cflags |= ALE_TD_INSERT_VLAN_TAG;
1810	}
1811
1812	i = 0;
1813	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1814		/*
1815		 * Make sure the first fragment contains
1816		 * only ethernet and IP/TCP header with options.
1817		 */
1818		hdrlen =  poff + (tcp->th_off << 2);
1819		desc = &sc->ale_cdata.ale_tx_ring[prod];
1820		desc->addr = htole64(txsegs[i].ds_addr);
1821		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1822		desc->flags = htole32(cflags);
1823		sc->ale_cdata.ale_tx_cnt++;
1824		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1825		if (m->m_len - hdrlen > 0) {
1826			/* Handle remaining payload of the first fragment. */
1827			desc = &sc->ale_cdata.ale_tx_ring[prod];
1828			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1829			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1830			    vtag);
1831			desc->flags = htole32(cflags);
1832			sc->ale_cdata.ale_tx_cnt++;
1833			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1834		}
1835		i = 1;
1836	}
1837	for (; i < nsegs; i++) {
1838		desc = &sc->ale_cdata.ale_tx_ring[prod];
1839		desc->addr = htole64(txsegs[i].ds_addr);
1840		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1841		desc->flags = htole32(cflags);
1842		sc->ale_cdata.ale_tx_cnt++;
1843		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1844	}
1845	/* Update producer index. */
1846	sc->ale_cdata.ale_tx_prod = prod;
1847	/* Set TSO header on the first descriptor. */
1848	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1849		desc = &sc->ale_cdata.ale_tx_ring[si];
1850		desc->flags |= htole32(ALE_TD_TSO_HDR);
1851	}
1852
1853	/* Finally set EOP on the last descriptor. */
1854	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1855	desc = &sc->ale_cdata.ale_tx_ring[prod];
1856	desc->flags |= htole32(ALE_TD_EOP);
1857
1858	/* Swap dmamap of the first and the last. */
1859	txd = &sc->ale_cdata.ale_txdesc[prod];
1860	map = txd_last->tx_dmamap;
1861	txd_last->tx_dmamap = txd->tx_dmamap;
1862	txd->tx_dmamap = map;
1863	txd->tx_m = m;
1864
1865	/* Sync descriptors. */
1866	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1867	    sc->ale_cdata.ale_tx_ring_map,
1868	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1869
1870	return (0);
1871}
1872
1873static void
1874ale_start(struct ifnet *ifp)
1875{
1876        struct ale_softc *sc;
1877
1878	sc = ifp->if_softc;
1879	ALE_LOCK(sc);
1880	ale_start_locked(ifp);
1881	ALE_UNLOCK(sc);
1882}
1883
1884static void
1885ale_start_locked(struct ifnet *ifp)
1886{
1887        struct ale_softc *sc;
1888        struct mbuf *m_head;
1889	int enq;
1890
1891	sc = ifp->if_softc;
1892
1893	ALE_LOCK_ASSERT(sc);
1894
1895	/* Reclaim transmitted frames. */
1896	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1897		ale_txeof(sc);
1898
1899	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1900	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1901		return;
1902
1903	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1904		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1905		if (m_head == NULL)
1906			break;
1907		/*
1908		 * Pack the data into the transmit ring. If we
1909		 * don't have room, set the OACTIVE flag and wait
1910		 * for the NIC to drain the ring.
1911		 */
1912		if (ale_encap(sc, &m_head)) {
1913			if (m_head == NULL)
1914				break;
1915			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1916			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1917			break;
1918		}
1919
1920		enq++;
1921		/*
1922		 * If there's a BPF listener, bounce a copy of this frame
1923		 * to him.
1924		 */
1925		ETHER_BPF_MTAP(ifp, m_head);
1926	}
1927
1928	if (enq > 0) {
1929		/* Kick. */
1930		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1931		    sc->ale_cdata.ale_tx_prod);
1932		/* Set a timeout in case the chip goes out to lunch. */
1933		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1934	}
1935}
1936
1937static void
1938ale_watchdog(struct ale_softc *sc)
1939{
1940	struct ifnet *ifp;
1941
1942	ALE_LOCK_ASSERT(sc);
1943
1944	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1945		return;
1946
1947	ifp = sc->ale_ifp;
1948	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1949		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1950		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1951		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1952		ale_init_locked(sc);
1953		return;
1954	}
1955	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1956	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1957	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1958	ale_init_locked(sc);
1959	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1960		ale_start_locked(ifp);
1961}
1962
1963static int
1964ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1965{
1966	struct ale_softc *sc;
1967	struct ifreq *ifr;
1968	struct mii_data *mii;
1969	int error, mask;
1970
1971	sc = ifp->if_softc;
1972	ifr = (struct ifreq *)data;
1973	error = 0;
1974	switch (cmd) {
1975	case SIOCSIFMTU:
1976		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1977		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1978		    ifr->ifr_mtu > ETHERMTU))
1979			error = EINVAL;
1980		else if (ifp->if_mtu != ifr->ifr_mtu) {
1981			ALE_LOCK(sc);
1982			ifp->if_mtu = ifr->ifr_mtu;
1983			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1984				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1985				ale_init_locked(sc);
1986			}
1987			ALE_UNLOCK(sc);
1988		}
1989		break;
1990	case SIOCSIFFLAGS:
1991		ALE_LOCK(sc);
1992		if ((ifp->if_flags & IFF_UP) != 0) {
1993			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1994				if (((ifp->if_flags ^ sc->ale_if_flags)
1995				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1996					ale_rxfilter(sc);
1997			} else {
1998				ale_init_locked(sc);
1999			}
2000		} else {
2001			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2002				ale_stop(sc);
2003		}
2004		sc->ale_if_flags = ifp->if_flags;
2005		ALE_UNLOCK(sc);
2006		break;
2007	case SIOCADDMULTI:
2008	case SIOCDELMULTI:
2009		ALE_LOCK(sc);
2010		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2011			ale_rxfilter(sc);
2012		ALE_UNLOCK(sc);
2013		break;
2014	case SIOCSIFMEDIA:
2015	case SIOCGIFMEDIA:
2016		mii = device_get_softc(sc->ale_miibus);
2017		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2018		break;
2019	case SIOCSIFCAP:
2020		ALE_LOCK(sc);
2021		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2022		if ((mask & IFCAP_TXCSUM) != 0 &&
2023		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2024			ifp->if_capenable ^= IFCAP_TXCSUM;
2025			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2026				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2027			else
2028				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2029		}
2030		if ((mask & IFCAP_RXCSUM) != 0 &&
2031		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2032			ifp->if_capenable ^= IFCAP_RXCSUM;
2033		if ((mask & IFCAP_TSO4) != 0 &&
2034		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2035			ifp->if_capenable ^= IFCAP_TSO4;
2036			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2037				ifp->if_hwassist |= CSUM_TSO;
2038			else
2039				ifp->if_hwassist &= ~CSUM_TSO;
2040		}
2041
2042		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2043		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2044			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2045		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2046		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2047			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2048		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2049		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2050			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2051		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2052		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2053			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2054		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2055		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2056			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2057			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2058				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2059			ale_rxvlan(sc);
2060		}
2061		ALE_UNLOCK(sc);
2062		VLAN_CAPABILITIES(ifp);
2063		break;
2064	default:
2065		error = ether_ioctl(ifp, cmd, data);
2066		break;
2067	}
2068
2069	return (error);
2070}
2071
2072static void
2073ale_mac_config(struct ale_softc *sc)
2074{
2075	struct mii_data *mii;
2076	uint32_t reg;
2077
2078	ALE_LOCK_ASSERT(sc);
2079
2080	mii = device_get_softc(sc->ale_miibus);
2081	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2082	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2083	    MAC_CFG_SPEED_MASK);
2084	/* Reprogram MAC with resolved speed/duplex. */
2085	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2086	case IFM_10_T:
2087	case IFM_100_TX:
2088		reg |= MAC_CFG_SPEED_10_100;
2089		break;
2090	case IFM_1000_T:
2091		reg |= MAC_CFG_SPEED_1000;
2092		break;
2093	}
2094	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2095		reg |= MAC_CFG_FULL_DUPLEX;
2096		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2097			reg |= MAC_CFG_TX_FC;
2098		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2099			reg |= MAC_CFG_RX_FC;
2100	}
2101	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2102}
2103
2104static void
2105ale_stats_clear(struct ale_softc *sc)
2106{
2107	struct smb sb;
2108	uint32_t *reg;
2109	int i;
2110
2111	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2112		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2113		i += sizeof(uint32_t);
2114	}
2115	/* Read Tx statistics. */
2116	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2117		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2118		i += sizeof(uint32_t);
2119	}
2120}
2121
2122static void
2123ale_stats_update(struct ale_softc *sc)
2124{
2125	struct ale_hw_stats *stat;
2126	struct smb sb, *smb;
2127	struct ifnet *ifp;
2128	uint32_t *reg;
2129	int i;
2130
2131	ALE_LOCK_ASSERT(sc);
2132
2133	ifp = sc->ale_ifp;
2134	stat = &sc->ale_stats;
2135	smb = &sb;
2136
2137	/* Read Rx statistics. */
2138	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2139		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2140		i += sizeof(uint32_t);
2141	}
2142	/* Read Tx statistics. */
2143	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2144		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2145		i += sizeof(uint32_t);
2146	}
2147
2148	/* Rx stats. */
2149	stat->rx_frames += smb->rx_frames;
2150	stat->rx_bcast_frames += smb->rx_bcast_frames;
2151	stat->rx_mcast_frames += smb->rx_mcast_frames;
2152	stat->rx_pause_frames += smb->rx_pause_frames;
2153	stat->rx_control_frames += smb->rx_control_frames;
2154	stat->rx_crcerrs += smb->rx_crcerrs;
2155	stat->rx_lenerrs += smb->rx_lenerrs;
2156	stat->rx_bytes += smb->rx_bytes;
2157	stat->rx_runts += smb->rx_runts;
2158	stat->rx_fragments += smb->rx_fragments;
2159	stat->rx_pkts_64 += smb->rx_pkts_64;
2160	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2161	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2162	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2163	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2164	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2165	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2166	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2167	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2168	stat->rx_rrs_errs += smb->rx_rrs_errs;
2169	stat->rx_alignerrs += smb->rx_alignerrs;
2170	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2171	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2172	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2173
2174	/* Tx stats. */
2175	stat->tx_frames += smb->tx_frames;
2176	stat->tx_bcast_frames += smb->tx_bcast_frames;
2177	stat->tx_mcast_frames += smb->tx_mcast_frames;
2178	stat->tx_pause_frames += smb->tx_pause_frames;
2179	stat->tx_excess_defer += smb->tx_excess_defer;
2180	stat->tx_control_frames += smb->tx_control_frames;
2181	stat->tx_deferred += smb->tx_deferred;
2182	stat->tx_bytes += smb->tx_bytes;
2183	stat->tx_pkts_64 += smb->tx_pkts_64;
2184	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2185	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2186	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2187	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2188	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2189	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2190	stat->tx_single_colls += smb->tx_single_colls;
2191	stat->tx_multi_colls += smb->tx_multi_colls;
2192	stat->tx_late_colls += smb->tx_late_colls;
2193	stat->tx_excess_colls += smb->tx_excess_colls;
2194	stat->tx_underrun += smb->tx_underrun;
2195	stat->tx_desc_underrun += smb->tx_desc_underrun;
2196	stat->tx_lenerrs += smb->tx_lenerrs;
2197	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2198	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2199	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2200
2201	/* Update counters in ifnet. */
2202	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2203
2204	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2205	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2206	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2207
2208	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2209	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2210
2211	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2212
2213	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2214	    smb->rx_crcerrs + smb->rx_lenerrs +
2215	    smb->rx_runts + smb->rx_pkts_truncated +
2216	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2217	    smb->rx_alignerrs);
2218}
2219
2220static int
2221ale_intr(void *arg)
2222{
2223	struct ale_softc *sc;
2224	uint32_t status;
2225
2226	sc = (struct ale_softc *)arg;
2227
2228	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2229	if ((status & ALE_INTRS) == 0)
2230		return (FILTER_STRAY);
2231	/* Disable interrupts. */
2232	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2233	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2234
2235	return (FILTER_HANDLED);
2236}
2237
2238static void
2239ale_int_task(void *arg, int pending)
2240{
2241	struct ale_softc *sc;
2242	struct ifnet *ifp;
2243	uint32_t status;
2244	int more;
2245
2246	sc = (struct ale_softc *)arg;
2247
2248	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2249	ALE_LOCK(sc);
2250	if (sc->ale_morework != 0)
2251		status |= INTR_RX_PKT;
2252	if ((status & ALE_INTRS) == 0)
2253		goto done;
2254
2255	/* Acknowledge interrupts but still disable interrupts. */
2256	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2257
2258	ifp = sc->ale_ifp;
2259	more = 0;
2260	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2261		more = ale_rxeof(sc, sc->ale_process_limit);
2262		if (more == EAGAIN)
2263			sc->ale_morework = 1;
2264		else if (more == EIO) {
2265			sc->ale_stats.reset_brk_seq++;
2266			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2267			ale_init_locked(sc);
2268			ALE_UNLOCK(sc);
2269			return;
2270		}
2271
2272		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2273			if ((status & INTR_DMA_RD_TO_RST) != 0)
2274				device_printf(sc->ale_dev,
2275				    "DMA read error! -- resetting\n");
2276			if ((status & INTR_DMA_WR_TO_RST) != 0)
2277				device_printf(sc->ale_dev,
2278				    "DMA write error! -- resetting\n");
2279			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2280			ale_init_locked(sc);
2281			ALE_UNLOCK(sc);
2282			return;
2283		}
2284		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2285			ale_start_locked(ifp);
2286	}
2287
2288	if (more == EAGAIN ||
2289	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2290		ALE_UNLOCK(sc);
2291		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2292		return;
2293	}
2294
2295done:
2296	ALE_UNLOCK(sc);
2297
2298	/* Re-enable interrupts. */
2299	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2300}
2301
2302static void
2303ale_txeof(struct ale_softc *sc)
2304{
2305	struct ifnet *ifp;
2306	struct ale_txdesc *txd;
2307	uint32_t cons, prod;
2308	int prog;
2309
2310	ALE_LOCK_ASSERT(sc);
2311
2312	ifp = sc->ale_ifp;
2313
2314	if (sc->ale_cdata.ale_tx_cnt == 0)
2315		return;
2316
2317	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2318	    sc->ale_cdata.ale_tx_ring_map,
2319	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2320	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2321		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2322		    sc->ale_cdata.ale_tx_cmb_map,
2323		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2324		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2325	} else
2326		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2327	cons = sc->ale_cdata.ale_tx_cons;
2328	/*
2329	 * Go through our Tx list and free mbufs for those
2330	 * frames which have been transmitted.
2331	 */
2332	for (prog = 0; cons != prod; prog++,
2333	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2334		if (sc->ale_cdata.ale_tx_cnt <= 0)
2335			break;
2336		prog++;
2337		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2338		sc->ale_cdata.ale_tx_cnt--;
2339		txd = &sc->ale_cdata.ale_txdesc[cons];
2340		if (txd->tx_m != NULL) {
2341			/* Reclaim transmitted mbufs. */
2342			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2343			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2344			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2345			    txd->tx_dmamap);
2346			m_freem(txd->tx_m);
2347			txd->tx_m = NULL;
2348		}
2349	}
2350
2351	if (prog > 0) {
2352		sc->ale_cdata.ale_tx_cons = cons;
2353		/*
2354		 * Unarm watchdog timer only when there is no pending
2355		 * Tx descriptors in queue.
2356		 */
2357		if (sc->ale_cdata.ale_tx_cnt == 0)
2358			sc->ale_watchdog_timer = 0;
2359	}
2360}
2361
2362static void
2363ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2364    uint32_t length, uint32_t *prod)
2365{
2366	struct ale_rx_page *rx_page;
2367
2368	rx_page = *page;
2369	/* Update consumer position. */
2370	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2371	    ALE_RX_PAGE_ALIGN);
2372	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2373		/*
2374		 * End of Rx page reached, let hardware reuse
2375		 * this page.
2376		 */
2377		rx_page->cons = 0;
2378		*rx_page->cmb_addr = 0;
2379		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2380		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2381		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2382		    RXF_VALID);
2383		/* Switch to alternate Rx page. */
2384		sc->ale_cdata.ale_rx_curp ^= 1;
2385		rx_page = *page =
2386		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2387		/* Page flipped, sync CMB and Rx page. */
2388		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2389		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2390		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2391		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2392		/* Sync completed, cache updated producer index. */
2393		*prod = *rx_page->cmb_addr;
2394	}
2395}
2396
2397/*
2398 * It seems that AR81xx controller can compute partial checksum.
2399 * The partial checksum value can be used to accelerate checksum
2400 * computation for fragmented TCP/UDP packets. Upper network stack
2401 * already takes advantage of the partial checksum value in IP
2402 * reassembly stage. But I'm not sure the correctness of the
2403 * partial hardware checksum assistance due to lack of data sheet.
2404 * In addition, the Rx feature of controller that requires copying
2405 * for every frames effectively nullifies one of most nice offload
2406 * capability of controller.
2407 */
2408static void
2409ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2410{
2411	struct ifnet *ifp;
2412	struct ip *ip;
2413	char *p;
2414
2415	ifp = sc->ale_ifp;
2416	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2417	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2418		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2419
2420	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2421		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2422		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2423		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2424			m->m_pkthdr.csum_flags |=
2425			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2426			m->m_pkthdr.csum_data = 0xffff;
2427		}
2428	} else {
2429		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2430		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2431			p = mtod(m, char *);
2432			p += ETHER_HDR_LEN;
2433			if ((status & ALE_RD_802_3) != 0)
2434				p += LLC_SNAPFRAMELEN;
2435			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2436			    (status & ALE_RD_VLAN) != 0)
2437				p += ETHER_VLAN_ENCAP_LEN;
2438			ip = (struct ip *)p;
2439			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2440				return;
2441			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2442			    CSUM_PSEUDO_HDR;
2443			m->m_pkthdr.csum_data = 0xffff;
2444		}
2445	}
2446	/*
2447	 * Don't mark bad checksum for TCP/UDP frames
2448	 * as fragmented frames may always have set
2449	 * bad checksummed bit of frame status.
2450	 */
2451}
2452
2453/* Process received frames. */
2454static int
2455ale_rxeof(struct ale_softc *sc, int count)
2456{
2457	struct ale_rx_page *rx_page;
2458	struct rx_rs *rs;
2459	struct ifnet *ifp;
2460	struct mbuf *m;
2461	uint32_t length, prod, seqno, status, vtags;
2462	int prog;
2463
2464	ifp = sc->ale_ifp;
2465	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2466	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2467	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2468	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2469	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2470	/*
2471	 * Don't directly access producer index as hardware may
2472	 * update it while Rx handler is in progress. It would
2473	 * be even better if there is a way to let hardware
2474	 * know how far driver processed its received frames.
2475	 * Alternatively, hardware could provide a way to disable
2476	 * CMB updates until driver acknowledges the end of CMB
2477	 * access.
2478	 */
2479	prod = *rx_page->cmb_addr;
2480	for (prog = 0; prog < count; prog++) {
2481		if (rx_page->cons >= prod)
2482			break;
2483		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2484		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2485		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2486			/*
2487			 * Normally I believe this should not happen unless
2488			 * severe driver bug or corrupted memory. However
2489			 * it seems to happen under certain conditions which
2490			 * is triggered by abrupt Rx events such as initiation
2491			 * of bulk transfer of remote host. It's not easy to
2492			 * reproduce this and I doubt it could be related
2493			 * with FIFO overflow of hardware or activity of Tx
2494			 * CMB updates. I also remember similar behaviour
2495			 * seen on RealTek 8139 which uses resembling Rx
2496			 * scheme.
2497			 */
2498			if (bootverbose)
2499				device_printf(sc->ale_dev,
2500				    "garbled seq: %u, expected: %u -- "
2501				    "resetting!\n", seqno,
2502				    sc->ale_cdata.ale_rx_seqno);
2503			return (EIO);
2504		}
2505		/* Frame received. */
2506		sc->ale_cdata.ale_rx_seqno++;
2507		length = ALE_RX_BYTES(le32toh(rs->length));
2508		status = le32toh(rs->flags);
2509		if ((status & ALE_RD_ERROR) != 0) {
2510			/*
2511			 * We want to pass the following frames to upper
2512			 * layer regardless of error status of Rx return
2513			 * status.
2514			 *
2515			 *  o IP/TCP/UDP checksum is bad.
2516			 *  o frame length and protocol specific length
2517			 *     does not match.
2518			 */
2519			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2520			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2521			    ALE_RD_TRUNC)) != 0) {
2522				ale_rx_update_page(sc, &rx_page, length, &prod);
2523				continue;
2524			}
2525		}
2526		/*
2527		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2528		 * from hardware limitation). For jumbo frames we could
2529		 * get a slightly better performance if driver use
2530		 * m_getjcl(9) with proper buffer size argument. However
2531		 * that would make code more complicated and I don't
2532		 * think users would expect good Rx performance numbers
2533		 * on these low-end consumer ethernet controller.
2534		 */
2535		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2536		    ETHER_ALIGN, ifp, NULL);
2537		if (m == NULL) {
2538			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2539			ale_rx_update_page(sc, &rx_page, length, &prod);
2540			continue;
2541		}
2542		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2543		    (status & ALE_RD_IPV4) != 0)
2544			ale_rxcsum(sc, m, status);
2545		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2546		    (status & ALE_RD_VLAN) != 0) {
2547			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2548			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2549			m->m_flags |= M_VLANTAG;
2550		}
2551
2552		/* Pass it to upper layer. */
2553		ALE_UNLOCK(sc);
2554		(*ifp->if_input)(ifp, m);
2555		ALE_LOCK(sc);
2556
2557		ale_rx_update_page(sc, &rx_page, length, &prod);
2558	}
2559
2560	return (count > 0 ? 0 : EAGAIN);
2561}
2562
2563static void
2564ale_tick(void *arg)
2565{
2566	struct ale_softc *sc;
2567	struct mii_data *mii;
2568
2569	sc = (struct ale_softc *)arg;
2570
2571	ALE_LOCK_ASSERT(sc);
2572
2573	mii = device_get_softc(sc->ale_miibus);
2574	mii_tick(mii);
2575	ale_stats_update(sc);
2576	/*
2577	 * Reclaim Tx buffers that have been transferred. It's not
2578	 * needed here but it would release allocated mbuf chains
2579	 * faster and limit the maximum delay to a hz.
2580	 */
2581	ale_txeof(sc);
2582	ale_watchdog(sc);
2583	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2584}
2585
2586static void
2587ale_reset(struct ale_softc *sc)
2588{
2589	uint32_t reg;
2590	int i;
2591
2592	/* Initialize PCIe module. From Linux. */
2593	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2594
2595	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2596	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2597		DELAY(10);
2598		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2599			break;
2600	}
2601	if (i == 0)
2602		device_printf(sc->ale_dev, "master reset timeout!\n");
2603
2604	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2605		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2606			break;
2607		DELAY(10);
2608	}
2609
2610	if (i == 0)
2611		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2612}
2613
2614static void
2615ale_init(void *xsc)
2616{
2617	struct ale_softc *sc;
2618
2619	sc = (struct ale_softc *)xsc;
2620	ALE_LOCK(sc);
2621	ale_init_locked(sc);
2622	ALE_UNLOCK(sc);
2623}
2624
2625static void
2626ale_init_locked(struct ale_softc *sc)
2627{
2628	struct ifnet *ifp;
2629	struct mii_data *mii;
2630	uint8_t eaddr[ETHER_ADDR_LEN];
2631	bus_addr_t paddr;
2632	uint32_t reg, rxf_hi, rxf_lo;
2633
2634	ALE_LOCK_ASSERT(sc);
2635
2636	ifp = sc->ale_ifp;
2637	mii = device_get_softc(sc->ale_miibus);
2638
2639	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2640		return;
2641	/*
2642	 * Cancel any pending I/O.
2643	 */
2644	ale_stop(sc);
2645	/*
2646	 * Reset the chip to a known state.
2647	 */
2648	ale_reset(sc);
2649	/* Initialize Tx descriptors, DMA memory blocks. */
2650	ale_init_rx_pages(sc);
2651	ale_init_tx_ring(sc);
2652
2653	/* Reprogram the station address. */
2654	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2655	CSR_WRITE_4(sc, ALE_PAR0,
2656	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2657	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2658	/*
2659	 * Clear WOL status and disable all WOL feature as WOL
2660	 * would interfere Rx operation under normal environments.
2661	 */
2662	CSR_READ_4(sc, ALE_WOL_CFG);
2663	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2664	/*
2665	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2666	 * the same high address part of DMAable region.
2667	 */
2668	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2669	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2670	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2671	CSR_WRITE_4(sc, ALE_TPD_CNT,
2672	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2673	/* Set Rx page base address, note we use single queue. */
2674	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2675	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2676	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2677	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2678	/* Set Tx/Rx CMB addresses. */
2679	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2680	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2681	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2682	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2683	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2684	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2685	/* Mark RXF0 is valid. */
2686	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2687	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2688	/*
2689	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2690	 * multi-queue yet.
2691	 */
2692
2693	/* Set Rx page size, excluding guard frame size. */
2694	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2695	/* Tell hardware that we're ready to load DMA blocks. */
2696	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2697
2698	/* Set Rx/Tx interrupt trigger threshold. */
2699	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2700	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2701	/*
2702	 * XXX
2703	 * Set interrupt trigger timer, its purpose and relation
2704	 * with interrupt moderation mechanism is not clear yet.
2705	 */
2706	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2707	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2708	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2709
2710	/* Configure interrupt moderation timer. */
2711	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2712	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2713	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2714	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2715	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2716	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2717	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2718		reg |= MASTER_IM_RX_TIMER_ENB;
2719	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2720		reg |= MASTER_IM_TX_TIMER_ENB;
2721	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2722	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2723
2724	/* Set Maximum frame size of controller. */
2725	if (ifp->if_mtu < ETHERMTU)
2726		sc->ale_max_frame_size = ETHERMTU;
2727	else
2728		sc->ale_max_frame_size = ifp->if_mtu;
2729	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2730	    ETHER_CRC_LEN;
2731	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2732	/* Configure IPG/IFG parameters. */
2733	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2734	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2735	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2736	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2737	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2738	/* Set parameters for half-duplex media. */
2739	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2740	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2741	    HDPX_CFG_LCOL_MASK) |
2742	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2743	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2744	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2745	    HDPX_CFG_ABEBT_MASK) |
2746	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2747	    HDPX_CFG_JAMIPG_MASK));
2748
2749	/* Configure Tx jumbo frame parameters. */
2750	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2751		if (ifp->if_mtu < ETHERMTU)
2752			reg = sc->ale_max_frame_size;
2753		else if (ifp->if_mtu < 6 * 1024)
2754			reg = (sc->ale_max_frame_size * 2) / 3;
2755		else
2756			reg = sc->ale_max_frame_size / 2;
2757		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2758		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2759		    TX_JUMBO_THRESH_UNIT_SHIFT);
2760	}
2761	/* Configure TxQ. */
2762	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2763	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2764	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2765	    TXQ_CFG_TPD_BURST_MASK;
2766	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2767
2768	/* Configure Rx jumbo frame & flow control parameters. */
2769	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2770		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2771		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2772		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2773		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2774		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2775		    RX_JUMBO_LKAH_MASK));
2776		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2777		rxf_hi = (reg * 7) / 10;
2778		rxf_lo = (reg * 3)/ 10;
2779		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2780		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2781		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2782		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2783		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2784	}
2785
2786	/* Disable RSS. */
2787	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2788	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2789
2790	/* Configure RxQ. */
2791	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2792	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2793
2794	/* Configure DMA parameters. */
2795	reg = 0;
2796	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2797		reg |= DMA_CFG_TXCMB_ENB;
2798	CSR_WRITE_4(sc, ALE_DMA_CFG,
2799	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2800	    sc->ale_dma_rd_burst | reg |
2801	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2802	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2803	    DMA_CFG_RD_DELAY_CNT_MASK) |
2804	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2805	    DMA_CFG_WR_DELAY_CNT_MASK));
2806
2807	/*
2808	 * Hardware can be configured to issue SMB interrupt based
2809	 * on programmed interval. Since there is a callout that is
2810	 * invoked for every hz in driver we use that instead of
2811	 * relying on periodic SMB interrupt.
2812	 */
2813	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2814	/* Clear MAC statistics. */
2815	ale_stats_clear(sc);
2816
2817	/*
2818	 * Configure Tx/Rx MACs.
2819	 *  - Auto-padding for short frames.
2820	 *  - Enable CRC generation.
2821	 *  Actual reconfiguration of MAC for resolved speed/duplex
2822	 *  is followed after detection of link establishment.
2823	 *  AR81xx always does checksum computation regardless of
2824	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2825	 *  cause Rx handling issue for fragmented IP datagrams due
2826	 *  to silicon bug.
2827	 */
2828	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2829	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2830	    MAC_CFG_PREAMBLE_MASK);
2831	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2832		reg |= MAC_CFG_SPEED_10_100;
2833	else
2834		reg |= MAC_CFG_SPEED_1000;
2835	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2836
2837	/* Set up the receive filter. */
2838	ale_rxfilter(sc);
2839	ale_rxvlan(sc);
2840
2841	/* Acknowledge all pending interrupts and clear it. */
2842	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2843	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2844	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2845
2846	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2847	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2848
2849	sc->ale_flags &= ~ALE_FLAG_LINK;
2850	/* Switch to the current media. */
2851	mii_mediachg(mii);
2852
2853	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2854}
2855
2856static void
2857ale_stop(struct ale_softc *sc)
2858{
2859	struct ifnet *ifp;
2860	struct ale_txdesc *txd;
2861	uint32_t reg;
2862	int i;
2863
2864	ALE_LOCK_ASSERT(sc);
2865	/*
2866	 * Mark the interface down and cancel the watchdog timer.
2867	 */
2868	ifp = sc->ale_ifp;
2869	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2870	sc->ale_flags &= ~ALE_FLAG_LINK;
2871	callout_stop(&sc->ale_tick_ch);
2872	sc->ale_watchdog_timer = 0;
2873	ale_stats_update(sc);
2874	/* Disable interrupts. */
2875	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2876	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2877	/* Disable queue processing and DMA. */
2878	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2879	reg &= ~TXQ_CFG_ENB;
2880	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2881	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2882	reg &= ~RXQ_CFG_ENB;
2883	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2884	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2885	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2886	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2887	DELAY(1000);
2888	/* Stop Rx/Tx MACs. */
2889	ale_stop_mac(sc);
2890	/* Disable interrupts which might be touched in taskq handler. */
2891	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2892
2893	/*
2894	 * Free TX mbufs still in the queues.
2895	 */
2896	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2897		txd = &sc->ale_cdata.ale_txdesc[i];
2898		if (txd->tx_m != NULL) {
2899			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2900			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2901			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2902			    txd->tx_dmamap);
2903			m_freem(txd->tx_m);
2904			txd->tx_m = NULL;
2905		}
2906        }
2907}
2908
2909static void
2910ale_stop_mac(struct ale_softc *sc)
2911{
2912	uint32_t reg;
2913	int i;
2914
2915	ALE_LOCK_ASSERT(sc);
2916
2917	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2918	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2919		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2920		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2921	}
2922
2923	for (i = ALE_TIMEOUT; i > 0; i--) {
2924		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2925		if (reg == 0)
2926			break;
2927		DELAY(10);
2928	}
2929	if (i == 0)
2930		device_printf(sc->ale_dev,
2931		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2932}
2933
2934static void
2935ale_init_tx_ring(struct ale_softc *sc)
2936{
2937	struct ale_txdesc *txd;
2938	int i;
2939
2940	ALE_LOCK_ASSERT(sc);
2941
2942	sc->ale_cdata.ale_tx_prod = 0;
2943	sc->ale_cdata.ale_tx_cons = 0;
2944	sc->ale_cdata.ale_tx_cnt = 0;
2945
2946	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2947	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2948	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2949		txd = &sc->ale_cdata.ale_txdesc[i];
2950		txd->tx_m = NULL;
2951	}
2952	*sc->ale_cdata.ale_tx_cmb = 0;
2953	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2954	    sc->ale_cdata.ale_tx_cmb_map,
2955	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2956	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2957	    sc->ale_cdata.ale_tx_ring_map,
2958	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2959}
2960
2961static void
2962ale_init_rx_pages(struct ale_softc *sc)
2963{
2964	struct ale_rx_page *rx_page;
2965	int i;
2966
2967	ALE_LOCK_ASSERT(sc);
2968
2969	sc->ale_morework = 0;
2970	sc->ale_cdata.ale_rx_seqno = 0;
2971	sc->ale_cdata.ale_rx_curp = 0;
2972
2973	for (i = 0; i < ALE_RX_PAGES; i++) {
2974		rx_page = &sc->ale_cdata.ale_rx_page[i];
2975		bzero(rx_page->page_addr, sc->ale_pagesize);
2976		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2977		rx_page->cons = 0;
2978		*rx_page->cmb_addr = 0;
2979		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2980		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2981		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2982		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2983	}
2984}
2985
2986static void
2987ale_rxvlan(struct ale_softc *sc)
2988{
2989	struct ifnet *ifp;
2990	uint32_t reg;
2991
2992	ALE_LOCK_ASSERT(sc);
2993
2994	ifp = sc->ale_ifp;
2995	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2996	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2997	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2998		reg |= MAC_CFG_VLAN_TAG_STRIP;
2999	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3000}
3001
3002static u_int
3003ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3004{
3005	uint32_t crc, *mchash = arg;
3006
3007	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3008	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3009
3010	return (1);
3011}
3012
3013static void
3014ale_rxfilter(struct ale_softc *sc)
3015{
3016	struct ifnet *ifp;
3017	uint32_t mchash[2];
3018	uint32_t rxcfg;
3019
3020	ALE_LOCK_ASSERT(sc);
3021
3022	ifp = sc->ale_ifp;
3023
3024	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3025	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3026	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3027		rxcfg |= MAC_CFG_BCAST;
3028	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3029		if ((ifp->if_flags & IFF_PROMISC) != 0)
3030			rxcfg |= MAC_CFG_PROMISC;
3031		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3032			rxcfg |= MAC_CFG_ALLMULTI;
3033		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3034		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3035		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3036		return;
3037	}
3038
3039	/* Program new filter. */
3040	bzero(mchash, sizeof(mchash));
3041	if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash);
3042
3043	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3044	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3045	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3046}
3047
3048static int
3049sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3050{
3051	int error, value;
3052
3053	if (arg1 == NULL)
3054		return (EINVAL);
3055	value = *(int *)arg1;
3056	error = sysctl_handle_int(oidp, &value, 0, req);
3057	if (error || req->newptr == NULL)
3058		return (error);
3059	if (value < low || value > high)
3060		return (EINVAL);
3061        *(int *)arg1 = value;
3062
3063        return (0);
3064}
3065
3066static int
3067sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3068{
3069	return (sysctl_int_range(oidp, arg1, arg2, req,
3070	    ALE_PROC_MIN, ALE_PROC_MAX));
3071}
3072
3073static int
3074sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3075{
3076
3077	return (sysctl_int_range(oidp, arg1, arg2, req,
3078	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3079}
3080