1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
28 *
29 * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/endian.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/mutex.h>
44#include <sys/rman.h>
45#include <sys/module.h>
46#include <sys/queue.h>
47#include <sys/socket.h>
48#include <sys/sockio.h>
49#include <sys/sysctl.h>
50#include <sys/taskqueue.h>
51
52#include <net/bpf.h>
53#include <net/if.h>
54#include <net/if_var.h>
55#include <net/if_arp.h>
56#include <net/ethernet.h>
57#include <net/if_dl.h>
58#include <net/if_media.h>
59#include <net/if_types.h>
60#include <net/if_vlan_var.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#include <netinet/tcp.h>
66
67#include <dev/mii/mii.h>
68#include <dev/mii/miivar.h>
69#include <dev/pci/pcireg.h>
70#include <dev/pci/pcivar.h>
71
72#include <machine/bus.h>
73
74#include "miibus_if.h"
75
76#include "if_aereg.h"
77#include "if_aevar.h"
78
79/*
80 * Devices supported by this driver.
81 */
82static struct ae_dev {
83	uint16_t	vendorid;
84	uint16_t	deviceid;
85	const char	*name;
86} ae_devs[] = {
87	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
88		"Attansic Technology Corp, L2 FastEthernet" },
89};
90#define	AE_DEVS_COUNT nitems(ae_devs)
91
92static struct resource_spec ae_res_spec_mem[] = {
93	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
94	{ -1,			0,		0 }
95};
96static struct resource_spec ae_res_spec_irq[] = {
97	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
98	{ -1,			0,		0 }
99};
100static struct resource_spec ae_res_spec_msi[] = {
101	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
102	{ -1,			0,		0 }
103};
104
105static int	ae_probe(device_t dev);
106static int	ae_attach(device_t dev);
107static void	ae_pcie_init(ae_softc_t *sc);
108static void	ae_phy_reset(ae_softc_t *sc);
109static void	ae_phy_init(ae_softc_t *sc);
110static int	ae_reset(ae_softc_t *sc);
111static void	ae_init(void *arg);
112static int	ae_init_locked(ae_softc_t *sc);
113static int	ae_detach(device_t dev);
114static int	ae_miibus_readreg(device_t dev, int phy, int reg);
115static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
116static void	ae_miibus_statchg(device_t dev);
117static void	ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
118static int	ae_mediachange(struct ifnet *ifp);
119static void	ae_retrieve_address(ae_softc_t *sc);
120static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
121    int error);
122static int	ae_alloc_rings(ae_softc_t *sc);
123static void	ae_dma_free(ae_softc_t *sc);
124static int	ae_shutdown(device_t dev);
125static int	ae_suspend(device_t dev);
126static void	ae_powersave_disable(ae_softc_t *sc);
127static void	ae_powersave_enable(ae_softc_t *sc);
128static int	ae_resume(device_t dev);
129static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
130static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
131static void	ae_start(struct ifnet *ifp);
132static void	ae_start_locked(struct ifnet *ifp);
133static void	ae_link_task(void *arg, int pending);
134static void	ae_stop_rxmac(ae_softc_t *sc);
135static void	ae_stop_txmac(ae_softc_t *sc);
136static void	ae_mac_config(ae_softc_t *sc);
137static int	ae_intr(void *arg);
138static void	ae_int_task(void *arg, int pending);
139static void	ae_tx_intr(ae_softc_t *sc);
140static void	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
141static void	ae_rx_intr(ae_softc_t *sc);
142static void	ae_watchdog(ae_softc_t *sc);
143static void	ae_tick(void *arg);
144static void	ae_rxfilter(ae_softc_t *sc);
145static void	ae_rxvlan(ae_softc_t *sc);
146static int	ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
147static void	ae_stop(ae_softc_t *sc);
148static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
149static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
150static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
151static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
152static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
153static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
154static void	ae_init_tunables(ae_softc_t *sc);
155
156static device_method_t ae_methods[] = {
157	/* Device interface. */
158	DEVMETHOD(device_probe,		ae_probe),
159	DEVMETHOD(device_attach,	ae_attach),
160	DEVMETHOD(device_detach,	ae_detach),
161	DEVMETHOD(device_shutdown,	ae_shutdown),
162	DEVMETHOD(device_suspend,	ae_suspend),
163	DEVMETHOD(device_resume,	ae_resume),
164
165	/* MII interface. */
166	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
167	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
168	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
169	{ NULL, NULL }
170};
171static driver_t ae_driver = {
172        "ae",
173        ae_methods,
174        sizeof(ae_softc_t)
175};
176static devclass_t ae_devclass;
177
178DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0);
179MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs,
180    nitems(ae_devs));
181DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
182MODULE_DEPEND(ae, pci, 1, 1, 1);
183MODULE_DEPEND(ae, ether, 1, 1, 1);
184MODULE_DEPEND(ae, miibus, 1, 1, 1);
185
186/*
187 * Tunables.
188 */
189static int msi_disable = 0;
190TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
191
192#define	AE_READ_4(sc, reg) \
193	bus_read_4((sc)->mem[0], (reg))
194#define	AE_READ_2(sc, reg) \
195	bus_read_2((sc)->mem[0], (reg))
196#define	AE_READ_1(sc, reg) \
197	bus_read_1((sc)->mem[0], (reg))
198#define	AE_WRITE_4(sc, reg, val) \
199	bus_write_4((sc)->mem[0], (reg), (val))
200#define	AE_WRITE_2(sc, reg, val) \
201	bus_write_2((sc)->mem[0], (reg), (val))
202#define	AE_WRITE_1(sc, reg, val) \
203	bus_write_1((sc)->mem[0], (reg), (val))
204#define	AE_PHY_READ(sc, reg) \
205	ae_miibus_readreg(sc->dev, 0, reg)
206#define	AE_PHY_WRITE(sc, reg, val) \
207	ae_miibus_writereg(sc->dev, 0, reg, val)
208#define	AE_CHECK_EADDR_VALID(eaddr) \
209	((eaddr[0] == 0 && eaddr[1] == 0) || \
210	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
211#define	AE_RXD_VLAN(vtag) \
212	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
213#define	AE_TXD_VLAN(vtag) \
214	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
215
216static int
217ae_probe(device_t dev)
218{
219	uint16_t deviceid, vendorid;
220	int i;
221
222	vendorid = pci_get_vendor(dev);
223	deviceid = pci_get_device(dev);
224
225	/*
226	 * Search through the list of supported devs for matching one.
227	 */
228	for (i = 0; i < AE_DEVS_COUNT; i++) {
229		if (vendorid == ae_devs[i].vendorid &&
230		    deviceid == ae_devs[i].deviceid) {
231			device_set_desc(dev, ae_devs[i].name);
232			return (BUS_PROBE_DEFAULT);
233		}
234	}
235	return (ENXIO);
236}
237
238static int
239ae_attach(device_t dev)
240{
241	ae_softc_t *sc;
242	struct ifnet *ifp;
243	uint8_t chiprev;
244	uint32_t pcirev;
245	int nmsi, pmc;
246	int error;
247
248	sc = device_get_softc(dev); /* Automatically allocated and zeroed
249				       on attach. */
250	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
251	sc->dev = dev;
252
253	/*
254	 * Initialize mutexes and tasks.
255	 */
256	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
257	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
258	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
259	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
260
261	pci_enable_busmaster(dev);		/* Enable bus mastering. */
262
263	sc->spec_mem = ae_res_spec_mem;
264
265	/*
266	 * Allocate memory-mapped registers.
267	 */
268	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
269	if (error != 0) {
270		device_printf(dev, "could not allocate memory resources.\n");
271		sc->spec_mem = NULL;
272		goto fail;
273	}
274
275	/*
276	 * Retrieve PCI and chip revisions.
277	 */
278	pcirev = pci_get_revid(dev);
279	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
280	    AE_MASTER_REVNUM_MASK;
281	if (bootverbose) {
282		device_printf(dev, "pci device revision: %#04x\n", pcirev);
283		device_printf(dev, "chip id: %#02x\n", chiprev);
284	}
285	nmsi = pci_msi_count(dev);
286	if (bootverbose)
287		device_printf(dev, "MSI count: %d.\n", nmsi);
288
289	/*
290	 * Allocate interrupt resources.
291	 */
292	if (msi_disable == 0 && nmsi == 1) {
293		error = pci_alloc_msi(dev, &nmsi);
294		if (error == 0) {
295			device_printf(dev, "Using MSI messages.\n");
296			sc->spec_irq = ae_res_spec_msi;
297			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
298			if (error != 0) {
299				device_printf(dev, "MSI allocation failed.\n");
300				sc->spec_irq = NULL;
301				pci_release_msi(dev);
302			} else {
303				sc->flags |= AE_FLAG_MSI;
304			}
305		}
306	}
307	if (sc->spec_irq == NULL) {
308		sc->spec_irq = ae_res_spec_irq;
309		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
310		if (error != 0) {
311			device_printf(dev, "could not allocate IRQ resources.\n");
312			sc->spec_irq = NULL;
313			goto fail;
314		}
315	}
316
317	ae_init_tunables(sc);
318
319	ae_phy_reset(sc);		/* Reset PHY. */
320	error = ae_reset(sc);		/* Reset the controller itself. */
321	if (error != 0)
322		goto fail;
323
324	ae_pcie_init(sc);
325
326	ae_retrieve_address(sc);	/* Load MAC address. */
327
328	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
329	if (error != 0)
330		goto fail;
331
332	ifp = sc->ifp = if_alloc(IFT_ETHER);
333	if (ifp == NULL) {
334		device_printf(dev, "could not allocate ifnet structure.\n");
335		error = ENXIO;
336		goto fail;
337	}
338
339	ifp->if_softc = sc;
340	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
341	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
342	ifp->if_ioctl = ae_ioctl;
343	ifp->if_start = ae_start;
344	ifp->if_init = ae_init;
345	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
346	ifp->if_hwassist = 0;
347	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
348	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
349	IFQ_SET_READY(&ifp->if_snd);
350	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
351		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
352		sc->flags |= AE_FLAG_PMG;
353	}
354	ifp->if_capenable = ifp->if_capabilities;
355
356	/*
357	 * Configure and attach MII bus.
358	 */
359	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
360	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
361	    MII_OFFSET_ANY, 0);
362	if (error != 0) {
363		device_printf(dev, "attaching PHYs failed\n");
364		goto fail;
365	}
366
367	ether_ifattach(ifp, sc->eaddr);
368	/* Tell the upper layer(s) we support long frames. */
369	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
370
371	/*
372	 * Create and run all helper tasks.
373	 */
374	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
375            taskqueue_thread_enqueue, &sc->tq);
376	if (sc->tq == NULL) {
377		device_printf(dev, "could not create taskqueue.\n");
378		ether_ifdetach(ifp);
379		error = ENXIO;
380		goto fail;
381	}
382	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
383	    device_get_nameunit(sc->dev));
384
385	/*
386	 * Configure interrupt handlers.
387	 */
388	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
389	    ae_intr, NULL, sc, &sc->intrhand);
390	if (error != 0) {
391		device_printf(dev, "could not set up interrupt handler.\n");
392		taskqueue_free(sc->tq);
393		sc->tq = NULL;
394		ether_ifdetach(ifp);
395		goto fail;
396	}
397
398fail:
399	if (error != 0)
400		ae_detach(dev);
401
402	return (error);
403}
404
405#define	AE_SYSCTL(stx, parent, name, desc, ptr)	\
406	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
407
408static void
409ae_init_tunables(ae_softc_t *sc)
410{
411	struct sysctl_ctx_list *ctx;
412	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
413	struct ae_stats *ae_stats;
414
415	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
416	ae_stats = &sc->stats;
417
418	ctx = device_get_sysctl_ctx(sc->dev);
419	root = device_get_sysctl_tree(sc->dev);
420	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
421	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ae statistics");
422
423	/*
424	 * Receiver statistcics.
425	 */
426	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
427	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
428	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
429	    "broadcast frames", &ae_stats->rx_bcast);
430	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
431	    "multicast frames", &ae_stats->rx_mcast);
432	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
433	    "PAUSE frames", &ae_stats->rx_pause);
434	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
435	    "control frames", &ae_stats->rx_ctrl);
436	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
437	    "frames with CRC errors", &ae_stats->rx_crcerr);
438	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
439	    "frames with invalid opcode", &ae_stats->rx_codeerr);
440	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
441	    "runt frames", &ae_stats->rx_runt);
442	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
443	    "fragmented frames", &ae_stats->rx_frag);
444	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
445	    "frames with alignment errors", &ae_stats->rx_align);
446	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
447	    "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
448
449	/*
450	 * Receiver statistcics.
451	 */
452	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
453	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
454	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
455	    "broadcast frames", &ae_stats->tx_bcast);
456	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
457	    "multicast frames", &ae_stats->tx_mcast);
458	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
459	    "PAUSE frames", &ae_stats->tx_pause);
460	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
461	    "control frames", &ae_stats->tx_ctrl);
462	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
463	    "deferrals occuried", &ae_stats->tx_defer);
464	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
465	    "excessive deferrals occuried", &ae_stats->tx_excdefer);
466	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
467	    "single collisions occuried", &ae_stats->tx_singlecol);
468	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
469	    "multiple collisions occuried", &ae_stats->tx_multicol);
470	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
471	    "late collisions occuried", &ae_stats->tx_latecol);
472	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
473	    "transmit aborts due collisions", &ae_stats->tx_abortcol);
474	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
475	    "Tx FIFO underruns", &ae_stats->tx_underrun);
476}
477
478static void
479ae_pcie_init(ae_softc_t *sc)
480{
481
482	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
483	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
484}
485
486static void
487ae_phy_reset(ae_softc_t *sc)
488{
489
490	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
491	DELAY(1000);	/* XXX: pause(9) ? */
492}
493
494static int
495ae_reset(ae_softc_t *sc)
496{
497	int i;
498
499	/*
500	 * Issue a soft reset.
501	 */
502	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
503	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
504	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
505
506	/*
507	 * Wait for reset to complete.
508	 */
509	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
510		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
511			break;
512		DELAY(10);
513	}
514	if (i == AE_RESET_TIMEOUT) {
515		device_printf(sc->dev, "reset timeout.\n");
516		return (ENXIO);
517	}
518
519	/*
520	 * Wait for everything to enter idle state.
521	 */
522	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
523		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
524			break;
525		DELAY(100);
526	}
527	if (i == AE_IDLE_TIMEOUT) {
528		device_printf(sc->dev, "could not enter idle state.\n");
529		return (ENXIO);
530	}
531	return (0);
532}
533
534static void
535ae_init(void *arg)
536{
537	ae_softc_t *sc;
538
539	sc = (ae_softc_t *)arg;
540	AE_LOCK(sc);
541	ae_init_locked(sc);
542	AE_UNLOCK(sc);
543}
544
545static void
546ae_phy_init(ae_softc_t *sc)
547{
548
549	/*
550	 * Enable link status change interrupt.
551	 * XXX magic numbers.
552	 */
553#ifdef notyet
554	AE_PHY_WRITE(sc, 18, 0xc00);
555#endif
556}
557
558static int
559ae_init_locked(ae_softc_t *sc)
560{
561	struct ifnet *ifp;
562	struct mii_data *mii;
563	uint8_t eaddr[ETHER_ADDR_LEN];
564	uint32_t val;
565	bus_addr_t addr;
566
567	AE_LOCK_ASSERT(sc);
568
569	ifp = sc->ifp;
570	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
571		return (0);
572	mii = device_get_softc(sc->miibus);
573
574	ae_stop(sc);
575	ae_reset(sc);
576	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
577	ae_phy_init(sc);
578	ae_powersave_disable(sc);
579
580	/*
581	 * Clear and disable interrupts.
582	 */
583	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
584
585	/*
586	 * Set the MAC address.
587	 */
588	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
589	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
590	AE_WRITE_4(sc, AE_EADDR0_REG, val);
591	val = eaddr[0] << 8 | eaddr[1];
592	AE_WRITE_4(sc, AE_EADDR1_REG, val);
593
594	bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
595	bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
596	bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
597	/*
598	 * Set ring buffers base addresses.
599	 */
600	addr = sc->dma_rxd_busaddr;
601	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
602	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
603	addr = sc->dma_txd_busaddr;
604	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
605	addr = sc->dma_txs_busaddr;
606	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
607
608	/*
609	 * Configure ring buffers sizes.
610	 */
611	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
612	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
613	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
614
615	/*
616	 * Configure interframe gap parameters.
617	 */
618	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
619	    AE_IFG_TXIPG_MASK) |
620	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
621	    AE_IFG_RXIPG_MASK) |
622	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
623	    AE_IFG_IPGR1_MASK) |
624	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
625	    AE_IFG_IPGR2_MASK);
626	AE_WRITE_4(sc, AE_IFG_REG, val);
627
628	/*
629	 * Configure half-duplex operation.
630	 */
631	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
632	    AE_HDPX_LCOL_MASK) |
633	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
634	    AE_HDPX_RETRY_MASK) |
635	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
636	    AE_HDPX_ABEBT_MASK) |
637	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
638	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
639	AE_WRITE_4(sc, AE_HDPX_REG, val);
640
641	/*
642	 * Configure interrupt moderate timer.
643	 */
644	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
645	val = AE_READ_4(sc, AE_MASTER_REG);
646	val |= AE_MASTER_IMT_EN;
647	AE_WRITE_4(sc, AE_MASTER_REG, val);
648
649	/*
650	 * Configure interrupt clearing timer.
651	 */
652	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
653
654	/*
655	 * Configure MTU.
656	 */
657	val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
658	    ETHER_CRC_LEN;
659	AE_WRITE_2(sc, AE_MTU_REG, val);
660
661	/*
662	 * Configure cut-through threshold.
663	 */
664	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
665
666	/*
667	 * Configure flow control.
668	 */
669	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
670	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
671	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
672	    (AE_RXD_COUNT_DEFAULT / 12));
673
674	/*
675	 * Init mailboxes.
676	 */
677	sc->txd_cur = sc->rxd_cur = 0;
678	sc->txs_ack = sc->txd_ack = 0;
679	sc->rxd_cur = 0;
680	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
681	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
682
683	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
684	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
685
686	/*
687	 * Enable DMA.
688	 */
689	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
690	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
691
692	/*
693	 * Check if everything is OK.
694	 */
695	val = AE_READ_4(sc, AE_ISR_REG);
696	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
697		device_printf(sc->dev, "Initialization failed.\n");
698		return (ENXIO);
699	}
700
701	/*
702	 * Clear interrupt status.
703	 */
704	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
705	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
706
707	/*
708	 * Enable interrupts.
709	 */
710	val = AE_READ_4(sc, AE_MASTER_REG);
711	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
712	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
713
714	/*
715	 * Disable WOL.
716	 */
717	AE_WRITE_4(sc, AE_WOL_REG, 0);
718
719	/*
720	 * Configure MAC.
721	 */
722	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
723	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
724	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
725	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
726	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
727	    AE_MAC_PREAMBLE_MASK);
728	AE_WRITE_4(sc, AE_MAC_REG, val);
729
730	/*
731	 * Configure Rx MAC.
732	 */
733	ae_rxfilter(sc);
734	ae_rxvlan(sc);
735
736	/*
737	 * Enable Tx/Rx.
738	 */
739	val = AE_READ_4(sc, AE_MAC_REG);
740	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
741
742	sc->flags &= ~AE_FLAG_LINK;
743	mii_mediachg(mii);	/* Switch to the current media. */
744
745	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
746
747	ifp->if_drv_flags |= IFF_DRV_RUNNING;
748	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
749
750#ifdef AE_DEBUG
751	device_printf(sc->dev, "Initialization complete.\n");
752#endif
753
754	return (0);
755}
756
757static int
758ae_detach(device_t dev)
759{
760	struct ae_softc *sc;
761	struct ifnet *ifp;
762
763	sc = device_get_softc(dev);
764	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
765	ifp = sc->ifp;
766	if (device_is_attached(dev)) {
767		AE_LOCK(sc);
768		sc->flags |= AE_FLAG_DETACH;
769		ae_stop(sc);
770		AE_UNLOCK(sc);
771		callout_drain(&sc->tick_ch);
772		taskqueue_drain(sc->tq, &sc->int_task);
773		taskqueue_drain(taskqueue_swi, &sc->link_task);
774		ether_ifdetach(ifp);
775	}
776	if (sc->tq != NULL) {
777		taskqueue_drain(sc->tq, &sc->int_task);
778		taskqueue_free(sc->tq);
779		sc->tq = NULL;
780	}
781	if (sc->miibus != NULL) {
782		device_delete_child(dev, sc->miibus);
783		sc->miibus = NULL;
784	}
785	bus_generic_detach(sc->dev);
786	ae_dma_free(sc);
787	if (sc->intrhand != NULL) {
788		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
789		sc->intrhand = NULL;
790	}
791	if (ifp != NULL) {
792		if_free(ifp);
793		sc->ifp = NULL;
794	}
795	if (sc->spec_irq != NULL)
796		bus_release_resources(dev, sc->spec_irq, sc->irq);
797	if (sc->spec_mem != NULL)
798		bus_release_resources(dev, sc->spec_mem, sc->mem);
799	if ((sc->flags & AE_FLAG_MSI) != 0)
800		pci_release_msi(dev);
801	mtx_destroy(&sc->mtx);
802
803	return (0);
804}
805
806static int
807ae_miibus_readreg(device_t dev, int phy, int reg)
808{
809	ae_softc_t *sc;
810	uint32_t val;
811	int i;
812
813	sc = device_get_softc(dev);
814	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
815
816	/*
817	 * Locking is done in upper layers.
818	 */
819
820	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
821	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
822	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
823	AE_WRITE_4(sc, AE_MDIO_REG, val);
824
825	/*
826	 * Wait for operation to complete.
827	 */
828	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
829		DELAY(2);
830		val = AE_READ_4(sc, AE_MDIO_REG);
831		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
832			break;
833	}
834	if (i == AE_MDIO_TIMEOUT) {
835		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
836		return (0);
837	}
838	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
839}
840
841static int
842ae_miibus_writereg(device_t dev, int phy, int reg, int val)
843{
844	ae_softc_t *sc;
845	uint32_t aereg;
846	int i;
847
848	sc = device_get_softc(dev);
849	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
850
851	/*
852	 * Locking is done in upper layers.
853	 */
854
855	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
856	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
857	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
858	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
859	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
860
861	/*
862	 * Wait for operation to complete.
863	 */
864	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
865		DELAY(2);
866		aereg = AE_READ_4(sc, AE_MDIO_REG);
867		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
868			break;
869	}
870	if (i == AE_MDIO_TIMEOUT) {
871		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
872	}
873	return (0);
874}
875
876static void
877ae_miibus_statchg(device_t dev)
878{
879	ae_softc_t *sc;
880
881	sc = device_get_softc(dev);
882	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
883}
884
885static void
886ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
887{
888	ae_softc_t *sc;
889	struct mii_data *mii;
890
891	sc = ifp->if_softc;
892	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
893
894	AE_LOCK(sc);
895	mii = device_get_softc(sc->miibus);
896	mii_pollstat(mii);
897	ifmr->ifm_status = mii->mii_media_status;
898	ifmr->ifm_active = mii->mii_media_active;
899	AE_UNLOCK(sc);
900}
901
902static int
903ae_mediachange(struct ifnet *ifp)
904{
905	ae_softc_t *sc;
906	struct mii_data *mii;
907	struct mii_softc *mii_sc;
908	int error;
909
910	/* XXX: check IFF_UP ?? */
911	sc = ifp->if_softc;
912	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
913	AE_LOCK(sc);
914	mii = device_get_softc(sc->miibus);
915	LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
916		PHY_RESET(mii_sc);
917	error = mii_mediachg(mii);
918	AE_UNLOCK(sc);
919
920	return (error);
921}
922
923static int
924ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
925{
926	int error;
927	uint32_t val;
928
929	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
930
931	/*
932	 * Not sure why, but Linux does this.
933	 */
934	val = AE_READ_4(sc, AE_SPICTL_REG);
935	if ((val & AE_SPICTL_VPD_EN) != 0) {
936		val &= ~AE_SPICTL_VPD_EN;
937		AE_WRITE_4(sc, AE_SPICTL_REG, val);
938	}
939	error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
940	return (error);
941}
942
943static int
944ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
945{
946	uint32_t val;
947	int i;
948
949	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
950
951	/*
952	 * VPD registers start at offset 0x100. Read them.
953	 */
954	val = 0x100 + reg * 4;
955	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
956	    AE_VPD_CAP_ADDR_MASK);
957	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
958		DELAY(2000);
959		val = AE_READ_4(sc, AE_VPD_CAP_REG);
960		if ((val & AE_VPD_CAP_DONE) != 0)
961			break;
962	}
963	if (i == AE_VPD_TIMEOUT) {
964		device_printf(sc->dev, "timeout reading VPD register %d.\n",
965		    reg);
966		return (ETIMEDOUT);
967	}
968	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
969	return (0);
970}
971
972static int
973ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
974{
975	uint32_t word, reg, val;
976	int error;
977	int found;
978	int vpdc;
979	int i;
980
981	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
982	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
983
984	/*
985	 * Check for EEPROM.
986	 */
987	error = ae_check_eeprom_present(sc, &vpdc);
988	if (error != 0)
989		return (error);
990
991	/*
992	 * Read the VPD configuration space.
993	 * Each register is prefixed with signature,
994	 * so we can check if it is valid.
995	 */
996	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
997		error = ae_vpd_read_word(sc, i, &word);
998		if (error != 0)
999			break;
1000
1001		/*
1002		 * Check signature.
1003		 */
1004		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1005			break;
1006		reg = word >> AE_VPD_REG_SHIFT;
1007		i++;	/* Move to the next word. */
1008
1009		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1010			continue;
1011
1012		error = ae_vpd_read_word(sc, i, &val);
1013		if (error != 0)
1014			break;
1015		if (reg == AE_EADDR0_REG)
1016			eaddr[0] = val;
1017		else
1018			eaddr[1] = val;
1019		found++;
1020	}
1021
1022	if (found < 2)
1023		return (ENOENT);
1024
1025	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1026	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1027		if (bootverbose)
1028			device_printf(sc->dev,
1029			    "VPD ethernet address registers are invalid.\n");
1030		return (EINVAL);
1031	}
1032	return (0);
1033}
1034
1035static int
1036ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1037{
1038
1039	/*
1040	 * BIOS is supposed to set this.
1041	 */
1042	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1043	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1044	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1045
1046	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1047		if (bootverbose)
1048			device_printf(sc->dev,
1049			    "Ethernet address registers are invalid.\n");
1050		return (EINVAL);
1051	}
1052	return (0);
1053}
1054
1055static void
1056ae_retrieve_address(ae_softc_t *sc)
1057{
1058	uint32_t eaddr[2] = {0, 0};
1059	int error;
1060
1061	/*
1062	 *Check for EEPROM.
1063	 */
1064	error = ae_get_vpd_eaddr(sc, eaddr);
1065	if (error != 0)
1066		error = ae_get_reg_eaddr(sc, eaddr);
1067	if (error != 0) {
1068		if (bootverbose)
1069			device_printf(sc->dev,
1070			    "Generating random ethernet address.\n");
1071		eaddr[0] = arc4random();
1072
1073		/*
1074		 * Set OUI to ASUSTek COMPUTER INC.
1075		 */
1076		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1077		sc->eaddr[1] = 0x1f;
1078		sc->eaddr[2] = 0xc6;
1079		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1080		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1081		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1082	} else {
1083		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1084		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1085		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1086		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1087		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1088		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1089	}
1090}
1091
1092static void
1093ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1094{
1095	bus_addr_t *addr = arg;
1096
1097	if (error != 0)
1098		return;
1099	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1100	    nsegs));
1101	*addr = segs[0].ds_addr;
1102}
1103
1104static int
1105ae_alloc_rings(ae_softc_t *sc)
1106{
1107	bus_addr_t busaddr;
1108	int error;
1109
1110	/*
1111	 * Create parent DMA tag.
1112	 */
1113	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1114	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1115	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1116	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1117	    &sc->dma_parent_tag);
1118	if (error != 0) {
1119		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1120		return (error);
1121	}
1122
1123	/*
1124	 * Create DMA tag for TxD.
1125	 */
1126	error = bus_dma_tag_create(sc->dma_parent_tag,
1127	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1128	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1129	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1130	    &sc->dma_txd_tag);
1131	if (error != 0) {
1132		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1133		return (error);
1134	}
1135
1136	/*
1137	 * Create DMA tag for TxS.
1138	 */
1139	error = bus_dma_tag_create(sc->dma_parent_tag,
1140	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1141	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1142	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1143	    &sc->dma_txs_tag);
1144	if (error != 0) {
1145		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1146		return (error);
1147	}
1148
1149	/*
1150	 * Create DMA tag for RxD.
1151	 */
1152	error = bus_dma_tag_create(sc->dma_parent_tag,
1153	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1154	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1155	    AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1156	    &sc->dma_rxd_tag);
1157	if (error != 0) {
1158		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1159		return (error);
1160	}
1161
1162	/*
1163	 * Allocate TxD DMA memory.
1164	 */
1165	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1166	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1167	    &sc->dma_txd_map);
1168	if (error != 0) {
1169		device_printf(sc->dev,
1170		    "could not allocate DMA memory for TxD ring.\n");
1171		return (error);
1172	}
1173	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1174	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1175	if (error != 0 || busaddr == 0) {
1176		device_printf(sc->dev,
1177		    "could not load DMA map for TxD ring.\n");
1178		return (error);
1179	}
1180	sc->dma_txd_busaddr = busaddr;
1181
1182	/*
1183	 * Allocate TxS DMA memory.
1184	 */
1185	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1186	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1187	    &sc->dma_txs_map);
1188	if (error != 0) {
1189		device_printf(sc->dev,
1190		    "could not allocate DMA memory for TxS ring.\n");
1191		return (error);
1192	}
1193	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1194	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1195	if (error != 0 || busaddr == 0) {
1196		device_printf(sc->dev,
1197		    "could not load DMA map for TxS ring.\n");
1198		return (error);
1199	}
1200	sc->dma_txs_busaddr = busaddr;
1201
1202	/*
1203	 * Allocate RxD DMA memory.
1204	 */
1205	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1206	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1207	    &sc->dma_rxd_map);
1208	if (error != 0) {
1209		device_printf(sc->dev,
1210		    "could not allocate DMA memory for RxD ring.\n");
1211		return (error);
1212	}
1213	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1214	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1215	    ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1216	if (error != 0 || busaddr == 0) {
1217		device_printf(sc->dev,
1218		    "could not load DMA map for RxD ring.\n");
1219		return (error);
1220	}
1221	sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1222	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1223
1224	return (0);
1225}
1226
1227static void
1228ae_dma_free(ae_softc_t *sc)
1229{
1230
1231	if (sc->dma_txd_tag != NULL) {
1232		if (sc->dma_txd_busaddr != 0)
1233			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1234		if (sc->txd_base != NULL)
1235			bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1236			    sc->dma_txd_map);
1237		bus_dma_tag_destroy(sc->dma_txd_tag);
1238		sc->dma_txd_tag = NULL;
1239		sc->txd_base = NULL;
1240		sc->dma_txd_busaddr = 0;
1241	}
1242	if (sc->dma_txs_tag != NULL) {
1243		if (sc->dma_txs_busaddr != 0)
1244			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1245		if (sc->txs_base != NULL)
1246			bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1247			    sc->dma_txs_map);
1248		bus_dma_tag_destroy(sc->dma_txs_tag);
1249		sc->dma_txs_tag = NULL;
1250		sc->txs_base = NULL;
1251		sc->dma_txs_busaddr = 0;
1252	}
1253	if (sc->dma_rxd_tag != NULL) {
1254		if (sc->dma_rxd_busaddr != 0)
1255			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1256		if (sc->rxd_base_dma != NULL)
1257			bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1258			    sc->dma_rxd_map);
1259		bus_dma_tag_destroy(sc->dma_rxd_tag);
1260		sc->dma_rxd_tag = NULL;
1261		sc->rxd_base_dma = NULL;
1262		sc->dma_rxd_busaddr = 0;
1263	}
1264	if (sc->dma_parent_tag != NULL) {
1265		bus_dma_tag_destroy(sc->dma_parent_tag);
1266		sc->dma_parent_tag = NULL;
1267	}
1268}
1269
1270static int
1271ae_shutdown(device_t dev)
1272{
1273	ae_softc_t *sc;
1274	int error;
1275
1276	sc = device_get_softc(dev);
1277	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1278
1279	error = ae_suspend(dev);
1280	AE_LOCK(sc);
1281	ae_powersave_enable(sc);
1282	AE_UNLOCK(sc);
1283	return (error);
1284}
1285
1286static void
1287ae_powersave_disable(ae_softc_t *sc)
1288{
1289	uint32_t val;
1290
1291	AE_LOCK_ASSERT(sc);
1292
1293	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1294	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1295	if (val & AE_PHY_DBG_POWERSAVE) {
1296		val &= ~AE_PHY_DBG_POWERSAVE;
1297		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1298		DELAY(1000);
1299	}
1300}
1301
1302static void
1303ae_powersave_enable(ae_softc_t *sc)
1304{
1305	uint32_t val;
1306
1307	AE_LOCK_ASSERT(sc);
1308
1309	/*
1310	 * XXX magic numbers.
1311	 */
1312	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1313	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1314	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1315	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1316	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1317	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1318	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1319}
1320
1321static void
1322ae_pm_init(ae_softc_t *sc)
1323{
1324	struct ifnet *ifp;
1325	uint32_t val;
1326	uint16_t pmstat;
1327	struct mii_data *mii;
1328	int pmc;
1329
1330	AE_LOCK_ASSERT(sc);
1331
1332	ifp = sc->ifp;
1333	if ((sc->flags & AE_FLAG_PMG) == 0) {
1334		/* Disable WOL entirely. */
1335		AE_WRITE_4(sc, AE_WOL_REG, 0);
1336		return;
1337	}
1338
1339	/*
1340	 * Configure WOL if enabled.
1341	 */
1342	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1343		mii = device_get_softc(sc->miibus);
1344		mii_pollstat(mii);
1345		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1346		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1347			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1348			    AE_WOL_MAGIC_PME);
1349
1350			/*
1351			 * Configure MAC.
1352			 */
1353			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1354			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1355			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1356			    AE_HALFBUF_MASK) | \
1357			    ((AE_MAC_PREAMBLE_DEFAULT << \
1358			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1359			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1360			if ((IFM_OPTIONS(mii->mii_media_active) & \
1361			    IFM_FDX) != 0)
1362				val |= AE_MAC_FULL_DUPLEX;
1363			AE_WRITE_4(sc, AE_MAC_REG, val);
1364
1365		} else {	/* No link. */
1366			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1367			    AE_WOL_LNKCHG_PME);
1368			AE_WRITE_4(sc, AE_MAC_REG, 0);
1369		}
1370	} else {
1371		ae_powersave_enable(sc);
1372	}
1373
1374	/*
1375	 * PCIE hacks. Magic numbers.
1376	 */
1377	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1378	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1379	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1380	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1381	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1382	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1383
1384	/*
1385	 * Configure PME.
1386	 */
1387	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1388		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1389		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1390		if ((ifp->if_capenable & IFCAP_WOL) != 0)
1391			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1392		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1393	}
1394}
1395
1396static int
1397ae_suspend(device_t dev)
1398{
1399	ae_softc_t *sc;
1400
1401	sc = device_get_softc(dev);
1402
1403	AE_LOCK(sc);
1404	ae_stop(sc);
1405	ae_pm_init(sc);
1406	AE_UNLOCK(sc);
1407
1408	return (0);
1409}
1410
1411static int
1412ae_resume(device_t dev)
1413{
1414	ae_softc_t *sc;
1415
1416	sc = device_get_softc(dev);
1417	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1418
1419	AE_LOCK(sc);
1420	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1421	if ((sc->ifp->if_flags & IFF_UP) != 0)
1422		ae_init_locked(sc);
1423	AE_UNLOCK(sc);
1424
1425	return (0);
1426}
1427
1428static unsigned int
1429ae_tx_avail_size(ae_softc_t *sc)
1430{
1431	unsigned int avail;
1432
1433	if (sc->txd_cur >= sc->txd_ack)
1434		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1435	else
1436		avail = sc->txd_ack - sc->txd_cur;
1437
1438	return (avail);
1439}
1440
1441static int
1442ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1443{
1444	struct mbuf *m0;
1445	ae_txd_t *hdr;
1446	unsigned int to_end;
1447	uint16_t len;
1448
1449	AE_LOCK_ASSERT(sc);
1450
1451	m0 = *m_head;
1452	len = m0->m_pkthdr.len;
1453
1454	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1455	    len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1456#ifdef AE_DEBUG
1457		if_printf(sc->ifp, "No free Tx available.\n");
1458#endif
1459		return ENOBUFS;
1460	}
1461
1462	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1463	bzero(hdr, sizeof(*hdr));
1464	/* Skip header size. */
1465	sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1466	/* Space available to the end of the ring */
1467	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1468	if (to_end >= len) {
1469		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1470	} else {
1471		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1472		    sc->txd_cur));
1473		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1474	}
1475
1476	/*
1477	 * Set TxD flags and parameters.
1478	 */
1479	if ((m0->m_flags & M_VLANTAG) != 0) {
1480		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1481		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1482	} else {
1483		hdr->len = htole16(len);
1484	}
1485
1486	/*
1487	 * Set current TxD position and round up to a 4-byte boundary.
1488	 */
1489	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1490	if (sc->txd_cur == sc->txd_ack)
1491		sc->flags &= ~AE_FLAG_TXAVAIL;
1492#ifdef AE_DEBUG
1493	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1494#endif
1495
1496	/*
1497	 * Update TxS position and check if there are empty TxS available.
1498	 */
1499	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1500	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1501	if (sc->txs_cur == sc->txs_ack)
1502		sc->flags &= ~AE_FLAG_TXAVAIL;
1503
1504	/*
1505	 * Synchronize DMA memory.
1506	 */
1507	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1508	    BUS_DMASYNC_PREWRITE);
1509	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1510	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1511
1512	return (0);
1513}
1514
1515static void
1516ae_start(struct ifnet *ifp)
1517{
1518	ae_softc_t *sc;
1519
1520	sc = ifp->if_softc;
1521	AE_LOCK(sc);
1522	ae_start_locked(ifp);
1523	AE_UNLOCK(sc);
1524}
1525
1526static void
1527ae_start_locked(struct ifnet *ifp)
1528{
1529	ae_softc_t *sc;
1530	unsigned int count;
1531	struct mbuf *m0;
1532	int error;
1533
1534	sc = ifp->if_softc;
1535	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1536	AE_LOCK_ASSERT(sc);
1537
1538#ifdef AE_DEBUG
1539	if_printf(ifp, "Start called.\n");
1540#endif
1541
1542	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1543	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1544		return;
1545
1546	count = 0;
1547	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1548		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1549		if (m0 == NULL)
1550			break;	/* Nothing to do. */
1551
1552		error = ae_encap(sc, &m0);
1553		if (error != 0) {
1554			if (m0 != NULL) {
1555				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1556				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1557#ifdef AE_DEBUG
1558				if_printf(ifp, "Setting OACTIVE.\n");
1559#endif
1560			}
1561			break;
1562		}
1563		count++;
1564		sc->tx_inproc++;
1565
1566		/* Bounce a copy of the frame to BPF. */
1567		ETHER_BPF_MTAP(ifp, m0);
1568
1569		m_freem(m0);
1570	}
1571
1572	if (count > 0) {	/* Something was dequeued. */
1573		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1574		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1575#ifdef AE_DEBUG
1576		if_printf(ifp, "%d packets dequeued.\n", count);
1577		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1578#endif
1579	}
1580}
1581
1582static void
1583ae_link_task(void *arg, int pending)
1584{
1585	ae_softc_t *sc;
1586	struct mii_data *mii;
1587	struct ifnet *ifp;
1588	uint32_t val;
1589
1590	sc = (ae_softc_t *)arg;
1591	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1592	AE_LOCK(sc);
1593
1594	ifp = sc->ifp;
1595	mii = device_get_softc(sc->miibus);
1596	if (mii == NULL || ifp == NULL ||
1597	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1598		AE_UNLOCK(sc);	/* XXX: could happen? */
1599		return;
1600	}
1601
1602	sc->flags &= ~AE_FLAG_LINK;
1603	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1604	    (IFM_AVALID | IFM_ACTIVE)) {
1605		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1606		case IFM_10_T:
1607		case IFM_100_TX:
1608			sc->flags |= AE_FLAG_LINK;
1609			break;
1610		default:
1611			break;
1612		}
1613	}
1614
1615	/*
1616	 * Stop Rx/Tx MACs.
1617	 */
1618	ae_stop_rxmac(sc);
1619	ae_stop_txmac(sc);
1620
1621	if ((sc->flags & AE_FLAG_LINK) != 0) {
1622		ae_mac_config(sc);
1623
1624		/*
1625		 * Restart DMA engines.
1626		 */
1627		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1628		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1629
1630		/*
1631		 * Enable Rx and Tx MACs.
1632		 */
1633		val = AE_READ_4(sc, AE_MAC_REG);
1634		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1635		AE_WRITE_4(sc, AE_MAC_REG, val);
1636	}
1637	AE_UNLOCK(sc);
1638}
1639
1640static void
1641ae_stop_rxmac(ae_softc_t *sc)
1642{
1643	uint32_t val;
1644	int i;
1645
1646	AE_LOCK_ASSERT(sc);
1647
1648	/*
1649	 * Stop Rx MAC engine.
1650	 */
1651	val = AE_READ_4(sc, AE_MAC_REG);
1652	if ((val & AE_MAC_RX_EN) != 0) {
1653		val &= ~AE_MAC_RX_EN;
1654		AE_WRITE_4(sc, AE_MAC_REG, val);
1655	}
1656
1657	/*
1658	 * Stop Rx DMA engine.
1659	 */
1660	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1661		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1662
1663	/*
1664	 * Wait for IDLE state.
1665	 */
1666	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1667		val = AE_READ_4(sc, AE_IDLE_REG);
1668		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1669			break;
1670		DELAY(100);
1671	}
1672	if (i == AE_IDLE_TIMEOUT)
1673		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1674}
1675
1676static void
1677ae_stop_txmac(ae_softc_t *sc)
1678{
1679	uint32_t val;
1680	int i;
1681
1682	AE_LOCK_ASSERT(sc);
1683
1684	/*
1685	 * Stop Tx MAC engine.
1686	 */
1687	val = AE_READ_4(sc, AE_MAC_REG);
1688	if ((val & AE_MAC_TX_EN) != 0) {
1689		val &= ~AE_MAC_TX_EN;
1690		AE_WRITE_4(sc, AE_MAC_REG, val);
1691	}
1692
1693	/*
1694	 * Stop Tx DMA engine.
1695	 */
1696	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1697		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1698
1699	/*
1700	 * Wait for IDLE state.
1701	 */
1702	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1703		val = AE_READ_4(sc, AE_IDLE_REG);
1704		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1705			break;
1706		DELAY(100);
1707	}
1708	if (i == AE_IDLE_TIMEOUT)
1709		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1710}
1711
1712static void
1713ae_mac_config(ae_softc_t *sc)
1714{
1715	struct mii_data *mii;
1716	uint32_t val;
1717
1718	AE_LOCK_ASSERT(sc);
1719
1720	mii = device_get_softc(sc->miibus);
1721	val = AE_READ_4(sc, AE_MAC_REG);
1722	val &= ~AE_MAC_FULL_DUPLEX;
1723	/* XXX disable AE_MAC_TX_FLOW_EN? */
1724
1725	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1726		val |= AE_MAC_FULL_DUPLEX;
1727
1728	AE_WRITE_4(sc, AE_MAC_REG, val);
1729}
1730
1731static int
1732ae_intr(void *arg)
1733{
1734	ae_softc_t *sc;
1735	uint32_t val;
1736
1737	sc = (ae_softc_t *)arg;
1738	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1739
1740	val = AE_READ_4(sc, AE_ISR_REG);
1741	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1742		return (FILTER_STRAY);
1743
1744	/* Disable interrupts. */
1745	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1746
1747	/* Schedule interrupt processing. */
1748	taskqueue_enqueue(sc->tq, &sc->int_task);
1749
1750	return (FILTER_HANDLED);
1751}
1752
1753static void
1754ae_int_task(void *arg, int pending)
1755{
1756	ae_softc_t *sc;
1757	struct ifnet *ifp;
1758	uint32_t val;
1759
1760	sc = (ae_softc_t *)arg;
1761
1762	AE_LOCK(sc);
1763
1764	ifp = sc->ifp;
1765
1766	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1767	if (val == 0) {
1768		AE_UNLOCK(sc);
1769		return;
1770	}
1771
1772	/*
1773	 * Clear interrupts and disable them.
1774	 */
1775	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1776
1777#ifdef AE_DEBUG
1778	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1779#endif
1780
1781	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1782		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1783		    AE_ISR_PHY_LINKDOWN)) != 0) {
1784			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1785			ae_init_locked(sc);
1786			AE_UNLOCK(sc);
1787			return;
1788		}
1789		if ((val & AE_ISR_TX_EVENT) != 0)
1790			ae_tx_intr(sc);
1791		if ((val & AE_ISR_RX_EVENT) != 0)
1792			ae_rx_intr(sc);
1793		/*
1794		 * Re-enable interrupts.
1795		 */
1796		AE_WRITE_4(sc, AE_ISR_REG, 0);
1797
1798		if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1799			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1800				ae_start_locked(ifp);
1801		}
1802	}
1803
1804	AE_UNLOCK(sc);
1805}
1806
1807static void
1808ae_tx_intr(ae_softc_t *sc)
1809{
1810	struct ifnet *ifp;
1811	ae_txd_t *txd;
1812	ae_txs_t *txs;
1813	uint16_t flags;
1814
1815	AE_LOCK_ASSERT(sc);
1816
1817	ifp = sc->ifp;
1818
1819#ifdef AE_DEBUG
1820	if_printf(ifp, "Tx interrupt occuried.\n");
1821#endif
1822
1823	/*
1824	 * Syncronize DMA buffers.
1825	 */
1826	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1827	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1828	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1829	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1830
1831	for (;;) {
1832		txs = sc->txs_base + sc->txs_ack;
1833		flags = le16toh(txs->flags);
1834		if ((flags & AE_TXS_UPDATE) == 0)
1835			break;
1836		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1837		/* Update stats. */
1838		ae_update_stats_tx(flags, &sc->stats);
1839
1840		/*
1841		 * Update TxS position.
1842		 */
1843		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1844		sc->flags |= AE_FLAG_TXAVAIL;
1845
1846		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1847		if (txs->len != txd->len)
1848			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1849			    le16toh(txs->len), le16toh(txd->len));
1850
1851		/*
1852		 * Move txd ack and align on 4-byte boundary.
1853		 */
1854		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1855		    sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1856
1857		if ((flags & AE_TXS_SUCCESS) != 0)
1858			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1859		else
1860			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1861
1862		sc->tx_inproc--;
1863	}
1864
1865	if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1866		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1867	if (sc->tx_inproc < 0) {
1868		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1869		sc->tx_inproc = 0;
1870	}
1871
1872	if (sc->tx_inproc == 0)
1873		sc->wd_timer = 0;	/* Unarm watchdog. */
1874
1875	/*
1876	 * Syncronize DMA buffers.
1877	 */
1878	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1879	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1880	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1881	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1882}
1883
1884static void
1885ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1886{
1887	struct ifnet *ifp;
1888	struct mbuf *m;
1889	unsigned int size;
1890	uint16_t flags;
1891
1892	AE_LOCK_ASSERT(sc);
1893
1894	ifp = sc->ifp;
1895	flags = le16toh(rxd->flags);
1896
1897#ifdef AE_DEBUG
1898	if_printf(ifp, "Rx interrupt occuried.\n");
1899#endif
1900	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1901	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1902		if_printf(ifp, "Runt frame received.");
1903		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1904		return;
1905	}
1906
1907	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1908	if (m == NULL) {
1909		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1910		return;
1911	}
1912
1913	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1914	    (flags & AE_RXD_HAS_VLAN) != 0) {
1915		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1916		m->m_flags |= M_VLANTAG;
1917	}
1918
1919	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1920	/*
1921	 * Pass it through.
1922	 */
1923	AE_UNLOCK(sc);
1924	(*ifp->if_input)(ifp, m);
1925	AE_LOCK(sc);
1926}
1927
1928static void
1929ae_rx_intr(ae_softc_t *sc)
1930{
1931	ae_rxd_t *rxd;
1932	struct ifnet *ifp;
1933	uint16_t flags;
1934	int count;
1935
1936	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1937
1938	AE_LOCK_ASSERT(sc);
1939
1940	ifp = sc->ifp;
1941
1942	/*
1943	 * Syncronize DMA buffers.
1944	 */
1945	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1946	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1947
1948	for (count = 0;; count++) {
1949		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1950		flags = le16toh(rxd->flags);
1951		if ((flags & AE_RXD_UPDATE) == 0)
1952			break;
1953		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1954		/* Update stats. */
1955		ae_update_stats_rx(flags, &sc->stats);
1956
1957		/*
1958		 * Update position index.
1959		 */
1960		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1961
1962		if ((flags & AE_RXD_SUCCESS) != 0)
1963			ae_rxeof(sc, rxd);
1964		else
1965			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1966	}
1967
1968	if (count > 0) {
1969		bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1970		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1971		/*
1972		 * Update Rx index.
1973		 */
1974		AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1975	}
1976}
1977
1978static void
1979ae_watchdog(ae_softc_t *sc)
1980{
1981	struct ifnet *ifp;
1982
1983	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1984	AE_LOCK_ASSERT(sc);
1985	ifp = sc->ifp;
1986
1987	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1988		return;		/* Noting to do. */
1989
1990	if ((sc->flags & AE_FLAG_LINK) == 0)
1991		if_printf(ifp, "watchdog timeout (missed link).\n");
1992	else
1993		if_printf(ifp, "watchdog timeout - resetting.\n");
1994
1995	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1996	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1997	ae_init_locked(sc);
1998	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1999		ae_start_locked(ifp);
2000}
2001
2002static void
2003ae_tick(void *arg)
2004{
2005	ae_softc_t *sc;
2006	struct mii_data *mii;
2007
2008	sc = (ae_softc_t *)arg;
2009	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2010	AE_LOCK_ASSERT(sc);
2011
2012	mii = device_get_softc(sc->miibus);
2013	mii_tick(mii);
2014	ae_watchdog(sc);	/* Watchdog check. */
2015	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2016}
2017
2018static void
2019ae_rxvlan(ae_softc_t *sc)
2020{
2021	struct ifnet *ifp;
2022	uint32_t val;
2023
2024	AE_LOCK_ASSERT(sc);
2025	ifp = sc->ifp;
2026	val = AE_READ_4(sc, AE_MAC_REG);
2027	val &= ~AE_MAC_RMVLAN_EN;
2028	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2029		val |= AE_MAC_RMVLAN_EN;
2030	AE_WRITE_4(sc, AE_MAC_REG, val);
2031}
2032
2033static u_int
2034ae_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2035{
2036	uint32_t crc, *mchash = arg;
2037
2038	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2039	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2040
2041	return (1);
2042}
2043
2044static void
2045ae_rxfilter(ae_softc_t *sc)
2046{
2047	struct ifnet *ifp;
2048	uint32_t mchash[2];
2049	uint32_t rxcfg;
2050
2051	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2052
2053	AE_LOCK_ASSERT(sc);
2054
2055	ifp = sc->ifp;
2056
2057	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2058	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2059
2060	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2061		rxcfg |= AE_MAC_BCAST_EN;
2062	if ((ifp->if_flags & IFF_PROMISC) != 0)
2063		rxcfg |= AE_MAC_PROMISC_EN;
2064	if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2065		rxcfg |= AE_MAC_MCAST_EN;
2066
2067	/*
2068	 * Wipe old settings.
2069	 */
2070	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2071	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2072	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2073		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2074		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2075		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2076		return;
2077	}
2078
2079	/*
2080	 * Load multicast tables.
2081	 */
2082	bzero(mchash, sizeof(mchash));
2083	if_foreach_llmaddr(ifp, ae_hash_maddr, &mchash);
2084	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2085	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2086	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2087}
2088
2089static int
2090ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2091{
2092	struct ae_softc *sc;
2093	struct ifreq *ifr;
2094	struct mii_data *mii;
2095	int error, mask;
2096
2097	sc = ifp->if_softc;
2098	ifr = (struct ifreq *)data;
2099	error = 0;
2100
2101	switch (cmd) {
2102	case SIOCSIFMTU:
2103		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2104			error = EINVAL;
2105		else if (ifp->if_mtu != ifr->ifr_mtu) {
2106			AE_LOCK(sc);
2107			ifp->if_mtu = ifr->ifr_mtu;
2108			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2109				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2110				ae_init_locked(sc);
2111			}
2112			AE_UNLOCK(sc);
2113		}
2114		break;
2115	case SIOCSIFFLAGS:
2116		AE_LOCK(sc);
2117		if ((ifp->if_flags & IFF_UP) != 0) {
2118			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2119				if (((ifp->if_flags ^ sc->if_flags)
2120				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2121					ae_rxfilter(sc);
2122			} else {
2123				if ((sc->flags & AE_FLAG_DETACH) == 0)
2124					ae_init_locked(sc);
2125			}
2126		} else {
2127			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2128				ae_stop(sc);
2129		}
2130		sc->if_flags = ifp->if_flags;
2131		AE_UNLOCK(sc);
2132		break;
2133	case SIOCADDMULTI:
2134	case SIOCDELMULTI:
2135		AE_LOCK(sc);
2136		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2137			ae_rxfilter(sc);
2138		AE_UNLOCK(sc);
2139		break;
2140	case SIOCSIFMEDIA:
2141	case SIOCGIFMEDIA:
2142		mii = device_get_softc(sc->miibus);
2143		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2144		break;
2145	case SIOCSIFCAP:
2146		AE_LOCK(sc);
2147		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2148		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2149		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2150			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2151			ae_rxvlan(sc);
2152		}
2153		VLAN_CAPABILITIES(ifp);
2154		AE_UNLOCK(sc);
2155		break;
2156	default:
2157		error = ether_ioctl(ifp, cmd, data);
2158		break;
2159	}
2160	return (error);
2161}
2162
2163static void
2164ae_stop(ae_softc_t *sc)
2165{
2166	struct ifnet *ifp;
2167	int i;
2168
2169	AE_LOCK_ASSERT(sc);
2170
2171	ifp = sc->ifp;
2172	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2173	sc->flags &= ~AE_FLAG_LINK;
2174	sc->wd_timer = 0;	/* Cancel watchdog. */
2175	callout_stop(&sc->tick_ch);
2176
2177	/*
2178	 * Clear and disable interrupts.
2179	 */
2180	AE_WRITE_4(sc, AE_IMR_REG, 0);
2181	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2182
2183	/*
2184	 * Stop Rx/Tx MACs.
2185	 */
2186	ae_stop_txmac(sc);
2187	ae_stop_rxmac(sc);
2188
2189	/*
2190	 * Stop DMA engines.
2191	 */
2192	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2193	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2194
2195	/*
2196	 * Wait for everything to enter idle state.
2197	 */
2198	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2199		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2200			break;
2201		DELAY(100);
2202	}
2203	if (i == AE_IDLE_TIMEOUT)
2204		device_printf(sc->dev, "could not enter idle state in stop.\n");
2205}
2206
2207static void
2208ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2209{
2210
2211	if ((flags & AE_TXS_BCAST) != 0)
2212		stats->tx_bcast++;
2213	if ((flags & AE_TXS_MCAST) != 0)
2214		stats->tx_mcast++;
2215	if ((flags & AE_TXS_PAUSE) != 0)
2216		stats->tx_pause++;
2217	if ((flags & AE_TXS_CTRL) != 0)
2218		stats->tx_ctrl++;
2219	if ((flags & AE_TXS_DEFER) != 0)
2220		stats->tx_defer++;
2221	if ((flags & AE_TXS_EXCDEFER) != 0)
2222		stats->tx_excdefer++;
2223	if ((flags & AE_TXS_SINGLECOL) != 0)
2224		stats->tx_singlecol++;
2225	if ((flags & AE_TXS_MULTICOL) != 0)
2226		stats->tx_multicol++;
2227	if ((flags & AE_TXS_LATECOL) != 0)
2228		stats->tx_latecol++;
2229	if ((flags & AE_TXS_ABORTCOL) != 0)
2230		stats->tx_abortcol++;
2231	if ((flags & AE_TXS_UNDERRUN) != 0)
2232		stats->tx_underrun++;
2233}
2234
2235static void
2236ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2237{
2238
2239	if ((flags & AE_RXD_BCAST) != 0)
2240		stats->rx_bcast++;
2241	if ((flags & AE_RXD_MCAST) != 0)
2242		stats->rx_mcast++;
2243	if ((flags & AE_RXD_PAUSE) != 0)
2244		stats->rx_pause++;
2245	if ((flags & AE_RXD_CTRL) != 0)
2246		stats->rx_ctrl++;
2247	if ((flags & AE_RXD_CRCERR) != 0)
2248		stats->rx_crcerr++;
2249	if ((flags & AE_RXD_CODEERR) != 0)
2250		stats->rx_codeerr++;
2251	if ((flags & AE_RXD_RUNT) != 0)
2252		stats->rx_runt++;
2253	if ((flags & AE_RXD_FRAG) != 0)
2254		stats->rx_frag++;
2255	if ((flags & AE_RXD_TRUNC) != 0)
2256		stats->rx_trunc++;
2257	if ((flags & AE_RXD_ALIGN) != 0)
2258		stats->rx_align++;
2259}
2260