1/* ******************************************************************
2 * Huffman encoder, part of New Generation Entropy library
3 * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
4 *
5 *  You can contact the author at :
6 *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
7 *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
8 *
9 * This source code is licensed under both the BSD-style license (found in the
10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11 * in the COPYING file in the root directory of this source tree).
12 * You may select, at your option, one of the above-listed licenses.
13****************************************************************** */
14
15/* **************************************************************
16*  Compiler specifics
17****************************************************************/
18#ifdef _MSC_VER    /* Visual Studio */
19#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
20#endif
21
22
23/* **************************************************************
24*  Includes
25****************************************************************/
26#include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
27#include "../common/compiler.h"
28#include "../common/bitstream.h"
29#include "hist.h"
30#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
31#include "../common/fse.h"        /* header compression */
32#define HUF_STATIC_LINKING_ONLY
33#include "../common/huf.h"
34#include "../common/error_private.h"
35
36
37/* **************************************************************
38*  Error Management
39****************************************************************/
40#define HUF_isError ERR_isError
41#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
42
43
44/* **************************************************************
45*  Utils
46****************************************************************/
47unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
48{
49    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
50}
51
52
53/* *******************************************************
54*  HUF : Huffman block compression
55*********************************************************/
56/* HUF_compressWeights() :
57 * Same as FSE_compress(), but dedicated to huff0's weights compression.
58 * The use case needs much less stack memory.
59 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
60 */
61#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
62static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
63{
64    BYTE* const ostart = (BYTE*) dst;
65    BYTE* op = ostart;
66    BYTE* const oend = ostart + dstSize;
67
68    unsigned maxSymbolValue = HUF_TABLELOG_MAX;
69    U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
70
71    FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
72    U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
73
74    unsigned count[HUF_TABLELOG_MAX+1];
75    S16 norm[HUF_TABLELOG_MAX+1];
76
77    /* init conditions */
78    if (wtSize <= 1) return 0;  /* Not compressible */
79
80    /* Scan input and build symbol stats */
81    {   unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
82        if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
83        if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
84    }
85
86    tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
87    CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
88
89    /* Write table description header */
90    {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), norm, maxSymbolValue, tableLog) );
91        op += hSize;
92    }
93
94    /* Compress */
95    CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
96    {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, CTable) );
97        if (cSize == 0) return 0;   /* not enough space for compressed data */
98        op += cSize;
99    }
100
101    return (size_t)(op-ostart);
102}
103
104
105/*! HUF_writeCTable() :
106    `CTable` : Huffman tree to save, using huf representation.
107    @return : size of saved CTable */
108size_t HUF_writeCTable (void* dst, size_t maxDstSize,
109                        const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
110{
111    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
112    BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
113    BYTE* op = (BYTE*)dst;
114    U32 n;
115
116     /* check conditions */
117    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
118
119    /* convert to weight */
120    bitsToWeight[0] = 0;
121    for (n=1; n<huffLog+1; n++)
122        bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
123    for (n=0; n<maxSymbolValue; n++)
124        huffWeight[n] = bitsToWeight[CTable[n].nbBits];
125
126    /* attempt weights compression by FSE */
127    {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
128        if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
129            op[0] = (BYTE)hSize;
130            return hSize+1;
131    }   }
132
133    /* write raw values as 4-bits (max : 15) */
134    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
135    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
136    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
137    huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
138    for (n=0; n<maxSymbolValue; n+=2)
139        op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
140    return ((maxSymbolValue+1)/2) + 1;
141}
142
143
144size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
145{
146    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
147    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
148    U32 tableLog = 0;
149    U32 nbSymbols = 0;
150
151    /* get symbol weights */
152    CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
153    *hasZeroWeights = (rankVal[0] > 0);
154
155    /* check result */
156    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
157    if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
158
159    /* Prepare base value per rank */
160    {   U32 n, nextRankStart = 0;
161        for (n=1; n<=tableLog; n++) {
162            U32 curr = nextRankStart;
163            nextRankStart += (rankVal[n] << (n-1));
164            rankVal[n] = curr;
165    }   }
166
167    /* fill nbBits */
168    {   U32 n; for (n=0; n<nbSymbols; n++) {
169            const U32 w = huffWeight[n];
170            CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
171    }   }
172
173    /* fill val */
174    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
175        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
176        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
177        /* determine stating value per rank */
178        valPerRank[tableLog+1] = 0;   /* for w==0 */
179        {   U16 min = 0;
180            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
181                valPerRank[n] = min;     /* get starting value within each rank */
182                min += nbPerRank[n];
183                min >>= 1;
184        }   }
185        /* assign value within rank, symbol order */
186        { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
187    }
188
189    *maxSymbolValuePtr = nbSymbols - 1;
190    return readSize;
191}
192
193U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
194{
195    const HUF_CElt* table = (const HUF_CElt*)symbolTable;
196    assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
197    return table[symbolValue].nbBits;
198}
199
200
201typedef struct nodeElt_s {
202    U32 count;
203    U16 parent;
204    BYTE byte;
205    BYTE nbBits;
206} nodeElt;
207
208/**
209 * HUF_setMaxHeight():
210 * Enforces maxNbBits on the Huffman tree described in huffNode.
211 *
212 * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
213 * the tree to so that it is a valid canonical Huffman tree.
214 *
215 * @pre               The sum of the ranks of each symbol == 2^largestBits,
216 *                    where largestBits == huffNode[lastNonNull].nbBits.
217 * @post              The sum of the ranks of each symbol == 2^largestBits,
218 *                    where largestBits is the return value <= maxNbBits.
219 *
220 * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
221 * @param lastNonNull The symbol with the lowest count in the Huffman tree.
222 * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
223 *                    may not respect. After this function the Huffman tree will
224 *                    respect maxNbBits.
225 * @return            The maximum number of bits of the Huffman tree after adjustment,
226 *                    necessarily no more than maxNbBits.
227 */
228static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
229{
230    const U32 largestBits = huffNode[lastNonNull].nbBits;
231    /* early exit : no elt > maxNbBits, so the tree is already valid. */
232    if (largestBits <= maxNbBits) return largestBits;
233
234    /* there are several too large elements (at least >= 2) */
235    {   int totalCost = 0;
236        const U32 baseCost = 1 << (largestBits - maxNbBits);
237        int n = (int)lastNonNull;
238
239        /* Adjust any ranks > maxNbBits to maxNbBits.
240         * Compute totalCost, which is how far the sum of the ranks is
241         * we are over 2^largestBits after adjust the offending ranks.
242         */
243        while (huffNode[n].nbBits > maxNbBits) {
244            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
245            huffNode[n].nbBits = (BYTE)maxNbBits;
246            n--;
247        }
248        /* n stops at huffNode[n].nbBits <= maxNbBits */
249        assert(huffNode[n].nbBits <= maxNbBits);
250        /* n end at index of smallest symbol using < maxNbBits */
251        while (huffNode[n].nbBits == maxNbBits) --n;
252
253        /* renorm totalCost from 2^largestBits to 2^maxNbBits
254         * note : totalCost is necessarily a multiple of baseCost */
255        assert((totalCost & (baseCost - 1)) == 0);
256        totalCost >>= (largestBits - maxNbBits);
257        assert(totalCost > 0);
258
259        /* repay normalized cost */
260        {   U32 const noSymbol = 0xF0F0F0F0;
261            U32 rankLast[HUF_TABLELOG_MAX+2];
262
263            /* Get pos of last (smallest = lowest cum. count) symbol per rank */
264            ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
265            {   U32 currentNbBits = maxNbBits;
266                int pos;
267                for (pos=n ; pos >= 0; pos--) {
268                    if (huffNode[pos].nbBits >= currentNbBits) continue;
269                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
270                    rankLast[maxNbBits-currentNbBits] = (U32)pos;
271            }   }
272
273            while (totalCost > 0) {
274                /* Try to reduce the next power of 2 above totalCost because we
275                 * gain back half the rank.
276                 */
277                U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
278                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
279                    U32 const highPos = rankLast[nBitsToDecrease];
280                    U32 const lowPos = rankLast[nBitsToDecrease-1];
281                    if (highPos == noSymbol) continue;
282                    /* Decrease highPos if no symbols of lowPos or if it is
283                     * not cheaper to remove 2 lowPos than highPos.
284                     */
285                    if (lowPos == noSymbol) break;
286                    {   U32 const highTotal = huffNode[highPos].count;
287                        U32 const lowTotal = 2 * huffNode[lowPos].count;
288                        if (highTotal <= lowTotal) break;
289                }   }
290                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
291                assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
292                /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
293                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
294                    nBitsToDecrease++;
295                assert(rankLast[nBitsToDecrease] != noSymbol);
296                /* Increase the number of bits to gain back half the rank cost. */
297                totalCost -= 1 << (nBitsToDecrease-1);
298                huffNode[rankLast[nBitsToDecrease]].nbBits++;
299
300                /* Fix up the new rank.
301                 * If the new rank was empty, this symbol is now its smallest.
302                 * Otherwise, this symbol will be the largest in the new rank so no adjustment.
303                 */
304                if (rankLast[nBitsToDecrease-1] == noSymbol)
305                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
306                /* Fix up the old rank.
307                 * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
308                 * it must be the only symbol in its rank, so the old rank now has no symbols.
309                 * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
310                 * the smallest node in the rank. If the previous position belongs to a different rank,
311                 * then the rank is now empty.
312                 */
313                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
314                    rankLast[nBitsToDecrease] = noSymbol;
315                else {
316                    rankLast[nBitsToDecrease]--;
317                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
318                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
319                }
320            }   /* while (totalCost > 0) */
321
322            /* If we've removed too much weight, then we have to add it back.
323             * To avoid overshooting again, we only adjust the smallest rank.
324             * We take the largest nodes from the lowest rank 0 and move them
325             * to rank 1. There's guaranteed to be enough rank 0 symbols because
326             * TODO.
327             */
328            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
329                /* special case : no rank 1 symbol (using maxNbBits-1);
330                 * let's create one from largest rank 0 (using maxNbBits).
331                 */
332                if (rankLast[1] == noSymbol) {
333                    while (huffNode[n].nbBits == maxNbBits) n--;
334                    huffNode[n+1].nbBits--;
335                    assert(n >= 0);
336                    rankLast[1] = (U32)(n+1);
337                    totalCost++;
338                    continue;
339                }
340                huffNode[ rankLast[1] + 1 ].nbBits--;
341                rankLast[1]++;
342                totalCost ++;
343            }
344        }   /* repay normalized cost */
345    }   /* there are several too large elements (at least >= 2) */
346
347    return maxNbBits;
348}
349
350typedef struct {
351    U32 base;
352    U32 curr;
353} rankPos;
354
355typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
356
357#define RANK_POSITION_TABLE_SIZE 32
358
359typedef struct {
360  huffNodeTable huffNodeTbl;
361  rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
362} HUF_buildCTable_wksp_tables;
363
364/**
365 * HUF_sort():
366 * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
367 *
368 * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
369 *                            Must have (maxSymbolValue + 1) entries.
370 * @param[in]  count          Histogram of the symbols.
371 * @param[in]  maxSymbolValue Maximum symbol value.
372 * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
373 */
374static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
375{
376    int n;
377    int const maxSymbolValue1 = (int)maxSymbolValue + 1;
378
379    /* Compute base and set curr to base.
380     * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1.
381     * Then 2^lowerRank <= count[n]+1 <= 2^rank.
382     * We attribute each symbol to lowerRank's base value, because we want to know where
383     * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
384     */
385    ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
386    for (n = 0; n < maxSymbolValue1; ++n) {
387        U32 lowerRank = BIT_highbit32(count[n] + 1);
388        rankPosition[lowerRank].base++;
389    }
390    assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
391    for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
392        rankPosition[n-1].base += rankPosition[n].base;
393        rankPosition[n-1].curr = rankPosition[n-1].base;
394    }
395    /* Sort */
396    for (n = 0; n < maxSymbolValue1; ++n) {
397        U32 const c = count[n];
398        U32 const r = BIT_highbit32(c+1) + 1;
399        U32 pos = rankPosition[r].curr++;
400        /* Insert into the correct position in the rank.
401         * We have at most 256 symbols, so this insertion should be fine.
402         */
403        while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
404            huffNode[pos] = huffNode[pos-1];
405            pos--;
406        }
407        huffNode[pos].count = c;
408        huffNode[pos].byte  = (BYTE)n;
409    }
410}
411
412
413/** HUF_buildCTable_wksp() :
414 *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
415 *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
416 */
417#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
418
419/* HUF_buildTree():
420 * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
421 *
422 * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
423 * @param maxSymbolValue  The maximum symbol value.
424 * @return                The smallest node in the Huffman tree (by count).
425 */
426static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
427{
428    nodeElt* const huffNode0 = huffNode - 1;
429    int nonNullRank;
430    int lowS, lowN;
431    int nodeNb = STARTNODE;
432    int n, nodeRoot;
433    /* init for parents */
434    nonNullRank = (int)maxSymbolValue;
435    while(huffNode[nonNullRank].count == 0) nonNullRank--;
436    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
437    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
438    huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
439    nodeNb++; lowS-=2;
440    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
441    huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */
442
443    /* create parents */
444    while (nodeNb <= nodeRoot) {
445        int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
446        int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
447        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
448        huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
449        nodeNb++;
450    }
451
452    /* distribute weights (unlimited tree height) */
453    huffNode[nodeRoot].nbBits = 0;
454    for (n=nodeRoot-1; n>=STARTNODE; n--)
455        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
456    for (n=0; n<=nonNullRank; n++)
457        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
458
459    return nonNullRank;
460}
461
462/**
463 * HUF_buildCTableFromTree():
464 * Build the CTable given the Huffman tree in huffNode.
465 *
466 * @param[out] CTable         The output Huffman CTable.
467 * @param      huffNode       The Huffman tree.
468 * @param      nonNullRank    The last and smallest node in the Huffman tree.
469 * @param      maxSymbolValue The maximum symbol value.
470 * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
471 */
472static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
473{
474    /* fill result into ctable (val, nbBits) */
475    int n;
476    U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
477    U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
478    int const alphabetSize = (int)(maxSymbolValue + 1);
479    for (n=0; n<=nonNullRank; n++)
480        nbPerRank[huffNode[n].nbBits]++;
481    /* determine starting value per rank */
482    {   U16 min = 0;
483        for (n=(int)maxNbBits; n>0; n--) {
484            valPerRank[n] = min;      /* get starting value within each rank */
485            min += nbPerRank[n];
486            min >>= 1;
487    }   }
488    for (n=0; n<alphabetSize; n++)
489        CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits;   /* push nbBits per symbol, symbol order */
490    for (n=0; n<alphabetSize; n++)
491        CTable[n].val = valPerRank[CTable[n].nbBits]++;   /* assign value within rank, symbol order */
492}
493
494size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
495{
496    HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
497    nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
498    nodeElt* const huffNode = huffNode0+1;
499    int nonNullRank;
500
501    /* safety checks */
502    if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC);  /* must be aligned on 4-bytes boundaries */
503    if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
504      return ERROR(workSpace_tooSmall);
505    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
506    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
507      return ERROR(maxSymbolValue_tooLarge);
508    ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
509
510    /* sort, decreasing order */
511    HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
512
513    /* build tree */
514    nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
515
516    /* enforce maxTableLog */
517    maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
518    if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
519
520    HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
521
522    return maxNbBits;
523}
524
525size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
526{
527    size_t nbBits = 0;
528    int s;
529    for (s = 0; s <= (int)maxSymbolValue; ++s) {
530        nbBits += CTable[s].nbBits * count[s];
531    }
532    return nbBits >> 3;
533}
534
535int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
536  int bad = 0;
537  int s;
538  for (s = 0; s <= (int)maxSymbolValue; ++s) {
539    bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
540  }
541  return !bad;
542}
543
544size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
545
546FORCE_INLINE_TEMPLATE void
547HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
548{
549    BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
550}
551
552#define HUF_FLUSHBITS(s)  BIT_flushBits(s)
553
554#define HUF_FLUSHBITS_1(stream) \
555    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
556
557#define HUF_FLUSHBITS_2(stream) \
558    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
559
560FORCE_INLINE_TEMPLATE size_t
561HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
562                                   const void* src, size_t srcSize,
563                                   const HUF_CElt* CTable)
564{
565    const BYTE* ip = (const BYTE*) src;
566    BYTE* const ostart = (BYTE*)dst;
567    BYTE* const oend = ostart + dstSize;
568    BYTE* op = ostart;
569    size_t n;
570    BIT_CStream_t bitC;
571
572    /* init */
573    if (dstSize < 8) return 0;   /* not enough space to compress */
574    { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
575      if (HUF_isError(initErr)) return 0; }
576
577    n = srcSize & ~3;  /* join to mod 4 */
578    switch (srcSize & 3)
579    {
580        case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
581                 HUF_FLUSHBITS_2(&bitC);
582		 /* fall-through */
583        case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
584                 HUF_FLUSHBITS_1(&bitC);
585		 /* fall-through */
586        case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
587                 HUF_FLUSHBITS(&bitC);
588		 /* fall-through */
589        case 0 : /* fall-through */
590        default: break;
591    }
592
593    for (; n>0; n-=4) {  /* note : n&3==0 at this stage */
594        HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
595        HUF_FLUSHBITS_1(&bitC);
596        HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
597        HUF_FLUSHBITS_2(&bitC);
598        HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
599        HUF_FLUSHBITS_1(&bitC);
600        HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
601        HUF_FLUSHBITS(&bitC);
602    }
603
604    return BIT_closeCStream(&bitC);
605}
606
607#if DYNAMIC_BMI2
608
609static TARGET_ATTRIBUTE("bmi2") size_t
610HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
611                                   const void* src, size_t srcSize,
612                                   const HUF_CElt* CTable)
613{
614    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
615}
616
617static size_t
618HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
619                                      const void* src, size_t srcSize,
620                                      const HUF_CElt* CTable)
621{
622    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
623}
624
625static size_t
626HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
627                              const void* src, size_t srcSize,
628                              const HUF_CElt* CTable, const int bmi2)
629{
630    if (bmi2) {
631        return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
632    }
633    return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
634}
635
636#else
637
638static size_t
639HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
640                              const void* src, size_t srcSize,
641                              const HUF_CElt* CTable, const int bmi2)
642{
643    (void)bmi2;
644    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
645}
646
647#endif
648
649size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
650{
651    return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
652}
653
654
655static size_t
656HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
657                              const void* src, size_t srcSize,
658                              const HUF_CElt* CTable, int bmi2)
659{
660    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
661    const BYTE* ip = (const BYTE*) src;
662    const BYTE* const iend = ip + srcSize;
663    BYTE* const ostart = (BYTE*) dst;
664    BYTE* const oend = ostart + dstSize;
665    BYTE* op = ostart;
666
667    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
668    if (srcSize < 12) return 0;   /* no saving possible : too small input */
669    op += 6;   /* jumpTable */
670
671    assert(op <= oend);
672    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
673        if (cSize==0) return 0;
674        assert(cSize <= 65535);
675        MEM_writeLE16(ostart, (U16)cSize);
676        op += cSize;
677    }
678
679    ip += segmentSize;
680    assert(op <= oend);
681    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
682        if (cSize==0) return 0;
683        assert(cSize <= 65535);
684        MEM_writeLE16(ostart+2, (U16)cSize);
685        op += cSize;
686    }
687
688    ip += segmentSize;
689    assert(op <= oend);
690    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
691        if (cSize==0) return 0;
692        assert(cSize <= 65535);
693        MEM_writeLE16(ostart+4, (U16)cSize);
694        op += cSize;
695    }
696
697    ip += segmentSize;
698    assert(op <= oend);
699    assert(ip <= iend);
700    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
701        if (cSize==0) return 0;
702        op += cSize;
703    }
704
705    return (size_t)(op-ostart);
706}
707
708size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
709{
710    return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
711}
712
713typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
714
715static size_t HUF_compressCTable_internal(
716                BYTE* const ostart, BYTE* op, BYTE* const oend,
717                const void* src, size_t srcSize,
718                HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
719{
720    size_t const cSize = (nbStreams==HUF_singleStream) ?
721                         HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
722                         HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
723    if (HUF_isError(cSize)) { return cSize; }
724    if (cSize==0) { return 0; }   /* uncompressible */
725    op += cSize;
726    /* check compressibility */
727    assert(op >= ostart);
728    if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
729    return (size_t)(op-ostart);
730}
731
732typedef struct {
733    unsigned count[HUF_SYMBOLVALUE_MAX + 1];
734    HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
735    HUF_buildCTable_wksp_tables buildCTable_wksp;
736} HUF_compress_tables_t;
737
738/* HUF_compress_internal() :
739 * `workSpace_align4` must be aligned on 4-bytes boundaries,
740 * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */
741static size_t
742HUF_compress_internal (void* dst, size_t dstSize,
743                 const void* src, size_t srcSize,
744                       unsigned maxSymbolValue, unsigned huffLog,
745                       HUF_nbStreams_e nbStreams,
746                       void* workSpace_align4, size_t wkspSize,
747                       HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
748                 const int bmi2)
749{
750    HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4;
751    BYTE* const ostart = (BYTE*)dst;
752    BYTE* const oend = ostart + dstSize;
753    BYTE* op = ostart;
754
755    HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
756    assert(((size_t)workSpace_align4 & 3) == 0);   /* must be aligned on 4-bytes boundaries */
757
758    /* checks & inits */
759    if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
760    if (!srcSize) return 0;  /* Uncompressed */
761    if (!dstSize) return 0;  /* cannot fit anything within dst budget */
762    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
763    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
764    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
765    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
766    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
767
768    /* Heuristic : If old table is valid, use it for small inputs */
769    if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
770        return HUF_compressCTable_internal(ostart, op, oend,
771                                           src, srcSize,
772                                           nbStreams, oldHufTable, bmi2);
773    }
774
775    /* Scan input and build symbol stats */
776    {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) );
777        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
778        if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
779    }
780
781    /* Check validity of previous table */
782    if ( repeat
783      && *repeat == HUF_repeat_check
784      && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
785        *repeat = HUF_repeat_none;
786    }
787    /* Heuristic : use existing table for small inputs */
788    if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
789        return HUF_compressCTable_internal(ostart, op, oend,
790                                           src, srcSize,
791                                           nbStreams, oldHufTable, bmi2);
792    }
793
794    /* Build Huffman Tree */
795    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
796    {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
797                                            maxSymbolValue, huffLog,
798                                            &table->buildCTable_wksp, sizeof(table->buildCTable_wksp));
799        CHECK_F(maxBits);
800        huffLog = (U32)maxBits;
801        /* Zero unused symbols in CTable, so we can check it for validity */
802        ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0,
803               sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
804    }
805
806    /* Write table description header */
807    {   CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
808        /* Check if using previous huffman table is beneficial */
809        if (repeat && *repeat != HUF_repeat_none) {
810            size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
811            size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
812            if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
813                return HUF_compressCTable_internal(ostart, op, oend,
814                                                   src, srcSize,
815                                                   nbStreams, oldHufTable, bmi2);
816        }   }
817
818        /* Use the new huffman table */
819        if (hSize + 12ul >= srcSize) { return 0; }
820        op += hSize;
821        if (repeat) { *repeat = HUF_repeat_none; }
822        if (oldHufTable)
823            ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
824    }
825    return HUF_compressCTable_internal(ostart, op, oend,
826                                       src, srcSize,
827                                       nbStreams, table->CTable, bmi2);
828}
829
830
831size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
832                      const void* src, size_t srcSize,
833                      unsigned maxSymbolValue, unsigned huffLog,
834                      void* workSpace, size_t wkspSize)
835{
836    return HUF_compress_internal(dst, dstSize, src, srcSize,
837                                 maxSymbolValue, huffLog, HUF_singleStream,
838                                 workSpace, wkspSize,
839                                 NULL, NULL, 0, 0 /*bmi2*/);
840}
841
842size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
843                      const void* src, size_t srcSize,
844                      unsigned maxSymbolValue, unsigned huffLog,
845                      void* workSpace, size_t wkspSize,
846                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
847{
848    return HUF_compress_internal(dst, dstSize, src, srcSize,
849                                 maxSymbolValue, huffLog, HUF_singleStream,
850                                 workSpace, wkspSize, hufTable,
851                                 repeat, preferRepeat, bmi2);
852}
853
854/* HUF_compress4X_repeat():
855 * compress input using 4 streams.
856 * provide workspace to generate compression tables */
857size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
858                      const void* src, size_t srcSize,
859                      unsigned maxSymbolValue, unsigned huffLog,
860                      void* workSpace, size_t wkspSize)
861{
862    return HUF_compress_internal(dst, dstSize, src, srcSize,
863                                 maxSymbolValue, huffLog, HUF_fourStreams,
864                                 workSpace, wkspSize,
865                                 NULL, NULL, 0, 0 /*bmi2*/);
866}
867
868/* HUF_compress4X_repeat():
869 * compress input using 4 streams.
870 * re-use an existing huffman compression table */
871size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
872                      const void* src, size_t srcSize,
873                      unsigned maxSymbolValue, unsigned huffLog,
874                      void* workSpace, size_t wkspSize,
875                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
876{
877    return HUF_compress_internal(dst, dstSize, src, srcSize,
878                                 maxSymbolValue, huffLog, HUF_fourStreams,
879                                 workSpace, wkspSize,
880                                 hufTable, repeat, preferRepeat, bmi2);
881}
882
883#ifndef ZSTD_NO_UNUSED_FUNCTIONS
884/** HUF_buildCTable() :
885 * @return : maxNbBits
886 *  Note : count is used before tree is written, so they can safely overlap
887 */
888size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
889{
890    HUF_buildCTable_wksp_tables workspace;
891    return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
892}
893
894size_t HUF_compress1X (void* dst, size_t dstSize,
895                 const void* src, size_t srcSize,
896                 unsigned maxSymbolValue, unsigned huffLog)
897{
898    unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
899    return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
900}
901
902size_t HUF_compress2 (void* dst, size_t dstSize,
903                const void* src, size_t srcSize,
904                unsigned maxSymbolValue, unsigned huffLog)
905{
906    unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
907    return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
908}
909
910size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
911{
912    return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
913}
914#endif
915