1/*
2 *  xxHash - Fast Hash algorithm
3 *  Copyright (c) 2012-2020, Yann Collet, Facebook, Inc.
4 *
5 *  You can contact the author at :
6 *  - xxHash homepage: http://www.xxhash.com
7 *  - xxHash source repository : https://github.com/Cyan4973/xxHash
8 *
9 * This source code is licensed under both the BSD-style license (found in the
10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11 * in the COPYING file in the root directory of this source tree).
12 * You may select, at your option, one of the above-listed licenses.
13*/
14
15
16/* *************************************
17*  Tuning parameters
18***************************************/
19/*!XXH_FORCE_MEMORY_ACCESS :
20 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
21 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
22 * The below switch allow to select different access method for improved performance.
23 * Method 0 (default) : use `memcpy()`. Safe and portable.
24 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
25 *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
26 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
27 *            It can generate buggy code on targets which do not support unaligned memory accesses.
28 *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
29 * See http://stackoverflow.com/a/32095106/646947 for details.
30 * Prefer these methods in priority order (0 > 1 > 2)
31 */
32#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
33#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
34#    define XXH_FORCE_MEMORY_ACCESS 2
35#  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
36  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
37  defined(__ICCARM__)
38#    define XXH_FORCE_MEMORY_ACCESS 1
39#  endif
40#endif
41
42/*!XXH_ACCEPT_NULL_INPUT_POINTER :
43 * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
44 * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
45 * By default, this option is disabled. To enable it, uncomment below define :
46 */
47/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
48
49/*!XXH_FORCE_NATIVE_FORMAT :
50 * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
51 * Results are therefore identical for little-endian and big-endian CPU.
52 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
53 * Should endian-independence be of no importance for your application, you may set the #define below to 1,
54 * to improve speed for Big-endian CPU.
55 * This option has no impact on Little_Endian CPU.
56 */
57#ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
58#  define XXH_FORCE_NATIVE_FORMAT 0
59#endif
60
61/*!XXH_FORCE_ALIGN_CHECK :
62 * This is a minor performance trick, only useful with lots of very small keys.
63 * It means : check for aligned/unaligned input.
64 * The check costs one initial branch per hash; set to 0 when the input data
65 * is guaranteed to be aligned.
66 */
67#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
68#  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
69#    define XXH_FORCE_ALIGN_CHECK 0
70#  else
71#    define XXH_FORCE_ALIGN_CHECK 1
72#  endif
73#endif
74
75
76/* *************************************
77*  Includes & Memory related functions
78***************************************/
79/* Modify the local functions below should you wish to use some other memory routines */
80/* for ZSTD_malloc(), ZSTD_free() */
81#define ZSTD_DEPS_NEED_MALLOC
82#include "zstd_deps.h"  /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
83static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
84static void  XXH_free  (void* p)  { ZSTD_free(p); }
85static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
86
87#ifndef XXH_STATIC_LINKING_ONLY
88#  define XXH_STATIC_LINKING_ONLY
89#endif
90#include "xxhash.h"
91
92
93/* *************************************
94*  Compiler Specific Options
95***************************************/
96#include "compiler.h"
97
98
99/* *************************************
100*  Basic Types
101***************************************/
102#include "mem.h"  /* BYTE, U32, U64, size_t */
103
104#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
105
106/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
107static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
108static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
109
110#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
111
112/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
113/* currently only defined for gcc and icc */
114typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
115
116static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
117static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
118
119#else
120
121/* portable and safe solution. Generally efficient.
122 * see : http://stackoverflow.com/a/32095106/646947
123 */
124
125static U32 XXH_read32(const void* memPtr)
126{
127    U32 val;
128    ZSTD_memcpy(&val, memPtr, sizeof(val));
129    return val;
130}
131
132static U64 XXH_read64(const void* memPtr)
133{
134    U64 val;
135    ZSTD_memcpy(&val, memPtr, sizeof(val));
136    return val;
137}
138
139#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
140
141
142/* ****************************************
143*  Compiler-specific Functions and Macros
144******************************************/
145#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
146
147/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
148#if defined(_MSC_VER)
149#  define XXH_rotl32(x,r) _rotl(x,r)
150#  define XXH_rotl64(x,r) _rotl64(x,r)
151#else
152#if defined(__ICCARM__)
153#  include <intrinsics.h>
154#  define XXH_rotl32(x,r) __ROR(x,(32 - r))
155#else
156#  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
157#endif
158#  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
159#endif
160
161#if defined(_MSC_VER)     /* Visual Studio */
162#  define XXH_swap32 _byteswap_ulong
163#  define XXH_swap64 _byteswap_uint64
164#elif GCC_VERSION >= 403
165#  define XXH_swap32 __builtin_bswap32
166#  define XXH_swap64 __builtin_bswap64
167#else
168static U32 XXH_swap32 (U32 x)
169{
170    return  ((x << 24) & 0xff000000 ) |
171            ((x <<  8) & 0x00ff0000 ) |
172            ((x >>  8) & 0x0000ff00 ) |
173            ((x >> 24) & 0x000000ff );
174}
175static U64 XXH_swap64 (U64 x)
176{
177    return  ((x << 56) & 0xff00000000000000ULL) |
178            ((x << 40) & 0x00ff000000000000ULL) |
179            ((x << 24) & 0x0000ff0000000000ULL) |
180            ((x << 8)  & 0x000000ff00000000ULL) |
181            ((x >> 8)  & 0x00000000ff000000ULL) |
182            ((x >> 24) & 0x0000000000ff0000ULL) |
183            ((x >> 40) & 0x000000000000ff00ULL) |
184            ((x >> 56) & 0x00000000000000ffULL);
185}
186#endif
187
188
189/* *************************************
190*  Architecture Macros
191***************************************/
192typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
193
194/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
195#ifndef XXH_CPU_LITTLE_ENDIAN
196    static const int g_one = 1;
197#   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
198#endif
199
200
201/* ***************************
202*  Memory reads
203*****************************/
204typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
205
206FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
207{
208    if (align==XXH_unaligned)
209        return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
210    else
211        return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
212}
213
214FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
215{
216    return XXH_readLE32_align(ptr, endian, XXH_unaligned);
217}
218
219static U32 XXH_readBE32(const void* ptr)
220{
221    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
222}
223
224FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
225{
226    if (align==XXH_unaligned)
227        return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
228    else
229        return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
230}
231
232FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
233{
234    return XXH_readLE64_align(ptr, endian, XXH_unaligned);
235}
236
237static U64 XXH_readBE64(const void* ptr)
238{
239    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
240}
241
242
243/* *************************************
244*  Macros
245***************************************/
246#define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
247
248
249/* *************************************
250*  Constants
251***************************************/
252static const U32 PRIME32_1 = 2654435761U;
253static const U32 PRIME32_2 = 2246822519U;
254static const U32 PRIME32_3 = 3266489917U;
255static const U32 PRIME32_4 =  668265263U;
256static const U32 PRIME32_5 =  374761393U;
257
258static const U64 PRIME64_1 = 11400714785074694791ULL;
259static const U64 PRIME64_2 = 14029467366897019727ULL;
260static const U64 PRIME64_3 =  1609587929392839161ULL;
261static const U64 PRIME64_4 =  9650029242287828579ULL;
262static const U64 PRIME64_5 =  2870177450012600261ULL;
263
264XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
265
266
267/* **************************
268*  Utils
269****************************/
270XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
271{
272    ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
273}
274
275XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
276{
277    ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
278}
279
280
281/* ***************************
282*  Simple Hash Functions
283*****************************/
284
285static U32 XXH32_round(U32 seed, U32 input)
286{
287    seed += input * PRIME32_2;
288    seed  = XXH_rotl32(seed, 13);
289    seed *= PRIME32_1;
290    return seed;
291}
292
293FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
294{
295    const BYTE* p = (const BYTE*)input;
296    const BYTE* bEnd = p + len;
297    U32 h32;
298#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
299
300#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
301    if (p==NULL) {
302        len=0;
303        bEnd=p=(const BYTE*)(size_t)16;
304    }
305#endif
306
307    if (len>=16) {
308        const BYTE* const limit = bEnd - 16;
309        U32 v1 = seed + PRIME32_1 + PRIME32_2;
310        U32 v2 = seed + PRIME32_2;
311        U32 v3 = seed + 0;
312        U32 v4 = seed - PRIME32_1;
313
314        do {
315            v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
316            v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
317            v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
318            v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
319        } while (p<=limit);
320
321        h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
322    } else {
323        h32  = seed + PRIME32_5;
324    }
325
326    h32 += (U32) len;
327
328    while (p+4<=bEnd) {
329        h32 += XXH_get32bits(p) * PRIME32_3;
330        h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
331        p+=4;
332    }
333
334    while (p<bEnd) {
335        h32 += (*p) * PRIME32_5;
336        h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
337        p++;
338    }
339
340    h32 ^= h32 >> 15;
341    h32 *= PRIME32_2;
342    h32 ^= h32 >> 13;
343    h32 *= PRIME32_3;
344    h32 ^= h32 >> 16;
345
346    return h32;
347}
348
349
350XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
351{
352#if 0
353    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
354    XXH32_CREATESTATE_STATIC(state);
355    XXH32_reset(state, seed);
356    XXH32_update(state, input, len);
357    return XXH32_digest(state);
358#else
359    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
360
361    if (XXH_FORCE_ALIGN_CHECK) {
362        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
363            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
364                return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
365            else
366                return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
367    }   }
368
369    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
370        return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
371    else
372        return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
373#endif
374}
375
376
377static U64 XXH64_round(U64 acc, U64 input)
378{
379    acc += input * PRIME64_2;
380    acc  = XXH_rotl64(acc, 31);
381    acc *= PRIME64_1;
382    return acc;
383}
384
385static U64 XXH64_mergeRound(U64 acc, U64 val)
386{
387    val  = XXH64_round(0, val);
388    acc ^= val;
389    acc  = acc * PRIME64_1 + PRIME64_4;
390    return acc;
391}
392
393FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
394{
395    const BYTE* p = (const BYTE*)input;
396    const BYTE* const bEnd = p + len;
397    U64 h64;
398#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
399
400#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
401    if (p==NULL) {
402        len=0;
403        bEnd=p=(const BYTE*)(size_t)32;
404    }
405#endif
406
407    if (len>=32) {
408        const BYTE* const limit = bEnd - 32;
409        U64 v1 = seed + PRIME64_1 + PRIME64_2;
410        U64 v2 = seed + PRIME64_2;
411        U64 v3 = seed + 0;
412        U64 v4 = seed - PRIME64_1;
413
414        do {
415            v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
416            v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
417            v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
418            v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
419        } while (p<=limit);
420
421        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
422        h64 = XXH64_mergeRound(h64, v1);
423        h64 = XXH64_mergeRound(h64, v2);
424        h64 = XXH64_mergeRound(h64, v3);
425        h64 = XXH64_mergeRound(h64, v4);
426
427    } else {
428        h64  = seed + PRIME64_5;
429    }
430
431    h64 += (U64) len;
432
433    while (p+8<=bEnd) {
434        U64 const k1 = XXH64_round(0, XXH_get64bits(p));
435        h64 ^= k1;
436        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
437        p+=8;
438    }
439
440    if (p+4<=bEnd) {
441        h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
442        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
443        p+=4;
444    }
445
446    while (p<bEnd) {
447        h64 ^= (*p) * PRIME64_5;
448        h64 = XXH_rotl64(h64, 11) * PRIME64_1;
449        p++;
450    }
451
452    h64 ^= h64 >> 33;
453    h64 *= PRIME64_2;
454    h64 ^= h64 >> 29;
455    h64 *= PRIME64_3;
456    h64 ^= h64 >> 32;
457
458    return h64;
459}
460
461
462XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
463{
464#if 0
465    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
466    XXH64_CREATESTATE_STATIC(state);
467    XXH64_reset(state, seed);
468    XXH64_update(state, input, len);
469    return XXH64_digest(state);
470#else
471    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
472
473    if (XXH_FORCE_ALIGN_CHECK) {
474        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
475            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
476                return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
477            else
478                return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
479    }   }
480
481    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
482        return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
483    else
484        return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
485#endif
486}
487
488
489/* **************************************************
490*  Advanced Hash Functions
491****************************************************/
492
493XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
494{
495    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
496}
497XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
498{
499    XXH_free(statePtr);
500    return XXH_OK;
501}
502
503XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
504{
505    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
506}
507XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
508{
509    XXH_free(statePtr);
510    return XXH_OK;
511}
512
513
514/*** Hash feed ***/
515
516XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
517{
518    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
519    ZSTD_memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
520    state.v1 = seed + PRIME32_1 + PRIME32_2;
521    state.v2 = seed + PRIME32_2;
522    state.v3 = seed + 0;
523    state.v4 = seed - PRIME32_1;
524    ZSTD_memcpy(statePtr, &state, sizeof(state));
525    return XXH_OK;
526}
527
528
529XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
530{
531    XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
532    ZSTD_memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
533    state.v1 = seed + PRIME64_1 + PRIME64_2;
534    state.v2 = seed + PRIME64_2;
535    state.v3 = seed + 0;
536    state.v4 = seed - PRIME64_1;
537    ZSTD_memcpy(statePtr, &state, sizeof(state));
538    return XXH_OK;
539}
540
541
542FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
543{
544    const BYTE* p = (const BYTE*)input;
545    const BYTE* const bEnd = p + len;
546
547#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
548    if (input==NULL) return XXH_ERROR;
549#endif
550
551    state->total_len_32 += (unsigned)len;
552    state->large_len |= (len>=16) | (state->total_len_32>=16);
553
554    if (state->memsize + len < 16)  {   /* fill in tmp buffer */
555        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
556        state->memsize += (unsigned)len;
557        return XXH_OK;
558    }
559
560    if (state->memsize) {   /* some data left from previous update */
561        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
562        {   const U32* p32 = state->mem32;
563            state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
564            state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
565            state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
566            state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
567        }
568        p += 16-state->memsize;
569        state->memsize = 0;
570    }
571
572    if (p <= bEnd-16) {
573        const BYTE* const limit = bEnd - 16;
574        U32 v1 = state->v1;
575        U32 v2 = state->v2;
576        U32 v3 = state->v3;
577        U32 v4 = state->v4;
578
579        do {
580            v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
581            v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
582            v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
583            v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
584        } while (p<=limit);
585
586        state->v1 = v1;
587        state->v2 = v2;
588        state->v3 = v3;
589        state->v4 = v4;
590    }
591
592    if (p < bEnd) {
593        XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
594        state->memsize = (unsigned)(bEnd-p);
595    }
596
597    return XXH_OK;
598}
599
600XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
601{
602    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
603
604    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
605        return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
606    else
607        return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
608}
609
610
611
612FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
613{
614    const BYTE * p = (const BYTE*)state->mem32;
615    const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
616    U32 h32;
617
618    if (state->large_len) {
619        h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
620    } else {
621        h32 = state->v3 /* == seed */ + PRIME32_5;
622    }
623
624    h32 += state->total_len_32;
625
626    while (p+4<=bEnd) {
627        h32 += XXH_readLE32(p, endian) * PRIME32_3;
628        h32  = XXH_rotl32(h32, 17) * PRIME32_4;
629        p+=4;
630    }
631
632    while (p<bEnd) {
633        h32 += (*p) * PRIME32_5;
634        h32  = XXH_rotl32(h32, 11) * PRIME32_1;
635        p++;
636    }
637
638    h32 ^= h32 >> 15;
639    h32 *= PRIME32_2;
640    h32 ^= h32 >> 13;
641    h32 *= PRIME32_3;
642    h32 ^= h32 >> 16;
643
644    return h32;
645}
646
647
648XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
649{
650    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
651
652    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
653        return XXH32_digest_endian(state_in, XXH_littleEndian);
654    else
655        return XXH32_digest_endian(state_in, XXH_bigEndian);
656}
657
658
659
660/* **** XXH64 **** */
661
662FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
663{
664    const BYTE* p = (const BYTE*)input;
665    const BYTE* const bEnd = p + len;
666
667#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
668    if (input==NULL) return XXH_ERROR;
669#endif
670
671    state->total_len += len;
672
673    if (state->memsize + len < 32) {  /* fill in tmp buffer */
674        if (input != NULL) {
675            XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
676        }
677        state->memsize += (U32)len;
678        return XXH_OK;
679    }
680
681    if (state->memsize) {   /* tmp buffer is full */
682        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
683        state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
684        state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
685        state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
686        state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
687        p += 32-state->memsize;
688        state->memsize = 0;
689    }
690
691    if (p+32 <= bEnd) {
692        const BYTE* const limit = bEnd - 32;
693        U64 v1 = state->v1;
694        U64 v2 = state->v2;
695        U64 v3 = state->v3;
696        U64 v4 = state->v4;
697
698        do {
699            v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
700            v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
701            v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
702            v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
703        } while (p<=limit);
704
705        state->v1 = v1;
706        state->v2 = v2;
707        state->v3 = v3;
708        state->v4 = v4;
709    }
710
711    if (p < bEnd) {
712        XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
713        state->memsize = (unsigned)(bEnd-p);
714    }
715
716    return XXH_OK;
717}
718
719XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
720{
721    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
722
723    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
724        return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
725    else
726        return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
727}
728
729
730
731FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
732{
733    const BYTE * p = (const BYTE*)state->mem64;
734    const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
735    U64 h64;
736
737    if (state->total_len >= 32) {
738        U64 const v1 = state->v1;
739        U64 const v2 = state->v2;
740        U64 const v3 = state->v3;
741        U64 const v4 = state->v4;
742
743        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
744        h64 = XXH64_mergeRound(h64, v1);
745        h64 = XXH64_mergeRound(h64, v2);
746        h64 = XXH64_mergeRound(h64, v3);
747        h64 = XXH64_mergeRound(h64, v4);
748    } else {
749        h64  = state->v3 + PRIME64_5;
750    }
751
752    h64 += (U64) state->total_len;
753
754    while (p+8<=bEnd) {
755        U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
756        h64 ^= k1;
757        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
758        p+=8;
759    }
760
761    if (p+4<=bEnd) {
762        h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
763        h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
764        p+=4;
765    }
766
767    while (p<bEnd) {
768        h64 ^= (*p) * PRIME64_5;
769        h64  = XXH_rotl64(h64, 11) * PRIME64_1;
770        p++;
771    }
772
773    h64 ^= h64 >> 33;
774    h64 *= PRIME64_2;
775    h64 ^= h64 >> 29;
776    h64 *= PRIME64_3;
777    h64 ^= h64 >> 32;
778
779    return h64;
780}
781
782
783XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
784{
785    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
786
787    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
788        return XXH64_digest_endian(state_in, XXH_littleEndian);
789    else
790        return XXH64_digest_endian(state_in, XXH_bigEndian);
791}
792
793
794/* **************************
795*  Canonical representation
796****************************/
797
798/*! Default XXH result types are basic unsigned 32 and 64 bits.
799*   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
800*   These functions allow transformation of hash result into and from its canonical format.
801*   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
802*/
803
804XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
805{
806    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
807    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
808    ZSTD_memcpy(dst, &hash, sizeof(*dst));
809}
810
811XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
812{
813    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
814    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
815    ZSTD_memcpy(dst, &hash, sizeof(*dst));
816}
817
818XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
819{
820    return XXH_readBE32(src);
821}
822
823XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
824{
825    return XXH_readBE64(src);
826}
827